WO2019188957A1 - 天然ガス液化装置および天然ガス液化方法 - Google Patents
天然ガス液化装置および天然ガス液化方法 Download PDFInfo
- Publication number
- WO2019188957A1 WO2019188957A1 PCT/JP2019/012449 JP2019012449W WO2019188957A1 WO 2019188957 A1 WO2019188957 A1 WO 2019188957A1 JP 2019012449 W JP2019012449 W JP 2019012449W WO 2019188957 A1 WO2019188957 A1 WO 2019188957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- natural gas
- heat exchanger
- compressor
- pressure
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B11/00—Compression machines, plants or systems, using turbines, e.g. gas turbines
- F25B11/02—Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0057—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0205—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Definitions
- the present invention relates to a natural gas liquefaction apparatus and a natural gas liquefaction method.
- LNG liquefied natural gas
- an incombustible gas such as nitrogen is used as a refrigerant and expanded in an expansion turbine.
- a method of cooling and liquefying natural gas with a refrigerated refrigerant is known.
- Such a method is mainly employed in a small-scale liquefaction apparatus.
- a plurality of expansion turbines are provided.
- a configuration including only one expansion turbine is employed.
- FIG. The left figure in Fig. 4 shows a conventional method in which nitrogen, which is a refrigerant for cooling natural gas, is expanded and cooled by a single expansion turbine and introduced into a heat exchanger to cool and liquefy natural gas. It is a figure which shows the simplest process. Further, FIG. The right diagram in FIG. 4 shows a conventional process in which performance (power consumption) is improved as compared with the diagram on the left. In this process, in addition to cooling natural gas using nitrogen that has been cooled using a single expansion turbine, the pressure of nitrogen is reduced using a Joule-Thomson valve (hereinafter sometimes referred to as a JT valve). However, the natural gas is further cooled using liquid nitrogen that has been cooled to a lower temperature region.
- a Joule-Thomson valve hereinafter sometimes referred to as a JT valve
- the inlet temperature of the expansion turbine can be increased compared to the process disclosed in the left figure, so that the flow rate of the refrigerant can be reduced, and the power consumption of the compressor for compressing the refrigerant. Can be reduced.
- FIG. 4 In the process disclosed in the right diagram of FIG. 4, when the conditions are determined so that the power consumption is minimized, it is necessary to increase the pressure of the refrigerant (nitrogen) system. For this reason, it is necessary to set a high design pressure for piping or the like at the time of device design, and the specifications of the compressor and heat exchanger used in the device are limited to high pressure resistant models. For this reason, there exists a problem that size reduction of an apparatus becomes difficult or apparatus cost increases. In addition, when the pressure is set low to avoid this, there is a problem that the power consumption increases significantly.
- Patent Document 1 includes FIG. 4, a process using a mixture of nitrogen and methane as a refrigerant is disclosed.
- Patent document 1 aims at reducing the energy required for liquefaction by employ
- the cost for making the refrigerant system a safe specification increases. To do.
- Patent Document 2 a technology in which the refrigerant is divided into systems having different pressures and returned to the compressor as disclosed in Patent Document 2.
- the liquefaction method of claim 5 of Patent Document 2 is applied to the second compressed gaseous refrigerant flow (174) as shown in FIG. Compressed by the machine (130) and mixed with the first part (154) from the first expanded gaseous refrigerant stream (152) and the second part (160).
- the discharge pressure of the low-temperature expander is made lower than the discharge pressure of the high-temperature expander for the purpose of adopting the above configuration, while achieving a lower temperature, the discharge from the discharge port of the high-temperature expander
- a gaseous refrigerant stream is introduced at high pressure between stages of a gaseous refrigerant compressor to reduce the power consumed by the compressor.
- the flow rate of the high-pressure refrigerant compressor (132) is 217,725 Ibmol / hour which is the sum of 21,495 Ibmol / hour and 196,230 Ibmol / hour.
- the flow rate of the low-pressure refrigerant compressor (130) is 53,091 Ibmol / hour which is the same as that of the upstream flow (170), which is as low as about 24% of the high-pressure refrigerant compressor (132).
- these two compressors have a large difference in flow rate and are difficult to integrate, there is a problem that a plurality of compressors are used, resulting in an increase in installation area and cost.
- the flow rate of the flow (170) is small as described above. Therefore, in a small-scale device, the flow rates of the expander (138) and the low-pressure refrigerant compressor (130) are low. Very little. However, since such a small model does not exist in the market, this technology cannot be applied.
- FIG. 3 shows a general refrigerant system in which the refrigerant returns to the compressor in one system.
- 3 shows the refrigerant system disclosed in Patent Document 1 and
- FIG. 4 is a conventional statistical diagram showing the refrigerant system disclosed in the right figure in more detail.
- a multi-stage compression configuration in which a plurality of compressors are connected in series is generally employed.
- a refrigerant such as nitrogen compressed in a plurality of compression stages is introduced into a heat exchanger via a brake blower as necessary, and is used for cooling and liquefying natural gas.
- the refrigerant that has passed through the heat exchanger is decompressed by the decompressor, re-introduced into the heat exchanger, subjected to heat exchange again, and then introduced into the first stage of the compression stage provided in plural. .
- the natural gas G stored in the natural gas supply source 106 is free from components that solidify at low temperatures and components that cause corrosion. Then, after being cooled by the precooler 107, it is introduced into the heat exchanger 104. At this time, the pressure of the natural gas introduced into the heat exchanger 104 is about 1 to 8 MPa, and usually the pressure is about 3 to 6 MPa in consideration of power consumption, design pressure, and the like.
- the temperature of the natural gas G introduced into the heat exchanger 104 is generally room temperature (about 20 to 40 ° C.), or a temperature ( ⁇ 20 to ⁇ About 50 ° C.).
- the natural gas G introduced into the heat exchanger 104 is cooled and liquefied by heat exchange with a refrigerant containing low-temperature nitrogen or the like, and becomes LNG.
- a refrigerant containing low-temperature nitrogen or the like containing low-temperature nitrogen or the like
- LNG low-temperature nitrogen
- liquefaction starts at a low temperature of about -50 ° C and completely liquefies at about -100 ° C.
- the temperature of the LNG discharged through the heat exchanger 104 is as low as possible in order to reduce the amount of vaporization when introduced into the low-pressure storage tank 108, and ideally about ⁇ 160 ° C.
- nitrogen gas used for the refrigerant is introduced from the refrigerant source 101 into the compressor 102 having a plurality of compression stages, and is compressed to about 3 to 6 MPa, for example.
- the compressor 102 includes the plurality of compression stages 102A to 102D and coolers 121A to 121D disposed on the outlet side of each compression stage.
- Compressed nitrogen gas is further compressed by the brake blower 131 driven by the expansion turbine 103, and then a part thereof is introduced into the expansion turbine 103. Moreover, there are cases where it is introduced into an expansion turbine for generator braking or an expansion turbine incorporated in a compressor. In any case, the power generated in the expansion turbine 103 is used for compression of nitrogen gas.
- the pressure of nitrogen (refrigerant) introduced into the heat exchanger 104 is higher than the critical pressure (3.4 MPa), and is determined in consideration of the power consumed by the natural gas liquefying device, the design pressure, and the like.
- Nitrogen introduced into the heat exchanger 104 is cooled by heat exchange with low-temperature nitrogen, a part is extracted at about ⁇ 50 ° C. and introduced into the expansion turbine 103, and the rest is further transferred in the heat exchanger 104. To be cooled.
- the nitrogen introduced into the expansion turbine 103 becomes approximately ⁇ 140 ° C. due to isentropic expansion, and is returned to the heat exchanger 104.
- the cooled and cooled nitrogen introduced into the heat exchanger 104 is introduced into a decompressor 105 equipped with a JT valve or a liquid turbine (Liquid expander, Dense fluidexpander), and decompressed by the decompressor 105 to be a gas-liquid two-phase flow. Or it becomes a liquid phase.
- the nitrogen that has been depressurized by the decompressor 105 is returned to the heat exchanger 104 at a temperature lower than the nitrogen at the outlet of the expansion turbine 103, ideally lower than ⁇ 160 ° C., and the natural gas G And the nitrogen is cooled, and vaporizes itself to raise the temperature to the same temperature as the outlet of the expansion turbine 103.
- Nitrogen having a temperature equivalent to that at the outlet of the expansion turbine 103 merges with nitrogen at the outlet of the expansion turbine 103 and is used to cool the natural gas G and nitrogen. Return to the entrance of the stage 102A. Therefore, the nitrogen at the outlet of the expansion turbine 103 and the nitrogen at the outlet of the decompressor 105 have the same pressure.
- the boiling point of nitrogen needs to be lower than ⁇ 160 ° C.
- the nitrogen pressure in can not be higher than about 1.3 MPa.
- the inlet pressure of the compressor 102 becomes lower and the power consumption increases, so the outlet pressure of the decompressor 105 is made as high as possible, that is, about 1.3 MPa. It is desirable.
- an aluminum plate fin type heat exchanger is generally used as a heat exchanger for a small-scale apparatus.
- a high pressure resistant aluminum plate fin type heat exchanger it must be a plain fin type with a simple structure and excellent strength but low heat transfer performance.
- a heat transfer performance high serrate fin type or herringbone fin type can be adopted, and the heat exchanger performance can be improved and the size can be reduced.
- the heat transfer area of the plain fin type heat exchanger is approximately 1.5 to 2 times the heat transfer area of the serrated fin type heat exchanger.
- the plain fin type is used, it is difficult to reduce the size of the apparatus.
- the present invention has been made in view of the above problems, and provides a natural gas liquefying apparatus and a natural gas liquefying method capable of reducing power consumption in a relatively low refrigerant pressure range using nonflammable gas as a refrigerant.
- the purpose is to provide.
- a natural gas liquefying apparatus for producing liquefied natural gas by cooling and liquefying natural gas, A compressor that compresses a refrigerant containing non-combustible gas in a plurality of compression stages; A heat exchanger that cools and liquefies the natural gas into a liquefied natural gas; A natural gas liquefaction line that introduces the natural gas into the heat exchanger and supplies the liquefied natural gas liquefied in the heat exchanger toward the outside; A first refrigerant line that introduces the refrigerant compressed by the compressor into the heat exchanger, and further introduces the refrigerant that has passed through the heat exchanger into the decompressor; The refrigerant decompressed by the decompressor is introduced into the heat exchanger, and the refrigerant that has passed through the heat exchanger is introduced into the second and subsequent stages of the plurality of compression stages provided in the compressor.
- a natural gas liquefying apparatus comprising:
- a plurality of the second refrigerant lines including a plurality of the pressure reducers, each of the different pressure reducers being a starting point of the refrigerant flow, and each of the second and subsequent compression stages of the compressor being the end points of the refrigerant flow.
- the natural gas liquefying apparatus according to any one of the above (1) to (5), comprising:
- the present invention further provides the following natural gas liquefaction method.
- a natural gas liquefaction method for producing liquefied natural gas by cooling and liquefying natural gas A natural gas supply step of introducing the natural gas into a heat exchanger and supplying the liquefied natural gas cooled and liquefied by the heat exchanger to the outside; A refrigerant supply step of introducing into the heat exchanger a refrigerant composed of a noncombustible gas for cooling the natural gas introduced into the heat exchanger, The refrigerant supply step introduces a refrigerant obtained by compressing an incombustible gas with a compressor having a plurality of compression stages into a heat exchanger, and introduces the refrigerant that has passed through the heat exchanger into the decompressor.
- Step a The refrigerant that has been cooled to at least a part of the liquid phase by the decompression / expansion by the decompressor is introduced into the heat exchanger, and the refrigerant that has been heated through the heat exchanger is provided with the compressor.
- a refrigerant supply step b introduced into the second and subsequent stages of the plurality of compression stages;
- a refrigerant supply step c for introducing at least a part of the refrigerant in the refrigerant supply step a into an expansion turbine; Refrigerant that has been decompressed and lowered in temperature by the expansion turbine is introduced into the heat exchanger, and the refrigerant that has been heated through the heat exchanger is supplied to the plurality of compression stages included in the compressor.
- a natural gas liquefaction method comprising: a refrigerant supply step d introduced into the first stage.
- the refrigerant supply step a further includes a step of additionally compressing the refrigerant compressed in multiple stages by the compressor using power generated in the expansion turbine.
- the natural gas supply step further comprises a step of precooling the natural gas before being introduced into the heat exchanger with a vaporization type refrigerant.
- the natural gas liquefaction method according to any one of the above.
- the refrigerant is introduced into a plurality of decompressors
- the different pressure reducers in the plurality of pressure reducers are used as the starting points of the refrigerant flow
- the different compression stages after the second stage of the compressor are used as the end points of the refrigerant flow.
- the natural gas liquefaction method according to any one of (11).
- the refrigerant-2 compressed by the plurality of compression stages in the compressor, further reduced in pressure by the decompressor and passed through the heat exchanger is transferred to the inside of the plurality of compression stages in the compressor.
- a fourth refrigerant line for introducing the refrigerant-3 expanded by the expansion turbine and passing through the heat exchanger into the first compression stage of the compressor is introduced into the first compression stage among the plurality of compression stages.
- the refrigerant-2 returned from the heat exchanger at a relatively high pressure is introduced into the second and subsequent stages of the plurality of compression stages.
- the entire apparatus can be reduced in size and cost. Further, as will be described in detail in the section of the embodiment described later, since the flow rate of the second refrigerant line is a small amount of less than 10% of the whole refrigerant, the compression stage before the second refrigerant line in the compressor is introduced. The flow rate is about 90% of the flow rate of the subsequent compression stage.
- the flow rate difference between the compressors is small, and it becomes easy to design these compression stages as an integral compressor. Furthermore, when a pressure reducing valve is used for the pressure reducing device, the present invention can be applied to a small-scale device having a small flow rate of the second refrigerant line.
- the refrigerant supply step introduces refrigerant-2, which has been cooled by decompression / expansion by the decompressor and at least partly in the liquid phase, into the heat exchanger,
- a refrigerant supply step b for introducing the refrigerant-2 that has been heated through the heat exchanger into the second and subsequent stages of the plurality of compression stages in the compressor, and a refrigerant that has been decompressed and lowered in temperature by the expansion turbine -3 is introduced into the heat exchanger
- a refrigerant supply step b is introduced to introduce the refrigerant -3, which has been heated through the heat exchanger, into the first compression stage of the compressor.
- FIGS. 1 and 2 also refer to the conventional diagram in FIG. 3 as appropriate.
- FIGS. 1 and 2 also refer to the conventional diagram in FIG. 3 as appropriate.
- FIGS. 1 and 2 also refer to the conventional diagram in FIG. 3 as appropriate.
- the drawings used in the following description in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.
- the materials and the like exemplified in the following description are merely examples, and the present invention is not limited to them, and can be appropriately modified and implemented without changing the gist thereof.
- the natural gas liquefaction apparatus and the natural gas liquefaction method according to the present invention are suitable as an apparatus and method for liquefying natural gas and supplying LNG, particularly as a small-scale liquefaction apparatus having only one expansion turbine. It is.
- the natural gas liquefying apparatus 10 of the present embodiment is an apparatus that produces liquefied natural gas (LNG) F by cooling and liquefying the natural gas G.
- the natural gas liquefying apparatus 10 supplies the refrigerant mainly containing incombustible gas supplied from the refrigerant source 1 which is a convenient starting point for explaining the circulating refrigerant in a plurality of compression stages 2A to 2D.
- Compressor 2 for compressing; heat exchanger 4 for cooling and liquefying natural gas G to form liquefied natural gas (LNG) F; natural gas G is introduced into heat exchanger 4 and liquefied by heat exchanger 4 Liquefaction line FL for supplying the liquefied natural gas F to the outside; Refrigerant-1 compressed by the compressor 2 is introduced into the heat exchanger 4, and the refrigerant-1 that has passed through the heat exchanger 4 is depressurized.
- the flow of natural gas G and the flow of refrigerant-1 to refrigerant-3 as a whole are a natural gas supply process and a refrigerant supply process. It is divided into.
- a brake blower 31 provided in the path of the first refrigerant line L1 and compressing the refrigerant-1 flowing through the first refrigerant line L1, And the cooler 32 is provided in the exit side.
- a precooler 7 that cools the natural gas G is further provided on the inlet side of the heat exchanger 4 in the liquefaction line FL.
- the compressor 2 compresses the refrigerant supplied from the refrigerant source 1 by a plurality of compression stages 2A to 2D.
- the compression stages 2A to 2D are sequentially connected in series.
- Coolers 21B to 21D are provided on the outlet sides of the compression stages 2B to 2D in the first solvent line L1, respectively.
- a cooler 21A is provided on the inlet side of the compression stage 2A in the fourth solvent line L4.
- the refrigerant source 1 is provided in a path of a fourth refrigerant line L4, the details of which will be described later, and incombustible gas is supplied as a refrigerant from the fourth refrigerant line L4 to the compressor 2.
- the compressor 2 is not particularly limited, and a compressor having a plurality of compression stages conventionally used in this field can be used without any limitation.
- a geared centrifugal compressor Integrally geared
- a single-shaft centrifugal compressor single shaft
- the reciprocating compressor has a short maintenance cycle, in order to obtain the same LNG production amount as that of the geared type or the like, it is necessary to compensate for the shortening of the operation time by increasing the size of the device, which increases the device cost. . Therefore, it is preferable to employ the above-mentioned geared centrifugal compressor as the compressor 2 from the viewpoint of general operating conditions in actual use.
- non-combustible gas used as the refrigerant supplied from the refrigerant source 1 toward the compressor 2 for example, nitrogen may be mentioned.
- the expansion turbine 3 expands the refrigerant-1 compressed by the compressor 2, and at least of the refrigerant-1 by a third refrigerant line L3 branched from a branch point P in the first refrigerant line L1 described later in detail. Some are introduced. Then, the refrigerant-1 expanded by the expansion turbine 3 is introduced into the heat exchanger 4 through a fourth refrigerant line L4, which will be described in detail later.
- the brake blower 31 is provided on the path of the first refrigerant line L1. As described above, the brake blower 31 is driven by the power generated in the expansion turbine 3, and further compresses the refrigerant-1 flowing through the first refrigerant line L1. A cooler 32 is provided on the outlet side of the brake blower 31 on the path of the first refrigerant line L1. Further, the installation of the brake blower 31 can be omitted depending on the setting of the pressure of the refrigerant-1.
- the heat exchanger 4 is inserted with a liquefaction line FL, which will be described in detail later, and first to fourth refrigerant lines L1 to L4.
- the heat exchanger 4 exchanges heat between the low-temperature refrigerant-2 and the refrigerant-3 and the natural gas G, and cools and liquefies the natural gas G.
- the heat exchanger 4 of the present embodiment can also exchange heat between the refrigerants.
- the refrigerant-1 flowing through the first refrigerant line L1 is cooled by the refrigerant-3 flowing through the refrigerant.
- an aluminum plate fin type heat exchanger can be adopted as the heat exchanger 4.
- Aluminum plate fin type heat exchangers, especially serrated fin type and herringbone fin type aluminum plate fin type heat exchangers with high heat transfer performance, are characterized by very high heat exchange efficiency, although they are not high withstand pressure. is there. Since the natural gas liquefying apparatus 10 of the present embodiment operates the refrigerant supply process at a relatively low pressure, the heat exchanger 4 and the entire apparatus can be obtained by adopting the aluminum plate fin heat exchanger as the heat exchanger 4. It is possible to improve the performance and reduce the size.
- mold (Shell & Coil) and a diffusion bonding type
- mold (Diffusion bonding) (Diffusion bonding)
- the cost in the case of the same performance will be several times the aluminum plate fin type.
- the heat exchanger 4 has a low design pressure and excellent heat transfer performance, such as a serrated fin type aluminum plate fin type. It is preferable to use a heat exchanger.
- the decompressor 5 depressurizes and expands the refrigerant-1 introduced from the first refrigerant line L1 to obtain a refrigerant-2 that is at least partially in a liquid phase. Further, one end of the second refrigerant line L2 is connected to the outlet of the decompressor 5, and the refrigerant-2 is introduced into the heat exchanger 4.
- the decompressor 5 is not particularly limited as long as the refrigerant can be decompressed. Specifically, a decompression valve such as a JT valve can be used. In addition, a liquid turbine can be used as the decompressor 5.
- the natural gas liquefying apparatus 10 of the present embodiment includes a first refrigerant line L1, a second refrigerant line L2, a third refrigerant line L3, and a fourth refrigerant line L4 that constitute a refrigerant supply process (refrigerant path B), And a liquefaction line FL constituting a gas supply process.
- Each line used in the natural gas supply process and the refrigerant supply process includes, for example, appropriate piping through which each fluid can be inserted.
- the liquefaction line FL introduces the natural gas G into the heat exchanger 4 and supplies the liquefied natural gas F cooled and liquefied by the heat exchanger 4 to the outside. That is, the liquefaction line FL in the illustrated example is connected to the natural gas source 6 on the inlet side, inserted from the precooler 7 provided in the path toward the heat exchanger 4, and stores the liquefied natural gas F on the outlet side. It is connected to the storage tank 8.
- the first refrigerant line L1 introduces the refrigerant-1 compressed by the compressor 2 into the heat exchanger 4, and introduces the refrigerant-1 that has passed through the heat exchanger 4 into the decompressor 5. That is, in the illustrated first refrigerant line L1, the inlet side is connected to the compression stage 2D, which is the final stage of the compressor 2, via the cooler 21D. Then, the heat exchanger 4 is inserted through the brake blower 31 and the cooler 32. The outlet side of the first refrigerant line L1 that has passed through the heat exchanger 4 is connected to the inlet of the decompressor 5.
- the second refrigerant line L2 introduces the refrigerant-2 decompressed by the decompressor 5 into the heat exchanger 4, and passes the refrigerant-2 that has passed through the heat exchanger 4 to the compressor 2 Is introduced after the compression stage 2B, which is the second stage among the plurality of compression stages 2A to 2D. That is, one end side of the second refrigerant line L2 in the illustrated example is connected to the outlet of the decompressor 5. The second refrigerant line L2 passes through the heat exchanger 4. The other end is connected to the inlet of the second compression stage 2B in the compressor 2.
- the third refrigerant line L3 branches from a branch point P of the first refrigerant line L1, and introduces at least a part of the refrigerant-1 into the expansion turbine 3. That is, one end side of the third refrigerant line L3 in the illustrated example is connected to the path of the first refrigerant line L1 inserted into the heat exchanger 4, and the other end side is connected to the inlet side of the expansion turbine 3. .
- the fourth refrigerant line L4 introduces the refrigerant-3 expanded by the expansion turbine 3 into the heat exchanger 4, and passes the refrigerant-3 that has passed through the heat exchanger 4 to the compressor 2. It is introduced into the first compression stage 2A among the plurality of compression stages 2A to 2D provided. That is, one end side of the fourth refrigerant line L4 in the illustrated example is connected to the outlet of the expansion turbine 3. The fourth refrigerant line L4 passes through the heat exchanger 4. The other end is connected to the inlet of the second compression stage 2B in the compressor 2.
- a precooler 7 that cools the natural gas G in advance with a vaporization type refrigerant is provided before introducing the natural gas G into the heat exchanger 4 through the liquefaction line FL.
- the precooler 7 is provided on the inlet side of the heat exchanger 4 on the path of the liquefaction line FL.
- the power consumption can be reduced particularly in the range where the pressure at the inlet of the expansion turbine is relatively low, as will be described in detail later, by providing the above configuration.
- a heat exchanger a type having high heat transfer performance despite being low pressure specifications, specifically, an aluminum plate fin type can be adopted. For this reason, the performance improvement and size reduction of a heat exchanger are attained, and the size of the whole apparatus can also be reduced.
- the natural gas liquefaction method of this embodiment is a method for producing liquefied natural gas (LNG) F by cooling and liquefying natural gas G.
- natural gas G is introduced into the heat exchanger 4 and liquefied natural gas (LNG) F cooled and liquefied by the heat exchanger 4 is supplied to the outside.
- refrigerant-1 obtained by compressing the flammable gas with the compressor 2 having a plurality of compression stages 2A to 2D is introduced into the heat exchanger 4, and the refrigerant that has passed through the heat exchanger 4 is introduced.
- the refrigerant supply step a corresponds to the first refrigerant line L1 of the natural gas liquefaction apparatus 10 described above.
- the refrigerant supply process b corresponds to the second refrigerant line L2.
- the refrigerant supply process c corresponds to the third refrigerant line L3.
- the refrigerant supply process d corresponds to the fourth refrigerant line L4.
- natural gas in the natural gas supply process and at least a part of the refrigerant in the refrigerant supply process a to the refrigerant supply process d constituting the refrigerant supply process pass through the heat exchanger 4. .
- the refrigerant-1 is cooled by the refrigerant-2 and the refrigerant-3 in the heat exchanger 4.
- the natural gas G is cooled by the refrigerant-2 and the refrigerant-3.
- nitrogen which is an incombustible gas
- the compressor 2 having a plurality of compression stages 2A to 2D
- the heat exchanger 4 Thereafter, the refrigerant-1 that has passed through the heat exchanger 4 is introduced into the decompressor 5 via the first refrigerant line L1.
- the refrigerant-2 which has been cooled by decompression / expansion by the decompressor 5 and at least partially converted into a liquid phase, is introduced into the heat exchanger 4 via the second refrigerant line L2.
- the refrigerant 2 that has been heated by passing through the heat exchanger 4 is heated from the second stage among the plurality of compression stages 2A to 2D provided in the compressor 2 to the inlet of the compression stage 2B.
- the refrigerant supply step c at least a part of the refrigerant-1 is supplied to the expansion turbine 3 via the third refrigerant line L3 branched from the branch point P of the first refrigerant line L1 through which the refrigerant-1 flows in the refrigerant supply step a.
- the refrigerant-3 that has been expanded and reduced in temperature by the expansion turbine 3 is introduced into the heat exchanger 4 via the fourth refrigerant line L4. Then, the refrigerant-3 heated through the heat exchanger 4 is introduced into the first compression stage 2A among the plurality of compression stages 2A to 2D provided in the compressor 2.
- the natural gas G supplied from the natural gas source 6 is supplied to the heat exchanger via the natural gas line FL almost simultaneously with the refrigerant supply processes a to (d). 4 to cool and liquefy. Then, liquefied natural gas (LNG) F liquefied by the heat exchanger 4 is introduced into the storage tank 8 through the liquefaction line FL.
- LNG liquefied natural gas
- the operations described below can be obtained by performing each of the refrigerant supply step a to the refrigerant supply step d in the refrigerant supply step.
- the refrigerant supply step c at least a part of the refrigerant -1 flowing through the first refrigerant line L1 is taken out at a substantially intermediate temperature by the third refrigerant line L3 and expanded by the expansion turbine 3, thereby reducing the temperature.
- the obtained refrigerant-3 is obtained.
- the refrigerant 3 and the natural gas G are mainly heat-exchanged, and the cooled natural gas G is liquefied to obtain the liquefied natural gas F.
- the refrigerant-3 whose temperature has been raised to a temperature close to room temperature by heat exchange with the natural gas G is returned to the inlet of the first compression stage 2A of the compressor 2 and compressed again.
- the remaining refrigerant-1 after being at least partially taken out by the third refrigerant line L3 is heat-exchanged with the refrigerant-2 and the refrigerant-3, so that the intermediate Cool to a temperature lower than the temperature.
- the refrigerant -1 having a temperature lower than the intermediate temperature is expanded by the decompressor 5, so that the refrigerant -1 is expanded by the expansion turbine 3, and has a higher pressure than the refrigerant -3 that has been reduced and lowered in temperature. Is obtained, and at least a part of the refrigerant 2 is liquefied.
- the heat exchanger 4 heat exchange is performed between the refrigerant-2 and the refrigerant-3 and the natural gas G and the refrigerant-1 compressed by the compressor 2, and the natural gas G and Cool down refrigerant-1. Then, the refrigerant-3, which has been vaporized by this heat exchange and has reached approximately room temperature, is returned to the inlet of the compressor 2 after the second compression stage 2B.
- the pressure of the refrigerant-3 returned from the expansion turbine 3 to the heat exchanger 4 via the fourth refrigerant line L4 is greatly reduced by the expansion turbine 3, and the refrigerant-2 decompressed by the decompressor 5 is used. Lower than the pressure. Therefore, in the present embodiment, after the refrigerant 3 is used for cooling the natural gas G and the refrigerant-1 in the heat exchanger 4, the refrigerant-3 is returned to the first compression stage 2A of the compressor 2, and the plural The compression stages 2A to 2D are sufficiently compressed. On the other hand, the refrigerant-2 decompressed by the decompressor 5 and returned to the heat exchanger 4 has a pressure higher than that of the refrigerant-3.
- the pressure at the outlet of the decompressor 5 equipped with a JT valve ((viii) in FIG. 1) is set to 1.
- the pressure at the outlet (same as (vi)) of the expansion turbine 3 can be lowered while maintaining 3 MPa.
- the pressure at the outlet (the same (iii)) of the compressor 2 is lowered, the expansion ratio of the expansion turbine 3 becomes small, and the problem that the flow rate increases can be improved. Further, useless power for unnecessary compression of the low-pressure refrigerant-2 decompressed by the decompressor 5 and passed through the heat exchanger 4 is not required.
- the pressure on the inlet side of the expansion turbine 3 in the refrigerant supply step c shown by (v) in FIG. 1 is less than 9 MPa. Further, from the viewpoint of reducing power consumption in a relatively low refrigerant pressure range, the pressure on the inlet side of the expansion turbine 3 is preferably 6 to 8 MPa, and more preferably 7 to 7.5 MPa.
- the refrigerant 1 is additionally compressed by the brake blower 31 described above and then introduced into the heat exchanger 4. In this way, by further compressing the refrigerant-1 using the power generated in the expansion turbine 3, it is possible to introduce the refrigerant 1 into the heat exchanger 4 at a higher pressure without increasing the power consumption of the compressor 2.
- the natural gas G before being introduced into the heat exchanger 4 is precooled with a vaporization type refrigerant in the natural gas supply step.
- the natural gas G is precooled by the precooler 7 composed of the above-described Freon refrigerator or the like and then introduced into the heat exchanger 4.
- the liquefied gas G can be introduced into the heat exchanger 4 in a state of being cooled to a predetermined temperature or lower in advance, so that the natural gas G in the heat exchanger 4 can be introduced.
- the liquefaction efficiency is improved.
- the refrigerant 2 that has been decompressed by the decompressor 5 and passed through the heat exchanger 4 is converted into the two stages of the plurality of compression stages 2A to 2D.
- the second refrigerant line L2 introduced after the second compression stage 2B and the fourth refrigerant introduced into the first stage compression stage 2A of the compressor 2 by the refrigerant-3 expanded by the expansion turbine 3 and passed through the heat exchanger 4 A configuration with a line is adopted. That is, the refrigerant-3 returned from the heat exchanger 4 at a relatively low pressure is introduced into the first compression stage 2A among the plurality of compression stages 2A to 2D.
- the refrigerant-2 returned from the heat exchanger 4 at a relatively high pressure is introduced into the second and subsequent compression stages 2B of the plurality of compression stages 2A to 2D.
- the heat exchanger 4 can be of a type such as an aluminum plate fin that has high heat transfer performance despite its low pressure specifications, so the performance of the heat exchanger 4 can be improved and the size of the heat exchanger 4 can be reduced. It is also possible to reduce the size and cost.
- the refrigerant supply step reduces the temperature of the refrigerant-2 by decompression / expansion by the decompressor 5 and at least a part of which is in the liquid phase to the heat exchanger 4.
- a refrigerant supply step d introduced into the first compression stage 2A of the plurality of compression stages 2A to 2D.
- refrigerant-3 returned from the heat exchanger 4 at a relatively low pressure is introduced into the first compression stage 2A.
- refrigerant-2 returned from the heat exchanger 4 at a relatively high pressure is introduced after the second compression stage 2B, the power consumption can be reduced in a range where the pressure at the inlet of the expansion turbine 3 is relatively low. Is possible.
- the apparatus to be used can be reduced in size, and the operating cost can be reduced.
- the compressor 2 of the example shown in FIG. 1 includes a total of four compression stages, compression stages 2A to 2D, but the number of compression stages is not limited to this, and the cooling performance of the natural gas liquefaction device is improved. For example, a total of two stages or five or more stages may be used. Further, the position at which the refrigerant 2 is introduced in the compressor 2 is not limited to the inlet of the second compression stage 2B as shown in the figure. It may be the inlet of the compression stage 3C of the stage.
- FIG. 1 shows an example in which the braking blower 31 and the cooler 32 are provided in the path of the first refrigerant line L1, but when the compression of the refrigerant-1 in the compressor 2 is sufficient, these Can be omitted.
- this embodiment demonstrates the example which introduce
- LNG liquefied natural gas
- FIG. 4 it is possible to obtain further effects at a small additional cost.
- a natural gas liquefying apparatus and a natural gas liquefying method which are other embodiments to which the present invention is applied, will be described with reference to FIGS. 1 and 4 as appropriate.
- the heat exchanger 4 is integrated, whereas in the natural gas liquefying apparatus and the natural gas liquefying method shown in FIG. 4 is divided into heat exchangers 4A to 4D. If divided, the number of heat exchangers increases and the need for connecting piping is a cause of increased costs. However, the heat exchangers 4C and 4D having a temperature lower than the temperature of the heat exchanger 4B that introduces the refrigerant-3 expanded by the expansion turbine 3 have a smaller number of fluids than the heat exchangers 4A and 4B having a higher temperature, Is low temperature and fluid density is large. For this reason, the cross-sectional area of a flow path can be made small. By dividing the heat exchanger, the total volume of the heat exchanger can be made smaller than that of the integrated type.
- the refrigerant-2 introduced from the decompressor 5 to the heat exchanger 4D and the refrigerant-2 ′ introduced from the decompressor 5 ′ to the heat exchanger 4C can be a gas-liquid two-phase flow
- the performance of the heat exchanger In order to avoid a decrease, it is important to make the gas-liquid distribution in the flow path uniform.
- the heat exchanger is divided at the position where refrigerant-3 expanded by the expansion turbine 3 is introduced, and the flow passages of the heat exchangers 4C and 4D at lower temperatures are made smaller. Is an effective measure.
- the heat exchangers 4A and 4B are divided and the heat exchangers are arranged side by side in the horizontal direction in the flow direction of the refrigerant, so that the height of the cold box for storing them can be suppressed, or a plurality of small cold insulations can be provided. It becomes easy to divide into boxes. As a result, it is possible to reduce the installation work by unitizing the apparatus or to make the configuration easy to move.
- a decompressor 5 and a decompressor 5 ′ are installed, and a plurality of refrigerant-2 and refrigerant-2 ′ having different pressures are provided in the compressor 2 by the second refrigerant line L2 and the second refrigerant line L2 ′, respectively.
- the compression stages 2A to 2D may be introduced to different compression stages after the compression stage 2B, which is the second stage.
- the refrigerant-2 passing through the second refrigerant line L2 is 1.3 MPa in order to cool the natural gas to ⁇ 160 ° C. as in the embodiment of FIG. .
- the boiling point of the refrigerant-2 ′ passing through the second second refrigerant line L2 ′ for cooling the higher temperature region may be higher than that of the refrigerant-2, so that the pressure can be higher than 1.3 MPa. Therefore, according to the natural gas liquefaction apparatus and the natural gas liquefaction method of the other embodiment shown in FIG. 4, a part of the refrigerant can be returned to the compression stage at a pressure higher than 1.3 MPa, so that the total amount is 1.3 MPa. Compared with the embodiment of FIG. 1 to be returned, it is possible to further reduce power consumption.
- the division of the heat exchanger and the plurality of second refrigerant lines can be employed individually. Further, it is possible to further reduce the size of each unit by increasing the number of divisions of the heat exchanger. In addition, it is possible to increase the number of second refrigerant lines to three to further reduce power consumption.
- LNG was produced by cooling and liquefying natural gas using the conventional natural gas liquefying apparatus 100 shown in FIG.
- a JT valve was used as the decompressor 105.
- the compressor 102 a compressor having a total of four compression stages 102A to 102D and provided with coolers 121A to 121D on the outlet sides of the respective compression stages 102A to 102D was used. Nitrogen gas was used as the refrigerant.
- the pressure at the outlet of the expansion turbine 103 was 1.3 MPa. As is clear from the configuration of the natural gas liquefying apparatus 100, the pressure at the outlet of the decompressor 105 is also 1.3 MPa. Further, by changing the pressure at the inlet of the expansion turbine 103, which is a condition for liquefying natural gas, the flow rate, pressure and temperature of the fluid flowing through the positions (i) to (x) in FIG. The power consumption (kw) of 102 was measured. Specifically, the state where the pressure is 11.1 MPa is shown in Table 1 below, and the state where the pressure is 7.2 MPa is shown in Table 2 below.
- Examples 1 and 2 LNG was produced by cooling and liquefying natural gas using the natural gas liquefying apparatus 10 shown in FIG.
- a JT valve was used as the decompressor 5.
- the compressor 2 a compressor having a total of four compression stages 2A to 2D and provided with coolers 21A to 21D on the respective outlet sides of the compression stages 2A to 2D was used. Also in this example, nitrogen gas was used as the refrigerant.
- Example 1 the pressure at the outlet of the decompressor 5 was 1.3 MPa, which was the same as that in the above reference example, and the pressure at the outlet of the expansion turbine 3 was 0.9 MPa.
- FIG. 2 shows the pressure at the outlet of the expansion turbine 103 when natural gas is liquefied under such conditions.
- the pressure at the outlet of the decompressor 5 is 1.3 MPa, the same as in the above reference example, the pressure at the outlet of the expansion turbine 3 is 0.6 MPa, and the inlet pressure is 7.2 MPa (the same pressure as in the reference example). ).
- the flow rate, pressure and temperature of the fluid flowing through the lines (i) to (x), and the power consumption (kw) of the compressor 2 were measured. The results are shown in Table 3 below.
- Comparative Example 1 the pressure at the outlet of the expansion turbine 103 was 0.9 MPa, and in Comparative Example 2, the pressure was 0.6 MPa.
- the pressure at the outlet of the decompressor 105 is the same as the pressure at the outlet of the expansion turbine 103 in Comparative Examples 1 and 2 due to the configuration of the natural gas liquefaction apparatus 100.
- FIG. 2 shows the pressure at the outlet of the expansion turbine 103 when natural gas is liquefied under such conditions.
- the pressure at the inlet of the expansion turbine 103 was 7.2 MPa (the same pressure as in the reference example and Example 2).
- the flow rate, pressure and temperature of the fluid flowing through the positions (i) to (x) in FIG. 3 and the power consumption (kw) of the compressor 2 were measured. The results are shown in Table 4 below.
- Example 3 As Example 3, natural gas was cooled and liquefied using the natural gas liquefying apparatus 10 shown in FIG. 4 under the following conditions and procedures to produce LNG.
- a decompressor 5 ′ was provided, and all used JT valves.
- the compressor 2 As the compressor 2, a compressor having a total of four compression stages 2A to 2D and provided with coolers 21A to 21D on the outlet sides of the respective compression stages 2A to 2D was used. Also in this example, nitrogen gas was used as the refrigerant.
- Example 3 the pressure at the outlet of the decompressor 5 was 1.3 MPa, and the pressure at the outlet of the decompressor 5 ′ was 2.6 MPa.
- the pressure at the inlet of the expansion turbine 3 was 7.2 MPa, and the pressure at the outlet was 0.6 MPa. That is, the pressures at the inlet and outlet of the decompressor 5 and the expansion turbine 3 were the same as those in Example 2.
- the flow rate, pressure, and temperature of the fluid flowing through each position (i) to (xiii) in Example 3 and the power consumption (kw) of the compressor 2 were measured. The results are shown in Table 5 below.
- Table 1 shows the flow rate, pressure, and temperature of the fluid flowing through each line under various conditions in the liquefaction process of the reference example using the natural gas liquefaction apparatus 100 having the conventional configuration, and the power consumption (kw) of the compressor 102. Show. Table 1 shows conditions of an example in which power consumption is minimized in a liquefaction process of a reference example using a natural gas liquefying apparatus 100 having a conventional configuration.
- Table 2 shows the expansion turbine outlet pressure ((vi) in FIG. 3) in the liquefaction process of the reference example using the conventional natural gas liquefaction apparatus 100, and the expansion turbine remains the same as the reference example described in Table 1.
- entrance ((v) in FIG. 3) are shown.
- Table 3 shows the pressure at the inlet of the expansion turbine 3 ((v) in FIG. 1) in the liquefaction process of Example 2 using the natural gas liquefaction apparatus 10 according to the present invention.
- the example conditions with the same value are shown.
- Table 4 shows the pressures at the inlet (v in FIG. 3) and the outlet ((vi) in FIG. 3) of the expansion turbine in the liquefaction process of Comparative Example 2 using the natural gas liquefying apparatus 100.
- the conditions of the example set to the same value as Example 2 shown in FIG.
- Table 5 shows an inlet (v in FIG. 4) and an outlet (v in FIG. 4) of the expansion turbine 3 in the liquefaction process of Example 3 using the natural gas liquefaction apparatus 10 according to another embodiment shown in FIG.
- the pressure at (vi)) and the pressure at the inlet ((vii) in FIG. 4) and outlet ((viii) in FIG. 4) of the decompressor 5 were set to the same values as those in Example 2 shown in Table 3. Example conditions are shown.
- Each of (i) to (ix) in Tables 1, 2, and 4 corresponds to the positions (i) to (ix) in FIG.
- Each of (i) to (x) in Table 3 corresponds to the positions (i) to (x) in FIG.
- Each of (i) to (xiii) in Table 5 corresponds to each of the positions (i) to (xiii) in FIG.
- the conditions of the inlet ((i) in FIGS. 1, 3, and 4) and the outlet ((ii) in FIGS. 1, 3, and 4) of the heat exchanger in the natural gas system are as follows. The same applies to the examples (FIGS. 1 and 4), the comparative examples, and the reference example (FIG. 3).
- the pressure at the outlet of the compressor 102 ((iii) in FIG. 3) is 6.1 MPa, and the pressure at the inlet of the expansion turbine 103 ((v) in FIG. 3) is 11.
- the power consumption of the compressor 102 was 4660 kW.
- the inlet temperature of the expansion turbine when the inlet temperature of the expansion turbine is increased, the enthalpy difference between the inlet and outlet of the expansion turbine increases, and the flow rate of the expansion turbine decreases.
- the outlet temperature since the outlet temperature is increased, the amount of heat for cooling from that temperature to ⁇ 163 ° C. increases, and the flow rate of the decompressor increases. Further, the cooling curve and the heating curve in the heat exchanger approach each other, and the temperature difference becomes small. Due to such reciprocal changes in the flow rates of the expansion turbine and the decompressor with respect to the inlet temperature of the expansion turbine, the total flow rate, that is, the power consumption of the compressor, becomes minimum at a predetermined inlet temperature.
- the flow rate of the compressor, the pressure at the inlet and the outlet, and the power consumption are values that are uniquely calculated when the conditions of the expansion turbine and the decompressor are determined, and cannot be arbitrarily selected. That is, the pressure at the compressor inlet is determined by the pressure at the outlet of the expansion turbine and the decompressor.
- the flow rate of the compressor is determined by a value at which natural gas can be liquefied under the conditions of the expansion turbine and the decompressor at that time.
- the pressure at the outlet of the compressor, that is, the pressure at the inlet of the brake blower is determined to be a value that can be compressed by the brake blower by the power generated in the expansion turbine at that time.
- the power consumption is calculated from each of these conditions. The efficiency of the compressor and the expansion turbine, and the pressure loss of each path were the same in all examples.
- the design pressure at the outlet of the compressor 102 can be lowered, and the design pressure of the heat exchanger 104 can also be lowered.
- the possibility of downsizing the equipment will also increase.
- the expansion ratio of the expansion turbine 103 is reduced and the flow rate is increased.
- the temperature of the outlet of the expansion turbine 103 ((vi) in FIG. 3) becomes high, the amount of heat for cooling from this temperature to ⁇ 163 ° C. increases, so the flow rate in the pressure reducing valve 105 also increases. For this reason, in the reference example shown in Table 2, the power consumption of the compressor 102 increased to 4970 kW.
- Example 2 is an example in which the pressure at the outlet of the expansion turbine ((vi) in FIG. 1) is 0.6 MPa in the liquefaction process using the natural gas liquefaction apparatus 10 according to the present invention, as shown in Table 3.
- the pressure at the inlet of the expansion turbine ((v) in FIG. 1) is set to 7.2 MPa as in Table 2 of the reference example.
- the pressure at the outlet of the compressor 2 ((iii) in FIG. 1) is 3.6 MPa
- the pressure at the inlet of the expansion turbine 3 (same (v)) is 7.2 MPa
- the pressure is equal to or lower than that of the reference example shown in Table 2.
- Example 2 shown in Table 3 and the reference example shown in Table 2 are the same in that the pressure at the outlet of the decompressor 5 ((viii) in FIG. 1) is 1.3 MPa.
- the pressure of the outlet of the expansion turbine 3 ((vi) in FIG. 1) is 1.3 MPa due to the structure of the apparatus, whereas in Example 2, the outlet (see FIG. 1 (vi)) is different in that the pressure can be reduced to 0.6 MPa.
- Example 2 an expansion ratio can be enlarged and a flow volume can be decreased.
- coolant which came out of the pressure reduction device 5 reduces, and the flow volume is also reducing.
- Example 2 since the refrigerant (nitrogen) exiting the expansion turbine 3 is compressed from 0.6 MPa to 3.6 MPa by the compressor 2, the refrigerant of the expansion turbine is used as compared with the reference example shown in Table 2. Although the compression ratio for compression increases, the flow rate decreases. In Example 2, since the refrigerant pressure at the outlet of the decompressor 5 is the same as that in the reference example, the compression ratio for compressing the refrigerant in the decompressor is the same as in Table 2, and the flow rate is reduced. In Example 2, the power consumption is reduced by these comprehensive actions. Moreover, in Example 2, the flow rate ((x) in FIG. 1) returning from the decompressor 5 to the compressor 2 is small.
- the difference between the compression stages 2A to 2D is small.
- These compression stages 2A to 2D can be easily designed as an integrated compressor 2.
- the decompressor 5 is a JT valve, it can be applied to a small-scale apparatus with a small flow rate.
- Example 2 compared with the case of the reference example shown in Table 1, the difference in the properties of the refrigerant (nitrogen) inside the heat exchanger due to the low pressure of the refrigerant from the compressor to the decompressor. Therefore, the power consumption is a little larger.
- the design pressure at the outlet of the compressor 102 can be lowered and the design pressure of the heat exchanger 4 can also be lowered. Therefore, there is a merit that a highly efficient heat exchanger can be adopted, and the same merit is obtained.
- the power consumption is small. Therefore, in Example 2, it is clear that power consumption can be reduced in a relatively low refrigerant pressure range, and that both downsizing of the apparatus and excellent cooling performance can be realized. Has an advantage over the examples.
- Comparative Example 2 (Table 4)
- the pressure at the outlet of the expansion turbine ((vi) in FIG. 3) is the same as that in Example 2 shown in Table 3 in the liquefaction process using the natural gas liquefying apparatus 100 having the conventional configuration. This is an example of 0.6 MPa.
- the pressure at the inlet of the expansion turbine ((v) in FIG. 3) is set to 7.2 MPa, which is the same as that in Example 2.
- the flow rate of the refrigerant (nitrogen) is a value close to the flow rate in Example 2 shown in Table 3, but the consumed power of the compressor 102 is 4960 kW, Larger than the value shown in FIG.
- the refrigerant pressure at the outlet of the decompressor 105 is 0.6 MPa, which is lower than 1.3 MPa in Example 2, so that the refrigerant sent from the decompressor 105 to the compressor 102 is compressed. This is because power consumption increases.
- Example 1 and Comparative Example 1 shown in the graph of FIG. 2 and Example 2 and Comparative Example 2 when the pressure at the inlet of the expansion turbine and the pressure at the outlet are the same, always, It turns out that the power consumption of the Example which concerns on this invention is smaller than the comparative example by the conventional liquefaction process. This is because, as described above, in the comparative example, when the pressure at the outlet of the expansion turbine is lowered, the pressure at the outlet of the JT valve is unnecessarily lowered.
- Example 2 shown in Table 3 and Example 3 shown in Table 5 when the pressure at the inlet of the expansion turbine and the pressure at the outlet are the same, Example 3 is more consumed. You can see that the power is small.
- the total amount of refrigerant returning from the decompressor to the compressor through the heat exchanger is 1.3 MPa ((x) in Table 3)
- Example 3 two decompressors are provided, A part of the refrigerant is returned to the compressor at 1.3 MPa ((x) in Table 5) and the rest at 2.6 MPa ((xiii) in Table 5).
- Example 3 In order to cool natural gas to ⁇ 160 ° C., in Example 3, a part of the refrigerant is decompressed to 1.3 MPa, which is the same as in Example 2, but the remaining part contributes only to cooling in a higher temperature region. This is because the boiling point of the refrigerant may be higher than that, so that the pressure can be higher than 1.3 MPa. Since the latent heat of vaporization is smaller as the pressure is higher, the amount of refrigerant passing through the pressure reducer to cool natural gas to ⁇ 160 ° C. is greater than that in Example 2 (Table 3 (vii)) than in Example 3 (Table 5 ( vii) and (xi))). However, the effect of returning a part of the refrigerant to the compressor at a pressure higher than 1.3 MPa is great, and the power consumption of Example 3 can be further reduced as compared with Example 2.
- FIG. 2 shows the pressure on the inlet side of the expansion turbine ((v) in FIGS. 1 and 3), the power consumption of the compressor, in Examples 1 and 2, Comparative Examples 1 and 2, and Reference Example. It is a graph which shows the relationship. As shown in the results of Example 2, when the pressure on the outlet side of the expansion turbine ((vi) in FIG. 1) is set to a low pressure of 0.6 MPa, the pressure on the inlet side is approximately 6 MPa. It can be seen that the power consumption at the time can be reduced to approximately 4,900 kw or less.
- Example 1 As shown in the results of Example 1, when the pressure on the outlet side of the expansion turbine is set to a slightly high value of 0.9 MPa, the power consumption particularly when the pressure on the inlet side is approximately 7 to 9 MPa is obtained. It is about 4,800 kW or less, indicating that the power consumption can be reduced.
- the natural gas liquefaction apparatus and the natural gas liquefaction method according to the present invention can reduce power consumption in a relatively low refrigerant pressure range, and further reduce the size of the apparatus. It became clear that both excellent cooling performance could be realized.
- the natural gas liquefaction apparatus and natural gas liquefaction method of the present invention can use non-combustible gas as a refrigerant and reduce power consumption in a relatively low refrigerant pressure range. Therefore, for example, it is very suitable for a small-scale natural gas liquefying apparatus having only one expansion turbine and a liquefaction method using the same.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本発明は、不燃性ガスを冷媒に用い、比較的低い冷媒圧力の範囲において、消費動力の低減を可能とすることを目的の一つとし、不燃性ガスを含有する冷媒-1を複数の圧縮段で圧縮する圧縮機と、前記天然ガスを冷却して液化し、液化天然ガスとする熱交換器と、前記天然ガスを前記熱交換器に導入し、該熱交換器から前記液化天然ガスを外部に向けて供給する天然ガス液化ラインと、前記圧縮機からの前記冷媒-1を前記熱交換器に導入し、更に、減圧器に導入する第1冷媒ラインと、前記減圧器で減圧された冷媒-2を前記熱交換器に導入し、更に、前記圧縮機の前記複数の圧縮段の内の2段目以降に導入する第2冷媒ラインと、前記第1冷媒ラインから分岐し、前記冷媒-1の少なくとも一部を膨張タービンに導入する第3冷媒ラインと、前記膨張タービンで膨張した冷媒-3を前記熱交換器に導入し、更に、前記圧縮機の前記複数の圧縮段の内の初段に導入する第4冷媒ラインとを備えることを特徴とする天然ガス液化装置を提供する。
Description
本発明は、天然ガス液化装置および天然ガス液化方法に関するものである。
天然ガスを液化し、液化天然ガス(Liquefied Natural Gas)(以下、「LNG」と称することもある)として供給する方法の一つとして、窒素等の不燃性ガスを冷媒に用い、膨張タービンで膨張した冷媒によって天然ガスを冷却し、液化する方法が知られている。このような方法は、主として小規模な液化装置に採用される。膨張タービンを複数備える場合もあるが、特に小規模な液化装置においては、膨張タービンを1台のみ備える構成が採用されている。
非特許文献1のFIG.4における左側の図は、天然ガスを冷却するための冷媒である窒素を、1台の膨張タービンで膨張、降温させて熱交換器に導入し、天然ガスを冷却・液化する、従来の方法における最もシンプルなプロセスを示す図である。
また、非特許文献1のFIG.4における右側の図は、同左側の図に比べて性能(消費動力)が改善される従来のプロセスを示している。このプロセスでは、1台の膨張タービンを用いて降温させた窒素を用いて天然ガスを冷却することに加え、ジュール・トムソン弁(以下、JT弁と略称することがある)を用いて窒素を減圧し、より低温側の領域まで降温させた液体窒素を用いて、天然ガスをさらに冷却している。
非特許文献1のFIG.4の右図が開示するプロセスによれば、同左図が開示するプロセスに比べて、膨張タービンの入口温度を高くできるので、冷媒の流量を少なくでき、冷媒を圧縮するための圧縮機の消費動力を低減することが可能になる。
また、非特許文献1のFIG.4における右側の図は、同左側の図に比べて性能(消費動力)が改善される従来のプロセスを示している。このプロセスでは、1台の膨張タービンを用いて降温させた窒素を用いて天然ガスを冷却することに加え、ジュール・トムソン弁(以下、JT弁と略称することがある)を用いて窒素を減圧し、より低温側の領域まで降温させた液体窒素を用いて、天然ガスをさらに冷却している。
非特許文献1のFIG.4の右図が開示するプロセスによれば、同左図が開示するプロセスに比べて、膨張タービンの入口温度を高くできるので、冷媒の流量を少なくでき、冷媒を圧縮するための圧縮機の消費動力を低減することが可能になる。
非特許文献1のFIG.4の右図が開示するプロセスで、消費動力が最小となるように条件を決定した場合、冷媒(窒素)系統の圧力を高くする必要がある。このため、装置設計時、配管等の設計圧力を高く設定する必要があり、装置に使用する圧縮機や熱交換器の仕様が高耐圧の機種に限定されることになるの。このため、装置の小型化が困難になったり、装置コストが増大したりするという問題がある。また、これを避けるために圧力を低く設定した場合には、消費動力が大幅に増加するという問題がある。
特許文献1には、非特許文献1のFIG.4の右図に開示されたプロセスにおいて、窒素とメタンとの混合物を冷媒に用いるプロセスが開示されている。特許文献1は、上記冷媒を採用することで、窒素のみからなる冷媒を用いた場合に比べて、液化のための所要エネルギーを低減することを目的としている。しかしながら、特許文献1では、可燃物であるメタンを含む冷媒を使用するため、不燃性ガスである窒素のみを冷媒に用いた場合に比べて、冷媒系統を安全な仕様とするためのコストが増大する。
また、天然ガスの液化技術の分野においては、例えば、特許文献2に開示されているような、冷媒が異なる圧力の系統に分かれて圧縮機に戻る技術について、数多くの提案がなされている。
具体的には、特許文献2の請求項5の液化方法は、特許文献2の図1にも示されているように、第二の膨張したガス状冷媒流れ(174)を、第二の圧縮機(130)で圧縮し、第一の膨張したガス状冷媒流れ(152)からの第一の部分(154)と、第二の部分(160)と混合している。 特許文献2には、上記構成を採用する目的として、低温膨張機の排出圧力を高温膨張機の排出圧力よりも低くすることで、より低い温度を達成しながら、高温膨張機の排出口からのガス状冷媒流れを高い圧力でガス状冷媒圧縮機の段の間に導入し、圧縮機の消費動力を低減することが記載されている。
しかしながら、特許文献2の実施例、および図3によれば、高圧冷媒圧縮機(132)の流量は、21、495Ibmol/時と196、230Ibmol/時の合計である217、725Ibmol/時であるのに対して、低圧冷媒圧縮機(130)の流量は、その上流の流れ(170)と同じ53、091Ibmol/時であり、高圧冷媒圧縮機(132)の24%程度と少ない。このため、これら2つの圧縮機は、流量の差が大きいことから一体化するのは困難なため、複数の圧縮機を使用することになり、設置面積とコストが増大するという問題がある。
また、特許文献2が開示する技術では、上記ように、流れ(170)の流量の割合が小さいので、小規模な装置においては、膨張機(138)や低圧冷媒圧縮機(130)の流量が非常に少なくなる。しかしながら、そのような小型の機種が市場に存在しないため、この技術を適用できない。
具体的には、特許文献2の請求項5の液化方法は、特許文献2の図1にも示されているように、第二の膨張したガス状冷媒流れ(174)を、第二の圧縮機(130)で圧縮し、第一の膨張したガス状冷媒流れ(152)からの第一の部分(154)と、第二の部分(160)と混合している。 特許文献2には、上記構成を採用する目的として、低温膨張機の排出圧力を高温膨張機の排出圧力よりも低くすることで、より低い温度を達成しながら、高温膨張機の排出口からのガス状冷媒流れを高い圧力でガス状冷媒圧縮機の段の間に導入し、圧縮機の消費動力を低減することが記載されている。
しかしながら、特許文献2の実施例、および図3によれば、高圧冷媒圧縮機(132)の流量は、21、495Ibmol/時と196、230Ibmol/時の合計である217、725Ibmol/時であるのに対して、低圧冷媒圧縮機(130)の流量は、その上流の流れ(170)と同じ53、091Ibmol/時であり、高圧冷媒圧縮機(132)の24%程度と少ない。このため、これら2つの圧縮機は、流量の差が大きいことから一体化するのは困難なため、複数の圧縮機を使用することになり、設置面積とコストが増大するという問題がある。
また、特許文献2が開示する技術では、上記ように、流れ(170)の流量の割合が小さいので、小規模な装置においては、膨張機(138)や低圧冷媒圧縮機(130)の流量が非常に少なくなる。しかしながら、そのような小型の機種が市場に存在しないため、この技術を適用できない。
M.Roberts(APCI)他「Brayton refrigeration cycles for small-scale LNG」Gas Processing July/August 2015、P27-32
ここで、図3に、冷媒が一つの系統で圧縮機に戻る、一般的な冷媒系統を示す。図3は、上記特許文献1が開示する冷媒系統、および非特許文献1のFIG.4の右図が開示する冷媒系統をさらに詳細に示した従来の統計図である。
図3に示すように、冷媒を圧縮するための圧縮機としては、複数で直列に接続された多段階圧縮の構成が従来より一般的に採用されている。複数の圧縮段で圧縮された窒素等の冷媒は、必要に応じて制動ブロワーを介して熱交換器に導入され、天然ガスの冷却・液化に供される。熱交換器を通過した冷媒は、減圧器で減圧された後、熱交換器内に再導入され、再び熱交換に供された後、複数で設けられた圧縮段の1段目に導入される。一方、複数の圧縮段で圧縮された冷媒の一部は膨張タービンに導入され、膨張後の冷媒は、熱交換器内において上記減圧器で減圧された冷媒と合流して熱交換に供された後、上記同様、複数の圧縮段の1段目に戻される。
より詳細に説明すると、まず、天然ガスGを液化する天然ガス液化装置100において、天然ガス供給源106に貯蔵された天然ガスGは、低温で固化する成分や腐食の原因となる成分が除去された後、予備冷却器107で冷却されたのち、熱交換器104へ導入される。この際、熱交換器104に導入される天然ガスの圧力は1~8MPa程度であり、また、通常、消費動力や設計圧力等を考慮して3~6MPa程度の圧力とされる。また、熱交換器104へ導入される天然ガスGの温度は、一般に、常温(20~40℃程度)、又は、冷凍機等で補助的(予備的)に冷却された温度(-20~-50℃程度)とされる。
熱交換器104に導入された天然ガスGは、低温の窒素等を含有する冷媒との熱交換で冷却されて液化し、LNGとなる。この際、天然ガスGの組成や圧力等によって異なるが、おおよそ-50℃程度の低温で液化が始まり、-100℃程度で完全に液化する。また、熱交換器104を通過して排出されるLNGの温度は、低圧の貯槽108へ導入した際の気化量を少なくするために可能な限り低温とし、理想的には-160℃程度とされる。
一方、窒素ガス系統においては、冷媒に用いられる窒素ガスが、冷媒源101から複数の圧縮段を備える圧縮機102に導入され、例えば、3~6MPa程度に圧縮される。圧縮機102は、上記複数の圧縮段102A~102Dと、各圧縮段の出口側に各々配置される冷却器121A~121Dとを具備する。
圧縮された窒素ガスからなる冷媒は、膨張タービン103によって駆動される制動ブロワー131によってさらに圧縮された後、その一部が膨張タービン103へ導入される。また、発電機制動の膨張タービンや、圧縮機に組み込まれた膨張タービンへ導入されるケースもある。何れの場合においても、膨張タービン103において発生する動力は、窒素ガスの圧縮に利用される。
熱交換器104に導入される窒素(冷媒)の圧力は、臨界圧力(3.4MPa)よりも高く、かつ天然ガス液化装置の消費動力や設計圧力等を考慮して決定される。
熱交換器104に導入された窒素は、低温の窒素との熱交換で冷却され、一部が-50℃程度で抜き出されて膨張タービン103に導入され、残りは熱交換器104内でさらに冷却される。
膨張タービン103に導入された窒素は、ほぼ、等エントロピーの膨張によって-140℃程度となり、熱交換器104に戻される。
熱交換器104に導入された窒素は、低温の窒素との熱交換で冷却され、一部が-50℃程度で抜き出されて膨張タービン103に導入され、残りは熱交換器104内でさらに冷却される。
膨張タービン103に導入された窒素は、ほぼ、等エントロピーの膨張によって-140℃程度となり、熱交換器104に戻される。
熱交換器104に導入された冷却された残りの窒素は、JT弁又は液タービン(Liquid expander、Dense fluidexpander)を具備する減圧器105に導入され、減圧器105により減圧されて気液二相流又は液相となる。これにより、減圧器105により減圧された後の窒素は、膨張タービン103の出口の窒素よりも低い温度、理想的には-160℃よりも低い温度で熱交換器104へ戻されて天然ガスGと窒素を冷却し、自らは気化して膨張タービン103の出口と同等の温度まで昇温する。
膨張タービン103の出口と同等の温度となった窒素は、膨張タービン103の出口の窒素と合流し、天然ガスGと窒素の冷却に利用され、常温となって圧縮機102の1段目の圧縮段102Aの入口に戻る。よって、膨張タービン103の出口の窒素と、減圧器105の出口の窒素とは同じ圧力となる。
ここで、減圧器105の出口で気化する窒素により、天然ガスGを-160℃程度まで冷却するためには、窒素の沸点を-160℃よりも低くする必要があるため、減圧器105の出口における窒素圧力は、1.3MPa程度より高くすることができない。一方、これよりも低い窒素圧力とした場合、圧縮機102の入口圧力が低くなり、消費動力が増えるので、減圧器105の出口圧力は、可能な限り高い圧力、すなわち、1.3MPa程度とすることが望ましい。
ところで、減圧器105の出口圧力が1.3MPaのとき、圧縮機102の出口圧力を上げると、これに伴って消費動力が減少する。圧縮機102の出口圧力が6MPa程度、膨張タービン103の入口圧力が11MPa程度のときに消費動力が最小値となる。しかしながら、このような圧力は、圧縮機102や熱交換器104の設計条件としてはかなり高圧であり、設計圧力が高くなることから、高圧に対応できる圧縮機や熱交換器として採用できる機種が限定される。このため、例えば、高耐圧仕様の熱交換器の採用を余儀なくされ、以下に説明する理由により、小規模な天然ガス液化装置を構成することが困難になる場合がある。
例えば、小規模な装置の熱交換器として一般的にアルミプレートフィン式熱交換器が用いられている。高耐圧アルミプレートフィン式熱交換器を採用する場合、構造が単純で強度面では優れるものの、伝熱性能の低いプレーンフィンタイプのものを採用せざるを得ない。
冷媒系統の圧力を下げた場合には、伝熱性能の高いセレートフィンタイプ又はヘリングボーンフィンタイプのものを採用することができ、熱交換器の性能向上と小型化が可能になる。
熱交換器の設計条件が同じである場合、プレーンフィンタイプの熱交換器の伝熱面積は、セレートフィンタイプの熱交換器の伝熱面積の約1.5~2倍となることから、プレーンフィンタイプのものを採用した場合には、装置の小型化が困難になる。
冷媒系統の圧力を下げた場合には、伝熱性能の高いセレートフィンタイプ又はヘリングボーンフィンタイプのものを採用することができ、熱交換器の性能向上と小型化が可能になる。
熱交換器の設計条件が同じである場合、プレーンフィンタイプの熱交換器の伝熱面積は、セレートフィンタイプの熱交換器の伝熱面積の約1.5~2倍となることから、プレーンフィンタイプのものを採用した場合には、装置の小型化が困難になる。
装置の小型化を図り、かつ、装置価格を低減するためには、圧力を下げて各機器の選択肢を増やす必要がある。しかしながら、減圧器105の出口圧力が1.3MPaのままで圧縮機102の入口圧力を下げると、膨張タービン103の膨張比が小さくなり、流量が増加する。さらに、膨張比が小さくなることから、膨張タービン103の出口温度も高くなる。膨張タービン103の出口温度を-160℃まで冷やすための熱量が増大し、減圧器105の流量も増える。このため、圧縮機102の消費動力が増加してしまうという問題がある。
一方、膨張比を大きくするために膨張タービン103の出口圧力を下げると、減圧器105の出口圧力も同時に下がるので、減圧器105を通過する窒素を、不必要に低い圧力から圧縮するための無駄な動力が必要になるという問題があった。
一方、膨張比を大きくするために膨張タービン103の出口圧力を下げると、減圧器105の出口圧力も同時に下がるので、減圧器105を通過する窒素を、不必要に低い圧力から圧縮するための無駄な動力が必要になるという問題があった。
本発明は上記問題に鑑みてなされたものであり、不燃性ガスを冷媒に用い、比較的低い冷媒圧力の範囲において、消費動力を低減することが可能な天然ガス液化装置および天然ガス液化方法を提供することを目的とする。
上記課題を解決するため、本発明は、以下の天然ガス液化装置を提供する。
(1)天然ガスを冷却して液化することで液化天然ガスを製造する天然ガス液化装置であって、
不燃性ガスを含有する冷媒を複数の圧縮段で圧縮する圧縮機と、
前記天然ガスを冷却して液化し、液化天然ガスとする熱交換器と、
前記天然ガスを前記熱交換器に導入し、該熱交換器で液化された前記液化天然ガスを外部に向けて供給する天然ガス液化ラインと、
前記圧縮機で圧縮された前記冷媒を前記熱交換器に導入し、さらに、該熱交換器を通過した前記冷媒を減圧器に導入する第1冷媒ラインと、
前記減圧器で減圧された冷媒を前記熱交換器に導入し、該熱交換器を通過した前記冷媒を、前記圧縮機に備えられる前記複数の圧縮段の内の2段目以降に導入する第2冷媒ラインと、
前記第1冷媒ラインから分岐し、前記冷媒の少なくとも一部を膨張タービンに導入する第3冷媒ラインと、
前記膨張タービンで膨張した冷媒を前記熱交換器に導入し、該熱交換器を通過した前記冷媒を、前記圧縮機に備えられる前記複数の圧縮段の内の初段に導入する第4冷媒ラインとを備えることを特徴とする天然ガス液化装置。
(1)天然ガスを冷却して液化することで液化天然ガスを製造する天然ガス液化装置であって、
不燃性ガスを含有する冷媒を複数の圧縮段で圧縮する圧縮機と、
前記天然ガスを冷却して液化し、液化天然ガスとする熱交換器と、
前記天然ガスを前記熱交換器に導入し、該熱交換器で液化された前記液化天然ガスを外部に向けて供給する天然ガス液化ラインと、
前記圧縮機で圧縮された前記冷媒を前記熱交換器に導入し、さらに、該熱交換器を通過した前記冷媒を減圧器に導入する第1冷媒ラインと、
前記減圧器で減圧された冷媒を前記熱交換器に導入し、該熱交換器を通過した前記冷媒を、前記圧縮機に備えられる前記複数の圧縮段の内の2段目以降に導入する第2冷媒ラインと、
前記第1冷媒ラインから分岐し、前記冷媒の少なくとも一部を膨張タービンに導入する第3冷媒ラインと、
前記膨張タービンで膨張した冷媒を前記熱交換器に導入し、該熱交換器を通過した前記冷媒を、前記圧縮機に備えられる前記複数の圧縮段の内の初段に導入する第4冷媒ラインとを備えることを特徴とする天然ガス液化装置。
(2)前記第1冷媒ラインの経路中に設けられ、前記膨張タービンによって駆動され、前記第1冷媒ラインを流通する前記冷媒を圧縮する制動ブロワーをさらに備えることを特徴とする上記(1)記載の天然ガス液化装置。
(3)前記熱交換器が、セレートフィンタイプ又はヘリングボーンフィンタイプのフィンが用いられたアルミプレートフィン式熱交換器であることを特徴とする上記(1)または(2)に記載の天然ガス液化装置。
(4)前記液化ラインにおける前記熱交換器の入口側に、前記天然ガスを気化タイプの冷媒によって冷却する予備冷却器をさらに備えることを特徴とする上記(1)~(3)3の何れかに記載の天然ガス液化装置。
(5)前記熱交換器が、少なくとも前記冷媒-3を該熱交換器に導入する位置を境に、複数に分割されることを特徴とする上記(1)~(4)のいずれかに記載の天然ガス液化装置。
(6)前記減圧器を複数備え、それぞれ異なる該減圧器を冷媒流れの始点とし、前記圧縮機の2段目以降のそれぞれ異なる圧縮段を冷媒流れの終点とする、複数の前記第2冷媒ラインを備えることを特徴とする上記(1)~(5)のいずれか記載の天然ガス液化装置。
本発明は、上記目的を達成するために、さらに以下の天然ガス液化方法を提供する。
(7)天然ガスを冷却して液化することで液化天然ガスを製造する天然ガス液化方法であって、
前記天然ガスを熱交換器に導入し、該熱交換器で冷却されて液化した前記液化天然ガスを外部に供給する天然ガス供給工程と、
前記熱交換器に導入された前記天然ガスを冷却するための不燃性ガスからなる冷媒を前記熱交換器に導入する冷媒供給工程とを備え、
前記冷媒供給工程は、不燃性ガスを複数の圧縮段を有する圧縮機で圧縮して得た冷媒を熱交換器に導入し、該熱交換器を通過した前記冷媒を減圧器に導入する冷媒供給工程aと、
前記減圧器による減圧・膨張によって降温された少なくとも一部が液相とされた冷媒を前記熱交換器に導入し、該熱交換器を通過して昇温した前記冷媒を、前記圧縮機に備えられる前記複数の圧縮段の内の2段目以降に導入する冷媒供給工程bと、
前記冷媒供給工程aにおける前記冷媒の少なくとも一部を膨張タービンに導入する冷媒供給工程cと、
前記膨張タービンで膨張して降圧および降温された冷媒を前記熱交換器に導入し、該熱交換器を通過して昇温された前記冷媒を、前記圧縮機に備えられる前記複数の圧縮段の内の初段に導入する冷媒供給工程dとを有することを特徴とする天然ガス液化方法。
(7)天然ガスを冷却して液化することで液化天然ガスを製造する天然ガス液化方法であって、
前記天然ガスを熱交換器に導入し、該熱交換器で冷却されて液化した前記液化天然ガスを外部に供給する天然ガス供給工程と、
前記熱交換器に導入された前記天然ガスを冷却するための不燃性ガスからなる冷媒を前記熱交換器に導入する冷媒供給工程とを備え、
前記冷媒供給工程は、不燃性ガスを複数の圧縮段を有する圧縮機で圧縮して得た冷媒を熱交換器に導入し、該熱交換器を通過した前記冷媒を減圧器に導入する冷媒供給工程aと、
前記減圧器による減圧・膨張によって降温された少なくとも一部が液相とされた冷媒を前記熱交換器に導入し、該熱交換器を通過して昇温した前記冷媒を、前記圧縮機に備えられる前記複数の圧縮段の内の2段目以降に導入する冷媒供給工程bと、
前記冷媒供給工程aにおける前記冷媒の少なくとも一部を膨張タービンに導入する冷媒供給工程cと、
前記膨張タービンで膨張して降圧および降温された冷媒を前記熱交換器に導入し、該熱交換器を通過して昇温された前記冷媒を、前記圧縮機に備えられる前記複数の圧縮段の内の初段に導入する冷媒供給工程dとを有することを特徴とする天然ガス液化方法。
(8)前記冷媒供給工程aにおける、前記膨張タービンの入口側の圧力が9MPa未満であることを特徴とする上記(7)記載の天然ガス液化方法。
(9)前記冷媒供給工程aは、前記膨張タービンで発生する動力を利用して、前記圧縮機によって多段で圧縮された前記冷媒をさらに追加圧縮する工程をさらに具備することを特徴とする上記(7)または(8)記載の天然ガス液化方法。
(10)前記天然ガス供給工程は前記熱交換器に導入される前の前記天然ガスを、気化タイプの冷媒によって予備冷却する工程をさらに具備することを特徴とする上記(7)~(9)のいずれかに記載の天然ガス液化方法。
(11)少なくとも、前記冷媒-3を該熱交換器に導入する位置を境に、前記熱交換器を複数に分割することを特徴とする上記(7)~(10)のいずれかに記載の天然ガス液化方法。
(12)前記冷媒供給工程では、前記冷媒を複数の減圧器に導入し、
前記冷媒供給工程bでは、前記複数の減圧器においてそれぞれ異なる該減圧器を冷媒流れの始点とし、前記圧縮機の2段目以降のそれぞれ異なる圧縮段を冷媒流れの終点とする上記(7)~(11)のいずれかに記載の天然ガス液化方法。
前記冷媒供給工程bでは、前記複数の減圧器においてそれぞれ異なる該減圧器を冷媒流れの始点とし、前記圧縮機の2段目以降のそれぞれ異なる圧縮段を冷媒流れの終点とする上記(7)~(11)のいずれかに記載の天然ガス液化方法。
本発明に係る天然ガス液化装置によれば、圧縮機における複数の圧縮段で圧縮され、さらに減圧器で減圧されて熱交換器を通過した冷媒-2を、圧縮機における複数の圧縮段の内の2段目以降に導入する第2冷媒ラインと、膨張タービンで膨張して熱交換器を通過した冷媒-3を、圧縮機における初段の圧縮段に導入する第4冷媒ラインとを備えている。
すなわち、熱交換器から比較的低圧で戻される冷媒-3は、複数の圧縮段の内の初段の圧縮段に導入される。一方、熱交換器から比較的高圧で戻される冷媒-2は、複数の圧縮段の2段目以降に導入される。このため、特に、膨張タービンの入口の圧力が比較的低い範囲において消費動力を低減することが可能になる。
これにより、熱交換器として、低圧仕様ながら伝熱性能の高いタイプのものを採用できるので、熱交換器の性能向上と小型化とが可能となる。また、装置全体の小型化およびコストの低減も可能になる。
また、後述の実施例の欄で詳しく説明するが、第2冷媒ラインの流量が冷媒全体の10%未満と少量となることから、圧縮機における第2冷媒ラインが導入される前の圧縮段の流量は、後の圧縮段の流量の90%程度となる。このため、各々の圧縮機間の流量差が小さく、これらの圧縮段を一体の圧縮機として設計するのが容易になる。
さらに、減圧器に減圧弁を使用した場合には、第2冷媒ラインの流量が少ない小規模な装置にも適用可能となる。
すなわち、熱交換器から比較的低圧で戻される冷媒-3は、複数の圧縮段の内の初段の圧縮段に導入される。一方、熱交換器から比較的高圧で戻される冷媒-2は、複数の圧縮段の2段目以降に導入される。このため、特に、膨張タービンの入口の圧力が比較的低い範囲において消費動力を低減することが可能になる。
これにより、熱交換器として、低圧仕様ながら伝熱性能の高いタイプのものを採用できるので、熱交換器の性能向上と小型化とが可能となる。また、装置全体の小型化およびコストの低減も可能になる。
また、後述の実施例の欄で詳しく説明するが、第2冷媒ラインの流量が冷媒全体の10%未満と少量となることから、圧縮機における第2冷媒ラインが導入される前の圧縮段の流量は、後の圧縮段の流量の90%程度となる。このため、各々の圧縮機間の流量差が小さく、これらの圧縮段を一体の圧縮機として設計するのが容易になる。
さらに、減圧器に減圧弁を使用した場合には、第2冷媒ラインの流量が少ない小規模な装置にも適用可能となる。
また、本発明に係る天然ガス液化方法によれば、冷媒供給工程は、減圧器による減圧・膨張によって降温され、少なくとも一部が液相とされた冷媒-2を熱交換器に導入し、この熱交換器を通過して昇温した冷媒-2を、圧縮機における複数の圧縮段の内の2段目以降に導入する冷媒供給工程bと、膨張タービンで膨張して降圧および降温された冷媒-3を熱交換器に導入し、この熱交換器を通過して昇温された冷媒-3を、圧縮機における初段の圧縮段に導入する冷媒供給工程bとを有する。
これにより、上記同様、熱交換器から比較的低圧で戻される冷媒-3が初段の圧縮段に導入される。一方、熱交換器から比較的高圧で戻される冷媒-2は2段目以降の圧縮段に導入される。このため、膨張タービンの入口の圧力が比較的低い範囲において消費動力を低減することが可能になる。
したがって、使用する装置の小型化が可能になることに加え、運転コストの低減も可能になる。
これにより、上記同様、熱交換器から比較的低圧で戻される冷媒-3が初段の圧縮段に導入される。一方、熱交換器から比較的高圧で戻される冷媒-2は2段目以降の圧縮段に導入される。このため、膨張タービンの入口の圧力が比較的低い範囲において消費動力を低減することが可能になる。
したがって、使用する装置の小型化が可能になることに加え、運転コストの低減も可能になる。
以下、本発明を適用した一実施形態である天然ガス液化装置および天然ガス液化方法について、図1および図2を適宜参照しながら説明する(図3の従来図も適宜参照)。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、以下の説明において例示する材料等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
本発明に係る天然ガス液化装置および天然ガス液化方法は、天然ガスを液化してLNGを供給する装置および方法として、特に、膨張タービンを1台のみ備える構成の小規模な液化装置として好適なものである。
<天然ガス液化装置>
以下、本実施形態の天然ガス液化装置10の構成について詳述する。
図1に示すように、本実施形態の天然ガス液化装置10は、天然ガスGを冷却して液化することで液化天然ガス(LNG)Fを製造する装置である。具体的には、天然ガス液化装置10は、循環する冷媒を説明するための便宜上の始点である冷媒源1から供給される、主として不燃性ガスを含有する冷媒を複数の圧縮段2A~2Dで圧縮する圧縮機2;天然ガスGを冷却して液化し、液化天然ガス(LNG)Fとする熱交換器4;天然ガスGを熱交換器4に導入し、この熱交換器4で液化された液化天然ガスFを外部に向けて供給する液化ラインFL;圧縮機2で圧縮された冷媒-1を熱交換器4に導入し、さらに、この熱交換器4を通過した冷媒-1を減圧器5に導入する第1冷媒ラインL1;減圧器5で減圧された冷媒-2を熱交換器4に導入し、この熱交換器4を通過した冷媒-2を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の2段目である圧縮段2B以降に導入する第2冷媒ラインL2;第1冷媒ラインL1から分岐し、冷媒-1の少なくとも一部を膨張タービン3に導入する第3冷媒ラインL3;膨張タービン3で膨張した冷媒-3を熱交換器4に導入し、この熱交換器4を通過した冷媒-3を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の初段の圧縮段2Aに導入する第4冷媒ラインL4;を備えて概略構成される。
以下、本実施形態の天然ガス液化装置10の構成について詳述する。
図1に示すように、本実施形態の天然ガス液化装置10は、天然ガスGを冷却して液化することで液化天然ガス(LNG)Fを製造する装置である。具体的には、天然ガス液化装置10は、循環する冷媒を説明するための便宜上の始点である冷媒源1から供給される、主として不燃性ガスを含有する冷媒を複数の圧縮段2A~2Dで圧縮する圧縮機2;天然ガスGを冷却して液化し、液化天然ガス(LNG)Fとする熱交換器4;天然ガスGを熱交換器4に導入し、この熱交換器4で液化された液化天然ガスFを外部に向けて供給する液化ラインFL;圧縮機2で圧縮された冷媒-1を熱交換器4に導入し、さらに、この熱交換器4を通過した冷媒-1を減圧器5に導入する第1冷媒ラインL1;減圧器5で減圧された冷媒-2を熱交換器4に導入し、この熱交換器4を通過した冷媒-2を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の2段目である圧縮段2B以降に導入する第2冷媒ラインL2;第1冷媒ラインL1から分岐し、冷媒-1の少なくとも一部を膨張タービン3に導入する第3冷媒ラインL3;膨張タービン3で膨張した冷媒-3を熱交換器4に導入し、この熱交換器4を通過した冷媒-3を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の初段の圧縮段2Aに導入する第4冷媒ラインL4;を備えて概略構成される。
本実施形態の天然ガス液化装置10においては、図1中に示すように、天然ガスGの流れ、および冷媒-1~冷媒-3の流れが、全体として、天然ガス供給工程、および冷媒供給工程に分けられている。
また、図示例の天然ガス液化装置10においては、上記各々に加え、さらに、第1冷媒ラインL1の経路中に設けられ、第1冷媒ラインL1を流通する冷媒-1を圧縮する制動ブロワー31、およびその出口側に冷却器32が備えられている。
また、図示例の天然ガス液化装置10では、さらに、液化ラインFLにおける熱交換器4の入口側に、天然ガスGを冷却する予備冷却器7が備えられている。
また、図示例の天然ガス液化装置10では、さらに、液化ラインFLにおける熱交換器4の入口側に、天然ガスGを冷却する予備冷却器7が備えられている。
圧縮機2は、冷媒源1から供給される冷媒を、複数の圧縮段2A~2Dで圧縮する。図示例の圧縮機2は、各圧縮段2A~2Dが順次直列に接続されている。第1溶媒ラインL1における各圧縮段2B~2Dの出口側には、冷却器21B~21Dがそれぞれ設けられている。第4溶媒ラインL4における圧縮段2Aの入り口側には、冷却器21Aが設けられている。図示例においては、冷媒源1が、詳細を後述する第4冷媒ラインL4の経路中に設けられ、この第4冷媒ラインL4から圧縮機2に、不燃性ガスが冷媒として供給される。
圧縮機2としては、特に限定されず、従来からこの分野で用いられている、複数の圧縮段を備えたものを何ら制限無く用いることができる。特に、2段目以降の圧縮段に追加の流体を導入するための設計が容易であるという観点から、ギアード型の遠心式圧縮機(Integrally geared)を好適に用いることができる。一方、一軸型の遠心式圧縮機(Single shaft)は、一般的にギアード型よりも高価で効率が低い。また、往復動式圧縮機はメンテナンス周期が短いため、ギアード型等と同じLNG生産量を得るためには、運転時間が短くなる分を装置の大型化で補う必要があり、装置コストが増大する。したがって、実使用上における一般的な稼働条件等の観点からは、上述したギアード型の遠心式圧縮機を圧縮機2に採用することが好ましい。
また、冷媒源1から圧縮機2に向けて供給される冷媒として用いられる不燃性ガスとしては、例えば、窒素が挙げられる。
膨張タービン3は、圧縮機2で圧縮された冷媒-1を膨張させるものであり、詳細を後述する第1冷媒ラインL1における分岐点Pから分岐した第3冷媒ラインL3によって、冷媒-1の少なくとも一部が導入される。そして、膨張タービン3で膨張された冷媒-1は、詳細を後述する第4冷媒ラインL4により、熱交換器4内に導入される。
制動ブロワー31は、第1冷媒ラインL1の経路上に設けられる。上述したように、制動ブロワー31は、膨張タービン3で発生する動力によって駆動されるものであり、第1冷媒ラインL1を流通する冷媒-1をさらに圧縮する。また、第1冷媒ラインL1の経路上において、制動ブロワー31の出口側には冷却器32が設けられている。
また、制動ブロワー31は、冷媒-1の圧力の設定によっては、設置を省略することも可能である。
また、制動ブロワー31は、冷媒-1の圧力の設定によっては、設置を省略することも可能である。
熱交換器4には、詳細を後述する液化ラインFL、および第1~4冷媒ラインL1~L4が挿通される。このような構成により、熱交換器4は、低温の冷媒-2、および冷媒-3と、天然ガスGとを熱交換し、この天然ガスGを冷却して液化する。また、本実施形態の熱交換器4は、冷媒同士での熱交換を行うことも可能であり、詳細を後述するが、第2冷媒ラインL2を流通する冷媒-2と、第4冷媒ラインL4を流通する冷媒-3とにより、第1冷媒ラインL1を流通する冷媒-1を冷却する。
本実施形態の天然ガス液化装置10においては、熱交換器4として、アルミプレートフィン式の熱交換器を採用することができる。アルミプレートフィン式熱交換器、特に、伝熱性能の高いセレートフィンタイプやヘリングボーンフィンタイプのアルミプレートフィン式熱交換器は、高耐圧ではないものの、熱交換効率が非常に高いという特徴がある。本実施形態の天然ガス液化装置10は、冷媒供給工程を比較的低圧で運転するので、熱交換器4として、上記アルミプレートフィン式熱交換器を採用することにより、熱交換器4および装置全体の性能向上と小型化とが可能になる。
ところが、熱交換器4にアルミプレートフィン式熱交換器を採用した場合、熱交換器の設計に適用される法規によっては、従来技術で消費動力が最小となる11.1MPaという圧力に対応できないケースもある。また、上記圧力に対応できるケースであっても、使用するフィン形式が高強度であるが、構造が単純で伝熱性能が低いため、伝熱面積を大きく必要があり、装置が大型化する問題がある。また、設計圧力が高いことから高価になるという問題もある。また、シェル&コイル式(Shell&Coil)や拡散接合式(Diffusion bonding)の熱交換器は、高圧力に対応できるものの、同じ性能である場合のコストがアルミプレートフィン式の数倍となる。
このような各形式の熱交換器における問題点を総合的に考慮した場合、熱交換器4として、設計圧力を低くして、伝熱性能に優れた、セレートフィンタイプ等のアルミプレートフィン式熱交換器を用いることが好ましい。
このような各形式の熱交換器における問題点を総合的に考慮した場合、熱交換器4として、設計圧力を低くして、伝熱性能に優れた、セレートフィンタイプ等のアルミプレートフィン式熱交換器を用いることが好ましい。
減圧器5は、第1冷媒ラインL1から導入される冷媒-1を減圧して膨張させることにより、少なくとも一部が液相とされた冷媒-2とする。また、減圧器5の出口には、第2冷媒ラインL2の一端が接続され、冷媒-2を熱交換器4に導入する。
減圧器5としては、冷媒を減圧できれば特に限定されないが、具体的には、JT弁のような減圧弁を用いることができる。また、減圧器5としては、液タービンを用いることも可能である。
減圧器5としては、冷媒を減圧できれば特に限定されないが、具体的には、JT弁のような減圧弁を用いることができる。また、減圧器5としては、液タービンを用いることも可能である。
そして、本実施形態の天然ガス液化装置10は、冷媒供給工程(冷媒経路B)を構成する第1冷媒ラインL1、第2冷媒ラインL2、第3冷媒ラインL3および第4冷媒ラインL4と、天然ガス供給工程を構成する液化ラインFLとを具備する。これら天然ガス供給工程および冷媒供給工程で使用する各ラインは、例えば、その内部にそれぞれの流体を挿通することが可能な、適切な配管で構成される。
液化ラインFLは、上記ように、天然ガスGを熱交換器4に導入し、この熱交換器4で冷却され、液化した液化天然ガスFを外部に向けて供給する。
すなわち、図示例の液化ラインFLは、入口側が天然ガス源6に接続され、経路中に設けられた予備冷却器7から熱交換器4に向けて挿通され、出口側が液化天然ガスFを貯留する貯槽8に接続されている。
すなわち、図示例の液化ラインFLは、入口側が天然ガス源6に接続され、経路中に設けられた予備冷却器7から熱交換器4に向けて挿通され、出口側が液化天然ガスFを貯留する貯槽8に接続されている。
第1冷媒ラインL1は、上記ように、圧縮機2で圧縮された冷媒-1を熱交換器4に導入し、さらにこの熱交換器4を通過した冷媒-1を減圧器5に導入する。
すなわち、図示例の第1冷媒ラインL1は、入口側が圧縮機2の最終段である圧縮段2Dに冷却器21Dを介して接続している。そして、制動ブロワー31および冷却器32を経て熱交換器4を挿通する。熱交換器4を通過した第1冷媒ラインL1の出口側は減圧器5の入口に接続されている。
すなわち、図示例の第1冷媒ラインL1は、入口側が圧縮機2の最終段である圧縮段2Dに冷却器21Dを介して接続している。そして、制動ブロワー31および冷却器32を経て熱交換器4を挿通する。熱交換器4を通過した第1冷媒ラインL1の出口側は減圧器5の入口に接続されている。
第2冷媒ラインL2は、図1中に示すように、減圧器5で減圧された冷媒-2を熱交換器4に導入し、この熱交換器4を通過した冷媒-2を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の2段目である圧縮段2B以降に導入する。
すなわち、図示例の第2冷媒ラインL2の一端側は、減圧器5の出口に接続される。第二冷媒ラインL2は、熱交換器4を挿通する。その他端は圧縮機2における2段目の圧縮段2Bの入口に接続されている。
すなわち、図示例の第2冷媒ラインL2の一端側は、減圧器5の出口に接続される。第二冷媒ラインL2は、熱交換器4を挿通する。その他端は圧縮機2における2段目の圧縮段2Bの入口に接続されている。
第3冷媒ラインL3は、図1中に示すように、第1冷媒ラインL1の分岐点Pから分岐し、冷媒-1の少なくとも一部を膨張タービン3に導入する。
すなわち、図示例の第3冷媒ラインL3の一端側は、熱交換器4内に挿通された第1冷媒ラインL1の経路中に接続され、他端側が膨張タービン3の入口側に接続されている。
すなわち、図示例の第3冷媒ラインL3の一端側は、熱交換器4内に挿通された第1冷媒ラインL1の経路中に接続され、他端側が膨張タービン3の入口側に接続されている。
第4冷媒ラインL4は、図1中に示すように、膨張タービン3で膨張した冷媒-3を熱交換器4に導入し、この熱交換器4を通過した冷媒-3を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の初段の圧縮段2Aに導入する。
すなわち、図示例の第4冷媒ラインL4の一端側は、膨張タービン3の出口に接続される。第4冷媒ラインL4は、熱交換器4を挿通する。その他端側は、圧縮機2における2段目の圧縮段2Bの入口に接続されている。
すなわち、図示例の第4冷媒ラインL4の一端側は、膨張タービン3の出口に接続される。第4冷媒ラインL4は、熱交換器4を挿通する。その他端側は、圧縮機2における2段目の圧縮段2Bの入口に接続されている。
本実施形態の天然ガス液化装置10においては、液化ラインFLによって天然ガスGを熱交換器4に導入する前に、天然ガスGを気化タイプの冷媒によって予め冷却する予備冷却器7が備えられていることが好ましい。図1に示す例においては、予備冷却器7は、液化ラインFLの経路上における熱交換器4の入口側に設けられている。このように、予備冷却器7を備えることで、液化ガスGを予め所定温度以下まで冷却した状態で熱交換器4に導入できる。このため、熱交換器4における天然ガスGの液化効率が向上する効果が得られる。
予備冷却器7としては、特に限定されないが、例えば、フロン冷凍機を採用することが可能である。
予備冷却器7としては、特に限定されないが、例えば、フロン冷凍機を採用することが可能である。
本実施形態の天然ガス液化装置10によれば、上記構成を備えることにより、詳細は後述するが、特に、膨張タービンの入口の圧力が比較的低い範囲において消費動力を低減できる。これにより、熱交換器として、低圧仕様ながら伝熱性能の高いタイプ、具体的にはアルミプレートフィン式のものを採用できる。このため、熱交換器の性能向上と小型化が可能になり、また、装置全体の小型化も可能となるものである。
<天然ガス液化方法>
以下に、本実施形態の天然ガス液化方法について、図1を参照しながら説明する。
本実施形態においては、上述したような本実施形態の天然ガス液化装置10を用いて天然ガス10を液化する方法について説明する。
以下に、本実施形態の天然ガス液化方法について、図1を参照しながら説明する。
本実施形態においては、上述したような本実施形態の天然ガス液化装置10を用いて天然ガス10を液化する方法について説明する。
本実施形態の天然ガス液化方法は、天然ガスGを冷却して液化することで液化天然ガス(LNG)Fを製造する方法である。
具体的には、本実施形態の天然ガス液化方法は、天然ガスGを熱交換器4に導入し、この熱交換器4で冷却されて液化した液化天然ガス(LNG)Fを外部に供給する天然ガス供給工程と、熱交換器4に導入された天然ガスGを冷却するための主に不燃性ガスを含有する冷媒を熱交換器4に導入する冷媒供給工程とを備える。
具体的には、本実施形態の天然ガス液化方法は、天然ガスGを熱交換器4に導入し、この熱交換器4で冷却されて液化した液化天然ガス(LNG)Fを外部に供給する天然ガス供給工程と、熱交換器4に導入された天然ガスGを冷却するための主に不燃性ガスを含有する冷媒を熱交換器4に導入する冷媒供給工程とを備える。
そして、冷媒供給工程は、燃性ガスを複数の圧縮段2A~2Dを有する圧縮機2で圧縮して得た冷媒-1を熱交換器4に導入し、この熱交換器4を通過した冷媒-1を減圧器5に導入する冷媒供給工程aと、減圧器5による減圧・膨張によって降温され、少なくとも一部が液相とされた冷媒-2を熱交換器4に導入し、この熱交換器4を通過して昇温した冷媒-2を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の2段目の圧縮段2B以降に導入する冷媒供給工程bと、冷媒供給工程aにおける冷媒-1の少なくとも一部を膨張タービン3に導入する冷媒供給工程cと、膨張タービン3で膨張して降圧および降温された冷媒-3を熱交換器4に導入し、この熱交換器4を通過して昇温された冷媒-3を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の初段の圧縮段2Aに導入する冷媒供給工程dとを有する。
すなわち、本実施形態の天然ガス液化方法においては、冷媒供給工程aが上述した天然ガス液化装置10の第1冷媒ラインL1に対応する。冷媒供給工程bが第2冷媒ラインL2に対応する。冷媒供給工程cが第3冷媒ラインL3に対応する。冷媒供給工程dが第4冷媒ラインL4に対応する。
本実施形態の天然ガス液化方法においては、天然ガス供給工程における天然ガス、および冷媒供給工程を構成する冷媒供給工程a~冷媒供給工程dにおける冷媒少なくとも一部が、熱交換器4内を通過する。これにより、熱交換器4内において、冷媒-2および冷媒-3により、冷媒-1を冷却する。さらには、熱交換器4内において、冷媒-2および冷媒-3により、天然ガスGを冷却する。
以下に、本実施形態の天然ガス液化方法における具体的な手順について詳述する。
まず、冷媒供給工程aにおいて、冷媒源1から不燃性ガスである窒素を圧縮機2に供給する。そして、複数の圧縮段2A~2Dを有する圧縮機2において、窒素を多段階で圧縮することで、最終段である圧縮段2Dの出口側から得られる冷媒-1を、第1冷媒ラインL1を介して熱交換器4に導入する。
その後、熱交換器4を通過した冷媒-1を、第1冷媒ラインL1を介して減圧器5に導入する。
まず、冷媒供給工程aにおいて、冷媒源1から不燃性ガスである窒素を圧縮機2に供給する。そして、複数の圧縮段2A~2Dを有する圧縮機2において、窒素を多段階で圧縮することで、最終段である圧縮段2Dの出口側から得られる冷媒-1を、第1冷媒ラインL1を介して熱交換器4に導入する。
その後、熱交換器4を通過した冷媒-1を、第1冷媒ラインL1を介して減圧器5に導入する。
冷媒供給工程bにおいては、減圧器5による減圧・膨張によって降温され、少なくとも一部が液相とされた冷媒-2を、第2冷媒ラインL2を介して熱交換器4に導入する。そして、熱交換器4を通過して昇温した冷媒-2を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の2段目以降、図1に示す例では圧縮段2Bの入口に導入する。
冷媒供給工程cにおいては、上記冷媒供給工程aで冷媒-1を流す第1冷媒ラインL1の分岐点Pから分岐する第3冷媒ラインL3を介して、冷媒-1の少なくとも一部を膨張タービン3に導入する。
冷媒供給工程dにおいては、膨張タービン3で膨張して降圧および降温された冷媒-3を、第4冷媒ラインL4を介して熱交換器4に導入する。そして、熱交換器4を通過して昇温された冷媒-3を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の初段の圧縮段2Aに導入する。
また、本実施形態では、天然ガス供給工程において、上記各冷媒供給工程a~(d)とほぼ同時に、天然ガス源6から供給される天然ガスGを、天然ガスラインFLを介して熱交換器4に導入し、冷却・液化する。
そして、熱交換器4で液化した液化天然ガス(LNG)Fを、液化ラインFLを介して貯槽8に導入する。
そして、熱交換器4で液化した液化天然ガス(LNG)Fを、液化ラインFLを介して貯槽8に導入する。
本実施形態の天然ガス液化方法においては、冷媒供給工程において上記各冷媒供給工程a~冷媒供給工程dを実施することにより、以下に説明するような作用が得られる。
まず、冷媒供給工程cにおいて、第1冷媒ラインL1を流通する冷媒-1の少なくとも一部を、第3冷媒ラインL3によって概ね中間的な温度で取り出して膨張タービン3で膨張させることで、低温とされた冷媒-3が得られる。そして、熱交換器4内における熱交換において、主として冷媒-3と天然ガスGとを熱交換し、冷却された天然ガスGが液化することで液化天然ガスFが得られる。
また、天然ガスGとの熱交換で概ね常温に近い温度まで昇温した冷媒-3は、圧縮機2の初段の圧縮段2Aの入口に戻され、再び圧縮される。
まず、冷媒供給工程cにおいて、第1冷媒ラインL1を流通する冷媒-1の少なくとも一部を、第3冷媒ラインL3によって概ね中間的な温度で取り出して膨張タービン3で膨張させることで、低温とされた冷媒-3が得られる。そして、熱交換器4内における熱交換において、主として冷媒-3と天然ガスGとを熱交換し、冷却された天然ガスGが液化することで液化天然ガスFが得られる。
また、天然ガスGとの熱交換で概ね常温に近い温度まで昇温した冷媒-3は、圧縮機2の初段の圧縮段2Aの入口に戻され、再び圧縮される。
また、熱交換器4内においては、第3冷媒ラインL3によって少なくとも一部が取り出された後の残りの冷媒-1を、冷媒-2および冷媒-3と熱交換させることにより、上記中間的な温度よりも低い温度に冷却する。そして、上記中間的な温度よりも低い温度とされた冷媒-1を減圧器5で膨張させることにより、膨張タービン3によって膨張して降圧および降温された冷媒-3に比べて高圧で、しかも温度が低く、少なくとも一部が液化した冷媒-2が得られる。
また、熱交換器4内においては、上記冷媒-2および冷媒-3と、天然ガスGおよび圧縮機2で圧縮された後の冷媒-1との間で熱交換を行い、これら天然ガスGおよび冷媒-1を冷却する。そして、この熱交換によって気化し、概ね常温となった冷媒-3を、圧縮機2の2段目の圧縮段2B以降の入口に戻す。
本実施形態においては、膨張タービン3から第4冷媒ラインL4を介して熱交換器4へ戻される冷媒-3の圧力は、膨張タービン3によって大きく低下し、減圧器5で減圧された冷媒-2の圧力よりも低い。そこで、本実施形態では、熱交換器4内において、天然ガスGおよび冷媒-1の冷却に冷媒-3を利用した後、この冷媒-3を圧縮機2の初段の圧縮段2Aに戻し、複数の圧縮段2A~2Dによって十分に圧縮する。
一方、減圧器5によって減圧されて熱交換器4内に戻される冷媒-2は、圧力が冷媒-3よりも高いので、天然ガスGおよび冷媒-1との熱交換で冷却に利用した後、概ね常温の状態で、圧縮機2の2段目以降の圧縮段(図示例では圧縮段2B)に導入する。
これにより、従来のように(図3も参照)、冷媒系統において熱交換器を通過した冷媒の全てを圧縮機の初段に導入する場合に比べ、圧縮機の消費動力、すなわち装置全体の消費動力を低減することが可能になる。
一方、減圧器5によって減圧されて熱交換器4内に戻される冷媒-2は、圧力が冷媒-3よりも高いので、天然ガスGおよび冷媒-1との熱交換で冷却に利用した後、概ね常温の状態で、圧縮機2の2段目以降の圧縮段(図示例では圧縮段2B)に導入する。
これにより、従来のように(図3も参照)、冷媒系統において熱交換器を通過した冷媒の全てを圧縮機の初段に導入する場合に比べ、圧縮機の消費動力、すなわち装置全体の消費動力を低減することが可能になる。
すなわち、後述の実施例の欄で詳しく説明するが、本実施形態の天然ガス液化方法においては、例えば、JT弁を具備する減圧器5の出口(図1中の(viii))の圧力を1.3MPaに保持しながら、膨張タービン3の出口(同(vi))の圧力を下げることができる。これにより、圧縮機2の出口(同(iii))の圧力を下げたときに膨張タービン3の膨張比が小さくなり、流量が増加するという問題を改善できる。さらに、減圧器5で減圧されて、熱交換器4を通過した低圧の冷媒-2を、不必要に圧縮するという無駄な動力を必要としない。これにより、例えば、実使用上の理由により、圧縮機2の出口の圧力を、消費動力が最小となる圧力よりも低い圧力で設計した場合であっても、従来の方法に比べて大幅に消費動力を改善することが可能になる。
これに対して、従来の技術(図3も参照)では、膨張タービン103の出口の圧力を下げると減圧器102の出口の圧力も同時に下がるので、圧力を下げるほど損失が大きくなる。
すなわち、後述の実施例で説明するが、冷却性能の向上のみに着目して高い圧力で設計すれば、本実施形態と従来技術とに冷却性能の大きな差はない。しかしながら、より現実的な実使用環境に着目して、低い圧力で設計する場合は、本実施形態に係る構成の方が、より小型で安価であるとともに、冷却性能にも優れた天然ガス液化装置を実現できる。
すなわち、後述の実施例で説明するが、冷却性能の向上のみに着目して高い圧力で設計すれば、本実施形態と従来技術とに冷却性能の大きな差はない。しかしながら、より現実的な実使用環境に着目して、低い圧力で設計する場合は、本実施形態に係る構成の方が、より小型で安価であるとともに、冷却性能にも優れた天然ガス液化装置を実現できる。
本実施形態の天然ガス液化方法においては、図1中に(v)で示した、冷媒供給工程cにおける、膨張タービン3の入口側の圧力が9MPa未満であることが好ましい。また、比較的低い冷媒圧力の範囲において消費動力を低減する観点からは、膨張タービン3の入口側の圧力は、6~8MPaが好ましく、7~7.5MPaがより好ましい。
本実施形態の天然ガス液化方法においては、冷媒供給工程aにおいて、圧縮機2によって多段で圧縮された冷媒-1を、さらに追加圧縮することがより好ましい。図1に示す例では、上述した制動ブロワー31により、冷媒-1を追加圧縮した後、熱交換器4に導入している。このように、冷媒-1を、膨張タービン3で発生する動力を利用してさらに追加圧縮することで、圧縮機2の消費動力を増やすことなく、より高い圧力で熱交換器4に導入できる。
また、本実施形態においては、天然ガス供給工程では、熱交換器4に導入される前の天然ガスGを、気化タイプの冷媒によって予備冷却することがより好ましい。図1に示す例では、上述したフロン冷凍機等からなる予備冷却器7により、天然ガスGを予備冷却した後、熱交換器4に導入している。このように、天然ガスGを予備冷却することで、上述したように、予め、液化ガスGを所定温度以下まで冷却した状態で熱交換器4に導入できるので、熱交換器4における天然ガスGの液化効率が向上する。
<作用効果>
以上説明したように、本実施形態の天然ガス液化装置10によれば、減圧器5で減圧されて熱交換器4を通過した冷媒-2を、複数の圧縮段2A~2Dの内の2段目の圧縮段2B以降に導入する第2冷媒ラインL2と、膨張タービン3で膨張して熱交換器4を通過した冷媒-3を、圧縮機2における初段の圧縮段2Aに導入する第4冷媒ラインとを備えた構成を採用している。すなわち、熱交換器4から比較的低圧で戻される冷媒-3は、複数の圧縮段2A~2Dの内の初段の圧縮段2Aに導入される。一方、熱交換器4から比較的高圧で戻される冷媒-2は、複数の圧縮段2A~2Dの2段目の圧縮段2B以降に導入される。このため、特に、膨張タービンの入口の圧力が比較的低い範囲において消費動力を低減することが可能になる。これにより、熱交換器4として、低圧仕様ながら伝熱性能の高いアルミプレートフィン等のタイプのものを採用できるので、熱交換器4の性能向上と小型化とが可能になり、また、装置全体の小型化およびコストの低減も可能になる。
また、後述の実施例の欄([評価結果]、実施例2(表3))で詳しく説明するが、冷媒全体の流量を100%とした場合、つまり、圧縮段2Bを流れる冷媒の流量を100%とした場合、第2冷媒ラインL2中の冷媒-2の流量が10%未満と少量となる。このため、第4冷媒ラインL4からの圧縮段2Aへの冷媒-3の流量は、冷媒全体の流量を100%とした場合、90%程度となる。このように、各々の圧縮機2A~2D間の流量差が小さくなり、これらの圧縮段2A~2Dを一体の圧縮機2として設計するのが容易になる。
さらに、減圧器5に減圧弁を使用した場合には、第2冷媒ラインL2の流量が少ない小規模な装置にも適用可能となる。
以上説明したように、本実施形態の天然ガス液化装置10によれば、減圧器5で減圧されて熱交換器4を通過した冷媒-2を、複数の圧縮段2A~2Dの内の2段目の圧縮段2B以降に導入する第2冷媒ラインL2と、膨張タービン3で膨張して熱交換器4を通過した冷媒-3を、圧縮機2における初段の圧縮段2Aに導入する第4冷媒ラインとを備えた構成を採用している。すなわち、熱交換器4から比較的低圧で戻される冷媒-3は、複数の圧縮段2A~2Dの内の初段の圧縮段2Aに導入される。一方、熱交換器4から比較的高圧で戻される冷媒-2は、複数の圧縮段2A~2Dの2段目の圧縮段2B以降に導入される。このため、特に、膨張タービンの入口の圧力が比較的低い範囲において消費動力を低減することが可能になる。これにより、熱交換器4として、低圧仕様ながら伝熱性能の高いアルミプレートフィン等のタイプのものを採用できるので、熱交換器4の性能向上と小型化とが可能になり、また、装置全体の小型化およびコストの低減も可能になる。
また、後述の実施例の欄([評価結果]、実施例2(表3))で詳しく説明するが、冷媒全体の流量を100%とした場合、つまり、圧縮段2Bを流れる冷媒の流量を100%とした場合、第2冷媒ラインL2中の冷媒-2の流量が10%未満と少量となる。このため、第4冷媒ラインL4からの圧縮段2Aへの冷媒-3の流量は、冷媒全体の流量を100%とした場合、90%程度となる。このように、各々の圧縮機2A~2D間の流量差が小さくなり、これらの圧縮段2A~2Dを一体の圧縮機2として設計するのが容易になる。
さらに、減圧器5に減圧弁を使用した場合には、第2冷媒ラインL2の流量が少ない小規模な装置にも適用可能となる。
また、本実施形態の天然ガス液化方法によれば、冷媒供給工程が、減圧器5による減圧・膨張によって降温され、かつ、少なくとも一部が液相とされた冷媒-2を熱交換器4に導入し、この熱交換器4を通過して昇温した冷媒-2を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の2段目の圧縮段2B以降に導入する冷媒供給工程bと、膨張タービン3で膨張して降圧および降温された冷媒-3を熱交換器4に導入し、この熱交換器4を通過して昇温された冷媒-3を、圧縮機2に備えられる複数の圧縮段2A~2Dの内の初段の圧縮段2Aに導入する冷媒供給工程dとを有する方法を採用している。これにより、上記同様、熱交換器4から比較的低圧で戻される冷媒-3が初段の圧縮段2Aに導入される。一方、熱交換器4から比較的高圧で戻される冷媒-2は2段目の圧縮段2B以降に導入されるので、膨張タービン3の入口の圧力が比較的低い範囲において消費動力を低減することが可能になる。これにより、使用する装置の小型化が可能になることに加え、運転コストの低減も可能になる。
<その他の形態>
本発明に係る天然ガス液化装置および天然ガス液化方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
本発明に係る天然ガス液化装置および天然ガス液化方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、図1に示す例の圧縮機2は、圧縮段2A~2Dの計4段の圧縮段を備えているが、圧縮段数はこれには限定されず、天然ガス液化装置の冷却性能等を勘案しながら、例えば、計2段としてもよいし、計5段以上としても構わない。
また、圧縮機2において冷媒-2が導入される位置についても、図示例のような2段目の圧縮段2Bの入口には限定されず、冷媒-2の圧力を勘案しながら、例えば、3段目の圧縮段3Cの入口であってもよい。
また、圧縮機2において冷媒-2が導入される位置についても、図示例のような2段目の圧縮段2Bの入口には限定されず、冷媒-2の圧力を勘案しながら、例えば、3段目の圧縮段3Cの入口であってもよい。
また、図1では、第1冷媒ラインL1の経路中に制動ブロワー31および冷却器32が設けられた例を示しているが、圧縮機2における冷媒-1の圧縮が十分な場合には、これらは省略することも可能である。
また、本実施形態では、熱交換器4で液化した液化天然ガス(LNG)Fを、液化ラインFLを介して貯槽8に導入して貯留する例を説明しているが、これには限定されない。例えば、液化天然ガス(LNG)Fを、液化ラインFLを介して、装置外部のプラント等に向けて直接供給する構成を採用することも可能である。
さらに、図4に示す他の実施形態によれば、少ない追加コストで更なる効果を得ることも可能である。以下、本発明を適用した他の実施形態である天然ガス液化装置及び天然ガス液化方法について、図1及び図4を適宜参照しながら説明する。
図1が開示する天然ガスの液化装置および天然ガスの液化方法では熱交換器4は一体型であるのに対して、図4の天然ガスの液化装置および天然ガスの液化方法では、熱交換器4を、熱交換器4A~4Dに分割している。分割すると熱交換器の数が増えて連絡配管が必要となる点はコスト増加の要因となる。しかしながら、膨張タービン3で膨張した冷媒-3を導入する熱交換器4Bの温度より低温の熱交換器4Cおよび4Dは、それより高温の熱交換器4Aおよび4Bに比べて流体数が少なく、全体が低温で流体の密度が大きい。このため、流路の断面積を小さくできる。熱交換器を分割することで熱交換器の体積の合計を一体型よりも小さくすることが可能である。
また、減圧器5から熱交換器4Dに導入される冷媒-2及び減圧器5´から熱交換器4Cに導入される冷媒-2´は気液二相流となり得るので、熱交換器の性能低下を避けるには流路内の気液の分配を均一にすることが重要である。この課題に対しても、膨張タービン3で膨張した冷媒-3を導入する位置を境に熱交換器を分割し、それより低温の熱交換器4Cおよび4Dの流路の断面積を小さくすることが有効な対策となる。
さらに、例えば熱交換器4Aと4Bを分割し、各熱交換器を冷媒の流れ方向における水平方向に並べて配置することで、それらを収納する保冷箱の高さを抑えたり、複数の小型の保冷箱に分割することが容易となる。これにより、装置をユニット化して設置工事を短縮したり、移設が容易な構成とすることが可能である。
さらに、減圧器5および減圧器5´を設置し、それぞれ異なる圧力の冷媒-2および冷媒-2´を、第2冷媒ラインL2および第2冷媒ラインL2´により、圧縮機2に備えられる複数の圧縮段2A~2Dの内の2段目である圧縮段2B以降のそれぞれ異なる圧縮段に導入してもよい。後述の実施例の欄で詳しく説明するが、このとき、第2冷媒ラインL2を通る冷媒-2は、図1の実施形態と同じく天然ガスを-160℃に冷却するために1.3MPaである。これに対して、より高温の領域を冷却するもう一つの第2冷媒ラインL2´を通る冷媒-2´の沸点は、冷媒-2より高くて構わないので、圧力を1.3MPaより高くできる。
したがって、図4に示す他の実施形態の天然ガスの液化装置および天然ガスの液化方法によれば、冷媒の一部を1.3MPaより高い圧力で圧縮段に戻せるので、全量を1.3MPaで戻す図1の実施形態に比べて、さらに消費動力を低減することが可能である。
したがって、図4に示す他の実施形態の天然ガスの液化装置および天然ガスの液化方法によれば、冷媒の一部を1.3MPaより高い圧力で圧縮段に戻せるので、全量を1.3MPaで戻す図1の実施形態に比べて、さらに消費動力を低減することが可能である。
なお、熱交換器の分割と、第2冷媒ラインの複数化とは、それぞれ個別に採用できる。また、さらに熱交換器の分割数を増やして個々のユニットをより小型化することも可能である。また、第2冷媒ラインを3本に増やして、より消費動力を低減することも可能である。
以下、本発明の天然ガス液化装置および天然ガス液化方法について、実施例を示してより詳細に説明するが、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
[参考例]
まず、参考例として、図3に示す従来の天然ガス液化装置100を用いて、天然ガスを冷却・液化してLNGを製造した。参考例の天然ガス液化装置100においては、減圧器105としてJT弁を用いた。圧縮機102として、計4段の圧縮段102A~102Dを有し、各圧縮段102A~102Dのそれぞれの出口側に冷却器121A~121Dが備えられたものを用いた。また、冷媒として窒素ガスを用いた。
まず、参考例として、図3に示す従来の天然ガス液化装置100を用いて、天然ガスを冷却・液化してLNGを製造した。参考例の天然ガス液化装置100においては、減圧器105としてJT弁を用いた。圧縮機102として、計4段の圧縮段102A~102Dを有し、各圧縮段102A~102Dのそれぞれの出口側に冷却器121A~121Dが備えられたものを用いた。また、冷媒として窒素ガスを用いた。
膨張タービン103の出口の圧力を1.3MPaとした。天然ガス液化装置100構成上明らかなように、減圧器105の出口の圧力も1.3MPaとなる。
また、天然ガスを液化させる際の条件である膨張タービン103の入口の圧力を変更して、図3中の各位置(i)~(x)を流れる流体の流量、圧力及び温度と、圧縮機102の消費動力(kw)を測定した。具体的には、該圧力が11.1MPaの状態を下記表1に、該圧力が7.2MPaの状態を下記表2に示した。
また、天然ガスを液化させる際の条件である膨張タービン103の入口の圧力を変更して、図3中の各位置(i)~(x)を流れる流体の流量、圧力及び温度と、圧縮機102の消費動力(kw)を測定した。具体的には、該圧力が11.1MPaの状態を下記表1に、該圧力が7.2MPaの状態を下記表2に示した。
[実施例1および2]
実施例1および2では、図1に示す天然ガス液化装置10を用いて、天然ガスを冷却・液化してLNGを製造した。本実施例で用いた天然ガス液化装置10においては、減圧器5としてJT弁を使用した。圧縮機2として、計4段の圧縮段2A~2Dを有し、各圧縮段2A~2Dのそれぞれの出口側に冷却器21A~21Dが備えられたものを用いた。また、本実施例においても、冷媒として窒素ガスを用いた。
実施例1および2では、図1に示す天然ガス液化装置10を用いて、天然ガスを冷却・液化してLNGを製造した。本実施例で用いた天然ガス液化装置10においては、減圧器5としてJT弁を使用した。圧縮機2として、計4段の圧縮段2A~2Dを有し、各圧縮段2A~2Dのそれぞれの出口側に冷却器21A~21Dが備えられたものを用いた。また、本実施例においても、冷媒として窒素ガスを用いた。
実施例1においては、減圧器5の出口の圧力は、上記参考例と同じ1.3MPaとし、膨張タービン3の出口の圧力を0.9MPaとした。
このような条件で天然ガスを液化した際の膨張タービン103の出口の圧力を図2に示す。
実施例2においては、減圧器5の出口の圧力は、上記参考例と同じ1.3MPaとし、膨張タービン3の出口の圧力を0.6MPaとし、入口圧力を7.2MPa(参考例と同じ圧力)とした。上記比較例と同様に、各ライン(i)~(x)を流れる流体の流量、圧力及び温度と、圧縮機2の消費動力(kw)を測定した。結果を下記表3に示す。
このような条件で天然ガスを液化した際の膨張タービン103の出口の圧力を図2に示す。
実施例2においては、減圧器5の出口の圧力は、上記参考例と同じ1.3MPaとし、膨張タービン3の出口の圧力を0.6MPaとし、入口圧力を7.2MPa(参考例と同じ圧力)とした。上記比較例と同様に、各ライン(i)~(x)を流れる流体の流量、圧力及び温度と、圧縮機2の消費動力(kw)を測定した。結果を下記表3に示す。
[比較例1および2]
比較例1および2として、図3に示す従来の天然ガス液化装置100を用いて、上記実施例と同様にして天然ガスを冷却・液化してLNGを製造した。
比較例1および2で用いた天然ガス液化装置100においても、減圧器105としてJT弁を用いた。圧縮機102として、計4段の圧縮段102A~102Dを有し、各圧縮段102A~102Dのそれぞれの出口側に冷却器121A~121Dが備えられたものを用いた。また、比較例1および2においても、冷媒として窒素ガスを用いた。
比較例1および2として、図3に示す従来の天然ガス液化装置100を用いて、上記実施例と同様にして天然ガスを冷却・液化してLNGを製造した。
比較例1および2で用いた天然ガス液化装置100においても、減圧器105としてJT弁を用いた。圧縮機102として、計4段の圧縮段102A~102Dを有し、各圧縮段102A~102Dのそれぞれの出口側に冷却器121A~121Dが備えられたものを用いた。また、比較例1および2においても、冷媒として窒素ガスを用いた。
比較例1においては、膨張タービン103の出口の圧力を0.9MPaとし、比較例2においては、該圧力を0.6MPaとした。
また、参考例と同様に、天然ガス液化装置100構成上、比較例1および2においては、減圧器105の出口の圧力は、膨張タービン103の出口の圧力と同じとなる。
このような条件で天然ガスを液化した際の膨張タービン103の出口の圧力を図2に示す。
比較例2においては、膨張タービン103の入口の圧力を、7.2MPa(参考例および実施例2と同じ圧力)とした。図3における各位置(i)~(x)を流れる流体の流量、圧力及び温度と、圧縮機2の消費動力(kw)を測定した。結果を下記表4に示す。
また、参考例と同様に、天然ガス液化装置100構成上、比較例1および2においては、減圧器105の出口の圧力は、膨張タービン103の出口の圧力と同じとなる。
このような条件で天然ガスを液化した際の膨張タービン103の出口の圧力を図2に示す。
比較例2においては、膨張タービン103の入口の圧力を、7.2MPa(参考例および実施例2と同じ圧力)とした。図3における各位置(i)~(x)を流れる流体の流量、圧力及び温度と、圧縮機2の消費動力(kw)を測定した。結果を下記表4に示す。
[実施例3]
実施例3として、図4に示す天然ガス液化装置10を用いて、以下に示す条件及び手順で天然ガスを冷却・液化してLNGを製造した。
本実施例で用いた天然ガス液化装置10においては、減圧器5に加えて減圧器5´を備え、いずれもJT弁を使用した。また、圧縮機2としては、計4段の圧縮段2A~2Dを有し、各圧縮段2A~2Dのそれぞれの出口側に冷却器21A~21Dが備えられたものを用いた。また、本実施例においても、冷媒として窒素ガスを用いた。
実施例3として、図4に示す天然ガス液化装置10を用いて、以下に示す条件及び手順で天然ガスを冷却・液化してLNGを製造した。
本実施例で用いた天然ガス液化装置10においては、減圧器5に加えて減圧器5´を備え、いずれもJT弁を使用した。また、圧縮機2としては、計4段の圧縮段2A~2Dを有し、各圧縮段2A~2Dのそれぞれの出口側に冷却器21A~21Dが備えられたものを用いた。また、本実施例においても、冷媒として窒素ガスを用いた。
実施例3においては、減圧器5の出口の圧力は1.3MPaとし、減圧器5´の出口の圧力は2.6MPaとした。また、膨張タービン3の入口の圧力は7.2MPa、出口の圧力は0.6MPaとした。
すなわち、減圧器5及び膨張タービン3の入口及び出口の圧力を実施例2と同じとした。実施例3における各位置(i)~(xiii)を流れる流体の流量、圧力及び温度と、圧縮機2の消費動力(kw)を測定した。その結果を下記表5中に示す。
すなわち、減圧器5及び膨張タービン3の入口及び出口の圧力を実施例2と同じとした。実施例3における各位置(i)~(xiii)を流れる流体の流量、圧力及び温度と、圧縮機2の消費動力(kw)を測定した。その結果を下記表5中に示す。
[表1~5の説明]
表1は、従来の構成の天然ガス液化装置100を用いた参考例の液化プロセスにおける諸条件下での各ラインを流れる流体の流量、圧力及び温度と、圧縮機102の消費動力(kw)を示す。
表1は、従来の構成の天然ガス液化装置100を用いた参考例の液化プロセスにおいて、消費動力を最小化した例の条件を示している。
表1は、従来の構成の天然ガス液化装置100を用いた参考例の液化プロセスにおける諸条件下での各ラインを流れる流体の流量、圧力及び温度と、圧縮機102の消費動力(kw)を示す。
表1は、従来の構成の天然ガス液化装置100を用いた参考例の液化プロセスにおいて、消費動力を最小化した例の条件を示している。
表2は、従来の天然ガス液化装置100を用いた参考例の液化プロセスにおいて、膨張タービン出口の圧力(図3中の(vi))は表1に記載の参考例と同じままで、膨張タービン入口(図3中の(v))の圧力を下げた例の条件を示している。
表3は、本発明に係る天然ガス液化装置10を用いた実施例2の液化プロセスにおいて、膨張タービン3の入口(図1中の(v))の圧力を、表2に示した参考例と同じ値にした例の条件を示している。
表4は、天然ガス液化装置100を用いた比較例2の液化プロセスにおいて、膨張タービンの入口(図3中の(v))および出口(図3中の(vi))の圧力を、表3に示した実施例2と同じ値にした例の条件を示している。
表5は、図4に示す他の実施形態による天然ガス液化装置10を用いた実施例3の液化プロセスにおいて、膨張タービン3の入口(図4中の(v))及び出口(図4中の(vi))の圧力、及び減圧器5の入口(図4中の(vii))及び出口(図4中の(viii))の圧力を、表3に示した実施例2と同じ値にした例の条件を示している。
また、表1、2、4中における(i)~(ix)の各々は、それぞれ、図3中の(i)~(ix)の位置に対応する。表3中における(i)~(x)の各々は、それぞれ、図1中の(i)~(x)の位置に対応する。表5中における(i)~(xiii)の各々は、それぞれ、図4中の(i)~(xiii)の位置に対応する。
なお、天然ガス系統(液化ライン)における熱交換器の入口(図1、3、および4中の(i))および出口(図1、3、および4中の(ii))の条件は、各実施例(図1および図4)、各比較例および参考例(図3)の何れにおいても同じである。
なお、天然ガス系統(液化ライン)における熱交換器の入口(図1、3、および4中の(i))および出口(図1、3、および4中の(ii))の条件は、各実施例(図1および図4)、各比較例および参考例(図3)の何れにおいても同じである。
[評価結果]
(参考例(表1))
表1に示す参考例(膨張タービン入口圧力11.1MPa)の条件では、上記の通り、従来の液化プロセスを用いて消費動力が最も小さい。表1中に示すように、参考例においては、従来の構成の天然ガス液化装置100を用いた液化プロセスにおいて、減圧器105の出口(図3中の(viii))の圧力は、天然ガスを-163℃に冷却できるように、窒素(冷媒)の沸点が-165℃となる1.3MPaとした。
表1に示すように、参考例では、圧縮機102の出口(図3中の(iii))の圧力を6.1MPa、膨張タービン103の入口(図3中の(v))の圧力を11.1MPaまで上げたとき、圧縮機102の消費動力は4660kwとなった。
(参考例(表1))
表1に示す参考例(膨張タービン入口圧力11.1MPa)の条件では、上記の通り、従来の液化プロセスを用いて消費動力が最も小さい。表1中に示すように、参考例においては、従来の構成の天然ガス液化装置100を用いた液化プロセスにおいて、減圧器105の出口(図3中の(viii))の圧力は、天然ガスを-163℃に冷却できるように、窒素(冷媒)の沸点が-165℃となる1.3MPaとした。
表1に示すように、参考例では、圧縮機102の出口(図3中の(iii))の圧力を6.1MPa、膨張タービン103の入口(図3中の(v))の圧力を11.1MPaまで上げたとき、圧縮機102の消費動力は4660kwとなった。
ここで、膨張タービンの入口温度を高くすると、膨張タービンの入口と出口でのエンタルピー差が大きくなり、膨張タービンの流量が減少する。一方、出口温度が高くなるので、その温度から-163℃まで冷却するための熱量が増加し、減圧器の流量は増加する。また、熱交換器における冷却曲線と加熱曲線とが近付き、温度差が小さくなる。
このような、膨張タービンの入口温度に対する、膨張タービンと減圧器の流量の相反する変化により、合計の流量、すなわち圧縮機の消費動力は、所定の入口温度において極小となる。
表1中に示した参考例における圧力では、熱交換器の温度差が確保できる範囲で最も高い入口温度である-29℃において、消費動力が極小となった。これに基づき、以下に示す参考例(表2)、各実施例および各比較例の評価結果においては、それぞれの圧力で圧縮機の消費動力が極小となるように膨張タービンの入口温度を決めて装置を稼働させた結果を説明する。
このような、膨張タービンの入口温度に対する、膨張タービンと減圧器の流量の相反する変化により、合計の流量、すなわち圧縮機の消費動力は、所定の入口温度において極小となる。
表1中に示した参考例における圧力では、熱交換器の温度差が確保できる範囲で最も高い入口温度である-29℃において、消費動力が極小となった。これに基づき、以下に示す参考例(表2)、各実施例および各比較例の評価結果においては、それぞれの圧力で圧縮機の消費動力が極小となるように膨張タービンの入口温度を決めて装置を稼働させた結果を説明する。
また、それぞれの例において、圧縮機の流量、入口と出口の圧力および消費動力は、膨張タービンおよび減圧器の条件を決めると一意に算出される値であり、任意に選択できない。すなわち、圧縮機の入口の圧力は膨張タービンおよび減圧器の出口の圧力で決まる。圧縮機の流量は、そのときの膨張タービンおよび減圧器の条件において天然ガスを液化できる値により決まる。圧縮機の出口の圧力、つまり制動ブロワーの入口の圧力は、そのときに膨張タービンで発生する動力によって制動ブロワーで圧縮できる値に決まる。消費動力は、これらの各条件から算出される。
なお、圧縮機および膨張タービンの効率、および各経路の圧力損失は、全ての例で同じとした。
なお、圧縮機および膨張タービンの効率、および各経路の圧力損失は、全ての例で同じとした。
(参考例(表2))
表2に示す参考例(膨張タービン入口圧力7.2MPa)は、従来の構成の天然ガス液化装置100を用いた液化プロセスにおいて、減圧器105の出口(図3中の(viii))の圧力は表1に示した参考例と同じ1.3MPaのままで、膨張タービン103の入口(図3中の(v))の圧力を7.2MPaに下げた例である。
表2に示す参考例(膨張タービン入口圧力7.2MPa)は、従来の構成の天然ガス液化装置100を用いた液化プロセスにおいて、減圧器105の出口(図3中の(viii))の圧力は表1に示した参考例と同じ1.3MPaのままで、膨張タービン103の入口(図3中の(v))の圧力を7.2MPaに下げた例である。
表2に示す参考例では、表1に示した参考例の場合と比べて、圧縮機102の出口の設計圧力を低くすることが可能になり、熱交換器104の設計圧力も低くできるので、機器の小型化の可能性も高まる。しかしながら、表2に示す参考例の場合、膨張タービン103の膨張比が小さくなり、流量が増加する。また、膨張タービン103の出口(図3の(vi))の温度が高くなるので、この温度から-163℃まで冷却するための熱量が増加するため、減圧弁105における流量も増加する。このため、表2に示す参考例においては、圧縮機102の消費動力が4970kwに増大する結果となった。
(実施例2(表3))
実施例2は、本発明に係る天然ガス液化装置10を用いた液化プロセスにおいて、膨張タービンの出口の圧力(図1の(vi))を0.6MPaとした例であり、表3に示すように、膨張タービンの入口の圧力(図1の(v))を参考例の表2と同じ7.2MPaに設定している。このとき、表3中に示すように、圧縮機2の出口(図1の(iii))の圧力が3.6MPa、膨張タービン3の入口(同(v))の圧力が7.2MPaと、表2に示す参考例と同等又はそれ以下の圧力である。これにより、上記同様、機器選定の自由度が高く、アルミプレートフィン式等の高効率の熱交換器を採用でき、機器の小型化が可能であることが確認された。また、消費動力が、表2に示す参考例に対して2.0%減の4870kWに改善されているも確認された。
実施例2は、本発明に係る天然ガス液化装置10を用いた液化プロセスにおいて、膨張タービンの出口の圧力(図1の(vi))を0.6MPaとした例であり、表3に示すように、膨張タービンの入口の圧力(図1の(v))を参考例の表2と同じ7.2MPaに設定している。このとき、表3中に示すように、圧縮機2の出口(図1の(iii))の圧力が3.6MPa、膨張タービン3の入口(同(v))の圧力が7.2MPaと、表2に示す参考例と同等又はそれ以下の圧力である。これにより、上記同様、機器選定の自由度が高く、アルミプレートフィン式等の高効率の熱交換器を採用でき、機器の小型化が可能であることが確認された。また、消費動力が、表2に示す参考例に対して2.0%減の4870kWに改善されているも確認された。
表3に示す実施例2と、表2に示す参考例とは、減圧器5の出口(図1の(viii))の圧力が1.3MPaという点では同じである。表2に示す参考例では、装置の構造上、膨張タービン3の出口(図1の(vi))の圧力も1.3MPaになるのに対して、実施例2では膨張タービン3の出口(図1の(vi))の圧力を0.6MPaに下げることができる点で相違する。このため、実施例2では膨張比を大きくして流量を減少させることができる。また、実施例2では、膨張タービン3の出口温度が低下するので、減圧器5を出た冷媒で冷却する熱量が減少し、流量も減少している。
実施例2では、膨張タービン3を出た冷媒(窒素)は、圧縮機2で0.6MPaから3.6MPaに圧縮されるので、表2に示す参考例の場合に比べて膨張タービンの冷媒を圧縮するための圧縮比は大きくなるものの、流量は減少している。実施例2においては、減圧器5の出口における冷媒の圧力は参考例と同じなので、減圧器の冷媒を圧縮するための圧縮比は表2と同じで、流量は減少している。実施例2では、これらの総合的な作用により、消費動力が低減されている。
また、実施例2においては、減圧器5から圧縮機2へ戻る流量(図1の(x))が少量である。圧縮段2Aの流量(図1の(ix))は、圧縮段2B~2Dの流量(図1の(iii))の93%程度を占めるので、各圧縮段2A~2D間の差が小さく、これらの圧縮段2A~2Dを一体の圧縮機2として容易に設計できる。
さらに、減圧器5がJT弁なので、流量が少ない小規模な装置にも適用できる。
また、実施例2においては、減圧器5から圧縮機2へ戻る流量(図1の(x))が少量である。圧縮段2Aの流量(図1の(ix))は、圧縮段2B~2Dの流量(図1の(iii))の93%程度を占めるので、各圧縮段2A~2D間の差が小さく、これらの圧縮段2A~2Dを一体の圧縮機2として容易に設計できる。
さらに、減圧器5がJT弁なので、流量が少ない小規模な装置にも適用できる。
一方、実施例2においては、表1に示した参考例の場合と比べると、圧縮機から減圧器までの冷媒の圧力が低いことによる、熱交換器の内部における冷媒(窒素)の性質の違いから、消費動力は少し大きめとなっている。しかしながら、実施例2の場合、圧縮機102の出口の設計圧力を低くでき、熱交換器4の設計圧力も低くできるので、高効率の熱交換器を採用できるメリットがあり、かつ、同じメリットを得られる表2に示す参考例に比べると消費動力が小さい。
したがって、実施例2においては、比較的低い冷媒圧力の範囲において消費動力を低減することができ、しかも、装置の小型化および優れた冷却性能の両方が実現できることが明らかであることから、上記参考例に対して優位性を有している。
したがって、実施例2においては、比較的低い冷媒圧力の範囲において消費動力を低減することができ、しかも、装置の小型化および優れた冷却性能の両方が実現できることが明らかであることから、上記参考例に対して優位性を有している。
(比較例2(表4))
表4に示す比較例2は、従来の構成の天然ガス液化装置100を用いた液化プロセスにおいて、膨張タービンの出口の圧力(図3の(vi))を、表3に示す実施例2と同じ0.6MPaとした例である。
比較例2では、表4にも示すように、膨張タービンの入口の圧力(図3の(v))を、実施例2と同じ7.2MPaに設定している。
表4中に示すように、比較例2においては、冷媒(窒素)の流量は、表3に示した実施例2における流量に近い値であるが、圧縮機102の消費動力は4960kwと、表3に示す値に比べて大きい。これは、比較例2では、減圧器105の出口における冷媒圧力が0.6MPaと、実施例2の1.3MPaに比べて低いことで、減圧器105から圧縮機102に送り込まれる冷媒を圧縮する消費動力が増大するためである。
表4に示す比較例2は、従来の構成の天然ガス液化装置100を用いた液化プロセスにおいて、膨張タービンの出口の圧力(図3の(vi))を、表3に示す実施例2と同じ0.6MPaとした例である。
比較例2では、表4にも示すように、膨張タービンの入口の圧力(図3の(v))を、実施例2と同じ7.2MPaに設定している。
表4中に示すように、比較例2においては、冷媒(窒素)の流量は、表3に示した実施例2における流量に近い値であるが、圧縮機102の消費動力は4960kwと、表3に示す値に比べて大きい。これは、比較例2では、減圧器105の出口における冷媒圧力が0.6MPaと、実施例2の1.3MPaに比べて低いことで、減圧器105から圧縮機102に送り込まれる冷媒を圧縮する消費動力が増大するためである。
(膨張タービンの入口圧力と圧縮機の消費動力との関係)
図2のグラフ中に示す参考例のように、圧力を制限せずに最小の消費動力を追求した場合、上記表1に示したように、従来の液化プロセスを用いて膨張タービンの出口の圧力を1.3MPaとするのが最適である。
また、図1に記載の本発明に係る構成と、図3に記載の従来の構成とを比較することで明らかなように、本発明に係る液化プロセスを用いた場合においても、膨張タービンの出口の圧力を1.3MPaとすることで、理論的には表1と同じ低い消費動力が得られる。
図2のグラフ中に示す参考例のように、圧力を制限せずに最小の消費動力を追求した場合、上記表1に示したように、従来の液化プロセスを用いて膨張タービンの出口の圧力を1.3MPaとするのが最適である。
また、図1に記載の本発明に係る構成と、図3に記載の従来の構成とを比較することで明らかなように、本発明に係る液化プロセスを用いた場合においても、膨張タービンの出口の圧力を1.3MPaとすることで、理論的には表1と同じ低い消費動力が得られる。
一方、実使用上の理由で冷媒の圧力を下げる場合、例えば、膨張タービンの入口圧力が9MPa又はそれ以下のときは、図2のグラフ中の実施例1に示すように、本発明に係る天然ガス液化装置および方法を用い、膨張タービンの出口圧力を0.9MPaとすることで、参考例と同等またはそれ以下まで消費動力を低減できる。
さらに、例えば、膨張タービンの入口圧力を6MPa付近まで下げる場合には、表3に示す実施例2のように、膨張タービンの出口圧力を0.6MPaとすることで、参考例よりも、かつ、実施例1よりも消費動力を低減できる。
なお、膨張タービンの入口の圧力が9MPaより高い場合でも、本発明に係る液化プロセスを用いて、膨張タービンの出口の圧力を0.9~1.3MPaの範囲の適切な圧力とすれば、参考例と比べて消費動力を削減できることは、上記で説明した性質から明らかである。但し、消費動力の削減の程度が小さいこと、および装置の小型化のために冷媒圧力を低くして、なおかつ、消費動力を低減するという本発明の目的からは外れるため、詳しい説明や図示は省略する。
さらに、例えば、膨張タービンの入口圧力を6MPa付近まで下げる場合には、表3に示す実施例2のように、膨張タービンの出口圧力を0.6MPaとすることで、参考例よりも、かつ、実施例1よりも消費動力を低減できる。
なお、膨張タービンの入口の圧力が9MPaより高い場合でも、本発明に係る液化プロセスを用いて、膨張タービンの出口の圧力を0.9~1.3MPaの範囲の適切な圧力とすれば、参考例と比べて消費動力を削減できることは、上記で説明した性質から明らかである。但し、消費動力の削減の程度が小さいこと、および装置の小型化のために冷媒圧力を低くして、なおかつ、消費動力を低減するという本発明の目的からは外れるため、詳しい説明や図示は省略する。
また、図2のグラフ中に示す実施例1と比較例1、および実施例2と比較例2を比較すると、膨張タービンの入口の圧力と出口の圧力とが同じである場合には、常に、本発明に係る実施例の方が、従来の液化プロセスによる比較例よりも消費動力が小さいことがわかる。これは、上記ように、比較例においては、膨張タービンの出口の圧力を下げるとJT弁の出口の圧力も不必要に下がるためである。
また、表3に示す実施例2と、表5に示す実施例3とを比較すると、膨張タービンの入口の圧力と、出口の圧力とが同じである場合には、実施例3の方が消費動力が小さいことがわかる。実施例2では、減圧器から熱交換器を経て圧縮機へ戻る冷媒の全量が1.3MPaであるのに対して(表3の(x))、実施例3では減圧器を2つ備え、冷媒の一部を1.3MPaで(表5の(x))、残りを2.6MPaで(表5の(xiii))圧縮機へ戻している。これは、天然ガスを-160℃に冷却するためには、実施例3においても、冷媒の一部は実施例2と同じ1.3MPaに減圧するが、より高温領域の冷却のみに寄与する残りの冷媒の沸点はそれより高くて良いので、圧力を1.3MPaより高くできるためである。圧力が高いほど蒸発潜熱は小さいので、天然ガスを-160℃に冷却するために減圧器を通る冷媒の量は、実施例2(表3の(vii))より実施例3(表5の(vii)と(xi)の合計)の方が多い。しかし、冷媒の一部を1.3MPaより高い圧力で圧縮機へ戻す効果が大きく、実施例3は実施例2に比べてさらに消費動力を低減できる。
なお、天然ガスは冷媒-3の温度より高い-50℃から-100℃の範囲で液化するので、この領域の冷却に多くの熱量が必要となる。これに対して、冷媒-3より低温の、減圧器により冷却される領域に必要な熱量は相対的に小さい。
したがって、特に小規模な装置では、この領域に減圧器を複数設ける方法と、より高い費用で減圧器の代わりにもう一つの膨張タービンを設けてより消費動力を低減する方法との効果の差は比較的小さいので、費用対効果の観点から前者も合理的な選択肢となり得る。
したがって、特に小規模な装置では、この領域に減圧器を複数設ける方法と、より高い費用で減圧器の代わりにもう一つの膨張タービンを設けてより消費動力を低減する方法との効果の差は比較的小さいので、費用対効果の観点から前者も合理的な選択肢となり得る。
[図2の説明]
図2は、実施例1および2と、比較例1および2と、参考例とにおける、膨張タービンの入口側の圧力(図1および図3中の(v))と、圧縮機の消費動力との関係を示すグラフである。
実施例2の結果に示されるように、膨張タービンの出口側(図1中の(vi))の圧力を0.6MPaと低圧に設定した場合には、入口側の圧力が概ね6MPa前後であるときの消費動力を、概ね4,900kw以下まで小さくできることがわかる。
実施例1の結果に示されるように、膨張タービンの出口側の圧力を0.9MPaと少し高めに設定した場合には、特に、入口側の圧力が概略7~9MPaであるときの消費動力が概ね4,800kw以下となり、消費動力を小さくできることがわかる。
図2は、実施例1および2と、比較例1および2と、参考例とにおける、膨張タービンの入口側の圧力(図1および図3中の(v))と、圧縮機の消費動力との関係を示すグラフである。
実施例2の結果に示されるように、膨張タービンの出口側(図1中の(vi))の圧力を0.6MPaと低圧に設定した場合には、入口側の圧力が概ね6MPa前後であるときの消費動力を、概ね4,900kw以下まで小さくできることがわかる。
実施例1の結果に示されるように、膨張タービンの出口側の圧力を0.9MPaと少し高めに設定した場合には、特に、入口側の圧力が概略7~9MPaであるときの消費動力が概ね4,800kw以下となり、消費動力を小さくできることがわかる。
従来の装置・方法である参考例のように、膨張タービンの出口側の圧力を1.3MPaとやや高圧に設定した場合、入口側の圧力が概略9~10MPaであるときの消費動力は低めとなる。したがって、圧力仕様に制約がない場合には、従来の装置・方法であっても消費動力を低減することは可能である。しかしながら、本実施形態のように、特に、冷却性能を確保しながら熱交換器を小型化することを目的として、例えば、薄肉材料からなる熱交換器、具体的にはプレートフィン型熱交換器を用いる場合には、比較的低い冷媒圧力で運転することが求められる。このように、膨張タービンの入口側の圧力が比較的低い場合、すなわち、図2のグラフ中に示す9MPa未満、特に、6MPa以上9MPa未満の範囲である場合においては、本実施形態の装置・方法は、何れも従来の装置・方法である、参考例、比較例1および比較例2に比べて低い消費動力での稼働が可能になることが明らかである。
以上説明したような実施例の結果より、本発明に係る天然ガス液化装置および天然ガス液化方法が、比較的低い冷媒圧力の範囲において消費動力を低減することができ、しかも、装置の小型化および優れた冷却性能の両方が実現できることが明らかとなった。
本発明の天然ガス液化装置および天然ガス液化方法は、不燃性ガスを冷媒に用い、比較的低い冷媒圧力の範囲において、消費動力を低減することが可能となる。したがって、例えば、膨張タービンを1台のみ備える構成の小規模な天然ガス液化装置、およびそれを用いる液化方法において非常に好適である。
10…天然ガス液化装置
1…窒素源
2…圧縮機
2A、2B、2C、2D…圧縮段(複数の圧縮段)
21A、21B、21C、21D…冷却器
3…膨張タービン
31…制動ブロワー
32…冷却器
4…熱交換器
5…減圧器
6…天然ガス供給源
7…予備冷却器
8…貯槽
L1…第1冷媒ライン
L2…第2冷媒ライン
L3…第3冷媒ライン
L4…第4冷媒ライン
FL…液化ライン
G…天然ガス
F…液化天然ガス(LNG)
P…分岐点(第1冷媒ライン)
1…窒素源
2…圧縮機
2A、2B、2C、2D…圧縮段(複数の圧縮段)
21A、21B、21C、21D…冷却器
3…膨張タービン
31…制動ブロワー
32…冷却器
4…熱交換器
5…減圧器
6…天然ガス供給源
7…予備冷却器
8…貯槽
L1…第1冷媒ライン
L2…第2冷媒ライン
L3…第3冷媒ライン
L4…第4冷媒ライン
FL…液化ライン
G…天然ガス
F…液化天然ガス(LNG)
P…分岐点(第1冷媒ライン)
Claims (12)
- 天然ガスを冷却して液化することで液化天然ガスを製造する天然ガス液化装置であって、
不燃性ガスを含有する冷媒を複数の圧縮段で圧縮する圧縮機と、
前記天然ガスを冷却して液化し、液化天然ガスとする熱交換器と、
前記天然ガスを前記熱交換器に導入し、該熱交換器で液化された前記液化天然ガスを外部に向けて供給する天然ガス液化ラインと、
前記圧縮機で圧縮された冷媒-1を前記熱交換器に導入し、さらに、該熱交換器を通過した前記冷媒-1を減圧器に導入する第1冷媒ラインと、
前記減圧器で減圧された冷媒-2を前記熱交換器に導入し、該熱交換器を通過した前記冷媒-2を、前記圧縮機に備えられる前記複数の圧縮段の内の2段目以降に導入する第2冷媒ラインと、
前記第1冷媒ラインから分岐し、前記冷媒-1の少なくとも一部を膨張タービンに導入する第3冷媒ラインと、
前記膨張タービンで膨張した冷媒-3を前記熱交換器に導入し、該熱交換器を通過した前記冷媒-3を、前記圧縮機に備えられる前記複数の圧縮段の内の初段に導入する第4冷媒ラインとを備えることを特徴とする天然ガス液化装置。 - さらに、前記第1冷媒ラインの経路中に設けられるとともに、前記膨張タービンによって駆動され、前記第1冷媒ラインを流通する前記冷媒-1を圧縮する制動ブロワーを備えることを特徴とする請求項1に記載の天然ガス液化装置。
- 前記熱交換器が、セレートフィンタイプ又はヘリングボーンフィンタイプのフィンが用いられたアルミプレートフィン式熱交換器であることを特徴とする請求項1又は請求項2に記載の天然ガス液化装置。
- 前記液化ラインにおける前記熱交換器の入口側に、前記天然ガスを気化タイプの冷媒によって冷却する予備冷却器をさらに備えることを特徴とする請求項1~請求項3の何れか一項に記載の天然ガス液化装置。
- 前記熱交換器が、少なくとも前記冷媒-3を該熱交換器に導入する位置を境に、複数に分割されることを特徴とする請求項1~4項の何れか一項に記載の天然ガス液化装置。
- 前記減圧器を複数備え、それぞれ異なる該減圧器を冷媒流れの始点とし、前記圧縮機の2段目以降のそれぞれ異なる圧縮段を冷媒流れの終点とする、複数の前記第2冷媒ラインを備えることを特徴とする上記請求項1~5の何れか一項に記載の天然ガス液化装置。
- 天然ガスを冷却して液化することで液化天然ガスを製造する天然ガス液化方法であって、
前記天然ガスを熱交換器に導入し、該熱交換器で冷却されて液化した前記液化天然ガスを外部に供給する天然ガス供給工程と、
前記熱交換器に導入された前記天然ガスを冷却するための不燃性ガスからなる冷媒を前記熱交換器に導入する冷媒供給工程とを備え、
前記冷媒供給工程は、
不燃性ガスを、複数の圧縮段を有する圧縮機で圧縮した冷媒を熱交換器に導入し、該熱交換器を通過した冷媒-1を減圧器に導入する冷媒供給工程aと、
前記減圧器による減圧・膨張によって降温された少なくとも一部が液相とされた冷媒-2を前記熱交換器に導入し、該熱交換器を通過して昇温した前記冷媒-2を、前記圧縮機に備えられる前記複数の圧縮段の内の2段目以降に導入する冷媒供給工程bと、
前記冷媒供給工程aにおける前記冷媒-1の少なくとも一部を膨張タービンに導入する冷媒供給工程cと、
前記膨張タービンで膨張して降圧および降温された冷媒-3を前記熱交換器に導入し、該熱交換器を通過して昇温された前記冷媒-3を、前記圧縮機に備えられる前記複数の圧縮段の内の初段に導入する冷媒供給工程dとを有することを特徴とする天然ガス液化方法。 - 前記冷媒供給工程aにおける、前記膨張タービンの入口側の圧力が9MPa未満であることを特徴とする請求項7に記載の天然ガス液化方法。
- 前記冷媒供給工程aは、前記膨張タービンで発生する動力を利用して、前記圧縮機によって多段で圧縮された前記冷媒-1をさらに追加圧縮することを特徴とする請求項7又は請求項8に記載の天然ガス液化方法。
- 前記天然ガス供給工程は、前記熱交換器に導入される前の前記天然ガスを、気化タイプの冷媒によって予備冷却する工程をさらに具備することを特徴とする請求項7~請求項9の何れか一項に記載の天然ガス液化方法。
- 少なくとも前記冷媒-3を該熱交換器に導入する位置を境に、前記熱交換器を複数に分割することを特徴とする請求項7~10の何れか一項に記載の天然ガス液化方法。
- 前記冷媒供給工程では、前記冷媒を複数の減圧器に導入し、
前記冷媒供給工程bでは、前記複数の減圧器においてそれぞれ異なる該減圧器を冷媒流れの始点とし、前記圧縮機の2段目以降のそれぞれ異なる圧縮段を冷媒流れの終点とする上記請求項7~11の何れか一項に記載の天然ガス液化方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/981,135 US11549746B2 (en) | 2018-03-27 | 2019-03-25 | Natural gas liquefaction device and natural gas liquefaction method |
JP2020510060A JP7229230B2 (ja) | 2018-03-27 | 2019-03-25 | 天然ガス液化装置および天然ガス液化方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-060261 | 2018-03-27 | ||
JP2018060261 | 2018-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188957A1 true WO2019188957A1 (ja) | 2019-10-03 |
Family
ID=68060057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012449 WO2019188957A1 (ja) | 2018-03-27 | 2019-03-25 | 天然ガス液化装置および天然ガス液化方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11549746B2 (ja) |
JP (1) | JP7229230B2 (ja) |
WO (1) | WO2019188957A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021181851A (ja) * | 2020-05-19 | 2021-11-25 | 大陽日酸株式会社 | 天然ガス液化装置及びその起動方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12123646B2 (en) | 2021-04-16 | 2024-10-22 | Praxair Technology, Inc. | System and method to produce liquefied natural gas using a three pinion integral gear machine |
US20230115492A1 (en) * | 2021-10-13 | 2023-04-13 | Henry Edward Howard | System and method to produce liquefied natural gas |
US20230113326A1 (en) * | 2021-10-13 | 2023-04-13 | Henry Edward Howard | System and method to produce liquefied natural gas |
US20230129424A1 (en) * | 2021-10-21 | 2023-04-27 | Henry Edward Howard | System and method to produce liquefied natural gas |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02106688A (ja) * | 1988-09-06 | 1990-04-18 | Air Prod And Chem Inc | ボイルオフガスの液化法 |
JPH02157583A (ja) * | 1988-11-03 | 1990-06-18 | Air Prod And Chem Inc | ボイルオフガス液化方法の改良 |
JP2015501410A (ja) * | 2011-10-21 | 2015-01-15 | シングル ブイ ムーリングス インコーポレイテッド | Lng生産のための多窒素膨張プロセス |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2110417A1 (de) | 1971-03-04 | 1972-09-21 | Linde Ag | Verfahren zum Verfluessigen und Unterkuehlen von Erdgas |
NL160303C (nl) | 1974-03-25 | 1979-10-15 | Verto Nv | Werkwijze voor het vervaardigen van een vezelfilter. |
DE102005000647A1 (de) * | 2005-01-03 | 2006-07-13 | Linde Ag | Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes |
GB2459484B (en) * | 2008-04-23 | 2012-05-16 | Statoilhydro Asa | Dual nitrogen expansion process |
NO331740B1 (no) * | 2008-08-29 | 2012-03-12 | Hamworthy Gas Systems As | Fremgangsmate og system for optimalisert LNG produksjon |
US8464551B2 (en) | 2008-11-18 | 2013-06-18 | Air Products And Chemicals, Inc. | Liquefaction method and system |
US20100147024A1 (en) * | 2008-12-12 | 2010-06-17 | Air Products And Chemicals, Inc. | Alternative pre-cooling arrangement |
FR2977015B1 (fr) * | 2011-06-24 | 2015-07-03 | Saipem Sa | Procede de liquefaction de gaz naturel a triple circuit ferme de gaz refrigerant |
JP6689277B2 (ja) * | 2014-12-12 | 2020-04-28 | ドレッサー ランド カンパニーDresser−Rand Company | 天然ガスを液化するシステムおよび方法 |
FR3053452B1 (fr) * | 2016-07-01 | 2018-07-13 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Echangeur de chaleur comprenant un dispositif de distribution d'un melange liquide/gaz |
-
2019
- 2019-03-25 WO PCT/JP2019/012449 patent/WO2019188957A1/ja active Application Filing
- 2019-03-25 JP JP2020510060A patent/JP7229230B2/ja active Active
- 2019-03-25 US US16/981,135 patent/US11549746B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02106688A (ja) * | 1988-09-06 | 1990-04-18 | Air Prod And Chem Inc | ボイルオフガスの液化法 |
JPH02157583A (ja) * | 1988-11-03 | 1990-06-18 | Air Prod And Chem Inc | ボイルオフガス液化方法の改良 |
JP2015501410A (ja) * | 2011-10-21 | 2015-01-15 | シングル ブイ ムーリングス インコーポレイテッド | Lng生産のための多窒素膨張プロセス |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021181851A (ja) * | 2020-05-19 | 2021-11-25 | 大陽日酸株式会社 | 天然ガス液化装置及びその起動方法 |
JP7429600B2 (ja) | 2020-05-19 | 2024-02-08 | 大陽日酸株式会社 | 天然ガス液化装置及びその起動方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210048243A1 (en) | 2021-02-18 |
US11549746B2 (en) | 2023-01-10 |
JP7229230B2 (ja) | 2023-02-27 |
JPWO2019188957A1 (ja) | 2021-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019188957A1 (ja) | 天然ガス液化装置および天然ガス液化方法 | |
JP6800977B2 (ja) | 高圧圧縮及び膨張による天然ガスの予冷 | |
JP5725856B2 (ja) | 天然ガス液化プロセス | |
JP6689277B2 (ja) | 天然ガスを液化するシステムおよび方法 | |
JP7022140B2 (ja) | 高圧圧縮及び膨張による天然ガスの予冷 | |
JP5647299B2 (ja) | 液化方法及び液化装置 | |
RU2406949C2 (ru) | Способ ожижения природного газа для получения сжиженного природного газа | |
CN104520660B (zh) | 用于天然气液化的系统和方法 | |
JP6140713B2 (ja) | Lng生産のための多窒素膨張プロセス | |
JP6951569B2 (ja) | 複数のターボ膨張器−圧縮器を使用する高圧膨張工程による天然ガス液化 | |
JP6725571B2 (ja) | ダブルフロー圧縮器を用いたlngプラントにおける並列圧縮 | |
JP2010189622A (ja) | 天然ガス液化装置及び天然ガス液化方法 | |
JP2009544923A (ja) | 炭化水素流の液化方法及び装置 | |
CA3056587A1 (en) | Artic cascade method for natural gas liquefaction in a high-pressure cycle with pre-cooling by ethane and sub-cooling by nitrogen, and a plant for its implementation | |
JP6835902B2 (ja) | 気相冷媒を使用して炭化水素流を冷却するための改善された方法およびシステム | |
WO2018132785A1 (en) | Refrigeration cycle for liquid oxygen densification | |
JP7393607B2 (ja) | ガス液化方法およびガス液化装置 | |
JP6889759B2 (ja) | 分割混合冷媒液化システムにおける均衡動力 | |
US6170290B1 (en) | Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point | |
CA3212384A1 (en) | System and method for precooling in hydrogen or helium liquefaction processing | |
KR102765697B1 (ko) | 고효율 공기액화 에너지 저장 시스템 및 이의 제어방법 | |
US20230272971A1 (en) | Single mixed refrigerant lng production process | |
KR20230137193A (ko) | 다중 줄톰슨팽창사이클을 이용한 수소액화플랜트용 고효율 극저온냉동기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19778173 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020510060 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19778173 Country of ref document: EP Kind code of ref document: A1 |