WO2019188712A1 - Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board - Google Patents
Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board Download PDFInfo
- Publication number
- WO2019188712A1 WO2019188712A1 PCT/JP2019/011864 JP2019011864W WO2019188712A1 WO 2019188712 A1 WO2019188712 A1 WO 2019188712A1 JP 2019011864 W JP2019011864 W JP 2019011864W WO 2019188712 A1 WO2019188712 A1 WO 2019188712A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- roughened
- carrier
- copper
- circuit
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 228
- 239000011889 copper foil Substances 0.000 title claims abstract description 177
- 238000000034 method Methods 0.000 claims abstract description 75
- 239000002245 particle Substances 0.000 claims abstract description 60
- 239000011347 resin Substances 0.000 claims description 36
- 229920005989 resin Polymers 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000000654 additive Substances 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000007747 plating Methods 0.000 abstract description 58
- 229910052802 copper Inorganic materials 0.000 abstract description 51
- 239000010949 copper Substances 0.000 abstract description 51
- 238000007788 roughening Methods 0.000 abstract description 34
- 238000005530 etching Methods 0.000 abstract description 31
- 239000010410 layer Substances 0.000 description 79
- 230000008569 process Effects 0.000 description 33
- 239000000243 solution Substances 0.000 description 25
- 239000006087 Silane Coupling Agent Substances 0.000 description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 239000011701 zinc Substances 0.000 description 9
- -1 amino Amino functions Chemical group 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 229910000990 Ni alloy Inorganic materials 0.000 description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- MTRFEWTWIPAXLG-UHFFFAOYSA-N 9-phenylacridine Chemical compound C1=CC=CC=C1C1=C(C=CC=C2)C2=NC2=CC=CC=C12 MTRFEWTWIPAXLG-UHFFFAOYSA-N 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 6
- 229910000365 copper sulfate Inorganic materials 0.000 description 6
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004070 electrodeposition Methods 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- KFJDQPJLANOOOB-UHFFFAOYSA-N 2h-benzotriazole-4-carboxylic acid Chemical compound OC(=O)C1=CC=CC2=NNN=C12 KFJDQPJLANOOOB-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- AZUHEGMJQWJCFQ-UHFFFAOYSA-N 1,1-bis(2h-benzotriazol-4-ylmethyl)urea Chemical compound C1=CC2=NNN=C2C(CN(CC=2C3=NNN=C3C=CC=2)C(=O)N)=C1 AZUHEGMJQWJCFQ-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- WZRRRFSJFQTGGB-UHFFFAOYSA-N 1,3,5-triazinane-2,4,6-trithione Chemical compound S=C1NC(=S)NC(=S)N1 WZRRRFSJFQTGGB-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- ZDDUSDYMEXVQNJ-UHFFFAOYSA-N 1H-imidazole silane Chemical compound [SiH4].N1C=NC=C1 ZDDUSDYMEXVQNJ-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- 101001134276 Homo sapiens S-methyl-5'-thioadenosine phosphorylase Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 102100022050 Protein canopy homolog 2 Human genes 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- PPTYNCJKYCGKEA-UHFFFAOYSA-N dimethoxy-phenyl-prop-2-enoxysilane Chemical compound C=CCO[Si](OC)(OC)C1=CC=CC=C1 PPTYNCJKYCGKEA-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- WIBQWGGMNZFKOE-UHFFFAOYSA-N silane N-(3-trimethoxysilylpropyl)aniline Chemical compound [SiH4].C1(=CC=CC=C1)NCCC[Si](OC)(OC)OC WIBQWGGMNZFKOE-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- VMYXFDVIMUEKNP-UHFFFAOYSA-N trimethoxy-[5-(oxiran-2-yl)pentyl]silane Chemical compound CO[Si](OC)(OC)CCCCCC1CO1 VMYXFDVIMUEKNP-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
Definitions
- the present invention relates to a roughened copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
- the SAP method is a method suitable for forming an extremely fine circuit, and as an example, it is performed using a roughened copper foil with a carrier.
- a roughened copper foil For example, as shown in FIGS. 1 and 2, the roughened copper foil 110 is pressed and adhered to an insulating resin substrate 111 having a base substrate 111a and a lower circuit 111b using a prepreg 112 and a primer layer 113.
- the carrier not shown
- a via hole 114 is formed by laser drilling as necessary (step (b)).
- the roughened copper foil 110 is removed by etching to expose the primer layer 113 having the roughened surface profile (step (c)).
- the electroless copper plating 115 is applied to the roughened surface (step (d))
- it is masked with a predetermined pattern by exposure and development using the dry film 116 (step (e)), and the electrolytic copper plating 117 is applied.
- Step (f) After the dry film 116 was removed to form the wiring portion 117a (step (g)), unnecessary electroless copper plating 115 between the adjacent wiring portions 117a and 117a was removed by etching (step (h)).
- a wiring 118 formed in a predetermined pattern is obtained.
- the roughened copper foil itself is removed by etching after laser drilling (step (c)).
- an insulating layer for example, primer layer 113 or it
- adhesion between the prepreg 112) and the plating circuit for example, the wiring 118
- the surface profile suitable for improving the adhesion to the plating circuit tends to be rough unevenness in general, the etching property for the electroless copper plating tends to be lowered in the step (h). That is, as the electroless copper plating bites into rough irregularities, more etching is required to eliminate residual copper.
- Patent Document 1 International Publication No. 2016/158775 discloses a roughened copper foil having a roughened surface on at least one side, the roughened surface being a plurality of substantially spherical shapes made of copper particles. It is disclosed that a projection is provided, and the average height of the substantially spherical projection is 2.60 ⁇ m or less.
- the adhesion strength (absolute value) between the circuit and the substrate has decreased.
- the circuit 124 formed on the substrate 122 may be covered with the solder resist 126 (FIG. 3A) or not (FIG. 3B). is there.
- the circuit 124 is covered with the solder resist 126, since the circuit 124 is protected by the solder resist 126, the risk that the circuit 124 is peeled off from the substrate 122 during the work process is small, that is, the adhesion between the circuit 124 and the substrate 122 is impaired. The risk is small.
- the circuit 124 when the circuit 124 is not covered with the solder resist 126, the circuit 124 is not protected with the solder resist 126. Therefore, when the adhesion strength with the substrate 122 is reduced due to the miniaturization of the circuit 124, the circuit 124 is peeled off during the work process. Risk increases.
- shear strength is one of the physical adhesion indicators between the circuit and the board. To avoid circuit peeling during the work process, the circuit is fine enough only to a line width that can ensure a certain level of shear strength. It is the present situation that cannot be made.
- the inventors of the present invention now have a low-roughness roughened copper foil of a level suitable for forming a thin wire circuit having a ten-point average roughness Rz of 1.7 ⁇ m or less by controlling the shape of the roughened particles.
- a low-roughness roughened copper foil suitable for forming thin wire circuits but when used in the SAP method, it provides not only etching properties for electroless copper plating but also circuit adhesion in terms of shear strength.
- an excellent surface profile can be imparted to the laminate.
- the knowledge that extremely fine dry film resolution was realizable was also acquired in the dry film image development process in SAP method by using the said roughening process copper foil.
- the object of the present invention is to provide only a low-roughness roughened copper foil suitable for forming a thin wire circuit, but only etching property and dry film resolution for electroless copper plating when used in the SAP method. It is another object of the present invention to provide a roughened copper foil that can give a laminate a surface profile that is excellent in circuit adhesion in terms of shear strength. Moreover, the other object of this invention is to provide the copper foil with a carrier provided with such a roughening process copper foil.
- a roughened copper foil having a roughened surface on at least one side, wherein the roughened surface comprises a plurality of roughened particles
- the average value of the ratio L 2 / S of the square of the peripheral length L ( ⁇ m) of the roughened particles to the area S ( ⁇ m 2 ) of the roughened particles in the cross section having a length of 10 ⁇ m of the roughened copper foil is 16
- a roughened copper foil which is 30 or less and has a ten-point average roughness Rz of the roughened surface of 0.7 to 1.7 ⁇ m.
- a carrier a release layer provided on the carrier, and the roughened copper foil provided on the release layer with the roughened surface facing outside.
- the provided copper foil with a carrier is provided.
- a copper clad laminate comprising the roughened copper foil or the carrier-attached copper foil.
- a printed wiring board obtained using the roughened copper foil or the carrier-attached copper foil.
- a printed wiring board is manufactured using the said roughening copper foil or the said copper foil with a carrier, The manufacturing method of a printed wiring board characterized by the above-mentioned is provided. .
- the “roughened particles” are particles 12 having a size exceeding 150 nm in height, which are directly formed on the surface of the base surface 10a of the roughened copper foil 10, as schematically shown in FIG. It includes all shapes such as a substantially spherical shape, a needle shape, a columnar shape, and an elongated shape, but preferably has a form of a “substantially spherical protrusion”.
- the “substantially spherical protrusion” is a protrusion having a substantially spherical round shape, and is distinguished from an anisotropic shape protrusion or particle such as a needle shape, a columnar shape, and an elongated shape. is there.
- the substantially spherical protrusion is connected to the base surface 10a of the copper foil at the narrow base portion connected to the base surface 10a of the copper foil.
- the portion other than the root portion may be substantially spherical. Therefore, as long as the substantially spherical protrusion has a generally spherical rounded outline, the presence of minute irregularities or deformation is allowed.
- the said protrusion may only be called a spherical protrusion, since it cannot become a perfect sphere as mentioned above, it should be understood as meaning the substantially spherical protrusion mentioned above.
- the protrusions 12 a formed on the surface of the roughened particles 12 are not directly formed on the base bottom surface 10 a of the roughened copper foil 10, and constitute a part of the roughened particles 12.
- the “peripheral length L of roughened particles” means the length L p of the contour line 12p (solid line portion in FIG. 5) of the cross section of the roughened particles 12, as schematically shown in FIG.
- the “area R of the roughened particles” means the area (cross-sectional area) of the figure surrounded by the contour line 12p and the line segment 12s in the cross section of the roughened particle 12, as schematically shown in FIG. It is.
- the peripheral length L and the area S of the roughened particles 12 can be specified by analyzing a cross-sectional image of the roughened copper foil 10 obtained by SEM observation using commercially available software.
- image analysis software Image-Pro Plus 5.1J Media Cybernetics, Inc.
- image analysis can be performed according to various conditions described in the examples of the present specification.
- electrode surface of the carrier refers to the surface on the side that was in contact with the cathode during carrier production.
- the “deposition surface” of the carrier refers to the surface on which the metal is electrolytically deposited during carrier production, that is, the surface not in contact with the cathode.
- the copper foil according to the present invention is a roughened copper foil.
- This roughened copper foil has a roughened surface on at least one side. As schematically shown in FIG. 4, the roughened surface is provided with a plurality of roughened particles 12.
- the average value of the ratio L 2 / S of the square of the peripheral length L ( ⁇ m) of the roughened particles 12 to the area S ( ⁇ m 2 ) of the roughened particles 12 in the cross section having a length of 10 ⁇ m of the roughened copper foil 10 is 16 It is 30 or less.
- the ten-point average roughness Rz of the roughened surface is 0.7 ⁇ m or more and 1.7 ⁇ m or less.
- the shape of the roughened particles By controlling the shape of the roughened particles in this way, it is a roughened copper foil having a low roughness level suitable for forming a thin wire circuit having a ten-point average roughness Rz of 1.7 ⁇ m or less, but in terms of shear strength. Excellent circuit adhesion can be realized.
- it is a low-roughness roughened copper foil suitable for forming thin wire circuits, but when used in the SAP method, it provides not only etching properties for electroless copper plating but also circuit adhesion in terms of shear strength.
- an excellent surface profile can be imparted to the laminate.
- extremely fine dry film resolution can be realized in the dry film development step in the SAP method.
- Plating circuit adhesion and etching properties for electroless copper plating are inherently difficult to achieve at the same time. That is, as described above, since the surface profile suitable for improving the adhesion to the plating circuit tends to be rough unevenness, the etching property of the electroless copper plating is lowered in the step (h) of FIG. It's easy to do. That is, as the electroless copper plating bites into rough irregularities, more etching is required to eliminate residual copper. In this regard, according to the roughened copper foil of Patent Document 1, it is said that excellent plating circuit adhesion can be secured while reducing the etching amount.
- the adhesion strength (absolute value) between the circuit and the substrate has been reduced.
- a good peel strength is obtained. Even if it is possible to ensure, it is difficult to ensure sufficient share strength that can cope with thinning. Therefore, if the circuit is not covered with the solder resist, it can be said that there is a high risk of circuit peeling during the work process.
- the diameter of the roughened particles can be greatly reduced to a level suitable for forming a thin wire circuit having a ten-point average roughness Rz of 1.7 ⁇ m or less.
- circuit adhesion in terms of shear strength. That is, although the circuit adhesion can be originally reduced by reducing the diameter of the roughened particles 12 represented by Rz within the above range, the ratio L 2 / indicating the parameter of the cross-sectional shape of the roughened particles 12 in the present invention.
- the average value of S By setting the average value of S to 16 or more and 30 or less, excellent circuit adhesion in terms of shear strength can be realized. And it is thought that very fine dry film resolution can be realized in the dry film development process in the SAP method by satisfying both such excellent adhesion and excellent etching property for electroless copper plating. .
- the roughened copper foil 10 of this invention is used for preparation of the printed wiring board by a semi-additive method (SAP).
- SAP semi-additive method
- the roughened copper foil 10 of the present invention has a roughened surface on at least one side. That is, the roughened copper foil may have a roughened surface on both sides, or may have a roughened surface only on one side. When both sides have roughened surfaces, the surface on the laser irradiation side (the surface away from the surface that is in close contact with the insulating resin) is also roughened when used in the SAP method. As a result, the laser perforation property can be improved.
- the roughened surface is provided with a plurality of roughened particles 12, and each of the plurality of roughened particles 12 is preferably made of copper particles.
- the copper particles may be made of metallic copper, or may be made of a copper alloy. However, when the copper particles are a copper alloy, the solubility in the copper etching solution may decrease, or the life of the etching solution may decrease due to the alloy components mixed in the copper etching solution. Preferably it consists of.
- the average value of the ratio L 2 / S of the square of the peripheral length L ( ⁇ m) of the roughened particles 12 to the area S ( ⁇ m 2 ) of the roughened particles 12 in the cross section having a length of 10 ⁇ m of the roughened copper foil 10 is 16 30 or more, preferably 19 or more and 27 or less, more preferably 19 or more and 26 or less, further preferably 19 or more and 25 or less, and particularly preferably 20 or more and 24 or less. Within these ranges, the shear strength can be further improved while effectively preventing the roughened particles 12 from falling off.
- the ten-point average roughness Rz of the roughened surface is 0.7 ⁇ m or more and 1.7 ⁇ m or less, preferably 0.7 ⁇ m or more and 1.6 ⁇ m or less, more preferably 0.8 ⁇ m or more and 1.5 ⁇ m or less. Within these ranges, the fine line formability can be further improved while ensuring the desired shear strength. Rz is determined in accordance with JIS B 0601-1994.
- the number of the roughened particles 12 in the cross section having a length of 10 ⁇ m of the roughened copper foil 10 is 20 or more and 70 or less, more preferably 20 or more and 60 or less, and still more preferably 20 or more and 40. It is as follows. Within these ranges, the shear strength can be further improved while effectively preventing the roughened particles 12 from falling off.
- the thickness of the roughened copper foil 10 of the present invention is not particularly limited, but is preferably 0.1 ⁇ m to 18 ⁇ m, more preferably 0.5 ⁇ m to 7 ⁇ m, still more preferably 0.5 ⁇ m to 5 ⁇ m, and particularly preferably It is 0.5 ⁇ m or more and 3 ⁇ m or less. This thickness includes the roughened particles 12.
- the roughened copper foil 10 of the present invention is not limited to the surface of the normal copper foil subjected to the roughening treatment, and the surface of the copper foil of the carrier-added copper foil is subjected to the roughening treatment. Also good.
- the roughened copper foil according to the present invention is not limited to the method described below, and the roughened copper foil according to the present invention is used. It may be manufactured by any method as long as the surface profile of the treated copper foil can be realized.
- the thickness of the copper foil is not particularly limited, but is preferably 0.1 ⁇ m to 18 ⁇ m, more preferably 0.5 ⁇ m to 7 ⁇ m, still more preferably 0.5 ⁇ m to 5 ⁇ m, and particularly preferably 0.5 ⁇ m to 3 ⁇ m. is there.
- the copper foil is prepared in the form of a copper foil with a carrier, the copper foil is prepared by a wet film formation method such as an electroless copper plating method and an electrolytic copper plating method, a dry film formation method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.
- Roughening treatment At least one surface of the copper foil is roughened using copper particles.
- This roughening is performed by electrolysis using a copper electrolytic solution for roughening treatment.
- This electrolysis is preferably performed through a three-step plating process.
- the copper concentration is 5 g / L to 20 g / L
- the sulfuric acid concentration is 30 g / L to 200 g / L
- the chlorine concentration is 20 ppm to 100 ppm
- the 9-phenylacridine (9PA) concentration is 20 ppm to 100 ppm.
- Electrodeposition is preferably performed under plating conditions of a density of 1 A / dm 2 to 10 A / dm 2 and a time of 2 seconds to 25 seconds.
- a copper sulfate solution containing a copper concentration of 10 g / L to 20 g / L, a sulfuric acid concentration of 30 g / L to 130 g / L, a chlorine concentration of 20 ppm to 100 ppm, and a 9PA concentration of 100 ppm to 200 ppm. It is preferable to perform electrodeposition under plating conditions of a liquid temperature of 20 ° C. or more and 40 ° C. or less, a current density of 10 A / dm 2 or more and 40 A / dm 2 or less, and a time of 0.3 seconds or more and 1.0 seconds or less.
- the ratio L 2 / S can be increased.
- an additive such as 9PA
- it is preferable carried out using 1-stage plating process is an additive such as 9pa, total quantity of electricity Q 2 in the quantity of electricity Q 1 and second-stage plating process in the first stage of the plating process electrical It is preferable to set the amount (Q 1 + Q 2 ) to be 100 C / dm 2 or less.
- the linear flow rate of the plating solution with respect to the copper foil in the first to third stages of plating is preferably 0.10 m / s or more and 0.50 m / s or less, more preferably 0.15 m / s or more and 0. .45 m / s or less.
- a surface profile with a relatively low roughness satisfying the ten-point average roughness Rz ⁇ 1.7 ⁇ m is formed, and the third stage plating is spread over the entire surface of the roughened particles, and the ratio L 2 / Roughened particles with large S are formed.
- the rust prevention treatment preferably includes a plating treatment using zinc.
- the plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment.
- the zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co.
- the Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and still more preferably 2.7 or more and 4 or less in terms of mass ratio.
- the rust prevention treatment preferably further includes a chromate treatment, and this chromate treatment is more preferably performed on the surface of the plating containing zinc after the plating treatment using zinc. By carrying out like this, rust prevention property can further be improved.
- a particularly preferable antirust treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
- the copper foil may be treated with a silane coupling agent to form a silane coupling agent layer.
- a silane coupling agent layer can be formed by appropriately diluting and applying a silane coupling agent and drying.
- silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-2 (amino Amino functions such as ethyl) 3-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane Silane coupling agents, or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agents such as vinyltrimethoxysilane and vinylphenyltrimethoxysilane, or 3-methacryloxypropyl Trime Acrylic-functional silane coupling agent such as Kishishiran, and imid
- the roughened copper foil of the present invention can be provided in the form of a copper foil with carrier.
- the carrier-attached copper foil includes a carrier, a release layer provided on the carrier, and the roughened copper foil of the present invention provided on the release layer with the roughened surface facing outside. It becomes.
- a known layer structure can be adopted as the carrier-attached copper foil except that the roughened copper foil of the present invention is used.
- the carrier is a layer (typically a foil) for supporting the roughened copper foil and improving its handleability.
- the carrier include an aluminum foil, a copper foil, a resin film whose surface is metal-coated with copper or the like, a glass plate, and the like, preferably a copper foil.
- the copper foil may be a rolled copper foil or an electrolytic copper foil.
- the thickness of the carrier is typically 200 ⁇ m or less, preferably 12 ⁇ m or more and 35 ⁇ m or less.
- the surface on the peeling layer side of the carrier preferably has a 10-point surface roughness Rz of 0.5 ⁇ m or more and 1.5 ⁇ m or less, more preferably 0.6 ⁇ m or more and 1.0 ⁇ m or less.
- Rz can be determined according to JIS B 0601-1994.
- the release layer is a layer having a function of weakening the peeling strength of the carrier, ensuring the stability of the strength, and further suppressing the interdiffusion that may occur between the carrier and the copper foil during press molding at a high temperature. .
- the release layer is generally formed on one side of the carrier, but may be formed on both sides.
- the release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferred in terms of easy release stability.
- triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- And 1H-1,2,4-triazole.
- sulfur-containing organic compound examples include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like.
- carboxylic acid examples include monocarboxylic acid and dicarboxylic acid.
- examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film.
- the release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier and fixing the release layer component to the surface of the carrier.
- the carrier may be brought into contact with the release layer component-containing solution by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, flowing down of the release layer component-containing solution, or the like.
- the release layer component may be fixed to the carrier surface by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like.
- the thickness of the release layer is typically 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
- the roughened copper foil of the present invention described above is used as the roughened copper foil.
- the roughening treatment of the present invention is performed by roughening using copper particles.
- a copper layer is formed as a copper foil on the surface of the release layer, and then at least roughening is performed. . Details of the roughening are as described above.
- copper foil is comprised with the form of an ultra-thin copper foil in order to utilize the advantage as copper foil with a carrier.
- the preferable thickness of the ultrathin copper foil is 0.1 ⁇ m or more and 7 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
- auxiliary metal layer is preferably made of nickel and / or cobalt.
- the thickness of the auxiliary metal layer is preferably 0.001 ⁇ m or more and 3 ⁇ m or less.
- the roughened copper foil or carrier-attached copper foil of the present invention is preferably used for the production of a copper-clad laminate for printed wiring boards. That is, according to the preferable aspect of this invention, the copper clad laminated board provided with the said roughening process copper foil or the said copper foil with a carrier is provided. By using the roughened copper foil or the copper foil with carrier of the present invention, a copper clad laminate particularly suitable for the SAP method can be provided.
- This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil, or the copper with carrier of the present invention
- the foil and a resin layer provided in close contact with the roughened surface of the roughened copper foil in the copper foil with carrier are provided.
- the roughened copper foil or the copper foil with carrier may be provided on one side of the resin layer or may be provided on both sides.
- the resin layer comprises a resin, preferably an insulating resin.
- the resin layer is preferably a prepreg and / or a resin sheet.
- the prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin.
- a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin.
- the insulating resin include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin.
- the insulating resin that constitutes the resin sheet include insulating resins such as epoxy resins, polyimide resins, and polyester resins.
- the thickness of the resin layer is not particularly limited, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 2 ⁇ m or more and 400 ⁇ m or less, and further preferably 3 ⁇ m or more and 200 ⁇ m or less.
- the resin layer may be composed of a plurality of layers.
- a resin layer such as a prepreg and / or a resin sheet may be provided on a roughened copper foil or a copper foil with a carrier in advance through a primer resin layer applied to the roughened surface of the roughened copper foil.
- the roughened copper foil or carrier-attached copper foil of the present invention is preferably used for the production of a printed wiring board, particularly preferably for the production of a printed wiring board by a semi-additive method (SAP). That is, according to the preferable aspect of this invention, the printed wiring board obtained using the roughening process copper foil mentioned above or the said copper foil with a carrier is provided.
- SAP semi-additive method
- the printed wiring board according to this aspect includes a layer configuration in which a resin layer and a copper layer are laminated.
- the roughened copper foil of the present invention is removed in the step (c) of FIG. 1, and therefore the printed wiring board produced by the SAP method no longer contains the roughened copper foil of the present invention. Only the surface profile transferred from the roughened surface of the roughened copper foil remains.
- the resin layer is as described above for the copper-clad laminate. In any case, a known layer structure can be adopted for the printed wiring board.
- the printed wiring board examples include a single-sided or double-sided printed wiring board in which a circuit is formed on a single-sided or double-sided prepreg and a laminated body obtained by bonding and curing the roughened copper foil of the present invention or a copper foil with a carrier, A multilayer printed wiring board obtained by multilayering these may be used.
- Other specific examples include a flexible printed wiring board, a COF, a TAB tape and the like that form a circuit by forming the roughened copper foil or the carrier-attached copper foil of the present invention on a resin film.
- a copper foil with resin (RCC) obtained by applying the above resin layer to the roughened copper foil or copper foil with carrier of the present invention is formed, and the resin layer is used as an insulating adhesive layer as described above.
- a roughened copper foil is used as a whole or part of the wiring layer, and a build-up wiring board in which a circuit is formed by a modified semi-additive (MSAP) method, a subtractive method, etc., or a roughening treatment
- MSAP modified semi-additive
- SAP semi-additive
- the roughened copper foil or the copper foil with carrier of the present invention is suitable for the SAP method.
- a configuration as shown in FIGS. 1 and 2 can be employed.
- the electrode surface side of the pickled carrier is placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, at a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier.
- a CBTA layer was formed as an organic release layer on the surface of the carrier electrode surface.
- auxiliary metal layer Formation of auxiliary metal layer
- the carrier on which the organic peeling layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A / dm.
- nickel having a thickness equivalent to 0.001 ⁇ m was deposited on the organic release layer.
- a nickel layer was formed as an auxiliary metal layer on the organic release layer.
- the carrier on which the auxiliary metal layer is formed is immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L, and the solution temperature is 50 ° C. and the current density is 5 A / dm 2 or more. Electrolysis was performed at 30 A / dm 2 or less, and an ultrathin copper foil having a thickness of 1.2 ⁇ m was formed on the auxiliary metal layer.
- the roughening process was performed with respect to the precipitation surface of the above-mentioned ultra-thin copper foil.
- This roughening treatment was performed by the following three-stage plating.
- a copper sulfate solution having the copper concentration, sulfuric acid concentration, chlorine concentration and 9-phenylacridine (9PA) concentration shown in Table 1 was used, and the current density shown in Table 2 was obtained at the liquid temperature shown in Table 1.
- I electrodeposited The energization time in the first stage and second stage plating was 4.4 seconds per time, and the energization time in the third stage plating was 0.6 seconds.
- the linear flow rate of the plating solution with respect to the ultrathin copper foil was set to 0.25 m / s or more and 0.35 m / s or less.
- three types of roughened copper foils of Examples 1 to 3 were produced.
- the surface of the roughening treatment layer of the obtained copper foil with a carrier was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment.
- the surface of the carrier was subjected to a zinc-nickel alloy plating treatment.
- a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 1 g / L aqueous solution of chromic acid under the conditions of pH 11, liquid temperature 25 ° C., and current density 1 A / dm 2 .
- Silane coupling agent treatment A silane coupling agent is prepared by adsorbing an aqueous solution containing 3 g / L of 3-aminopropyltrimethoxysilane on the surface of the copper foil with a carrier and evaporating water with an electric heater. Processed. At this time, the silane coupling agent treatment was not performed on the carrier side.
- a copper-clad laminate was produced using a copper foil with a carrier.
- a roughened copper foil with carrier is laminated on the surface of the inner layer substrate via a prepreg (manufactured by Mitsubishi Gas Chemical Co., Ltd., GHPL-830NSF, thickness 0.1 mm), pressure 4.0 MPa, temperature After thermocompression bonding at 220 ° C. for 90 minutes, the carrier was peeled off to produce a copper clad laminate.
- ⁇ Plating circuit adhesion (share strength)> A dry film was laminated to the laminate for SAP evaluation, and exposure and development were performed. After depositing a copper layer having a thickness of 14 ⁇ m by pattern plating on the laminate masked with the developed dry film, the dry film was peeled off. The electroless copper plating exposed by the sulfuric acid-hydrogen peroxide etching solution was removed, and a shear strength measurement circuit sample having a height of 15 ⁇ m, a width of 10 ⁇ m and a length of 150 ⁇ m was produced. The shear strength when the shear strength measurement circuit sample was pushed down from the side was measured using a bond strength tester (4000 Plus Bondtester, manufactured by Nordson Dage). That is, as shown in FIG.
- the stacked body 134 on which the circuit 136 is formed is placed on the movable stage 132 and moved together with the stage 132 in the direction of the arrow in the figure, to the detector 138 fixed in advance.
- a lateral force was applied to the side surface of the circuit 136 to push it down, and the force (gf) at that time was measured by the detector 138 and adopted as the shear strength.
- the test type was a destructive test, and measurement was performed under the conditions of a test height of 10 ⁇ m, a descent speed of 0.050 mm / s, a test speed of 100.0 ⁇ m / s, a tool movement amount of 0.05 mm, and a fracture recognition point of 10%. .
- ⁇ Etching property> The laminate for SAP evaluation was etched 0.2 ⁇ m at a time with a sulfuric acid-hydrogen peroxide etching solution, and the amount (depth) until copper on the surface was completely removed was measured. This measurement was performed by confirming with an optical microscope (500 times). More specifically, every time 0.2 ⁇ m etching was performed, the operation of confirming the presence or absence of copper with an optical microscope was repeated, and the value ( ⁇ m) obtained by (number of times of etching) ⁇ 0.2 ⁇ m was used as an index of etching property.
- ⁇ Dry film resolution (minimum L / S)>
- a dry film having a thickness of 25 ⁇ m was laminated on the surface of the laminate for SAP evaluation, and exposure and development were performed using a mask in which a line / space (L / S) pattern of 2 ⁇ m / 2 ⁇ m to 15 ⁇ m / 15 ⁇ m was formed. .
- the exposure amount at this time was set to 125 mJ.
- the surface of the sample after development is observed with an optical microscope (magnification: 500 times), and the smallest (that is, the finest) L / S in the L / S that can be developed without any problem is adopted as an index for the resolution of the dry film. did.
- L / S 15 ⁇ m / 15 ⁇ m to 10 ⁇ m / 10 ⁇ m.
- a clear contrast is observed between the dry film patterns when the resolution can be achieved without any problem, whereas a dark portion is observed between the dry film patterns when the resolution is not performed well. Contrast is not observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Laminated Bodies (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Provided is a roughened copper foil having low-roughness suitable for forming a thin-wire circuit and capable, when used in an SAP method, of providing a layered body with a surface profile which allows for not only excellent etching properties for electroless copper plating and excellent dry film resolution, but excellent circuit adhesion in terms of shear strength. This roughened copper foil has a roughened surface at least on one side thereof. The roughened surface is provided with multiple roughening particles, the average value of the ratio L2/S of the square of the circumferential length L (µm) of a roughening particle to the area S (µm2) of the roughening particle in a 10 µm-long cross-section of the roughened copper foil is 16 to 30, and the roughened surface has a ten-point average roughness of 0.7 µm to 1.7 µm.
Description
本発明は、粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板に関する。
The present invention relates to a roughened copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
近年、回路の微細化に適したプリント配線板の製造工法として、SAP(セミ・アディティブ・プロセス)法が広く採用されている。SAP法は、極めて微細な回路を形成するのに適した手法であり、その一例としてキャリア付粗化処理銅箔を用いて行われている。例えば、図1及び2に示されるように、粗化処理銅箔110を、下地基材111aに下層回路111bを備えた絶縁樹脂基板111上にプリプレグ112とプライマー層113を用いてプレスして密着させ(工程(a))、キャリア(図示せず)を粗化処理銅箔110から引き剥がした後、必要に応じてレーザー穿孔によりビアホール114を形成する(工程(b))。次いで、粗化処理銅箔110をエッチングにより除去して、粗化表面プロファイルが付与されたプライマー層113を露出させる(工程(c))。この粗化表面に無電解銅めっき115を施した(工程(d))後に、ドライフィルム116を用いた露光及び現像により所定のパターンでマスキングし(工程(e))、電気銅めっき117を施す(工程(f))。ドライフィルム116を除去して配線部分117aを形成した(工程(g))後、隣り合う配線部分117a,117a間の不要な無電解銅めっき115をエッチングにより除去して(工程(h))、所定のパターンで形成された配線118を得る。
In recent years, the SAP (semi-additive process) method has been widely adopted as a method for manufacturing a printed wiring board suitable for circuit miniaturization. The SAP method is a method suitable for forming an extremely fine circuit, and as an example, it is performed using a roughened copper foil with a carrier. For example, as shown in FIGS. 1 and 2, the roughened copper foil 110 is pressed and adhered to an insulating resin substrate 111 having a base substrate 111a and a lower circuit 111b using a prepreg 112 and a primer layer 113. After the carrier (not shown) is peeled off from the roughened copper foil 110, a via hole 114 is formed by laser drilling as necessary (step (b)). Next, the roughened copper foil 110 is removed by etching to expose the primer layer 113 having the roughened surface profile (step (c)). After the electroless copper plating 115 is applied to the roughened surface (step (d)), it is masked with a predetermined pattern by exposure and development using the dry film 116 (step (e)), and the electrolytic copper plating 117 is applied. (Step (f)). After the dry film 116 was removed to form the wiring portion 117a (step (g)), unnecessary electroless copper plating 115 between the adjacent wiring portions 117a and 117a was removed by etching (step (h)). A wiring 118 formed in a predetermined pattern is obtained.
このように粗化処理銅箔を用いたSAP法では、粗化処理銅箔自体はレーザー穿孔後にエッチングにより除去されることになる(工程(c))。そして、粗化処理銅箔が除去された積層体表面には粗化処理銅箔の粗化処理面の凹凸形状が転写されているので、その後の工程において絶縁層(例えばプライマー層113又はそれが無い場合にはプリプレグ112)とめっき回路(例えば配線118)との密着性を確保することができる。しかしながら、めっき回路との密着性を上げるのに適した表面プロファイルは、概して粗い凹凸となる傾向があるため、工程(h)において無電解銅めっきに対するエッチング性が低下しやすい。すなわち、無電解銅めっきが粗い凹凸に食い込んでいる分、残留銅を無くすためにより多くのエッチングを要してしまう。
Thus, in the SAP method using the roughened copper foil, the roughened copper foil itself is removed by etching after laser drilling (step (c)). And since the uneven | corrugated shape of the roughening process surface of a roughening process copper foil is transcribe | transferred to the laminated body surface from which the roughening process copper foil was removed, an insulating layer (for example, primer layer 113 or it) is in a subsequent process. In the absence, adhesion between the prepreg 112) and the plating circuit (for example, the wiring 118) can be ensured. However, since the surface profile suitable for improving the adhesion to the plating circuit tends to be rough unevenness in general, the etching property for the electroless copper plating tends to be lowered in the step (h). That is, as the electroless copper plating bites into rough irregularities, more etching is required to eliminate residual copper.
そこで、粗化粒子を小さくし、かつ、くびれ形状を持たせることで、SAP法に用いた場合に、必要なめっき回路密着性を確保しながら良好なエッチング性を実現できる手法が提案されている。例えば、特許文献1(国際公開第2016/158775号)には、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、粗化処理面が銅粒子からなる複数の略球状突起を備えてなり、略球状突起の平均高さが2.60μm以下であるものが開示されている。
Therefore, a method has been proposed that can achieve good etching properties while ensuring necessary plating circuit adhesion when used in the SAP method by reducing the roughening particles and having a constricted shape. . For example, Patent Document 1 (International Publication No. 2016/158775) discloses a roughened copper foil having a roughened surface on at least one side, the roughened surface being a plurality of substantially spherical shapes made of copper particles. It is disclosed that a projection is provided, and the average height of the substantially spherical projection is 2.60 μm or less.
近年、SAP法に要求される回路の更なる微細化に伴い、回路と基板の密着強度(絶対値)が低下している。ところで、図3A及び図3Bで示されるように、基板122上に形成された回路124はその長手方向の側面がソルダーレジスト126で覆われる場合(図3A)と覆われない場合(図3B)がある。回路124がソルダーレジスト126で覆われる場合は、回路124がソルダーレジスト126で保護されるため、作業工程中に回路124が基板122から剥がれるリスクは小さい、すなわち回路124と基板122の密着が損なわれるリスクは小さいといえる。一方、回路124がソルダーレジスト126で覆われない場合は、回路124がソルダーレジスト126で保護されないため、回路124の微細化により基板122との密着強度が低下すると、作業工程中に回路124が剥がれるリスクが大きくなる。この点、回路と基板の物理密着指標の一つにシェア強度(せん断強度)があり、作業工程中の回路剥がれを回避するためには、シェア強度が一定以上確保できる線幅までしか回路の微細化を行うことができないのが現状である。したがって、ソルダーレジスト126で覆われない回路124を微細化するためには、エッチング性及びドライフィルム解像性に加え、細い線幅でも十分なシェア強度を確保できることが望まれる。しかしながら、特許文献1に開示される手法では良好なピール強度(剥離強度)を確保することは可能であっても、細線化に対応可能な十分なシェア強度を確保することは困難である。
In recent years, with the further miniaturization of circuits required for the SAP method, the adhesion strength (absolute value) between the circuit and the substrate has decreased. By the way, as shown in FIGS. 3A and 3B, the circuit 124 formed on the substrate 122 may be covered with the solder resist 126 (FIG. 3A) or not (FIG. 3B). is there. When the circuit 124 is covered with the solder resist 126, since the circuit 124 is protected by the solder resist 126, the risk that the circuit 124 is peeled off from the substrate 122 during the work process is small, that is, the adhesion between the circuit 124 and the substrate 122 is impaired. The risk is small. On the other hand, when the circuit 124 is not covered with the solder resist 126, the circuit 124 is not protected with the solder resist 126. Therefore, when the adhesion strength with the substrate 122 is reduced due to the miniaturization of the circuit 124, the circuit 124 is peeled off during the work process. Risk increases. In this regard, shear strength is one of the physical adhesion indicators between the circuit and the board. To avoid circuit peeling during the work process, the circuit is fine enough only to a line width that can ensure a certain level of shear strength. It is the present situation that cannot be made. Therefore, in order to miniaturize the circuit 124 that is not covered with the solder resist 126, it is desired that sufficient shear strength can be ensured even with a narrow line width in addition to etching property and dry film resolution. However, even if it is possible to ensure good peel strength (peel strength) with the technique disclosed in Patent Document 1, it is difficult to ensure sufficient shear strength that can cope with thinning.
本発明者らは、今般、粗化粒子の形状を制御することにより、十点平均粗さRz1.7μm以下という細線回路形成に適したレベルの低粗度の粗化処理銅箔でありながら、シェア強度という観点での優れた回路密着性を実現できるとのとの知見を得た。すなわち、細線回路形成に適した低粗度の粗化処理銅箔でありながら、SAP法に用いた場合に、無電解銅めっきに対するエッチング性のみならず、シェア強度という観点での回路密着性にも優れた表面プロファイルを積層体に付与することができるとの知見を得た。また、上記粗化処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現できるとの知見も得た。
The inventors of the present invention now have a low-roughness roughened copper foil of a level suitable for forming a thin wire circuit having a ten-point average roughness Rz of 1.7 μm or less by controlling the shape of the roughened particles. We obtained the knowledge that excellent circuit adhesion in terms of shear strength can be realized. In other words, it is a low-roughness roughened copper foil suitable for forming thin wire circuits, but when used in the SAP method, it provides not only etching properties for electroless copper plating but also circuit adhesion in terms of shear strength. Also obtained the knowledge that an excellent surface profile can be imparted to the laminate. Moreover, the knowledge that extremely fine dry film resolution was realizable was also acquired in the dry film image development process in SAP method by using the said roughening process copper foil.
したがって、本発明の目的は、細線回路形成に適した低粗度の粗化処理銅箔でありながら、SAP法に用いた場合に、無電解銅めっきに対するエッチング性及びドライフィルム解像性のみならず、シェア強度という観点での回路密着性にも優れた表面プロファイルを積層体に付与可能な、粗化処理銅箔を提供することにある。また、本発明の他の目的は、そのような粗化処理銅箔を備えたキャリア付銅箔を提供することにある。
Therefore, the object of the present invention is to provide only a low-roughness roughened copper foil suitable for forming a thin wire circuit, but only etching property and dry film resolution for electroless copper plating when used in the SAP method. It is another object of the present invention to provide a roughened copper foil that can give a laminate a surface profile that is excellent in circuit adhesion in terms of shear strength. Moreover, the other object of this invention is to provide the copper foil with a carrier provided with such a roughening process copper foil.
本発明の一態様によれば、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、前記粗化処理面が複数の粗化粒子を備えてなり、
前記粗化処理銅箔の長さ10μmの断面における前記粗化粒子の面積S(μm2)に対する前記粗化粒子の周囲長L(μm)の2乗の比L2/Sの平均値が16以上30以下であり、かつ、前記粗化処理面の十点平均粗さRzが0.7μm以上1.7μm以下である、粗化処理銅箔が提供される。 According to one aspect of the present invention, a roughened copper foil having a roughened surface on at least one side, wherein the roughened surface comprises a plurality of roughened particles,
The average value of the ratio L 2 / S of the square of the peripheral length L (μm) of the roughened particles to the area S (μm 2 ) of the roughened particles in the cross section having a length of 10 μm of the roughened copper foil is 16 There is provided a roughened copper foil which is 30 or less and has a ten-point average roughness Rz of the roughened surface of 0.7 to 1.7 μm.
前記粗化処理銅箔の長さ10μmの断面における前記粗化粒子の面積S(μm2)に対する前記粗化粒子の周囲長L(μm)の2乗の比L2/Sの平均値が16以上30以下であり、かつ、前記粗化処理面の十点平均粗さRzが0.7μm以上1.7μm以下である、粗化処理銅箔が提供される。 According to one aspect of the present invention, a roughened copper foil having a roughened surface on at least one side, wherein the roughened surface comprises a plurality of roughened particles,
The average value of the ratio L 2 / S of the square of the peripheral length L (μm) of the roughened particles to the area S (μm 2 ) of the roughened particles in the cross section having a length of 10 μm of the roughened copper foil is 16 There is provided a roughened copper foil which is 30 or less and has a ten-point average roughness Rz of the roughened surface of 0.7 to 1.7 μm.
本発明の他の一態様によれば、キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた前記粗化処理銅箔とを備えた、キャリア付銅箔が提供される。
According to another aspect of the present invention, a carrier, a release layer provided on the carrier, and the roughened copper foil provided on the release layer with the roughened surface facing outside. The provided copper foil with a carrier is provided.
本発明の他の一態様によれば、前記粗化処理銅箔又は前記キャリア付銅箔を備えた銅張積層板が提供される。
According to another aspect of the present invention, there is provided a copper clad laminate comprising the roughened copper foil or the carrier-attached copper foil.
本発明の他の一態様によれば、前記粗化処理銅箔又は前記キャリア付銅箔を用いて得られたプリント配線板が提供される。あるいは、本発明の他の一態様によれば、前記粗化処理銅箔又は前記キャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法が提供される。
According to another aspect of the present invention, there is provided a printed wiring board obtained using the roughened copper foil or the carrier-attached copper foil. Or according to another one aspect | mode of this invention, a printed wiring board is manufactured using the said roughening copper foil or the said copper foil with a carrier, The manufacturing method of a printed wiring board characterized by the above-mentioned is provided. .
定義
本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。 Definitions The definitions of terms and parameters used to specify the present invention are shown below.
本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。 Definitions The definitions of terms and parameters used to specify the present invention are shown below.
本明細書において「粗化粒子」とは、図4に模式的に示されるように、粗化処理銅箔10の基底面10aの表面に直接形成される、高さ150nmを超えるサイズの粒子12であり、略球状、針状、柱状、細長い形状等あらゆる形状が含まれるが、好ましくは「略球状突起」の形態を有する。本明細書において「略球状突起」とは、略球状の丸みを帯びた概形を有する突起であり、針状、柱状、細長い形状等の異方形状の突起ないし粒子とは区別されるものである。図4において粗化粒子12として示されるように、略球状突起は、銅箔の基底面10aと連結されるくびれた根元部分で銅箔の基底面10aと連結しているため、完全なる球体にはなり得ないが、根元部分以外の部分が概ね球状であればよい。したがって、略球状突起は、略球状の丸みを帯びた概形が保持されているかぎり、微細な凹凸や変形等の存在は許容される。なお、上記突起を単に球状突起と称してもよいが、上述のとおり完全なる球体にはなり得ないため、上述した略球状突起を意味するものとして解されるべきである。また、粗化処理銅箔10の基底面10aに直接形成されず、粗化粒子12の表面に形成される突起12aは粗化粒子12の一部を構成するものとする。
In this specification, the “roughened particles” are particles 12 having a size exceeding 150 nm in height, which are directly formed on the surface of the base surface 10a of the roughened copper foil 10, as schematically shown in FIG. It includes all shapes such as a substantially spherical shape, a needle shape, a columnar shape, and an elongated shape, but preferably has a form of a “substantially spherical protrusion”. In the present specification, the “substantially spherical protrusion” is a protrusion having a substantially spherical round shape, and is distinguished from an anisotropic shape protrusion or particle such as a needle shape, a columnar shape, and an elongated shape. is there. As shown as roughened particles 12 in FIG. 4, the substantially spherical protrusion is connected to the base surface 10a of the copper foil at the narrow base portion connected to the base surface 10a of the copper foil. However, the portion other than the root portion may be substantially spherical. Therefore, as long as the substantially spherical protrusion has a generally spherical rounded outline, the presence of minute irregularities or deformation is allowed. In addition, although the said protrusion may only be called a spherical protrusion, since it cannot become a perfect sphere as mentioned above, it should be understood as meaning the substantially spherical protrusion mentioned above. Further, the protrusions 12 a formed on the surface of the roughened particles 12 are not directly formed on the base bottom surface 10 a of the roughened copper foil 10, and constitute a part of the roughened particles 12.
本明細書において「粗化粒子の周囲長L」とは、図5に模式的に示されるように、粗化粒子12の断面の輪郭線12p(図5の実線部分)の長さLpと、輪郭線12pと粗化処理銅箔10の基底面10aとの接点c1及びc2間を結ぶ線分12s(図5の点線部分)の長さLSの合計長さ(Lp+Ls)である。また、「粗化粒子の面積S」とは、図5に模式的に示されるように、粗化粒子12の断面における、輪郭線12p及び線分12sで囲まれた図形の面積(断面積)である。粗化粒子12の周囲長L及び面積Sは、SEM観察により取得した粗化処理銅箔10の断面画像を市販のソフトウェアを用いて解析することにより、特定することができる。例えば、画像解析ソフトImage-Pro Plus 5.1J(Media Cybernetics, Inc.製)を用い、画像解析については本明細書の実施例に記載される諸条件に従って行うことができる。
In this specification, the “peripheral length L of roughened particles” means the length L p of the contour line 12p (solid line portion in FIG. 5) of the cross section of the roughened particles 12, as schematically shown in FIG. The total length (L p + L s ) of the length L S of the line segment 12 s (dotted line portion in FIG. 5) connecting the contact points c 1 and c 2 between the contour line 12 p and the base surface 10 a of the roughened copper foil 10. ). Further, the “area R of the roughened particles” means the area (cross-sectional area) of the figure surrounded by the contour line 12p and the line segment 12s in the cross section of the roughened particle 12, as schematically shown in FIG. It is. The peripheral length L and the area S of the roughened particles 12 can be specified by analyzing a cross-sectional image of the roughened copper foil 10 obtained by SEM observation using commercially available software. For example, image analysis software Image-Pro Plus 5.1J (Media Cybernetics, Inc.) can be used, and image analysis can be performed according to various conditions described in the examples of the present specification.
本明細書において、キャリアの「電極面」とはキャリア作製時に陰極と接していた側の面を指す。
In this specification, the “electrode surface” of the carrier refers to the surface on the side that was in contact with the cathode during carrier production.
本明細書において、キャリアの「析出面」とはキャリア作製時に金属が電解析出されていく側の面、すなわち陰極と接していない側の面を指す。
In this specification, the “deposition surface” of the carrier refers to the surface on which the metal is electrolytically deposited during carrier production, that is, the surface not in contact with the cathode.
粗化処理銅箔
本発明による銅箔は粗化処理銅箔である。この粗化処理銅箔は少なくとも一方の側に粗化処理面を有する。粗化処理面は、図4に模式的に示されるように、複数の粗化粒子12を備えてなる。粗化処理銅箔10の長さ10μmの断面における粗化粒子12の面積S(μm2)に対する粗化粒子12の周囲長L(μm)の2乗の比L2/Sの平均値は16以上30以下である。また、粗化処理面の十点平均粗さRzは0.7μm以上1.7μm以下である。このように粗化粒子の形状を制御することにより、十点平均粗さRz1.7μm以下という細線回路形成に適したレベルの低粗度の粗化処理銅箔でありながら、シェア強度という観点での優れた回路密着性を実現することができる。すなわち、細線回路形成に適した低粗度の粗化処理銅箔でありながら、SAP法に用いた場合に、無電解銅めっきに対するエッチング性のみならず、シェア強度という観点での回路密着性にも優れた表面プロファイルを積層体に付与することができる。また、上記粗化処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現することができる。 Roughened copper foil The copper foil according to the present invention is a roughened copper foil. This roughened copper foil has a roughened surface on at least one side. As schematically shown in FIG. 4, the roughened surface is provided with a plurality of roughenedparticles 12. The average value of the ratio L 2 / S of the square of the peripheral length L (μm) of the roughened particles 12 to the area S (μm 2 ) of the roughened particles 12 in the cross section having a length of 10 μm of the roughened copper foil 10 is 16 It is 30 or less. The ten-point average roughness Rz of the roughened surface is 0.7 μm or more and 1.7 μm or less. By controlling the shape of the roughened particles in this way, it is a roughened copper foil having a low roughness level suitable for forming a thin wire circuit having a ten-point average roughness Rz of 1.7 μm or less, but in terms of shear strength. Excellent circuit adhesion can be realized. In other words, it is a low-roughness roughened copper foil suitable for forming thin wire circuits, but when used in the SAP method, it provides not only etching properties for electroless copper plating but also circuit adhesion in terms of shear strength. In addition, an excellent surface profile can be imparted to the laminate. In addition, by using the roughened copper foil, extremely fine dry film resolution can be realized in the dry film development step in the SAP method.
本発明による銅箔は粗化処理銅箔である。この粗化処理銅箔は少なくとも一方の側に粗化処理面を有する。粗化処理面は、図4に模式的に示されるように、複数の粗化粒子12を備えてなる。粗化処理銅箔10の長さ10μmの断面における粗化粒子12の面積S(μm2)に対する粗化粒子12の周囲長L(μm)の2乗の比L2/Sの平均値は16以上30以下である。また、粗化処理面の十点平均粗さRzは0.7μm以上1.7μm以下である。このように粗化粒子の形状を制御することにより、十点平均粗さRz1.7μm以下という細線回路形成に適したレベルの低粗度の粗化処理銅箔でありながら、シェア強度という観点での優れた回路密着性を実現することができる。すなわち、細線回路形成に適した低粗度の粗化処理銅箔でありながら、SAP法に用いた場合に、無電解銅めっきに対するエッチング性のみならず、シェア強度という観点での回路密着性にも優れた表面プロファイルを積層体に付与することができる。また、上記粗化処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現することができる。 Roughened copper foil The copper foil according to the present invention is a roughened copper foil. This roughened copper foil has a roughened surface on at least one side. As schematically shown in FIG. 4, the roughened surface is provided with a plurality of roughened
めっき回路密着性と、無電解銅めっきに対するエッチング性は本来的には両立し難いものである。すなわち、前述したように、めっき回路との密着性を上げるのに適した表面プロファイルは、概して粗い凹凸となる傾向があるため、図2の工程(h)において無電解銅めっきのエッチング性が低下しやすい。すなわち、無電解銅めっきが粗い凹凸に食い込んでいる分、残留銅を無くすためにより多くのエッチングを要してしまう。この点、特許文献1の粗化処理銅箔によればエッチング量の低減を実現しながら、優れためっき回路密着性を確保できるとされている。しかしながら、近年、SAP法に要求される回路の更なる微細化に伴い、回路と基板の密着強度(絶対値)が低下しているところ、特許文献1に開示される手法では良好なピール強度を確保することは可能であっても、細線化に対応可能な十分なシェア強度を確保することは困難である。したがって、回路がソルダーレジストで覆われない場合は、作業工程中に回路剥がれが生じるリスクが大きいといえる。これに対し、本発明においては、粗化粒子12の形状を制御することにより、十点平均粗さRz1.7μm以下という細線回路形成に適したレベルにまで粗化粒子の大幅な小径化を実現しながら、シェア強度という観点での回路密着性を大幅に改善することが可能となる。すなわち、上記範囲内のRzで表される粗化粒子12の小径化によって本来ならば回路密着性が低下しうるが、本発明においては粗化粒子12の断面形状のパラメータを示す比L2/Sの平均値を16以上30以下にすることで、シェア強度という観点での優れた回路密着性が実現可能となる。そして、そのように優れた密着性と無電解銅めっきに対する優れたエッチング性を両立できたことによって、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現できるものと考えられる。したがって、本発明の粗化処理銅箔10は、セミアディティブ法(SAP)によるプリント配線板の作製に用いられるのが好ましい。別の表現をすれば、本発明の粗化処理銅箔10は、プリント配線板用の絶縁樹脂層に凹凸形状を転写するために用いられるのが好ましいともいえる。
Plating circuit adhesion and etching properties for electroless copper plating are inherently difficult to achieve at the same time. That is, as described above, since the surface profile suitable for improving the adhesion to the plating circuit tends to be rough unevenness, the etching property of the electroless copper plating is lowered in the step (h) of FIG. It's easy to do. That is, as the electroless copper plating bites into rough irregularities, more etching is required to eliminate residual copper. In this regard, according to the roughened copper foil of Patent Document 1, it is said that excellent plating circuit adhesion can be secured while reducing the etching amount. However, in recent years, with further miniaturization of the circuit required for the SAP method, the adhesion strength (absolute value) between the circuit and the substrate has been reduced. With the method disclosed in Patent Document 1, a good peel strength is obtained. Even if it is possible to ensure, it is difficult to ensure sufficient share strength that can cope with thinning. Therefore, if the circuit is not covered with the solder resist, it can be said that there is a high risk of circuit peeling during the work process. On the other hand, in the present invention, by controlling the shape of the roughened particles 12, the diameter of the roughened particles can be greatly reduced to a level suitable for forming a thin wire circuit having a ten-point average roughness Rz of 1.7 μm or less. However, it is possible to greatly improve circuit adhesion in terms of shear strength. That is, although the circuit adhesion can be originally reduced by reducing the diameter of the roughened particles 12 represented by Rz within the above range, the ratio L 2 / indicating the parameter of the cross-sectional shape of the roughened particles 12 in the present invention. By setting the average value of S to 16 or more and 30 or less, excellent circuit adhesion in terms of shear strength can be realized. And it is thought that very fine dry film resolution can be realized in the dry film development process in the SAP method by satisfying both such excellent adhesion and excellent etching property for electroless copper plating. . Therefore, it is preferable that the roughened copper foil 10 of this invention is used for preparation of the printed wiring board by a semi-additive method (SAP). In other words, it can be said that the roughened copper foil 10 of the present invention is preferably used for transferring the concavo-convex shape to the insulating resin layer for the printed wiring board.
本発明の粗化処理銅箔10は、少なくとも一方の側に粗化処理面を有する。すなわち、粗化処理銅箔は両側に粗化処理面を有するものであってもよいし、一方の側にのみ粗化処理面を有するものであってもよい。両側に粗化処理面を有する場合は、SAP法に用いた場合にレーザー照射側の面(絶縁樹脂に密着させる面から離れた側の面)も粗化されていることになるので、レーザー吸収性が高まる結果、レーザー穿孔性をも向上させることができる。
The roughened copper foil 10 of the present invention has a roughened surface on at least one side. That is, the roughened copper foil may have a roughened surface on both sides, or may have a roughened surface only on one side. When both sides have roughened surfaces, the surface on the laser irradiation side (the surface away from the surface that is in close contact with the insulating resin) is also roughened when used in the SAP method. As a result, the laser perforation property can be improved.
粗化処理面は、複数の粗化粒子12を備えてなり、これら複数の粗化粒子12はそれぞれ銅粒子からなるのが好ましい。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。しかしながら、銅粒子が銅合金の場合、銅エッチング液に対する溶解性が低下したり、或いは銅エッチング液への合金成分混入によりエッチング液の寿命が低下したりすることがあるため、銅粒子は金属銅からなるのが好ましい。
The roughened surface is provided with a plurality of roughened particles 12, and each of the plurality of roughened particles 12 is preferably made of copper particles. The copper particles may be made of metallic copper, or may be made of a copper alloy. However, when the copper particles are a copper alloy, the solubility in the copper etching solution may decrease, or the life of the etching solution may decrease due to the alloy components mixed in the copper etching solution. Preferably it consists of.
粗化処理銅箔10の長さ10μmの断面における粗化粒子12の面積S(μm2)に対する粗化粒子12の周囲長L(μm)の2乗の比L2/Sの平均値は16以上30以下であり、好ましくは19以上27以下、より好ましくは19以上26以下、さらに好ましくは19以上25以下、特に好ましくは20以上24以下である。これらの範囲内であると、粗化粒子12の脱落を効果的に防止しながら、シェア強度をより一層向上することができる。
The average value of the ratio L 2 / S of the square of the peripheral length L (μm) of the roughened particles 12 to the area S (μm 2 ) of the roughened particles 12 in the cross section having a length of 10 μm of the roughened copper foil 10 is 16 30 or more, preferably 19 or more and 27 or less, more preferably 19 or more and 26 or less, further preferably 19 or more and 25 or less, and particularly preferably 20 or more and 24 or less. Within these ranges, the shear strength can be further improved while effectively preventing the roughened particles 12 from falling off.
粗化処理面の十点平均粗さRzは0.7μm以上1.7μm以下であり、好ましくは0.7μm以上1.6μm以下、より好ましくは0.8μm以上1.5μm以下である。これらの範囲内であると、所望のシェア強度を確保しながら、細線形成性をより一層向上することができる。RzはJIS B 0601-1994に準拠して決定される。
The ten-point average roughness Rz of the roughened surface is 0.7 μm or more and 1.7 μm or less, preferably 0.7 μm or more and 1.6 μm or less, more preferably 0.8 μm or more and 1.5 μm or less. Within these ranges, the fine line formability can be further improved while ensuring the desired shear strength. Rz is determined in accordance with JIS B 0601-1994.
粗化処理銅箔10の長さ10μmの断面における粗化粒子12の個数が20個以上70個以下であるのが好ましく、より好ましくは20個以上60個以下、さらに好ましくは20個以上40個以下である。これらの範囲内であると、粗化粒子12の脱落を効果的に防止しながら、シェア強度をより一層向上することができる。
It is preferable that the number of the roughened particles 12 in the cross section having a length of 10 μm of the roughened copper foil 10 is 20 or more and 70 or less, more preferably 20 or more and 60 or less, and still more preferably 20 or more and 40. It is as follows. Within these ranges, the shear strength can be further improved while effectively preventing the roughened particles 12 from falling off.
本発明の粗化処理銅箔10の厚さは特に限定されないが、0.1μm以上18μm以下が好ましく、より好ましくは0.5μm以上7μm以下、さらに好ましくは0.5μm以上5μm以下、特に好ましくは0.5μm以上3μm以下である。この厚さは粗化粒子12を含んだ厚さである。なお、本発明の粗化処理銅箔10は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面に粗化処理を行ったものであってもよい。
The thickness of the roughened copper foil 10 of the present invention is not particularly limited, but is preferably 0.1 μm to 18 μm, more preferably 0.5 μm to 7 μm, still more preferably 0.5 μm to 5 μm, and particularly preferably It is 0.5 μm or more and 3 μm or less. This thickness includes the roughened particles 12. The roughened copper foil 10 of the present invention is not limited to the surface of the normal copper foil subjected to the roughening treatment, and the surface of the copper foil of the carrier-added copper foil is subjected to the roughening treatment. Also good.
粗化処理銅箔の製造方法
本発明による粗化処理銅箔の好ましい製造方法の一例を説明するが、本発明による粗化処理銅箔は以下に説明する方法に限らず、本発明の粗化処理銅箔の表面プロファイルを実現できるかぎり、あらゆる方法によって製造されたものであってよい。 Method for Producing Roughened Copper Foil An example of a preferred method for producing a roughened copper foil according to the present invention will be described. However, the roughened copper foil according to the present invention is not limited to the method described below, and the roughened copper foil according to the present invention is used. It may be manufactured by any method as long as the surface profile of the treated copper foil can be realized.
本発明による粗化処理銅箔の好ましい製造方法の一例を説明するが、本発明による粗化処理銅箔は以下に説明する方法に限らず、本発明の粗化処理銅箔の表面プロファイルを実現できるかぎり、あらゆる方法によって製造されたものであってよい。 Method for Producing Roughened Copper Foil An example of a preferred method for producing a roughened copper foil according to the present invention will be described. However, the roughened copper foil according to the present invention is not limited to the method described below, and the roughened copper foil according to the present invention is used. It may be manufactured by any method as long as the surface profile of the treated copper foil can be realized.
(1)銅箔の準備
粗化処理銅箔の製造に使用する銅箔として、電解銅箔及び圧延銅箔の双方の使用が可能である。銅箔の厚さは特に限定されないが、0.1μm以上18μm以下が好ましく、より好ましくは0.5μm以上7μm以下、さらに好ましくは0.5μm以上5μm以下、特に好ましくは0.5μm以上3μm以下である。銅箔がキャリア付銅箔の形態で準備される場合には、銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。 (1) Preparation of copper foil As copper foil used for manufacture of roughening processing copper foil, use of both electrolytic copper foil and rolled copper foil is possible. The thickness of the copper foil is not particularly limited, but is preferably 0.1 μm to 18 μm, more preferably 0.5 μm to 7 μm, still more preferably 0.5 μm to 5 μm, and particularly preferably 0.5 μm to 3 μm. is there. When the copper foil is prepared in the form of a copper foil with a carrier, the copper foil is prepared by a wet film formation method such as an electroless copper plating method and an electrolytic copper plating method, a dry film formation method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.
粗化処理銅箔の製造に使用する銅箔として、電解銅箔及び圧延銅箔の双方の使用が可能である。銅箔の厚さは特に限定されないが、0.1μm以上18μm以下が好ましく、より好ましくは0.5μm以上7μm以下、さらに好ましくは0.5μm以上5μm以下、特に好ましくは0.5μm以上3μm以下である。銅箔がキャリア付銅箔の形態で準備される場合には、銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。 (1) Preparation of copper foil As copper foil used for manufacture of roughening processing copper foil, use of both electrolytic copper foil and rolled copper foil is possible. The thickness of the copper foil is not particularly limited, but is preferably 0.1 μm to 18 μm, more preferably 0.5 μm to 7 μm, still more preferably 0.5 μm to 5 μm, and particularly preferably 0.5 μm to 3 μm. is there. When the copper foil is prepared in the form of a copper foil with a carrier, the copper foil is prepared by a wet film formation method such as an electroless copper plating method and an electrolytic copper plating method, a dry film formation method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.
(2)粗化処理
銅粒子を用いて銅箔の少なくとも一方の表面を粗化する。この粗化は、粗化処理用銅電解溶液を用いた電解により行われる。この電解は3段階のめっき工程を経て行われるのが好ましい。1段階目のめっき工程では、銅濃度5g/L以上20g/L以下、硫酸濃度30g/L以上200g/L以下、塩素濃度20ppm以上100ppm以下、及び9-フェニルアクリジン(9PA)濃度20ppm以上100ppm以下を含む硫酸銅溶液を用いて、液温20℃以上40℃以下、電流密度5A/dm2以上25A/dm2以下、時間2秒以上10秒以下のめっき条件で電着を行うのが好ましい。2段階目のめっき工程では、銅濃度65g/L以上80g/L以下、及び硫酸濃度200g/L以上280g/L以下を含む硫酸銅溶液を用いて、液温45℃以上55℃以下、及び電流密度1A/dm2以上10A/dm2以下、時間2秒以上25秒以下のめっき条件で電着を行うのが好ましい。3段階目のめっき工程では、銅濃度10g/L以上20g/L以下、硫酸濃度30g/L以上130g/L以下、塩素濃度20ppm以上100ppm以下、及び9PA濃度100ppm以上200ppm以下を含む硫酸銅溶液を用いて、液温20℃以上40℃以下、電流密度10A/dm2以上40A/dm2以下、時間0.3秒以上1.0秒以下のめっき条件で電着を行うのが好ましい。9PA等の添加剤を用いた3段階目のめっき工程が行われることにより、1段階目及び2段階目のめっき工程で形成した粗化粒子の表面に微小な突起を形成させて、比L2/Sを増大させることができる。特に、1段階目のめっき工程が9PA等の添加剤等を用いて行われるのが好ましく、1段階目のめっき工程における電気量Q1と2段階目のめっき工程における電気量Q2の合計電気量(Q1+Q2)が100C/dm2以下となるように設定するのが好ましい。また、1~3段階目のめっき工程における銅箔に対するめっき液の線流速をいずれも0.10m/s以上0.50m/s以下とするのが好ましく、より好ましくは0.15m/s以上0.45m/s以下である。こうすることで、十点平均粗さRz≦1.7μmを満たす比較的低粗度の表面プロファイルが形成されるとともに、3段階目のめっきが粗化粒子の表面全体に行き渡り、比L2/Sが大きな粗化粒子が形成される。 (2) Roughening treatment At least one surface of the copper foil is roughened using copper particles. This roughening is performed by electrolysis using a copper electrolytic solution for roughening treatment. This electrolysis is preferably performed through a three-step plating process. In the first plating step, the copper concentration is 5 g / L to 20 g / L, the sulfuric acid concentration is 30 g / L to 200 g / L, the chlorine concentration is 20 ppm to 100 ppm, and the 9-phenylacridine (9PA) concentration is 20 ppm to 100 ppm. It is preferable to perform electrodeposition using a copper sulfate solution containing a solution at a temperature of 20 to 40 ° C., a current density of 5 A / dm 2 to 25 A / dm 2 and a time of 2 seconds to 10 seconds. In the second plating step, a copper sulfate solution containing a copper concentration of 65 g / L or more and 80 g / L or less and a sulfuric acid concentration of 200 g / L or more and 280 g / L or less is used. Electrodeposition is preferably performed under plating conditions of a density of 1 A / dm 2 to 10 A / dm 2 and a time of 2 seconds to 25 seconds. In the third plating step, a copper sulfate solution containing a copper concentration of 10 g / L to 20 g / L, a sulfuric acid concentration of 30 g / L to 130 g / L, a chlorine concentration of 20 ppm to 100 ppm, and a 9PA concentration of 100 ppm to 200 ppm. It is preferable to perform electrodeposition under plating conditions of a liquid temperature of 20 ° C. or more and 40 ° C. or less, a current density of 10 A / dm 2 or more and 40 A / dm 2 or less, and a time of 0.3 seconds or more and 1.0 seconds or less. By performing the third stage plating process using an additive such as 9PA, minute protrusions are formed on the surface of the roughened particles formed in the first and second stage plating processes, and the ratio L 2 / S can be increased. In particular, it is preferable carried out using 1-stage plating process is an additive such as 9pa, total quantity of electricity Q 2 in the quantity of electricity Q 1 and second-stage plating process in the first stage of the plating process electrical It is preferable to set the amount (Q 1 + Q 2 ) to be 100 C / dm 2 or less. In addition, the linear flow rate of the plating solution with respect to the copper foil in the first to third stages of plating is preferably 0.10 m / s or more and 0.50 m / s or less, more preferably 0.15 m / s or more and 0. .45 m / s or less. In this way, a surface profile with a relatively low roughness satisfying the ten-point average roughness Rz ≦ 1.7 μm is formed, and the third stage plating is spread over the entire surface of the roughened particles, and the ratio L 2 / Roughened particles with large S are formed.
銅粒子を用いて銅箔の少なくとも一方の表面を粗化する。この粗化は、粗化処理用銅電解溶液を用いた電解により行われる。この電解は3段階のめっき工程を経て行われるのが好ましい。1段階目のめっき工程では、銅濃度5g/L以上20g/L以下、硫酸濃度30g/L以上200g/L以下、塩素濃度20ppm以上100ppm以下、及び9-フェニルアクリジン(9PA)濃度20ppm以上100ppm以下を含む硫酸銅溶液を用いて、液温20℃以上40℃以下、電流密度5A/dm2以上25A/dm2以下、時間2秒以上10秒以下のめっき条件で電着を行うのが好ましい。2段階目のめっき工程では、銅濃度65g/L以上80g/L以下、及び硫酸濃度200g/L以上280g/L以下を含む硫酸銅溶液を用いて、液温45℃以上55℃以下、及び電流密度1A/dm2以上10A/dm2以下、時間2秒以上25秒以下のめっき条件で電着を行うのが好ましい。3段階目のめっき工程では、銅濃度10g/L以上20g/L以下、硫酸濃度30g/L以上130g/L以下、塩素濃度20ppm以上100ppm以下、及び9PA濃度100ppm以上200ppm以下を含む硫酸銅溶液を用いて、液温20℃以上40℃以下、電流密度10A/dm2以上40A/dm2以下、時間0.3秒以上1.0秒以下のめっき条件で電着を行うのが好ましい。9PA等の添加剤を用いた3段階目のめっき工程が行われることにより、1段階目及び2段階目のめっき工程で形成した粗化粒子の表面に微小な突起を形成させて、比L2/Sを増大させることができる。特に、1段階目のめっき工程が9PA等の添加剤等を用いて行われるのが好ましく、1段階目のめっき工程における電気量Q1と2段階目のめっき工程における電気量Q2の合計電気量(Q1+Q2)が100C/dm2以下となるように設定するのが好ましい。また、1~3段階目のめっき工程における銅箔に対するめっき液の線流速をいずれも0.10m/s以上0.50m/s以下とするのが好ましく、より好ましくは0.15m/s以上0.45m/s以下である。こうすることで、十点平均粗さRz≦1.7μmを満たす比較的低粗度の表面プロファイルが形成されるとともに、3段階目のめっきが粗化粒子の表面全体に行き渡り、比L2/Sが大きな粗化粒子が形成される。 (2) Roughening treatment At least one surface of the copper foil is roughened using copper particles. This roughening is performed by electrolysis using a copper electrolytic solution for roughening treatment. This electrolysis is preferably performed through a three-step plating process. In the first plating step, the copper concentration is 5 g / L to 20 g / L, the sulfuric acid concentration is 30 g / L to 200 g / L, the chlorine concentration is 20 ppm to 100 ppm, and the 9-phenylacridine (9PA) concentration is 20 ppm to 100 ppm. It is preferable to perform electrodeposition using a copper sulfate solution containing a solution at a temperature of 20 to 40 ° C., a current density of 5 A / dm 2 to 25 A / dm 2 and a time of 2 seconds to 10 seconds. In the second plating step, a copper sulfate solution containing a copper concentration of 65 g / L or more and 80 g / L or less and a sulfuric acid concentration of 200 g / L or more and 280 g / L or less is used. Electrodeposition is preferably performed under plating conditions of a density of 1 A / dm 2 to 10 A / dm 2 and a time of 2 seconds to 25 seconds. In the third plating step, a copper sulfate solution containing a copper concentration of 10 g / L to 20 g / L, a sulfuric acid concentration of 30 g / L to 130 g / L, a chlorine concentration of 20 ppm to 100 ppm, and a 9PA concentration of 100 ppm to 200 ppm. It is preferable to perform electrodeposition under plating conditions of a liquid temperature of 20 ° C. or more and 40 ° C. or less, a current density of 10 A / dm 2 or more and 40 A / dm 2 or less, and a time of 0.3 seconds or more and 1.0 seconds or less. By performing the third stage plating process using an additive such as 9PA, minute protrusions are formed on the surface of the roughened particles formed in the first and second stage plating processes, and the ratio L 2 / S can be increased. In particular, it is preferable carried out using 1-stage plating process is an additive such as 9pa, total quantity of electricity Q 2 in the quantity of electricity Q 1 and second-stage plating process in the first stage of the plating process electrical It is preferable to set the amount (Q 1 + Q 2 ) to be 100 C / dm 2 or less. In addition, the linear flow rate of the plating solution with respect to the copper foil in the first to third stages of plating is preferably 0.10 m / s or more and 0.50 m / s or less, more preferably 0.15 m / s or more and 0. .45 m / s or less. In this way, a surface profile with a relatively low roughness satisfying the ten-point average roughness Rz ≦ 1.7 μm is formed, and the third stage plating is spread over the entire surface of the roughened particles, and the ratio L 2 / Roughened particles with large S are formed.
(3)防錆処理
防錆処理は粗化粒子の形状、周囲長及び面積、並びに粗化処理面の十点平均粗さRzに影響を及ぼさないので、所望により、粗化処理後の銅箔に防錆処理を施してもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2以上10以下が好ましく、より好ましくは2以上7以下、さらに好ましくは2.7以上4以下である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。 (3) Rust prevention treatment Since the rust prevention treatment does not affect the shape, peripheral length and area of the roughened particles, and the ten-point average roughness Rz of the roughened surface, the copper foil after the roughening treatment, if desired. May be subjected to a rust-proofing treatment. The rust prevention treatment preferably includes a plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co. The Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and still more preferably 2.7 or more and 4 or less in terms of mass ratio. The rust prevention treatment preferably further includes a chromate treatment, and this chromate treatment is more preferably performed on the surface of the plating containing zinc after the plating treatment using zinc. By carrying out like this, rust prevention property can further be improved. A particularly preferable antirust treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
防錆処理は粗化粒子の形状、周囲長及び面積、並びに粗化処理面の十点平均粗さRzに影響を及ぼさないので、所望により、粗化処理後の銅箔に防錆処理を施してもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2以上10以下が好ましく、より好ましくは2以上7以下、さらに好ましくは2.7以上4以下である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。 (3) Rust prevention treatment Since the rust prevention treatment does not affect the shape, peripheral length and area of the roughened particles, and the ten-point average roughness Rz of the roughened surface, the copper foil after the roughening treatment, if desired. May be subjected to a rust-proofing treatment. The rust prevention treatment preferably includes a plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co. The Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and still more preferably 2.7 or more and 4 or less in terms of mass ratio. The rust prevention treatment preferably further includes a chromate treatment, and this chromate treatment is more preferably performed on the surface of the plating containing zinc after the plating treatment using zinc. By carrying out like this, rust prevention property can further be improved. A particularly preferable antirust treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
(4)シランカップリング剤処理
所望により、銅箔にシランカップリング剤処理を施し、シランカップリング剤層を形成してもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。 (4) Silane coupling agent treatment If desired, the copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. Thereby, moisture resistance, chemical resistance, adhesiveness with an adhesive agent, etc. can be improved. The silane coupling agent layer can be formed by appropriately diluting and applying a silane coupling agent and drying. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-2 (amino Amino functions such as ethyl) 3-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane Silane coupling agents, or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agents such as vinyltrimethoxysilane and vinylphenyltrimethoxysilane, or 3-methacryloxypropyl Trime Acrylic-functional silane coupling agent such as Kishishiran, and imidazole functional silane coupling agent such as imidazole silane, or triazine functional silane coupling agents such as triazine silane.
所望により、銅箔にシランカップリング剤処理を施し、シランカップリング剤層を形成してもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。 (4) Silane coupling agent treatment If desired, the copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. Thereby, moisture resistance, chemical resistance, adhesiveness with an adhesive agent, etc. can be improved. The silane coupling agent layer can be formed by appropriately diluting and applying a silane coupling agent and drying. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-2 (amino Amino functions such as ethyl) 3-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane Silane coupling agents, or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agents such as vinyltrimethoxysilane and vinylphenyltrimethoxysilane, or 3-methacryloxypropyl Trime Acrylic-functional silane coupling agent such as Kishishiran, and imidazole functional silane coupling agent such as imidazole silane, or triazine functional silane coupling agents such as triazine silane.
キャリア付銅箔
本発明の粗化処理銅箔は、キャリア付銅箔の形態で提供することができる。この場合、キャリア付銅箔は、キャリアと、このキャリア上に設けられた剥離層と、この剥離層上に粗化処理面を外側にして設けられた本発明の粗化処理銅箔とを備えてなる。もっとも、キャリア付銅箔は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。 Copper foil with carrier The roughened copper foil of the present invention can be provided in the form of a copper foil with carrier. In this case, the carrier-attached copper foil includes a carrier, a release layer provided on the carrier, and the roughened copper foil of the present invention provided on the release layer with the roughened surface facing outside. It becomes. However, a known layer structure can be adopted as the carrier-attached copper foil except that the roughened copper foil of the present invention is used.
本発明の粗化処理銅箔は、キャリア付銅箔の形態で提供することができる。この場合、キャリア付銅箔は、キャリアと、このキャリア上に設けられた剥離層と、この剥離層上に粗化処理面を外側にして設けられた本発明の粗化処理銅箔とを備えてなる。もっとも、キャリア付銅箔は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。 Copper foil with carrier The roughened copper foil of the present invention can be provided in the form of a copper foil with carrier. In this case, the carrier-attached copper foil includes a carrier, a release layer provided on the carrier, and the roughened copper foil of the present invention provided on the release layer with the roughened surface facing outside. It becomes. However, a known layer structure can be adopted as the carrier-attached copper foil except that the roughened copper foil of the present invention is used.
キャリアは、粗化処理銅箔を支持してそのハンドリング性を向上させるための層(典型的には箔)である。キャリアの例としては、アルミニウム箔、銅箔、表面を銅等でメタルコーティングした樹脂フィルムやガラス板等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリアの厚さは典型的には200μm以下であり、好ましくは12μm以上35μm以下である。
The carrier is a layer (typically a foil) for supporting the roughened copper foil and improving its handleability. Examples of the carrier include an aluminum foil, a copper foil, a resin film whose surface is metal-coated with copper or the like, a glass plate, and the like, preferably a copper foil. The copper foil may be a rolled copper foil or an electrolytic copper foil. The thickness of the carrier is typically 200 μm or less, preferably 12 μm or more and 35 μm or less.
キャリアの剥離層側の面は、0.5μm以上1.5μm以下の十点表面粗さRzを有するのが好ましく、より好ましくは0.6μm以上1.0μm以下である。RzはJIS B 0601-1994に準拠して決定することができる。このような十点表面粗さRzをキャリアの剥離層側の面に付与しておくことで、その上に剥離層を介して作製される本発明の粗化処理銅箔に望ましい表面プロファイルを付与しやすくすることができる。
The surface on the peeling layer side of the carrier preferably has a 10-point surface roughness Rz of 0.5 μm or more and 1.5 μm or less, more preferably 0.6 μm or more and 1.0 μm or less. Rz can be determined according to JIS B 0601-1994. By giving such a ten-point surface roughness Rz to the surface of the carrier on the release layer side, a desired surface profile is given to the roughened copper foil of the present invention produced thereon via the release layer. Can be easier.
剥離層は、キャリアの引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に固定されること等により行えばよい。キャリアの剥離層成分含有溶液への接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm以上1μm以下であり、好ましくは5nm以上500nm以下である。
The release layer is a layer having a function of weakening the peeling strength of the carrier, ensuring the stability of the strength, and further suppressing the interdiffusion that may occur between the carrier and the copper foil during press molding at a high temperature. . The release layer is generally formed on one side of the carrier, but may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferred in terms of easy release stability. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- And 1H-1,2,4-triazole. Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like. Examples of the carboxylic acid include monocarboxylic acid and dicarboxylic acid. On the other hand, examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film. The release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier and fixing the release layer component to the surface of the carrier. The carrier may be brought into contact with the release layer component-containing solution by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, flowing down of the release layer component-containing solution, or the like. The release layer component may be fixed to the carrier surface by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less.
粗化処理銅箔としては、上述した本発明の粗化処理銅箔を用いる。本発明の粗化処理は銅粒子を用いた粗化が施されたものであるが、手順としては、先ず剥離層の表面に銅層を銅箔として形成し、その後少なくとも粗化を行えばよい。粗化の詳細については前述したとおりである。なお、銅箔はキャリア付銅箔としての利点を活かすべく、極薄銅箔の形態で構成されるのが好ましい。極薄銅箔としての好ましい厚さは0.1μm以上7μm以下であり、より好ましくは0.5μm以上5μm以下、さらに好ましくは0.5μm以上3μm以下である。
The roughened copper foil of the present invention described above is used as the roughened copper foil. The roughening treatment of the present invention is performed by roughening using copper particles. As a procedure, first, a copper layer is formed as a copper foil on the surface of the release layer, and then at least roughening is performed. . Details of the roughening are as described above. In addition, it is preferable that copper foil is comprised with the form of an ultra-thin copper foil in order to utilize the advantage as copper foil with a carrier. The preferable thickness of the ultrathin copper foil is 0.1 μm or more and 7 μm or less, more preferably 0.5 μm or more and 5 μm or less, and further preferably 0.5 μm or more and 3 μm or less.
剥離層とキャリア及び/又は銅箔との間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。このような補助金属層をキャリアの剥離層側及び/又は粗化処理銅箔の剥離層側に形成することで、高温又は長時間の熱間プレス成形時にキャリアと粗化処理銅箔の間で起こりうる相互拡散を抑制し、キャリアの引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001μm以上3μm以下とするのが好ましい。
Other functional layers may be provided between the release layer and the carrier and / or copper foil. An example of such another functional layer is an auxiliary metal layer. The auxiliary metal layer is preferably made of nickel and / or cobalt. By forming such an auxiliary metal layer on the release layer side of the carrier and / or the release layer side of the roughened copper foil, between the carrier and the roughened copper foil during high-temperature or long-time hot press molding. Possible interdiffusion can be suppressed and stability of the peeling strength of the carrier can be ensured. The thickness of the auxiliary metal layer is preferably 0.001 μm or more and 3 μm or less.
銅張積層板
本発明の粗化処理銅箔ないしキャリア付銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔又は上記キャリア付銅箔を備えた銅張積層板が提供される。本発明の粗化処理銅箔ないしキャリア付銅箔を用いることで、SAP法に特に適した銅張積層板を提供することができる。この銅張積層板は、本発明の粗化処理銅箔と、この粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなるか、あるいは本発明のキャリア付銅箔と、このキャリア付銅箔における粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔又はキャリア付銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め粗化処理銅箔の粗化処理表面に塗布されるプライマー樹脂層を介して粗化処理銅箔ないしキャリア付銅箔に設けられていてもよい。 Copper- clad laminate The roughened copper foil or carrier-attached copper foil of the present invention is preferably used for the production of a copper-clad laminate for printed wiring boards. That is, according to the preferable aspect of this invention, the copper clad laminated board provided with the said roughening process copper foil or the said copper foil with a carrier is provided. By using the roughened copper foil or the copper foil with carrier of the present invention, a copper clad laminate particularly suitable for the SAP method can be provided. This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil, or the copper with carrier of the present invention The foil and a resin layer provided in close contact with the roughened surface of the roughened copper foil in the copper foil with carrier are provided. The roughened copper foil or the copper foil with carrier may be provided on one side of the resin layer or may be provided on both sides. The resin layer comprises a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet. The prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin. Preferable examples of the insulating resin include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin. Examples of the insulating resin that constitutes the resin sheet include insulating resins such as epoxy resins, polyimide resins, and polyester resins. Moreover, the filler particle etc. which consist of various inorganic particles, such as a silica and an alumina, may contain in the resin layer from a viewpoint of improving insulation. The thickness of the resin layer is not particularly limited, but is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and further preferably 3 μm or more and 200 μm or less. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on a roughened copper foil or a copper foil with a carrier in advance through a primer resin layer applied to the roughened surface of the roughened copper foil.
本発明の粗化処理銅箔ないしキャリア付銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔又は上記キャリア付銅箔を備えた銅張積層板が提供される。本発明の粗化処理銅箔ないしキャリア付銅箔を用いることで、SAP法に特に適した銅張積層板を提供することができる。この銅張積層板は、本発明の粗化処理銅箔と、この粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなるか、あるいは本発明のキャリア付銅箔と、このキャリア付銅箔における粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔又はキャリア付銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め粗化処理銅箔の粗化処理表面に塗布されるプライマー樹脂層を介して粗化処理銅箔ないしキャリア付銅箔に設けられていてもよい。 Copper- clad laminate The roughened copper foil or carrier-attached copper foil of the present invention is preferably used for the production of a copper-clad laminate for printed wiring boards. That is, according to the preferable aspect of this invention, the copper clad laminated board provided with the said roughening process copper foil or the said copper foil with a carrier is provided. By using the roughened copper foil or the copper foil with carrier of the present invention, a copper clad laminate particularly suitable for the SAP method can be provided. This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil, or the copper with carrier of the present invention The foil and a resin layer provided in close contact with the roughened surface of the roughened copper foil in the copper foil with carrier are provided. The roughened copper foil or the copper foil with carrier may be provided on one side of the resin layer or may be provided on both sides. The resin layer comprises a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet. The prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin. Preferable examples of the insulating resin include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin. Examples of the insulating resin that constitutes the resin sheet include insulating resins such as epoxy resins, polyimide resins, and polyester resins. Moreover, the filler particle etc. which consist of various inorganic particles, such as a silica and an alumina, may contain in the resin layer from a viewpoint of improving insulation. The thickness of the resin layer is not particularly limited, but is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and further preferably 3 μm or more and 200 μm or less. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on a roughened copper foil or a copper foil with a carrier in advance through a primer resin layer applied to the roughened surface of the roughened copper foil.
プリント配線板
本発明の粗化処理銅箔ないしキャリア付銅箔はプリント配線板の作製に用いられるのが好ましく、特に好ましくはセミアディティブ法(SAP)によるプリント配線板の作製に用いられる。すなわち、本発明の好ましい態様によれば、前述した粗化処理銅箔又は上記キャリア付銅箔を用いて得られたプリント配線板が提供される。本発明の粗化処理銅箔ないしキャリア付銅箔を用いることで、プリント配線板の製造において、十分なシェア強度を確保して作業工程中の回路剥がれを効果的に防止できるとともに、無電解銅めっきに対するエッチング性にも優れた表面プロファイルを積層体に付与することができる。また、上記粗化処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現することができる。したがって、極めて微細な回路形成が施されたプリント配線板を提供することができる。本態様によるプリント配線板は、樹脂層と、銅層とが積層された層構成を含んでなる。SAP法の場合には本発明の粗化処理銅箔は図1の工程(c)において除去されるため、SAP法により作製されたプリント配線板は本発明の粗化処理銅箔をもはや含まず、粗化処理銅箔の粗化処理面から転写された表面プロファイルが残存するのみである。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔ないしキャリア付銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔ないしキャリア付銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔ないしキャリア付銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミアディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミアディティブ(SAP)法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の粗化処理銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明の粗化処理銅箔ないしキャリア付銅箔はSAP法に適している。例えば、SAP法により回路形成した場合には図1及び2に示されるような構成が採用可能である。 Printed wiring board The roughened copper foil or carrier-attached copper foil of the present invention is preferably used for the production of a printed wiring board, particularly preferably for the production of a printed wiring board by a semi-additive method (SAP). That is, according to the preferable aspect of this invention, the printed wiring board obtained using the roughening process copper foil mentioned above or the said copper foil with a carrier is provided. By using the roughened copper foil or carrier-attached copper foil of the present invention, in the production of printed wiring boards, sufficient shear strength can be secured to effectively prevent circuit peeling during the work process, and electroless copper A surface profile excellent in etching property for plating can be imparted to the laminate. In addition, by using the roughened copper foil, extremely fine dry film resolution can be realized in the dry film development step in the SAP method. Therefore, it is possible to provide a printed wiring board on which an extremely fine circuit is formed. The printed wiring board according to this aspect includes a layer configuration in which a resin layer and a copper layer are laminated. In the case of the SAP method, the roughened copper foil of the present invention is removed in the step (c) of FIG. 1, and therefore the printed wiring board produced by the SAP method no longer contains the roughened copper foil of the present invention. Only the surface profile transferred from the roughened surface of the roughened copper foil remains. The resin layer is as described above for the copper-clad laminate. In any case, a known layer structure can be adopted for the printed wiring board. Specific examples of the printed wiring board include a single-sided or double-sided printed wiring board in which a circuit is formed on a single-sided or double-sided prepreg and a laminated body obtained by bonding and curing the roughened copper foil of the present invention or a copper foil with a carrier, A multilayer printed wiring board obtained by multilayering these may be used. Other specific examples include a flexible printed wiring board, a COF, a TAB tape and the like that form a circuit by forming the roughened copper foil or the carrier-attached copper foil of the present invention on a resin film. As yet another specific example, a copper foil with resin (RCC) obtained by applying the above resin layer to the roughened copper foil or copper foil with carrier of the present invention is formed, and the resin layer is used as an insulating adhesive layer as described above. After being laminated on the printed circuit board, a roughened copper foil is used as a whole or part of the wiring layer, and a build-up wiring board in which a circuit is formed by a modified semi-additive (MSAP) method, a subtractive method, etc., or a roughening treatment Build-up wiring board with a semi-additive (SAP) circuit formed by removing copper foil, direct build-up-on-wafer, etc. that alternately repeats the lamination of resin-coated copper foil and circuit formation on a semiconductor integrated circuit Can be mentioned. As a more specific example, antenna elements formed by laminating the above resin-coated copper foil on a substrate to form a circuit, panels and electronic materials for panels and displays formed on a glass or resin film via an adhesive layer, and windows Examples thereof include an electronic material for glass, and an electromagnetic wave shielding film obtained by applying a conductive adhesive to the roughened copper foil of the present invention. In particular, the roughened copper foil or the copper foil with carrier of the present invention is suitable for the SAP method. For example, when a circuit is formed by the SAP method, a configuration as shown in FIGS. 1 and 2 can be employed.
本発明の粗化処理銅箔ないしキャリア付銅箔はプリント配線板の作製に用いられるのが好ましく、特に好ましくはセミアディティブ法(SAP)によるプリント配線板の作製に用いられる。すなわち、本発明の好ましい態様によれば、前述した粗化処理銅箔又は上記キャリア付銅箔を用いて得られたプリント配線板が提供される。本発明の粗化処理銅箔ないしキャリア付銅箔を用いることで、プリント配線板の製造において、十分なシェア強度を確保して作業工程中の回路剥がれを効果的に防止できるとともに、無電解銅めっきに対するエッチング性にも優れた表面プロファイルを積層体に付与することができる。また、上記粗化処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現することができる。したがって、極めて微細な回路形成が施されたプリント配線板を提供することができる。本態様によるプリント配線板は、樹脂層と、銅層とが積層された層構成を含んでなる。SAP法の場合には本発明の粗化処理銅箔は図1の工程(c)において除去されるため、SAP法により作製されたプリント配線板は本発明の粗化処理銅箔をもはや含まず、粗化処理銅箔の粗化処理面から転写された表面プロファイルが残存するのみである。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔ないしキャリア付銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔ないしキャリア付銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔ないしキャリア付銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミアディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミアディティブ(SAP)法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の粗化処理銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明の粗化処理銅箔ないしキャリア付銅箔はSAP法に適している。例えば、SAP法により回路形成した場合には図1及び2に示されるような構成が採用可能である。 Printed wiring board The roughened copper foil or carrier-attached copper foil of the present invention is preferably used for the production of a printed wiring board, particularly preferably for the production of a printed wiring board by a semi-additive method (SAP). That is, according to the preferable aspect of this invention, the printed wiring board obtained using the roughening process copper foil mentioned above or the said copper foil with a carrier is provided. By using the roughened copper foil or carrier-attached copper foil of the present invention, in the production of printed wiring boards, sufficient shear strength can be secured to effectively prevent circuit peeling during the work process, and electroless copper A surface profile excellent in etching property for plating can be imparted to the laminate. In addition, by using the roughened copper foil, extremely fine dry film resolution can be realized in the dry film development step in the SAP method. Therefore, it is possible to provide a printed wiring board on which an extremely fine circuit is formed. The printed wiring board according to this aspect includes a layer configuration in which a resin layer and a copper layer are laminated. In the case of the SAP method, the roughened copper foil of the present invention is removed in the step (c) of FIG. 1, and therefore the printed wiring board produced by the SAP method no longer contains the roughened copper foil of the present invention. Only the surface profile transferred from the roughened surface of the roughened copper foil remains. The resin layer is as described above for the copper-clad laminate. In any case, a known layer structure can be adopted for the printed wiring board. Specific examples of the printed wiring board include a single-sided or double-sided printed wiring board in which a circuit is formed on a single-sided or double-sided prepreg and a laminated body obtained by bonding and curing the roughened copper foil of the present invention or a copper foil with a carrier, A multilayer printed wiring board obtained by multilayering these may be used. Other specific examples include a flexible printed wiring board, a COF, a TAB tape and the like that form a circuit by forming the roughened copper foil or the carrier-attached copper foil of the present invention on a resin film. As yet another specific example, a copper foil with resin (RCC) obtained by applying the above resin layer to the roughened copper foil or copper foil with carrier of the present invention is formed, and the resin layer is used as an insulating adhesive layer as described above. After being laminated on the printed circuit board, a roughened copper foil is used as a whole or part of the wiring layer, and a build-up wiring board in which a circuit is formed by a modified semi-additive (MSAP) method, a subtractive method, etc., or a roughening treatment Build-up wiring board with a semi-additive (SAP) circuit formed by removing copper foil, direct build-up-on-wafer, etc. that alternately repeats the lamination of resin-coated copper foil and circuit formation on a semiconductor integrated circuit Can be mentioned. As a more specific example, antenna elements formed by laminating the above resin-coated copper foil on a substrate to form a circuit, panels and electronic materials for panels and displays formed on a glass or resin film via an adhesive layer, and windows Examples thereof include an electronic material for glass, and an electromagnetic wave shielding film obtained by applying a conductive adhesive to the roughened copper foil of the present invention. In particular, the roughened copper foil or the copper foil with carrier of the present invention is suitable for the SAP method. For example, when a circuit is formed by the SAP method, a configuration as shown in FIGS. 1 and 2 can be employed.
本発明を以下の例によってさらに具体的に説明する。
The present invention will be described more specifically with reference to the following examples.
例1~3
キャリア付銅箔の作製及び評価を以下のようにして行った。 Examples 1-3
Preparation and evaluation of the copper foil with a carrier were performed as follows.
キャリア付銅箔の作製及び評価を以下のようにして行った。 Examples 1-3
Preparation and evaluation of the copper foil with a carrier were performed as follows.
(1)キャリアの作製
陰極として表面を#2000のバフで研磨したチタン製の電極を用意した。また、陽極としてDSA(寸法安定性陽極)を用意した。これらの電極を用い、銅濃度80g/L、硫酸濃度260g/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度55A/dm2で電解し、厚さ18μmの電解銅箔をキャリアとして得た。 (1) Production of Carrier A titanium electrode whose surface was polished with a # 2000 buff was prepared as a cathode. Moreover, DSA (dimensional stability anode) was prepared as an anode. Using these electrodes, the sample was immersed in a copper sulfate solution having a copper concentration of 80 g / L and a sulfuric acid concentration of 260 g / L, and electrolysis was performed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2. Got as.
陰極として表面を#2000のバフで研磨したチタン製の電極を用意した。また、陽極としてDSA(寸法安定性陽極)を用意した。これらの電極を用い、銅濃度80g/L、硫酸濃度260g/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度55A/dm2で電解し、厚さ18μmの電解銅箔をキャリアとして得た。 (1) Production of Carrier A titanium electrode whose surface was polished with a # 2000 buff was prepared as a cathode. Moreover, DSA (dimensional stability anode) was prepared as an anode. Using these electrodes, the sample was immersed in a copper sulfate solution having a copper concentration of 80 g / L and a sulfuric acid concentration of 260 g / L, and electrolysis was performed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2. Got as.
(2)剥離層の形成
酸洗処理されたキャリアの電極面側を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリアの電極面の表面にCBTA層を有機剥離層として形成した。 (2) Formation of Release Layer The electrode surface side of the pickled carrier is placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, at a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier. Thus, a CBTA layer was formed as an organic release layer on the surface of the carrier electrode surface.
酸洗処理されたキャリアの電極面側を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリアの電極面の表面にCBTA層を有機剥離層として形成した。 (2) Formation of Release Layer The electrode surface side of the pickled carrier is placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, at a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier. Thus, a CBTA layer was formed as an organic release layer on the surface of the carrier electrode surface.
(3)補助金属層の形成
有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lの溶液に浸漬して、液温45℃、pH3、電流密度5A/dm2の条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。 (3) Formation of auxiliary metal layer The carrier on which the organic peeling layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A / dm. Under the condition 2 , nickel having a thickness equivalent to 0.001 μm was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lの溶液に浸漬して、液温45℃、pH3、電流密度5A/dm2の条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。 (3) Formation of auxiliary metal layer The carrier on which the organic peeling layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A / dm. Under the condition 2 , nickel having a thickness equivalent to 0.001 μm was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
(4)極薄銅箔形成
補助金属層が形成されたキャリアを、銅濃度60g/L、硫酸濃度200g/Lの硫酸銅溶液に浸漬して、溶液温度50℃、電流密度5A/dm2以上30A/dm2以下で電解し、厚さ1.2μmの極薄銅箔を補助金属層上に形成した。 (4) Ultra-thin copper foil formation The carrier on which the auxiliary metal layer is formed is immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L, and the solution temperature is 50 ° C. and the current density is 5 A / dm 2 or more. Electrolysis was performed at 30 A / dm 2 or less, and an ultrathin copper foil having a thickness of 1.2 μm was formed on the auxiliary metal layer.
補助金属層が形成されたキャリアを、銅濃度60g/L、硫酸濃度200g/Lの硫酸銅溶液に浸漬して、溶液温度50℃、電流密度5A/dm2以上30A/dm2以下で電解し、厚さ1.2μmの極薄銅箔を補助金属層上に形成した。 (4) Ultra-thin copper foil formation The carrier on which the auxiliary metal layer is formed is immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L, and the solution temperature is 50 ° C. and the current density is 5 A / dm 2 or more. Electrolysis was performed at 30 A / dm 2 or less, and an ultrathin copper foil having a thickness of 1.2 μm was formed on the auxiliary metal layer.
(5)粗化処理
上述の極薄銅箔の析出面に対して粗化処理を行った。この粗化処理は、以下の3段階めっきにより行った。各段階のめっき工程では、表1に示す銅濃度、硫酸濃度、塩素濃度及び9-フェニルアクリジン(9PA)濃度を有する硫酸銅溶液を用い、表1に示す液温で、表2に示す電流密度で電着を行った。1段階目及び2段階目のめっきにおける通電時間は1回あたり4.4秒とし、3段階目のめっきにおける通電時間は0.6秒とした。また、極薄銅箔に対するめっき液の線流速はいずれも0.25m/s以上0.35m/s以下とした。こうして例1~3の3種類の粗化処理銅箔を作製した。 (5) Roughening process The roughening process was performed with respect to the precipitation surface of the above-mentioned ultra-thin copper foil. This roughening treatment was performed by the following three-stage plating. In the plating process at each stage, a copper sulfate solution having the copper concentration, sulfuric acid concentration, chlorine concentration and 9-phenylacridine (9PA) concentration shown in Table 1 was used, and the current density shown in Table 2 was obtained at the liquid temperature shown in Table 1. I electrodeposited. The energization time in the first stage and second stage plating was 4.4 seconds per time, and the energization time in the third stage plating was 0.6 seconds. Further, the linear flow rate of the plating solution with respect to the ultrathin copper foil was set to 0.25 m / s or more and 0.35 m / s or less. Thus, three types of roughened copper foils of Examples 1 to 3 were produced.
上述の極薄銅箔の析出面に対して粗化処理を行った。この粗化処理は、以下の3段階めっきにより行った。各段階のめっき工程では、表1に示す銅濃度、硫酸濃度、塩素濃度及び9-フェニルアクリジン(9PA)濃度を有する硫酸銅溶液を用い、表1に示す液温で、表2に示す電流密度で電着を行った。1段階目及び2段階目のめっきにおける通電時間は1回あたり4.4秒とし、3段階目のめっきにおける通電時間は0.6秒とした。また、極薄銅箔に対するめっき液の線流速はいずれも0.25m/s以上0.35m/s以下とした。こうして例1~3の3種類の粗化処理銅箔を作製した。 (5) Roughening process The roughening process was performed with respect to the precipitation surface of the above-mentioned ultra-thin copper foil. This roughening treatment was performed by the following three-stage plating. In the plating process at each stage, a copper sulfate solution having the copper concentration, sulfuric acid concentration, chlorine concentration and 9-phenylacridine (9PA) concentration shown in Table 1 was used, and the current density shown in Table 2 was obtained at the liquid temperature shown in Table 1. I electrodeposited. The energization time in the first stage and second stage plating was 4.4 seconds per time, and the energization time in the third stage plating was 0.6 seconds. Further, the linear flow rate of the plating solution with respect to the ultrathin copper foil was set to 0.25 m / s or more and 0.35 m / s or less. Thus, three types of roughened copper foils of Examples 1 to 3 were produced.
(6)防錆処理
得られたキャリア付銅箔の粗化処理層の表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dm2の条件で、粗化処理層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸1g/L水溶液を用い、pH11、液温25℃、電流密度1A/dm2の条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。 (6) Rust prevention treatment The surface of the roughening treatment layer of the obtained copper foil with a carrier was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment. First, a roughening treatment layer using an electrolytic solution having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2. And the surface of the carrier was subjected to a zinc-nickel alloy plating treatment. Next, a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 1 g / L aqueous solution of chromic acid under the conditions of pH 11, liquid temperature 25 ° C., and current density 1 A / dm 2 .
得られたキャリア付銅箔の粗化処理層の表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dm2の条件で、粗化処理層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸1g/L水溶液を用い、pH11、液温25℃、電流密度1A/dm2の条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。 (6) Rust prevention treatment The surface of the roughening treatment layer of the obtained copper foil with a carrier was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment. First, a roughening treatment layer using an electrolytic solution having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2. And the surface of the carrier was subjected to a zinc-nickel alloy plating treatment. Next, a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 1 g / L aqueous solution of chromic acid under the conditions of pH 11, liquid temperature 25 ° C., and current density 1 A / dm 2 .
(7)シランカップリング剤処理
3-アミノプロピルトリメトキシシラン3g/Lを含む水溶液をキャリア付銅箔の銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。 (7) Silane coupling agent treatment A silane coupling agent is prepared by adsorbing an aqueous solution containing 3 g / L of 3-aminopropyltrimethoxysilane on the surface of the copper foil with a carrier and evaporating water with an electric heater. Processed. At this time, the silane coupling agent treatment was not performed on the carrier side.
3-アミノプロピルトリメトキシシラン3g/Lを含む水溶液をキャリア付銅箔の銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。 (7) Silane coupling agent treatment A silane coupling agent is prepared by adsorbing an aqueous solution containing 3 g / L of 3-aminopropyltrimethoxysilane on the surface of the copper foil with a carrier and evaporating water with an electric heater. Processed. At this time, the silane coupling agent treatment was not performed on the carrier side.
(8)粗化処理銅箔表面の評価
得られた粗化処理銅箔について、表面プロファイルの諸特性を以下のとおり評価した。 (8) Evaluation of roughened copper foil surface About the obtained roughened copper foil, various characteristics of the surface profile were evaluated as follows.
得られた粗化処理銅箔について、表面プロファイルの諸特性を以下のとおり評価した。 (8) Evaluation of roughened copper foil surface About the obtained roughened copper foil, various characteristics of the surface profile were evaluated as follows.
(8-1)粗化粒子の観察
得られた粗化処理銅箔の断面画像を取得し、比L2/Sの平均値及び粗化処理銅箔10μmあたりの粗化粒子の個数を以下のとおり求めた。 (8-1) Observation of Roughened Particles A cross-sectional image of the obtained roughened copper foil was obtained, and the average value of the ratio L 2 / S and the number of roughened particles per 10 μm of the roughened copper foil were determined as follows: I asked as follows.
得られた粗化処理銅箔の断面画像を取得し、比L2/Sの平均値及び粗化処理銅箔10μmあたりの粗化粒子の個数を以下のとおり求めた。 (8-1) Observation of Roughened Particles A cross-sectional image of the obtained roughened copper foil was obtained, and the average value of the ratio L 2 / S and the number of roughened particles per 10 μm of the roughened copper foil were determined as follows: I asked as follows.
(8-1-1)断面画像の取得
FIB-SEM装置(エスアイアイ・ナノテクノロジー株式会社製、SMI3200SE)を用いて、粗化処理銅箔の表面からFIB(Focused Ion Beam)加工を行って銅箔の厚み方向と平行な断面を作製し、この断面を粗化処理面に対して60°の方向からSEM観察(倍率:36000倍)することにより、断面画像を取得した。 (8-1-1) Acquisition of cross-sectional image Using an FIB-SEM apparatus (SII NanoTechnology Co., Ltd., SMI3200SE), the surface of the roughened copper foil was subjected to FIB (Focused Ion Beam) processing to obtain copper. A cross section parallel to the thickness direction of the foil was prepared, and this cross section was observed by SEM (magnification: 36000 times) from a direction of 60 ° with respect to the roughened surface, thereby obtaining a cross section image.
FIB-SEM装置(エスアイアイ・ナノテクノロジー株式会社製、SMI3200SE)を用いて、粗化処理銅箔の表面からFIB(Focused Ion Beam)加工を行って銅箔の厚み方向と平行な断面を作製し、この断面を粗化処理面に対して60°の方向からSEM観察(倍率:36000倍)することにより、断面画像を取得した。 (8-1-1) Acquisition of cross-sectional image Using an FIB-SEM apparatus (SII NanoTechnology Co., Ltd., SMI3200SE), the surface of the roughened copper foil was subjected to FIB (Focused Ion Beam) processing to obtain copper. A cross section parallel to the thickness direction of the foil was prepared, and this cross section was observed by SEM (magnification: 36000 times) from a direction of 60 ° with respect to the roughened surface, thereby obtaining a cross section image.
(8-1-2)比L2/Sの算出
粗化処理銅箔の長さ10μm分の断面画像を画像解析ソフトImage-Pro Plus 5.1J(Media Cybernetics, Inc.製)に取り込み、この解析ソフトの機能「自由曲線AO」により断面中の粗化粒子を1つずつ抽出した。断面画像中に含まれる全ての粗化粒子を抽出した後、粗化粒子の内側が白色となるようにコントラストを調整した。次いで、解析ソフトの機能「カウント/サイズ」を用いて、明るい色に変えた粗化粒子を自動で認識させた後、測定機能により個々の粗化粒子の周囲長L及び面積Sを測定し、比L2/Sを算出した。各例につき以上の操作を異なる3視野について行い、観察された全ての粗化粒子における比L2/Sの平均値を当該サンプルの比L2/Sの平均値として採用した。 (8-1-2) Calculation of ratio L 2 / S A cross-sectional image corresponding to a length of 10 μm of the roughened copper foil was taken into image analysis software Image-Pro Plus 5.1J (manufactured by Media Cybernetics, Inc.). The roughening particles in the cross section were extracted one by one by the function “free curve AO” of the analysis software. After extracting all the roughened particles contained in the cross-sectional image, the contrast was adjusted so that the inside of the roughened particles was white. Next, using the function “count / size” of the analysis software, the roughened particles changed to light colors are automatically recognized, and then the peripheral length L and the area S of each roughened particle are measured by the measurement function. The ratio L 2 / S was calculated. The above operation was performed for three different visual fields for each example, and the average value of the ratio L 2 / S of all observed coarse particles was adopted as the average value of the ratio L 2 / S of the sample.
粗化処理銅箔の長さ10μm分の断面画像を画像解析ソフトImage-Pro Plus 5.1J(Media Cybernetics, Inc.製)に取り込み、この解析ソフトの機能「自由曲線AO」により断面中の粗化粒子を1つずつ抽出した。断面画像中に含まれる全ての粗化粒子を抽出した後、粗化粒子の内側が白色となるようにコントラストを調整した。次いで、解析ソフトの機能「カウント/サイズ」を用いて、明るい色に変えた粗化粒子を自動で認識させた後、測定機能により個々の粗化粒子の周囲長L及び面積Sを測定し、比L2/Sを算出した。各例につき以上の操作を異なる3視野について行い、観察された全ての粗化粒子における比L2/Sの平均値を当該サンプルの比L2/Sの平均値として採用した。 (8-1-2) Calculation of ratio L 2 / S A cross-sectional image corresponding to a length of 10 μm of the roughened copper foil was taken into image analysis software Image-Pro Plus 5.1J (manufactured by Media Cybernetics, Inc.). The roughening particles in the cross section were extracted one by one by the function “free curve AO” of the analysis software. After extracting all the roughened particles contained in the cross-sectional image, the contrast was adjusted so that the inside of the roughened particles was white. Next, using the function “count / size” of the analysis software, the roughened particles changed to light colors are automatically recognized, and then the peripheral length L and the area S of each roughened particle are measured by the measurement function. The ratio L 2 / S was calculated. The above operation was performed for three different visual fields for each example, and the average value of the ratio L 2 / S of all observed coarse particles was adopted as the average value of the ratio L 2 / S of the sample.
(8-1-3)粗化粒子の個数
断面画像にて視野中の粗化粒子の個数と視野の横幅を測定し、長さ10μmあたりの個数に換算した。各例につき異なる3視野について測定を行い、その平均値を当該サンプルにおける長さ10μmあたりの粗化粒子の個数として採用した。 (8-1-3) Number of Roughened Particles The number of roughened particles in the field of view and the horizontal width of the field of view were measured from the cross-sectional image, and converted to the number per 10 μm length. Measurement was performed for three different fields of view for each example, and the average value was adopted as the number of coarse particles per 10 μm length in the sample.
断面画像にて視野中の粗化粒子の個数と視野の横幅を測定し、長さ10μmあたりの個数に換算した。各例につき異なる3視野について測定を行い、その平均値を当該サンプルにおける長さ10μmあたりの粗化粒子の個数として採用した。 (8-1-3) Number of Roughened Particles The number of roughened particles in the field of view and the horizontal width of the field of view were measured from the cross-sectional image, and converted to the number per 10 μm length. Measurement was performed for three different fields of view for each example, and the average value was adopted as the number of coarse particles per 10 μm length in the sample.
(8-2)十点平均粗さRzの測定
150倍の対物レンズを備えたレーザー顕微鏡(株式会社キーエンス製、VK-9510)を用いて粗化処理面を観察し、6550.11μm2の視野画像を取得した。得られた視野画像から10μm×10μmの領域を互いに重複しない範囲で任意に10箇所選び、JIS B 0601-1994に準拠して十点平均粗さRzをそれぞれ測定した。10箇所のRzの平均値を当該サンプルのRzとして採用した。 (8-2) Measurement of 10-point average roughness Rz A roughened surface was observed using a laser microscope (manufactured by Keyence Corporation, VK-9510) equipped with a 150 × objective lens, and a visual field of 6550.11 μm 2 The image was acquired. Ten 10 μm × 10 μm regions were arbitrarily selected from the obtained visual field images so as not to overlap each other, and 10-point average roughness Rz was measured according to JIS B 0601-1994. The average value of 10 Rz was adopted as the Rz of the sample.
150倍の対物レンズを備えたレーザー顕微鏡(株式会社キーエンス製、VK-9510)を用いて粗化処理面を観察し、6550.11μm2の視野画像を取得した。得られた視野画像から10μm×10μmの領域を互いに重複しない範囲で任意に10箇所選び、JIS B 0601-1994に準拠して十点平均粗さRzをそれぞれ測定した。10箇所のRzの平均値を当該サンプルのRzとして採用した。 (8-2) Measurement of 10-point average roughness Rz A roughened surface was observed using a laser microscope (manufactured by Keyence Corporation, VK-9510) equipped with a 150 × objective lens, and a visual field of 6550.11 μm 2 The image was acquired. Ten 10 μm × 10 μm regions were arbitrarily selected from the obtained visual field images so as not to overlap each other, and 10-point average roughness Rz was measured according to JIS B 0601-1994. The average value of 10 Rz was adopted as the Rz of the sample.
(9)銅張積層板の作製
キャリア付銅箔を用いて銅張積層板を作製した。まず、内層基板の表面に、プリプレグ(三菱瓦斯化学株式会社製、GHPL-830NSF、厚さ0.1mm)を介してキャリア付銅箔の粗化処理銅箔を積層し、圧力4.0MPa、温度220℃で90分間熱圧着した後、キャリアを剥離し、銅張積層板を作製した。 (9) Production of copper-clad laminate A copper-clad laminate was produced using a copper foil with a carrier. First, a roughened copper foil with carrier is laminated on the surface of the inner layer substrate via a prepreg (manufactured by Mitsubishi Gas Chemical Co., Ltd., GHPL-830NSF, thickness 0.1 mm), pressure 4.0 MPa, temperature After thermocompression bonding at 220 ° C. for 90 minutes, the carrier was peeled off to produce a copper clad laminate.
キャリア付銅箔を用いて銅張積層板を作製した。まず、内層基板の表面に、プリプレグ(三菱瓦斯化学株式会社製、GHPL-830NSF、厚さ0.1mm)を介してキャリア付銅箔の粗化処理銅箔を積層し、圧力4.0MPa、温度220℃で90分間熱圧着した後、キャリアを剥離し、銅張積層板を作製した。 (9) Production of copper-clad laminate A copper-clad laminate was produced using a copper foil with a carrier. First, a roughened copper foil with carrier is laminated on the surface of the inner layer substrate via a prepreg (manufactured by Mitsubishi Gas Chemical Co., Ltd., GHPL-830NSF, thickness 0.1 mm), pressure 4.0 MPa, temperature After thermocompression bonding at 220 ° C. for 90 minutes, the carrier was peeled off to produce a copper clad laminate.
(10)SAP評価用積層体の作製
次いで、硫酸-過酸化水素系エッチング液で表面の銅箔をすべて除去した後、脱脂、Pd系触媒付与、及び活性化処理を行った。こうして活性化された表面に無電解銅めっき(厚さ:1μm)を行い、SAP法においてドライフィルムが張り合わせられる直前の積層体(以下、SAP評価用積層体という)を得た。これらの工程はSAP法の公知の条件に従って行った。 (10) Fabrication of SAP Evaluation Laminate Next, all the copper foil on the surface was removed with a sulfuric acid-hydrogen peroxide etching solution, followed by degreasing, Pd catalyst application, and activation treatment. The surface thus activated was subjected to electroless copper plating (thickness: 1 μm) to obtain a laminate (hereinafter referred to as “SAP evaluation laminate”) immediately before the dry film was laminated by the SAP method. These steps were performed according to known conditions of the SAP method.
次いで、硫酸-過酸化水素系エッチング液で表面の銅箔をすべて除去した後、脱脂、Pd系触媒付与、及び活性化処理を行った。こうして活性化された表面に無電解銅めっき(厚さ:1μm)を行い、SAP法においてドライフィルムが張り合わせられる直前の積層体(以下、SAP評価用積層体という)を得た。これらの工程はSAP法の公知の条件に従って行った。 (10) Fabrication of SAP Evaluation Laminate Next, all the copper foil on the surface was removed with a sulfuric acid-hydrogen peroxide etching solution, followed by degreasing, Pd catalyst application, and activation treatment. The surface thus activated was subjected to electroless copper plating (thickness: 1 μm) to obtain a laminate (hereinafter referred to as “SAP evaluation laminate”) immediately before the dry film was laminated by the SAP method. These steps were performed according to known conditions of the SAP method.
(11)SAP評価用積層体の評価
上記得られたSAP評価用積層体について、各種特性の評価を以下のとおり行った。 (11) Evaluation of Laminated Body for SAP Evaluation Various characteristics of the obtained laminated body for SAP evaluation were evaluated as follows.
上記得られたSAP評価用積層体について、各種特性の評価を以下のとおり行った。 (11) Evaluation of Laminated Body for SAP Evaluation Various characteristics of the obtained laminated body for SAP evaluation were evaluated as follows.
<めっき回路密着性(シェア強度)>
SAP評価用積層体にドライフィルムを張り合わせ、露光及び現像を行った。現像されたドライフィルムでマスキングされた積層体にパターンめっきで厚さ14μmの銅層を析出させた後、ドライフィルムを剥離した。硫酸-過酸化水素系エッチング液で表出している無電解銅めっきを除去し、高さ15μm、幅10μm、長さ150μmのシェア強度測定用回路サンプルを作製した。接合強度試験機(Nordson DAGE社製、4000Plus Bondtester)を用い、シェア強度測定用回路サンプルを横から押し倒した際のシェア強度を測定した。すなわち、図6に示されるように、回路136が形成された積層体134を可動ステージ132上に載置し、ステージ132ごと図中矢印方向に移動させて、予め固定されている検出器138に回路136を当てることで、回路136の側面に対して横方向の力を与えて押し倒し、その時の力(gf)を検出器138にて測定してシェア強度として採用した。このとき、テスト種類は破壊試験とし、テスト高さ10μm、降下スピード0.050mm/s、テストスピード100.0μm/s、ツール移動量0.05mm、破壊認識点10%の条件で測定を行った。 <Plating circuit adhesion (share strength)>
A dry film was laminated to the laminate for SAP evaluation, and exposure and development were performed. After depositing a copper layer having a thickness of 14 μm by pattern plating on the laminate masked with the developed dry film, the dry film was peeled off. The electroless copper plating exposed by the sulfuric acid-hydrogen peroxide etching solution was removed, and a shear strength measurement circuit sample having a height of 15 μm, a width of 10 μm and a length of 150 μm was produced. The shear strength when the shear strength measurement circuit sample was pushed down from the side was measured using a bond strength tester (4000 Plus Bondtester, manufactured by Nordson Dage). That is, as shown in FIG. 6, thestacked body 134 on which the circuit 136 is formed is placed on the movable stage 132 and moved together with the stage 132 in the direction of the arrow in the figure, to the detector 138 fixed in advance. By applying the circuit 136, a lateral force was applied to the side surface of the circuit 136 to push it down, and the force (gf) at that time was measured by the detector 138 and adopted as the shear strength. At this time, the test type was a destructive test, and measurement was performed under the conditions of a test height of 10 μm, a descent speed of 0.050 mm / s, a test speed of 100.0 μm / s, a tool movement amount of 0.05 mm, and a fracture recognition point of 10%. .
SAP評価用積層体にドライフィルムを張り合わせ、露光及び現像を行った。現像されたドライフィルムでマスキングされた積層体にパターンめっきで厚さ14μmの銅層を析出させた後、ドライフィルムを剥離した。硫酸-過酸化水素系エッチング液で表出している無電解銅めっきを除去し、高さ15μm、幅10μm、長さ150μmのシェア強度測定用回路サンプルを作製した。接合強度試験機(Nordson DAGE社製、4000Plus Bondtester)を用い、シェア強度測定用回路サンプルを横から押し倒した際のシェア強度を測定した。すなわち、図6に示されるように、回路136が形成された積層体134を可動ステージ132上に載置し、ステージ132ごと図中矢印方向に移動させて、予め固定されている検出器138に回路136を当てることで、回路136の側面に対して横方向の力を与えて押し倒し、その時の力(gf)を検出器138にて測定してシェア強度として採用した。このとき、テスト種類は破壊試験とし、テスト高さ10μm、降下スピード0.050mm/s、テストスピード100.0μm/s、ツール移動量0.05mm、破壊認識点10%の条件で測定を行った。 <Plating circuit adhesion (share strength)>
A dry film was laminated to the laminate for SAP evaluation, and exposure and development were performed. After depositing a copper layer having a thickness of 14 μm by pattern plating on the laminate masked with the developed dry film, the dry film was peeled off. The electroless copper plating exposed by the sulfuric acid-hydrogen peroxide etching solution was removed, and a shear strength measurement circuit sample having a height of 15 μm, a width of 10 μm and a length of 150 μm was produced. The shear strength when the shear strength measurement circuit sample was pushed down from the side was measured using a bond strength tester (4000 Plus Bondtester, manufactured by Nordson Dage). That is, as shown in FIG. 6, the
<エッチング性>
SAP評価用積層体に対して硫酸-過酸化水素系エッチング液で0.2μmずつエッチングを行い、表面の銅が完全になくなるまでの量(深さ)を計測した。この計測は、光学顕微鏡(500倍)で確認することにより行った。より詳しくは、0.2μmエッチングする毎に光学顕微鏡で銅の有無を確認する作業を繰り返し、(エッチングの回数)×0.2μmにより得られた値(μm)をエッチング性の指標として用いた。例えば、エッチング性が1.2μmということは、0.2μmのエッチングを6回行ったところで、光学顕微鏡で残存銅が検出されなくなったことを意味する(すなわち0.2μm×6回=1.2μm)。すなわち、この値が小さいほど少ない回数のエッチングで表面の銅を除去できることを意味する。換言すれば、この値が小さいほどエッチング性が良好であることを意味する。 <Etching property>
The laminate for SAP evaluation was etched 0.2 μm at a time with a sulfuric acid-hydrogen peroxide etching solution, and the amount (depth) until copper on the surface was completely removed was measured. This measurement was performed by confirming with an optical microscope (500 times). More specifically, every time 0.2 μm etching was performed, the operation of confirming the presence or absence of copper with an optical microscope was repeated, and the value (μm) obtained by (number of times of etching) × 0.2 μm was used as an index of etching property. For example, an etching property of 1.2 μm means that residual copper is no longer detected by an optical microscope after performing 0.2 μm etching six times (ie, 0.2 μm × 6 times = 1.2 μm). ). That is, as this value is smaller, it means that copper on the surface can be removed by a smaller number of etchings. In other words, the smaller the value, the better the etching property.
SAP評価用積層体に対して硫酸-過酸化水素系エッチング液で0.2μmずつエッチングを行い、表面の銅が完全になくなるまでの量(深さ)を計測した。この計測は、光学顕微鏡(500倍)で確認することにより行った。より詳しくは、0.2μmエッチングする毎に光学顕微鏡で銅の有無を確認する作業を繰り返し、(エッチングの回数)×0.2μmにより得られた値(μm)をエッチング性の指標として用いた。例えば、エッチング性が1.2μmということは、0.2μmのエッチングを6回行ったところで、光学顕微鏡で残存銅が検出されなくなったことを意味する(すなわち0.2μm×6回=1.2μm)。すなわち、この値が小さいほど少ない回数のエッチングで表面の銅を除去できることを意味する。換言すれば、この値が小さいほどエッチング性が良好であることを意味する。 <Etching property>
The laminate for SAP evaluation was etched 0.2 μm at a time with a sulfuric acid-hydrogen peroxide etching solution, and the amount (depth) until copper on the surface was completely removed was measured. This measurement was performed by confirming with an optical microscope (500 times). More specifically, every time 0.2 μm etching was performed, the operation of confirming the presence or absence of copper with an optical microscope was repeated, and the value (μm) obtained by (number of times of etching) × 0.2 μm was used as an index of etching property. For example, an etching property of 1.2 μm means that residual copper is no longer detected by an optical microscope after performing 0.2 μm etching six times (ie, 0.2 μm × 6 times = 1.2 μm). ). That is, as this value is smaller, it means that copper on the surface can be removed by a smaller number of etchings. In other words, the smaller the value, the better the etching property.
<ドライフィルム解像性(最小L/S)>
SAP評価用積層体の表面に厚さ25μmのドライフィルムを張り合わせ、ライン/スペース(L/S)が2μm/2μmから15μm/15μmまでのパターンが形成されたマスクを用いて露光及び現像を行った。このときの露光量は125mJとした。現像後のサンプルの表面を光学顕微鏡(倍率:500倍)で観察し、問題なく現像が行えたL/Sにおける最小の(すなわち最も微細な)L/Sをドライフィルム解像性の指標として採用した。例えば、ドライフィルム解像性評価の指標である最小L/S=10μm/10μmということは、L/S=15μm/15μmから10μm/10μmまでは問題無く解像できたことを意味する。例えば、問題無く解像できた場合はドライフィルムパターン間で鮮明なコントラストが観察されるのに対し、解像が良好に行われなかった場合にはドライフィルムパターン間に黒ずんだ部分が観察され鮮明なコントラストが観察されない。 <Dry film resolution (minimum L / S)>
A dry film having a thickness of 25 μm was laminated on the surface of the laminate for SAP evaluation, and exposure and development were performed using a mask in which a line / space (L / S) pattern of 2 μm / 2 μm to 15 μm / 15 μm was formed. . The exposure amount at this time was set to 125 mJ. The surface of the sample after development is observed with an optical microscope (magnification: 500 times), and the smallest (that is, the finest) L / S in the L / S that can be developed without any problem is adopted as an index for the resolution of the dry film. did. For example, the minimum L / S = 10 μm / 10 μm, which is an index for evaluating the dry film resolution, means that the resolution could be achieved without any problem from L / S = 15 μm / 15 μm to 10 μm / 10 μm. For example, a clear contrast is observed between the dry film patterns when the resolution can be achieved without any problem, whereas a dark portion is observed between the dry film patterns when the resolution is not performed well. Contrast is not observed.
SAP評価用積層体の表面に厚さ25μmのドライフィルムを張り合わせ、ライン/スペース(L/S)が2μm/2μmから15μm/15μmまでのパターンが形成されたマスクを用いて露光及び現像を行った。このときの露光量は125mJとした。現像後のサンプルの表面を光学顕微鏡(倍率:500倍)で観察し、問題なく現像が行えたL/Sにおける最小の(すなわち最も微細な)L/Sをドライフィルム解像性の指標として採用した。例えば、ドライフィルム解像性評価の指標である最小L/S=10μm/10μmということは、L/S=15μm/15μmから10μm/10μmまでは問題無く解像できたことを意味する。例えば、問題無く解像できた場合はドライフィルムパターン間で鮮明なコントラストが観察されるのに対し、解像が良好に行われなかった場合にはドライフィルムパターン間に黒ずんだ部分が観察され鮮明なコントラストが観察されない。 <Dry film resolution (minimum L / S)>
A dry film having a thickness of 25 μm was laminated on the surface of the laminate for SAP evaluation, and exposure and development were performed using a mask in which a line / space (L / S) pattern of 2 μm / 2 μm to 15 μm / 15 μm was formed. . The exposure amount at this time was set to 125 mJ. The surface of the sample after development is observed with an optical microscope (magnification: 500 times), and the smallest (that is, the finest) L / S in the L / S that can be developed without any problem is adopted as an index for the resolution of the dry film. did. For example, the minimum L / S = 10 μm / 10 μm, which is an index for evaluating the dry film resolution, means that the resolution could be achieved without any problem from L / S = 15 μm / 15 μm to 10 μm / 10 μm. For example, a clear contrast is observed between the dry film patterns when the resolution can be achieved without any problem, whereas a dark portion is observed between the dry film patterns when the resolution is not performed well. Contrast is not observed.
結果
例1~3において得られた評価結果は表3に示されるとおりであった。 Results The evaluation results obtained in Examples 1 to 3 are as shown in Table 3.
例1~3において得られた評価結果は表3に示されるとおりであった。 Results The evaluation results obtained in Examples 1 to 3 are as shown in Table 3.
Claims (9)
- 少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、前記粗化処理面が複数の粗化粒子を備えてなり、
前記粗化処理銅箔の長さ10μmの断面における前記粗化粒子の面積S(μm2)に対する前記粗化粒子の周囲長L(μm)の2乗の比L2/Sの平均値が16以上30以下であり、かつ、前記粗化処理面の十点平均粗さRzが0.7μm以上1.7μm以下である、粗化処理銅箔。 A roughened copper foil having a roughened surface on at least one side, the roughened surface comprising a plurality of roughened particles,
The average value of the ratio L 2 / S of the square of the peripheral length L (μm) of the roughened particles to the area S (μm 2 ) of the roughened particles in the cross section having a length of 10 μm of the roughened copper foil is 16 A roughened copper foil having a ten-point average roughness Rz of 0.7 μm or more and 1.7 μm or less, which is 30 or more and 30 or less. - 前記比L2/Sが19以上27以下である、請求項1に記載の粗化処理銅箔。 The roughened copper foil according to claim 1, wherein the ratio L 2 / S is 19 or more and 27 or less.
- 前記粗化処理銅箔の長さ10μmの断面における前記粗化粒子の個数が20個以上70個以下である、請求項1又は2に記載の粗化処理銅箔。 The roughened copper foil according to claim 1 or 2, wherein the number of the roughened particles in a cross section having a length of 10 µm of the roughened copper foil is 20 or more and 70 or less.
- プリント配線板用の絶縁樹脂層に凹凸形状を転写するために用いられる、請求項1~3のいずれか一項に記載の粗化処理銅箔。 The roughened copper foil according to any one of claims 1 to 3, which is used for transferring the uneven shape to an insulating resin layer for a printed wiring board.
- セミアディティブ法(SAP)によるプリント配線板の作製に用いられる、請求項1~4のいずれか一項に記載の粗化処理銅箔。 The roughened copper foil according to any one of claims 1 to 4, which is used for production of a printed wiring board by a semi-additive method (SAP).
- キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた請求項1~5のいずれか一項に記載の粗化処理銅箔とを備えた、キャリア付銅箔。 A roughened copper foil according to any one of claims 1 to 5, provided with a carrier, a release layer provided on the carrier, and the roughened surface on the release layer. A copper foil with a carrier.
- 請求項1~5のいずれか一項に記載の粗化処理銅箔又は請求項6に記載のキャリア付銅箔を備えた銅張積層板。 A copper-clad laminate comprising the roughened copper foil according to any one of claims 1 to 5 or the copper foil with a carrier according to claim 6.
- 請求項1~5のいずれか一項に記載の粗化処理銅箔又は請求項6に記載のキャリア付銅箔を用いて得られたプリント配線板。 A printed wiring board obtained by using the roughened copper foil according to any one of claims 1 to 5 or the copper foil with a carrier according to claim 6.
- 請求項1~5のいずれか一項に記載の粗化処理銅箔又は請求項6に記載のキャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法。
A method for producing a printed wiring board, comprising producing a printed wiring board using the roughened copper foil according to any one of claims 1 to 5 or the copper foil with a carrier according to claim 6. .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980020819.5A CN111886367B (en) | 2018-03-27 | 2019-03-20 | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board |
KR1020207023015A KR102647658B1 (en) | 2018-03-27 | 2019-03-20 | Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board |
JP2020510808A JP7166335B2 (en) | 2018-03-27 | 2019-03-20 | Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018060635 | 2018-03-27 | ||
JP2018-060635 | 2018-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188712A1 true WO2019188712A1 (en) | 2019-10-03 |
Family
ID=68060016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/011864 WO2019188712A1 (en) | 2018-03-27 | 2019-03-20 | Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7166335B2 (en) |
KR (1) | KR102647658B1 (en) |
CN (1) | CN111886367B (en) |
TW (1) | TWI745668B (en) |
WO (1) | WO2019188712A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7051988B1 (en) | 2020-11-27 | 2022-04-11 | 古河電気工業株式会社 | Roughened copper foil, copper-clad laminate, and printed wiring board |
WO2022082933A1 (en) * | 2020-10-19 | 2022-04-28 | 九江德福科技股份有限公司 | Production method for ultrathin high-strength electronic copper foil |
JP2024515884A (en) * | 2021-06-08 | 2024-04-10 | 広州方邦電子股▲ふん▼有限公司 | Metal foil, metal foil with carrier, copper-clad laminate and printed circuit board |
JP2025076229A (en) * | 2023-11-01 | 2025-05-15 | 南亞塑膠工業股▲分▼有限公司 | Ultra-thin copper foil with carrier and its manufacturing method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7259093B2 (en) * | 2020-02-04 | 2023-04-17 | 三井金属鉱業株式会社 | Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board |
WO2023239194A1 (en) * | 2022-06-09 | 2023-12-14 | 와이엠티 주식회사 | Metal layer, carrier-attached metal foil comprising same, and printed circuit board comprising same |
CN115679305B (en) * | 2023-01-03 | 2023-03-10 | 湖南源康利科技有限公司 | Chemical copper plating treatment process for surface of aluminum foil for printed board |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196576A1 (en) * | 2013-06-04 | 2014-12-11 | Jx日鉱日石金属株式会社 | Copper foil with carrier, copper-clad laminate, printed wiring board, electric appliance, resin layer, production method for copper foil with carrier, and production method for printed wiring board |
WO2016158775A1 (en) * | 2015-03-31 | 2016-10-06 | 三井金属鉱業株式会社 | Roughened copper foil, copper foil provided with carrier, copper-clad laminated sheet, and printed wiring board |
WO2018211951A1 (en) * | 2017-05-19 | 2018-11-22 | 三井金属鉱業株式会社 | Roughened copper foil, carrier-attached copper foil, copper clad laminate, and printed wiring board |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI432615B (en) * | 2009-02-13 | 2014-04-01 | Furukawa Electric Co Ltd | A metal foil, a method for manufacturing the same, an insulating substrate, and a wiring substrate |
JP6205269B2 (en) * | 2011-11-04 | 2017-09-27 | Jx金属株式会社 | Copper foil for printed circuit, copper-clad laminate, printed wiring board, printed circuit board, and electronic equipment |
JP5919303B2 (en) * | 2012-01-18 | 2016-05-18 | Jx金属株式会社 | Surface-treated copper foil and copper-clad laminate using the same |
CN107532322B (en) * | 2015-04-28 | 2019-07-16 | 三井金属矿业株式会社 | Roughening treatment copper foil and printed circuit board |
JP6248231B1 (en) * | 2016-02-10 | 2017-12-13 | 古河電気工業株式会社 | Surface-treated copper foil and copper-clad laminate produced using the same |
JP2017193778A (en) * | 2016-04-15 | 2017-10-26 | Jx金属株式会社 | Copper foil, copper foil for high frequency circuit, copper foil with carrier, copper foil with carrier for high frequency circuit, laminate, method for manufacturing printed wiring board and method for producing electronic apparatus |
-
2019
- 2019-03-20 WO PCT/JP2019/011864 patent/WO2019188712A1/en active Application Filing
- 2019-03-20 JP JP2020510808A patent/JP7166335B2/en active Active
- 2019-03-20 CN CN201980020819.5A patent/CN111886367B/en active Active
- 2019-03-20 KR KR1020207023015A patent/KR102647658B1/en active Active
- 2019-03-26 TW TW108110462A patent/TWI745668B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196576A1 (en) * | 2013-06-04 | 2014-12-11 | Jx日鉱日石金属株式会社 | Copper foil with carrier, copper-clad laminate, printed wiring board, electric appliance, resin layer, production method for copper foil with carrier, and production method for printed wiring board |
WO2016158775A1 (en) * | 2015-03-31 | 2016-10-06 | 三井金属鉱業株式会社 | Roughened copper foil, copper foil provided with carrier, copper-clad laminated sheet, and printed wiring board |
WO2018211951A1 (en) * | 2017-05-19 | 2018-11-22 | 三井金属鉱業株式会社 | Roughened copper foil, carrier-attached copper foil, copper clad laminate, and printed wiring board |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022082933A1 (en) * | 2020-10-19 | 2022-04-28 | 九江德福科技股份有限公司 | Production method for ultrathin high-strength electronic copper foil |
JP7051988B1 (en) | 2020-11-27 | 2022-04-11 | 古河電気工業株式会社 | Roughened copper foil, copper-clad laminate, and printed wiring board |
WO2022113806A1 (en) * | 2020-11-27 | 2022-06-02 | 古河電気工業株式会社 | Roughened copper foil, copper-clad laminate, and printed wiring board |
JP2022085378A (en) * | 2020-11-27 | 2022-06-08 | 古河電気工業株式会社 | Roughened copper foil, copper-clad laminate, and printed wiring board |
JP2024515884A (en) * | 2021-06-08 | 2024-04-10 | 広州方邦電子股▲ふん▼有限公司 | Metal foil, metal foil with carrier, copper-clad laminate and printed circuit board |
JP2025076229A (en) * | 2023-11-01 | 2025-05-15 | 南亞塑膠工業股▲分▼有限公司 | Ultra-thin copper foil with carrier and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TW201942370A (en) | 2019-11-01 |
CN111886367B (en) | 2023-05-16 |
CN111886367A (en) | 2020-11-03 |
KR102647658B1 (en) | 2024-03-15 |
JPWO2019188712A1 (en) | 2021-04-22 |
JP7166335B2 (en) | 2022-11-07 |
TWI745668B (en) | 2021-11-11 |
KR20200135303A (en) | 2020-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6945523B2 (en) | Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them. | |
JP6905157B2 (en) | Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board | |
WO2019188712A1 (en) | Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board | |
JP7453154B2 (en) | Surface treated copper foil, copper foil with carrier, copper clad laminates and printed wiring boards | |
JP6430092B1 (en) | Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board | |
JP6352449B2 (en) | Ultra-thin copper foil with carrier and method for producing the same | |
JP6293365B2 (en) | Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board | |
KR102832487B1 (en) | Copper foil with harmonic treatment, copper foil with carrier, copper-clad laminate and printed wiring board | |
WO2017141983A1 (en) | Printed circuit board production method | |
WO2016152390A1 (en) | Ultra-thin copper foil with carrier, manufacturing method therefor, copper-clad laminate, and printed wiring board | |
TWI853007B (en) | Metal foil for printed wiring board, carrier metal foil and metal-clad laminate, and method for producing printed wiring board using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776214 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020510808 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19776214 Country of ref document: EP Kind code of ref document: A1 |