WO2019188294A1 - Fuel cell device, control device, and control program - Google Patents
Fuel cell device, control device, and control program Download PDFInfo
- Publication number
- WO2019188294A1 WO2019188294A1 PCT/JP2019/010279 JP2019010279W WO2019188294A1 WO 2019188294 A1 WO2019188294 A1 WO 2019188294A1 JP 2019010279 W JP2019010279 W JP 2019010279W WO 2019188294 A1 WO2019188294 A1 WO 2019188294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- water
- fuel cell
- tank
- predetermined
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 243
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 511
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 238000010248 power generation Methods 0.000 claims description 78
- 238000011084 recovery Methods 0.000 claims description 59
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 39
- 239000003456 ion exchange resin Substances 0.000 claims description 39
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 39
- 238000001816 cooling Methods 0.000 claims description 25
- 238000002360 preparation method Methods 0.000 claims description 19
- 230000007423 decrease Effects 0.000 abstract description 3
- 238000002407 reforming Methods 0.000 description 45
- 239000007789 gas Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 13
- 238000005338 heat storage Methods 0.000 description 10
- 239000008399 tap water Substances 0.000 description 10
- 235000020679 tap water Nutrition 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 239000005518 polymer electrolyte Substances 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000000629 steam reforming Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04291—Arrangements for managing water in solid electrolyte fuel cell systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04302—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04955—Shut-off or shut-down of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present disclosure relates to a fuel cell device, a control device, and a control program.
- a fuel cell module includes a cell stack in which a plurality of fuel cells that can obtain electric power using a fuel gas that is a hydrogen-containing gas and air that is an oxygen-containing gas are stacked in a storage container.
- Various fuel cell devices have been proposed in which the fuel cell module and auxiliary equipment necessary for its operation are accommodated in a housing such as an outer case.
- Patent Document 1 describes that when the amount of reformed water stored in a water tank is insufficient due to, for example, high outside air temperature, It is disclosed that the amount of reaction air supplied per unit time supplied to the cathode is reduced to increase the air utilization rate of the fuel cell. Thus, a fuel cell system is described that increases the amount of condensed water to be recovered, which is reformed water, and recovers the amount of stored water.
- Patent Document 2 in a fuel cell device including a condensing unit that generates condensed water by heat exchange with low-temperature water that is a heat medium or a refrigerant, according to the amount of reformed water stored in a water tank, A fuel cell device is disclosed in which the amount of reforming water stored in a water tank is suppressed by controlling the amount of heat medium supplied to the heat exchanger.
- the fuel cell device of the present disclosure includes a fuel cell, a first tank that stores water collected from exhaust gas discharged from the fuel cell, and supplies the fuel cell to the fuel cell, and a water surface height in the first tank.
- a water level detecting device for detecting the fuel a control device for controlling the operation of the fuel cell and each auxiliary device associated with the fuel cell, and a water replenishing device for replenishing the first tank from the outside.
- the controller is When the water level in the first tank falls below a predetermined first predetermined water level, First control for controlling the operation of each auxiliary machine so that the amount of water recovered from the exhaust gas increases, and so that the amount of water supplied from the first tank to the fuel cell decreases.
- Water recovery operation control for performing at least one of the second controls for controlling the operation of each auxiliary machine is executed.
- the control device is configured such that a water level in the first tank measured by the water level detection device is equal to or lower than the first predetermined water level after a predetermined first predetermined time has elapsed since the start of the water recovery operation control. If it is, the water replenishment control for replenishing the first tank with a predetermined amount of external water by the water replenishing device is executed.
- a control device of the present disclosure is a control device that controls a fuel cell device including a fuel cell, First control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water recovered from the exhaust gas discharged from the fuel cell increases, and water recovered from the exhaust gas discharged from the fuel cell
- a second control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water supplied to the fuel cell from a first tank stored for supplying the fuel cell to the fuel cell decreases;
- Water replenishment control for replenishing the first tank with a predetermined amount of external water can be performed by a water replenishing device that replenishes the first tank with water from the outside.
- the control device performs water recovery operation control for performing at least one of the first control and the second control when the water level in the first tank is equal to or lower than a predetermined first predetermined water level. Execute. After the water recovery operation control is executed and continued for a predetermined first predetermined time, when the water level in the first tank is equal to or lower than the first predetermined water level, the water replenishment control is executed.
- control program of the present disclosure is provided in a control device that controls a fuel cell device including a fuel cell.
- a fuel cell device including a fuel cell.
- the water level stored in the first tank for storing the water recovered from the exhaust gas discharged from the fuel cell is equal to or lower than a predetermined first predetermined water level
- the water is recovered from the exhaust gas.
- a first water recovery operation control step for performing a first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water increases;
- Each of the fuel cells is associated with the fuel cell so that the amount of water supplied from the first tank to the fuel cell is reduced when the water level in the first tank is equal to or lower than a predetermined first predetermined water level.
- a second water recovery operation control step for performing a second control for controlling the operation of the auxiliary machine; After at least one of the first water recovery operation control step and the second water recovery operation control step continues for a predetermined first predetermined time, the water level in the first tank is changed to the first predetermined water level.
- a water replenishment control step of replenishing the first tank with a predetermined amount of external water is performed by a water replenishing device that replenishes the first tank with water from the outside.
- a fuel cell device includes a fuel cell, a first tank that stores water collected from exhaust gas discharged from the fuel cell, and supplies water to the fuel cell, and a water surface in the first tank.
- a water level detection device for detecting the height; and a control device for controlling the operation of the fuel cell and the auxiliary devices attached to the fuel cell.
- the controller controls the operation of each auxiliary device so that the amount of water recovered from the exhaust gas increases when the water level in the first tank is equal to or lower than a predetermined second predetermined water level.
- At least one of a first control to be controlled and a second control to control the operation of each auxiliary device is performed so that the amount of water supplied from the first tank to the fuel cell is reduced. Execute water recovery operation control.
- the control device is configured such that a water level in the first tank measured by the water level detection device is less than or equal to the second predetermined water level after a predetermined third predetermined time has elapsed since the start of the water recovery operation control. In some cases, control for stopping the power generation operation of the fuel cell device is executed.
- a control device of the present disclosure corresponding to the fuel cell device described above is a control device that controls a fuel cell device including a fuel cell, First control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water recovered from the exhaust gas discharged from the fuel cell increases, and water recovered from the exhaust gas discharged from the fuel cell A second control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water supplied to the fuel cell from the first tank stored for supplying the fuel cell to the fuel cell is reduced. It is feasible.
- the control device performs water recovery operation control that performs at least one of the first control and the second control when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. When the water level in the first tank is equal to or lower than the second predetermined water level after the water recovery operation control is executed and continued for a predetermined third predetermined time, the power generation operation of the fuel cell device is performed. The control to stop is executed.
- a control program of the present disclosure corresponding to the fuel cell device described above is provided in a control device that controls a fuel cell device including a fuel cell.
- a fuel cell device including a fuel cell.
- the water level in the first tank for storing the water recovered from the exhaust gas discharged from the fuel cell is less than or equal to a predetermined second predetermined water level, the water is recovered from the exhaust gas.
- a first water recovery operation control step for performing a first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water increases;
- Each of the fuel cells is associated with the fuel cell so that the amount of water supplied from the first tank to the fuel cell is reduced when the water level in the first tank is equal to or lower than a predetermined second predetermined water level.
- a second water recovery operation control step for performing a second control for controlling the operation of the auxiliary machine; After at least one of the first water recovery operation control step and the second water recovery operation control step continues for a predetermined third predetermined time, the water level in the first tank is set to the second predetermined water level. When it is below, a power generation operation stop step for stopping the power generation operation of the fuel cell device is executed.
- FIG. 1 It is a schematic block diagram of the fuel cell apparatus of embodiment. It is explanatory drawing of the periphery of the reforming water tank of a fuel cell apparatus which expanded F part of FIG. 1 is an external perspective view of a fuel cell device. It is a flowchart of the water collection
- FIG. 1 is a schematic configuration around the reforming water tank, showing the F section of FIG. 1 in an enlarged manner.
- the fuel cell device 100 includes power supply by operation of a fuel cell module 1 that generates power using raw fuel such as natural gas and LP gas and air, a heat exchanger 3, a radiator 4, and a heat medium circulation.
- Hot water is supplied using an exhaust heat recovery system (also referred to as a heat cycle HS) including a pump P2 and a heat storage tank 5 or the like.
- said heat storage tank 5 is corresponded to the 2nd tank of this indication.
- it can also be set as a so-called monogeneration system which does not supply hot water.
- the fuel cell device 100 includes a reformed water tank 6, a power conditioner 20, a control device 30, a storage device 40, and the like as auxiliary devices in addition to the fuel cell module 1 described above. Further, the fuel cell device 100 includes a reforming water channel R including a reforming water pump P1, a drain channel D, and various sensors. As the sensors, a water detector WL 1 located at a middle water level, which is a water level detection device, a water detector WL 2 located at a low water level, a water temperature meter TS 1 as a heat medium temperature measuring device, and reformed water An electrical conductivity meter WC 1 or the like that is a water quality measuring device for measuring water quality.
- the fuel cell module 1 is accommodated in a storage container 10.
- a cell stack 11 in which a plurality of fuel cells are stacked, a reformer 12 that performs steam reforming of raw fuel using steam, and an ignition heater (not shown) for igniting surplus fuel gas And an exhaust gas catalyst filled in the catalyst container 2.
- the fuel cell module 1 is disposed in a case 50 including each frame 51 and an exterior panel (not shown).
- a gas pump B1 for feeding raw fuel such as natural gas to the reformer as illustrated in FIG. Air blower B2 fed to the stack, reforming water pump P1 for supplying reforming water in the reforming water tank 6 to the reformer 12 as raw water for steam reforming, surplus in the reforming water tank 6 A drainage channel D and the like for discharging water are disposed.
- the power conditioner 20 linked with the system power supply, the control device 30 including the control board for controlling the entire device, the storage device 40, etc., and the operation of the fuel cell as described above are controlled.
- Various sensors used for this purpose are also arranged.
- the generated condensed water is separated by a gas-liquid separator or the like and introduced into the reformed water tank 6 that collects and stores the condensed water via the condensed water channel C.
- the reforming water tank 6 corresponds to the first tank of the present disclosure.
- the exhaust gas from which moisture has been removed is exhausted outside the fuel cell device via the exhaust gas flow path E. Further, the reformed water stored in the reformed water tank 6 is supplied to the reformer 12 in the fuel cell module 1 via the reformed water flow path R and the reformed water pump P1, and uses the reformed water. Used for steam reforming of raw fuel.
- FIG. 2 is an enlarged view of a portion related to the power generation operation of the fuel cell and the reformed water used in the fuel cell device 100, that is, the inside of the two-dot chain line F in FIG.
- the reformed water tank 6 that purifies and stores the condensed water is composed of a first reformed water tank 61 for purification treatment and a second reformed water tank 62 for storage.
- the first reforming water tank 61 and the second reforming water tank 62 are connected by a lower water pipe 65 to communicate with each other.
- a reforming water outlet 62a connected to the suction port of the reforming water pump P1 is provided at the bottom or bottom of the second reforming water tank 62 that stores the generated reforming water.
- An excess water outlet 62 b connected to the drainage channel D is provided on the upper side surface of the second reformed water tank 62.
- water detectors WL 2 for detecting that has reached the empty water level is the lower limit water level is arranged .
- the black circle of each sensor in a figure shows the arrangement
- the first reformed water tank 61 that collects and purifies condensed water to produce reformed water is filled with an ion exchange resin for purifying the condensed water collected from the heat exchanger 3.
- a water detector WL that detects that the upper water surface, which is the water level of the stored reforming water, has reached the intermediate water level, which is a predetermined set water level. 1 is disposed.
- a second electrical conductivity meter WC 2 for measuring the conductivity (unit: ⁇ S / cm) of the reformed water that is the stored water is arranged in the first reformed water tank 61. You may set up.
- a water supply device for supplying water to the water tank from the outside, a reformed water tank 6 and a waterworks (Waterworks) that is an external water source. between the like, water refilling channel G containing water stop valve V 1 of the solenoid-operated is provided.
- Waterworks Waterworks
- the end which is the downstream end of the water supply channel G, is connected to an external water receiving port 61 a provided at the lower part of the first reformed water tank 61.
- the external water that has flowed in from the external water receiving port 61a is supplied from the external water introducing port 64a provided at the bottom of the second ion exchange resin container 64 through the extension pipe 61b provided inside the tank. It is introduced into the reformed water tank 61.
- the second ion exchange resin container 64 is filled with an ion exchange resin for external water purification. While the external water passes through the ion exchange resin layer, impurities contained in tap water and the like are removed, and deionized water having a conductivity of about 1 ⁇ S / cm, that is, supplementary water for reformed water is purified. ing.
- the electric conductivity meter WC 1 in the figure is an example of a breakthrough determination device that determines whether or not the above-described ion exchange resin has broken through.
- This electric conductivity meter WC 1 is disposed on the upper part of the second ion exchange resin container 64 where the replenishment water stays so that the conductivity of the replenishment water which is deionized water after the purification treatment can be measured. Yes.
- the purified replenishing water flows out from the purified water outlet 64b provided on the upper side surface of the second ion exchange resin container 64, flows down to the water storage section in the first reformed water tank 61, and reformed water. As stored.
- the fuel cell device 100 includes a control device 30 that includes at least one processor to provide control and processing capabilities for performing various functions, as will be described in detail below.
- the at least one processor may be implemented as a single integrated circuit or as a plurality of communicatively connected integrated circuits and / or discrete circuits.
- the at least one processor can be implemented according to various known techniques.
- the processor includes one or more circuits or units configured to perform one or more data computation procedures or processes, for example, by executing instructions stored in associated memory.
- the processor may be firmware, such as a discrete logic component, configured to perform one or more data computation procedures or processes.
- the processor may include one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits, digital signal processors, programmable logic devices, field programmable gate arrays, or these devices or The functions described below may be performed, including any combination of configurations, or other known device and configuration combinations.
- the control device 30 includes a storage device 40, a power conditioner 20, a fuel cell module 1, a raw fuel supply device such as a gas pump B1, an oxygen-containing gas supply device such as an air blower B2, and a reforming water pump P1.
- water supply device, the water supply device such as a water replenishment passage G containing Tomesuiben V 1, and, the medium-level water detector WL 1, the water level detector, such as a water detector WL 2 low water level, water temperature gauge It is connected to various sensors such as a heat medium temperature measuring device such as TS 1 and a water quality measuring device such as electric conductivity meter WC 1 , and controls and manages the entire fuel cell device 100 including these functional units.
- the control device 30 obtains a program stored in the storage device 40 and executes this program, thereby realizing various functions related to each part of the fuel cell device 100.
- control device 30 and the other function unit may be connected by wire or wireless. Control characteristic of this embodiment performed by the control device 30 will be described later.
- the control device 30 particularly controls replenishment of the external water described above to the reforming water storage unit.
- storage device 40, each apparatus and each sensor which comprise a fuel cell may be abbreviate
- the storage device 40 can store programs and data.
- the storage device 40 may also be used as a work area for temporarily storing processing results.
- the storage device 40 includes a recording medium.
- the recording medium may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium.
- the storage device 40 may include a plurality of types of storage media.
- the storage device 40 may include a combination of a portable storage medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage reading device.
- the storage device 40 may include a storage device used as a temporary storage area such as a RAM (Random Access Memory).
- the control device 30 in the fuel cell device according to the first embodiment shown in FIGS. 4, 5 ⁇ / b> A, and 5 ⁇ / b> B is used for the reforming water tank 6, which is the first tank, at normal or normal time when no abnormality is detected in the system. until the water detection signal of water detectors WL 1 disposed in a predetermined intermediate position is transmitting is interrupted, i.e., be received water detection signal from the water detector WL 1 of the water level in the first is a predetermined water level Until there is no more, the system waits while repeating the loop of [S1] for determining whether or not the water detection signal is received, that is, the left side of the flowchart of FIG. 4 in [S1].
- the control unit 30 starts the following water recovery operation control [S2] .
- Water recovery operation control is performed for the purpose of recovering the amount of reformed water in the reformed water tank 6.
- the control suppresses the power generation output of the fuel cell and also controls other auxiliary machines to continue the power generation operation of the fuel cell.
- the first control for example, maximizes the water flow rate, which is the delivery amount of the heat medium HS heat medium circulation pump P2, and the fan of the radiator 4
- the operation duty ratio of the pump and fan of the heat medium circulation system is increased, for example, by raising the rotation of the motor to the rated maximum speed.
- the gas flow rate that is the delivery amount of the gas pump B1 that feeds raw fuel to the reformer and the delivery of the air blower B2 that delivers air to the cell stack Control to increase the operating duty ratio of the pump and blower of the raw material supply system, such as controlling the air flow rate that is a quantity.
- the condensed water can be recovered with maximum efficiency.
- the second control is, for example, a control for reducing as much as possible the amount of reformed water delivered by the reformed water pump P1, which is a device for supplying water to the fuel cell module 1.
- the water recovery operation control described in [S2] and thereafter is performed by performing at least one of the first control and the second control at the same time, if possible, simultaneously, so that the condensate water is maximally efficient. Can be recovered.
- the duration of the water recovery operation control, the control device 30, the water detector WL 2 of low water position is drought position of the reforming water tank 6 confirms whether or not the outgoing water detection signal S3! . If, in (S3), and if the water detection signal from the water detector WL 2 low level position Todaere, water amount of the reforming water reforming water tank 6 is reduced to a dangerous level determination Then, the control shifts to the control for stopping the power generation operation (see the drought alert in [S12]). In addition, when the drought alert is issued and the power generation operation is stopped [S12], the operation can be resumed through maintenance by human hands.
- the control apparatus 30 confirms the recovery
- the control device 30 starts the water replenishment control [S7] for replenishing external water.
- the first predetermined time T1 indicates a predetermined period of, for example, about 3 hours.
- control device 30 may execute breakthrough determination control for determining whether or not external water can be replenished before executing the water replenishment control [S7].
- the control device 30 determines whether or not the ion exchange resin for external water purification used for replenishment is “breakthrough”, that is, the replenishment ion exchange resin reaches the end of its life. It is detected and determined using an electric conductivity meter as a breakthrough determination device, in this example, a breakthrough detection device.
- the ion exchange resin for replenishment is provided between the first predetermined time T1 [S5] and the start of replenishment control [S7]. Breakthrough determination control [S6] is performed to determine whether the breakthrough occurs.
- Breakthrough determination control (S6) using an electric conductivity meter WC 1 disposed on the upper portion of the second ion-exchange resin container 64, leaving the purification treated in the second ion-exchange resin container 64 It is confirmed whether or not the conductivity J of ionic water is a value equal to or lower than a predetermined conductivity J1 determined in advance.
- the control device 30 when the measured conductivity J is equal to or lower than the predetermined conductivity J1, that is, “No (Good)” that does not breakthrough, the control device 30 is for purifying external water. It is determined that the ion exchange resin has not reached the end of its life and is functioning normally, and replenishment water control [S7] described later is started or executed.
- the breakthrough determination control [S6] when the measured conductivity J exceeds the predetermined conductivity J1, that is, the ion exchange resin for external water purification has reached the end of its life and is broken through “Yes (No If it is determined that “Good)”, the replenishment using the external water is stopped, and the fuel cell shifts from the power generation operation to the control for stopping the operation [standby state: S14].
- the power generation operation is stopped before the amount of reformed water stored in the reforming water tank 6 is lowered to a dangerous level, in other words, before the power generation operation is stopped with a drought alert.
- the breakthrough determination control [S6] is performed using the conductivity J of the purified deionized water as a reference or determination item, but other measurement values may be used as the determination condition. it can.
- a flow meter that measures the amount of inflow per hour into the second ion exchange resin container 64 or tap water that is external water, or a water meter is provided, values obtained from these sensors, That is, the water amount is integrated, and the value of the accumulated water amount may be used as an index for determining breakthrough of the ion exchange resin for water replenishment.
- the tap water is the external water
- the inflow into the second ion-exchange resin container 64, the time and the water replenishment passage water stop valve V 1 disposed in G is opened If the calculation can be performed based on the water pressure or flow rate of the external water flowing in the water supply passage G, the accumulated value obtained by integrating the valve opening time flows into the second ion exchange resin container 64.
- the accumulated water amount may be used for the determination of breakthrough of the ion exchange resin for water replenishment.
- Rehydration control as shown in the flowchart of FIG. 4, first, as [S8], opened for external water introduction, the water stop valve V 1 of the solenoid-operated disposed in the water supply passage G, external Tap water, which is water, is introduced into the second ion exchange resin container 64, and water replenishment is started.
- external water is referred to as “tap water”.
- the tap water is supplemented while confirming the amount of the stored reformed water in the reformed water tank 6. That is, in [S9] of the flowchart, as described above, whether or not the amount of reformed water stored in the reforming water tank 6 has decreased to a dangerous drought level, whether or not the low water level position is set. while checking the water detection signal of the water detector WL 2, continues the rehydration of tap water.
- the replenishment is interrupted as drought or some abnormality has occurred, and the power generation operation is stopped along with the drought alert. [S15].
- the power generation operation is stopped at the same time that the drought alert is issued [S15] the operation can be resumed through manual maintenance.
- the control unit 30 when possible to receive the water detection signal from the water detector WL 1 of water level in a first predetermined level, storage reforming the reforming water tank 6 it is determined that the amount of water quality water has been restored, close the Tomesuiben V 1, to stop the introduction of tap water [S11]. And the above-mentioned water replenishment control and the water collection
- the fuel cell device 100 uses the external water when the amount of reforming water is insufficient and the water recovery operation control is performed for a certain period of time. By replenishing water, power generation operation can be continued.
- the fuel cell device, the control device, and the control program according to the present embodiment avoid the stoppage of the device with maintenance even when the water amount recovery operation or control of the reforming water is performed or when the water necessary for the power generation operation cannot be secured. The Thereby, efficient power generation operation can be continued.
- the number of times of replenishing external water can be reduced as much as possible, the deterioration of the function of the ion exchange resin for external water purification can be suppressed, and the life of the ion exchange resin can be extended. it can.
- the fuel cell device in the operation standby state has a first power generation restart control flow shown in FIG. 5A described later or a second power generation restart control flow shown in FIG. 5B. It is programmed or controlled to automatically resume power generation operation.
- the fuel cell device that is in a standby state is first in [S20], during a period T2 that is a predetermined second predetermined time. Wait while the power generation operation of the fuel cell is stopped.
- the second predetermined time T2 is a predetermined period, for example, about one day.
- the control device 30 starts the first operation resumption control [S21-1].
- the first operation resumption control [S21-1] is based on the current time based on the standard time of the location where the fuel cell device is installed, such as the Japanese standard time, from an external time server via a built-in clock or communication line
- the time, so-called local time is acquired, and the first predetermined time set in advance in a time zone in which the outside temperature is estimated to be relatively low, such as 2:00 am or 3:00 am at midnight,
- the fuel cell device is executed when it reaches for the first time after the end of the waiting period T2, and the fuel cell device shifts from the standby state to the startup preparation control for resuming the power generation operation.
- the fuel cell device in the standby state is first determined in advance in [S20] as in the first operation resumption control of FIG. 5A.
- T2 which is the second predetermined time, the fuel cell is stopped while the power generation operation is stopped.
- the start preparation control is a mode in which preparation for resuming the power generation operation is performed, and for example, the air blower B2 that sends air into the fuel cell module is started. Further, the standby [S20] with the power generation operation stopped during the period T2 which is the second predetermined time can be omitted. That is, after stopping the power generation operation in [S14], the first operation resumption control (refer to the flow chart 5A) or the second operation resumption control (refer to the flow chart 5B) may be executed immediately.
- the first predetermined temperature M1 is 47 ° C., for example.
- the control apparatus 30 may perform the heat medium cooling control for reducing the temperature of the heat medium in the thermal storage tank 5.
- the heat medium cooling control for example, the temperature of the heat medium in the heat storage tank 5 is lowered between the stop of the power generation operation and the start of the preparation preparation control, and the amount of condensed water recovered increases after the power generation operation is restarted. Control to prepare.
- the heat medium can be cooled by operating a cooling device.
- the cooling device there is a heat medium HS-based heat medium circulation pump P ⁇ b> 2 and a radiator 4.
- the heat cycle HS heat medium circulation pump P2 may be operated and the radiator 4 may be controlled to operate.
- the heat medium cooling control may be executed between the stop of the power generation operation and the start of the start preparation control.
- the heat medium cooling control is started and the heat medium cooling control is performed for a predetermined time. It may be continued or until the heat medium becomes the first predetermined temperature or lower.
- the heat medium cooling control is started and continued until the heat medium becomes equal to or lower than the first predetermined temperature [S22-2]. May be.
- the fuel cell device 100 can restart operation after stopping the operation before the drought alert is issued and recovering the water level even when water replenishment is not possible. Can do.
- the fuel cell device 100 can restart the power generation operation without performing manual maintenance even if the water amount recovery operation or control of the reforming water is performed or water necessary for the power generation operation cannot be secured. Can do. As a result, the power generation operation can be performed efficiently.
- control device 30 and the storage device 40 of the fuel cell device 100 can also be realized as a configuration provided outside the fuel cell device 100. Further, it can be realized as a control method including a characteristic control process in the control device 30 according to the present disclosure, or can be realized as a control program for causing a computer to execute the above process.
- the cell stack device and the fuel cell module are not limited to the SOFC.
- the polymer electrolyte fuel cell Polymer Electrolyte Fuel Cell (PEFC)
- the phosphoric acid fuel cell Phosphoric Acid Fuel Cell (PAFC)
- a fuel cell such as a molten carbonate fuel cell (Molten Carbonate Fuel Cell (MCFC)) may be used.
- the fuel cell device, control device, and control program of the second embodiment are different from the first embodiment in that the water recovery operation is performed for the purpose of recovering the amount of reformed water in the reformed water tank, which is the first tank. If it is not possible to recover the amount of reforming water necessary for continuing power generation operation even after control, the purified external water is not replenished as reformed water, and the power generation operation of the fuel cell device is stopped. It is a point to do.
- the external water receiving port 61a, the extended pipe 61b, and external water introduction which are necessary as the water supply device for supplying water to the water tank from the outside, are necessary in the fuel cell device of the first embodiment. mouth 64a, and the water refilling channel G containing Tomesuiben V 1 etc., the second ion-exchange resin container 64, and the electrical conductivity meter WC 1 disposed in a second ion-exchange resin container 64,
- the fuel cell device according to the second embodiment is not an essential configuration.
- control device 30 controls the predetermined amount of the reforming water tank 6 that is the first tank during normal or normal time when no abnormality is detected in the system. of monitors water detection signal from the water detector WL 1 disposed in the intermediate position, when it is interrupted, to start water recovery operation control [S2].
- the water recovery operation control [S2] includes the first control for increasing the amount of water recovered from the exhaust gas, and the amount of water supplied from the reforming water tank 6 to the fuel cell module 1. At least one of the second controls to be reduced is performed.
- 1st control and 2nd control is the same as 1st Embodiment, description is abbreviate
- the water recovery operation control [S2] can recover condensed water with maximum efficiency by simultaneously performing at least one of the first control and the second control, if possible.
- the possible points are similar.
- the duration of the water recovery operation control [S2], the control unit 30, in the (S3), interrupted water detection signal from the water detector WL 2 of low water position is drought position of the reforming water tank 6 If it does, it will transfer to the control which stops an electric power generation driving
- the battery device is programmed or controlled so as to automatically aim at resuming the power generation operation in the flow shown in FIG. 7A, FIG. 7B or FIG. 7C described later.
- the fuel cell device that is in a standby state is first set to a predetermined fourth predetermined time period T4. Then, the fuel cell is on standby while the power generation operation of the fuel cell is stopped.
- the fourth predetermined time T4 is a predetermined period, for example, about one day.
- the control device 30 starts the first operation resumption control [S41-1].
- the first operation resumption control [S41-1] is the same as that of the first embodiment.
- the fuel cell device such as a Japanese standard time is received from an external time server via a built-in clock or communication line.
- the current time based on the standard time of the installation location, so-called local time, is acquired, and the current time is preset in a time zone in which the outside air temperature is estimated to be relatively low, such as midnight or 3:00, for example, at midnight.
- the second predetermined time is executed at the first time after the end of the waiting period T4, and the fuel cell device shifts from the standby state to the start-up preparation control for resuming the power generation operation.
- the control device 30 may perform heat medium cooling control for reducing the temperature of the heat medium in the heat storage tank 5.
- the above-described heat medium cooling control is started before the start preparation control [S43] for restarting the power generation operation is started.
- the heat medium cooling control may be continued for a predetermined time, or may be continued until the heat medium becomes a predetermined temperature or lower.
- the start preparation control is a mode in which preparation for resuming the power generation operation is performed, and for example, the air blower B2 that sends air into the fuel cell module is started. Moreover, during the period T4 that is the fourth predetermined time, the standby [S40] with the power generation operation stopped can be omitted. That is, after the power generation operation is stopped in [S30], the first operation resumption control (see FIG. 7A) or the second operation resumption control (see FIG. 7B) may be executed immediately.
- the fuel cell device that is in the standby state is first set to a predetermined fourth predetermined value in [S40] as in the first embodiment.
- T4 which is a time, the fuel cell is stopped while the power generation operation is stopped.
- the second predetermined temperature M2 is 47 ° C., for example.
- the fuel cell device that is in the standby state is first set to a predetermined fourth predetermined time in [S40]. During a certain period T4, the power generation operation of the fuel cell is stopped and the apparatus is on standby.
- the control device 30 applies the heat cycle HS heat storage tank 5 as the second tank in [S42-3] as in [S42-2] of the second operation resumption control. confirms the provided temperature of the water temperature gauge TS 1, if the water temperature is a second predetermined temperature M2 is less than or equal to a predetermined fuel cell apparatus from the standby state described above, for the resumption of the power generation operation The process proceeds to start preparation control [S44].
- the heat medium circulation pump P2 and the fan of the radiator 4 are operated during a period T5 which is a predetermined fifth predetermined time in which the temperature of the heat medium in the heat storage tank 5 is sufficiently lowered.
- the fan of the radiator 4 is stopped [S54]
- the heat medium circulation pump P2 is stopped [S55]
- the heat medium cooling control is ended [S56].
- This heat medium cooling control [from S50 to S56] lowers the temperature of the heat medium in the heat storage tank 5 as much as possible, and prepares so that the recovered amount of condensed water increases after restarting the power generation operation described above.
- the fuel cell device 100 according to the second embodiment can be restarted after the operation is stopped and the water level can be recovered before the drought alert is issued. That is, the fuel cell device 100 can efficiently perform the power generation operation by resuming the power generation operation without maintenance.
- control device 30 and the storage device 40 of the fuel cell device 100 can be realized as a configuration provided outside the fuel cell device 100. Further, it can be realized as a control method including a characteristic control process in the control device 30 according to the present disclosure, or can be realized as a control program for causing a computer to execute the above process.
- the cell stack device and the fuel cell module are not limited to SOFC, and for example, a polymer electrolyte fuel cell (Polymer Electrolyte Fuel Cell (PEFC)), a phosphoric acid fuel cell (Phosphoric Acid Fuel Cell (PAFC)), and Alternatively, a fuel cell such as a molten carbonate fuel cell (Molten Carbonate Fuel Cell (MCFC)) may be used.
- PEFC Polymer Electrolyte Fuel Cell
- PAFC phosphoric Acid Fuel Cell
- MCFC Molten Carbonate Fuel Cell
- Fuel cell module 5 Thermal storage tank (second tank) 6 Reformed water tank (first tank) 61 First Reformed Water Tank 62 Second Reformed Water Tank 63 First Ion Exchange Resin Container 64 Second Ion Exchange Resin Container 30 Control Device 40 Storage Device 100 Fuel Cell Device
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
This fuel cell device is provided with: a first tank for storing water recovered from exhaust gas; a water level detection device for detecting the height of the water surface in the first tank; a control device for controlling the operations of a fuel cell and each auxiliary machine; and a water refilling device for refilling water into the first tank from the outside. The control device performs at least one of a first control and a second control when the water level in the first tank becomes a first predetermined water level or less, said first control performing control so that the amount of water recovered from the exhaust gas increases, said second control performing control so that the amount of water supplied to the fuel cell decreases. After the start of the control, if the water level in the first tank is not recovered after a first predetermined time has elapsed, the control device performs refill water control for refilling external water into the first tank by using the water refilling device.
Description
本開示は、燃料電池装置、制御装置および制御プログラムに関する。
The present disclosure relates to a fuel cell device, a control device, and a control program.
収納容器内に、水素含有ガスである燃料ガスと、酸素含有ガスである空気とを用いて電力を得ることができる燃料電池セルを複数積層したセルスタックを備える燃料電池モジュールが知られている。また、該燃料電池モジュールおよびその動作に必要な補機類を外装ケース等の筐体に収容した燃料電池装置が、種々提案されている。
A fuel cell module is known that includes a cell stack in which a plurality of fuel cells that can obtain electric power using a fuel gas that is a hydrogen-containing gas and air that is an oxygen-containing gas are stacked in a storage container. Various fuel cell devices have been proposed in which the fuel cell module and auxiliary equipment necessary for its operation are accommodated in a housing such as an outer case.
このような燃料電池装置においては、発電に用いられなかった余剰の燃料ガスを燃焼させ、燃焼後の排ガスを熱交換器等に通して冷却する。この熱交換時に、前記排ガスに含まれる水蒸気が凝縮して生成される凝縮水を、イオン交換樹脂等により浄化処理して改質水タンク等の水タンクに貯留する。そして、貯留された水を、天然ガス等の原燃料を水蒸気改質する改質器に改質水として供給する、いわゆる水自立運転が行われている。
In such a fuel cell device, surplus fuel gas that has not been used for power generation is burned, and the exhaust gas after combustion is passed through a heat exchanger or the like to be cooled. At the time of this heat exchange, the condensed water produced by the condensation of water vapor contained in the exhaust gas is purified by an ion exchange resin or the like and stored in a water tank such as a reforming water tank. And so-called water self-sustained operation is performed in which the stored water is supplied as reformed water to a reformer that steam reforms raw fuel such as natural gas.
このような、改質水を利用した燃料電池の運転や制御に関し、特許文献1には、たとえば外気温が高い等により、水タンクに貯留した改質水の量が不足する場合、燃料電池のカソードに供給される単位時間当たりの反応空気供給量を減らして、燃料電池の空気利用率を大きくすることが開示されている。これにより、改質水となる、回収される凝縮水を増やして、貯留された水の量を回復させる燃料電池システムが記載されている。
Regarding such operation and control of a fuel cell using reformed water, Patent Document 1 describes that when the amount of reformed water stored in a water tank is insufficient due to, for example, high outside air temperature, It is disclosed that the amount of reaction air supplied per unit time supplied to the cathode is reduced to increase the air utilization rate of the fuel cell. Thus, a fuel cell system is described that increases the amount of condensed water to be recovered, which is reformed water, and recovers the amount of stored water.
また、特許文献2には、熱媒または冷媒である低温の水との熱交換によって凝縮水を生成する凝縮部を備える燃料電池装置において、水タンクに貯留した改質水の量に応じて、熱交換器に供給する熱媒の量を制御することにより、水タンクに貯留された改質水の量の不足を抑制する燃料電池装置が開示されている。
Further, in Patent Document 2, in a fuel cell device including a condensing unit that generates condensed water by heat exchange with low-temperature water that is a heat medium or a refrigerant, according to the amount of reformed water stored in a water tank, A fuel cell device is disclosed in which the amount of reforming water stored in a water tank is suppressed by controlling the amount of heat medium supplied to the heat exchanger.
本開示の燃料電池装置は、燃料電池と、該燃料電池より排出される排ガスから回収した水を前記燃料電池へ供給するために貯留する第1タンクと、前記第1タンク内の水面の高さを検出する水位検出装置と、前記燃料電池および該燃料電池に付随する各補機の動作を制御する制御装置と、前記第1タンクに外部から水を補給する水補給装置と、を備える。
前記制御装置は、
前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、
前記排ガスから回収される水の量が増加するように、前記各補機の動作を制御する第1制御、および、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記各補機の動作を制御する第2制御、のうち、少なくとも一方の制御を行う水回収運転制御を実行する。
前記制御装置は、該水回収運転制御が開始されてから予め決められた第1所定時間経過した後、前記水位検出装置で測定された前記第1タンク内の水位が、前記第1所定水位以下である場合、前記水補給装置によって前記第1タンクに所定量の外部の水を補給する補水制御を実行する。 The fuel cell device of the present disclosure includes a fuel cell, a first tank that stores water collected from exhaust gas discharged from the fuel cell, and supplies the fuel cell to the fuel cell, and a water surface height in the first tank. A water level detecting device for detecting the fuel, a control device for controlling the operation of the fuel cell and each auxiliary device associated with the fuel cell, and a water replenishing device for replenishing the first tank from the outside.
The controller is
When the water level in the first tank falls below a predetermined first predetermined water level,
First control for controlling the operation of each auxiliary machine so that the amount of water recovered from the exhaust gas increases, and so that the amount of water supplied from the first tank to the fuel cell decreases. Water recovery operation control for performing at least one of the second controls for controlling the operation of each auxiliary machine is executed.
The control device is configured such that a water level in the first tank measured by the water level detection device is equal to or lower than the first predetermined water level after a predetermined first predetermined time has elapsed since the start of the water recovery operation control. If it is, the water replenishment control for replenishing the first tank with a predetermined amount of external water by the water replenishing device is executed.
前記制御装置は、
前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、
前記排ガスから回収される水の量が増加するように、前記各補機の動作を制御する第1制御、および、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記各補機の動作を制御する第2制御、のうち、少なくとも一方の制御を行う水回収運転制御を実行する。
前記制御装置は、該水回収運転制御が開始されてから予め決められた第1所定時間経過した後、前記水位検出装置で測定された前記第1タンク内の水位が、前記第1所定水位以下である場合、前記水補給装置によって前記第1タンクに所定量の外部の水を補給する補水制御を実行する。 The fuel cell device of the present disclosure includes a fuel cell, a first tank that stores water collected from exhaust gas discharged from the fuel cell, and supplies the fuel cell to the fuel cell, and a water surface height in the first tank. A water level detecting device for detecting the fuel, a control device for controlling the operation of the fuel cell and each auxiliary device associated with the fuel cell, and a water replenishing device for replenishing the first tank from the outside.
The controller is
When the water level in the first tank falls below a predetermined first predetermined water level,
First control for controlling the operation of each auxiliary machine so that the amount of water recovered from the exhaust gas increases, and so that the amount of water supplied from the first tank to the fuel cell decreases. Water recovery operation control for performing at least one of the second controls for controlling the operation of each auxiliary machine is executed.
The control device is configured such that a water level in the first tank measured by the water level detection device is equal to or lower than the first predetermined water level after a predetermined first predetermined time has elapsed since the start of the water recovery operation control. If it is, the water replenishment control for replenishing the first tank with a predetermined amount of external water by the water replenishing device is executed.
また、本開示の制御装置は、燃料電池を備える燃料電池装置を制御する制御装置であって、
燃料電池より排出される排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御と、燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御と、前記第1タンクに外部から水を補給する水補給装置によって前記第1タンクに所定量の外部の水を補給する補水制御と、を実行可能である。
前記制御装置は、前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記第1制御および前記第2制御のうち、少なくとも一方の制御を行う水回収運転制御を実行する。該水回収運転制御が実行されて、予め決められた第1所定時間継続した後、前記第1タンク内の水位が前記第1所定水位以下である場合、前記補水制御を実行する。 A control device of the present disclosure is a control device that controls a fuel cell device including a fuel cell,
First control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water recovered from the exhaust gas discharged from the fuel cell increases, and water recovered from the exhaust gas discharged from the fuel cell A second control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water supplied to the fuel cell from a first tank stored for supplying the fuel cell to the fuel cell decreases; Water replenishment control for replenishing the first tank with a predetermined amount of external water can be performed by a water replenishing device that replenishes the first tank with water from the outside.
The control device performs water recovery operation control for performing at least one of the first control and the second control when the water level in the first tank is equal to or lower than a predetermined first predetermined water level. Execute. After the water recovery operation control is executed and continued for a predetermined first predetermined time, when the water level in the first tank is equal to or lower than the first predetermined water level, the water replenishment control is executed.
燃料電池より排出される排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御と、燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御と、前記第1タンクに外部から水を補給する水補給装置によって前記第1タンクに所定量の外部の水を補給する補水制御と、を実行可能である。
前記制御装置は、前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記第1制御および前記第2制御のうち、少なくとも一方の制御を行う水回収運転制御を実行する。該水回収運転制御が実行されて、予め決められた第1所定時間継続した後、前記第1タンク内の水位が前記第1所定水位以下である場合、前記補水制御を実行する。 A control device of the present disclosure is a control device that controls a fuel cell device including a fuel cell,
First control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water recovered from the exhaust gas discharged from the fuel cell increases, and water recovered from the exhaust gas discharged from the fuel cell A second control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water supplied to the fuel cell from a first tank stored for supplying the fuel cell to the fuel cell decreases; Water replenishment control for replenishing the first tank with a predetermined amount of external water can be performed by a water replenishing device that replenishes the first tank with water from the outside.
The control device performs water recovery operation control for performing at least one of the first control and the second control when the water level in the first tank is equal to or lower than a predetermined first predetermined water level. Execute. After the water recovery operation control is executed and continued for a predetermined first predetermined time, when the water level in the first tank is equal to or lower than the first predetermined water level, the water replenishment control is executed.
また、本開示の制御プログラムは、燃料電池を備える燃料電池装置を制御する制御装置に、
燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御を行う第1水回収運転制御ステップと、
前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御を行う第2水回収運転制御ステップと、
前記第1水回収運転制御ステップおよび前記第2水回収運転制御ステップのうち、少なくとも一方のステップが予め決められた第1所定時間継続した後、前記第1タンク内の水位が前記第1所定水位以下である場合、前記第1タンクに外部から水を補給する水補給装置によって、前記第1タンクに所定量の外部の水を補給する補水制御ステップと、を実行させる。 Further, the control program of the present disclosure is provided in a control device that controls a fuel cell device including a fuel cell.
When the water level stored in the first tank for storing the water recovered from the exhaust gas discharged from the fuel cell is equal to or lower than a predetermined first predetermined water level, the water is recovered from the exhaust gas. A first water recovery operation control step for performing a first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water increases;
Each of the fuel cells is associated with the fuel cell so that the amount of water supplied from the first tank to the fuel cell is reduced when the water level in the first tank is equal to or lower than a predetermined first predetermined water level. A second water recovery operation control step for performing a second control for controlling the operation of the auxiliary machine;
After at least one of the first water recovery operation control step and the second water recovery operation control step continues for a predetermined first predetermined time, the water level in the first tank is changed to the first predetermined water level. In the following cases, a water replenishment control step of replenishing the first tank with a predetermined amount of external water is performed by a water replenishing device that replenishes the first tank with water from the outside.
燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御を行う第1水回収運転制御ステップと、
前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御を行う第2水回収運転制御ステップと、
前記第1水回収運転制御ステップおよび前記第2水回収運転制御ステップのうち、少なくとも一方のステップが予め決められた第1所定時間継続した後、前記第1タンク内の水位が前記第1所定水位以下である場合、前記第1タンクに外部から水を補給する水補給装置によって、前記第1タンクに所定量の外部の水を補給する補水制御ステップと、を実行させる。 Further, the control program of the present disclosure is provided in a control device that controls a fuel cell device including a fuel cell.
When the water level stored in the first tank for storing the water recovered from the exhaust gas discharged from the fuel cell is equal to or lower than a predetermined first predetermined water level, the water is recovered from the exhaust gas. A first water recovery operation control step for performing a first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water increases;
Each of the fuel cells is associated with the fuel cell so that the amount of water supplied from the first tank to the fuel cell is reduced when the water level in the first tank is equal to or lower than a predetermined first predetermined water level. A second water recovery operation control step for performing a second control for controlling the operation of the auxiliary machine;
After at least one of the first water recovery operation control step and the second water recovery operation control step continues for a predetermined first predetermined time, the water level in the first tank is changed to the first predetermined water level. In the following cases, a water replenishment control step of replenishing the first tank with a predetermined amount of external water is performed by a water replenishing device that replenishes the first tank with water from the outside.
一方、本開示の燃料電池装置は、燃料電池と、該燃料電池より排出される排ガスから回収した水を前記燃料電池へ供給するために貯留する第1タンクと、前記第1タンク内の水面の高さを検出する水位検出装置と、前記燃料電池および該燃料電池に付随する各補機の動作を制御する制御装置と、を備える。
前記制御装置は、前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記各補機の動作を制御する第1制御、および、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記各補機の動作を制御する第2制御、のうち、少なくとも一方の制御を行う水回収運転制御を実行する。
前記制御装置は、該水回収運転制御が開始されてから予め決められた第3所定時間経過した後、前記水位検出装置で測定された前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する制御を実行する。 On the other hand, a fuel cell device according to the present disclosure includes a fuel cell, a first tank that stores water collected from exhaust gas discharged from the fuel cell, and supplies water to the fuel cell, and a water surface in the first tank. A water level detection device for detecting the height; and a control device for controlling the operation of the fuel cell and the auxiliary devices attached to the fuel cell.
The controller controls the operation of each auxiliary device so that the amount of water recovered from the exhaust gas increases when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. At least one of a first control to be controlled and a second control to control the operation of each auxiliary device is performed so that the amount of water supplied from the first tank to the fuel cell is reduced. Execute water recovery operation control.
The control device is configured such that a water level in the first tank measured by the water level detection device is less than or equal to the second predetermined water level after a predetermined third predetermined time has elapsed since the start of the water recovery operation control. In some cases, control for stopping the power generation operation of the fuel cell device is executed.
前記制御装置は、前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記各補機の動作を制御する第1制御、および、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記各補機の動作を制御する第2制御、のうち、少なくとも一方の制御を行う水回収運転制御を実行する。
前記制御装置は、該水回収運転制御が開始されてから予め決められた第3所定時間経過した後、前記水位検出装置で測定された前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する制御を実行する。 On the other hand, a fuel cell device according to the present disclosure includes a fuel cell, a first tank that stores water collected from exhaust gas discharged from the fuel cell, and supplies water to the fuel cell, and a water surface in the first tank. A water level detection device for detecting the height; and a control device for controlling the operation of the fuel cell and the auxiliary devices attached to the fuel cell.
The controller controls the operation of each auxiliary device so that the amount of water recovered from the exhaust gas increases when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. At least one of a first control to be controlled and a second control to control the operation of each auxiliary device is performed so that the amount of water supplied from the first tank to the fuel cell is reduced. Execute water recovery operation control.
The control device is configured such that a water level in the first tank measured by the water level detection device is less than or equal to the second predetermined water level after a predetermined third predetermined time has elapsed since the start of the water recovery operation control. In some cases, control for stopping the power generation operation of the fuel cell device is executed.
また、上記の燃料電池装置に対応する、本開示の制御装置は、燃料電池を備える燃料電池装置を制御する制御装置であって、
燃料電池より排出される排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御と、燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御と、を実行可能である。
前記制御装置は、前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記第1制御および前記第2制御のうち、少なくとも一方の制御を行う水回収運転制御を実行し、該水回収運転制御が実行されて、予め決められた第3所定時間継続した後、前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する制御を実行する。 Further, a control device of the present disclosure corresponding to the fuel cell device described above is a control device that controls a fuel cell device including a fuel cell,
First control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water recovered from the exhaust gas discharged from the fuel cell increases, and water recovered from the exhaust gas discharged from the fuel cell A second control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water supplied to the fuel cell from the first tank stored for supplying the fuel cell to the fuel cell is reduced. It is feasible.
The control device performs water recovery operation control that performs at least one of the first control and the second control when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. When the water level in the first tank is equal to or lower than the second predetermined water level after the water recovery operation control is executed and continued for a predetermined third predetermined time, the power generation operation of the fuel cell device is performed. The control to stop is executed.
燃料電池より排出される排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御と、燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御と、を実行可能である。
前記制御装置は、前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記第1制御および前記第2制御のうち、少なくとも一方の制御を行う水回収運転制御を実行し、該水回収運転制御が実行されて、予め決められた第3所定時間継続した後、前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する制御を実行する。 Further, a control device of the present disclosure corresponding to the fuel cell device described above is a control device that controls a fuel cell device including a fuel cell,
First control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water recovered from the exhaust gas discharged from the fuel cell increases, and water recovered from the exhaust gas discharged from the fuel cell A second control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water supplied to the fuel cell from the first tank stored for supplying the fuel cell to the fuel cell is reduced. It is feasible.
The control device performs water recovery operation control that performs at least one of the first control and the second control when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. When the water level in the first tank is equal to or lower than the second predetermined water level after the water recovery operation control is executed and continued for a predetermined third predetermined time, the power generation operation of the fuel cell device is performed. The control to stop is executed.
さらに、前記の燃料電池装置に対応する、本開示の制御プログラムは、燃料電池を備える燃料電池装置を制御する制御装置に、
燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御を行う第1水回収運転制御ステップと、
前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御を行う第2水回収運転制御ステップと、
前記第1水回収運転制御ステップおよび前記第2水回収運転制御ステップのうち、少なくとも一方のステップが予め決められた第3所定時間継続した後、前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する発電運転停止ステップと、を実行させる。 Furthermore, a control program of the present disclosure corresponding to the fuel cell device described above is provided in a control device that controls a fuel cell device including a fuel cell.
When the water level in the first tank for storing the water recovered from the exhaust gas discharged from the fuel cell is less than or equal to a predetermined second predetermined water level, the water is recovered from the exhaust gas. A first water recovery operation control step for performing a first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water increases;
Each of the fuel cells is associated with the fuel cell so that the amount of water supplied from the first tank to the fuel cell is reduced when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. A second water recovery operation control step for performing a second control for controlling the operation of the auxiliary machine;
After at least one of the first water recovery operation control step and the second water recovery operation control step continues for a predetermined third predetermined time, the water level in the first tank is set to the second predetermined water level. When it is below, a power generation operation stop step for stopping the power generation operation of the fuel cell device is executed.
燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御を行う第1水回収運転制御ステップと、
前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御を行う第2水回収運転制御ステップと、
前記第1水回収運転制御ステップおよび前記第2水回収運転制御ステップのうち、少なくとも一方のステップが予め決められた第3所定時間継続した後、前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する発電運転停止ステップと、を実行させる。 Furthermore, a control program of the present disclosure corresponding to the fuel cell device described above is provided in a control device that controls a fuel cell device including a fuel cell.
When the water level in the first tank for storing the water recovered from the exhaust gas discharged from the fuel cell is less than or equal to a predetermined second predetermined water level, the water is recovered from the exhaust gas. A first water recovery operation control step for performing a first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water increases;
Each of the fuel cells is associated with the fuel cell so that the amount of water supplied from the first tank to the fuel cell is reduced when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. A second water recovery operation control step for performing a second control for controlling the operation of the auxiliary machine;
After at least one of the first water recovery operation control step and the second water recovery operation control step continues for a predetermined third predetermined time, the water level in the first tank is set to the second predetermined water level. When it is below, a power generation operation stop step for stopping the power generation operation of the fuel cell device is executed.
本開示の目的、特色、および利点は、下記の詳細な説明と図面とから、より明確になるであろう。
実施形態の燃料電池装置の概略構成図である。
図1のF部分を拡大した、燃料電池装置の改質水タンク周辺の説明図である。
燃料電池装置の外観斜視図である。
第1実施形態の燃料電池装置における水回収運転制御および補水制御のフローチャートである。
第1実施形態の燃料電池装置における運転再開制御のフローチャートの一例であり、第1運転再開制御のフローを示す図である。
第1実施形態の燃料電池装置における運転再開制御のフローチャートの他の例であり、第2運転再開制御のフローを示す図である。
第2実施形態の燃料電池装置における水回収運転制御のフローチャートである。
第2実施形態の燃料電池装置における運転再開制御のフローチャートの一例であり、第1運転再開制御のフローを示す図である。
第2実施形態の燃料電池装置における運転再開制御のフローチャートの一例であり、第2運転再開制御のフローを示す図である。
第2実施形態の燃料電池装置における運転再開制御のフローチャートの他の例であり、熱媒冷却制御および起動準備制御のフローを示す図である。
Objects, features and advantages of the present disclosure will become more apparent from the following detailed description and drawings.
It is a schematic block diagram of the fuel cell apparatus of embodiment. It is explanatory drawing of the periphery of the reforming water tank of a fuel cell apparatus which expanded F part of FIG. 1 is an external perspective view of a fuel cell device. It is a flowchart of the water collection | recovery driving | operation control and the supplementary water control in the fuel cell apparatus of 1st Embodiment. It is an example of the flowchart of the driving | operation restart control in the fuel cell apparatus of 1st Embodiment, and is a figure which shows the flow of 1st driving | operation restart control. It is another example of the flowchart of operation resumption control in the fuel cell device of a 1st embodiment, and is a figure showing the flow of the 2nd operation resumption control. It is a flowchart of the water collection | recovery driving | operation control in the fuel cell apparatus of 2nd Embodiment. It is an example of the flowchart of the operation resumption control in the fuel cell apparatus of 2nd Embodiment, and is a figure which shows the flow of 1st operation resumption control. It is an example of the flowchart of the operation resumption control in the fuel cell apparatus of 2nd Embodiment, and is a figure which shows the flow of 2nd operation resumption control. It is another example of the flowchart of the driving | operation restart control in the fuel cell apparatus of 2nd Embodiment, and is a figure which shows the flow of heat-medium cooling control and starting preparation control.
以下、図面を用いて実施形態の燃料電池装置について説明する。
図1,図2および図3は、実施形態の燃料電池装置の概略構成を説明する図である。なお、図2は、図1のF部を拡大して示す、改質水タンク周りの概略構成である。 Hereinafter, the fuel cell device of the embodiment will be described with reference to the drawings.
1, 2 and 3 are diagrams for explaining the schematic configuration of the fuel cell device according to the embodiment. FIG. 2 is a schematic configuration around the reforming water tank, showing the F section of FIG. 1 in an enlarged manner.
図1,図2および図3は、実施形態の燃料電池装置の概略構成を説明する図である。なお、図2は、図1のF部を拡大して示す、改質水タンク周りの概略構成である。 Hereinafter, the fuel cell device of the embodiment will be described with reference to the drawings.
1, 2 and 3 are diagrams for explaining the schematic configuration of the fuel cell device according to the embodiment. FIG. 2 is a schematic configuration around the reforming water tank, showing the F section of FIG. 1 in an enlarged manner.
実施形態の燃料電池装置100は、天然ガス,LPガス等の原燃料と空気とを使用して発電を行なう燃料電池モジュール1の稼動による電力供給と、熱交換器3、ラジエータ4、熱媒循環ポンプP2および蓄熱タンク5等からなる排熱回収システム(ヒートサイクルHSともいう)を利用した温水の供給とを行うものである。なお、上記の蓄熱タンク5は、本開示の第2タンクに相当する。また、温水の供給を行なわない、いわゆるモノジェネレーションシステムとすることもできる。
The fuel cell device 100 according to the embodiment includes power supply by operation of a fuel cell module 1 that generates power using raw fuel such as natural gas and LP gas and air, a heat exchanger 3, a radiator 4, and a heat medium circulation. Hot water is supplied using an exhaust heat recovery system (also referred to as a heat cycle HS) including a pump P2 and a heat storage tank 5 or the like. In addition, said heat storage tank 5 is corresponded to the 2nd tank of this indication. Moreover, it can also be set as a so-called monogeneration system which does not supply hot water.
また、燃料電池装置100は、前述の燃料電池モジュール1等の他、補機として、改質水タンク6、パワーコンディショナ20、制御装置30、記憶装置40等を備えている。さらに、燃料電池装置100は、改質水ポンプP1を含む改質水流路R、排水流路Dと、各種センサ類とを備えている。センサとしては、水位検出装置である、中水位に位置する水検知器WL1,低水位に位置する水検知器WL2と、熱媒温度測定装置である水温計TS1と、改質水の水質を測定するための水質測定装置である電気伝導率計WC1等と、を少なくとも備える。
The fuel cell device 100 includes a reformed water tank 6, a power conditioner 20, a control device 30, a storage device 40, and the like as auxiliary devices in addition to the fuel cell module 1 described above. Further, the fuel cell device 100 includes a reforming water channel R including a reforming water pump P1, a drain channel D, and various sensors. As the sensors, a water detector WL 1 located at a middle water level, which is a water level detection device, a water detector WL 2 located at a low water level, a water temperature meter TS 1 as a heat medium temperature measuring device, and reformed water An electrical conductivity meter WC 1 or the like that is a water quality measuring device for measuring water quality.
燃料電池モジュール1は、収納容器10に収容されている。内部に、複数の燃料電池セルが積層されたセルスタック11と、水蒸気を用いて原燃料の水蒸気改質を行う改質器12と、余剰の燃料ガスに点火するための着火ヒータ(図示省略)、および、触媒容器2に充填された排ガス触媒等を備える。そして、燃料電池モジュール1は、図3に示すように、各フレーム51と外装パネル(図示省略)とからなるケース50の中に配設されている。
The fuel cell module 1 is accommodated in a storage container 10. A cell stack 11 in which a plurality of fuel cells are stacked, a reformer 12 that performs steam reforming of raw fuel using steam, and an ignition heater (not shown) for igniting surplus fuel gas And an exhaust gas catalyst filled in the catalyst container 2. As shown in FIG. 3, the fuel cell module 1 is disposed in a case 50 including each frame 51 and an exterior panel (not shown).
なお、図3では図示していないが、ケース50内には、図1に例示するような、天然ガス等の原燃料を改質器に送給するガスポンプB1、空気等の酸素含有ガスをセルスタックに送給する空気ブロワB2、改質水タンク6内の改質水を、水蒸気改質用の原料水として改質器12に供給する改質水ポンプP1、改質水タンク6内の余剰水を排出するための排水流路D等が、配設されている。
Although not shown in FIG. 3, a gas pump B1 for feeding raw fuel such as natural gas to the reformer, as illustrated in FIG. Air blower B2 fed to the stack, reforming water pump P1 for supplying reforming water in the reforming water tank 6 to the reformer 12 as raw water for steam reforming, surplus in the reforming water tank 6 A drainage channel D and the like for discharging water are disposed.
さらに、ケース50内には、先に述べたような、系統電源と連係するパワーコンディショナ20、装置全体をコントロールする制御基板を含む制御装置30、記憶装置40等や、燃料電池の運転を制御するために用いる各種センサ類も、配置されている。
Further, in the case 50, the power conditioner 20 linked with the system power supply, the control device 30 including the control board for controlling the entire device, the storage device 40, etc., and the operation of the fuel cell as described above are controlled. Various sensors used for this purpose are also arranged.
上述のような構成の燃料電池装置100においては、燃料電池モジュール1に隣接して配置された熱交換器3で、燃料電池モジュール1より排出された排ガスと、熱交換器3内を流れる水等の熱媒または冷媒との間で熱交換が行われ、排ガスに含まれる水分が結露して凝縮水が生じる。
In the fuel cell device 100 configured as described above, the heat exchanger 3 disposed adjacent to the fuel cell module 1, the exhaust gas discharged from the fuel cell module 1, water flowing in the heat exchanger 3, etc. Heat exchange is performed with the heat medium or refrigerant, and moisture contained in the exhaust gas is condensed to produce condensed water.
生じた凝縮水は、気液分離器等により分離され、凝縮水流路Cを経由して、凝縮水を回収および貯留する改質水タンク6に導入される。なお、改質水タンク6は、本開示の第1タンクに相当するものである。
The generated condensed water is separated by a gas-liquid separator or the like and introduced into the reformed water tank 6 that collects and stores the condensed water via the condensed water channel C. The reforming water tank 6 corresponds to the first tank of the present disclosure.
水分が取り除かれた排ガスは、排ガス流路Eを介して、燃料電池装置の外に排気される。また、改質水タンク6に貯水された改質水は、改質水流路Rおよび改質水ポンプP1を介して、燃料電池モジュール1内の改質器12に供給され、改質水を用いた原燃料の水蒸気改質に利用される。
The exhaust gas from which moisture has been removed is exhausted outside the fuel cell device via the exhaust gas flow path E. Further, the reformed water stored in the reformed water tank 6 is supplied to the reformer 12 in the fuel cell module 1 via the reformed water flow path R and the reformed water pump P1, and uses the reformed water. Used for steam reforming of raw fuel.
図2は、燃料電池装置100の構成の中で、燃料電池の発電運転およびそれに用いられる改質水に関連する部分、すなわち図1の二点鎖線F内を拡大して示したものである。
FIG. 2 is an enlarged view of a portion related to the power generation operation of the fuel cell and the reformed water used in the fuel cell device 100, that is, the inside of the two-dot chain line F in FIG.
凝縮水を浄化して貯留する改質水タンク6は、浄化処理用途の第1改質水タンク61と、貯留用途の第2改質水タンク62と、で構成されている。なお、これら第1改質水タンク61と第2改質水タンク62との間は、下部の通水管65で接続されて、連通している。
The reformed water tank 6 that purifies and stores the condensed water is composed of a first reformed water tank 61 for purification treatment and a second reformed water tank 62 for storage. The first reforming water tank 61 and the second reforming water tank 62 are connected by a lower water pipe 65 to communicate with each other.
生成された改質水を貯留する第2改質水タンク62の下部または底部には、改質水ポンプP1の吸引口に繋がる改質水導出口62aが設けられている。また、第2改質水タンク62の上部側面には、排水流路Dに繋がる余剰水導出口62bが設けられている。
A reforming water outlet 62a connected to the suction port of the reforming water pump P1 is provided at the bottom or bottom of the second reforming water tank 62 that stores the generated reforming water. An excess water outlet 62 b connected to the drainage channel D is provided on the upper side surface of the second reformed water tank 62.
第2改質水タンク62の下部には、貯留された改質水の水位である上水面が、下限水位である渇水位に達したことを検出する水検知器WL2が配設されている。なお、図中の各センサの黒丸は、センサの配設位置、またはプローブ等の先端の検出位置を示すものである。
At the bottom of the second reforming water tank 62, water on a water level of the pooled reforming water, water detectors WL 2 for detecting that has reached the empty water level is the lower limit water level is arranged . In addition, the black circle of each sensor in a figure shows the arrangement | positioning position of a sensor, or the detection position of tips, such as a probe.
凝縮水を回収および精製して改質水を作製する第1改質水タンク61の中には、熱交換器3から回収された凝縮水を浄化処理するためのイオン交換樹脂が充填された第1のイオン交換樹脂容器63と、改質水の不足時に、外部から補給される水道水等(以下、外部水という)を浄化するためのイオン交換樹脂が充填された第2のイオン交換樹脂容器64とが、配設されている。
The first reformed water tank 61 that collects and purifies condensed water to produce reformed water is filled with an ion exchange resin for purifying the condensed water collected from the heat exchanger 3. 1 ion exchange resin container 63 and a second ion exchange resin container filled with an ion exchange resin for purifying tap water or the like (hereinafter referred to as external water) replenished from the outside when the reforming water is insufficient 64 is disposed.
第1改質水タンク61の所定の中間位置には、貯留された改質水の水位である上水面が、予め決められた設定水位である中水位に達したことを検出する水検知器WL1が配設されている。なお、図2に示すように、第1改質水タンク61中に、貯留水である改質水の導電率(単位:μS/cm)を測定する第2の電気伝導率計WC2を配設してもよい。
At a predetermined intermediate position of the first reforming water tank 61, a water detector WL that detects that the upper water surface, which is the water level of the stored reforming water, has reached the intermediate water level, which is a predetermined set water level. 1 is disposed. As shown in FIG. 2, a second electrical conductivity meter WC 2 for measuring the conductivity (unit: μS / cm) of the reformed water that is the stored water is arranged in the first reformed water tank 61. You may set up.
そして、本実施形態の燃料電池装置100においては、水タンクに外部から水を補給する水補給装置として、図2に示すように、改質水タンク6と、外部の水源である上水道(Waterworks)等との間に、電磁開閉式の止水弁V1を含む水補給流路Gが配設されている。
In the fuel cell device 100 of the present embodiment, as shown in FIG. 2, as a water supply device for supplying water to the water tank from the outside, a reformed water tank 6 and a waterworks (Waterworks) that is an external water source. between the like, water refilling channel G containing water stop valve V 1 of the solenoid-operated is provided.
水補給流路Gの下流側の末端である端部は、第1改質水タンク61の下部に設けられた外部水受水口61aに接続されている。外部水受水口61aから流入した外部水は、タンク内部に配設された延設管61bを介して、第2のイオン交換樹脂容器64の底部に設けられた外部水導入口64aから、第1改質水タンク61内に導入される。
The end, which is the downstream end of the water supply channel G, is connected to an external water receiving port 61 a provided at the lower part of the first reformed water tank 61. The external water that has flowed in from the external water receiving port 61a is supplied from the external water introducing port 64a provided at the bottom of the second ion exchange resin container 64 through the extension pipe 61b provided inside the tank. It is introduced into the reformed water tank 61.
また、第2のイオン交換樹脂容器64の中には、外部水浄化用のイオン交換樹脂が充填されている。外部水は、このイオン交換樹脂層を通過する間に、水道水等に含まれる不純物が除去され、導電率1μS/cm程度の脱イオン水、すなわち改質水の補水が精製されるようになっている。
The second ion exchange resin container 64 is filled with an ion exchange resin for external water purification. While the external water passes through the ion exchange resin layer, impurities contained in tap water and the like are removed, and deionized water having a conductivity of about 1 μS / cm, that is, supplementary water for reformed water is purified. ing.
なお、図中の電気伝導率計WC1は、前述のイオン交換樹脂が破過していないどうかを判定する、破過判定装置の一例である。この電気伝導率計WC1は、浄化処理された後の脱イオン水である補水の導電率を測定できるように、補水が滞留する、第2のイオン交換樹脂容器64の上部に配設されている。
In addition, the electric conductivity meter WC 1 in the figure is an example of a breakthrough determination device that determines whether or not the above-described ion exchange resin has broken through. This electric conductivity meter WC 1 is disposed on the upper part of the second ion exchange resin container 64 where the replenishment water stays so that the conductivity of the replenishment water which is deionized water after the purification treatment can be measured. Yes.
浄化処理された補水は、第2のイオン交換樹脂容器64の上部側面に設けられた浄化水流出口64bから流出して、第1改質水タンク61内の貯水部に流下して、改質水として貯留される。
The purified replenishing water flows out from the purified water outlet 64b provided on the upper side surface of the second ion exchange resin container 64, flows down to the water storage section in the first reformed water tank 61, and reformed water. As stored.
本実施形態の燃料電池装置100においては、改質水タンク6内の改質水が不足する場合、上述した水道水などの外部水が、イオン交換樹脂等を介して浄化された後、補水として改質水タンク6内に導入される。補水が行われる条件や制御等については、後記で説明する。
In the fuel cell device 100 of the present embodiment, when the reformed water in the reformed water tank 6 is insufficient, external water such as the tap water described above is purified through ion exchange resin or the like, and then used as supplementary water. It is introduced into the reformed water tank 6. The conditions and control for rehydration will be described later.
そして、燃料電池装置100は、以下に詳細に述べるように、種々の機能を実行するための制御および処理能力を提供するために、少なくとも1つのプロセッサを含む制御装置30を備える。
The fuel cell device 100 includes a control device 30 that includes at least one processor to provide control and processing capabilities for performing various functions, as will be described in detail below.
種々の実施形態によれば、少なくとも1つのプロセッサは、単一の集積回路として、または、複数の通信可能に接続された集積回路および/もしくはディスクリート回路として、実行されてもよい。少なくとも1つのプロセッサは、種々の既知の技術にしたがって実行されることが可能である。
According to various embodiments, the at least one processor may be implemented as a single integrated circuit or as a plurality of communicatively connected integrated circuits and / or discrete circuits. The at least one processor can be implemented according to various known techniques.
1つの実施形態において、プロセッサは、たとえば、関連するメモリに記憶された指示を実行することによって1以上のデータ計算手続または処理を実行するように構成された、1以上の回路またはユニットを含む。他の実施形態において、プロセッサは、1以上のデータ計算手続きまたは処理を実行するように構成されたファームウェア、たとえばディスクリートロジックコンポーネントであってもよい。
In one embodiment, the processor includes one or more circuits or units configured to perform one or more data computation procedures or processes, for example, by executing instructions stored in associated memory. In other embodiments, the processor may be firmware, such as a discrete logic component, configured to perform one or more data computation procedures or processes.
種々の実施形態によれば、プロセッサは、1以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路、デジタル信号処理部、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、または、これらのデバイスもしくは構成の任意の組み合わせ、または、他の既知のデバイスおよび構成の組み合わせ、を含み、以下に説明される機能を実行してもよい。
According to various embodiments, the processor may include one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits, digital signal processors, programmable logic devices, field programmable gate arrays, or these devices or The functions described below may be performed, including any combination of configurations, or other known device and configuration combinations.
制御装置30は、記憶装置40と、パワーコンディショナ20と、燃料電池モジュール1と、ガスポンプB1等の原燃料供給装置と、空気ブロワB2等の酸素含有ガス供給装置と、改質水ポンプP1等の水供給装置、止水弁V1を含む水補給流路G等の水補給装置、および、中水位の水検知器WL1,低水位の水検知器WL2等の水位検出装置、水温計TS1等の熱媒温度測定装置、電気伝導率計WC1等の水質測定装置などの各種センサと接続され、これらの各機能部をはじめとして、燃料電池装置100の全体を制御および管理する。制御装置30は、記憶装置40に記憶されているプログラムを取得して、このプログラムを実行することにより、燃料電池装置100の各部にかかる、種々の機能を実現する。
The control device 30 includes a storage device 40, a power conditioner 20, a fuel cell module 1, a raw fuel supply device such as a gas pump B1, an oxygen-containing gas supply device such as an air blower B2, and a reforming water pump P1. water supply device, the water supply device, such as a water replenishment passage G containing Tomesuiben V 1, and, the medium-level water detector WL 1, the water level detector, such as a water detector WL 2 low water level, water temperature gauge It is connected to various sensors such as a heat medium temperature measuring device such as TS 1 and a water quality measuring device such as electric conductivity meter WC 1 , and controls and manages the entire fuel cell device 100 including these functional units. The control device 30 obtains a program stored in the storage device 40 and executes this program, thereby realizing various functions related to each part of the fuel cell device 100.
制御装置30から、他の機能部または装置に制御信号または各種の情報などを送信する場合、制御装置30と他の機能部とは、有線または無線により接続されていればよい。制御装置30が行う本実施形態に特徴的な制御については、後記で説明する。なお、本実施形態において、制御装置30は特に、先に述べた外部水の、改質水貯留部への補水を制御する。また、各図では、制御装置30および記憶装置40と、燃料電池を構成する各装置および各センサとを結ぶ接続線の図示を、省略している場合がある。
When transmitting a control signal or various types of information from the control device 30 to another function unit or device, the control device 30 and the other function unit may be connected by wire or wireless. Control characteristic of this embodiment performed by the control device 30 will be described later. In the present embodiment, the control device 30 particularly controls replenishment of the external water described above to the reforming water storage unit. Moreover, in each figure, illustration of the connection line which connects the control apparatus 30 and the memory | storage device 40, each apparatus and each sensor which comprise a fuel cell may be abbreviate | omitted.
記憶装置40は、プログラムおよびデータを記憶できる。記憶装置40は、処理結果を一時的に記憶する作業領域としても利用してもよい。記憶装置40は、記録媒体を含む。記録媒体は、半導体記憶媒体、および磁気記憶媒体等の任意の非一時的(non-transitory)な記憶媒体を含んでよい。また、記憶装置40は、複数の種類の記憶媒体を含んでいてもよい。記憶装置40は、メモリカード、光ディスク、または光磁気ディスク等の可搬の記憶媒体と、記憶の読み取り装置との組合せを含んでいてもよい。記憶装置40は、RAM(Random Access Memory)等の一時的な記憶領域として利用される記憶デバイスを含んでいてもよい。
The storage device 40 can store programs and data. The storage device 40 may also be used as a work area for temporarily storing processing results. The storage device 40 includes a recording medium. The recording medium may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium. The storage device 40 may include a plurality of types of storage media. The storage device 40 may include a combination of a portable storage medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage reading device. The storage device 40 may include a storage device used as a temporary storage area such as a RAM (Random Access Memory).
つぎに、上記構成の燃料電池装置による、改質水の水量を回復させる水回収運転制御、および、改質水が不足する場合の補水制御は、以下のように行われる。なお、以下の説明は、図4および図5A,図5Bのフローチャートにもとづいて行う。また、フローチャートにおける各ステップを「S」と省略して呼称する。たとえば、ステップ1,ステップ2・・・は、それぞれ、〔S1〕,〔S2〕・・・と称する。なお、図中も同じ表記とする。
Next, water recovery operation control for recovering the amount of reformed water and supplemental water control when the reformed water is insufficient by the fuel cell device having the above-described configuration are performed as follows. The following description will be made based on the flowcharts of FIGS. 4, 5A, and 5B. Each step in the flowchart is abbreviated as “S”. For example, Step 1, Step 2... Are referred to as [S1], [S2]. The same notation is used in the figure.
図4および図5A,図5Bに示す、第1実施形態の燃料電池装置における制御装置30は、システムに異常を感知していない通常時または正常時には、第1タンクである改質水タンク6の所定の中間位置に配設された水検知器WL1が発信している水検出信号が途切れるまで、すなわち、第1所定水位である中水位の水検知器WL1からの水検出信号が受信できなくなるまで、水検出信号の受信の有無を判断する〔S1〕のループ、すなわち図4のフローチャートの〔S1〕における図示左側を繰り返しながら、待機している。
The control device 30 in the fuel cell device according to the first embodiment shown in FIGS. 4, 5 </ b> A, and 5 </ b> B is used for the reforming water tank 6, which is the first tank, at normal or normal time when no abnormality is detected in the system. until the water detection signal of water detectors WL 1 disposed in a predetermined intermediate position is transmitting is interrupted, i.e., be received water detection signal from the water detector WL 1 of the water level in the first is a predetermined water level Until there is no more, the system waits while repeating the loop of [S1] for determining whether or not the water detection signal is received, that is, the left side of the flowchart of FIG. 4 in [S1].
ここで、前記〔S1〕のループ中に、中水位の水検知器WL1が発信する水検出信号が受信されなくなった場合、制御装置30は、以下の水回収運転制御を開始する〔S2〕。
Here, the loop in the [S1], when water detection signal of water detectors WL 1 of medium water level to send is not received, the control unit 30 starts the following water recovery operation control [S2] .
水回収運転制御は、改質水タンク6内の改質水の水量回復を目的に行うものである。その制御は、〔S2〕以降において、燃料電池の発電出力を抑制するとともに、他の補機類も制御して、燃料電池の発電運転を継続する。
Water recovery operation control is performed for the purpose of recovering the amount of reformed water in the reformed water tank 6. In [S2] and thereafter, the control suppresses the power generation output of the fuel cell and also controls other auxiliary machines to continue the power generation operation of the fuel cell.
具体的には、排ガスから回収される水の量を増加させる第1制御、および、改質水タンク6から燃料電池モジュール1へ供給する水の量を低減させる第2制御、のうち、少なくとも一方の制御を行う。
Specifically, at least one of the first control for increasing the amount of water recovered from the exhaust gas and the second control for reducing the amount of water supplied from the reforming water tank 6 to the fuel cell module 1. Control.
第1制御とは、前述のように燃料電池の発電出力を抑制するほか、たとえば、ヒートサイクルHS系の熱媒循環ポンプP2の送出量である水流量を定格最大にするとともに、ラジエータ4のファンの回転を定格最大回転数まで引き上げる等、熱媒循環系のポンプとファンの稼動デューティ比を上げる制御を行う。
In addition to suppressing the power generation output of the fuel cell as described above, the first control, for example, maximizes the water flow rate, which is the delivery amount of the heat medium HS heat medium circulation pump P2, and the fan of the radiator 4 The operation duty ratio of the pump and fan of the heat medium circulation system is increased, for example, by raising the rotation of the motor to the rated maximum speed.
また、燃料利用率を下げて酸素利用率を上げるために、原燃料を改質器に送給するガスポンプB1の送出量であるガス流量と、空気をセルスタックに送給する空気ブロワB2の送出量である空気流量とを制御する等、原料供給系のポンプとブロワの稼動デューティ比を上げる制御を行う。これにより、最大の効率で、凝縮水を回収することができるようになる。
In order to increase the oxygen utilization rate by lowering the fuel utilization rate, the gas flow rate that is the delivery amount of the gas pump B1 that feeds raw fuel to the reformer and the delivery of the air blower B2 that delivers air to the cell stack Control to increase the operating duty ratio of the pump and blower of the raw material supply system, such as controlling the air flow rate that is a quantity. As a result, the condensed water can be recovered with maximum efficiency.
第2制御とは、たとえば、燃料電池モジュール1への水供給用装置である改質水ポンプP1の、改質水の送出量である送水量をできる限り低減する制御を行う。
The second control is, for example, a control for reducing as much as possible the amount of reformed water delivered by the reformed water pump P1, which is a device for supplying water to the fuel cell module 1.
そして、〔S2〕以降に記載の水回収運転制御は、これら第1制御および第2制御のうち、少なくとも一方、可能であれば両方の制御を同時に行うことにより、最大限の効率で、凝縮水を回収することができる。
In addition, the water recovery operation control described in [S2] and thereafter is performed by performing at least one of the first control and the second control at the same time, if possible, simultaneously, so that the condensate water is maximally efficient. Can be recovered.
水回収運転制御の継続中、制御装置30は、改質水タンク6の渇水位置である低水位位置の水検知器WL2が、水検出信号を発信しているか否かを確認する〔S3〕。仮に、〔S3〕において、低水位位置の水検知器WL2からの水検出信号が途絶えれば、改質水タンク6内の改質水の貯水量が危険レベルにまで低下していると判断して、発電運転を停止する制御に移行する(〔S12〕の渇水アラートを参照)。なお、渇水アラートが発報し、発電運転が停止された場合〔S12〕には、その後、人の手によるメンテナンスを経ることで、運転を再開することができる。
The duration of the water recovery operation control, the control device 30, the water detector WL 2 of low water position is drought position of the reforming water tank 6 confirms whether or not the outgoing water detection signal S3! . If, in (S3), and if the water detection signal from the water detector WL 2 low level position Todaere, water amount of the reforming water reforming water tank 6 is reduced to a dangerous level determination Then, the control shifts to the control for stopping the power generation operation (see the drought alert in [S12]). In addition, when the drought alert is issued and the power generation operation is stopped [S12], the operation can be resumed through maintenance by human hands.
つぎに、制御装置30は、〔S4〕において、貯留改質水の水位の回復度合いを確認する。すなわち、この際、制御装置30は、水検知器WL1から水検出信号が受信され、貯留改質水の水位が第1所定水位まで回復したことが確認できれば、〔S13〕において、前述の水回収運転制御を終了し、定格発電運転が可能な状態である〔S1〕以前の初期状態に復帰する。
Next, the control apparatus 30 confirms the recovery | restoration degree of the water level of stored reforming water in [S4]. That is, in this case, the control unit 30, the water detection signal from the water detector WL 1 is received, if it is confirmed that the water level of the reservoir reforming water is restored to the first predetermined level, in [S13], the aforementioned water The recovery operation control is terminated, and the state returns to the initial state before [S1] in which the rated power generation operation is possible.
一方、〔S5〕において、水回収運転制御を開始してから第1所定時間T1経過後も、中水位の水検知器WL1からの水検出信号が受信されるようにならなかった、すなわち貯留改質水の水位の回復が充分でなかった場合、制御装置30は、外部水を補給する補水制御〔S7〕を開始する。なお、この第1所定時間T1とは、予め決められた、たとえば3時間程度の期間を指す。
On the other hand, in (S5), after the first predetermined time T1 has elapsed from the start of the water recovery operation control also, water detection signal from the water detector WL 1 medium water level was not to be received, i.e. reservoir When the recovery of the water level of the reforming water is not sufficient, the control device 30 starts the water replenishment control [S7] for replenishing external water. The first predetermined time T1 indicates a predetermined period of, for example, about 3 hours.
ここで、制御装置30は、補水制御〔S7〕実行の前に、外部水が補給可能であるかどうかを判定する、破過判定制御を実行してもよい。
Here, the control device 30 may execute breakthrough determination control for determining whether or not external water can be replenished before executing the water replenishment control [S7].
破過判定制御の具体的な例として、制御装置30は、補水に使用する外部水浄化用のイオン交換樹脂が「破過」していないかどうか、すなわち、補水用イオン交換樹脂が寿命を迎えていないか否かを、破過判定装置、この例では破過検知装置として電気伝導率計を使用して、検出および判定する。
As a specific example of breakthrough determination control, the control device 30 determines whether or not the ion exchange resin for external water purification used for replenishment is “breakthrough”, that is, the replenishment ion exchange resin reaches the end of its life. It is detected and determined using an electric conductivity meter as a breakthrough determination device, in this example, a breakthrough detection device.
一例として、第1実施形態の燃料電池装置100の場合、図4のフローチャートにおいて、補水開始から第1所定時間T1経過〔S5〕と補水制御開始〔S7〕との間に、補水用イオン交換樹脂の破過を判定する破過判定制御〔S6〕を行う。
As an example, in the case of the fuel cell device 100 of the first embodiment, in the flow chart of FIG. 4, the ion exchange resin for replenishment is provided between the first predetermined time T1 [S5] and the start of replenishment control [S7]. Breakthrough determination control [S6] is performed to determine whether the breakthrough occurs.
破過判定制御〔S6〕は、第2のイオン交換樹脂容器64の上部に配設されている電気伝導率計WC1を用いて、第2のイオン交換樹脂容器64内の浄化処理済の脱イオン水の導電率Jが、予め決められた所定導電率J1以下の値であるか否か、を確認する。
Breakthrough determination control (S6), using an electric conductivity meter WC 1 disposed on the upper portion of the second ion-exchange resin container 64, leaving the purification treated in the second ion-exchange resin container 64 It is confirmed whether or not the conductivity J of ionic water is a value equal to or lower than a predetermined conductivity J1 determined in advance.
そして、制御装置30は、破過判定制御〔S6〕において、測定された導電率Jが所定導電率J1以下、すなわち破過していない「No(Good)」である場合、外部水浄化用のイオン交換樹脂がまだ寿命を迎えておらず、正常に機能していると判断して、後記の補水制御〔S7〕を開始または実行する。
Then, in the breakthrough determination control [S6], when the measured conductivity J is equal to or lower than the predetermined conductivity J1, that is, “No (Good)” that does not breakthrough, the control device 30 is for purifying external water. It is determined that the ion exchange resin has not reached the end of its life and is functioning normally, and replenishment water control [S7] described later is started or executed.
また、破過判定制御〔S6〕において、測定された導電率Jが所定導電率J1を超える場合、すなわち、外部水浄化用のイオン交換樹脂が寿命を迎え、破過している「Yes(No Good)」と判断された場合、外部水を用いた補水は中止され、燃料電池は、発電運転から、その運転を停止する制御〔スタンバイ状態:S14〕に移行する。すなわち、改質水タンク6内の改質水の貯水量が危険レベルにまで低下する前、言い換えれば、渇水アラートの発報をともなう発電運転の停止がされる前に、発電運転を停止する。
Further, in the breakthrough determination control [S6], when the measured conductivity J exceeds the predetermined conductivity J1, that is, the ion exchange resin for external water purification has reached the end of its life and is broken through “Yes (No If it is determined that “Good)”, the replenishment using the external water is stopped, and the fuel cell shifts from the power generation operation to the control for stopping the operation [standby state: S14]. In other words, the power generation operation is stopped before the amount of reformed water stored in the reforming water tank 6 is lowered to a dangerous level, in other words, before the power generation operation is stopped with a drought alert.
なお、上記例では、破過判定制御〔S6〕は、浄化処理済の脱イオン水の導電率Jを基準または判定項目として行うものとしたが、判定条件として、他の測定値を用いることもできる。たとえば、外部水である水道水の、第2のイオン交換樹脂容器64への時間あたり流入量を計測するフローメーター、あるいは、量水計等を備えている場合、それらのセンサから得られる値、すなわち水量を積算して、累積水量の値を、補水用イオン交換樹脂の破過判定の指標としてもよい。
In the above example, the breakthrough determination control [S6] is performed using the conductivity J of the purified deionized water as a reference or determination item, but other measurement values may be used as the determination condition. it can. For example, when a flow meter that measures the amount of inflow per hour into the second ion exchange resin container 64 or tap water that is external water, or a water meter is provided, values obtained from these sensors, That is, the water amount is integrated, and the value of the accumulated water amount may be used as an index for determining breakthrough of the ion exchange resin for water replenishment.
また、たとえば、前記の外部水である水道水の、第2のイオン交換樹脂容器64への流入量を、水補給流路Gに配設された止水弁V1が開弁された時間と、水補給流路G中を流れる外部水の水圧や流量等に基づいて、演算で算出可能であれば、開弁された時間を積算した累積値を、第2のイオン交換樹脂容器64へ流入した累積水量として、補水用イオン交換樹脂の破過判定に利用してもよい。
Further, for example, the tap water is the external water, the inflow into the second ion-exchange resin container 64, the time and the water replenishment passage water stop valve V 1 disposed in G is opened If the calculation can be performed based on the water pressure or flow rate of the external water flowing in the water supply passage G, the accumulated value obtained by integrating the valve opening time flows into the second ion exchange resin container 64. The accumulated water amount may be used for the determination of breakthrough of the ion exchange resin for water replenishment.
つぎに、前述の、補水用イオン交換樹脂の破過を判定する破過判定制御〔S6〕において、破過がない「No」と判定されれば、外部水を第1タンクである改質水タンク6内に補給する「補水制御」〔S7からS10まで〕を開始する。
Next, in the above-described breakthrough determination control [S6] for determining breakthrough of the ion exchange resin for water replenishment, if it is determined “No” that there is no breakthrough, the external water is reformed water that is the first tank. “Replenishment control” [from S7 to S10] for replenishing the tank 6 is started.
補水制御は、図4のフローチャートに示すように、まず、〔S8〕として、外部水導入用の、水補給流路Gに配設された電磁開閉式の止水弁V1を開けて、外部水である水道水を第2のイオン交換樹脂容器64に導入し、補水を開始する。以下、外部水を「水道水」とする。
Rehydration control, as shown in the flowchart of FIG. 4, first, as [S8], opened for external water introduction, the water stop valve V 1 of the solenoid-operated disposed in the water supply passage G, external Tap water, which is water, is introduced into the second ion exchange resin container 64, and water replenishment is started. Hereinafter, external water is referred to as “tap water”.
ついで、改質水タンク6内の貯留改質水の水量を確認しながら、水道水の補水を継続する。すなわち、フローチャートの〔S9〕において、先に述べたものと同様、改質水タンク6内の改質水の貯水量が、危険な渇水レベルにまで低下していないか否か、低水位位置の水検知器WL2の水検出信号を確認しながら、水道水の補水を継続する。
Next, the tap water is supplemented while confirming the amount of the stored reformed water in the reformed water tank 6. That is, in [S9] of the flowchart, as described above, whether or not the amount of reformed water stored in the reforming water tank 6 has decreased to a dangerous drought level, whether or not the low water level position is set. while checking the water detection signal of the water detector WL 2, continues the rehydration of tap water.
仮に、補水中に、低水位位置の水検知器WL2からの水検出信号が途絶えれば、渇水もしくは何らかの異常が生じているとして補水を中断し、渇水アラートの発報とともに、発電運転を停止する制御に移行する〔S15〕。なお、渇水アラートの発報とともに発電運転が停止された場合〔S15〕には、その後、人の手によるメンテナンスを経ることで、運転を再開することができる。
If the water detection signal from the water detector WL 2 at the low water level is interrupted during replenishment, the replenishment is interrupted as drought or some abnormality has occurred, and the power generation operation is stopped along with the drought alert. [S15]. In addition, when the power generation operation is stopped at the same time that the drought alert is issued [S15], the operation can be resumed through manual maintenance.
つぎに、フローチャートの〔S10〕において、制御装置30は、前記第1所定水位である中水位の水検知器WL1からの水検出信号を受信できた場合、改質水タンク6内の貯留改質水の水量が回復したと判断して、止水弁V1を閉めて、水道水の導入を停止する〔S11〕。そして、前述の補水制御と、発電出力抑制等を行っていた水回収運転制御とを終了して、定常運転である〔S1〕に復帰する。
Then, in [S10] of the flow chart, the control unit 30, when possible to receive the water detection signal from the water detector WL 1 of water level in a first predetermined level, storage reforming the reforming water tank 6 it is determined that the amount of water quality water has been restored, close the Tomesuiben V 1, to stop the introduction of tap water [S11]. And the above-mentioned water replenishment control and the water collection | recovery driving | operation control which performed power generation output suppression etc. are complete | finished, and it returns to [S1] which is a steady operation.
以上のように、本実施形態の燃料電池装置100は、改質水の水量が不足して、水回収運転制御を行う場合であっても当該制御を一定期間継続した場合には、外部水により補水することで、発電運転を継続することができる。
As described above, the fuel cell device 100 according to the present embodiment uses the external water when the amount of reforming water is insufficient and the water recovery operation control is performed for a certain period of time. By replenishing water, power generation operation can be continued.
すなわち、従前の構成の燃料電池装置において、改質水の水量回復操作や制御を行っても、発電運転に必要な水が確保できない場合、装置は強制的に停止され、人の手によるメンテナンスが完了するまで運転を再開できない場合が多かった。
That is, in the fuel cell device having the conventional configuration, if water necessary for the power generation operation cannot be secured even if the water amount recovery operation or control of the reforming water is performed, the device is forcibly stopped, and maintenance by human hands is not possible. There were many cases where operation could not be resumed until completion.
本実施形態の燃料電池装置、制御装置および制御プログラムは、改質水の水量回復操作や制御を行っても、発電運転に必要な水が確保できない場合でも、メンテナンスを伴う装置の停止が回避される。これにより、効率的な発電運転を継続することができる。
The fuel cell device, the control device, and the control program according to the present embodiment avoid the stoppage of the device with maintenance even when the water amount recovery operation or control of the reforming water is performed or when the water necessary for the power generation operation cannot be secured. The Thereby, efficient power generation operation can be continued.
また、補水する前に水回収運転制御を行うことで、外部水の補水回数を極力少なくして、外部水浄化用のイオン交換樹脂の機能低下を抑え、該イオン交換樹脂の寿命を延ばすこともできる。
In addition, by performing water recovery operation control before replenishing water, the number of times of replenishing external water can be reduced as much as possible, the deterioration of the function of the ion exchange resin for external water purification can be suppressed, and the life of the ion exchange resin can be extended. it can.
つぎに、前述の図4のフローチャートにおいて例示したように、補水用イオン交換樹脂の破過によって補水ができず、燃料電池装置の発電運転が停止した場合、すなわち、フローチャートにおける〔S6〕から〔S14〕への移行が発生した場合、運転スタンバイ状態の燃料電池装置は、後記の図5Aに示す第1発電再開制御のフロー、または、図5Bに示す第2発電再開制御のフローのようにして、自動的に、発電運転の再開を目指すようプログラムまたは制御されている。
Next, as illustrated in the flowchart of FIG. 4 described above, when the water replacement cannot be performed due to breakthrough of the ion exchange resin for water replenishment and the power generation operation of the fuel cell device is stopped, that is, from [S6] to [S14 in the flowchart. , The fuel cell device in the operation standby state has a first power generation restart control flow shown in FIG. 5A described later or a second power generation restart control flow shown in FIG. 5B. It is programmed or controlled to automatically resume power generation operation.
詳しく説明すると、まず一例として、図5Aに示すフローを適用する場合、スタンバイ状態となった燃料電池装置は、〔S20〕において、まず、予め決められた第2所定時間である期間T2の間、燃料電池の発電運転を停止したまま、待機する。なお、この第2所定時間T2とは、予め決められた、たとえば1日間程度の期間である。
More specifically, as an example, when the flow shown in FIG. 5A is applied, the fuel cell device that is in a standby state is first in [S20], during a period T2 that is a predetermined second predetermined time. Wait while the power generation operation of the fuel cell is stopped. The second predetermined time T2 is a predetermined period, for example, about one day.
上述の待機期間T2が終了したら、制御装置30は、第1運転再開制御〔S21-1〕を開始する。第1運転再開制御〔S21-1〕は、〔S22-1〕において、内蔵する時計や通信回線を介した外部のタイムサーバ等から、日本標準時等の、燃料電池装置設置場所の標準時に基づく現在時刻、いわゆる現地時間を取得し、その現在時刻が、たとえば真夜中である午前2時や3時等の、比較的外気温が低いと推定される時間帯に予め設定された第1所定時刻を、前記待機期間T2終了後に初めて迎えた際に実行され、燃料電池装置は、前述のスタンバイ状態から、発電運転の再開に向けた起動準備制御へと、移行する。
When the above-described standby period T2 ends, the control device 30 starts the first operation resumption control [S21-1]. In [S22-1], the first operation resumption control [S21-1] is based on the current time based on the standard time of the location where the fuel cell device is installed, such as the Japanese standard time, from an external time server via a built-in clock or communication line The time, so-called local time, is acquired, and the first predetermined time set in advance in a time zone in which the outside temperature is estimated to be relatively low, such as 2:00 am or 3:00 am at midnight, The fuel cell device is executed when it reaches for the first time after the end of the waiting period T2, and the fuel cell device shifts from the standby state to the startup preparation control for resuming the power generation operation.
他方、図5Bに示す第2運転再開制御のフローを適用する場合、スタンバイ状態となった燃料電池装置は、図5Aの第1運転再開制御と同様、〔S20〕において、まず、予め決められた第2所定時間である期間T2の間、燃料電池の発電運転を停止したまま、待機する。
On the other hand, when the flow of the second operation resumption control shown in FIG. 5B is applied, the fuel cell device in the standby state is first determined in advance in [S20] as in the first operation resumption control of FIG. 5A. During the period T2, which is the second predetermined time, the fuel cell is stopped while the power generation operation is stopped.
ついで、待機期間T2が終了したら、制御装置30は、第2運転再開制御〔S21-2〕を開始する。第2運転再開制御〔S21-2〕は、〔S22-2〕において、第2タンクである、ヒートサイクルHS系の蓄熱タンク5に配設された水温計TS1の温度の確認を行い、その水温が予め決められた第1所定温度M1以下であれば、燃料電池装置は、前述のスタンバイ状態から、発電運転の再開に向けた起動準備制御へと、移行する。
Next, when the standby period T2 ends, the control device 30 starts the second operation resumption control [S21-2]. Second operation restart control [S21-2], in [S22-2], a second tank, confirms the temperature of the heat storage tank 5 is disposed a water thermometer TS 1 of the heat cycle HS system, its If the water temperature is equal to or lower than a first predetermined temperature M1 determined in advance, the fuel cell device shifts from the standby state described above to start-up preparation control for resuming the power generation operation.
起動準備制御は、発電運転の再開に向けた準備を行うモードであり、たとえば、燃料電池モジュール内に空気を送る空気ブロアB2の起動等を行う。また、第2所定時間である期間T2の間、発電運転を停止したまま待機する〔S20〕は、省略することができる。すなわち、〔S14〕で発電運転を停止した後、直ちに第1運転再開制御(フロー図5A参照)または第2運転再開制御(フロー図5B参照)を実行するよう制御してもよい。
The start preparation control is a mode in which preparation for resuming the power generation operation is performed, and for example, the air blower B2 that sends air into the fuel cell module is started. Further, the standby [S20] with the power generation operation stopped during the period T2 which is the second predetermined time can be omitted. That is, after stopping the power generation operation in [S14], the first operation resumption control (refer to the flow chart 5A) or the second operation resumption control (refer to the flow chart 5B) may be executed immediately.
なお、第1所定温度M1とは、たとえば47℃である。また、本実施形態において、測定された水温Mが47℃を超える場合、制御装置30は、蓄熱タンク5内の熱媒の温度を下げるための熱媒冷却制御を行う場合がある。
The first predetermined temperature M1 is 47 ° C., for example. Moreover, in this embodiment, when the measured water temperature M exceeds 47 degreeC, the control apparatus 30 may perform the heat medium cooling control for reducing the temperature of the heat medium in the thermal storage tank 5. FIG.
熱媒冷却制御とは、たとえば、発電運転の停止から起動準備制御開始までの間に、蓄熱タンク5内の熱媒の温度を下げ、発電運転の再開後に、凝縮水の回収量が増えるように準備する制御である。熱媒は、冷却装置を作動させることで冷却することができる。冷却装置の一例としては、ヒートサイクルHS系の熱媒循環ポンプP2や、ラジエータ4がある。たとえば、ヒートサイクルHS系の熱媒循環ポンプP2を作動させるとともに、ラジエータ4を作動させる制御を行ってもよい。
With the heat medium cooling control, for example, the temperature of the heat medium in the heat storage tank 5 is lowered between the stop of the power generation operation and the start of the preparation preparation control, and the amount of condensed water recovered increases after the power generation operation is restarted. Control to prepare. The heat medium can be cooled by operating a cooling device. As an example of the cooling device, there is a heat medium HS-based heat medium circulation pump P <b> 2 and a radiator 4. For example, the heat cycle HS heat medium circulation pump P2 may be operated and the radiator 4 may be controlled to operate.
また、熱媒冷却制御は、発電運転の停止から起動準備制御開始までの間に、実行してもよい。フロー図5Aに示すように、第1所定時刻を過ぎた〔S22-1〕後、発電運転を再開する〔S23〕前に、熱媒冷却制御を開始し、所定時間の間熱媒冷却制御を継続、または、熱媒が第1所定温度以下となるまで、継続してもよい。また、フロー図5Bで示すように、第2運転再開制御〔S21-2〕を開始した後に、熱媒冷却制御を開始し、熱媒が第1所定温度以下〔S22-2〕となるまで継続してもよい。
Further, the heat medium cooling control may be executed between the stop of the power generation operation and the start of the start preparation control. As shown in the flow chart 5A, after the first predetermined time has passed [S22-1], before the power generation operation is restarted [S23], the heat medium cooling control is started and the heat medium cooling control is performed for a predetermined time. It may be continued or until the heat medium becomes the first predetermined temperature or lower. Further, as shown in the flow chart 5B, after the second operation resumption control [S21-2] is started, the heat medium cooling control is started and continued until the heat medium becomes equal to or lower than the first predetermined temperature [S22-2]. May be.
以上の制御により、本実施形態の燃料電池装置100は、補水ができない場合でも、渇水アラートが発報する前に運転を停止させ、かつ水位を回復できる環境としたうえで、運転を再開することができる。
With the above control, the fuel cell device 100 according to the present embodiment can restart operation after stopping the operation before the drought alert is issued and recovering the water level even when water replenishment is not possible. Can do.
すなわち、燃料電池装置100は、改質水の水量回復操作や制御を行っても、発電運転に必要な水が確保できない場合でも、人の手によるメンテナンスを経ることなく、発電運転を再開することができる。その結果、効率よく発電運転を行うことができる。
That is, the fuel cell device 100 can restart the power generation operation without performing manual maintenance even if the water amount recovery operation or control of the reforming water is performed or water necessary for the power generation operation cannot be secured. Can do. As a result, the power generation operation can be performed efficiently.
なお、燃料電池装置100の制御装置30および記憶装置40は、燃料電池装置100の外部に有する構成として実現することもできる。さらに、本開示に係る制御装置30における特徴的な制御工程を含む制御方法として実現したり、上記工程をコンピュータに実行させるための制御プログラムとして実現したりすることも可能である。
It should be noted that the control device 30 and the storage device 40 of the fuel cell device 100 can also be realized as a configuration provided outside the fuel cell device 100. Further, it can be realized as a control method including a characteristic control process in the control device 30 according to the present disclosure, or can be realized as a control program for causing a computer to execute the above process.
また、セルスタック装置および燃料電池モジュールは、SOFCに限定されず、たとえば固体高分子形燃料電池〔Polymer Electrolyte Fuel Cell(PEFC)〕、リン酸形燃料電池〔Phosphoric Acid Fuel Cell(PAFC)〕、および、溶融炭酸塩形燃料電池〔Molten Carbonate Fuel Cell(MCFC)〕などのような燃料電池で構成してもよい。
In addition, the cell stack device and the fuel cell module are not limited to the SOFC. For example, the polymer electrolyte fuel cell [Polymer Electrolyte Fuel Cell (PEFC)], the phosphoric acid fuel cell [Phosphoric Acid Fuel Cell (PAFC)], and Alternatively, a fuel cell such as a molten carbonate fuel cell (Molten Carbonate Fuel Cell (MCFC)) may be used.
つぎに、図6および図7A,図7B,図7Cに示す、第2実施形態の燃料電池装置の制御について説明する。なお、第2実施形態の燃料電池装置の構成は、前述の第1実施形態と同様であるため、特に必要としない限り、構成や符号等に関する詳細な説明は省略する。
Next, control of the fuel cell device according to the second embodiment shown in FIGS. 6 and 7A, 7B, and 7C will be described. Note that the configuration of the fuel cell device of the second embodiment is the same as that of the first embodiment described above, and therefore, detailed description regarding the configuration, reference numerals, and the like is omitted unless particularly required.
この第2実施形態の燃料電池装置、制御装置および制御プログラムが、第1実施形態と異なるのは、第1タンクである改質水タンク内の改質水の水量回復を目的に行う水回収運転制御を行っても、発電運転の継続に必要な改質水の水量の回復が見込めない場合は、浄化した外部水を改質水として補水することは行わず、燃料電池装置の発電運転を停止する点である。
The fuel cell device, control device, and control program of the second embodiment are different from the first embodiment in that the water recovery operation is performed for the purpose of recovering the amount of reformed water in the reformed water tank, which is the first tank. If it is not possible to recover the amount of reforming water necessary for continuing power generation operation even after control, the purified external water is not replenished as reformed water, and the power generation operation of the fuel cell device is stopped. It is a point to do.
そのため、第1実施形態の燃料電池装置においては必要であった、水タンクに外部から水を補給する水補給装置として配設されている、外部水受水口61a、延設管61b、外部水導入口64a、止水弁V1等を含む水補給流路Gと、第2のイオン交換樹脂容器64、および、第2のイオン交換樹脂容器64に配設された電気伝導率計WC1は、第2実施形態の燃料電池装置においては、必須の構成ではない。
Therefore, the external water receiving port 61a, the extended pipe 61b, and external water introduction, which are necessary as the water supply device for supplying water to the water tank from the outside, are necessary in the fuel cell device of the first embodiment. mouth 64a, and the water refilling channel G containing Tomesuiben V 1 etc., the second ion-exchange resin container 64, and the electrical conductivity meter WC 1 disposed in a second ion-exchange resin container 64, The fuel cell device according to the second embodiment is not an essential configuration.
第2実施形態の燃料電池装置の制御について詳しく説明する。
第2実施形態の燃料電池装置も、図6のフローチャートに示すように、システムに異常を感知していない通常時または正常時、制御装置30は、第1タンクである改質水タンク6の所定の中間位置に配設された水検知器WL1からの水検出信号を監視しており、それが途切れた時に、水回収運転制御〔S2〕を開始する。 The control of the fuel cell device according to the second embodiment will be described in detail.
In the fuel cell device of the second embodiment as well, as shown in the flowchart of FIG. 6, thecontrol device 30 controls the predetermined amount of the reforming water tank 6 that is the first tank during normal or normal time when no abnormality is detected in the system. of monitors water detection signal from the water detector WL 1 disposed in the intermediate position, when it is interrupted, to start water recovery operation control [S2].
第2実施形態の燃料電池装置も、図6のフローチャートに示すように、システムに異常を感知していない通常時または正常時、制御装置30は、第1タンクである改質水タンク6の所定の中間位置に配設された水検知器WL1からの水検出信号を監視しており、それが途切れた時に、水回収運転制御〔S2〕を開始する。 The control of the fuel cell device according to the second embodiment will be described in detail.
In the fuel cell device of the second embodiment as well, as shown in the flowchart of FIG. 6, the
水回収運転制御〔S2〕は、第1実施形態と同様、排ガスから回収される水の量を増加させる第1制御、および、改質水タンク6から燃料電池モジュール1へ供給する水の量を低減させる第2制御、のうち、少なくとも一方の制御を行う。なお、第1制御および第2制御の内容は、第1実施形態と同じであるため、説明を省略する。
As in the first embodiment, the water recovery operation control [S2] includes the first control for increasing the amount of water recovered from the exhaust gas, and the amount of water supplied from the reforming water tank 6 to the fuel cell module 1. At least one of the second controls to be reduced is performed. In addition, since the content of 1st control and 2nd control is the same as 1st Embodiment, description is abbreviate | omitted.
なお、水回収運転制御〔S2〕は、第1制御および第2制御のうち、少なくとも一方、可能であれば両方の制御を同時に行うことにより、最大限の効率で、凝縮水を回収することが可能である点は、同様である。
The water recovery operation control [S2] can recover condensed water with maximum efficiency by simultaneously performing at least one of the first control and the second control, if possible. The possible points are similar.
また、この水回収運転制御〔S2〕の継続中、制御装置30は、〔S3〕において、改質水タンク6の渇水位置である低水位位置の水検知器WL2からの水検出信号が途絶えれば、発電運転を停止する制御に移行する(〔S12〕の渇水アラート参照)。
Also, the duration of the water recovery operation control [S2], the control unit 30, in the (S3), interrupted water detection signal from the water detector WL 2 of low water position is drought position of the reforming water tank 6 If it does, it will transfer to the control which stops an electric power generation driving | operation (refer the drought alert of [S12]).
また、〔S4〕において、中水位に位置する水検知器WL1から水検出信号が受信されれば、〔S13〕において、前述の水回収運転制御を終了し、定格発電運転が可能な状態である〔S1〕初期状態に復帰する点も、同様である。さらに、第1実施形態と同様、渇水アラートが発報し、発電運転が停止された場合〔S12〕には、その後、人の手によるメンテナンスを経ることで、運転を再開することができる。
Further, in (S4), if the water detector WL 1 is located in the middle level received water detection signal, in [S13], to exit the water recovery operation control described above, in which can be rated generating operating state [S1] The same is true for returning to the initial state. Furthermore, as in the first embodiment, when a drought alert is issued and the power generation operation is stopped [S12], the operation can be resumed through manual maintenance thereafter.
そして、〔S5〕において、水回収運転制御を開始してから第3所定時間T3経過後も、中水位の水検知器WL1からの水検出信号が受信されるようにならなかった、すなわち貯留改質水の水位の回復が充分でなかった場合、制御装置30は、発電運転を停止する制御に移行する〔S30〕。なお、この場合、改質水タンク6の渇水位置である低水位位置以上の水があることから、渇水アラートの発報をともなわずに発電運転を停止する。
Then, in the (S5), after the third predetermined time T3 has elapsed from the start of the water recovery operation control also, water detection signal from the water detector WL 1 medium water level was not to be received, i.e. reservoir When recovery of the water level of the reforming water is not sufficient, the control device 30 shifts to control for stopping the power generation operation [S30]. In this case, since there is water above the low water level, which is the drought position of the reformed water tank 6, the power generation operation is stopped without a drought alert.
つぎに、上述のように、水回収運転制御を行っても、改質水の水位の回復が充分でないという理由で燃料電池装置の発電運転が停止した場合、スタンバイ状態の第2実施形態の燃料電池装置は、次のステップとして、後記に示す図7A,図7Bまたは図7Cに示すフローのようにして、自動的に、発電運転の再開を目指すようプログラムまたは制御されている。
Next, as described above, when the power generation operation of the fuel cell device is stopped because the water level of the reformed water is not sufficiently recovered even if the water recovery operation control is performed, the fuel of the second embodiment in the standby state is stopped. As the next step, the battery device is programmed or controlled so as to automatically aim at resuming the power generation operation in the flow shown in FIG. 7A, FIG. 7B or FIG. 7C described later.
詳しく説明すると、まず一例として、図7Aに示すフローが適用される場合、スタンバイ状態となった燃料電池装置は、〔S40〕において、まず、予め決められた第4所定時間である期間T4の間、燃料電池の発電運転を停止したまま、待機する。なお、この第4所定時間T4とは、予め決められた、たとえば1日間程度の期間である。
More specifically, as an example, when the flow shown in FIG. 7A is applied, in [S40], the fuel cell device that is in a standby state is first set to a predetermined fourth predetermined time period T4. Then, the fuel cell is on standby while the power generation operation of the fuel cell is stopped. The fourth predetermined time T4 is a predetermined period, for example, about one day.
上述の待機期間T4が終了したら、制御装置30は、第1運転再開制御〔S41-1〕を開始する。第1運転再開制御〔S41-1〕は、第1実施形態と同様、〔S42-1〕において、内蔵する時計や通信回線を介した外部のタイムサーバ等から、日本標準時等の、燃料電池装置設置場所の標準時に基づく現在時刻、いわゆる現地時間を取得し、その現在時刻が、たとえば真夜中である午前2時や3時等の、比較的外気温が低いと推定される時間帯に予め設定された第2所定時刻を、前記待機期間T4終了後に初めて迎えた際に実行され、燃料電池装置は、前述のスタンバイ状態から、発電運転の再開に向けた起動準備制御へと、移行する。
When the above-described waiting period T4 ends, the control device 30 starts the first operation resumption control [S41-1]. As in the first embodiment, the first operation resumption control [S41-1] is the same as that of the first embodiment. In [S42-1], the fuel cell device such as a Japanese standard time is received from an external time server via a built-in clock or communication line. The current time based on the standard time of the installation location, so-called local time, is acquired, and the current time is preset in a time zone in which the outside air temperature is estimated to be relatively low, such as midnight or 3:00, for example, at midnight. The second predetermined time is executed at the first time after the end of the waiting period T4, and the fuel cell device shifts from the standby state to the start-up preparation control for resuming the power generation operation.
なお、制御装置30は、蓄熱タンク5内の熱媒の温度を下げるための熱媒冷却制御を行ってもよい。第1実施形態と同様に、第2所定時刻を過ぎた〔S42-1〕後、発電運転を再開するための起動準備制御〔S43〕に移行する前に、前述の熱媒冷却制御を開始して、所定時間の間、熱媒冷却制御を継続するか、あるいは、熱媒が予め決められた所定温度以下となるまで継続してもよい。
The control device 30 may perform heat medium cooling control for reducing the temperature of the heat medium in the heat storage tank 5. As in the first embodiment, after the second predetermined time has passed [S42-1], the above-described heat medium cooling control is started before the start preparation control [S43] for restarting the power generation operation is started. Then, the heat medium cooling control may be continued for a predetermined time, or may be continued until the heat medium becomes a predetermined temperature or lower.
起動準備制御は、発電運転の再開に向けた準備を行うモードであり、たとえば、燃料電池モジュール内に空気を送る空気ブロアB2の起動等を行う。また、第4所定時間である期間T4の間、発電運転を停止したまま待機する〔S40〕は、省略することができる。すなわち、〔S30〕で発電運転を停止した後、直ちに第1運転再開制御(フロー図7A参照)または第2運転再開制御(フロー図7B参照)を実行するよう制御してもよい。
The start preparation control is a mode in which preparation for resuming the power generation operation is performed, and for example, the air blower B2 that sends air into the fuel cell module is started. Moreover, during the period T4 that is the fourth predetermined time, the standby [S40] with the power generation operation stopped can be omitted. That is, after the power generation operation is stopped in [S30], the first operation resumption control (see FIG. 7A) or the second operation resumption control (see FIG. 7B) may be executed immediately.
他方、図7Bに示す第2運転再開制御のフローが適用される場合、スタンバイ状態となった燃料電池装置は、第1実施形態と同様、〔S40〕において、まず、予め決められた第4所定時間である期間T4の間、燃料電池の発電運転を停止したまま、待機する。
On the other hand, when the flow of the second operation resumption control shown in FIG. 7B is applied, the fuel cell device that is in the standby state is first set to a predetermined fourth predetermined value in [S40] as in the first embodiment. During the period T4, which is a time, the fuel cell is stopped while the power generation operation is stopped.
ついで、待機期間T4が終了したら、制御装置30は、第2運転再開制御〔S41-2〕を開始する。第2運転再開制御〔S41-2〕は、〔S42-2〕において、第2タンクである、ヒートサイクルHS系の蓄熱タンク5に配設された水温計TS1の温度の確認を行い、その水温が予め決められた第2所定温度M2以下であれば、燃料電池装置は、前述のスタンバイ状態から、発電運転の再開に向けた起動準備制御へと、移行する。なお、第2所定温度M2とは、たとえば47℃である。
Next, when the standby period T4 ends, the control device 30 starts the second operation resumption control [S41-2]. Second operation restart control [S41-2], in [S42-2], a second tank, confirms the temperature of the heat storage tank 5 is disposed a water thermometer TS 1 of the heat cycle HS system, its If the water temperature is equal to or lower than the predetermined second predetermined temperature M2, the fuel cell device shifts from the standby state described above to start-up preparation control for resuming the power generation operation. The second predetermined temperature M2 is 47 ° C., for example.
つぎに、他の一例として、図7Cに示すフローが適用される場合、上記例と同様、スタンバイ状態となった燃料電池装置は、〔S40〕において、まず、予め決められた第4所定時間である期間T4の間、燃料電池の発電運転を停止したまま、待機する。
Next, as another example, when the flow shown in FIG. 7C is applied, as in the above example, the fuel cell device that is in the standby state is first set to a predetermined fourth predetermined time in [S40]. During a certain period T4, the power generation operation of the fuel cell is stopped and the apparatus is on standby.
ついで、待機期間T4が終了したら、制御装置30は、第2運転再開制御の〔S42-2〕と同様、〔S42-3〕において、第2タンクである、ヒートサイクルHS系の蓄熱タンク5に配設された水温計TS1の温度の確認を行い、その水温が予め決められた第2所定温度M2以下であれば、燃料電池装置は、前述のスタンバイ状態から、発電運転の再開に向けた起動準備制御へと移行する〔S44〕。
Next, when the standby period T4 ends, the control device 30 applies the heat cycle HS heat storage tank 5 as the second tank in [S42-3] as in [S42-2] of the second operation resumption control. confirms the provided temperature of the water temperature gauge TS 1, if the water temperature is a second predetermined temperature M2 is less than or equal to a predetermined fuel cell apparatus from the standby state described above, for the resumption of the power generation operation The process proceeds to start preparation control [S44].
しかしながら、前記の〔S42-3〕において、第2タンクに配設された水温計TS1の温度が、第2所定温度M2である47℃を超えている場合、制御装置30は、以下に説明する熱媒冷却制御〔S50からS56まで〕を実行して、蓄熱タンク5内の熱媒の温度を下げてから、起動準備制御〔S44〕へと移行する。なお、熱媒冷却制御〔S50からS56まで〕は、他の条件から独立した、サブルーチンとして実行することもできる。
However, in the above [S42-3], when the temperature of the water thermometer TS 1 which is disposed in the second tank exceeds the 47 ° C. a second predetermined temperature M2, control device 30, the following description After performing the heat medium cooling control [from S50 to S56] to lower the temperature of the heat medium in the heat storage tank 5, the process proceeds to start preparation control [S44]. Note that the heat medium cooling control [from S50 to S56] can be executed as a subroutine independent of other conditions.
熱媒冷却制御〔S50からS56まで〕は、〔S50〕において開始すると、まず、図7Cのフローチャートに示すように、〔S51〕においてヒートサイクルHS系の熱媒循環ポンプP2を作動させるとともに、〔S52〕においてラジエータ4のファンを作動させる制御を行う。
When the heat medium cooling control [from S50 to S56] starts in [S50], first, as shown in the flowchart of FIG. 7C, in [S51], the heat medium HS heat medium circulation pump P2 is operated, and [ In S52], control for operating the fan of the radiator 4 is performed.
そして、〔S53〕において、蓄熱タンク5内の熱媒の温度が充分に下がる、予め決められた第5所定時間である期間T5の間、これら熱媒循環ポンプP2とラジエータ4のファンとを作動させたまま待機した後、ラジエータ4のファンを停止〔S54〕し、熱媒循環ポンプP2を停止〔S55〕させ、熱媒冷却制御を終了する〔S56〕。
In [S53], the heat medium circulation pump P2 and the fan of the radiator 4 are operated during a period T5 which is a predetermined fifth predetermined time in which the temperature of the heat medium in the heat storage tank 5 is sufficiently lowered. After waiting, the fan of the radiator 4 is stopped [S54], the heat medium circulation pump P2 is stopped [S55], and the heat medium cooling control is ended [S56].
この熱媒冷却制御〔S50からS56まで〕により、蓄熱タンク5内の熱媒の温度を極力下げ、前述の発電運転の再開後に、凝縮水の回収量が増えるように、準備する。
This heat medium cooling control [from S50 to S56] lowers the temperature of the heat medium in the heat storage tank 5 as much as possible, and prepares so that the recovered amount of condensed water increases after restarting the power generation operation described above.
以上の制御により、第2実施形態の燃料電池装置100は、渇水アラートが発報する前に運転を停止させ、かつ水位を回復できる環境としたうえで、運転を再開することができる。すなわち、燃料電池装置100は、メンテナンスを経ることなく発電運転を再開できることで、効率よく発電運転を行うことができる。
With the above control, the fuel cell device 100 according to the second embodiment can be restarted after the operation is stopped and the water level can be recovered before the drought alert is issued. That is, the fuel cell device 100 can efficiently perform the power generation operation by resuming the power generation operation without maintenance.
なお、第1実施形態と同様、第2実施形態においても、燃料電池装置100の制御装置30および記憶装置40は、燃料電池装置100の外部に有する構成として実現することもできる。さらに、本開示に係る制御装置30における特徴的な制御工程を含む制御方法として実現したり、上記工程をコンピュータに実行させるための制御プログラムとして実現したりすることも可能である。
Note that, similarly to the first embodiment, also in the second embodiment, the control device 30 and the storage device 40 of the fuel cell device 100 can be realized as a configuration provided outside the fuel cell device 100. Further, it can be realized as a control method including a characteristic control process in the control device 30 according to the present disclosure, or can be realized as a control program for causing a computer to execute the above process.
さらに、セルスタック装置および燃料電池モジュールは、SOFCに限定されず、たとえば固体高分子形燃料電池〔Polymer Electrolyte Fuel Cell(PEFC)〕、リン酸形燃料電池〔Phosphoric Acid Fuel Cell(PAFC)〕、および、溶融炭酸塩形燃料電池〔Molten Carbonate Fuel Cell(MCFC)〕などのような燃料電池で構成してもよい。
Further, the cell stack device and the fuel cell module are not limited to SOFC, and for example, a polymer electrolyte fuel cell (Polymer Electrolyte Fuel Cell (PEFC)), a phosphoric acid fuel cell (Phosphoric Acid Fuel Cell (PAFC)), and Alternatively, a fuel cell such as a molten carbonate fuel cell (Molten Carbonate Fuel Cell (MCFC)) may be used.
さらに、本開示は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本開示の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本開示の範囲内のものである。
Furthermore, the present disclosure can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiments are merely examples in all respects, and the scope of the present disclosure is set forth in the claims, and is not limited to the text of the specification. Further, all modifications and changes belonging to the claims are within the scope of the present disclosure.
1 燃料電池モジュール
5 蓄熱タンク(第2タンク)
6 改質水タンク(第1タンク)
61 第1改質水タンク
62 第2改質水タンク
63 第1イオン交換樹脂容器
64 第2イオン交換樹脂容器
30 制御装置
40 記憶装置
100 燃料電池装置 1Fuel cell module 5 Thermal storage tank (second tank)
6 Reformed water tank (first tank)
61 FirstReformed Water Tank 62 Second Reformed Water Tank 63 First Ion Exchange Resin Container 64 Second Ion Exchange Resin Container 30 Control Device 40 Storage Device 100 Fuel Cell Device
5 蓄熱タンク(第2タンク)
6 改質水タンク(第1タンク)
61 第1改質水タンク
62 第2改質水タンク
63 第1イオン交換樹脂容器
64 第2イオン交換樹脂容器
30 制御装置
40 記憶装置
100 燃料電池装置 1
6 Reformed water tank (first tank)
61 First
V1 止水弁
G 水補給流路
R 改質水流路
P1 改質水ポンプ
TS1 水温計
WC1 電気伝導率計
WL1 水検知器(中水位センサ)
WL2 水検知器(低水位センサ) V 1 Water stop valve G Water supply flow path R Reformed water flow path P1 Reformed water pump TS 1 Water temperature gauge WC 1 Electric conductivity meter WL 1 Water detector (Medium water level sensor)
WL 2 water detector (low water level sensor)
G 水補給流路
R 改質水流路
P1 改質水ポンプ
TS1 水温計
WC1 電気伝導率計
WL1 水検知器(中水位センサ)
WL2 水検知器(低水位センサ) V 1 Water stop valve G Water supply flow path R Reformed water flow path P1 Reformed water pump TS 1 Water temperature gauge WC 1 Electric conductivity meter WL 1 Water detector (Medium water level sensor)
WL 2 water detector (low water level sensor)
Claims (14)
- 燃料電池と、
該燃料電池より排出される排ガスから回収した水を前記燃料電池へ供給するために貯留する第1タンクと、
前記第1タンク内の水面の高さを検出する水位検出装置と、
前記燃料電池および該燃料電池に付随する各補機の動作を制御する制御装置と、
前記第1タンクに外部から水を補給する水補給装置と、を備え、
前記制御装置は、
前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記各補機の動作を制御する第1制御、および、
前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記各補機の動作を制御する第2制御、のうち、
少なくとも一方の制御を行う水回収運転制御を実行し、
該水回収運転制御が開始されてから予め決められた第1所定時間経過した後、前記水位検出装置で測定された前記第1タンク内の水位が、前記第1所定水位以下である場合、前記水補給装置によって前記第1タンクに所定量の外部の水を補給する補水制御を実行する、燃料電池装置。 A fuel cell;
A first tank for storing water recovered from the exhaust gas discharged from the fuel cell to supply the fuel cell;
A water level detection device for detecting the height of the water surface in the first tank;
A control device for controlling the operation of the fuel cell and the auxiliary devices attached to the fuel cell;
A water supply device for supplying water to the first tank from the outside,
The controller is
A first control for controlling the operation of each auxiliary device so that the amount of water recovered from the exhaust gas increases when the water level in the first tank is equal to or lower than a predetermined first predetermined water level. ,and,
Of the second control for controlling the operation of each auxiliary device so that the amount of water supplied from the first tank to the fuel cell is reduced,
Execute water recovery operation control to perform at least one control,
After a predetermined first predetermined time has elapsed since the start of the water recovery operation control, when the water level in the first tank measured by the water level detection device is equal to or lower than the first predetermined water level, A fuel cell device that executes water replenishment control for replenishing a predetermined amount of external water to the first tank by a water replenishment device. - 前記水補給装置は、
前記第1タンクに外部から補給される水を流過させる水補給流路と、
該水補給流路中に位置するイオン交換樹脂と、
該イオン交換樹脂が破過したことを判定する破過判定装置と、を有し、
前記制御装置は、前記補水制御を行う前に、前記破過判定装置により、前記イオン交換樹脂が破過しているか否かを判定する破過判定制御を行い、
該破過判定制御において、前記イオン交換樹脂が破過していないと判定された場合、前記補水制御を実行する、請求項1に記載の燃料電池装置。 The water supply device is
A water replenishment passage for allowing water replenished from the outside to flow through the first tank;
An ion exchange resin located in the water supply channel;
A breakthrough determination device for determining that the ion exchange resin has broken through,
The control device performs breakthrough determination control to determine whether or not the ion exchange resin is broken by the breakthrough determination device before performing the water replenishment control,
2. The fuel cell device according to claim 1, wherein, in the breakthrough determination control, when it is determined that the ion exchange resin does not breakthrough, the water replenishment control is executed. - 前記制御装置は、前記破過判定制御において、前記イオン交換樹脂が破過していると判定された場合、燃料電池装置の発電運転を停止する制御を実行する、請求項2に記載の燃料電池装置。 3. The fuel cell according to claim 2, wherein the control device executes control for stopping a power generation operation of the fuel cell device when it is determined in the breakthrough determination control that the ion exchange resin is broken. 4. apparatus.
- 前記排ガスと熱交換される熱媒を貯留する第2タンクと、
前記第2タンク内の熱媒の温度を測定する熱媒温度測定装置と、を備え、
前記制御装置は、
予め決められた所定の第1時刻になった時、前記燃料電池装置の発電運転を再び開始させる第1運転再開制御と、
前記熱媒温度測定装置で測定された熱媒温度が予め決められた第1所定温度以下であった時、前記燃料電池装置の発電運転を再び開始させる第2運転再開制御と、を有し、
前記制御装置は、前記発電運転を停止する制御を実行した後、前記第1運転再開制御および前記第2運転再開制御のうち、いずれか一方の運転再開制御を実行する、請求項3に記載の燃料電池装置。 A second tank for storing a heat medium that exchanges heat with the exhaust gas;
A heat medium temperature measuring device for measuring the temperature of the heat medium in the second tank,
The controller is
A first operation resumption control for restarting the power generation operation of the fuel cell device when a predetermined first time is reached;
A second operation resumption control for restarting the power generation operation of the fuel cell device when the heat medium temperature measured by the heat medium temperature measuring device is equal to or lower than a first predetermined temperature determined in advance.
The said control apparatus performs the driving | operation restart control of any one among the said 1st driving | operation restart control and the said 2nd driving | running restart control after performing the control which stops the said electric power generation driving | operation. Fuel cell device. - 前記制御装置は、前記発電運転の停止から、予め決められた第2所定時間の待機後、前記第1運転再開制御および前記第2運転再開制御のうち、いずれか一方の運転再開制御を実行する、請求項4に記載の燃料電池装置。 The control device executes either one of the first operation resumption control and the second operation resumption control after waiting for a predetermined second predetermined time from the stop of the power generation operation. The fuel cell device according to claim 4.
- 前記第2タンク内の熱媒を冷却する冷却装置をさらに備え、
前記制御装置は、発電運転を停止する制御を実行した後であって、前記運転再開制御を実行後に実行される、前記燃料電池装置の発電運転をするための準備である起動準備制御を実行する前に、前記熱媒を冷却する熱媒冷却制御を実行する、請求項4または5に記載の燃料電池装置。 A cooling device for cooling the heat medium in the second tank;
The control device executes a start preparation control that is a preparation for performing a power generation operation of the fuel cell device, which is executed after the control for stopping the power generation operation and after the operation resumption control is executed. The fuel cell device according to claim 4 or 5, wherein heat medium cooling control for cooling the heat medium is executed before. - 燃料電池を備える燃料電池装置を制御する制御装置であって、
燃料電池より排出される排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御と、
燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御と、
前記第1タンクに外部から水を補給する水補給装置によって前記第1タンクに所定量の外部の水を補給する補水制御と、
を実行可能であり、
前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記第1制御および前記第2制御のうち、少なくとも一方の制御を行う水回収運転制御を実行し、
該水回収運転制御が実行されて、予め決められた第1所定時間継続した後、前記第1タンク内の水位が前記第1所定水位以下である場合、前記補水制御を実行する、制御装置。 A control device for controlling a fuel cell device including a fuel cell,
A first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water recovered from the exhaust gas discharged from the fuel cell increases;
Each auxiliary device attached to the fuel cell so that the amount of water supplied to the fuel cell from the first tank that stores the water recovered from the exhaust gas discharged from the fuel cell is reduced. A second control for controlling the operation of
Replenishment control for replenishing the first tank with a predetermined amount of external water by a water replenishing device for replenishing the first tank with water from the outside;
Is possible and
When the water level in the first tank is equal to or lower than a predetermined first predetermined water level, water recovery operation control is performed to perform at least one of the first control and the second control,
A control device that executes the replenishment control when the water level in the first tank is equal to or lower than the first predetermined water level after the water recovery operation control is executed and continues for a predetermined first predetermined time. - 燃料電池を備える燃料電池装置を制御する制御装置に、
燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御を行う第1水回収運転制御ステップと、
前記第1タンク内の水位が予め決められた第1所定水位以下となった場合に、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御を行う第2水回収運転制御ステップと、
前記第1水回収運転制御ステップおよび前記第2水回収運転制御ステップのうち、少なくとも一方のステップが予め決められた第1所定時間継続した後、前記第1タンク内の水位が前記第1所定水位以下である場合、前記第1タンクに外部から水を補給する水補給装置によって、前記第1タンクに所定量の外部の水を補給する補水制御ステップと、
を実行させる、制御プログラム。 In a control device for controlling a fuel cell device including a fuel cell,
When the water level stored in the first tank for storing the water recovered from the exhaust gas discharged from the fuel cell is equal to or lower than a predetermined first predetermined water level, the water is recovered from the exhaust gas. A first water recovery operation control step for performing a first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water increases;
Each of the fuel cells is associated with the fuel cell so that the amount of water supplied from the first tank to the fuel cell is reduced when the water level in the first tank is equal to or lower than a predetermined first predetermined water level. A second water recovery operation control step for performing a second control for controlling the operation of the auxiliary machine;
After at least one of the first water recovery operation control step and the second water recovery operation control step continues for a predetermined first predetermined time, the water level in the first tank is changed to the first predetermined water level. A water replenishment control step of replenishing the first tank with a predetermined amount of external water by a water replenishing device that replenishes the first tank with water from the outside,
A control program that executes - 燃料電池と、
該燃料電池より排出される排ガスから回収した水を前記燃料電池へ供給するために貯留する第1タンクと、
前記第1タンク内の水面の高さを検出する水位検出装置と、
前記燃料電池および該燃料電池に付随する各補機の動作を制御する制御装置と、
を備え、
前記制御装置は、
前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記各補機の動作を制御する第1制御、および、
前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記各補機の動作を制御する第2制御、のうち、
少なくとも一方の制御を行う水回収運転制御を実行し、
該水回収運転制御が開始されてから予め決められた第3所定時間経過した後、前記水位検出装置で測定された前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する制御を実行する、燃料電池装置。 A fuel cell;
A first tank for storing water recovered from the exhaust gas discharged from the fuel cell to supply the fuel cell;
A water level detection device for detecting the height of the water surface in the first tank;
A control device for controlling the operation of the fuel cell and the auxiliary devices attached to the fuel cell;
With
The controller is
A first control for controlling the operation of each auxiliary device so that the amount of water recovered from the exhaust gas increases when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. ,and,
Of the second control for controlling the operation of each auxiliary device so that the amount of water supplied from the first tank to the fuel cell is reduced,
Execute water recovery operation control to perform at least one control,
When a predetermined third predetermined time has elapsed since the start of the water recovery operation control and the water level in the first tank measured by the water level detection device is equal to or lower than the second predetermined water level, a fuel cell A fuel cell device that executes control to stop the power generation operation of the device. - 前記排ガスと熱交換される熱媒を貯留する第2タンクと、
前記第2タンク内の熱媒の温度を測定する熱媒温度測定装置と、を備え、
前記制御装置は、
予め決められた所定の第2時刻になった時、前記燃料電池装置の発電運転を再び開始させる第1運転再開制御と、
前記熱媒温度測定装置で測定された熱媒温度が予め決められた第2所定温度以下であった時、前記燃料電池装置の発電運転を再び開始させる第2運転再開制御と、を有し、
前記制御装置は、前記発電運転を停止する制御を実行した後、前記第1運転再開制御および前記第2運転再開制御のうち、いずれか一方の運転再開制御を実行する、請求項9に記載の燃料電池装置。 A second tank for storing a heat medium that exchanges heat with the exhaust gas;
A heat medium temperature measuring device for measuring the temperature of the heat medium in the second tank,
The controller is
A first operation resumption control for restarting the power generation operation of the fuel cell device when a predetermined second time is reached;
A second operation resumption control for restarting the power generation operation of the fuel cell device when the heat medium temperature measured by the heat medium temperature measuring device is equal to or lower than a predetermined second predetermined temperature;
10. The control device according to claim 9, wherein the control device executes any one of the first operation resumption control and the second operation resumption control after executing the control for stopping the power generation operation. Fuel cell device. - 前記制御装置は、前記発電運転の停止から、予め決められた第4所定時間の待機後、前記第1運転再開制御および前記第2運転再開制御のうち、いずれか一方の運転再開制御を実行する、請求項10に記載の燃料電池装置。 The control device executes either one of the first operation resumption control and the second operation resumption control after waiting for a predetermined fourth predetermined time after the power generation operation is stopped. The fuel cell device according to claim 10.
- 前記第2タンク内の熱媒を冷却する冷却装置をさらに備え、
前記制御装置は、発電運転を停止する制御を実行した後であって、前記運転再開制御を実行後に実行される、前記燃料電池装置の発電運転をするための準備である起動準備制御を実行する前に、前記熱媒を冷却する熱媒冷却制御を実行する、請求項10または11に記載の燃料電池装置。 A cooling device for cooling the heat medium in the second tank;
The control device executes a start preparation control that is a preparation for performing a power generation operation of the fuel cell device, which is executed after the control for stopping the power generation operation and after the operation resumption control is executed. The fuel cell device according to claim 10 or 11, wherein heat medium cooling control for cooling the heat medium is executed before. - 燃料電池を備える燃料電池装置を制御する制御装置であって、
燃料電池より排出される排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御と、
燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御と、
を実行可能であり、
前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記第1制御および前記第2制御のうち、少なくとも一方の制御を行う水回収運転制御を実行し、
該水回収運転制御が実行されて、予め決められた第3所定時間継続した後、前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する制御を実行する、制御装置。 A control device for controlling a fuel cell device including a fuel cell,
A first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water recovered from the exhaust gas discharged from the fuel cell increases;
Each auxiliary device attached to the fuel cell so that the amount of water supplied to the fuel cell from the first tank that stores the water recovered from the exhaust gas discharged from the fuel cell is reduced. A second control for controlling the operation of
Is possible and
When the water level in the first tank is equal to or lower than a predetermined second predetermined water level, water recovery operation control is performed to perform at least one of the first control and the second control,
Control that stops the power generation operation of the fuel cell device when the water level in the first tank is equal to or lower than the second predetermined water level after the water recovery operation control is executed and continued for a predetermined third predetermined time. To execute the control device. - 燃料電池を備える燃料電池装置を制御する制御装置に、
燃料電池より排出される排ガスから回収した水を該燃料電池へ供給するために貯留する第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記排ガスから回収される水の量が増加するように、前記燃料電池に付随する各補機の動作を制御する第1制御を行う第1水回収運転制御ステップと、
前記第1タンク内の水位が予め決められた第2所定水位以下となった場合に、前記第1タンクから前記燃料電池へ供給する水の量が減少するように、前記燃料電池に付随する各補機の動作を制御する第2制御を行う第2水回収運転制御ステップと、
前記第1水回収運転制御ステップおよび前記第2水回収運転制御ステップのうち、少なくとも一方のステップが予め決められた第3所定時間継続した後、前記第1タンク内の水位が前記第2所定水位以下である場合、燃料電池装置の発電運転を停止する発電運転停止ステップと、
を実行させる、制御プログラム。 In a control device for controlling a fuel cell device including a fuel cell,
When the water level in the first tank for storing the water recovered from the exhaust gas discharged from the fuel cell is less than or equal to a predetermined second predetermined water level, the water is recovered from the exhaust gas. A first water recovery operation control step for performing a first control for controlling the operation of each auxiliary device associated with the fuel cell so that the amount of water increases;
Each of the fuel cells is associated with the fuel cell so that the amount of water supplied from the first tank to the fuel cell is reduced when the water level in the first tank is equal to or lower than a predetermined second predetermined water level. A second water recovery operation control step for performing a second control for controlling the operation of the auxiliary machine;
After at least one of the first water recovery operation control step and the second water recovery operation control step continues for a predetermined third predetermined time, the water level in the first tank is set to the second predetermined water level. A power generation operation stop step for stopping the power generation operation of the fuel cell device,
A control program that executes
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020509870A JP7101758B2 (en) | 2018-03-30 | 2019-03-13 | Fuel cell device, control device and control program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-068880 | 2018-03-30 | ||
JP2018068880 | 2018-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188294A1 true WO2019188294A1 (en) | 2019-10-03 |
Family
ID=68061469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010279 WO2019188294A1 (en) | 2018-03-30 | 2019-03-13 | Fuel cell device, control device, and control program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7101758B2 (en) |
WO (1) | WO2019188294A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021064507A (en) * | 2019-10-11 | 2021-04-22 | 京セラ株式会社 | Fuel cell device, control unit, and control program |
JP2021089810A (en) * | 2019-12-02 | 2021-06-10 | 日産自動車株式会社 | Fuel cell system control method and fuel cell system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005122959A (en) * | 2003-10-15 | 2005-05-12 | Matsushita Electric Ind Co Ltd | Fuel cell power generation system |
JP2009252594A (en) * | 2008-04-08 | 2009-10-29 | Ebara Ballard Corp | Fuel cell system |
JP2011034701A (en) * | 2009-07-30 | 2011-02-17 | Aisin Seiki Co Ltd | Fuel cell system |
JP2012004085A (en) * | 2010-06-21 | 2012-01-05 | Ngk Spark Plug Co Ltd | Fuel cell system and control method thereof |
JP2014207060A (en) * | 2013-04-10 | 2014-10-30 | 本田技研工業株式会社 | Ion exchange device for fuel cell system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4988260B2 (en) * | 2006-07-06 | 2012-08-01 | パナソニック株式会社 | Fuel cell system |
JP2010238485A (en) | 2009-03-31 | 2010-10-21 | Fuji Electric Holdings Co Ltd | FUEL CELL POWER GENERATOR AND METHOD OF OPERATING FUEL CELL POWER GENERATOR |
JP5371554B2 (en) | 2009-06-01 | 2013-12-18 | 大阪瓦斯株式会社 | Solid oxide fuel cell system |
-
2019
- 2019-03-13 WO PCT/JP2019/010279 patent/WO2019188294A1/en active Application Filing
- 2019-03-13 JP JP2020509870A patent/JP7101758B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005122959A (en) * | 2003-10-15 | 2005-05-12 | Matsushita Electric Ind Co Ltd | Fuel cell power generation system |
JP2009252594A (en) * | 2008-04-08 | 2009-10-29 | Ebara Ballard Corp | Fuel cell system |
JP2011034701A (en) * | 2009-07-30 | 2011-02-17 | Aisin Seiki Co Ltd | Fuel cell system |
JP2012004085A (en) * | 2010-06-21 | 2012-01-05 | Ngk Spark Plug Co Ltd | Fuel cell system and control method thereof |
JP2014207060A (en) * | 2013-04-10 | 2014-10-30 | 本田技研工業株式会社 | Ion exchange device for fuel cell system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021064507A (en) * | 2019-10-11 | 2021-04-22 | 京セラ株式会社 | Fuel cell device, control unit, and control program |
JP7284062B2 (en) | 2019-10-11 | 2023-05-30 | 京セラ株式会社 | Fuel cell device, controller and control program |
JP2021089810A (en) * | 2019-12-02 | 2021-06-10 | 日産自動車株式会社 | Fuel cell system control method and fuel cell system |
JP7445416B2 (en) | 2019-12-02 | 2024-03-07 | 日産自動車株式会社 | Control method for fuel cell system and fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019188294A1 (en) | 2021-03-18 |
JP7101758B2 (en) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5371554B2 (en) | Solid oxide fuel cell system | |
JP5292801B2 (en) | Fuel cell system | |
JP5142604B2 (en) | Fuel cell device | |
WO2019188294A1 (en) | Fuel cell device, control device, and control program | |
EP2639872B1 (en) | Fuel cell system | |
JP5063189B2 (en) | Fuel cell device | |
JP5361125B2 (en) | Fuel cell device | |
JP2015103409A (en) | Fuel cell system | |
JP6960306B2 (en) | Fuel cell device, control device and control program | |
JP2008300058A (en) | Fuel cell device | |
JP5153178B2 (en) | Fuel cell device | |
JP4988260B2 (en) | Fuel cell system | |
JP6981867B2 (en) | Fuel cell device | |
JP5667252B2 (en) | Solid oxide fuel cell system | |
JP4959322B2 (en) | Liquid supply device and operation method thereof, fuel cell device and operation method thereof | |
JP5178042B2 (en) | Fuel cell device | |
JP2008041395A (en) | Fuel cell system | |
JP5618525B2 (en) | Fuel cell device | |
JP6454874B2 (en) | Fuel cell system and operation method thereof | |
JP7007468B2 (en) | Fuel cell device, control device and control program | |
JP5025929B2 (en) | Fuel cell power generation system | |
JP2003045471A (en) | Fuel cell power generator | |
JP5178041B2 (en) | Fuel cell device | |
JP2006032153A (en) | Fuel cell cogeneration system | |
JP2015084280A (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19778123 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020509870 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19778123 Country of ref document: EP Kind code of ref document: A1 |