[go: up one dir, main page]

WO2019188321A1 - Solid-state imaging device, imaging device, and electronic device - Google Patents

Solid-state imaging device, imaging device, and electronic device Download PDF

Info

Publication number
WO2019188321A1
WO2019188321A1 PCT/JP2019/010458 JP2019010458W WO2019188321A1 WO 2019188321 A1 WO2019188321 A1 WO 2019188321A1 JP 2019010458 W JP2019010458 W JP 2019010458W WO 2019188321 A1 WO2019188321 A1 WO 2019188321A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
signal line
pixel
imaging device
solid
Prior art date
Application number
PCT/JP2019/010458
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 中溝
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2019188321A1 publication Critical patent/WO2019188321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to a solid-state imaging device, an imaging device, and an electronic device, and more particularly, to a solid-state imaging device, an imaging device, and an electronic device that improve charge transfer performance and charge retention performance in each pixel of the solid-state imaging device. .
  • the gate bias voltage of the transmission transistor and the initial voltage of the floating diffusion node are increased to a level higher than the power supply voltage, thereby increasing the capacitance of the photodiode and reducing the image lag phenomenon.
  • Patent Document 1 Has been proposed (see Patent Document 1).
  • the gate voltage of the transfer transistor is controlled to the first gate voltage to transfer electrons as a signal charge from the phototransistor to the charge detection unit, and in the second period after the first period
  • the gate voltage of the transfer transistor is set to a second gate voltage that increases the capability of transferring the signal charge to the charge detection unit, compared to the first gate voltage, in the second period, while making the gate of the transistor high impedance.
  • a control technique has been proposed (see Patent Document 2).
  • Patent Document 1 it is necessary to create a double gate, and it is impossible to fabricate with a normal CMOS (Complementary Metal Metal Oxide Semiconductor) process. Increase.
  • CMOS Complementary Metal Metal Oxide Semiconductor
  • two types of gate control lines are required for each pixel, which increases the area and power consumption of the drive circuit.
  • the present disclosure has been made in view of such a situation, and in particular, improves charge transfer performance and charge retention performance in each pixel of the solid-state imaging device.
  • a solid-state imaging device, an imaging device, and an electronic device include a transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion, and opens and closes the transfer gate. It is a solid-state imaging device including a floating mechanism unit that brings a control signal line that supplies a control signal to be controlled into a floating state, and an additional wiring that is capacitively coupled to the control signal line.
  • a control signal for supplying a control signal for transferring a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion by a transfer gate and that controls the opening and closing of the transfer gate.
  • the line is in a floating state, and includes an additional wiring that is capacitively coupled to the control signal line.
  • FIG. 3 is a diagram illustrating a configuration example of a physical layout in the circuit configuration of FIG. 2. It is a figure explaining AB cross section of FIG. It is a figure explaining the 1st modification of 1st Embodiment of the imaging device of this indication. It is a figure explaining the 2nd modification of 1st Embodiment of the imaging device of this indication. It is a figure explaining the structural example of the physical layout in the circuit structure of FIG.
  • FIG. 16 is a timing chart for explaining the operation of the imaging apparatus having the circuit configuration of FIG. It is a block diagram which shows the structural example of the imaging device as an electronic device to which the camera module of this indication is applied. It is a figure explaining the usage example of the camera module to which the technique of this indication is applied. It is a figure which shows an example of a schematic structure of an endoscopic surgery system. It is a block diagram which shows an example of a function structure of a camera head and CCU. It is a block diagram which shows an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
  • control circuit 31 includes a control circuit 31, a driver 32, a pixel array 33, a column processing unit 34, and a signal processing unit 35.
  • the control circuit 31 includes a processor and a memory, and controls the entire operation of the solid-state imaging device 11.
  • the control circuit 31 controls the pixel array 33 and instructs the driver 32 to capture an image.
  • the driver 32 is controlled by the control circuit 31 and accumulates charges corresponding to incident light for each pixel arranged in the pixel array 33 via the control signal line 43 and the additional wiring 44 for each row.
  • a control signal for controlling an operation related to reading and transfer of charges or resetting is output.
  • the pixel array 33 is composed of, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor or the like, and pixels 41 that generate pixel signals corresponding to the amount of incident light are arranged in an array. Based on a control signal supplied via the line 43 and the additional wiring 44, operations such as accumulation of pixel signals (charges) of each pixel 41, readout and transfer of pixel signals (charges), or reset are performed in units of rows. Be controlled. Then, the pixel signal read from each pixel 41 of the pixel array 33 in units of rows is output to the column processing unit 34 through the vertical transfer line 45.
  • CMOS Complementary Metal Oxide Semiconductor
  • the column processing unit 34 sequentially AD (Analog / Digital) converts the pixel signals supplied in units of rows from the pixel array 33 via the vertical transfer lines 45, and transfers the pixel signals in units of rows. To the unit 35.
  • AD Analog / Digital
  • the signal processing unit 35 is composed of, for example, an LSI (Large Scale Integration) and sequentially accumulates pixel signals supplied from the column processing unit 34, and when an image for one frame is formed, it is demosaiced and synthesized. The general development process is performed and output.
  • LSI Large Scale Integration
  • the pixel circuit constituting the pixel 41 includes, for example, a photodiode (PD) 51 as a photoelectric conversion element.
  • the pixel circuit constituting the pixel 41 includes, for example, a transfer transistor (TG: transfer gate) 52, a reset transistor (RST) 54, in addition to the photodiode 51 and the floating diffusion (FD) 53 that accumulates electric charges.
  • TG transfer gate
  • RST reset transistor
  • AMP amplification transistor
  • SEL selection transistor
  • the pixel 41-1-1 includes a photodiode 51, a transfer transistor (TG: transfer gate) 52, a floating diffusion (FD) 53, a reset transistor (RST) 54, and an amplification transistor (AMP) 55.
  • the selection transistor (SEL) 56 are denoted by reference numerals, but the same applies to the other pixels 41, and the reference numerals are omitted.
  • a transfer signal TG, a reset signal RST, and a selection signal SEL which are drive signals (control signals) for driving the pixel circuit, are appropriately supplied from the driver 32 to the pixel circuit constituting the pixel 41. That is, the transfer signal TG is applied to the gate electrode of the transfer transistor 52, the reset signal RST is applied to the gate electrode of the reset transistor 54, and the selection signal SEL is applied to the gate electrode of the selection transistor 106. Among these, the transfer signal TG is applied to the gate electrode of the transfer transistor 52 via the switch 42 and the control signal line 43.
  • the photodiode 51 has an anode electrode connected to a low-potential-side power source (for example, ground), and photoelectrically converts received light (incident light) into photocharge (here, photoelectrons) having a charge amount corresponding to the amount of light. Then, the photocharge is accumulated.
  • the cathode electrode of the photodiode 51 is electrically connected to the gate electrode of the amplification transistor 55 through the transfer transistor 52.
  • a node electrically connected to the gate electrode of the amplification transistor 55 is a floating diffusion / floating diffusion region (FD) portion 53.
  • the transfer transistor 52 is connected between the cathode electrode of the photodiode 51 and the FD portion 53.
  • a transfer signal TG is supplied from the driver 32 to the gate electrode of the transfer transistor 52 via the switch 42 and the control signal line 43.
  • the transfer transistor 52 becomes conductive, and the photoelectric charge photoelectrically converted by the photodiode 51 is transferred to the FD unit 53.
  • the reset transistor 54 has a drain electrode connected to a power source (not shown) and a source electrode connected to the FD portion 53.
  • a reset signal RST is supplied from the driver 32 to the gate electrode of the reset transistor 54.
  • the reset transistor 54 becomes conductive, and the FD unit 53 is reset by throwing away the charge of the FD unit 53 to the pixel power supply.
  • the amplification transistor 55 has a gate electrode connected to the FD portion 53 and a drain electrode connected to a power source (not shown). Then, the amplification transistor 55 outputs the potential of the FD unit 53 after being reset by the reset transistor 54 as a reset signal (reset level) Vreset. Further, the amplification transistor 55 outputs the potential of the FD unit 53 after the signal charge is transferred by the transfer transistor 52 as a light accumulation signal (signal level).
  • the pixel value of each pixel 41 is the difference between the light accumulation signal (signal level) and the reset signal (reset level).
  • the selection transistor 56 has, for example, a drain electrode connected to the source electrode of the amplification transistor 55 and a source electrode connected to the vertical signal line VSL45.
  • a selection signal SEL is supplied from the driver 32 to the gate electrode of the selection transistor 56.
  • the selection transistor 56 becomes conductive, and the signal output from the amplification transistor 55 is read out to the vertical signal line (VSL) 45 with the pixel 41 selected.
  • VSL vertical signal lines
  • VSL vertical signal lines
  • the additional wirings 44 are arranged in the pixel array 33 in the horizontal direction in the same manner as the control signal lines 43 and are capacitively coupled with the control signal lines 43 in each pixel 41 by a capacitor C.
  • the capacitance C is a MOS capacitance, a MIM (Metal-Insulator-Metal) / MOM (Metal-Oxide-Metal) capacitance, a Poly-Poly capacitance (capacitance in which both counter electrodes are made of polysilicon), or a parasitic formed by wiring.
  • An additional capacitor including a capacitor may be used, and it is not necessary that a capacitor circuit such as a capacitor is actually provided. Further, it is desirable that the values of the capacitors C1-1, C1-2,.
  • the switch 42 is, for example, a MOS (Metal (Oxide Semiconductor) transistor switch.
  • switches 42-1 to 42-N are provided for the control signal lines 43-1 to 43-N, respectively, and each of the control signal lines 43-1 to 43-N has a capacitance.
  • Combined additional wirings 44-1 to 44-N are provided.
  • the potential of the FD portion 53 after reset is the reset level Vreset, and then the potential of the FD portion 53 after transfer of the signal charge is the signal level Vsig in order. VSL) 45.
  • the selection transistor 56 has a circuit configuration connected between the source electrode of the amplification transistor 55 and the vertical signal line (VSL) 45.
  • VSL vertical signal line
  • a pixel power supply (not shown) and a drain electrode of the amplification transistor 55 are not connected. It is also possible to adopt a circuit configuration connected between them.
  • the pixel circuit constituting the pixel 41 is not limited to the pixel configuration including the above four transistors.
  • control signal line 43-1 and the additional wiring 44-1 respectively, of the control signal High or Low, the switch 42-1 on (High) or off (Low), and The waveforms of the control signal High or Low in each of the control signal line 43-N and the additional wiring 44-N and the ON (High) or OFF (Low) waveform of the switch 42-N are shown. Also, there are various timings in the pixel signal reading process of the first row from the left, the pixel signal reading process of the N row, the discharge reset process of the pixel signal of the first row, and the discharge reset process of the pixel signal of the N row. It is shown.
  • the driver 32 controls the switch 42-1 to be on.
  • the driver 32 sets the control signal of the control signal line 43-1 to high.
  • the transfer transistor 52 is turned on, and the charge accumulated in the photodiode 51 of the pixel 41-1 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is closed.
  • the driver 32 turns off the switch 42-1 while maintaining the control signal of the control signal line 43-1 in the high state. As a result, the control signal line 43-1 enters a floating state.
  • V TGC1r (C cuptotal / C TGCtotal ) ⁇ V swing ... (1)
  • V TGC1r is the rising potential
  • C TGCtotal is the total capacity of the control signal line 43-1
  • C cuptotal is the total capacity between the control signal line 43-1 and the additional wiring 44-1
  • V swing is the amplitude of the control signal of the additional wiring 44-1.
  • the charge transfer performance from the photodiode 51 of the pixel 41-1 is improved, and the readout time can be shortened. If the high level of the potential of the control signal on the control signal line 43-1 is lowered, the voltage can be lowered with the same transfer capability.
  • the driver 32 controls the switch 42-1 to be on, and lowers the potentials of the control signals of the control signal line 43-1 and the additional wiring 44-1, thereby reducing the pixel
  • the signal reading process is completed.
  • the driver 32 controls the switch 42-N to be turned on.
  • the driver 32 sets the control signal of the control signal line 43-N to high. By this process, the transfer transistor 52 is turned on, and the charge accumulated in the photodiode 51 is transferred to the FD unit 53.
  • the driver 32 turns off the switch 42-N while maintaining the control signal of the control signal line 43-N in the high state. As a result, the control signal line 43-1 enters a floating state.
  • the driver 32 sets the control signal for the additional wiring 44-N to high.
  • the control signal line 43-N is in a floating state, as indicated by a solid circle Zb due to capacitive coupling with the additional wiring 44-N, the control signal line 43-N The potential rises by the rising potential ⁇ V TGC1r .
  • the driver 32 controls the switch 42-N to be on.
  • the control signal potentials of the control signal line 43-N and the additional wiring 44-N become low, and the pixel signal readout process is completed.
  • a reset (shutter) operation is performed by discharging charges from the photodiode 51 so that a signal with a desired accumulation time can be obtained in accordance with the read timing.
  • the driver 32 sets the control signal potential of the control signal line 43-1 and the additional wiring 44-1 to high, sets the reset signal RST to the gate electrode of the reset transistor 54, and transfers the transfer transistor. 52 and the reset transistor 54 are turned on to discharge the charge in the photodiode 51.
  • the potential of the control signal on the control signal line 43-1 is set low, the reset signal RST is set low on the gate electrode of the reset transistor 54, and the reset transistor 54 is turned off.
  • the driver 32 controls the switch 42-1 to be turned off. As a result, the control signal line 43-1 enters a floating state.
  • the driver 32 sets the control signal potentials of the control signal line 43-1 and the additional wiring 44-1 to low.
  • ⁇ V TGC1f is the drop potential
  • C TGCtotal is the total capacity of the control signal line 43-1
  • C cuptotal is the total capacity between the control signal line 43-1 and the additional wiring 44-1
  • V swing is the amplitude of the control signal of the additional wiring 44-1.
  • the potential of the control signal on the control signal line 43-1 is held until the switch 42-1 is turned on next time.
  • the driver 32 sets the control signal potentials of the control signal line 43-N and the additional wiring 44-N to high, and the reset transistor 54
  • the reset signal RST is set to high at the gate electrode of the first electrode, and the transfer transistor 52 and the reset transistor 54 are turned on to discharge the charge in the photodiode 51.
  • the potential of the control signal on the control signal line 43-1 is set low, the reset signal RST is set low on the gate electrode of the reset transistor 54, and the reset transistor 54 is turned off.
  • the driver 32 controls the switch 42-N to be turned off. As a result, the control signal line 43-N enters a floating state.
  • the driver 32 sets the control signal potentials of the control signal line 43-N and the additional wiring 44-N to low.
  • the potential of the control signal on the control signal line 43-N is held until the next time the switch 42-N is turned on.
  • the potential of the control signal on the control signal line 43-N drops, whereby the amount of charge that can be held in the photodiode 51 is improved, and the saturation characteristics can be improved.
  • pinning of the surface of the photodiode 51 can be enhanced.
  • the power supply voltage supplied to the circuit is used as the high voltage of the control signal of the control signal line 43 and the additional wiring 44, and low generally increases the saturation signal amount of the photodiode 51 and dark current.
  • a voltage lower than 0 V (or more) is used for the purpose of suppressing the above.
  • the pixel signal discharge process is started after the completion of the pixel signal read process for the Nth row, and the pixel signal read process is not necessarily started after the pixel signal discharge process is completed.
  • the pixel signal discharge process for the first row is performed during the pixel signal read process for the second and subsequent rows, and the pixel signal read process for the first row during the pixel signal discharge process for the second and subsequent rows. May be performed. Further, the processing order does not necessarily have to be performed in the order of the first row, the second row, the third row,...
  • FIG. 4 shows a layout example showing a planar arrangement for two pixels arranged in the horizontal direction of the pixels 41 arranged in an array. Note that the area surrounded by the dotted line is the arrangement of one pixel of the pixel 41. In the figure, only the pixel 41 in the middle left part is given a reference, but the reference is omitted for the other pixels 41. However, each configuration is the same.
  • a photodiode 51 is disposed on the upper right portion, and a selection transistor 56, an amplification transistor 55, and a reset transistor 54 are disposed on the left side from above.
  • a transfer transistor 52 and an FD unit 53 are arranged from the photodiode 51 side.
  • control signal line 43 connected via the through electrode 71 is arranged on the transfer transistor 52, and an additional wiring 44 is arranged so that a wiring capacitance C is formed.
  • FIG. 5 The left part of FIG. 5 is an AB cross-sectional view of FIG.
  • each of the control signal line 43 and the additional wiring 44 has a thickness, and the additional capacitance generated between the wirings facing each other forms an inter-wiring capacitance C cuptotal .
  • control signal line 43 includes a plurality of control signal lines 43 such as the control signal lines 43-A and 43-B. 71-B may be connected to the transfer transistor 52.
  • control signal line 43 and the additional wiring 44 may be laid out so as to be stacked in the vertical direction.
  • the layout may be such that the area where the control signal line 43 and the additional wiring 44 face each other increases.
  • convex wirings 43 a and 44 a are formed alternately in the opposing portions of the control signal line 43 and the additional wiring 44, and the control signal line 43 and the additional wiring 44 are opposed to each other.
  • the area to be increased is formed.
  • the inter-wiring capacitance C cuptotal of the control signal line 43 and the additional wiring 44 can be increased.
  • two additional wirings 44 -A and 44 -B may be formed for one control signal line 43.
  • two additional wirings 44-A-1 and 44-B-1 are provided for the control signal line 43-1.
  • the control signal line 43-N A configuration in the case where two additional wirings 44-AN and 44-BN are provided is shown. By doing so, the inter-wiring capacitance C cuptotal of the control signal line 43 and the additional wiring 44 can be increased.
  • the driver 32 may be the same for the two additional wirings 44-A and 44-B, or may be operated by different drivers 32 individually. . By providing different drivers 32 for the additional wirings 44-A and 44-B individually, it is possible to increase the operation speed.
  • the two additional wirings 44-A and 44-B may be laid out in the horizontal direction with the control signal line 43 sandwiched in the horizontal direction.
  • the two additional wirings 44 -A and 44 -B may be formed on the upper or lower metal wiring layer of the control signal line 43 with the control signal line 43 interposed therebetween.
  • the inter-wiring capacitance C cuptotal of the control signal line 43 and the additional wiring 44 can be increased.
  • control signal output via the control signal line 43 and the additional wiring 44 has been described as being controlled by the driver 32 and the switch 42.
  • the output stage of the driver 32 is controlled by a PMOS or NMOS.
  • the switch may be controlled by opening / closing a switch made of PMOS or NMOS.
  • FIG. 9 shows a configuration example of a pixel circuit in which the output stage of the driver 32 is formed by a switch made of PMOS or NMOS.
  • -B is formed.
  • the control signal line 43 is brought into a floating state by turning off the switch 42.
  • the switches 91-A and 91-B are simultaneously turned off. As a result, a floating state is obtained.
  • Second embodiment >> ⁇ Configuration Example of Pixel Circuit in Second Embodiment>
  • the configuration in which one FD portion 53 is provided for each pixel has been described.
  • a shared pixel configuration in which one FD portion 53 is shared for a plurality of pixels may be employed. .
  • FIG. 10 shows a configuration example of a pixel circuit having a shared pixel configuration.
  • a pixel sharing block 111 in which one FD portion is shared for four pixels is configured.
  • pixel sharing blocks 111-1-1 to 111-M-1 are included.
  • An example of horizontal arrangement is shown.
  • the pixel sharing blocks 111 are also arranged in an array.
  • the pixel sharing block 111 is provided with photodiodes 51-1 to 51-4 and transfer transistors 52-1 to 52-4 for 4 pixels (2 pixels ⁇ 2 pixels).
  • one FD section 53 is shared and connected to the configurations of the photodiodes 51-1 to 51-4 and the transfer transistors 52-1 to 52-4 for the four pixels. Has been.
  • control signal lines 43-1 to 43-4 are connected to the respective gate electrodes of the transfer transistors 52-1 to 52-4, and the control signal lines 43-1 to 43-4 are sandwiched therebetween.
  • additional wirings 44-1 and 44-2 are arranged.
  • the additional wiring 44-1, the control signal lines 43-1 to 43-4, and the additional wiring 44-2 are arranged in this order from the top in the drawing. Also, the capacitors C1-1-a to C1-1-e,..., And the capacitors C1-Ma to CN-Me between the control signal lines 43 and the additional wirings 44 are all equal. It is desirable to be arranged in.
  • the FD portion 53 has a number of pixels 41 other than 4 pixels. You may make it share with.
  • the FD 53 may be provided for each pixel 41 individually. However, even when the FD 53 is provided individually for each pixel 41, the additional wiring 44-1, the control signal lines 43-1 to 43-4, and the additional wiring 44-2 for four pixels in the vertical direction are provided. In order, they are arranged so that the capacitances between the wirings are all equal.
  • FIG. 11 only the reference numerals are given on the left side in the figure.
  • the driver 32 controls the switch 42-1 to be on at time t121.
  • the driver 32 sets the control signal of the control signal line 43-1 to high.
  • the transfer transistor 52-1 is turned on, and the electric charge accumulated in the photodiode 51-1 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is off.
  • the driver 32 turns off the switch 42-1 while maintaining the control signal of the control signal line 43-1 in the high state. As a result, the control signal line 43-1 enters a floating state.
  • the driver 32 sets the control signal for the additional wiring 44-1 to high.
  • the control signal line 43-1 is in a floating state, the potential of the control signal of the additional wiring 44-1 due to capacitive coupling with the additional wiring 44-1 as indicated by the solid circle Z1. Increases by the rising potential ⁇ V TGC1r .
  • the driver 32 sets the control signal of the additional wiring 44-1 to Low, sets the control signal of the control signal line 43-1 to Low, and controls the switch 42-1 to turn on.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-1.
  • the driver 32 controls the switch 42-2 to be turned on.
  • the driver 32 sets the control signal of the control signal line 43-2 to high.
  • the transfer transistor 52-2 is turned on, and the charge accumulated in the photodiode 51-2 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is off.
  • the driver 32 turns off the switch 42-2 while maintaining the control signal of the control signal line 43-2 in the high state. As a result, the control signal line 43-2 enters a floating state.
  • the driver 32 sets the control signal of the control signal line 43-1 to high.
  • the control signal of the control signal line 43-2 is coupled by capacitive coupling with the control signal line 43-1 as indicated by a solid circle Z2. Increases by the rising potential ⁇ V TGC1r .
  • the driver 32 sets the control signal of the control signal line 43-1 to Low, sets the control signal of the control signal line 43-2 to Low, and controls the switch 42-2 to turn on.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-2.
  • the driver 32 controls the switch 42-3 to be on.
  • the driver 32 sets the control signal of the control signal line 43-3 to high.
  • the transfer transistor 52-3 is turned on, and the charge accumulated in the photodiode 51-3 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is off.
  • the driver 32 turns off the switch 42-3 while maintaining the control signal of the control signal line 43-3 at the high level. As a result, the control signal line 43-3 enters a floating state.
  • the driver 32 sets the control signal of the control signal line 43-3 to high.
  • the control signal of the control signal line 43-3 is coupled by capacitive coupling with the control signal line 43-2 as indicated by a solid circle Z3. Increases by the rising potential ⁇ V TGC1r .
  • the driver 32 sets the control signal of the control signal line 43-2 to Low, sets the control signal of the control signal line 43-3 to Low, and controls the switch 42-3 to be on.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-3.
  • the driver 32 controls the switch 42-4 to be turned on.
  • the driver 32 sets the control signal of the control signal line 43-4 to high.
  • the transfer transistor 52-4 is turned on, and the charge accumulated in the photodiode 51-4 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is off.
  • the driver 32 turns off the switch 42-4 while maintaining the control signal of the control signal line 43-4 in a high state. As a result, the control signal line 43-4 becomes floating.
  • the driver 32 sets the control signal of the control signal line 43-3 to high.
  • the control signal of the control signal line 43-4 is coupled by capacitive coupling with the control signal line 43-3 as indicated by a solid circle Z4. Increases by the rising potential ⁇ V TGC1r .
  • the driver 32 sets the control signal of the control signal line 43-3 to Low, sets the control signal of the control signal line 43-4 to Low, and controls the switch 42-4 to be on.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-4.
  • a reset (shutter) operation is performed by discharging charges from the photodiode 51 so that a signal with a desired accumulation time can be obtained in accordance with the read timing.
  • the driver 32 controls the control signal of the control signal line 43-1 to high, sets the reset signal RST to high, turns on the transfer transistor 52-1, and turns on the reset transistor 54.
  • the charge of the photodiode 51-1 is discharged.
  • the driver 32 controls the control signal of the control signal line 43-1 to low and sets the reset signal RST to low to transfer the signal.
  • the transistor 52-1 and the reset transistor 54 are turned off.
  • the driver 32 sets the potential of the control signal on the control signal line 43-2 to high, sets the reset signal RST to high, turns on the transfer transistor 52-2, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-2 is discharged.
  • the driver 32 controls the switch 42-1 to be turned off. As a result, the control signal line 43-1 enters a floating state.
  • the driver 32 controls the control signal of the control signal line 43-2 to low and sets the reset signal RST to low.
  • the transfer transistor 52-2 and the reset transistor 54 are turned off.
  • the potential of the control signal on the control signal line 43-1 is held until the switch 42-1 is turned on next time.
  • the driver 32 sets the potential of the control signal on the control signal line 43-3 to high, sets the reset signal RST to high, turns on the transfer transistor 52-3, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-3 is discharged.
  • the driver 32 controls the switch 42-2 to be turned off. Along with this, the control signal line 43-2 enters a floating state.
  • the driver 32 controls the control signal of the control signal line 43-3 to be low and sets the reset signal RST to be low.
  • the transfer transistor 52-3 and the reset transistor 54 are turned off.
  • the potential of the control signal on the control signal line 43-2 is held until the switch 42-2 is turned on next time.
  • the driver 32 sets the potential of the control signal on the control signal line 43-4 to high, sets the reset signal RST to high, turns on the transfer transistor 52-4, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-4 is discharged.
  • the driver 32 controls the switch 42-3 to be off. Along with this, the control signal line 43-3 enters a floating state.
  • the driver 32 controls the control signal of the control signal line 43-4 to low and sets the reset signal RST to low.
  • the transfer transistor 52-4 and the reset transistor 54 are turned off.
  • the potential of the control signal on the control signal line 43-3 is held until the switch 42-3 is turned on next time.
  • the driver 32 sets the potential of the control signal of the additional wiring 44-2 to high.
  • the driver 32 controls the switch 42-4 to be off. As a result, the control signal line 43-4 enters a floating state.
  • the driver 32 controls the control signal of the additional wiring 44-2 to be low.
  • charge transfer performance and performance can be improved in the same manner as when the additional wirings 44 are added with only a few additional wirings 44 added.
  • the charge retention performance can be improved.
  • the manufacturing cost can be reduced by reducing the additional wiring 44.
  • the number of additional wirings 44 the number of wirings to be controlled is reduced, so that the control load of the control signal can be reduced.
  • the reading process and the discharge reset process are performed in the order of the additional wiring 44-1, the control signal lines 43-1 to 43-4, and the additional wiring 44-2.
  • the additional wiring 44-2, the control signal lines 43-4 to 43-1 and the additional wiring 44-1 may be operated in this order.
  • the potential of the control signal line 43-4 is lowered by the potential of the additional wiring 44-2 that is capacitively coupled.
  • control signal line 43 when one of the control signal lines 43 is in a floating state, the other control signal line 43 has a low or high control signal. 2 to function as the additional wiring 44 in the pixel circuit configuration of FIG. 2, increase or decrease the potential of one control signal line 43, and improve the pixel transfer performance or the pixel holding performance. Can be considered.
  • control signal lines 43-1 to 43-4 may be other than this, but when a plurality of control signal lines 43 are arranged, a plurality of control signal lines arranged adjacent to each other.
  • the additional wiring 44 is arranged at the end of the plurality of control signal lines 43, and is processed first or last in the above-described operation.
  • any wiring between the control signal lines 43 functions as the additional wiring 44, thereby reducing the number of additional wirings 44 to be added. Therefore, it becomes possible to reduce the manufacturing cost and the control load.
  • FIG. 11 shows a layout example showing a planar arrangement of the pixel sharing block 111 of FIG.
  • photodiodes 51-1 to 51-4 are arranged for 2 pixels ⁇ 2 pixels in the horizontal direction ⁇ vertical direction.
  • An FD portion 53 is disposed at the center position of the photodiodes 51-1 to 51-4.
  • transfer transistors 52-1 to 52-4 are arranged between the FD portion 53 and the photodiodes 51-1 to 51-4, respectively.
  • a reset transistor 54, an amplification transistor 55, and a selection transistor 56 are arranged below the photodiodes 51-1 to 51-4 from the left in the drawing.
  • the additional wiring 44-1 and the control signal line 43-1 are arranged from the top in the figure so as to straddle the pixel sharing block 111 adjacent in the horizontal direction.
  • the additional wiring 44-1, the control signal lines 43-1 to 43-4, and the additional wiring 44-2 may be arranged such that the capacitances between the respective control signal lines are all equal. desirable.
  • control signal lines 43-1 to 43-4 are connected to the transfer transistors 52-1 to 52-4 via the through electrodes 71-1 to 71-4, respectively.
  • control signal lines 43 are not capacitively coupled to each other, additional wiring 44 is required for each of the four control signal lines 43 required for each of the four pixels, and control is performed with four pixels.
  • Four signal lines 43 are required, and at least four additional wirings 44 are required.
  • the plurality of control signal lines 43 are mutually capacitively coupled, even if the number of control signal lines 43 is four, it is possible to use only two additional wirings 44. As a result, the manufacturing cost can be reduced and the pixel circuit can be controlled with fewer control signals.
  • the additional wirings 44-1 and 44-2 may be configured so that only one of them is provided, and the potential of the control signal line 43 can be increased or decreased.
  • FIG. 13 shows a configuration example of the pixel circuit of the pixel sharing block 111 when only the additional wiring 44-1 of FIG. 10 is provided for the pixel sharing block 111.
  • the control load can be reduced.
  • the driver 32 sets the control signal of the control signal line 43-1 to high.
  • the transfer transistor 52-1 is turned on, and the electric charge accumulated in the photodiode 51-1 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is in an off state.
  • the driver 32 turns off the switch 42-1 while maintaining the control signal of the control signal line 43-1 in the high state. As a result, the control signal line 43-1 enters a floating state.
  • the driver 32 sets the control signal for the additional wiring 44-1 to high.
  • the control signal line 43-1 is in a floating state, as indicated by a solid circle Z21, the control signal line 43-1 is controlled by capacitive coupling with the additional wiring 44-1.
  • the potential rises by the rising potential ⁇ V TGC1r .
  • the driver 32 sets the control signal of the additional wiring 44-1 to Low, sets the control signal of the control signal line 43-1 to Low, and controls the switch 42-1 to turn on.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-1.
  • the driver 32 sets the control signal of the control signal line 43-2 to high.
  • the transfer transistor 52-2 is turned on, and the charge accumulated in the photodiode 51-2 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is in an off state.
  • the driver 32 turns off the switch 42-2 while maintaining the control signal of the control signal line 43-2 in the high state. As a result, the control signal line 43-2 enters a floating state.
  • the driver 32 sets the control signal of the control signal line 43-1 to high.
  • the control signal of the control signal line 43-2 is coupled by capacitive coupling with the control signal line 43-1 as indicated by a solid circle Z22. Increases by the rising potential ⁇ V TGC1r .
  • the driver 32 controls the control signal line 43-1 to be low, the control signal line 43-2 to be low, and the switch 42-2 to be turned on.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-2.
  • the driver 32 sets the control signal of the control signal line 43-3 to high.
  • the transfer transistor 52-3 is turned on, and the charge accumulated in the photodiode 51-3 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is in an off state.
  • the driver 32 turns off the switch 42-3 while maintaining the control signal of the control signal line 43-3 in the high state. As a result, the control signal line 43-3 enters a floating state.
  • the driver 32 sets the control signal of the control signal line 43-2 to high.
  • the potential of the control signal on the control signal line 43-3 rises by the rising potential ⁇ V TGC1r due to capacitive coupling with the control signal line 43-2.
  • the driver 32 sets the control signal of the control signal line 43-2 to low, sets the control signal of the control signal line 43-3 to low, and controls the switch 42-3 to be on.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-3.
  • the driver 32 sets the control signal of the control signal line 43-4 to high.
  • the transfer transistor 52-4 is turned on, and the charge accumulated in the photodiode 51-4 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is in an off state.
  • the driver 32 turns off the switch 42-4 while maintaining the control signal of the control signal line 43-4 in the high state. As a result, the control signal line 43-4 enters a floating state.
  • the driver 32 sets the control signal of the control signal line 43-3 to high.
  • the potential of the control signal on the control signal line 43-4 rises by the rising potential ⁇ V TGC1r due to capacitive coupling with the control signal line 43-3.
  • the driver 32 sets the control signal of the control signal line 43-3 to Low, sets the control signal of the control signal line 43-4 to Low, and controls the switch 42-4 to be on.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-4.
  • the driver 32 controls the control signal line 43-1 to high, sets the reset signal RST to high, turns on the transfer transistor 52-1, and turns on the reset transistor 54. Then, the charge of the photodiode 51-1 is discharged.
  • the driver 32 controls the control signal of the control signal line 43-1 to be low and the reset signal RST to be low, thereby transferring the transfer transistor. While turning off 52-1 and turning off the reset transistor 54, the pixel signal discharge reset of the photodiode 51-1 is completed.
  • the driver 32 sets the potential of the control signal on the control signal line 43-2 to high, sets the reset signal RST to high, turns on the transfer transistor 52-2, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-2 is discharged.
  • the driver 32 controls the control signal line 43-2 to low and sets the reset signal RST to low, thereby transferring the transfer transistor 52. -2 and reset transistor 54 are turned off.
  • the driver 32 sets the potential of the control signal on the control signal line 43-3 to high, sets the reset signal RST to high, turns on the transfer transistor 52-3, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-3 is discharged.
  • the driver 32 controls the control signal of the control signal line 43-3 to be low and sets the reset signal RST to be low, thereby transferring the transfer transistor 52. -3 and reset transistor 54 are turned off.
  • the driver 32 sets the potential of the control signal on the control signal line 43-4 to high, sets the reset signal RST to high, turns on the transfer transistor 52-4, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-4 is discharged.
  • the driver 32 controls the control signal of the control signal line 43-4 to low and sets the reset signal RST to low, thereby transferring the transfer transistor 52. -4 and reset transistor 54 are turned off.
  • Second Modification of Second Embodiment >>
  • the configuration example of the pixel sharing block 111 when only the additional wiring 44-1 is provided for the pixel sharing block 111 has been described.
  • only the additional wiring 44-2 is provided, and the control is performed.
  • a configuration in which only a potential drop of the signal line 43 can be realized may be employed.
  • FIG. 15 shows a configuration example of the pixel circuit of the pixel sharing block 111 when only the additional wiring 44-2 of FIG. 10 is provided for the pixel sharing block 111.
  • the driver 32 controls the switch 42-1 to be turned on.
  • the driver 32 sets the control signal of the control signal line 43-1 to high.
  • the transfer transistor 52-1 is turned on, and the electric charge accumulated in the photodiode 51-1 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is in an off state.
  • the driver 32 sets the control signal of the control signal line 43-1 to Low.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-1.
  • the driver 32 controls the switch 42-2 to be turned on.
  • the driver 32 sets the control signal of the control signal line 43-2 to high.
  • the transfer transistor 52-2 is turned on, and the charge accumulated in the photodiode 51-2 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is in an off state.
  • the driver 32 sets the control signal of the control signal line 43-1 to Low.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-2.
  • the driver 32 controls the switch 42-3 to be turned on.
  • the driver 32 sets the control signal of the control signal line 43-3 to high.
  • the transfer transistor 52-3 is turned on, and the charge accumulated in the photodiode 51-3 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is in an off state.
  • the driver 32 sets the control signal of the control signal line 43-3 to Low.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-3.
  • the driver 32 controls the switch 42-4 to be turned on.
  • the driver 32 sets the control signal of the control signal line 43-4 to high.
  • the transfer transistor 52-4 is turned on, and the charge accumulated in the photodiode 51-4 is transferred to the FD unit 53.
  • the reset signal RST is low, and the reset transistor 54 is in an off state.
  • the driver 32 sets the control signal of the control signal line 43-4 to Low.
  • the processing so far completes the pixel signal readout processing of the photodiode 51-4.
  • the readout process of the photodiodes 51-1 to 51-4 is a process in which the process for increasing the voltage is omitted because the additional wiring 44-1 is not provided in the case of FIG.
  • a reset (shutter) operation is performed by discharging charges from the photodiode 51 so that a signal with a desired accumulation time can be obtained in accordance with the read timing.
  • the driver 32 controls the control signal line 43-1 to high, sets the reset signal RST to high, turns on the transfer transistor 52-1, and turns on the reset transistor 54.
  • the charge of the photodiode 51-1 is discharged.
  • the driver 32 controls the control signal of the control signal line 43-1 to be low and sets the reset signal RST to be low, thereby transferring the transfer transistor 52. -1 and reset transistor 54 are turned off.
  • the driver 32 sets the control signal potential of the control signal line 43-2 to high, sets the reset signal RST to high, turns on the transfer transistor 52-2, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-2 is discharged.
  • the driver 32 controls the switch 42-1 to be turned off. As a result, the control signal line 43-1 enters a floating state.
  • the driver 32 controls the control signal of the control signal line 43-2 to low and sets the reset signal RST to low. Then, the transfer transistor 52-2 and the reset transistor 54 are turned off.
  • the potential of the control signal on the control signal line 43-1 is held until the switch 42-1 is turned on next time.
  • the driver 32 sets the potential of the control signal on the control signal line 43-3 to high, sets the reset signal RST to high, turns on the transfer transistor 52-3, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-3 is discharged.
  • the driver 32 controls the switch 42-2 to be turned off. Along with this, the control signal line 43-2 enters a floating state.
  • the driver 32 controls the control signal of the control signal line 43-3 to be low and sets the reset signal RST to be low. Then, the transfer transistor 52-3 and the reset transistor 54 are turned off.
  • the potential of the control signal on the control signal line 43-2 is held until the switch 42-2 is turned on next time.
  • the driver 32 sets the potential of the control signal on the control signal line 43-4 to high, sets the reset signal RST to high, turns on the transfer transistor 52-4, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-4 is discharged.
  • the driver 32 controls the switch 42-3 to be turned off. Along with this, the control signal line 43-3 enters a floating state.
  • the driver 32 controls the control signal of the control signal line 43-4 to low and sets the reset signal RST to low. Then, the transfer transistor 52-4 and the reset transistor 54 are turned off.
  • the potential of the control signal on the control signal line 43-3 is held until the switch 42-3 is turned on next time.
  • the driver 32 sets the potential of the control signal of the additional wiring 44-2 to high.
  • the driver 32 controls the switch 42-4 to be off. As a result, the control signal line 43-4 enters a floating state.
  • the driver 32 controls the control signals of the control signal line 43-4 and the additional wiring 44-2 to low.
  • control signal lines 43 are capacitively coupled to each other, and only the additional wiring 44-2 is added. Therefore, the control signal to be added rather than the configuration in which the control signal line is added to each row.
  • the number of lines can be reduced, and the manufacturing cost can be reduced. Further, by reducing the number of control signal lines to be added, it is possible to reduce the load related to the control. Therefore, it is possible to control image pickup circuits of the same scale with a smaller number of control signals.
  • the above-described solid-state imaging device 11 of FIG. 1 is applied to various electronic devices such as an imaging device such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. can do.
  • FIG. 17 is a block diagram illustrating a configuration example of an imaging apparatus as an electronic apparatus to which the present technology is applied.
  • An imaging device 501 shown in FIG. 17 includes an optical system 502, a shutter device 503, a solid-state imaging device 504, a driving circuit 505, a signal processing circuit 506, a monitor 507, and a memory 508, and displays a still image and a moving image. Imaging is possible.
  • the optical system 502 includes one or a plurality of lenses, guides light (incident light) from the subject to the solid-state image sensor 504, and forms an image on the light-receiving surface of the solid-state image sensor 504.
  • the shutter device 503 is disposed between the optical system 502 and the solid-state imaging device 504, and controls the light irradiation period and the light-shielding period to the solid-state imaging device 504 according to the control of the drive circuit 1005.
  • the solid-state image sensor 504 is configured by a package including the above-described solid-state image sensor.
  • the solid-state imaging device 504 accumulates signal charges for a certain period in accordance with light imaged on the light receiving surface via the optical system 502 and the shutter device 503.
  • the signal charge accumulated in the solid-state image sensor 504 is transferred according to a drive signal (timing signal) supplied from the drive circuit 505.
  • the drive circuit 505 outputs a drive signal for controlling the transfer operation of the solid-state image sensor 504 and the shutter operation of the shutter device 503 to drive the solid-state image sensor 504 and the shutter device 503.
  • the signal processing circuit 506 performs various types of signal processing on the signal charges output from the solid-state imaging device 504.
  • An image (image data) obtained by the signal processing by the signal processing circuit 506 is supplied to the monitor 507 and displayed, or supplied to the memory 508 and stored (recorded).
  • the apparatus configuration can be reduced in size and height by applying the solid-state imaging apparatus 11 of FIG. 1 instead of the optical system 502 and the solid-state imaging element 504 described above. It is possible to suppress ghost and flare caused by internal reflection while realizing the above. ⁇ 9. Example of use of solid-state imaging device >>
  • FIG. 18 is a diagram illustrating a usage example in which the solid-state imaging device 11 described above is used.
  • the solid-state imaging device 11 described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 19 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
  • FIG. 19 shows a state where an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000.
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
  • An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 passes gas into the body cavity via the insufflation tube 11111.
  • the recorder 11207 is an apparatus capable of recording various types of information related to surgery.
  • the printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • laser light from each of the RGB laser light sources is irradiated on the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take a time-division image. According to this method, a color image can be obtained without providing a color filter in the image sensor.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
  • the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 20 is a block diagram illustrating an example of functional configurations of the camera head 11102 and the CCU 11201 illustrated in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 includes an imaging element.
  • One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used.
  • image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site.
  • 3D 3D
  • the imaging unit 11402 is not necessarily provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Auto White Balance
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
  • the transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400.
  • communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to, for example, the endoscope 11100, the camera head 11102 (the imaging unit 11402), the CCU 11201 (the image processing unit 11412), and the like.
  • the solid-state imaging device 11 of FIG. 1 can be applied to the lens unit 11401 and the imaging unit 10402.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 21 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image.
  • the vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light.
  • the imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
  • the vehicle interior information detection unit 12040 detects vehicle interior information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 22 is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 22 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
  • the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to be superimposed and displayed.
  • voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
  • the technology according to the present disclosure may be applied to the imaging unit 12031, for example.
  • the solid-state imaging device 11 in FIG. 1 can be applied to the imaging unit 12031.
  • this indication can also take the following structures.
  • a transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
  • a floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
  • a solid-state imaging device comprising: an additional wiring that is capacitively coupled to the control signal line.
  • the floating mechanism unit is a switch provided between the control signal line and a driver that generates the control signal. When the switch is turned off, the control signal line is in a floating state.
  • the floating mechanism unit When the output stage in the driver that generates the control signal includes a switch on the power supply side and a switch on the ground side with respect to the control signal line, the floating mechanism unit is configured to switch the power supply side. And the ground-side switch is turned off, whereby the control signal line is brought into a floating state.
  • ⁇ 5> The solid-state imaging device according to ⁇ 1>, wherein one or two additional wirings are capacitively coupled to the plurality of control signal lines.
  • the additional wiring is arranged in parallel with the control signal line on the same plane as the control signal line, which is orthogonal to the incident direction of the incident light.
  • the additional wiring is an independent wiring that is capacitively coupled to the control signal line and is different from the control signal line, and another control signal line that is capacitively coupled to the control signal line.
  • the solid-state imaging device described in 1. ⁇ 10> The potential of the control signal line controlled to be in a floating state by the floating mechanism section is increased according to a signal supplied to the additional wiring that is capacitively coupled to the control signal line in the floating state, or The solid-state imaging device according to ⁇ 9>.
  • the control signal line that is capacitively coupled to the additional wiring composed of the independent wiring is first controlled to be in a floating state by the floating mechanism unit, and the potential is set according to a signal supplied to the additional wiring.
  • the solid-state imaging device according to ⁇ 10>.
  • ⁇ 12> The control signal line that is capacitively coupled to the additional wiring composed of the independent wiring is finally controlled to be in a floating state by the floating mechanism unit, and the potential is changed according to a signal supplied to the additional wiring.
  • the solid-state imaging device according to ⁇ 10>.
  • ⁇ 13> The solid-state imaging device according to ⁇ 9>, wherein a capacity for coupling the adjacent additional wiring and the control signal line and a capacity for coupling the control signal lines are substantially equal.
  • the capacity for coupling the control signal line and the additional wiring is an additional capacity.
  • the solid-state imaging device according to ⁇ 1>.
  • the solid-state imaging device according to ⁇ 14>, wherein the additional capacitor is a parasitic capacitor.
  • the additional capacitor is a MOS (Metal Oxide Semiconductor) capacitor.
  • the additional capacitor is a MIM (Metal Insulator Metal) / MOM (Metal Oxide Metal) capacitor.
  • the additional capacitor is a capacitor in which both counter electrodes are formed of polysilicon.
  • a transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
  • a floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
  • An imaging apparatus comprising: an additional wiring that is capacitively coupled to the control signal line.
  • a transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
  • a floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
  • An electronic device comprising: an additional wiring that is capacitively coupled to the control signal line.
  • 11 imaging device 31 control circuit, 32 driver, 33 pixel array, 34 column processing unit, 35 signal processing unit, 41 pixel, 42, 42-1-1 to 42-MN switch, 43, 43-1 to 43 -4 Control signal line, 44, 44-1, 44-2 additional wiring, 45, 45-1 to 45-M VSL, 51 photodiode, 52 transfer transistor, 53 FD section, 54 reset transistor, 55 amplification transistor, 56 Select transistor, 71, 71-1 to 71-4 through electrode, 111, 111-1-1 to 111-MN shared pixel block

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

The present invention relates to an imaging device, an electronic device, and a solid-state imaging device which can enhance the charge transmitting capacity and the charge holding capacity of the solid-state imaging device. According to the present invention, when a switch which brings into a floating state a control signal line that supplies a control signal for controlling the opening and closing of a transmission gate that transmits a charge of a photodiode to an FD unit, and an additional wiring line for capacitive-coupling of the control signal line are disposed in parallel and the switch brings the control signal line into the floating state by switching off the switch, the voltage of the control signal is increased or decreased in response to the coupling capacity of the control signal line. The present invention can be adapted to an imaging device by applying a signal to the additional wiring line.

Description

固体撮像装置、撮像装置、および電子機器Solid-state imaging device, imaging device, and electronic apparatus
 本開示は、固体撮像装置、撮像装置、および電子機器に関し、特に、固体撮像装置の各画素における電荷転送性能、および電荷保持性能を向上させるようにした固体撮像装置、撮像装置、および電子機器に関する。 The present disclosure relates to a solid-state imaging device, an imaging device, and an electronic device, and more particularly, to a solid-state imaging device, an imaging device, and an electronic device that improve charge transfer performance and charge retention performance in each pixel of the solid-state imaging device. .
 撮像素子における電荷転送能力、および電荷保持能力を向上させる技術が提案されている。 A technique for improving the charge transfer capability and the charge retention capability of an image sensor has been proposed.
 例えば、カップルドゲートの電圧カプッリング現象を用いて伝送トランジスタのゲートバイアス電圧及びフローティング拡散ノードの初期電圧を電源電圧以上に上昇させることでフォトダイオードの容量を増加させて、イメージラグ現象を減少させる技術が提案されている(特許文献1参照)。 For example, by using the coupled gate voltage coupling phenomenon, the gate bias voltage of the transmission transistor and the initial voltage of the floating diffusion node are increased to a level higher than the power supply voltage, thereby increasing the capacitance of the photodiode and reducing the image lag phenomenon. Has been proposed (see Patent Document 1).
 また、転送トランジスタのゲート電圧を第1のゲート電圧に制御して、信号電荷としての電子をフォトトランジスタから電荷検出部に転送させ、また、第1の期間の後の第2の期間において、転送トランジスタのゲートを高インピーダンスにすると共に、第2の期間内において、転送トランジスタのゲート電圧を、第1のゲート電圧よりも信号電荷を電荷検出部に転送させる能力を高くする第2のゲート電圧に制御する技術が提案されている(特許文献2参照)。 In addition, the gate voltage of the transfer transistor is controlled to the first gate voltage to transfer electrons as a signal charge from the phototransistor to the charge detection unit, and in the second period after the first period The gate voltage of the transfer transistor is set to a second gate voltage that increases the capability of transferring the signal charge to the charge detection unit, compared to the first gate voltage, in the second period, while making the gate of the transistor high impedance. A control technique has been proposed (see Patent Document 2).
特開2006-186355号公報JP 2006-186355 A 特開2006-042120号公報JP 2006-042120 A
 しかしながら、特許文献1の技術においては、ゲートを二重に作成する必要があり、通常のCMOS(Complementary Metal Oxide Semiconductor)プロセスでは作製不可能なため、製造歩留りを低下させたり、工程増加によるコストを増大させる。また、各画素に対して2種類のゲート制御線が必要となり駆動回路の面積や消費電力を増大させる。 However, in the technique of Patent Document 1, it is necessary to create a double gate, and it is impossible to fabricate with a normal CMOS (Complementary Metal Metal Oxide Semiconductor) process. Increase. In addition, two types of gate control lines are required for each pixel, which increases the area and power consumption of the drive circuit.
 また、特許文献2の技術においては、制御信号線と転送ゲート制御線はFD(Floating Diffusion)ノードを介して容量結合されているため間接的なカップリングとなっており、制御信号線によって転送ゲート制御線の電位を変位させる効果は小さく、またFDに対して接続される容量が増大するため変換効率を低下させる恐れがある。 In the technique of Patent Document 2, since the control signal line and the transfer gate control line are capacitively coupled via an FD (Floating Diffusion) node, the coupling is indirect. The effect of displacing the potential of the control line is small, and since the capacity connected to the FD increases, the conversion efficiency may be lowered.
 本開示は、このような状況に鑑みてなされたものであり、特に、固体撮像装置の各画素における電荷転送性能および電荷保持性能を向上させるものである。 The present disclosure has been made in view of such a situation, and in particular, improves charge transfer performance and charge retention performance in each pixel of the solid-state imaging device.
 本開示の一側面の固体撮像装置、撮像装置、および電子機器は、光電変換により入射光の光量に応じた画素信号を生成する画素より画素信号を転送する転送ゲートと、前記転送ゲートの開閉を制御する制御信号を供給する制御信号線をフローティング状態にするフローティング機構部と、前記制御信号線と容量結合する付加配線とを含む固体撮像装置である。 A solid-state imaging device, an imaging device, and an electronic device according to one aspect of the present disclosure include a transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion, and opens and closes the transfer gate. It is a solid-state imaging device including a floating mechanism unit that brings a control signal line that supplies a control signal to be controlled into a floating state, and an additional wiring that is capacitively coupled to the control signal line.
 本開示の一側面においては、転送ゲートにより、光電変換により入射光の光量に応じた画素信号を生成する画素より画素信号が転送され、前記転送ゲートの開閉を制御する制御信号を供給する制御信号線がフローティング状態にされ、前記制御信号線と容量結合する付加配線とが含まれる。 In one aspect of the present disclosure, a control signal for supplying a control signal for transferring a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion by a transfer gate and that controls the opening and closing of the transfer gate. The line is in a floating state, and includes an additional wiring that is capacitively coupled to the control signal line.
 本開示の一側面によれば、特に、固体撮像装置の各画素における電荷転送性能および電荷保持性能を向上させることが可能となる。 According to one aspect of the present disclosure, it is possible to improve the charge transfer performance and the charge retention performance in each pixel of the solid-state imaging device.
本開示の撮像装置の構成例を説明する図である。It is a figure explaining the structural example of the imaging device of this indication. 図1の撮像装置の第1の実施の形態の構成例を説明する図である。It is a figure explaining the structural example of 1st Embodiment of the imaging device of FIG. 図2の回路構成からなる撮像装置の動作を説明するタイミングチャートである。3 is a timing chart for explaining the operation of the imaging apparatus having the circuit configuration of FIG. 2. 図2の回路構成における物理的なレイアウトの構成例を説明する図である。FIG. 3 is a diagram illustrating a configuration example of a physical layout in the circuit configuration of FIG. 2. 図4のAB断面を説明する図である。It is a figure explaining AB cross section of FIG. 本開示の撮像装置の第1の実施の形態の第1の変形例を説明する図である。It is a figure explaining the 1st modification of 1st Embodiment of the imaging device of this indication. 本開示の撮像装置の第1の実施の形態の第2の変形例を説明する図である。It is a figure explaining the 2nd modification of 1st Embodiment of the imaging device of this indication. 図7の回路構成における物理的なレイアウトの構成例を説明する図である。It is a figure explaining the structural example of the physical layout in the circuit structure of FIG. 本開示の撮像装置の第1の実施の形態の第3の変形例を説明する図である。It is a figure explaining the 3rd modification of 1st Embodiment of the imaging device of this indication. 本開示の撮像装置の第2の実施の形態の構成例を説明する図である。It is a figure explaining the structural example of 2nd Embodiment of the imaging device of this indication. 図10の回路構成からなる撮像装置の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of the imaging device which consists of a circuit structure of FIG. 図10の回路構成における物理的なレイアウトの構成例を説明する図である。It is a figure explaining the structural example of the physical layout in the circuit structure of FIG. 本開示の撮像装置の第2の実施の形態の第1の変形例を説明する図である。It is a figure explaining the 1st modification of 2nd Embodiment of the imaging device of this indication. 図13の回路構成からなる撮像装置の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of the imaging device which consists of a circuit structure of FIG. 本開示の撮像装置の第2の実施の形態の第2の変形例を説明する図である。It is a figure explaining the 2nd modification of 2nd Embodiment of the imaging device of this indication. 図15の回路構成からなる撮像装置の動作を説明するタイミングチャートである。16 is a timing chart for explaining the operation of the imaging apparatus having the circuit configuration of FIG. 本開示のカメラモジュールを適用した電子機器としての撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the imaging device as an electronic device to which the camera module of this indication is applied. 本開示の技術を適用したカメラモジュールの使用例を説明する図である。It is a figure explaining the usage example of the camera module to which the technique of this indication is applied. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of an endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of a camera head and CCU. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 以下、本開示を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態
 2.第1の実施の形態の第1の変形例
 3.第1の実施の形態の第2の変形例
 4.第1の実施の形態の第3の変形例
 5.第2の実施の形態
 6.第2の実施の形態の第1の変形例
 7.第2の実施の形態の第2の変形例
 8.電子機器への適用例
 9.固体撮像装置の使用例
 10.内視鏡手術システムへの応用例
 11.移動体への応用例
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. 1. First embodiment 2. First modification of the first embodiment 2. Second modification of first embodiment 4. Third modification of the first embodiment Second Embodiment 6. 6. First modification of the second embodiment Second modification of second embodiment 8. 8. Application example to electronic equipment Example of use of solid-state imaging device 10. 10. Application example to endoscopic surgery system Application examples for moving objects
 <<1.第1の実施の形態>>
 <固体撮像装置の構成例>
 図1のブロック図を参照して、各画素における電荷転送性能と、電荷保持性能を向上させる固体撮像装置の構成例について説明する。
<< 1. First embodiment >>
<Configuration example of solid-state imaging device>
A configuration example of a solid-state imaging device that improves charge transfer performance and charge retention performance in each pixel will be described with reference to the block diagram of FIG.
 図1の固体撮像装置11は、制御回路31、ドライバ32、画素アレイ33、カラム処理部34、および信号処理部35を備えている。 1 includes a control circuit 31, a driver 32, a pixel array 33, a column processing unit 34, and a signal processing unit 35.
 制御回路31は、プロセッサとメモリなどから構成され、固体撮像装置11の動作の全体を制御しており、ドライバ32に対して、画素アレイ33を制御して、画像の撮像を指示する。 The control circuit 31 includes a processor and a memory, and controls the entire operation of the solid-state imaging device 11. The control circuit 31 controls the pixel array 33 and instructs the driver 32 to capture an image.
 ドライバ32は、制御回路31により制御され、各行毎に制御信号線43および付加配線44を介して、画素アレイ33にアレイ状に配置された各画素に対して入射光に応じた電荷の蓄積、電荷の読み出しおよび転送、またはリセットに係る動作を制御する制御信号を出力する。 The driver 32 is controlled by the control circuit 31 and accumulates charges corresponding to incident light for each pixel arranged in the pixel array 33 via the control signal line 43 and the additional wiring 44 for each row. A control signal for controlling an operation related to reading and transfer of charges or resetting is output.
 画素アレイ33は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどからなり、入射光の光量に応じた画素信号を発生する画素41がアレイ状に配置されたものであり、ドライバ32より制御信号線43、および付加配線44を介して供給される制御信号に基づいて、行単位で各画素41の画素信号(電荷)の蓄積、画素信号(電荷)の読み出しおよび転送、またはリセット等の動作が制御される。そして、画素アレイ33の各画素41より行単位で読み出された画素信号は、垂直転送線45を介して、カラム処理部34に出力される。 The pixel array 33 is composed of, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor or the like, and pixels 41 that generate pixel signals corresponding to the amount of incident light are arranged in an array. Based on a control signal supplied via the line 43 and the additional wiring 44, operations such as accumulation of pixel signals (charges) of each pixel 41, readout and transfer of pixel signals (charges), or reset are performed in units of rows. Be controlled. Then, the pixel signal read from each pixel 41 of the pixel array 33 in units of rows is output to the column processing unit 34 through the vertical transfer line 45.
 カラム処理部34は、画素アレイ33より垂直転送線45を介して、行単位で供給されてくる画素信号を順次AD(Analog/Digital)変換して、転送し、行単位で画素信号を信号処理部35に供給する。 The column processing unit 34 sequentially AD (Analog / Digital) converts the pixel signals supplied in units of rows from the pixel array 33 via the vertical transfer lines 45, and transfers the pixel signals in units of rows. To the unit 35.
 信号処理部35は、例えば、LSI(Large Scale Integration)よりなり、カラム処理部34より供給されてくる画素信号を順次蓄積し、1フレーム分の画像が形成されたとき、デモザイク処理して合成するといった一般的な現像処理を施して出力する。 The signal processing unit 35 is composed of, for example, an LSI (Large Scale Integration) and sequentially accumulates pixel signals supplied from the column processing unit 34, and when an image for one frame is formed, it is demosaiced and synthesized. The general development process is performed and output.
 <第1の実施の形態における画素回路の構成例>
 次に、図2を参照して、図1の画素アレイ33の画素41における第1の実施の形態における画素回路の構成について説明する。画素アレイ33においては、N行×M列の画素41が、設けられている例が示されており、画素41-1-1乃至41-M-Nが配置されている。尚、以降において、画素41-1-1乃至41-M-Nについて、特に区別する必要がない場合、単に画素41と称し、その他の構成についても特に区別する必要がない場合、同様に“-”以下の符号を省略して称する。
<Configuration Example of Pixel Circuit in First Embodiment>
Next, the configuration of the pixel circuit in the first embodiment in the pixel 41 of the pixel array 33 in FIG. 1 will be described with reference to FIG. In the pixel array 33, an example in which pixels 41 of N rows × M columns are provided is shown, and pixels 41-1-1 to 41-MN are arranged. In the following description, the pixels 41-1-1 to 41 -MN are simply referred to as the pixel 41 when it is not necessary to distinguish between the pixels 41-1-1 to 41 -MN. “The following symbols are omitted.
 画素41を構成する画素回路は、光電変換素子として、例えばフォトダイオード(PD)51を有している。また、画素41を構成する画素回路は、フォトダイオード51、および、電荷を蓄積するフローティングディフュージョン(FD)53に加えて、例えば、転送トランジスタ(TG:転送ゲート)52、リセットトランジスタ(RST)54、増幅トランジスタ(AMP)55、および、選択トランジスタ(SEL)56の4つのトランジスタを有している。 The pixel circuit constituting the pixel 41 includes, for example, a photodiode (PD) 51 as a photoelectric conversion element. The pixel circuit constituting the pixel 41 includes, for example, a transfer transistor (TG: transfer gate) 52, a reset transistor (RST) 54, in addition to the photodiode 51 and the floating diffusion (FD) 53 that accumulates electric charges. There are four transistors: an amplification transistor (AMP) 55 and a selection transistor (SEL) 56.
 尚、図2においては、画素41-1-1のみに、フォトダイオード51、転送トランジスタ(TG:転送ゲート)52、フローティングディフュージョン(FD)53、リセットトランジスタ(RST)54、増幅トランジスタ(AMP)55、および、選択トランジスタ(SEL)56の符号が付されているが、その他の画素41についても同様であり、符号が省略されている。 In FIG. 2, only the pixel 41-1-1 includes a photodiode 51, a transfer transistor (TG: transfer gate) 52, a floating diffusion (FD) 53, a reset transistor (RST) 54, and an amplification transistor (AMP) 55. And the selection transistor (SEL) 56 are denoted by reference numerals, but the same applies to the other pixels 41, and the reference numerals are omitted.
 この画素41を構成する画素回路に対して、画素回路を駆動する駆動信号(制御信号)である転送信号TG、リセット信号RST、及び、選択信号SELがドライバ32から適宜与えられる。すなわち、転送信号TGが転送トランジスタ52のゲート電極に、リセット信号RSTがリセットトランジスタ54のゲート電極に、選択信号SELが選択トランジスタ106のゲート電極にそれぞれ印加される。このうち、転送信号TGは、スイッチ42、および制御信号線43を介して転送トランジスタ52のゲート電極に印加される。 A transfer signal TG, a reset signal RST, and a selection signal SEL, which are drive signals (control signals) for driving the pixel circuit, are appropriately supplied from the driver 32 to the pixel circuit constituting the pixel 41. That is, the transfer signal TG is applied to the gate electrode of the transfer transistor 52, the reset signal RST is applied to the gate electrode of the reset transistor 54, and the selection signal SEL is applied to the gate electrode of the selection transistor 106. Among these, the transfer signal TG is applied to the gate electrode of the transfer transistor 52 via the switch 42 and the control signal line 43.
 フォトダイオード51は、アノード電極が低電位側電源(例えば、グランド)に接続されており、受光した光(入射光)をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。フォトダイオード51のカソード電極は、転送トランジスタ52を介して増幅トランジスタ55のゲート電極と電気的に接続されている。増幅トランジスタ55のゲート電極と電気的に繋がったノードは、フローティングディフュージョン/浮遊拡散領域(FD)部53である。 The photodiode 51 has an anode electrode connected to a low-potential-side power source (for example, ground), and photoelectrically converts received light (incident light) into photocharge (here, photoelectrons) having a charge amount corresponding to the amount of light. Then, the photocharge is accumulated. The cathode electrode of the photodiode 51 is electrically connected to the gate electrode of the amplification transistor 55 through the transfer transistor 52. A node electrically connected to the gate electrode of the amplification transistor 55 is a floating diffusion / floating diffusion region (FD) portion 53.
 転送トランジスタ52は、フォトダイオード51のカソード電極とFD部53との間に接続されている。転送トランジスタ52のゲート電極には、スイッチ42、および、制御信号線43を介して転送信号TGがドライバ32から与えられる。この転送信号TGに応答して、転送トランジスタ52が導通状態となり、フォトダイオード51で光電変換された光電荷をFD部53に転送する。 The transfer transistor 52 is connected between the cathode electrode of the photodiode 51 and the FD portion 53. A transfer signal TG is supplied from the driver 32 to the gate electrode of the transfer transistor 52 via the switch 42 and the control signal line 43. In response to the transfer signal TG, the transfer transistor 52 becomes conductive, and the photoelectric charge photoelectrically converted by the photodiode 51 is transferred to the FD unit 53.
 リセットトランジスタ54は、ドレイン電極が図示せぬ電源に、ソース電極がFD部53にそれぞれ接続されている。リセットトランジスタ54のゲート電極には、リセット信号RSTがドライバ32から与えられる。このリセット信号RSTに応答して、リセットトランジスタ54が導通状態となり、FD部53の電荷を画素電源に捨てることによって当該FD部53をリセットする。 The reset transistor 54 has a drain electrode connected to a power source (not shown) and a source electrode connected to the FD portion 53. A reset signal RST is supplied from the driver 32 to the gate electrode of the reset transistor 54. In response to the reset signal RST, the reset transistor 54 becomes conductive, and the FD unit 53 is reset by throwing away the charge of the FD unit 53 to the pixel power supply.
 増幅トランジスタ55は、ゲート電極がFD部53に、ドレイン電極が図示せぬ電源にそれぞれ接続されている。そして、増幅トランジスタ55は、リセットトランジスタ54によってリセットされた後のFD部53の電位をリセット信号(リセットレベル)Vresetとして出力する。増幅トランジスタ55はさらに、転送トランジスタ52によって信号電荷が転送された後のFD部53の電位を光蓄積信号(信号レベル)として出力する。尚、各画素41の画素値は、光蓄積信号(信号レベル)とリセット信号(リセットレベル)との差分とされる。 The amplification transistor 55 has a gate electrode connected to the FD portion 53 and a drain electrode connected to a power source (not shown). Then, the amplification transistor 55 outputs the potential of the FD unit 53 after being reset by the reset transistor 54 as a reset signal (reset level) Vreset. Further, the amplification transistor 55 outputs the potential of the FD unit 53 after the signal charge is transferred by the transfer transistor 52 as a light accumulation signal (signal level). The pixel value of each pixel 41 is the difference between the light accumulation signal (signal level) and the reset signal (reset level).
 選択トランジスタ56は、例えば、ドレイン電極が増幅トランジスタ55のソース電極に、ソース電極が垂直信号線VSL45にそれぞれ接続されている。選択トランジスタ56のゲート電極には、選択信号SELがドライバ32から与えられる。この選択信号SELに応答して、選択トランジスタ56が導通状態となり、画素41を選択状態として増幅トランジスタ55から出力される信号を垂直信号線(VSL)45に読み出す。尚、図2においては、1列目からM列目までの垂直信号線(VSL)45-1乃至VSL45-Mが表記されている。 The selection transistor 56 has, for example, a drain electrode connected to the source electrode of the amplification transistor 55 and a source electrode connected to the vertical signal line VSL45. A selection signal SEL is supplied from the driver 32 to the gate electrode of the selection transistor 56. In response to the selection signal SEL, the selection transistor 56 becomes conductive, and the signal output from the amplification transistor 55 is read out to the vertical signal line (VSL) 45 with the pixel 41 selected. In FIG. 2, vertical signal lines (VSL) 45-1 to VSL45-M from the first column to the Mth column are shown.
 付加配線44は、制御信号線43と同様に画素アレイ33内に水平方向に、かつ、各画素41内で制御信号線43との間に容量Cで容量結合されるように配置されている。ここで、容量Cは、MOS容量、MIM(Metal Insulator Metal)/MOM(Metal Oxide Metal)容量、Poly-Poly間容量(対向電極を共にpolysiliconで形成する容量)、または、配線により形成される寄生容量等を含む付加容量であってもよく、現実に、コンデンサ等の容量回路が設けられるものである必要はない。また、各画素41における付加容量である容量C1-1,C1-2,・・・,CM-Nの値は、等しいことが望ましい。スイッチ42は、例えば、MOS(Metal Oxide Semiconductor)トランジスタのスイッチが用いられる。尚、図2においては、制御信号線43-1乃至43-Nのそれぞれに対して、スイッチ42-1乃至42-Nが設けられると共に、制御信号線43-1乃至43-Nのそれぞれと容量結合された付加配線44-1乃至44-Nが設けられている。 The additional wirings 44 are arranged in the pixel array 33 in the horizontal direction in the same manner as the control signal lines 43 and are capacitively coupled with the control signal lines 43 in each pixel 41 by a capacitor C. Here, the capacitance C is a MOS capacitance, a MIM (Metal-Insulator-Metal) / MOM (Metal-Oxide-Metal) capacitance, a Poly-Poly capacitance (capacitance in which both counter electrodes are made of polysilicon), or a parasitic formed by wiring. An additional capacitor including a capacitor may be used, and it is not necessary that a capacitor circuit such as a capacitor is actually provided. Further, it is desirable that the values of the capacitors C1-1, C1-2,. The switch 42 is, for example, a MOS (Metal (Oxide Semiconductor) transistor switch. In FIG. 2, switches 42-1 to 42-N are provided for the control signal lines 43-1 to 43-N, respectively, and each of the control signal lines 43-1 to 43-N has a capacitance. Combined additional wirings 44-1 to 44-N are provided.
 図2の画素41を構成する画素回路からは、リセット後のFD部53の電位がリセットレベルVresetとして、次いで、信号電荷の転送後のFD部53の電位が信号レベルVsigとして順に垂直信号線(VSL)45に読み出される。 From the pixel circuit that constitutes the pixel 41 of FIG. 2, the potential of the FD portion 53 after reset is the reset level Vreset, and then the potential of the FD portion 53 after transfer of the signal charge is the signal level Vsig in order. VSL) 45.
 なお、ここでは、選択トランジスタ56について、増幅トランジスタ55のソース電極と垂直信号線(VSL)45との間に接続する回路構成としたが、図示せぬ画素電源と増幅トランジスタ55のドレイン電極との間に接続する回路構成を採ることも可能である。 Here, the selection transistor 56 has a circuit configuration connected between the source electrode of the amplification transistor 55 and the vertical signal line (VSL) 45. However, a pixel power supply (not shown) and a drain electrode of the amplification transistor 55 are not connected. It is also possible to adopt a circuit configuration connected between them.
 また、画素41を構成する画素回路としては、上記の4つのトランジスタから成る画素構成のものに限られるものではない。例えば、増幅トランジスタ55に選択トランジスタ56の機能を持たせた3個のトランジスタから成る画素構成や、複数の光電変換素子間(画素間)で、FD部53以降のトランジスタを共用する画素構成などであっても良く、その画素回路の構成は問わない。 Further, the pixel circuit constituting the pixel 41 is not limited to the pixel configuration including the above four transistors. For example, a pixel configuration including three transistors in which the amplification transistor 55 has the function of the selection transistor 56, or a pixel configuration in which a transistor after the FD portion 53 is shared between a plurality of photoelectric conversion elements (between pixels). There may be any pixel circuit configuration.
 <図2の画素回路の動作について>
 次に、図3のタイミングチャートを参照して、図2の画素回路の動作について説明する。
<Operation of Pixel Circuit in FIG. 2>
Next, the operation of the pixel circuit in FIG. 2 will be described with reference to the timing chart in FIG.
 尚、図3においては、上から制御信号線43-1、および付加配線44-1のそれぞれにおける制御信号のHighまたはLow、およびスイッチ42-1のオン(High)またはオフ(Low)、並びに、制御信号線43-N、および付加配線44-Nのそれぞれにおける制御信号のHighまたはLow、およびスイッチ42-Nのオン(High)またはオフ(Low)の波形が示されている。また、左から1行目の画素信号の読み出し処理、N行目の画素信号の読み出し処理、1行目の画素信号の吐き出しリセット処理、N行目の画素信号の吐き出しリセット処理における各種のタイミングが示されている。 In FIG. 3, from the top, the control signal line 43-1 and the additional wiring 44-1, respectively, of the control signal High or Low, the switch 42-1 on (High) or off (Low), and The waveforms of the control signal High or Low in each of the control signal line 43-N and the additional wiring 44-N and the ON (High) or OFF (Low) waveform of the switch 42-N are shown. Also, there are various timings in the pixel signal reading process of the first row from the left, the pixel signal reading process of the N row, the discharge reset process of the pixel signal of the first row, and the discharge reset process of the pixel signal of the N row. It is shown.
 まず、1行目の画素信号の読み出し処理について説明する。 First, the reading process of the pixel signal in the first row will be described.
 時刻t21において、ドライバ32は、スイッチ42-1をオンに制御する。 At time t21, the driver 32 controls the switch 42-1 to be on.
 また、時刻t21の直後のタイミングである、時刻t1において、ドライバ32は、制御信号線43-1の制御信号をhighにする。この処理により、転送トランジスタ52がオンの状態となり、画素41-1のフォトダイオード51に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTは、lowにされており、リセットトランジスタ54は閉じた状態である。 Further, at time t1, which is the timing immediately after time t21, the driver 32 sets the control signal of the control signal line 43-1 to high. By this process, the transfer transistor 52 is turned on, and the charge accumulated in the photodiode 51 of the pixel 41-1 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is closed.
 時刻t22において、ドライバ32は、制御信号線43-1の制御信号をhighの状態に維持した状態で、スイッチ42-1をオフにする。これにより、制御信号線43-1はフローティング状態となる。 At time t22, the driver 32 turns off the switch 42-1 while maintaining the control signal of the control signal line 43-1 in the high state. As a result, the control signal line 43-1 enters a floating state.
 時刻t22の直後のタイミングである、時刻t11(=t2)において、付加配線44-1の制御信号をhighにする。この時、制御信号線43-1はフローティングとなっているため、付加配線44-1との容量結合により、実線の丸印Zaで示されるように、制御信号線43-1の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。この上昇電位ΔVTGC1rは、以下の式(1)で表される。尚、図中においては、上昇電位は“Δ”のみが表記されている。 At time t11 (= t2), which is the timing immediately after time t22, the control signal for the additional wiring 44-1 is set to high. At this time, since the control signal line 43-1 is in a floating state, the potential of the control signal on the control signal line 43-1 is indicated by the solid circle Za by capacitive coupling with the additional wiring 44-1. Increases by the rising potential ΔV TGC1r . This rising potential ΔV TGC1r is expressed by the following equation (1). In the figure, only “Δ” is shown as the rising potential.
 ΔVTGC1r=(Ccuptotal/CTGCtotal)・Vswing
                       ・・・(1)
ΔV TGC1r = (C cuptotal / C TGCtotal ) ・ V swing
... (1)
 ここで、ΔVTGC1rは、上昇電位であり、CTGCtotalは、制御信号線43-1の総容量であり、Ccuptotalは制御信号線43-1、および付加配線44-1間の総容量であり、Vswingは、付加配線44-1の制御信号の振幅である。 Here, ΔV TGC1r is the rising potential, C TGCtotal is the total capacity of the control signal line 43-1, and C cuptotal is the total capacity between the control signal line 43-1 and the additional wiring 44-1. , V swing is the amplitude of the control signal of the additional wiring 44-1.
 制御信号線43-1の制御信号の電位が上昇電位ΔVTGC1rだけ上昇することにより、画素41-1のフォトダイオード51からの電荷転送性能が向上し、読み出し時間を短縮することが可能となる。また、制御信号線43-1の制御信号の電位のhighレベルを下げれば、同等の転送能力において低電圧化が可能となる。 By increasing the potential of the control signal on the control signal line 43-1 by the rising potential ΔV TGC1r , the charge transfer performance from the photodiode 51 of the pixel 41-1 is improved, and the readout time can be shortened. If the high level of the potential of the control signal on the control signal line 43-1 is lowered, the voltage can be lowered with the same transfer capability.
 時刻t3(=t12=t23)において、ドライバ32は、スイッチ42-1をオンに制御すると共に、制御信号線43-1および付加配線44-1の制御信号の電位をlowにすることで、画素信号の読み出し処理は完了する。 At time t3 (= t12 = t23), the driver 32 controls the switch 42-1 to be on, and lowers the potentials of the control signals of the control signal line 43-1 and the additional wiring 44-1, thereby reducing the pixel The signal reading process is completed.
 以降、2行目乃至N行目についても同様の処理が繰り返される。 Thereafter, the same processing is repeated for the second to Nth lines.
 すなわち、N行目については、時刻t51において、ドライバ32は、スイッチ42-Nをオンに制御する。 That is, for the Nth row, at time t51, the driver 32 controls the switch 42-N to be turned on.
 時刻t51の直後のタイミングである、時刻t31において、ドライバ32は、制御信号線43-Nの制御信号をhighにする。この処理により、転送トランジスタ52がオンの状態となり、フォトダイオード51に蓄積された電荷がFD部53に転送される。 At time t31, which is the timing immediately after time t51, the driver 32 sets the control signal of the control signal line 43-N to high. By this process, the transfer transistor 52 is turned on, and the charge accumulated in the photodiode 51 is transferred to the FD unit 53.
 時刻t52において、ドライバ32は、制御信号線43-Nの制御信号をhighの状態に維持した状態で、スイッチ42-Nをオフにする。これにより、制御信号線43-1は、フローティング状態となる。 At time t52, the driver 32 turns off the switch 42-N while maintaining the control signal of the control signal line 43-N in the high state. As a result, the control signal line 43-1 enters a floating state.
 時刻t52の直後のタイミングである、時刻t41(=t22)において、ドライバ32は、付加配線44-Nの制御信号をhighにする。この時、制御信号線43-Nはフローティング状態となっているため、付加配線44-Nとの容量結合により、実線の丸印Zbで示されるように、制御信号線43-Nの制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 At time t41 (= t22), which is the timing immediately after time t52, the driver 32 sets the control signal for the additional wiring 44-N to high. At this time, since the control signal line 43-N is in a floating state, as indicated by a solid circle Zb due to capacitive coupling with the additional wiring 44-N, the control signal line 43-N The potential rises by the rising potential ΔV TGC1r .
 時刻t33(=t42=t53)において、ドライバ32は、スイッチ42-Nをオンに制御する。これにより、制御信号線43-N、および付加配線44-Nの制御信号の電位はlowとなり、画素信号の読み出し処理は完了する。 At time t33 (= t42 = t53), the driver 32 controls the switch 42-N to be on. As a result, the control signal potentials of the control signal line 43-N and the additional wiring 44-N become low, and the pixel signal readout process is completed.
 次に、1行目の画素信号の吐き出しリセット処理について説明する。 Next, the discharge reset process of the pixel signal in the first row will be described.
 読出しタイミングに合わせて所望の蓄積時間の信号が得られるようにフォトダイオード51内から電荷を吐き出してリセットする(シャッタ)動作が行われる。 A reset (shutter) operation is performed by discharging charges from the photodiode 51 so that a signal with a desired accumulation time can be obtained in accordance with the read timing.
 時刻t4(=t13)において、ドライバ32は、制御信号線43-1および付加配線44-1の制御信号の電位をhighにし、リセットトランジスタ54のゲート電極にリセット信号RSTをhighにして、転送トランジスタ52とリセットトランジスタ54とをオンにしてフォトダイオード51内の電荷を排出する。 At time t4 (= t13), the driver 32 sets the control signal potential of the control signal line 43-1 and the additional wiring 44-1 to high, sets the reset signal RST to the gate electrode of the reset transistor 54, and transfers the transfer transistor. 52 and the reset transistor 54 are turned on to discharge the charge in the photodiode 51.
 時刻t5において、制御信号線43-1の制御信号の電位をlowにし、リセットトランジスタ54のゲート電極にリセット信号RSTをlowにして、リセットトランジスタ54をオフにする。 At time t5, the potential of the control signal on the control signal line 43-1 is set low, the reset signal RST is set low on the gate electrode of the reset transistor 54, and the reset transistor 54 is turned off.
 そして、時刻t24において、ドライバ32は、スイッチ42-1をオフに制御する。これにより、制御信号線43-1はフローティング状態になる。 At time t24, the driver 32 controls the switch 42-1 to be turned off. As a result, the control signal line 43-1 enters a floating state.
 時刻t24の直後の時刻t6(=t14)において、ドライバ32は、制御信号線43-1および付加配線44-1の制御信号の電位をlowにする。 At time t6 (= t14) immediately after time t24, the driver 32 sets the control signal potentials of the control signal line 43-1 and the additional wiring 44-1 to low.
 この時、制御信号線43-1はフローティング状態になっているため、実線の丸印Zcで示されるように、容量結合により降下電位ΔVTGC1fだけ電位が降下する。降下電位ΔVTGC1fは、以下の式(2)で表される。 At this time, since the control signal line 43-1 is in a floating state, the potential drops by a drop potential ΔV TGC1f due to capacitive coupling as indicated by a solid circle Zc. The drop potential ΔV TGC1f is expressed by the following equation (2).
 ΔVTGC1f=(Ccuptotal/CTGCtotal)・Vswing
                       ・・・(2)
ΔV TGC1f = (C cuptotal / C TGCtotal ) ・ V swing
... (2)
 ここで、ΔVTGC1fは、降下電位であり、CTGCtotalは、制御信号線43-1の総容量であり、Ccuptotalは制御信号線43-1および付加配線44-1間の総容量であり、Vswingは、付加配線44-1の制御信号の振幅である。 Here, ΔV TGC1f is the drop potential, C TGCtotal is the total capacity of the control signal line 43-1, and C cuptotal is the total capacity between the control signal line 43-1 and the additional wiring 44-1. V swing is the amplitude of the control signal of the additional wiring 44-1.
 この制御信号線43-1の制御信号の電位は、次にスイッチ42-1がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-1 is held until the switch 42-1 is turned on next time.
 以降、2行目乃至N行目についても同様の処理が繰り返される。 Thereafter, the same processing is repeated for the second to Nth lines.
 すなわち、N行目の画素信号の吐き出し処理においては、時刻t34(=t43)において、ドライバ32は、制御信号線43-Nおよび付加配線44-Nの制御信号の電位をhighにし、リセットトランジスタ54のゲート電極にリセット信号RSTをhighにして、転送トランジスタ52とリセットトランジスタ54とをオンにしてフォトダイオード51内の電荷を排出する。 That is, in the discharge process of the pixel signal of the Nth row, at time t34 (= t43), the driver 32 sets the control signal potentials of the control signal line 43-N and the additional wiring 44-N to high, and the reset transistor 54 The reset signal RST is set to high at the gate electrode of the first electrode, and the transfer transistor 52 and the reset transistor 54 are turned on to discharge the charge in the photodiode 51.
 時刻t35において、制御信号線43-1の制御信号の電位をlowにし、リセットトランジスタ54のゲート電極にリセット信号RSTをlowにして、リセットトランジスタ54をオフにする。 At time t35, the potential of the control signal on the control signal line 43-1 is set low, the reset signal RST is set low on the gate electrode of the reset transistor 54, and the reset transistor 54 is turned off.
 そして、時刻t54において、ドライバ32は、スイッチ42-Nをオフに制御する。これにより、制御信号線43-Nはフローティング状態になる。 At time t54, the driver 32 controls the switch 42-N to be turned off. As a result, the control signal line 43-N enters a floating state.
 時刻t54の直後の時刻t36(=t44)において、ドライバ32は、制御信号線43-Nおよび付加配線44-Nの制御信号の電位をlowにする。 At time t36 (= t44) immediately after time t54, the driver 32 sets the control signal potentials of the control signal line 43-N and the additional wiring 44-N to low.
 この時、制御信号線43-Nはフローティング状態になっているため、実線の丸印Zdで示されるように、容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-N is in a floating state, the potential drops by a drop potential ΔV TGC1f due to capacitive coupling as indicated by a solid circle Zd.
 この制御信号線43-Nの制御信号の電位は、次にスイッチ42-Nがオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-N is held until the next time the switch 42-N is turned on.
 以上の処理により、制御信号線43-Nの制御信号の電位が降下することにより、フォトダイオード51に保持できる電荷量が向上し、飽和特性の向上が可能となる。また、フォトダイオード51表面のpinningの強化を図ることが可能となる。 As a result of the above processing, the potential of the control signal on the control signal line 43-N drops, whereby the amount of charge that can be held in the photodiode 51 is improved, and the saturation characteristics can be improved. In addition, pinning of the surface of the photodiode 51 can be enhanced.
 制御信号線43および付加配線44の制御信号のhighとなる電圧は、例えば、回路に供給される電源電圧が用いられ、lowは一般的にはフォトダイオード51の飽和信号量を高めることと暗電流を抑制する目的で0V(または、それ)より低い電圧が用いられる。 For example, the power supply voltage supplied to the circuit is used as the high voltage of the control signal of the control signal line 43 and the additional wiring 44, and low generally increases the saturation signal amount of the photodiode 51 and dark current. A voltage lower than 0 V (or more) is used for the purpose of suppressing the above.
 尚、N行目の画素信号の読み出し処理が全て終わってから、画素信号の吐き出し処理が開始になり、画素信号の吐き出し処理が全て終わってから、画素信号の読み出し処理が開始になるとは限らず、蓄積時間次第では2行目以降の画素信号の読み出し処理時に1行目の画素信号の吐き出し処理が行われたり、2行目以降の画素信号の吐き出し処理時に1行目の画素信号の読み出し処理が行われることもある。また、処理の順序は、必ずしも1行目、2行目、3行目・・・、N行目の順番で行われなくてもよい。 It should be noted that the pixel signal discharge process is started after the completion of the pixel signal read process for the Nth row, and the pixel signal read process is not necessarily started after the pixel signal discharge process is completed. Depending on the accumulation time, the pixel signal discharge process for the first row is performed during the pixel signal read process for the second and subsequent rows, and the pixel signal read process for the first row during the pixel signal discharge process for the second and subsequent rows. May be performed. Further, the processing order does not necessarily have to be performed in the order of the first row, the second row, the third row,...
 <図2の画素回路の物理的なレイアウト>
 次に、図4を参照して、画素41の物理的なレイアウトについて説明する。図4においては、アレイ状に配置された画素41の水平方向に配置された2画素分についての平面配置を示すレイアウト例が示されている。尚、点線で囲まれた範囲が画素41の1画素分の配置であり、図中においては、中段左部の画素41にのみ符号が付されているが、その他の画素41については符号が省略されているが、各構成は同一である。
<Physical Layout of Pixel Circuit in FIG. 2>
Next, the physical layout of the pixel 41 will be described with reference to FIG. FIG. 4 shows a layout example showing a planar arrangement for two pixels arranged in the horizontal direction of the pixels 41 arranged in an array. Note that the area surrounded by the dotted line is the arrangement of one pixel of the pixel 41. In the figure, only the pixel 41 in the middle left part is given a reference, but the reference is omitted for the other pixels 41. However, each configuration is the same.
 画素41においては、右上部にフォトダイオード51が配置され、その左側に上から選択トランジスタ56、増幅トランジスタ55、およびリセットトランジスタ54が配置されている。 In the pixel 41, a photodiode 51 is disposed on the upper right portion, and a selection transistor 56, an amplification transistor 55, and a reset transistor 54 are disposed on the left side from above.
 また、フォトダイオード51と、リセットトランジスタ54との間には、フォトダイオード51側から転送トランジスタ52およびFD部53が配置されている。 Further, between the photodiode 51 and the reset transistor 54, a transfer transistor 52 and an FD unit 53 are arranged from the photodiode 51 side.
 さらに、転送トランジスタ52上に貫通電極71を介して接続された制御信号線43が配置され、さらに、配線間容量Cが形成されるように付加配線44が配置されている。 Further, a control signal line 43 connected via the through electrode 71 is arranged on the transfer transistor 52, and an additional wiring 44 is arranged so that a wiring capacitance C is formed.
 図5の左部は、図4のAB断面図である。 The left part of FIG. 5 is an AB cross-sectional view of FIG.
 図5の左部で示されるように、制御信号線43および付加配線44は、それぞれ配線に厚みがあり、相互が対向する配線間に生じる付加容量が配線間容量Ccuptotalを形成する。 As shown in the left part of FIG. 5, each of the control signal line 43 and the additional wiring 44 has a thickness, and the additional capacitance generated between the wirings facing each other forms an inter-wiring capacitance C cuptotal .
 制御信号線43および付加配線44の配線間容量Ccuptotalを増大させることにより、画素信号の読み出し処理時の上昇電圧、および、画素信号の吐き出し処理時の降下電圧を増大させることが可能となる。 By increasing the inter-wiring capacitance C cuptotal of the control signal line 43 and the additional wiring 44, it is possible to increase the rising voltage during the pixel signal reading process and the dropping voltage during the pixel signal discharge process.
 また、図5の中央部で示されるように、制御信号線43は、制御信号線43-A,43-Bのように制御信号線43を複数の線として、その間を貫通電極71-A,71-Bで接続して転送トランジスタ52と接続するようにしてもよい。 Further, as shown in the central portion of FIG. 5, the control signal line 43 includes a plurality of control signal lines 43 such as the control signal lines 43-A and 43-B. 71-B may be connected to the transfer transistor 52.
 さらに、図5の右部で示されるように、制御信号線43および付加配線44は、垂直方向に積層するようにレイアウトするようにしてもよい。 Further, as shown in the right part of FIG. 5, the control signal line 43 and the additional wiring 44 may be laid out so as to be stacked in the vertical direction.
 <<2.第1の実施の形態の第1の変形例>>
 以上においては、制御信号線43および付加配線44が直線状に形成される例について説明してきたが、制御信号線43および付加配線44が対向する面積を増大することで、制御信号線43および付加配線44の配線間容量Ccuptotalを増大させるようにしてもよい。
<< 2. First Modification of First Embodiment >>
In the above, an example in which the control signal line 43 and the additional wiring 44 are formed in a straight line has been described. However, the control signal line 43 and the additional wiring 44 are increased by increasing the area where the control signal line 43 and the additional wiring 44 are opposed to each other. The inter-wiring capacitance C cuptotal of the wiring 44 may be increased.
 例えば、図6で示されるように、制御信号線43および付加配線44が対向する面積が増大するようなレイアウトにしてもよい。すなわち、図6においては、制御信号線43および付加配線44のそれぞれの対向する部分に、互い違いとなるように凸部配線43a,44aが形成されており、制御信号線43および付加配線44の対向する面積が増大するように形成されている。これにより、制御信号線43および付加配線44の配線間容量Ccuptotalを増大させることが可能となる。 For example, as shown in FIG. 6, the layout may be such that the area where the control signal line 43 and the additional wiring 44 face each other increases. In other words, in FIG. 6, convex wirings 43 a and 44 a are formed alternately in the opposing portions of the control signal line 43 and the additional wiring 44, and the control signal line 43 and the additional wiring 44 are opposed to each other. The area to be increased is formed. As a result, the inter-wiring capacitance C cuptotal of the control signal line 43 and the additional wiring 44 can be increased.
 <<3.第1の実施の形態の第2の変形例>>
 以上においては、制御信号線43および付加配線44が、1本ずつ形成される例について説明してきたが、複数の本数で形成されるようにしてもよい。
<< 3. Second Modification of First Embodiment >>
In the above description, an example in which the control signal line 43 and the additional wiring 44 are formed one by one has been described, but a plurality of control signal lines 43 and additional wirings 44 may be formed.
 すなわち、例えば、図7で示されるように、1本の制御信号線43に対して、2本の付加配線44-A,44-Bが形成されるようにしてもよい。尚、図7においては、制御信号線43-1に対して、2本の付加配線44-A-1,44-B-1が設けられ、同様に、制御信号線43-Nに対して、2本の付加配線44-A-N,44-B-Nが設けられている場合の構成が示されている。このようにすることで、制御信号線43および付加配線44の配線間容量Ccuptotalを増大させることが可能となる。 That is, for example, as shown in FIG. 7, two additional wirings 44 -A and 44 -B may be formed for one control signal line 43. In FIG. 7, two additional wirings 44-A-1 and 44-B-1 are provided for the control signal line 43-1. Similarly, for the control signal line 43-N, A configuration in the case where two additional wirings 44-AN and 44-BN are provided is shown. By doing so, the inter-wiring capacitance C cuptotal of the control signal line 43 and the additional wiring 44 can be increased.
 また、ドライバ32は、図7で示されるように、2本の付加配線44-A,44-Bに対して同一であってもよいし、個別に異なるドライバ32により動作させるようにしてもよい。付加配線44-A,44-Bに対して個別に異なるドライバ32を設けるようにすることで、動作速度の高速化を図ることが可能となる。 Further, as shown in FIG. 7, the driver 32 may be the same for the two additional wirings 44-A and 44-B, or may be operated by different drivers 32 individually. . By providing different drivers 32 for the additional wirings 44-A and 44-B individually, it is possible to increase the operation speed.
 さらに、この場合、例えば、図8で示されるように、水平方向に制御信号線43を挟んで、2本の付加配線44-A,44-Bが水平方向にレイアウトされるようにしてもよい。また、2本の付加配線44-A,44-Bは、制御信号線43を挟んで、制御信号線43の上層または下層のメタル配線レイヤに形成されるようにしてもよい。いずれにおいても、制御信号線43および付加配線44の配線間容量Ccuptotalを増大させることが可能となる。 Further, in this case, for example, as shown in FIG. 8, the two additional wirings 44-A and 44-B may be laid out in the horizontal direction with the control signal line 43 sandwiched in the horizontal direction. . Further, the two additional wirings 44 -A and 44 -B may be formed on the upper or lower metal wiring layer of the control signal line 43 with the control signal line 43 interposed therebetween. In any case, the inter-wiring capacitance C cuptotal of the control signal line 43 and the additional wiring 44 can be increased.
 <<4.第1の実施の形態の第3の変形例>>
 以上においては、制御信号線43および付加配線44を介して出力される制御信号の制御は、ドライバ32とスイッチ42により制御される例について説明してきたが、ドライバ32の出力段をPMOSまたはNMOSからなるスイッチで形成するようにして、PMOSまたはNMOSからなるスイッチの開閉により制御するようにしてもよい。
<< 4. Third Modification of First Embodiment >>
In the above description, the control signal output via the control signal line 43 and the additional wiring 44 has been described as being controlled by the driver 32 and the switch 42. However, the output stage of the driver 32 is controlled by a PMOS or NMOS. The switch may be controlled by opening / closing a switch made of PMOS or NMOS.
 図9は、ドライバ32の出力段をPMOSまたはNMOSからなるスイッチで形成するようにした画素回路の構成例を示している。 FIG. 9 shows a configuration example of a pixel circuit in which the output stage of the driver 32 is formed by a switch made of PMOS or NMOS.
 図9においては、ドライバ32内において、制御信号線43の端部には、PMOSまたはNMOSからなる、電源(highの電位)に接続されるスイッチ91-A、およびlowの電位に接続される91-Bがそれぞれ形成されている。また、付加配線44の端部には、図中の上段および下段にPMOSまたはNMOSからなる、電源(highの電位)の接続されるスイッチ92-A、およびlowの電位に接続されるスイッチ92-Bがそれぞれ形成されている。 In FIG. 9, at the end of the control signal line 43 in the driver 32, a switch 91-A made of PMOS or NMOS and connected to a power supply (high potential) and 91 connected to a low potential. -B is formed. Further, at the end of the additional wiring 44, a switch 92-A made of PMOS or NMOS and connected to a power source (high potential) and a switch 92- connected to a low potential in the upper and lower stages in the figure. Each B is formed.
 図2においては、スイッチ42がオフされることにより、制御信号線43は、フローティング状態とされたが、図9においては、スイッチ42に代えて、スイッチ91-A,91-Bが同時にオフにされることにより、フローティング状態とされる。 In FIG. 2, the control signal line 43 is brought into a floating state by turning off the switch 42. However, in FIG. 9, instead of the switch 42, the switches 91-A and 91-B are simultaneously turned off. As a result, a floating state is obtained.
 尚、図9においては、1乃至N行目の各行について、スイッチ91-A-1乃至91-A-Nおよび91-B-1乃至91-B-N、並びに、スイッチ92-A-1乃至92-A-Nおよび92-B-1乃至92-B-Nが設けられている例が示されている。 In FIG. 9, switches 91-A-1 to 91-AN and 91-B-1 to 91-BN and switches 92-A-1 to An example in which 92-A-N and 92-B-1 to 92-BN are provided is shown.
 <<5.第2の実施の形態>>
 <第2の実施の形態における画素回路の構成例>
 以上においては、1画素について、それぞれに1個のFD部53が設けられる構成について説明してきたが、複数の画素について、1個のFD部53を共有する共有画素構成とするようにしてもよい。
<< 5. Second embodiment >>
<Configuration Example of Pixel Circuit in Second Embodiment>
In the above description, the configuration in which one FD portion 53 is provided for each pixel has been described. However, a shared pixel configuration in which one FD portion 53 is shared for a plurality of pixels may be employed. .
 図10は、共有画素構成とした画素回路の構成例が示されている。 FIG. 10 shows a configuration example of a pixel circuit having a shared pixel configuration.
 図10の画素回路においては、4画素について1個のFD部が共有された画素共有ブロック111を構成しており、図中においては、画素共有ブロック111-1-1乃至111-M-1が水平方向に配置された例が示されている。ただし、画素アレイ33においては、画素共有ブロック111についてもアレイ状に配置されている。 In the pixel circuit of FIG. 10, a pixel sharing block 111 in which one FD portion is shared for four pixels is configured. In the drawing, pixel sharing blocks 111-1-1 to 111-M-1 are included. An example of horizontal arrangement is shown. However, in the pixel array 33, the pixel sharing blocks 111 are also arranged in an array.
 画素共有ブロック111には、4画素分(2画素×2画素分)のフォトダイオード51-1乃至51-4および転送トランジスタ52-1乃至52-4が設けられている。また、画素共有ブロック111においては、この4画素分のフォトダイオード51-1乃至51-4および転送トランジスタ52-1乃至52-4の構成に対して、1個のFD部53が共有して接続されている。 The pixel sharing block 111 is provided with photodiodes 51-1 to 51-4 and transfer transistors 52-1 to 52-4 for 4 pixels (2 pixels × 2 pixels). In the pixel sharing block 111, one FD section 53 is shared and connected to the configurations of the photodiodes 51-1 to 51-4 and the transfer transistors 52-1 to 52-4 for the four pixels. Has been.
 また、転送トランジスタ52-1乃至52-4におけるそれぞれのゲート電極には、制御信号線43-1乃至43-4が接続されており、さらに、制御信号線43-1乃至43-4を挟むように、付加配線44-1,44-2が配置されている。 Further, control signal lines 43-1 to 43-4 are connected to the respective gate electrodes of the transfer transistors 52-1 to 52-4, and the control signal lines 43-1 to 43-4 are sandwiched therebetween. In addition, additional wirings 44-1 and 44-2 are arranged.
 ここで、図10においては、図中の上から、付加配線44-1,制御信号線43-1乃至43-4,付加配線44-2の順序で配置されている。また、各制御信号線43、および付加配線44間の容量C1-1-a乃至C1-1-e、・・・、容量C1-M-a乃至CN-M-eは、いずれも等しくなるように配置されることが望ましい。 Here, in FIG. 10, the additional wiring 44-1, the control signal lines 43-1 to 43-4, and the additional wiring 44-2 are arranged in this order from the top in the drawing. Also, the capacitors C1-1-a to C1-1-e,..., And the capacitors C1-Ma to CN-Me between the control signal lines 43 and the additional wirings 44 are all equal. It is desirable to be arranged in.
 尚、図10においては、2画素×2画素の合計4画素が、1個のFD部53を共有している例について示されているが、FD部53は、4画素以外の数の画素41で共有されるようにしてもよい。 10 shows an example in which a total of 4 pixels of 2 pixels × 2 pixels share one FD portion 53, the FD portion 53 has a number of pixels 41 other than 4 pixels. You may make it share with.
 また、FD53は、各画素41について個別に設けられるようにしてもよい。ただし、FD53は、各画素41について個別に設けられるようにする場合についても、垂直方向に4画素分の付加配線44-1,制御信号線43-1乃至43-4,付加配線44-2の順序で、配線間の容量がいずれも等しくなるように配置される。 Further, the FD 53 may be provided for each pixel 41 individually. However, even when the FD 53 is provided individually for each pixel 41, the additional wiring 44-1, the control signal lines 43-1 to 43-4, and the additional wiring 44-2 for four pixels in the vertical direction are provided. In order, they are arranged so that the capacitances between the wirings are all equal.
 <図10の画素回路の動作について>
 次に、図11のタイミングチャートを参照して、図10の画素回路の動作について説明する。
<Operation of Pixel Circuit in FIG. 10>
Next, the operation of the pixel circuit in FIG. 10 will be described with reference to the timing chart in FIG.
 尚、図11においては、上から付加配線44-1、および制御信号線43-1のそれぞれにおける制御信号のHighまたはLow、およびスイッチ42-1のオン(High)またはオフ(Low)、制御信号線43-2における制御信号のHighまたはLow、およびスイッチ42-2のオン(High)またはオフ(Low)、制御信号線43-3における制御信号のHighまたはLow、およびスイッチ42-3のオン(High)またはオフ(Low)、制御信号線43-4における制御信号のHighまたはLow、およびスイッチ42-4のオン(High)またはオフ(Low)、並びに、付加配線44-2における制御信号のHighまたはLowの波形が示されている。ただし、図11においては、図中の左側において、符号のみが付されている。 In FIG. 11, the control signal High or Low in each of the additional wiring 44-1 and the control signal line 43-1 from the top, the switch 42-1 on (High) or off (Low), the control signal The control signal High or Low on the line 43-2 and the switch 42-2 on (High) or Off (Low), the control signal High or Low on the control signal line 43-3, and the switch 42-3 on ( High) or off (Low), control signal line 43-4 high or low, and switch 42-4 on (High) or off (Low), and additional wiring 44-2 control signal high Or a low waveform is shown. However, in FIG. 11, only the reference numerals are given on the left side in the figure.
 フォトダイオード51-1の画素信号の読み出し処理を開始するにあたって、時刻t121において、ドライバ32は、スイッチ42-1をオンに制御する。 In starting the pixel signal reading process of the photodiode 51-1, the driver 32 controls the switch 42-1 to be on at time t121.
 時刻t121の直後のタイミングである、時刻t111において、ドライバ32は、制御信号線43-1の制御信号をhighにする。この処理により、転送トランジスタ52-1がオンの状態となり、フォトダイオード51-1に蓄積された電荷がFD部53に転送される。このとき、リセット信号RSTは、lowであり、リセットトランジスタ54はオフの状態である。 At time t111, which is the timing immediately after time t121, the driver 32 sets the control signal of the control signal line 43-1 to high. By this processing, the transfer transistor 52-1 is turned on, and the electric charge accumulated in the photodiode 51-1 is transferred to the FD unit 53. At this time, the reset signal RST is low, and the reset transistor 54 is off.
 時刻t122において、ドライバ32は、制御信号線43-1の制御信号をhighの状態に維持した状態で、スイッチ42-1をオフにする。これにより、制御信号線43-1はフローティング状態となる。 At time t122, the driver 32 turns off the switch 42-1 while maintaining the control signal of the control signal line 43-1 in the high state. As a result, the control signal line 43-1 enters a floating state.
 時刻t122の直後のタイミングである、時刻t101(=t112)において、ドライバ32は、付加配線44-1の制御信号をhighにする。この時、制御信号線43-1はフローティング状態となっているため、実線の丸印Z1で示されるように、付加配線44-1との容量結合により、付加配線44-1の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 At time t101 (= t112), which is the timing immediately after time t122, the driver 32 sets the control signal for the additional wiring 44-1 to high. At this time, since the control signal line 43-1 is in a floating state, the potential of the control signal of the additional wiring 44-1 due to capacitive coupling with the additional wiring 44-1 as indicated by the solid circle Z1. Increases by the rising potential ΔV TGC1r .
 時刻t102(=t113=t123)において、ドライバ32は、付加配線44-1の制御信号をLowにし、制御信号線43-1の制御信号をLowにし、スイッチ42-1をオンに制御する。 At time t102 (= t113 = t123), the driver 32 sets the control signal of the additional wiring 44-1 to Low, sets the control signal of the control signal line 43-1 to Low, and controls the switch 42-1 to turn on.
 ここまでの処理により、フォトダイオード51-1の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-1.
 次に、フォトダイオード51-2の画素信号の読み出し処理を開始するにあたって、時刻t141において、ドライバ32は、スイッチ42-2をオンに制御する。 Next, when starting the pixel signal reading process of the photodiode 51-2, at time t141, the driver 32 controls the switch 42-2 to be turned on.
 時刻t141の直後のタイミングである、時刻t131において、ドライバ32は、制御信号線43-2の制御信号をhighにする。この処理により、転送トランジスタ52-2がオンの状態となり、フォトダイオード51-2に蓄積された電荷がFD部53に転送される。このとき、リセット信号RSTは、lowであり、リセットトランジスタ54はオフの状態である。 At time t131, which is the timing immediately after time t141, the driver 32 sets the control signal of the control signal line 43-2 to high. By this processing, the transfer transistor 52-2 is turned on, and the charge accumulated in the photodiode 51-2 is transferred to the FD unit 53. At this time, the reset signal RST is low, and the reset transistor 54 is off.
 時刻t142において、ドライバ32は、制御信号線43-2の制御信号をhighの状態に維持した状態で、スイッチ42-2をオフにする。これにより、制御信号線43-2はフローティング状態となる。 At time t142, the driver 32 turns off the switch 42-2 while maintaining the control signal of the control signal line 43-2 in the high state. As a result, the control signal line 43-2 enters a floating state.
 そして、時刻t142の直後のタイミングである、時刻t114(=t132)において、ドライバ32は、制御信号線43-1の制御信号をhighにする。この時、制御信号線43-2はフローティング状態となっているため、実線の丸印Z2で示されるように、制御信号線43-1との容量結合により、制御信号線43-2の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 Then, at time t114 (= t132), which is the timing immediately after time t142, the driver 32 sets the control signal of the control signal line 43-1 to high. At this time, since the control signal line 43-2 is in a floating state, the control signal of the control signal line 43-2 is coupled by capacitive coupling with the control signal line 43-1 as indicated by a solid circle Z2. Increases by the rising potential ΔV TGC1r .
 時刻t115(=t133=t143)において、ドライバ32は、制御信号線43-1の制御信号をLowにし、制御信号線43-2の制御信号をLowにし、スイッチ42-2をオンに制御する。 At time t115 (= t133 = t143), the driver 32 sets the control signal of the control signal line 43-1 to Low, sets the control signal of the control signal line 43-2 to Low, and controls the switch 42-2 to turn on.
 ここまでの処理により、フォトダイオード51-2の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-2.
 さらに、フォトダイオード51-3の画素信号の読み出し処理を開始するにあたって、時刻t161において、ドライバ32は、スイッチ42-3をオンに制御する。 Further, when starting the reading process of the pixel signal of the photodiode 51-3, at time t161, the driver 32 controls the switch 42-3 to be on.
 時刻t161の直後のタイミングである、時刻t151において、ドライバ32は、制御信号線43-3の制御信号をhighにする。この処理により、転送トランジスタ52-3がオンの状態となり、フォトダイオード51-3に蓄積された電荷がFD部53に転送される。このとき、リセット信号RSTは、lowであり、リセットトランジスタ54はオフの状態である。 At time t151, which is the timing immediately after time t161, the driver 32 sets the control signal of the control signal line 43-3 to high. By this processing, the transfer transistor 52-3 is turned on, and the charge accumulated in the photodiode 51-3 is transferred to the FD unit 53. At this time, the reset signal RST is low, and the reset transistor 54 is off.
 時刻t162において、ドライバ32は、制御信号線43-3の制御信号をhighの状態に維持した状態で、スイッチ42-3をオフにする。これにより、制御信号線43-3はフローティング状態となる。 At time t162, the driver 32 turns off the switch 42-3 while maintaining the control signal of the control signal line 43-3 at the high level. As a result, the control signal line 43-3 enters a floating state.
 そして、時刻t162の直後のタイミングである、時刻t134(=t152)において、ドライバ32は、制御信号線43-3の制御信号をhighにする。この時、制御信号線43-3はフローティング状態となっているため、実線の丸印Z3で示されるように、制御信号線43-2との容量結合により、制御信号線43-3の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 Then, at time t134 (= t152), which is the timing immediately after time t162, the driver 32 sets the control signal of the control signal line 43-3 to high. At this time, since the control signal line 43-3 is in a floating state, the control signal of the control signal line 43-3 is coupled by capacitive coupling with the control signal line 43-2 as indicated by a solid circle Z3. Increases by the rising potential ΔV TGC1r .
 時刻t135(=t153=t163)において、ドライバ32は、制御信号線43-2の制御信号をLowにし、制御信号線43-3の制御信号をLowにし、スイッチ42-3をオンに制御する。 At time t135 (= t153 = t163), the driver 32 sets the control signal of the control signal line 43-2 to Low, sets the control signal of the control signal line 43-3 to Low, and controls the switch 42-3 to be on.
 ここまでの処理により、フォトダイオード51-3の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-3.
 次に、フォトダイオード51-4の画素信号の読み出し処理について説明する。 Next, pixel signal readout processing of the photodiode 51-4 will be described.
 フォトダイオード51-4の画素信号の読み出し処理を開始するにあたって、時刻t181において、ドライバ32は、スイッチ42-4をオンに制御する。 In starting the pixel signal readout processing of the photodiode 51-4, at time t181, the driver 32 controls the switch 42-4 to be turned on.
 これにより、時刻t181の直後のタイミングである、時刻t171において、ドライバ32は、制御信号線43-4の制御信号をhighにする。この処理により、転送トランジスタ52-4がオンの状態となり、フォトダイオード51-4に蓄積された電荷がFD部53に転送される。このとき、リセット信号RSTは、lowであり、リセットトランジスタ54はオフの状態である。 Thus, at time t171, which is the timing immediately after time t181, the driver 32 sets the control signal of the control signal line 43-4 to high. By this processing, the transfer transistor 52-4 is turned on, and the charge accumulated in the photodiode 51-4 is transferred to the FD unit 53. At this time, the reset signal RST is low, and the reset transistor 54 is off.
 時刻t182において、ドライバ32は、制御信号線43-4の制御信号をhighの状態に維持した状態で、スイッチ42-4をオフにする。これにより、制御信号線43-4はフローティングとなる。 At time t182, the driver 32 turns off the switch 42-4 while maintaining the control signal of the control signal line 43-4 in a high state. As a result, the control signal line 43-4 becomes floating.
 そして、時刻t182の直後のタイミングである、時刻t154(=t172)において、ドライバ32は、制御信号線43-3の制御信号をhighにする。この時、制御信号線43-4はフローティング状態となっているため、実線の丸印Z4で示されるように、制御信号線43-3との容量結合により、制御信号線43-4の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 At time t154 (= t172), which is the timing immediately after time t182, the driver 32 sets the control signal of the control signal line 43-3 to high. At this time, since the control signal line 43-4 is in a floating state, the control signal of the control signal line 43-4 is coupled by capacitive coupling with the control signal line 43-3 as indicated by a solid circle Z4. Increases by the rising potential ΔV TGC1r .
 時刻t155(=t173=t183)において、ドライバ32は、制御信号線43-3の制御信号をLowにし、制御信号線43-4の制御信号をLowにし、スイッチ42-4をオンに制御する。 At time t155 (= t173 = t183), the driver 32 sets the control signal of the control signal line 43-3 to Low, sets the control signal of the control signal line 43-4 to Low, and controls the switch 42-4 to be on.
 ここまでの処理により、フォトダイオード51-4の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-4.
 次に、フォトダイオード51-1の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-1 will be described.
 読出しタイミングに合わせて所望の蓄積時間の信号が得られるようにフォトダイオード51内から電荷を吐き出してリセットする(シャッタ)動作が行われる。 A reset (shutter) operation is performed by discharging charges from the photodiode 51 so that a signal with a desired accumulation time can be obtained in accordance with the read timing.
 すなわち、時刻t116において、ドライバ32は、制御信号線43-1の制御信号をhighに制御すると共に、リセット信号RSTをhighにして、転送トランジスタ52-1をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-1の電荷を排出させる。 That is, at time t116, the driver 32 controls the control signal of the control signal line 43-1 to high, sets the reset signal RST to high, turns on the transfer transistor 52-1, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-1 is discharged.
 そして、フォトダイオード51-1の電荷排出が完了したタイミングとなる、時刻t117において、ドライバ32は、制御信号線43-1の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-1およびリセットトランジスタ54をオフにする。 At time t117, which is the timing when the discharge of the charge of the photodiode 51-1 is completed, the driver 32 controls the control signal of the control signal line 43-1 to low and sets the reset signal RST to low to transfer the signal. The transistor 52-1 and the reset transistor 54 are turned off.
 ここまでの処理で、フォトダイオード51-1の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-1.
 次に、フォトダイオード51-2の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-2 will be described.
 時刻t136において、ドライバ32は、制御信号線43-2の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-2をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-2の電荷を排出させる。 At time t136, the driver 32 sets the potential of the control signal on the control signal line 43-2 to high, sets the reset signal RST to high, turns on the transfer transistor 52-2, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-2 is discharged.
 時刻t124において、ドライバ32は、スイッチ42-1をオフに制御する。これに伴って、制御信号線43-1がフローティング状態となる。 At time t124, the driver 32 controls the switch 42-1 to be turned off. As a result, the control signal line 43-1 enters a floating state.
 フォトダイオード51-2の電荷排出が完了したタイミングとなる時刻t137(=t118)において、ドライバ32は、制御信号線43-2の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-2およびリセットトランジスタ54をオフにする。 At time t137 (= t118), which is the timing when the discharge of the charge of the photodiode 51-2 is completed, the driver 32 controls the control signal of the control signal line 43-2 to low and sets the reset signal RST to low. The transfer transistor 52-2 and the reset transistor 54 are turned off.
 この時、制御信号線43-1はフローティングとなっているため、実線の丸印Z11で示されるように、制御信号線43-2との容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-1 is in a floating state, the potential drops by the drop potential ΔV TGC1f due to capacitive coupling with the control signal line 43-2 as indicated by a solid circle Z11.
 この制御信号線43-1の制御信号の電位は、次にスイッチ42-1がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-1 is held until the switch 42-1 is turned on next time.
 ここまでの処理で、フォトダイオード51-2の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-2.
 次に、フォトダイオード51-3の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-3 will be described.
 時刻t156において、ドライバ32は、制御信号線43-3の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-3をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-3の電荷を排出させる。 At time t156, the driver 32 sets the potential of the control signal on the control signal line 43-3 to high, sets the reset signal RST to high, turns on the transfer transistor 52-3, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-3 is discharged.
 時刻t144において、ドライバ32は、スイッチ42-2をオフに制御する。これに伴って、制御信号線43-2がフローティング状態となる。 At time t144, the driver 32 controls the switch 42-2 to be turned off. Along with this, the control signal line 43-2 enters a floating state.
 フォトダイオード51-3の電荷排出が完了したタイミングとなる時刻t157(=t138)において、ドライバ32は、制御信号線43-3の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-3およびリセットトランジスタ54をオフにする。 At time t157 (= t138), which is the timing when the charge discharge of the photodiode 51-3 is completed, the driver 32 controls the control signal of the control signal line 43-3 to be low and sets the reset signal RST to be low. The transfer transistor 52-3 and the reset transistor 54 are turned off.
 この時、制御信号線43-2はフローティング状態となっているため、実線の丸印Z12で示されるように、制御信号線43-3との容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-2 is in a floating state, the potential drops by a drop potential ΔV TGC1f due to capacitive coupling with the control signal line 43-3 as indicated by a solid circle Z12.
 この制御信号線43-2の制御信号の電位は、次にスイッチ42-2がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-2 is held until the switch 42-2 is turned on next time.
 ここまでの処理で、フォトダイオード51-3の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-3.
 次に、フォトダイオード51-4の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset process of the photodiode 51-4 will be described.
 時刻t174において、ドライバ32は、制御信号線43-4の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-4をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-4の電荷を排出させる。 At time t174, the driver 32 sets the potential of the control signal on the control signal line 43-4 to high, sets the reset signal RST to high, turns on the transfer transistor 52-4, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-4 is discharged.
 時刻t164において、ドライバ32は、スイッチ42-3をオフに制御する。これに伴って、制御信号線43-3がフローティング状態となる。 At time t164, the driver 32 controls the switch 42-3 to be off. Along with this, the control signal line 43-3 enters a floating state.
 フォトダイオード51-4の電荷排出が完了したタイミングとなる時刻t175(=t158)において、ドライバ32は、制御信号線43-4の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-4およびリセットトランジスタ54をオフにする。 At time t175 (= t158), which is the timing when the discharge of the charge of the photodiode 51-4 is completed, the driver 32 controls the control signal of the control signal line 43-4 to low and sets the reset signal RST to low. The transfer transistor 52-4 and the reset transistor 54 are turned off.
 この時、制御信号線43-3はフローティングとなっているため、実線の丸印Z13で示されるように、制御信号線43-4との容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-3 is in a floating state, the potential drops by the drop potential ΔV TGC1f due to capacitive coupling with the control signal line 43-4 as indicated by a solid circle Z13.
 この制御信号線43-3の制御信号の電位は、次にスイッチ42-3がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-3 is held until the switch 42-3 is turned on next time.
 ここまでの処理で、フォトダイオード51-4の画素信号の吐き出しリセット処理が終了する。 This completes the pixel signal discharge reset processing of the photodiode 51-4.
 次に、制御信号線43-4の電位を降下させる処理について説明する。 Next, processing for lowering the potential of the control signal line 43-4 will be described.
 時刻t191において、ドライバ32は、付加配線44-2の制御信号の電位をhighにする。 At time t191, the driver 32 sets the potential of the control signal of the additional wiring 44-2 to high.
 時刻t184において、ドライバ32は、スイッチ42-4をオフに制御する。これに伴って、制御信号線43-4がフローティング状態となる。 At time t184, the driver 32 controls the switch 42-4 to be off. As a result, the control signal line 43-4 enters a floating state.
 その直後である、時刻t192(=t176)において、ドライバ32は、付加配線44-2の制御信号をlowに制御する。 Immediately thereafter, at time t192 (= t176), the driver 32 controls the control signal of the additional wiring 44-2 to be low.
 この時、制御信号線43-4はフローティング状態となっているため、付加配線44-2との容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-4 is in a floating state, the potential drops by the drop potential ΔV TGC1f due to capacitive coupling with the additional wiring 44-2.
 この制御信号線43-4の制御信号の電位は、次にスイッチ42-4がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-4 is held until the next time the switch 42-4 is turned on.
 ここまでの処理で、制御信号線43-4の電位が容量結合により降下電位ΔVTGC1fだけ降下する。 Through the processing so far, the potential of the control signal line 43-4 drops by the drop potential ΔV TGC1f due to capacitive coupling.
 以上の処理により、複数の隣接する制御信号線43間で、相互に容量結合を実現することで、少ない付加配線44の追加のみで、付加配線44を追加した場合と同様に、電荷転送性能および電荷保持性能を向上させることが可能となる。また、付加配線44を少なくすることで、製造コストを低減することが可能となる。さらに、付加配線44を少なくすることで、制御すべき配線数が低減されることになるので、制御信号の制御負荷を低減させることが可能となる。 By performing capacitive coupling between a plurality of adjacent control signal lines 43 by the above processing, charge transfer performance and performance can be improved in the same manner as when the additional wirings 44 are added with only a few additional wirings 44 added. The charge retention performance can be improved. Further, the manufacturing cost can be reduced by reducing the additional wiring 44. Further, by reducing the number of additional wirings 44, the number of wirings to be controlled is reduced, so that the control load of the control signal can be reduced.
 尚、以上の動作においては、図10で示されるように、付加配線44-1、制御信号線43-1乃至43-4、および付加配線44-2の順序で、読み出し処理、および吐き出しリセット処理がなされる例について説明してきたが、付加配線44-2、制御信号線43-4乃至43-1、および付加配線44-1の順序で動作させるようにしてもよい。 In the above operation, as shown in FIG. 10, the reading process and the discharge reset process are performed in the order of the additional wiring 44-1, the control signal lines 43-1 to 43-4, and the additional wiring 44-2. Although an example in which the additional wiring 44-2 is performed has been described, the additional wiring 44-2, the control signal lines 43-4 to 43-1 and the additional wiring 44-1 may be operated in this order.
 また、以上の動作においては、画素信号の読み出し処理においては、フォトダイオード51-1の画素信号が読み出される際には、制御信号線43-1の電位が、容量結合された付加配線44-1により上昇される。 In the above-described operation, in the pixel signal reading process, when the pixel signal of the photodiode 51-1 is read, the potential of the control signal line 43-1 is capacitively coupled to the additional wiring 44-1. Is raised by.
 また、フォトダイオード51-2の画素信号が読み出される際には、制御信号線43-2がフローティング状態となったとき、その電位が、容量結合された制御信号線43-1の電位により上昇される。 When the pixel signal of the photodiode 51-2 is read, when the control signal line 43-2 is in a floating state, the potential is raised by the potential of the capacitively coupled control signal line 43-1. The
 さらに、フォトダイオード51-3の画素信号が読み出される際には、制御信号線43-3がフローティング状態となったとき、その電位が、容量結合された制御信号線43-2の電位により上昇される。 Further, when the pixel signal of the photodiode 51-3 is read, when the control signal line 43-3 is in a floating state, its potential is raised by the potential of the capacitively coupled control signal line 43-2. The
 また、フォトダイオード51-4の画素信号が読み出される際には、制御信号線43-4がフローティング状態となったとき、その電位が、容量結合された制御信号線43-3の電位により上昇される。 Further, when the pixel signal of the photodiode 51-4 is read, when the control signal line 43-3 is in a floating state, its potential is raised by the potential of the capacitively coupled control signal line 43-3. The
 さらに、画素信号の吐き出しリセット処理においては、フォトダイオード51-1の画素信号が吐き出される際には、制御信号線43-1がフローティング状態となったとき、その電位が、容量結合された制御信号線43-2の電位により降下される。 Further, in the pixel signal discharge reset process, when the pixel signal of the photodiode 51-1 is discharged, when the control signal line 43-1 is in a floating state, the potential is capacitively coupled to the control signal. It is lowered by the potential of the line 43-2.
 また、フォトダイオード51-2の画素信号が吐き出される際には、制御信号線43-2がフローティング状態となったとき、その電位が、容量結合された制御信号線43-3の電位により降下される。 In addition, when the pixel signal of the photodiode 51-2 is discharged, when the control signal line 43-2 is in a floating state, the potential is lowered by the potential of the capacitively coupled control signal line 43-3. The
 さらに、フォトダイオード51-3の画素信号が吐き出される際には、制御信号線43-3がフローティング状態となったとき、その電位が、容量結合された制御信号線43-4の電位により降下される。 Further, when the pixel signal of the photodiode 51-3 is discharged, when the control signal line 43-3 is in a floating state, its potential is lowered by the potential of the capacitively coupled control signal line 43-4. The
 また、フォトダイオード51-4の画素信号が読み出される際には、制御信号線43-4の電位が、容量結合された付加配線44-2の電位により降下される。 Further, when the pixel signal of the photodiode 51-4 is read, the potential of the control signal line 43-4 is lowered by the potential of the additional wiring 44-2 that is capacitively coupled.
 すなわち、隣接する複数の制御信号線43-1乃至43-4間においては、いずれか一方の制御信号線43が、フローティング状態になったとき、他方の制御信号線43においてlowまたはhighの制御信号が供給されることで、図2の画素回路構成における付加配線44として機能させ、一方の制御信号線43の電位の上昇、または、降下を実現し、画素転送性能または画素保持性能を向上させているとみなすことができる。 That is, between any of the adjacent control signal lines 43-1 to 43-4, when one of the control signal lines 43 is in a floating state, the other control signal line 43 has a low or high control signal. 2 to function as the additional wiring 44 in the pixel circuit configuration of FIG. 2, increase or decrease the potential of one control signal line 43, and improve the pixel transfer performance or the pixel holding performance. Can be considered.
 また、制御信号線43-1乃至43-4は、これ以外の数であってもよいが、制御信号線43が複数に配置される場合には、隣接して配置される複数の制御信号線43の全ての電位を統一するため、付加配線44は、複数の制御信号線43の端部に配置され、上述した動作において、最初、または、最後に処理される。 Further, the number of control signal lines 43-1 to 43-4 may be other than this, but when a plurality of control signal lines 43 are arranged, a plurality of control signal lines arranged adjacent to each other. In order to unify all the potentials of 43, the additional wiring 44 is arranged at the end of the plurality of control signal lines 43, and is processed first or last in the above-described operation.
 結果として、隣接する複数の制御信号線43を構成することで、制御信号線43間のいずれかの配線が付加配線44としての機能することで、追加すべき付加配線44の本数を低減することが可能となり、製造コストの低減と、制御負荷の低減を実現することが可能となる。 As a result, by configuring a plurality of adjacent control signal lines 43, any wiring between the control signal lines 43 functions as the additional wiring 44, thereby reducing the number of additional wirings 44 to be added. Therefore, it becomes possible to reduce the manufacturing cost and the control load.
 <図10の共有画素ブロックの物理的なレイアウト>
 次に、図11を参照して、図10の共有画素ブロックの物理的なレイアウトについて説明する。図11においては、図10の画素共有ブロック111の平面配置を示すレイアウト例が示されている。
<Physical Layout of Shared Pixel Block in FIG. 10>
Next, a physical layout of the shared pixel block in FIG. 10 will be described with reference to FIG. FIG. 11 shows a layout example showing a planar arrangement of the pixel sharing block 111 of FIG.
 画素共有ブロック111には、フォトダイオード51-1乃至51-4が水平方向×垂直方向に対して、2画素×2画素分配置されている。フォトダイオード51-1乃至51-4の中心位置にFD部53が配置されている。また、FD部53と、フォトダイオード51-1乃至51-4のそれぞれとの間に転送トランジスタ52-1乃至52-4が配置されている。さらに、フォトダイオード51-1乃至51-4の下部には、図中の左からリセットトランジスタ54、増幅トランジスタ55、および選択トランジスタ56が配置されている。 In the pixel sharing block 111, photodiodes 51-1 to 51-4 are arranged for 2 pixels × 2 pixels in the horizontal direction × vertical direction. An FD portion 53 is disposed at the center position of the photodiodes 51-1 to 51-4. Further, transfer transistors 52-1 to 52-4 are arranged between the FD portion 53 and the photodiodes 51-1 to 51-4, respectively. Further, a reset transistor 54, an amplification transistor 55, and a selection transistor 56 are arranged below the photodiodes 51-1 to 51-4 from the left in the drawing.
 また、フォトダイオード51-1乃至51-4が配置された領域内に、水平方向に隣接する画素共有ブロック111を跨ぐように、図中の上から付加配線44-1、制御信号線43-1乃至43-4、および付加配線44-2が配置されている。ここで、付加配線44-1、制御信号線43-1乃至43-4、および付加配線44-2は、それぞれの各制御信号線間の容量が、いずれも等しくなるように配置されることが望ましい。 Further, in the region where the photodiodes 51-1 to 51-4 are arranged, the additional wiring 44-1 and the control signal line 43-1 are arranged from the top in the figure so as to straddle the pixel sharing block 111 adjacent in the horizontal direction. Through 43-4 and additional wiring 44-2 are arranged. Here, the additional wiring 44-1, the control signal lines 43-1 to 43-4, and the additional wiring 44-2 may be arranged such that the capacitances between the respective control signal lines are all equal. desirable.
 さらに、制御信号線43-1乃至43-4は、それぞれ貫通電極71-1乃至71-4を介して、転送トランジスタ52-1乃至52-4と接続されている。 Further, the control signal lines 43-1 to 43-4 are connected to the transfer transistors 52-1 to 52-4 via the through electrodes 71-1 to 71-4, respectively.
 このように、複数の制御信号線43間で相互に容量結合させることにより、電荷転送性能および電荷保持性能を向上させつつ、付加配線を低減させることができるので、製造コストを低減させることが可能となる。すなわち、1つの制御信号線43に対して1つの付加配線44を必要とする時にLine/Space(空間に対する配線の面積の割合)を狭めたり、配線総数を増加させたりせずに実現できるのでコストを低減させることが可能となる。また、付加配線の本数が低減されることにより、付加配線44を制御する制御信号も低減させることが可能となるので、その制御に係る負荷を低減させることが可能となる。 As described above, by capacitively coupling the plurality of control signal lines 43 to each other, it is possible to reduce the additional wiring while improving the charge transfer performance and the charge retention performance, and thus it is possible to reduce the manufacturing cost. It becomes. That is, when one additional wiring 44 is required for one control signal line 43, the cost can be realized without reducing the line / space (ratio of the wiring area to the space) or increasing the total number of wirings. Can be reduced. Further, since the number of additional wirings is reduced, the control signal for controlling the additional wirings 44 can be reduced, so that the load related to the control can be reduced.
 例えば、複数の制御信号線43間で相互に容量結合させない場合、4画素のそれぞれに必要な4本の制御信号線43に対して、それぞれに付加配線44が必要となるため、4画素で制御信号線43が4本必要であり、さらに、少なくとも4本の付加配線44が必要になる。これに対して、複数の制御信号線43間で相互に容量結合させる場合、制御信号線43が4本であっても、付加配線44は2本で済ますことが可能である。結果として、製造コストを低減させることが可能になると共に、より少ない制御信号で画素回路を制御することが可能となる。 For example, if the plurality of control signal lines 43 are not capacitively coupled to each other, additional wiring 44 is required for each of the four control signal lines 43 required for each of the four pixels, and control is performed with four pixels. Four signal lines 43 are required, and at least four additional wirings 44 are required. On the other hand, when the plurality of control signal lines 43 are mutually capacitively coupled, even if the number of control signal lines 43 is four, it is possible to use only two additional wirings 44. As a result, the manufacturing cost can be reduced and the pixel circuit can be controlled with fewer control signals.
 <<6.第2の実施の形態の第1の変形例>>
 以上においては、付加配線44-1,44-2をそれぞれ設けるようにしたことで、画素信号の読み出し処理において制御信号線43の電位を上昇させることで、電荷転送性能を向上させると共に、画素信号の吐き出し処理において制御信号線43の電位を降下させることで、電荷転送性能を向上させると共に、飽和性能とピンニング性能を向上させる例について説明してきた。
<< 6. First Modification of Second Embodiment >>
In the above, since the additional wirings 44-1 and 44-2 are provided, the potential of the control signal line 43 is increased in the pixel signal reading process, thereby improving the charge transfer performance and the pixel signal. In the discharge process, the example in which the charge transfer performance is improved and the saturation performance and the pinning performance are improved by lowering the potential of the control signal line 43 has been described.
 しかしながら、付加配線44-1,44-2については、そのいずれかのみを設ける構成とし、制御信号線43の電位の上昇、または、降下のみが実現できる構成としてもよい。 However, the additional wirings 44-1 and 44-2 may be configured so that only one of them is provided, and the potential of the control signal line 43 can be increased or decreased.
 図13は、画素共有ブロック111に対して、図10の付加配線44-1のみが設けられた場合の画素共有ブロック111の画素回路の構成例が示されている。 FIG. 13 shows a configuration example of the pixel circuit of the pixel sharing block 111 when only the additional wiring 44-1 of FIG. 10 is provided for the pixel sharing block 111.
 図13の画素共有ブロック111の構成により、複数の行に対して、付加配線44-1のみを設けるだけでよくなるので、電圧上昇に伴った電荷転送性能を向上させつつ、製造コストを低減させることが可能となる。また、付加配線44-1のみを制御するだけでよくなるので、制御負荷を低減させることが可能となる。 With the configuration of the pixel sharing block 111 in FIG. 13, it is only necessary to provide the additional wiring 44-1 for a plurality of rows, so that it is possible to reduce the manufacturing cost while improving the charge transfer performance as the voltage increases. Is possible. Further, since only the additional wiring 44-1 needs to be controlled, the control load can be reduced.
 <図13の画素回路の動作について>
 次に、図14のタイミングチャートを参照して、図13の画素回路の動作について説明する。
<Operation of Pixel Circuit in FIG. 13>
Next, the operation of the pixel circuit in FIG. 13 will be described with reference to the timing chart in FIG.
 時刻t211において、ドライバ32は、制御信号線43-1の制御信号をhighにする。この処理により、転送トランジスタ52-1がオンの状態となり、フォトダイオード51-1に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTはlowであり、リセットトランジスタ54は、オフの状態である。 At time t211, the driver 32 sets the control signal of the control signal line 43-1 to high. By this processing, the transfer transistor 52-1 is turned on, and the electric charge accumulated in the photodiode 51-1 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is in an off state.
 時刻t221において、ドライバ32は、制御信号線43-1の制御信号をhighの状態に維持した状態で、スイッチ42-1をオフにする。これにより、制御信号線43-1はフローティング状態となる。 At time t221, the driver 32 turns off the switch 42-1 while maintaining the control signal of the control signal line 43-1 in the high state. As a result, the control signal line 43-1 enters a floating state.
 時刻t221の直後のタイミングである、時刻t201(=t212)において、ドライバ32は、付加配線44-1の制御信号をhighにする。この時、制御信号線43-1はフローティング状態となっているため、実線の丸印Z21で示されるように、付加配線44-1との容量結合により、制御信号線43-1の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 At time t201 (= t212), which is the timing immediately after time t221, the driver 32 sets the control signal for the additional wiring 44-1 to high. At this time, since the control signal line 43-1 is in a floating state, as indicated by a solid circle Z21, the control signal line 43-1 is controlled by capacitive coupling with the additional wiring 44-1. The potential rises by the rising potential ΔV TGC1r .
 時刻t202(=t213=t222)において、ドライバ32は、付加配線44-1の制御信号をLowにし、制御信号線43-1の制御信号をLowにし、スイッチ42-1をオンに制御する。 At time t202 (= t213 = t222), the driver 32 sets the control signal of the additional wiring 44-1 to Low, sets the control signal of the control signal line 43-1 to Low, and controls the switch 42-1 to turn on.
 ここまでの処理により、フォトダイオード51-1の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-1.
 次に、フォトダイオード51-2の画素信号の読み出し処理を開始するにあたって、時刻t231において、ドライバ32は、制御信号線43-2の制御信号をhighにする。この処理により、転送トランジスタ52-2がオンの状態となり、フォトダイオード51-2に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTはlowであり、リセットトランジスタ54は、オフの状態である。 Next, when starting the reading process of the pixel signal of the photodiode 51-2, at time t231, the driver 32 sets the control signal of the control signal line 43-2 to high. By this processing, the transfer transistor 52-2 is turned on, and the charge accumulated in the photodiode 51-2 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is in an off state.
 時刻t241において、ドライバ32は、制御信号線43-2の制御信号をhighの状態に維持した状態で、スイッチ42-2をオフにする。これにより、制御信号線43-2はフローティング状態となる。 At time t241, the driver 32 turns off the switch 42-2 while maintaining the control signal of the control signal line 43-2 in the high state. As a result, the control signal line 43-2 enters a floating state.
 そして、時刻t241の直後のタイミングである、時刻t214(=t232)において、ドライバ32は、制御信号線43-1の制御信号をhighにする。この時、制御信号線43-2はフローティング状態となっているため、実線の丸印Z22で示されるように、制御信号線43-1との容量結合により、制御信号線43-2の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 Then, at time t214 (= t232), which is the timing immediately after time t241, the driver 32 sets the control signal of the control signal line 43-1 to high. At this time, since the control signal line 43-2 is in a floating state, the control signal of the control signal line 43-2 is coupled by capacitive coupling with the control signal line 43-1 as indicated by a solid circle Z22. Increases by the rising potential ΔV TGC1r .
 時刻t215(=t233=t242)において、ドライバ32は、制御信号線43-1の制御信号をLowにし、制御信号線43-2の制御信号をLowにし、スイッチ42-2をオンに制御する。 At time t215 (= t233 = t242), the driver 32 controls the control signal line 43-1 to be low, the control signal line 43-2 to be low, and the switch 42-2 to be turned on.
 ここまでの処理により、フォトダイオード51-2の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-2.
 さらに、フォトダイオード51-3の画素信号の読み出し処理を開始するにあたって、時刻t251において、ドライバ32は、制御信号線43-3の制御信号をhighにする。この処理により、転送トランジスタ52-3がオンの状態となり、フォトダイオード51-3に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTはlowであり、リセットトランジスタ54は、オフの状態である。 Furthermore, when starting the reading process of the pixel signal of the photodiode 51-3, at time t251, the driver 32 sets the control signal of the control signal line 43-3 to high. By this processing, the transfer transistor 52-3 is turned on, and the charge accumulated in the photodiode 51-3 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is in an off state.
 時刻t261において、ドライバ32は、制御信号線43-3の制御信号をhighの状態に維持した状態で、スイッチ42-3をオフにする。これにより、制御信号線43-3はフローティング状態となる。 At time t261, the driver 32 turns off the switch 42-3 while maintaining the control signal of the control signal line 43-3 in the high state. As a result, the control signal line 43-3 enters a floating state.
 時刻t261の直後のタイミングである、時刻t234(=t252)において、ドライバ32は、制御信号線43-2の制御信号をhighにする。この時、制御信号線43-3はフローティング状態となっているため、制御信号線43-2との容量結合により、制御信号線43-3の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 At time t234 (= t252), which is the timing immediately after time t261, the driver 32 sets the control signal of the control signal line 43-2 to high. At this time, since the control signal line 43-3 is in a floating state, the potential of the control signal on the control signal line 43-3 rises by the rising potential ΔV TGC1r due to capacitive coupling with the control signal line 43-2.
 時刻t235(=t253=t262)において、ドライバ32は、制御信号線43-2の制御信号をlowにし、制御信号線43-3の制御信号をlowにし、スイッチ42-3をオンに制御する。 At time t235 (= t253 = t262), the driver 32 sets the control signal of the control signal line 43-2 to low, sets the control signal of the control signal line 43-3 to low, and controls the switch 42-3 to be on.
 ここまでの処理により、フォトダイオード51-3の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-3.
 次に、フォトダイオード51-4の画素信号の読み出し処理について説明する。 Next, pixel signal readout processing of the photodiode 51-4 will be described.
 フォトダイオード51-4の画素信号の読み出し処理を開始するにあたって、時刻t271において、ドライバ32は、制御信号線43-4の制御信号をhighにする。この処理により、転送トランジスタ52-4がオンの状態となり、フォトダイオード51-4に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTはlowであり、リセットトランジスタ54は、オフの状態である。 In starting the pixel signal reading process of the photodiode 51-4, at time t271, the driver 32 sets the control signal of the control signal line 43-4 to high. By this processing, the transfer transistor 52-4 is turned on, and the charge accumulated in the photodiode 51-4 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is in an off state.
 時刻t281において、ドライバ32は、制御信号線43-4の制御信号をhighの状態に維持した状態で、スイッチ42-4をオフにする。これにより、制御信号線43-4はフローティング状態となる。 At time t281, the driver 32 turns off the switch 42-4 while maintaining the control signal of the control signal line 43-4 in the high state. As a result, the control signal line 43-4 enters a floating state.
 時刻t281の直後のタイミングである、時刻t254(=t272)において、ドライバ32は、制御信号線43-3の制御信号をhighにする。この時、制御信号線43-4はフローティング状態となっているため、制御信号線43-3との容量結合により、制御信号線43-4の制御信号の電位が上昇電位ΔVTGC1rだけ上昇する。 At time t254 (= t272), which is the timing immediately after time t281, the driver 32 sets the control signal of the control signal line 43-3 to high. At this time, since the control signal line 43-4 is in a floating state, the potential of the control signal on the control signal line 43-4 rises by the rising potential ΔV TGC1r due to capacitive coupling with the control signal line 43-3.
 時刻t255(=t273=t282)において、ドライバ32は、制御信号線43-3の制御信号をLowにし、制御信号線43-4の制御信号をLowにし、スイッチ42-4をオンに制御する。 At time t255 (= t273 = t282), the driver 32 sets the control signal of the control signal line 43-3 to Low, sets the control signal of the control signal line 43-4 to Low, and controls the switch 42-4 to be on.
 ここまでの処理により、フォトダイオード51-4の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-4.
 次に、フォトダイオード51-1の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-1 will be described.
 時刻t216において、ドライバ32は、制御信号線43-1の制御信号をhighに制御すると共に、リセット信号RSTをhighにして、転送トランジスタ52-1をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-1の電荷を排出させる。 At time t216, the driver 32 controls the control signal line 43-1 to high, sets the reset signal RST to high, turns on the transfer transistor 52-1, and turns on the reset transistor 54. Then, the charge of the photodiode 51-1 is discharged.
 フォトダイオード51-1の電荷排出が完了したタイミングとなる、時刻t217において、ドライバ32は、制御信号線43-1の制御信号をlowに制御すると共にリセット信号RSTをlowに制御して、転送トランジスタ52-1をオフにするとともに、リセットトランジスタ54をオフにして、フォトダイオード51-1の画素信号の吐き出しリセットが終了する。 At time t217, which is the timing when the charge discharge of the photodiode 51-1 is completed, the driver 32 controls the control signal of the control signal line 43-1 to be low and the reset signal RST to be low, thereby transferring the transfer transistor. While turning off 52-1 and turning off the reset transistor 54, the pixel signal discharge reset of the photodiode 51-1 is completed.
 ここまでの処理で、フォトダイオード51-1の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-1.
 次に、フォトダイオード51-2の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-2 will be described.
 時刻t236において、ドライバ32は、制御信号線43-2の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-2をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-2の電荷を排出させる。 At time t236, the driver 32 sets the potential of the control signal on the control signal line 43-2 to high, sets the reset signal RST to high, turns on the transfer transistor 52-2, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-2 is discharged.
 フォトダイオード51-2の電荷排出が完了したタイミングとなる、時刻t237において、ドライバ32は、制御信号線43-2の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-2およびリセットトランジスタ54をオフにする。 At time t237, which is the timing when the discharge of the charge of the photodiode 51-2 is completed, the driver 32 controls the control signal line 43-2 to low and sets the reset signal RST to low, thereby transferring the transfer transistor 52. -2 and reset transistor 54 are turned off.
 ここまでの処理で、フォトダイオード51-2の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-2.
 次に、フォトダイオード51-3の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-3 will be described.
 時刻t256において、ドライバ32は、制御信号線43-3の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-3をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-3の電荷を排出させる。 At time t256, the driver 32 sets the potential of the control signal on the control signal line 43-3 to high, sets the reset signal RST to high, turns on the transfer transistor 52-3, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-3 is discharged.
 フォトダイオード51-3の電荷排出が完了したタイミングとなる、時刻t257において、ドライバ32は、制御信号線43-3の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-3およびリセットトランジスタ54をオフにする。 At time t257, which is the timing when the discharge of the charge of the photodiode 51-3 is completed, the driver 32 controls the control signal of the control signal line 43-3 to be low and sets the reset signal RST to be low, thereby transferring the transfer transistor 52. -3 and reset transistor 54 are turned off.
 ここまでの処理で、フォトダイオード51-3の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-3.
 次に、フォトダイオード51-4の画素信号の吐き出しセット処理について説明する。 Next, the pixel signal discharge set processing of the photodiode 51-4 will be described.
 時刻t274において、ドライバ32は、制御信号線43-4の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-4をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-4の電荷を排出させる。 At time t274, the driver 32 sets the potential of the control signal on the control signal line 43-4 to high, sets the reset signal RST to high, turns on the transfer transistor 52-4, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-4 is discharged.
 フォトダイオード51-4の電荷排出が完了したタイミングとなる、時刻t275において、ドライバ32は、制御信号線43-4の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-4およびリセットトランジスタ54をオフにする。 At time t275 when the charge discharge of the photodiode 51-4 is completed, the driver 32 controls the control signal of the control signal line 43-4 to low and sets the reset signal RST to low, thereby transferring the transfer transistor 52. -4 and reset transistor 54 are turned off.
 ここまでの処理で、フォトダイオード51-4の画素信号の吐き出しリセット処理が終了する。 This completes the pixel signal discharge reset processing of the photodiode 51-4.
 すなわち、フォトダイオード51-1乃至51-4の画素信号の吐き出しリセット処理については、付加配線44-2が存在しないので、図11を参照して説明した処理における電位降下のための処理が省略された動作となる。 That is, in the pixel signal discharge reset processing of the photodiodes 51-1 to 51-4, since the additional wiring 44-2 does not exist, the processing for potential drop in the processing described with reference to FIG. 11 is omitted. It becomes the operation.
 以上の処理により、複数の制御信号線間で容量結合される構成となるので、画素信号の読み出し処理においては、電位上昇させることで、電荷転送性能を向上させつつ、各行に対して付加配線を追加する構成よりも追加する付加配線の本数を低減させることが可能となるので、製造に係るコストを低減させることが可能になる。また、付加配線の本数を低減させることにより、その制御に係る負荷を低減させることができるので、より少ない制御信号数で、同等の規模の撮像回路を制御することが可能となる。 Since the above processing results in a configuration in which a plurality of control signal lines are capacitively coupled, in the pixel signal readout processing, by increasing the potential, the charge transfer performance is improved and additional wiring is provided for each row. Since the number of additional wirings to be added can be reduced as compared with the configuration to be added, the manufacturing cost can be reduced. Further, since the load related to the control can be reduced by reducing the number of additional wirings, it is possible to control an imaging circuit of an equivalent scale with a smaller number of control signals.
 <<7.第2の実施の形態の第2の変形例>>
 以上においては、画素共有ブロック111に対して、付加配線44-1のみが設けられた場合の画素共有ブロック111の構成例について説明してきたが、付加配線44-2のみが設けられる構成とし、制御信号線43の電位降下のみが実現できる構成としてもよい。
<< 7. Second Modification of Second Embodiment >>
In the above, the configuration example of the pixel sharing block 111 when only the additional wiring 44-1 is provided for the pixel sharing block 111 has been described. However, only the additional wiring 44-2 is provided, and the control is performed. A configuration in which only a potential drop of the signal line 43 can be realized may be employed.
 図15は、画素共有ブロック111に対して、図10の付加配線44-2のみが設けられた場合の画素共有ブロック111の画素回路の構成例が示されている。 FIG. 15 shows a configuration example of the pixel circuit of the pixel sharing block 111 when only the additional wiring 44-2 of FIG. 10 is provided for the pixel sharing block 111.
 図15の画素共有ブロック111の構成により、複数の制御信号線43間で相互に容量結合を実現させて、付加配線44-2のみを設けるだけでよくなるので、製造コストを低減させることが可能となる。また、付加配線44-2のみを制御するだけでよくなるので、制御負荷を低減させることが可能となる。 With the configuration of the pixel sharing block 111 in FIG. 15, it is only necessary to realize capacitive coupling between the plurality of control signal lines 43 and to provide only the additional wiring 44-2, so that the manufacturing cost can be reduced. Become. Further, since only the additional wiring 44-2 needs to be controlled, the control load can be reduced.
 <図16の画素回路の動作について>
 次に、図16のタイミングチャートを参照して、図15の画素回路の動作について説明する。
<Operation of Pixel Circuit in FIG. 16>
Next, the operation of the pixel circuit in FIG. 15 will be described with reference to the timing chart in FIG.
 フォトダイオード51-1の画素信号の読み出し処理を開始するにあたって、時刻t311において、ドライバ32は、スイッチ42-1をオンに制御する。 In starting the pixel signal reading process of the photodiode 51-1, at time t311, the driver 32 controls the switch 42-1 to be turned on.
 時刻t311の直後のタイミングである、時刻t301において、ドライバ32は、制御信号線43-1の制御信号をhighにする。この処理により、転送トランジスタ52-1がオンの状態となり、フォトダイオード51-1に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTはlowであり、リセットトランジスタ54は、オフの状態である。 At time t301, which is the timing immediately after time t311, the driver 32 sets the control signal of the control signal line 43-1 to high. By this processing, the transfer transistor 52-1 is turned on, and the electric charge accumulated in the photodiode 51-1 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is in an off state.
 時刻t312において、ドライバ32は、制御信号線43-1の制御信号をLowにする。 At time t312, the driver 32 sets the control signal of the control signal line 43-1 to Low.
 ここまでの処理により、フォトダイオード51-1の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-1.
 次に、フォトダイオード51-2の画素信号の読み出し処理を開始するにあたって、時刻t331において、ドライバ32は、スイッチ42-2をオンに制御する。 Next, when starting the pixel signal reading process of the photodiode 51-2, at time t331, the driver 32 controls the switch 42-2 to be turned on.
 時刻t331の直後のタイミングである、時刻t321において、ドライバ32は、制御信号線43-2の制御信号をhighにする。この処理により、転送トランジスタ52-2がオンの状態となり、フォトダイオード51-2に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTはlowであり、リセットトランジスタ54は、オフの状態である。 At time t321, which is the timing immediately after time t331, the driver 32 sets the control signal of the control signal line 43-2 to high. By this processing, the transfer transistor 52-2 is turned on, and the charge accumulated in the photodiode 51-2 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is in an off state.
 時刻t322において、ドライバ32は、制御信号線43-1の制御信号をLowにする。 At time t322, the driver 32 sets the control signal of the control signal line 43-1 to Low.
 ここまでの処理により、フォトダイオード51-2の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-2.
 さらに、フォトダイオード51-3の画素信号の読み出し処理を開始するにあたって、時刻t351において、ドライバ32は、スイッチ42-3をオンに制御する。 Furthermore, when starting the pixel signal reading process of the photodiode 51-3, at time t351, the driver 32 controls the switch 42-3 to be turned on.
 時刻t351の直後のタイミングである、時刻t341において、ドライバ32は、制御信号線43-3の制御信号をhighにする。この処理により、転送トランジスタ52-3がオンの状態となり、フォトダイオード51-3に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTはlowであり、リセットトランジスタ54は、オフの状態である。 At time t341, which is the timing immediately after time t351, the driver 32 sets the control signal of the control signal line 43-3 to high. By this processing, the transfer transistor 52-3 is turned on, and the charge accumulated in the photodiode 51-3 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is in an off state.
 時刻t342において、ドライバ32は、制御信号線43-3の制御信号をLowにする。 At time t342, the driver 32 sets the control signal of the control signal line 43-3 to Low.
 ここまでの処理により、フォトダイオード51-3の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-3.
 次に、フォトダイオード51-4の画素信号の読み出し処理について説明する。 Next, pixel signal readout processing of the photodiode 51-4 will be described.
 フォトダイオード51-4の画素信号の読み出し処理を開始するにあたって、時刻t371において、ドライバ32は、スイッチ42-4をオンに制御する。 In starting the pixel signal reading process of the photodiode 51-4, at time t371, the driver 32 controls the switch 42-4 to be turned on.
 時刻t371の直後のタイミングである、時刻t361において、ドライバ32は、制御信号線43-4の制御信号をhighにする。この処理により、転送トランジスタ52-4がオンの状態となり、フォトダイオード51-4に蓄積された電荷がFD部53に転送される。ここでは、リセット信号RSTはlowであり、リセットトランジスタ54は、オフの状態である。 At time t361, which is the timing immediately after time t371, the driver 32 sets the control signal of the control signal line 43-4 to high. By this processing, the transfer transistor 52-4 is turned on, and the charge accumulated in the photodiode 51-4 is transferred to the FD unit 53. Here, the reset signal RST is low, and the reset transistor 54 is in an off state.
 時刻t362において、ドライバ32は、制御信号線43-4の制御信号をLowにする。 At time t362, the driver 32 sets the control signal of the control signal line 43-4 to Low.
 ここまでの処理により、フォトダイオード51-4の画素信号の読み出し処理が終了する。 The processing so far completes the pixel signal readout processing of the photodiode 51-4.
 すなわち、フォトダイオード51-1乃至51-4の読み出し処理については、図11の場合に対して、付加配線44-1がないので、電圧上昇させるための処理が省略された処理となる。 That is, the readout process of the photodiodes 51-1 to 51-4 is a process in which the process for increasing the voltage is omitted because the additional wiring 44-1 is not provided in the case of FIG.
 次に、フォトダイオード51-1の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-1 will be described.
 読出しタイミングに合わせて所望の蓄積時間の信号が得られるようにフォトダイオード51内から電荷を吐き出してリセットする(シャッタ)動作が行われる。 A reset (shutter) operation is performed by discharging charges from the photodiode 51 so that a signal with a desired accumulation time can be obtained in accordance with the read timing.
 すなわち、時刻t303において、ドライバ32は、制御信号線43-1の制御信号をhighに制御すると共に、リセット信号RSTをhighにして、転送トランジスタ52-1をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-1の電荷を排出させる。 That is, at time t303, the driver 32 controls the control signal line 43-1 to high, sets the reset signal RST to high, turns on the transfer transistor 52-1, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-1 is discharged.
 フォトダイオード51-1の電荷排出が完了したタイミングとなる、時刻t304において、ドライバ32は、制御信号線43-1の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-1およびリセットトランジスタ54をオフにする。 At time t304, which is the timing when the discharge of the photodiode 51-1 is completed, the driver 32 controls the control signal of the control signal line 43-1 to be low and sets the reset signal RST to be low, thereby transferring the transfer transistor 52. -1 and reset transistor 54 are turned off.
 ここまでの処理で、フォトダイオード51-1の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-1.
 次に、フォトダイオード51-2の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-2 will be described.
 時刻t323において、ドライバ32は、制御信号線43-2の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-2をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-2の電荷を排出させる。 At time t323, the driver 32 sets the control signal potential of the control signal line 43-2 to high, sets the reset signal RST to high, turns on the transfer transistor 52-2, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-2 is discharged.
 時刻t312において、ドライバ32は、スイッチ42-1をオフに制御する。これに伴って、制御信号線43-1がフローティング状態となる。 At time t312, the driver 32 controls the switch 42-1 to be turned off. As a result, the control signal line 43-1 enters a floating state.
 フォトダイオード51-2の電荷排出が完了したタイミングとなる、時刻t324(=t305)において、ドライバ32は、制御信号線43-2の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-2およびリセットトランジスタ54をオフにする。 At time t324 (= t305), which is the timing when the charge discharge of the photodiode 51-2 is completed, the driver 32 controls the control signal of the control signal line 43-2 to low and sets the reset signal RST to low. Then, the transfer transistor 52-2 and the reset transistor 54 are turned off.
 この時、制御信号線43-1はフローティング状態となっているため、実線の丸印Z31で示されるように、制御信号線43-2との容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-1 is in a floating state, the potential drops by the drop potential ΔV TGC1f due to capacitive coupling with the control signal line 43-2, as indicated by a solid circle Z31.
 この制御信号線43-1の制御信号の電位は、次にスイッチ42-1がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-1 is held until the switch 42-1 is turned on next time.
 ここまでの処理で、フォトダイオード51-2の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-2.
 次に、フォトダイオード51-3の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-3 will be described.
 時刻t343において、ドライバ32は、制御信号線43-3の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-3をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-3の電荷を排出させる。 At time t343, the driver 32 sets the potential of the control signal on the control signal line 43-3 to high, sets the reset signal RST to high, turns on the transfer transistor 52-3, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-3 is discharged.
 時刻t332において、ドライバ32は、スイッチ42-2をオフに制御する。これに伴って、制御信号線43-2がフローティング状態となる。 At time t332, the driver 32 controls the switch 42-2 to be turned off. Along with this, the control signal line 43-2 enters a floating state.
 フォトダイオード51-2の電荷排出が完了したタイミングとなる、時刻t344(=t325)において、ドライバ32は、制御信号線43-3の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-3およびリセットトランジスタ54をオフにする。 At time t344 (= t325), which is the timing when the charge discharge of the photodiode 51-2 is completed, the driver 32 controls the control signal of the control signal line 43-3 to be low and sets the reset signal RST to be low. Then, the transfer transistor 52-3 and the reset transistor 54 are turned off.
 この時、制御信号線43-2はフローティングとなっているため、実線の丸印Z32で示されるように、制御信号線43-3との容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-2 is in a floating state, the potential drops by the drop potential ΔV TGC1f due to capacitive coupling with the control signal line 43-3 as indicated by a solid circle Z32.
 この制御信号線43-2の制御信号の電位は、次にスイッチ42-2がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-2 is held until the switch 42-2 is turned on next time.
 ここまでの処理で、フォトダイオード51-2の画素信号の吐き出しリセット処理が終了する。 The processing up to this point ends the pixel signal discharge reset processing of the photodiode 51-2.
 次に、フォトダイオード51-3の画素信号の吐き出しリセット処理について説明する。 Next, the pixel signal discharge reset processing of the photodiode 51-3 will be described.
 時刻t363において、ドライバ32は、制御信号線43-4の制御信号の電位をhighにすると共に、リセット信号RSTをhighにして、転送トランジスタ52-4をオンにすると共に、リセットトランジスタ54をオンにして、フォトダイオード51-4の電荷を排出させる。 At time t363, the driver 32 sets the potential of the control signal on the control signal line 43-4 to high, sets the reset signal RST to high, turns on the transfer transistor 52-4, and turns on the reset transistor 54. Thus, the charge of the photodiode 51-4 is discharged.
 時刻t352において、ドライバ32は、スイッチ42-3をオフに制御する。これに伴って、制御信号線43-3がフローティング状態となる。 At time t352, the driver 32 controls the switch 42-3 to be turned off. Along with this, the control signal line 43-3 enters a floating state.
 フォトダイオード51-4の電荷排出が完了したタイミングとなる、時刻t364(=t345)において、ドライバ32は、制御信号線43-4の制御信号をlowに制御すると共に、リセット信号RSTをlowにして、転送トランジスタ52-4およびリセットトランジスタ54をオフにする。 At time t364 (= t345), which is the timing when the charge discharge of the photodiode 51-4 is completed, the driver 32 controls the control signal of the control signal line 43-4 to low and sets the reset signal RST to low. Then, the transfer transistor 52-4 and the reset transistor 54 are turned off.
 この時、制御信号線43-3はフローティングとなっているため、実線の丸印Z33で示されるように、制御信号線43-4との容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-3 is floating, the potential drops by the drop potential ΔV TGC1f due to capacitive coupling with the control signal line 43-4 as indicated by a solid circle Z33.
 この制御信号線43-3の制御信号の電位は、次にスイッチ42-3がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-3 is held until the switch 42-3 is turned on next time.
 ここまでの処理で、フォトダイオード51-4の画素信号の吐き出しリセット処理が終了する。 This completes the pixel signal discharge reset processing of the photodiode 51-4.
 次に、制御信号線43-4の電位を降下させる処理について説明する。 Next, processing for lowering the potential of the control signal line 43-4 will be described.
 時刻t381において、ドライバ32は、付加配線44-2の制御信号の電位をhighにする。 At time t381, the driver 32 sets the potential of the control signal of the additional wiring 44-2 to high.
 時刻t372において、ドライバ32は、スイッチ42-4をオフに制御する。これに伴って、制御信号線43-4がフローティング状態となる。 At time t372, the driver 32 controls the switch 42-4 to be off. As a result, the control signal line 43-4 enters a floating state.
 その直後である、時刻t382(=t365)において、ドライバ32は、制御信号線43-4および付加配線44-2の制御信号をlowに制御する。 Immediately thereafter, at time t382 (= t365), the driver 32 controls the control signals of the control signal line 43-4 and the additional wiring 44-2 to low.
 この時、制御信号線43-4はフローティング状態となっているため、実線の丸印Z34で示されるように、付加配線44-2との容量結合により降下電位ΔVTGC1fだけ電位が降下する。 At this time, since the control signal line 43-4 is in a floating state, the potential drops by the drop potential ΔV TGC1f due to capacitive coupling with the additional wiring 44-2 as indicated by a solid circle Z34.
 この制御信号線43-4の制御信号の電位は、次にスイッチ42-4がオンにされるまでの間保持される。 The potential of the control signal on the control signal line 43-4 is held until the next time the switch 42-4 is turned on.
 以上の処理により、制御信号線43間で相互に容量結合させて、付加配線44-2のみが付加される構成となるので、各行に対して制御信号線を付加する構成よりも付加する制御信号線の本数を低減させることが可能となり、製造コストを低減させることが可能になる。また、付加する制御信号線の本数を低減させることにより、その制御に係る負荷を低減させることができるので、より少ない制御信号数で、同等の規模の撮像回路を制御することが可能となる。 By the above processing, the control signal lines 43 are capacitively coupled to each other, and only the additional wiring 44-2 is added. Therefore, the control signal to be added rather than the configuration in which the control signal line is added to each row. The number of lines can be reduced, and the manufacturing cost can be reduced. Further, by reducing the number of control signal lines to be added, it is possible to reduce the load related to the control. Therefore, it is possible to control image pickup circuits of the same scale with a smaller number of control signals.
 <<8.電子機器への適用例>>
 上述した図1の固体撮像装置11は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
<< 8. Application example to electronic equipment >>
The above-described solid-state imaging device 11 of FIG. 1 is applied to various electronic devices such as an imaging device such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. can do.
 図17は、本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。 FIG. 17 is a block diagram illustrating a configuration example of an imaging apparatus as an electronic apparatus to which the present technology is applied.
 図17に示される撮像装置501は、光学系502、シャッタ装置503、固体撮像素子504、駆動回路505、信号処理回路506、モニタ507、およびメモリ508を備えて構成され、静止画像および動画像を撮像可能である。 An imaging device 501 shown in FIG. 17 includes an optical system 502, a shutter device 503, a solid-state imaging device 504, a driving circuit 505, a signal processing circuit 506, a monitor 507, and a memory 508, and displays a still image and a moving image. Imaging is possible.
 光学系502は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を固体撮像素子504に導き、固体撮像素子504の受光面に結像させる。 The optical system 502 includes one or a plurality of lenses, guides light (incident light) from the subject to the solid-state image sensor 504, and forms an image on the light-receiving surface of the solid-state image sensor 504.
 シャッタ装置503は、光学系502および固体撮像素子504の間に配置され、駆動回路1005の制御に従って、固体撮像素子504への光照射期間および遮光期間を制御する。 The shutter device 503 is disposed between the optical system 502 and the solid-state imaging device 504, and controls the light irradiation period and the light-shielding period to the solid-state imaging device 504 according to the control of the drive circuit 1005.
 固体撮像素子504は、上述した固体撮像素子を含むパッケージにより構成される。固体撮像素子504は、光学系502およびシャッタ装置503を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。固体撮像素子504に蓄積された信号電荷は、駆動回路505から供給される駆動信号(タイミング信号)に従って転送される。 The solid-state image sensor 504 is configured by a package including the above-described solid-state image sensor. The solid-state imaging device 504 accumulates signal charges for a certain period in accordance with light imaged on the light receiving surface via the optical system 502 and the shutter device 503. The signal charge accumulated in the solid-state image sensor 504 is transferred according to a drive signal (timing signal) supplied from the drive circuit 505.
 駆動回路505は、固体撮像素子504の転送動作、および、シャッタ装置503のシャッタ動作を制御する駆動信号を出力して、固体撮像素子504およびシャッタ装置503を駆動する。 The drive circuit 505 outputs a drive signal for controlling the transfer operation of the solid-state image sensor 504 and the shutter operation of the shutter device 503 to drive the solid-state image sensor 504 and the shutter device 503.
 信号処理回路506は、固体撮像素子504から出力された信号電荷に対して各種の信号処理を施す。信号処理回路506が信号処理を施すことにより得られた画像(画像データ)は、モニタ507に供給されて表示されたり、メモリ508に供給されて記憶(記録)されたりする。 The signal processing circuit 506 performs various types of signal processing on the signal charges output from the solid-state imaging device 504. An image (image data) obtained by the signal processing by the signal processing circuit 506 is supplied to the monitor 507 and displayed, or supplied to the memory 508 and stored (recorded).
 このように構成されている撮像装置501においても、上述した光学系502、および固体撮像素子504に代えて、図1の固体撮像装置11を適用することにより、装置構成の小型化および低背化を実現しつつ、内乱反射に起因するゴーストやフレアを抑制することが可能となる。
 <<9.固体撮像装置の使用例>>
Also in the imaging apparatus 501 configured as described above, the apparatus configuration can be reduced in size and height by applying the solid-state imaging apparatus 11 of FIG. 1 instead of the optical system 502 and the solid-state imaging element 504 described above. It is possible to suppress ghost and flare caused by internal reflection while realizing the above.
<< 9. Example of use of solid-state imaging device >>
 図18は、上述の固体撮像装置11を使用する使用例を示す図である。 FIG. 18 is a diagram illustrating a usage example in which the solid-state imaging device 11 described above is used.
 上述した固体撮像装置11は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The solid-state imaging device 11 described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・ Devices for taking images for viewing, such as digital cameras and mobile devices with camera functions ・ For safe driving such as automatic stop and recognition of the driver's condition, Devices used for traffic, such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc. Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ・ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc. Equipment used for medical and health care ・ Security equipment such as security surveillance cameras and personal authentication cameras ・ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
 <<10.内視鏡手術システムへの応用例>>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<< 10. Application example to endoscopic surgery system >>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図19は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 19 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
 図19では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 19 shows a state where an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000. As shown in the figure, an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101. In the illustrated example, an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens. Note that the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. A user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like. In order to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the operator's work space, the pneumoperitoneum device 11206 passes gas into the body cavity via the insufflation tube 11111. Send in. The recorder 11207 is an apparatus capable of recording various types of information related to surgery. The printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 In addition, the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. In this case, laser light from each of the RGB laser light sources is irradiated on the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take a time-division image. According to this method, a color image can be obtained without providing a color filter in the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation. A so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
 図20は、図19に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 20 is a block diagram illustrating an example of functional configurations of the camera head 11102 and the CCU 11201 illustrated in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 includes an imaging element. One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used. In the case where the imaging unit 11402 is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them. Alternatively, the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site. Note that in the case where the imaging unit 11402 is configured as a multi-plate type, a plurality of lens units 11401 can be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 11402 is not necessarily provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Further, the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Further, the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102. The image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 Further, the control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, communication is performed by wire using the transmission cable 11400. However, communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、内視鏡11100や、カメラヘッド11102(の撮像部11402)、CCU11201(の画像処理部11412)等に適用され得る。具体的には、例えば、図1の固体撮像装置11は、レンズユニット11401および撮像部10402に適用することができる。レンズユニット11401および撮像部10402に本開示に係る技術を適用することにより、電荷転送能力、および電荷保持能力を向上させることが可能となる。 In the foregoing, an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied has been described. Among the configurations described above, the technology according to the present disclosure can be applied to, for example, the endoscope 11100, the camera head 11102 (the imaging unit 11402), the CCU 11201 (the image processing unit 11412), and the like. Specifically, for example, the solid-state imaging device 11 of FIG. 1 can be applied to the lens unit 11401 and the imaging unit 10402. By applying the technology according to the present disclosure to the lens unit 11401 and the imaging unit 10402, the charge transfer capability and the charge retention capability can be improved.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Note that although an endoscopic surgery system has been described here as an example, the technology according to the present disclosure may be applied to, for example, a microscope surgery system and the like.
 <<11.移動体への応用例>>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<< 11. Application example to mobile objects >>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
 図21は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 21 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図21に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example illustrated in FIG. 21, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050. As a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp. In this case, the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted. For example, the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image. The vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light. The imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The vehicle interior information detection unit 12040 detects vehicle interior information. For example, a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図21の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle. In the example of FIG. 21, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図22は、撮像部12031の設置位置の例を示す図である。 FIG. 22 is a diagram illustrating an example of an installation position of the imaging unit 12031.
 図22では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 22, the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100. The imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100. The imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100. The forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図22には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 FIG. 22 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051, based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100). In particular, it is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in the same direction as the vehicle 12100, particularly the closest three-dimensional object on the traveling path of the vehicle 12100 it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. Thus, cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining. When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to be superimposed and displayed. Moreover, the audio | voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、例えば、図1の固体撮像装置11は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、電荷転送能力、および電荷保持能力を向上させることが可能となる。 Heretofore, an example of a vehicle control system to which the technology according to the present disclosure can be applied has been described. Of the configurations described above, the technology according to the present disclosure may be applied to the imaging unit 12031, for example. Specifically, for example, the solid-state imaging device 11 in FIG. 1 can be applied to the imaging unit 12031. By applying the technique according to the present disclosure to the imaging unit 12031, it is possible to improve the charge transfer capability and the charge retention capability.
 尚、本開示は、以下のような構成も取ることができる。
<1> 光電変換により入射光の光量に応じた画素信号を生成する画素より画素信号を転送する転送ゲートと、
 前記転送ゲートの開閉を制御する制御信号を供給する制御信号線をフローティング状態にするフローティング機構部と、
 前記制御信号線と容量結合する付加配線と
 を含む固体撮像装置。
<2> 前記フローティング機構部は、前記制御信号線と、前記制御信号を発生するドライバとの間に設けられるスイッチであり、前記スイッチがオフにされることにより、前記制御信号線がフローティング状態にされる
 <1>に記載の固体撮像装置。
<3> 前記フローティング機構部は、前記制御信号を発生するドライバにおける出力段が、前記制御信号線に対して電源側のスイッチと、接地側のスイッチとから構成される場合、前記電源側のスイッチと、前記接地側のスイッチとがいずれもオフにされることにより、前記制御信号線がフローティング状態にされる
 <1>に記載の固体撮像装置。
<4> 前記付加配線は、1本の前記制御信号線に対して複数本数容量結合される
 <1>に記載の固体撮像装置。
<5> 前記付加配線は、複数の前記制御信号線に対して1本または2本容量結合される
 <1>に記載の固体撮像装置。
<6> 前記付加配線は、前記入射光の入射方向に対して直交する、前記制御信号線が存在する平面と同一平面上に、前記制御信号線と平行に配置される
 <1>に記載の固体撮像装置。
<7> 前記付加配線は、前記入射光の入射方向に対して、前記制御信号線の前段、および後段の少なくともいずれかに、前記制御信号線と平行に配置される
 <1>に記載の固体撮像装置。
<8> 前記付加配線は、前記制御信号線と容量結合された、前記制御信号線とは異なる独立した配線である
 <1>に記載の固体撮像装置。
<9> 前記付加配線は、前記制御信号線と容量結合された、前記制御信号線とは異なる独立した配線、および、前記制御信号線と容量結合された他の制御信号線である
 <1>に記載の固体撮像装置。
<10> 前記フローティング機構部によりフローティング状態に制御された前記制御信号線の電位は、前記フローティング状態の前記制御信号線と容量結合される前記付加配線に供給される信号に応じて、上昇、または降下する
 <9>に記載の固体撮像装置。
<11> 前記独立した配線からなる付加配線と容量結合される前記制御信号線は、最初に、前記フローティング機構部によりフローティング状態に制御され、前記付加配線に供給される信号に応じて、前記電位が上昇、または降下される
 <10>に記載の固体撮像装置。
<12> 前記独立した配線からなる付加配線と容量結合される前記制御信号線は、最後に、前記フローティング機構部によりフローティング状態に制御され、前記付加配線に供給される信号に応じて、前記電位が上昇、または降下される
 <10>に記載の固体撮像装置。
<13> 隣接する前記付加配線と前記制御信号線とを結合する容量、並びに、前記制御信号線間を結合する容量は、略等しい
 <9>に記載の固体撮像装置。
<14> 前記制御信号線と前記付加配線とを結合する容量は、付加容量である
 <1>に記載の固体撮像装置。
<15> 前記付加容量は、寄生容量である
 <14>に記載の固体撮像装置。
<16> 前記付加容量は、MOS(Metal Oxide Semiconductor)容量である
 <14>に記載の固体撮像装置。
<17> 前記付加容量は、MIM(Metal Insulator Metal)/MOM(Metal Oxide Metal)容量である
 <14>に記載の固体撮像装置。
<18> 前記付加容量は、対向電極を共にpolysiliconで形成する容量である
 <14>に記載の固体撮像装置。
<19> 光電変換により入射光の光量に応じた画素信号を生成する画素より画素信号を転送する転送ゲートと、
 前記転送ゲートの開閉を制御する制御信号を供給する制御信号線をフローティング状態にするフローティング機構部と、
 前記制御信号線と容量結合する付加配線と
 を含む撮像装置。
<20> 光電変換により入射光の光量に応じた画素信号を生成する画素より画素信号を転送する転送ゲートと、
 前記転送ゲートの開閉を制御する制御信号を供給する制御信号線をフローティング状態にするフローティング機構部と、
 前記制御信号線と容量結合する付加配線と
 を含む電子機器。
In addition, this indication can also take the following structures.
<1> a transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
A floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
A solid-state imaging device comprising: an additional wiring that is capacitively coupled to the control signal line.
<2> The floating mechanism unit is a switch provided between the control signal line and a driver that generates the control signal. When the switch is turned off, the control signal line is in a floating state. The solid-state imaging device according to <1>.
<3> When the output stage in the driver that generates the control signal includes a switch on the power supply side and a switch on the ground side with respect to the control signal line, the floating mechanism unit is configured to switch the power supply side. And the ground-side switch is turned off, whereby the control signal line is brought into a floating state. <1>.
<4> The solid-state imaging device according to <1>, wherein a plurality of the additional wirings are capacity-coupled to one control signal line.
<5> The solid-state imaging device according to <1>, wherein one or two additional wirings are capacitively coupled to the plurality of control signal lines.
<6> The additional wiring is arranged in parallel with the control signal line on the same plane as the control signal line, which is orthogonal to the incident direction of the incident light. Solid-state imaging device.
<7> The solid line according to <1>, wherein the additional wiring is arranged in parallel to the control signal line at least one of a front stage and a rear stage of the control signal line with respect to an incident direction of the incident light. Imaging device.
<8> The solid-state imaging device according to <1>, wherein the additional wiring is an independent wiring that is capacitively coupled to the control signal line and is different from the control signal line.
<9> The additional wiring is an independent wiring that is capacitively coupled to the control signal line and is different from the control signal line, and another control signal line that is capacitively coupled to the control signal line. <1> The solid-state imaging device described in 1.
<10> The potential of the control signal line controlled to be in a floating state by the floating mechanism section is increased according to a signal supplied to the additional wiring that is capacitively coupled to the control signal line in the floating state, or The solid-state imaging device according to <9>.
<11> The control signal line that is capacitively coupled to the additional wiring composed of the independent wiring is first controlled to be in a floating state by the floating mechanism unit, and the potential is set according to a signal supplied to the additional wiring. The solid-state imaging device according to <10>.
<12> The control signal line that is capacitively coupled to the additional wiring composed of the independent wiring is finally controlled to be in a floating state by the floating mechanism unit, and the potential is changed according to a signal supplied to the additional wiring. The solid-state imaging device according to <10>.
<13> The solid-state imaging device according to <9>, wherein a capacity for coupling the adjacent additional wiring and the control signal line and a capacity for coupling the control signal lines are substantially equal.
<14> The capacity for coupling the control signal line and the additional wiring is an additional capacity. The solid-state imaging device according to <1>.
<15> The solid-state imaging device according to <14>, wherein the additional capacitor is a parasitic capacitor.
<16> The solid-state imaging device according to <14>, wherein the additional capacitor is a MOS (Metal Oxide Semiconductor) capacitor.
<17> The solid-state imaging device according to <14>, wherein the additional capacitor is a MIM (Metal Insulator Metal) / MOM (Metal Oxide Metal) capacitor.
<18> The solid-state imaging device according to <14>, wherein the additional capacitor is a capacitor in which both counter electrodes are formed of polysilicon.
<19> a transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
A floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
An imaging apparatus comprising: an additional wiring that is capacitively coupled to the control signal line.
<20> a transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
A floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
An electronic device comprising: an additional wiring that is capacitively coupled to the control signal line.
 11 撮像装置, 31 制御回路, 32 ドライバ, 33 画素アレイ, 34 カラム処理部, 35 信号処理部, 41 画素, 42,42-1-1乃至42-M-N スイッチ, 43,43-1乃至43-4 制御信号線, 44,44-1,44-2 付加配線, 45,45-1乃至45-M VSL, 51 フォトダイオード, 52 転送トランジスタ, 53 FD部, 54 リセットトランジスタ, 55 増幅トランジスタ, 56 選択トランジスタ, 71,71-1乃至71-4 貫通電極, 111,111-1-1乃至111-M-N 共有画素ブロック 11 imaging device, 31 control circuit, 32 driver, 33 pixel array, 34 column processing unit, 35 signal processing unit, 41 pixel, 42, 42-1-1 to 42-MN switch, 43, 43-1 to 43 -4 Control signal line, 44, 44-1, 44-2 additional wiring, 45, 45-1 to 45-M VSL, 51 photodiode, 52 transfer transistor, 53 FD section, 54 reset transistor, 55 amplification transistor, 56 Select transistor, 71, 71-1 to 71-4 through electrode, 111, 111-1-1 to 111-MN shared pixel block

Claims (20)

  1.  光電変換により入射光の光量に応じた画素信号を生成する画素より画素信号を転送する転送ゲートと、
     前記転送ゲートの開閉を制御する制御信号を供給する制御信号線をフローティング状態にするフローティング機構部と、
     前記制御信号線と容量結合する付加配線と
     を含む固体撮像装置。
    A transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
    A floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
    A solid-state imaging device comprising: an additional wiring that is capacitively coupled to the control signal line.
  2.  前記フローティング機構部は、前記制御信号線と、前記制御信号を発生するドライバとの間に設けられるスイッチであり、前記スイッチがオフにされることにより、前記制御信号線がフローティング状態にされる
     請求項1に記載の固体撮像装置。
    The floating mechanism unit is a switch provided between the control signal line and a driver that generates the control signal, and the control signal line is brought into a floating state when the switch is turned off. Item 2. The solid-state imaging device according to Item 1.
  3.  前記フローティング機構部は、前記制御信号を発生するドライバにおける出力段が、前記制御信号線に対して電源側のスイッチと、接地側のスイッチとから構成される場合、前記電源側のスイッチと、前記接地側のスイッチとがいずれもオフにされることにより、前記制御信号線がフローティング状態にされる
     請求項1に記載の固体撮像装置。
    When the output stage in the driver that generates the control signal is composed of a switch on the power supply side and a switch on the ground side with respect to the control signal line, the floating mechanism unit, the switch on the power supply side, The solid-state imaging device according to claim 1, wherein the control signal line is brought into a floating state by turning off both of the switches on the ground side.
  4.  前記付加配線は、1本の前記制御信号線に対して複数本数容量結合される
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein a plurality of the additional wirings are capacitively coupled to one control signal line.
  5.  前記付加配線は、複数の前記制御信号線に対して1本または2本容量結合される
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein one or two additional wirings are capacitively coupled to the plurality of control signal lines.
  6.  前記付加配線は、前記入射光の入射方向に対して直交する、前記制御信号線が存在する平面と同一平面上に、前記制御信号線と平行に配置される
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the additional wiring is arranged in parallel with the control signal line on the same plane as the control signal line that is orthogonal to the incident direction of the incident light. .
  7.  前記付加配線は、前記入射光の入射方向に対して、前記制御信号線の前段、および後段の少なくともいずれかに、前記制御信号線と平行に配置される
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the additional wiring is arranged in parallel to the control signal line at least one of a front stage and a rear stage of the control signal line with respect to an incident direction of the incident light.
  8.  前記付加配線は、前記制御信号線と容量結合された、前記制御信号線とは異なる独立した配線である
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the additional wiring is an independent wiring that is capacitively coupled to the control signal line and is different from the control signal line.
  9.  前記付加配線は、前記制御信号線と容量結合された、前記制御信号線とは異なる独立した配線、および、前記制御信号線と容量結合された他の制御信号線である
     請求項1に記載の固体撮像装置。
    The additional wiring is an independent wiring different from the control signal line that is capacitively coupled to the control signal line, and another control signal line that is capacitively coupled to the control signal line. Solid-state imaging device.
  10.  前記フローティング機構部によりフローティング状態に制御された前記制御信号線の電位は、前記フローティング状態の前記制御信号線と容量結合される前記付加配線に供給される信号に応じて、上昇、または降下する
     請求項9に記載の固体撮像装置。
    The potential of the control signal line controlled to be in a floating state by the floating mechanism section rises or falls according to a signal supplied to the additional wiring that is capacitively coupled to the control signal line in the floating state. Item 10. The solid-state imaging device according to Item 9.
  11.  前記独立した配線からなる付加配線と容量結合される前記制御信号線は、最初に、前記フローティング機構部によりフローティング状態に制御され、前記付加配線に供給される信号に応じて、前記電位が上昇、または降下される
     請求項10に記載の固体撮像装置。
    The control signal line capacitively coupled to the additional wiring composed of the independent wiring is first controlled to be in a floating state by the floating mechanism unit, and the potential increases according to a signal supplied to the additional wiring. The solid-state imaging device according to claim 10.
  12.  前記独立した配線からなる付加配線と容量結合される前記制御信号線は、最後に、前記フローティング機構部によりフローティング状態に制御され、前記付加配線に供給される信号に応じて、前記電位が上昇、または降下される
     請求項10に記載の固体撮像装置。
    The control signal line capacitively coupled to the additional wiring composed of the independent wiring is finally controlled to be in a floating state by the floating mechanism unit, and the potential increases according to a signal supplied to the additional wiring. The solid-state imaging device according to claim 10.
  13.  隣接する前記付加配線と前記制御信号線とを結合する容量、並びに、前記制御信号線間を結合する容量は、略等しい
     請求項9に記載の固体撮像装置。
    The solid-state imaging device according to claim 9, wherein a capacity for coupling the adjacent additional wiring and the control signal line and a capacity for coupling the control signal lines are substantially equal.
  14.  前記制御信号線と前記付加配線とを結合する容量は、付加容量である
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein a capacitor that couples the control signal line and the additional wiring is an additional capacitor.
  15.  前記付加容量は、寄生容量である
     請求項14に記載の固体撮像装置。
    The solid-state imaging device according to claim 14, wherein the additional capacitance is a parasitic capacitance.
  16.  前記付加容量は、MOS(Metal Oxide Semiconductor)容量である
     請求項14に記載の固体撮像装置。
    The solid-state imaging device according to claim 14, wherein the additional capacitor is a MOS (Metal Oxide Semiconductor) capacitor.
  17.  前記付加容量は、MIM(Metal Insulator Metal)/MOM(Metal Oxide Metal)容量である
     請求項14に記載の固体撮像装置。
    The solid-state imaging device according to claim 14, wherein the additional capacitor is a MIM (Metal Insulator Metal) / MOM (Metal Oxide Metal) capacitor.
  18.  前記付加容量は、対向電極を共にpolysiliconで形成する容量である
     請求項14に記載の固体撮像装置。
    The solid-state imaging device according to claim 14, wherein the additional capacitor is a capacitor in which both counter electrodes are formed of polysilicon.
  19.  光電変換により入射光の光量に応じた画素信号を生成する画素より画素信号を転送する転送ゲートと、
     前記転送ゲートの開閉を制御する制御信号を供給する制御信号線をフローティング状態にするフローティング機構部と、
     前記制御信号線と容量結合する付加配線と
     を含む撮像装置。
    A transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
    A floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
    An imaging apparatus comprising: an additional wiring that is capacitively coupled to the control signal line.
  20.  光電変換により入射光の光量に応じた画素信号を生成する画素より画素信号を転送する転送ゲートと、
     前記転送ゲートの開閉を制御する制御信号を供給する制御信号線をフローティング状態にするフローティング機構部と、
     前記制御信号線と容量結合する付加配線と
     を含む電子機器。
    A transfer gate that transfers a pixel signal from a pixel that generates a pixel signal corresponding to the amount of incident light by photoelectric conversion;
    A floating mechanism for floating a control signal line for supplying a control signal for controlling opening and closing of the transfer gate; and
    An electronic device comprising: an additional wiring that is capacitively coupled to the control signal line.
PCT/JP2019/010458 2018-03-28 2019-03-14 Solid-state imaging device, imaging device, and electronic device WO2019188321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-062476 2018-03-28
JP2018062476 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188321A1 true WO2019188321A1 (en) 2019-10-03

Family

ID=68061407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010458 WO2019188321A1 (en) 2018-03-28 2019-03-14 Solid-state imaging device, imaging device, and electronic device

Country Status (1)

Country Link
WO (1) WO2019188321A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010106A (en) * 2010-06-24 2012-01-12 Canon Inc Solid-state imaging apparatus and method of driving solid-state imaging apparatus
US20160150174A1 (en) * 2014-11-25 2016-05-26 Semiconductor Components Industries, Llc Image sensor pixels having built-in variable gain feedback amplifier circuitry
JP2016136659A (en) * 2015-01-23 2016-07-28 キヤノン株式会社 Imaging apparatus, imaging system and driving method of imaging apparatus
WO2017122550A1 (en) * 2016-01-14 2017-07-20 ソニー株式会社 Solid-state imaging element, driving method, and electronic device
WO2017150168A1 (en) * 2016-02-29 2017-09-08 ソニー株式会社 Imaging element and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010106A (en) * 2010-06-24 2012-01-12 Canon Inc Solid-state imaging apparatus and method of driving solid-state imaging apparatus
US20160150174A1 (en) * 2014-11-25 2016-05-26 Semiconductor Components Industries, Llc Image sensor pixels having built-in variable gain feedback amplifier circuitry
JP2016136659A (en) * 2015-01-23 2016-07-28 キヤノン株式会社 Imaging apparatus, imaging system and driving method of imaging apparatus
WO2017122550A1 (en) * 2016-01-14 2017-07-20 ソニー株式会社 Solid-state imaging element, driving method, and electronic device
WO2017150168A1 (en) * 2016-02-29 2017-09-08 ソニー株式会社 Imaging element and electronic device

Similar Documents

Publication Publication Date Title
JP7439214B2 (en) Solid-state image sensor and electronic equipment
JP7155012B2 (en) Solid-state image sensor and electronic equipment
US12191326B2 (en) Solid-state imaging device
WO2020008907A1 (en) Light-receiving element, ranging module, and electronic device
JP7341141B2 (en) Imaging devices and electronic equipment
WO2017150167A1 (en) Solid-state imaging element
JP2018186398A (en) Solid state image sensor, and electronic equipment
TWI849045B (en) Camera equipment and camera system
JP7558164B2 (en) Solid-state imaging device and method for manufacturing the same
WO2021131318A1 (en) Solid-state imaging device and electronic apparatus
US20250126375A1 (en) Photodetection element and photodetection device
WO2019017217A1 (en) Solid-state image-capturing element, control method therefor, and electronic appliance
WO2017150168A1 (en) Imaging element and electronic device
JP2022015325A (en) Solid-state image sensor and electronic equipment
WO2019188321A1 (en) Solid-state imaging device, imaging device, and electronic device
WO2019171947A1 (en) Imaging element and electronic apparatus
WO2018051819A1 (en) Imaging element, method for driving same, and electronic device
JP2019161520A (en) Imaging device drive circuit and imaging device
JP2022014507A (en) Semiconductor package and method for producing semiconductor package
JP2019022020A (en) Solid state imaging device, driving method of solid state imaging device and electronic equipment
WO2024057810A1 (en) Imaging device, imaging system, and imaging device driving method
WO2023153086A1 (en) Imaging element and method for driving imaging element
WO2024024269A1 (en) Solid-state imaging device and method for manufacturing same
JP2023132148A (en) light detection device
TW202441975A (en) Light detection device and electronic machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP