WO2019188078A1 - Vibration element - Google Patents
Vibration element Download PDFInfo
- Publication number
- WO2019188078A1 WO2019188078A1 PCT/JP2019/008988 JP2019008988W WO2019188078A1 WO 2019188078 A1 WO2019188078 A1 WO 2019188078A1 JP 2019008988 W JP2019008988 W JP 2019008988W WO 2019188078 A1 WO2019188078 A1 WO 2019188078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main surface
- electrode
- arm portion
- support arm
- extraction electrode
- Prior art date
Links
- 230000005284 excitation Effects 0.000 claims abstract description 48
- 238000000605 extraction Methods 0.000 claims description 137
- 239000013078 crystal Substances 0.000 description 126
- 238000005452 bending Methods 0.000 description 14
- 239000010453 quartz Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 238000007789 sealing Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 238000005304 joining Methods 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002115 bismuth titanate Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PSHMSSXLYVAENJ-UHFFFAOYSA-N dilithium;[oxido(oxoboranyloxy)boranyl]oxy-oxoboranyloxyborinate Chemical compound [Li+].[Li+].O=BOB([O-])OB([O-])OB=O PSHMSSXLYVAENJ-UHFFFAOYSA-N 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012765 fibrous filler Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/19—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/21—Crystal tuning forks
- H03H9/215—Crystal tuning forks consisting of quartz
Definitions
- the present invention relates to a vibration element.
- vibrators are widely used as electronic devices such as timing devices and vibration gyro sensors. Along with the downsizing and high performance of electronic equipment, the vibrator is also required to be downsized and high performance.
- Patent Document 1 includes a base, a vibrating arm extending from the base, a connecting portion connected to the base, and a holding arm connected to the connecting portion.
- a vibration comprising: an excitation electrode provided on the pair of vibrating arms; a connection electrode provided on the holding part; and an extraction electrode provided on the coupling part for electrically connecting the excitation electrode and the connection electrode.
- JP 2016-149673 A Japanese Patent Laying-Open No. 2015-8352
- Patent Document 2 discloses a vibration element in which a first extraction electrode is provided on a first side surface of a support arm portion, and a second extraction electrode is provided on a second side surface of the support arm portion.
- the vibration element in the holding portion of the support arm portion, the distance between the first main surface and the second main surface is substantially equal to the distance between the first side surface and the second side surface.
- the vibration element in the connection portion narrower than the holding portion, the distance between the first side surface and the second side surface is smaller than the distance between the first main surface and the second main surface. Conceivable. Therefore, the configuration of the vibration element has a problem that the stray capacitance generated between the extraction electrodes cannot be reduced as compared with the configuration in which the extraction electrode is provided on the main surface of the support arm portion.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a vibration element capable of reducing stray capacitance.
- a resonator element includes a base, a first vibrating arm and a second vibrating arm that extend from the base, and a first main surface and a second main surface that extend from the base and face each other.
- a supporting arm portion having a first side surface and a second side surface that connect the first main surface and the second main surface and face each other, and a first excitation provided on the first vibrating arm portion and the second vibrating arm portion.
- a first lead that electrically connects the electrode and the second excitation electrode, the first connection electrode and the second connection electrode provided on the first main surface of the support arm, and the first excitation electrode and the first connection electrode;
- An electrode, and a second extraction electrode that electrically connects the second excitation electrode and the second connection electrode.
- the first extraction electrode is provided on the first side surface of the support arm
- the second extraction electrode is The first extraction electrode and the second extraction are provided on the first main surface, the second main surface, or the second side surface of the support arm portion, and at least part of the support arm portion.
- the distance between the poles is greater than the distance between the first major surface and a second major surface.
- FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator according to the first embodiment.
- FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG.
- FIG. 3 is a plan view schematically showing the configuration of the first main surface side of the tuning-fork type crystal resonator element according to the first embodiment.
- FIG. 4 is a plan view schematically showing the configuration of the second main surface side of the tuning fork type crystal resonator element according to the first embodiment.
- FIG. 5 is a cross-sectional view schematically showing a cross-sectional configuration along line VV of the tuning-fork type crystal vibrating element shown in FIG.
- FIG. 6 is a cross-sectional view schematically showing a cross-sectional configuration of the holding portion of the support arm portion according to the first embodiment.
- FIG. 7 is a cross-sectional view schematically showing a cross-sectional configuration of the connecting portion of the support arm portion according to the first embodiment.
- FIG. 8 is a plan view schematically showing the configuration of the support arm portion of the tuning-fork type crystal resonator element according to the second embodiment.
- FIG. 9 is a cross-sectional view schematically showing a cross-sectional configuration of the holding portion of the support arm portion according to the second embodiment.
- FIG. 10 is a cross-sectional view schematically showing a cross-sectional configuration of the connecting portion of the support arm portion according to the second embodiment.
- FIG. 11 is a plan view schematically showing the configuration of the support arm portion of the tuning-fork type crystal resonator element according to the third embodiment.
- FIG. 12 is a plan view schematically showing the configuration of the support arm portion of the tuning-fork type crystal resonator element according to the fourth embodiment.
- Each drawing includes a first direction D1, a second direction D2, and a third direction D3 for the sake of convenience in order to clarify the relationship between the drawings and to help understand the positional relationship between the members.
- An orthogonal coordinate system may be attached.
- the first direction D1, the second direction D2, and the third direction D3 mean the three reference directions shown in FIG. 1, and are the positive direction (the direction of the arrow) and the negative direction (the direction opposite to the arrow), respectively. ).
- the first direction D1, the second direction D2, and the third direction D3 shown in the drawing are, for example, directions that are orthogonal to each other, but are not limited to these as long as they intersect each other.
- the directions may intersect each other at an angle other than 90 °.
- a piezoelectric vibrator Pielectric Resonator Unit
- a crystal vibrator Quadrature Crystal Resonator Unit
- a quartz crystal resonator element Quadrature Crystal Resonator
- the quartz resonator element uses a quartz piece (Quartz Crystal Element) formed of quartz as a piezoelectric body that vibrates according to an applied voltage.
- a crystal resonator corresponds to an example of a resonator
- a crystal resonator element corresponds to an example of a resonator element
- a crystal piece corresponds to an example of a vibration substrate.
- the vibration substrate according to the embodiment of the present invention is not limited to a crystal piece.
- the vibration substrate may be a piezoelectric piece formed of an arbitrary piezoelectric material such as a piezoelectric single crystal, a piezoelectric ceramic, a piezoelectric thin film, or a piezoelectric polymer film.
- the piezoelectric single crystal can include lithium niobate (LiNbO 3 ).
- piezoelectric ceramics include barium titanate (BaTiO 3 ), lead titanate (PbTiO 3 ), lead zirconate titanate (Pb (Zr x Ti 1-x ) O 3; PZT), aluminum nitride (AlN), niobium.
- Lithium oxide (LiNbO 3 ), lithium metaniobate (LiNb 2 O 6 ), bismuth titanate (Bi 4 Ti 3 O 12 ) lithium tantalate (LiTaO 3 ), lithium tetraborate (Li 2 B 4 O 7 ), langa Site (La 3 Ga 5 SiO 14 ), tantalum pentoxide (Ta 2 O 5 ), and the like can be given.
- the piezoelectric thin film include a film obtained by forming the above piezoelectric ceramic on a substrate such as quartz or sapphire by a sputtering method or the like.
- the piezoelectric polymer film examples include polylactic acid (PLA), polyvinylidene fluoride (PVDF), vinylidene fluoride / ethylene trifluoride (VDF / TrFE) copolymer, and the like.
- PVA polylactic acid
- PVDF polyvinylidene fluoride
- VDF / TrFE vinylidene fluoride / ethylene trifluoride
- the various piezoelectric materials described above may be used by being stacked on each other, or may be stacked on other members.
- the vibration element according to the embodiment of the present invention is not limited to the piezoelectric vibration element.
- the vibration substrate may be formed of an insulating material having no piezoelectricity or an insulating material having low piezoelectricity, or may be formed of a semiconductor material, a conductive material, or the like.
- FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator according to the first embodiment.
- FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG.
- FIG. 3 is a plan view schematically showing the configuration of the first main surface side of the tuning-fork type crystal resonator element according to the first embodiment.
- FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator according to the first embodiment.
- FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG.
- FIG. 3 is a plan view schematically showing the configuration of the first main surface side of the tuning-fork type crystal resonator element according to the first embodiment.
- FIG. 1 is an exploded perspective view schematically showing a
- FIG. 4 is a plan view schematically showing the configuration of the second main surface side of the tuning fork type crystal resonator element according to the first embodiment.
- FIG. 5 is a cross-sectional view schematically showing a cross-sectional configuration along line VV of the tuning-fork type crystal vibrating element shown in FIG. 1 and 2, some or all of the electrode groups such as the excitation electrode, the connection electrode, and the extraction electrode provided in the tuning fork type crystal resonator element 10 are omitted. 3 and 4, some or all of the extraction electrodes provided on the side surfaces of the base portion and the vibrating arm portion are omitted.
- the tuning fork type crystal resonator 1 is a kind of piezoelectric resonator and corresponds to an example of a resonator.
- the tuning fork crystal resonator 1 includes a tuning fork crystal resonator element 10, a lid member 20, a base member 30, and a bonding member 40.
- the tuning fork type crystal vibrating element 10 is a kind of vibrating element and corresponds to a piezoelectric driving type vibrating element.
- the base member 30 and the lid member 20 are holders for housing the tuning fork type crystal resonator element 10.
- the lid member 20 has a concave shape, specifically, a box shape having an opening
- the base member 30 has a flat plate shape.
- the shapes of the lid member 20 and the base member 30 are not limited to the above.
- the base member may have a concave shape, and both the lid member and the base member have a concave shape having openings on the sides facing each other. It may be.
- the tuning fork type crystal resonator element 10 includes a crystal piece 11, a first excitation electrode 82a, a second excitation electrode 82b, a first extraction electrode 84a, a second extraction electrode 84b, a first connection electrode 86a, and a second connection electrode 86b. ing.
- the crystal piece 11 is referred to as a plane parallel to a plane specified by the X axis and the Y ′ axis (hereinafter referred to as “XY ′ plane”) in an orthogonal coordinate system including the X axis, the Y ′ axis, and the Z ′ axis.
- the crystal piece 11 is obtained by cutting and polishing a crystal of an artificial crystal (Synthetic Quartz Crystal) to form a crystal substrate, and processing the crystal substrate into a tuning fork type.
- the crystal piece 11 is a kind of vibration substrate and corresponds to an example of a piezoelectric piece excited by a piezoelectric effect.
- the Y ′ axis is an axis obtained by rotating the Y axis so that the + Y side is tilted to the + side of the Z axis when the X axis is the rotation axis.
- the Z ′ axis is an axis obtained by rotating the Z axis so that the + Z side is inclined toward the ⁇ side of the Y axis.
- the X axis, the Y axis, and the Z axis are crystal axes of quartz, respectively.
- the X axis corresponds to an electric axis (polarity axis)
- the Y axis corresponds to a mechanical axis
- the Z axis corresponds to an optical axis.
- the embodiment of the present invention includes a configuration in which the Y ′ axis and the Z ′ axis become the Y axis and the Z axis, respectively.
- the tuning fork type crystal resonator element 10 has the Y ′ axis parallel to the first direction D1, the X axis parallel to the second direction D2, and the Z ′ axis parallel to the third direction D3.
- directions parallel to the X axis, the Y ′ axis, and the Z ′ axis are referred to as an X axis direction, a Y ′ axis direction, and a Z ′ axis direction, respectively.
- the + X-axis direction is the positive direction of the second direction D2
- the ⁇ X-axis direction is the negative direction of the second direction D2.
- the + Y′-axis direction is the positive direction of the first direction D1
- the ⁇ Y′-axis direction is the negative direction of the first direction D1.
- the + Z′-axis direction is the positive direction of the third direction D3
- the ⁇ Z′-axis direction is the negative direction of the third direction D3.
- the crystal piece 11 has a base 50, a first vibrating arm 60a, a second vibrating arm 60b, and a support arm 70.
- the crystal piece 11 has a first main surface 12A and a second main surface 12B that face each other.
- the first main surface 12A is located on the base member 30 side
- the second main surface 12B is located on the lid member 20 side.
- the base 50 is provided in a substantially flat plate shape at the end of the crystal piece 11 on the ⁇ Y′-axis direction (first direction D1 negative direction) side.
- the base 50 connects the first vibrating arm 60 a, the second vibrating arm 60 b, and the support arm 70.
- the length along the Y′-axis direction of the base 50 is, for example, 50 ⁇ m or more and 300 ⁇ m or less.
- the first vibrating arm portion 60a and the second vibrating arm portion 60b extend in parallel to each other in the + Y′-axis direction (first direction D1 positive direction) from the base portion 50.
- the first vibrating arm portion 60a and the second vibrating arm portion 60b constituting the pair of vibrating arm portions are arranged in the X-axis direction.
- the first vibrating arm portion 60a is provided on the + X axis direction (second direction D2 positive direction) side of the second vibrating arm portion 60b. As shown in FIGS.
- the first vibrating arm portion 60a has an arm portion 62a and a weight portion 64a
- the second vibrating arm portion 60b has an arm portion 62b and a weight portion 64b.
- the arm part 62 a and the arm part 62 b are connected to the base part 50.
- the weight part 64a and the weight part 64b are connected to the ends of the arm part 62a and the arm part 62b opposite to the ends connected to the base part 50, respectively. That is, when the first main surface 12A of the crystal piece 11 is viewed in plan, the outer shape of the crystal piece 11 is substantially U-shaped by the base 50 and the pair of first vibrating arm portions 60a and the second vibrating arm portions 60b. Is provided.
- the arm portion 62a of the first vibrating arm portion 60a has a bottomed groove portion 63a that opens to the first main surface 12A side and the second main surface 12B side.
- the arm portion 62b of the second vibrating arm portion 60b is formed with a bottomed groove portion 63b that opens to the first main surface 12A side and the second main surface 12B side.
- the groove 63a and the groove 63b extend along the Y′-axis direction (first direction D1). As shown in FIGS. 3 and 4, the tip of the groove 63a (the end opposite to the base 50 side) is located at the boundary between the arm 62a and the weight 64a, and the base end (base 50 side) of the groove 63a.
- the arm part 62a and the arm part 62b have a substantially H-shaped cross-sectional shape.
- the equivalent series resistance and CI (Crystal Impedance) value of the tuning fork type crystal resonator element 10 can be reduced, and the power consumption can be reduced.
- the length of the groove part 63a and the groove part 63b is not specifically limited, Each may be formed also in the weight part 64a and the weight part 64b, and may be formed also in the base part 50, respectively.
- the weight portion 64a of the first vibrating arm portion 60a has a substantially flat plate shape. As shown in FIGS. 3 and 4, the width W1 along the X-axis direction (second direction D2) of the weight portion 64a is larger than the width W2 along the X-axis direction (second direction D2) of the arm portion 62a. large.
- the ratio of the width W1 to the width W2 (W1 / W2) is preferably 2 or more and 10 or less, and more preferably 5 or more and 7 or less. The same applies to the weight portion 64b of the second vibrating arm portion 60b.
- the tuning fork type crystal resonator element 10 can reduce the thermoelastic loss due to the loss of vibration energy caused by the heat conduction generated between the compression portion and the extension portion of the crystal resonator element that flexes and vibrates. Vibration leakage caused by twisting of the portion 64a and the weight portion 64b can be suppressed.
- the shape of the weight portion is not limited to the above as long as the mass per unit length is larger than that of the arm portion.
- the weight part may have a width that is the same as the width of the arm part and may be thicker than the arm part.
- the weight portion may be configured by forming a surface of a vibrating arm corresponding to the weight portion or a concave portion and providing a metal such as gold there.
- the weight portion may be made of a material having a mass density higher than that of the arm portion.
- the support arm portion 70 extends in the + Y′-axis direction (first direction D1 positive direction) from the base portion 50, and is provided between the first vibrating arm portion 60a and the second vibrating arm portion 60b.
- the support arm portion 70, the first vibrating arm portion 60a, and the second vibrating arm portion 60b are aligned with each other along the X-axis direction.
- the length of the support arm 70 along the Y′-axis direction is smaller than the length of the first vibrating arm 60 a and the second vibrating arm 60 b along the Y′-axis.
- the distal end of the support arm portion 70 is located closer to the base portion 50 than the weight portion 64a and the weight portion 64b. According to this, in the tuning fork type crystal resonator element 10, it is possible to suppress deterioration of vibration characteristics due to the weight portion 64 a and the weight portion 64 b coming into contact with the support arm portion 70.
- the support arm portion 70 includes a holding portion 74 and a connecting portion 72 that connects the base portion 50 and the holding portion 74.
- the connecting portion 72 and the holding portion 74 are arranged in the Y′-axis direction (first direction D1). That is, the support arm portion 70 has the holding portion 74 at the distal end portion and the connecting portion 72 at the proximal end portion.
- the support arm portion 70 has a main surface 70A and a main surface 70B that face each other in the Z′-axis direction (third direction D3).
- the support arm portion 70 has a side surface 70C and a side surface 70D that connect the main surface 70A and the main surface 70B and face each other in the X-axis direction (second direction D2).
- the main surface 70A corresponds to a part of the first main surface 12A of the crystal piece 11
- the main surface 70B corresponds to a part of the second main surface 12B of the crystal piece 11.
- 70 A of main surfaces and 70 B of main surfaces are provided over the connection part 72 and the holding
- the side surface 70C is located on the first vibrating arm portion 60a side, and the side surface 70D is located on the second vibrating arm portion 60b side.
- the holding portion 74 includes a side surface 74C that connects the main surface 70A and the main surface 70B on the first vibrating arm portion 60a side, and a side surface 74D that connects the main surface 70A and the main surface 70B on the second vibrating arm portion 60b side.
- the connecting portion 72 includes a side surface 72C that connects the main surface 70A and the main surface 70B on the first vibrating arm portion 60a side, and a side surface 72D that connects the main surface 70A and the main surface 70B on the second vibrating arm portion 60b side.
- the side surface 74 ⁇ / b> C of the holding portion 74 is a part of the side surface 70 ⁇ / b> C of the support arm portion 70
- the side surface 72 ⁇ / b> C of the connecting portion 72 is a part of the side surface 70 ⁇ / b> C of the support arm portion 70
- the side surface 74D of the holding portion 74 is a part of the side surface 70D of the support arm portion 70
- the side surface 72D of the connecting portion 72 is a part of the side surface 70D of the support arm portion 70.
- the first excitation electrode 82a and the second excitation electrode 82b form an electric field in the first vibration arm portion 60a and the second vibration arm portion 60b by the supplied applied voltage, and the first vibration arm portion 60a and the second vibration electrode portion 60b by the piezoelectric effect.
- the two vibrating arms 60b are excited.
- 1st excitation electrode 82a and 2nd excitation electrode 82b are provided in the 1st vibration arm part 60a and the 2nd vibration arm part 60b, as shown in FIG.3 and FIG.4.
- the first excitation electrode 82a is provided on the surface of the arm portion 62a inside the groove portion 63a.
- the second excitation electrode 82b is provided on the outer side surface of the arm portion 62a so as to face the first excitation electrode 82a in the X-axis direction (second direction D2).
- the second excitation electrode 82b is provided on the surface of the arm portion 62b inside the groove portion 63b, and the first excitation electrode 82a is provided on the outer side surface of the arm portion 62b. . Further, as shown in FIGS. 3 and 4, the second excitation electrode 82b is provided on the first main surface 12A and the second main surface 12B of the weight portion 64a of the first vibrating arm portion 60a. A first excitation electrode 82a is provided on the first main surface 12A and the second main surface 12B of the weight portion 64b of the second vibrating arm portion 60b.
- the first extraction electrode 84a electrically connects the first excitation electrode 82a provided on the first vibrating arm 60a and the first excitation electrode 82a provided on the second vibrating arm 60b. Further, the first extraction electrode 84a electrically connects the first excitation electrode 82a and the first connection electrode 86a.
- the second extraction electrode 84b electrically connects the second excitation electrode 82b provided on the first vibrating arm 60a and the second excitation electrode 82b provided on the second vibrating arm 60b. Further, the second extraction electrode 84b electrically connects the second excitation electrode 82b and the second connection electrode 86b.
- the first extraction electrode 84 a and the second extraction electrode 84 b are provided on the base 50 and the support arm 70.
- the first extraction electrode 84a and the second extraction electrode 84b are provided on both the first main surface 12A and the second main surface 12B.
- the first extraction electrode 84a and the second extraction electrode 84b are also provided on the side surface connecting the first main surface 12A and the second main surface 12B of the base 50. It has been. That is, the first extraction electrode 84a includes a portion provided on the first main surface 12A of the base 50, a portion provided on the second main surface 12B of the base 50, and a portion provided on the side surface of the base 50. Are electrically connected.
- the second extraction electrode 84b includes a portion provided on the first main surface 12A of the base portion 50 and a portion provided on the second main surface 12B of the base portion 50 by a portion provided on the side surface of the base portion 50. , Are electrically connected.
- the first extraction electrode 84a is provided on the side surface 70C
- the second extraction electrode 84b is provided on the side surface 70D.
- the first extraction electrode 84a extends, for example, from the first main surface 12A of the base portion 50 to the side surface 70C of the support arm portion 70, and is provided on the side surface 72C of the coupling portion 72 and the side surface 74C of the holding portion 74.
- the second extraction electrode 84b extends, for example, from the second main surface 12B of the base portion 50 to the side surface 70D of the support arm portion 70, and is provided on the side surface 72D of the connecting portion 72 and the side surface 74D of the holding portion 74.
- the length of the second extraction electrode 84b along the first direction D1 is larger than the length of the first extraction electrode 84a along the first direction D1.
- the first extraction electrode 84 a extends to the proximal end portion of the holding portion 74, that is, the end portion of the holding portion 74 on the base portion 50 side.
- the second extraction electrode 84b extends to the distal end portion of the holding portion 74, that is, the end portion of the holding portion 74 on the weight portions 64a and 64b side.
- the first extraction electrode 84a and the second extraction electrode 84b are not limited to the above as long as they are provided on different side surfaces of the support arm portion 70, respectively.
- the first extraction electrode 84a may be provided on the side surface 70D
- the second extraction electrode 84b may be provided on the side surface 70C.
- a pair of drive signals having different applied potentials are supplied to the first connection electrode 86a and the second connection electrode 86b from the outside.
- One drive signal is supplied from the first connection electrode 86a to the first excitation electrode 82a through the first extraction electrode 84a.
- the other drive signal paired with the one drive signal is supplied from the second connection electrode 86b to the second excitation electrode 82b through the second extraction electrode 84b.
- the first connection electrode 86a and the second connection electrode 86b are provided on the main surface 70A (first main surface 12A) of the support arm portion 70.
- the first connection electrode 86 a and the second connection electrode 86 b are provided on the holding portion 74 of the support arm portion 70.
- the first connection electrode 86a and the second connection electrode 86b are arranged along the Y′-axis direction (first direction D1).
- the first connection electrode 86 a is located at the proximal end portion of the holding portion 74.
- the second connection electrode 86 b is located at the tip of the holding part 74.
- the width of the first connection electrode 86a along the X-axis direction (second direction D2) is substantially equal to the width of the holding portion 74 along the X-axis direction (second direction D2). Since the second connection electrode 86b is separated from the first connection electrode 86a and the first extraction electrode 84a in the first direction D1 and there is no fear of a short circuit, the second connection electrode 86b extends in the X-axis direction (second direction D2).
- the width along may be substantially equal to the width along the X-axis direction (second direction D2) of the holding portion 74.
- the first connection electrode 86a and the second connection electrode 86b have a substantially rectangular shape when the first main surface 12A is viewed in plan.
- the tuning fork type crystal resonator element 10 even if the tuning fork type crystal resonator element 10 is downsized, it is possible to suppress a reduction in the bonding area between the connection electrodes 86a and 86b of the tuning fork type crystal resonator element 10 and conductive holding members 36a and 36b described later. . In other words, it is possible to suppress a decrease in the bonding strength of the tuning fork type quartz vibrating element 10 to the base member 30 which has occurred with the downsizing of the tuning fork type quartz vibrating element 10. Further, the stability of the electrical connection between the tuning fork type crystal resonator element 10 and the base member 30 is increased.
- the first connection electrode and the second connection electrode may extend from the main surface to the side surface of the support arm portion. According to this, the bonding strength between the tuning fork type crystal resonator element and the base member is further improved, and the stability of the electrical connection between the tuning fork type crystal resonator element and the base member is further increased.
- the shape of the lid member 20 has a concave shape and is a box shape opened toward the third main surface 32A of the base member 30.
- An inner space 26 joined to the base member 30 and surrounded by the lid member 20 and the base member 30 is provided in the lid member 20.
- the tuning fork type crystal resonator element 10 is accommodated in the internal space 26.
- the shape of the lid member 20 is defined by, for example, a long side parallel to the first direction D1, a short side parallel to the second direction D2, and a height parallel to the third direction D3.
- the material of the lid member 20 is not particularly limited, but is made of a conductive material such as metal. By including the conductive material, an electromagnetic shielding function for shielding at least a part of the electromagnetic waves entering and leaving the internal space 26 of the lid member 20 is obtained.
- the lid member 20 is connected to the top surface portion 21 facing the third main surface 32A of the base member 30 and the outer edge of the top surface portion 21 and extends in a direction intersecting the main surface of the top surface portion 21. Part 22.
- the shape of the lid member 20 is not particularly limited as long as the tuning fork type crystal resonator element 10 can be accommodated. For example, it has a substantially rectangular shape when viewed from the normal direction of the main surface of the top surface portion 21.
- the lid member 20 has an inner surface 24 and an outer surface 25.
- the inner surface 24 is a surface on the inner space 26 side
- the outer surface 25 is a surface opposite to the inner surface 24.
- the lid member 20 has a facing surface 23 that faces the third main surface 32 ⁇ / b> A of the base member 30 at the concave opening end, that is, the end of the side wall 22 near the base member 30.
- the facing surface 23 extends in a frame shape so as to surround the periphery of the tuning fork type crystal resonator element 10.
- the base member 30 holds the tuning-fork type crystal resonator element 10 so that it can be excited.
- the base member 30 has a flat plate shape.
- the base member 30 has a long side parallel to the first direction D1, a short side parallel to the second direction D2, and a thickness parallel to the third direction D3.
- the base member 30 has a base 31.
- the base 31 has a third main surface 32A (front surface) and a fourth main surface 32B (back surface) that face each other.
- the base 31 is a sintered material such as an insulating ceramic.
- the base member 30 uses alumina as the base 31.
- the base 31 is preferably made of a heat resistant material. From the viewpoint of suppressing the stress applied to the tuning fork type crystal resonator element 10 by the thermal history, the base 31 may be provided by a material having a thermal expansion coefficient close to that of the crystal piece 11, and may be provided by, for example, crystal.
- the base member 30 includes a first electrode pad 33a and a second electrode pad 33b provided on the third main surface 32A, and a first external electrode 35a and a second external electrode 35b provided on the fourth main surface 32B.
- the first electrode pad 33 a and the second electrode pad 33 b are terminals for electrically connecting the base member 30 and the tuning fork type crystal vibrating element 10.
- the first external electrode 35 a and the second external electrode 35 b are terminals for electrically connecting a circuit board (not shown) and the tuning fork type crystal resonator 1.
- the first electrode pad 33a and the second electrode pad 33b are arranged along the first direction D1.
- the first external electrode 35a and the second external electrode 35b are arranged along the first direction D1.
- the first electrode pad 33a is electrically connected to the first external electrode 35a via the first via electrode 34a extending in the third direction D3, and extends along the first direction D1.
- the second electrode pad 33b is electrically connected to the second external electrode 35b via the second via electrode 34b extending in the third direction D3, and extends along the first direction D1.
- the first via electrode 34a and the second via electrode 34b are formed in a via hole that penetrates the base 31 in the third direction D3.
- the fourth main surface 32B side of the base member 30 is a dummy electrode as an external electrode through which an electric signal or the like is not input / output, and grounding that improves the electromagnetic shielding function of the lid member 20 by supplying a ground potential to the lid member 20.
- An electrode or the like may be provided.
- the first conductive holding member 36a and the second conductive holding member 36b will be described.
- the first conductive holding member 36 a and the second conductive holding member 36 b are provided between the third main surface 32 A of the base member 30 and the main surface 70 A of the support arm portion 70.
- the first conductive holding member 36a electrically connects the first connection electrode 86a and the first electrode pad 33a.
- the second conductive holding member 36b electrically connects the second connection electrode 86b and the second electrode pad 33b.
- the first conductive holding member 36a and the second conductive holding member 36b are tuned fork-type spaced apart from the base member 30 so that the first vibrating arm portion 60a and the second vibrating arm portion 60b can be excited.
- the crystal resonator element 10 is held.
- the first conductive holding member 36a and the second conductive holding member 36b are made of, for example, a conductive adhesive containing a thermosetting resin or an ultraviolet curable resin mainly composed of an epoxy resin or a silicone resin, Additives such as conductive particles for imparting conductivity to the adhesive are included.
- the first conductive holding member 36a and the second conductive holding member 36b cure the conductive adhesive paste by a chemical reaction caused by heating, ultraviolet irradiation or the like after the conductive adhesive paste as a precursor is applied.
- a filler may be added to the first conductive holding member 36a and the second conductive holding member 36b for the purpose of increasing the strength or maintaining the distance between the base member 30 and the tuning fork type crystal vibrating element 10. .
- the filler is a spherical filler or a fibrous filler formed of ceramics, resin or the like, and is larger than, for example, conductive particles. Moreover, the said filler may have electroconductivity, for example, a metal filler may be sufficient.
- the first conductive holding member 36a and the second conductive holding member 36b may be provided by metal solder.
- a sealing member 37 is provided on the third main surface 32 ⁇ / b> A of the base member 30.
- the sealing member 37 has better adhesion to the base 31 than the bonding member 40 and is provided to improve the bonding strength between the lid member 20 and the base member 30.
- the shape of the sealing member 37 is a rectangular frame shape when the third main surface 32A is viewed in plan.
- the sealing member 37 is provided so as to surround the tuning fork type crystal resonator element 10 when the third main surface 32A is viewed in plan, and the first electrode pad 33a and the second electrode pad 33b are the sealing member 37. It is arranged inside.
- the sealing member 37 is made of a conductive material.
- the material of the sealing member 37 is made of the same material as the first electrode pad 33a and the second electrode pad 33b, and the forming process of the sealing member 37 is the forming process of the first electrode pad 33a and the second electrode pad 33b. At the same time. Thereby, the manufacturing process can be simplified.
- the joining member 40 is provided over the entire circumference of the lid member 20 and the base member 30. Specifically, the joining member 40 is provided on the sealing member 37 and is formed in a rectangular frame shape. The sealing member 37 and the joining member 40 are sandwiched between the facing surface 23 of the side wall portion 22 of the lid member 20 and the third main surface 32 ⁇ / b> A of the base member 30.
- the tuning fork type crystal resonator element 10 is surrounded by the lid member 20 and the base member 30 (inside space ( Cavity) 26 is sealed.
- the internal space 26 is preferably at a lower pressure than the atmospheric pressure, and more preferably in a vacuum state. According to this, oxidation of electrode groups, such as the 1st excitation electrode 82a and the 2nd excitation electrode 82b, can be suppressed. Therefore, the tuning fork type crystal resonator 1 has a frequency characteristic variation with time due to changes in the thickness and mass of the excitation electrode, an increase in power consumption due to an increase in electrical resistance of the extraction electrode, and a signal delay. Occurrence of malfunction can be reduced.
- the sealing member may be provided in a discontinuous frame shape, and the joining member may be provided in a discontinuous frame shape.
- An electric field is generated in the tuning fork type crystal resonator element 10 by a drive signal (alternating voltage) applied by the first excitation electrode 82a and the second excitation electrode 82b.
- the drive signal is applied to the first excitation electrode 82a and the second excitation electrode 82b from the outside via the first connection electrode 86a and the second connection electrode 86b.
- the first vibrating arm 60a and the second vibrating arm 60b are shown in FIGS. 3 and 4 with the roots of the first vibrating arm 60a and the second vibrating arm 60b as fulcrums.
- a bending vibration is generated that is displaced so as to bend alternately in the direction indicated by the arrows A and B.
- An arrow A direction is a direction in which the first vibrating arm portion 60a and the second vibrating arm portion 60b are separated from each other
- an arrow B direction is a direction in which the first vibrating arm portion 60a and the second vibrating arm portion 60b are close to each other. That is, the first vibrating arm portion 60a and the second vibrating arm portion 60b of the tuning fork type crystal vibrating element 10 vibrate in a bending vibration mode having an opposite phase in the X axis direction.
- the tuning fork type crystal resonator element 10 uses the anti-phase bending vibration mode as the main vibration, but can also vibrate in the in-phase bending vibration mode.
- the in-phase bending vibration mode is a bending vibration mode in which the first vibrating arm portion 60a and the second vibrating arm portion 60b are sequentially displaced in the + X axis direction and then displaced in the ⁇ X axis direction sequentially.
- the frequency of the anti-bending vibration mode and the frequency of the in-phase bending vibration mode are desirably separated from each other. According to this, in the tuning fork type crystal resonator element 10, the coupling between the in-phase bending vibration mode and the anti-phase bending vibration mode can be suppressed. In other words, it is possible to reduce the in-phase bending vibration mode vibration posture and the anti-phase bending vibration mode vibration posture of the tuning fork type crystal resonator element 10.
- the vibration (drive) method of the vibration element according to the embodiment of the present invention is not limited to piezoelectric drive.
- the vibration element according to an embodiment of the present invention is a vibration element such as an electrostatic drive type using electrostatic force or a Lorentz drive type using magnetic force, in addition to a piezoelectric drive type using a piezoelectric substrate. There may be.
- FIG. 6 is a cross-sectional view schematically showing a cross-sectional configuration of the holding portion of the support arm portion according to the first embodiment.
- FIG. 7 is a cross-sectional view schematically showing a cross-sectional configuration of the connecting portion of the support arm portion according to the first embodiment.
- a first extraction electrode 84a is provided on the side surface 74C.
- the shortest distance D14 (hereinafter referred to as “distance D14”) in the X-axis direction between the first extraction electrode 84a and the second extraction electrode 84b is the main surface 70A and the main surface. It is larger than the shortest distance H14 (hereinafter referred to as “distance H14”) in the Z′-axis direction with respect to 70B.
- the distance D14 between the first extraction electrode 84a and the second extraction electrode 84b in the holding portion 74 is larger than the configuration in which the pair of extraction electrodes are provided on the pair of main surfaces of the support arm portion. it can. Therefore, in the tuning fork type crystal resonator element 10, since the stray capacitance generated between the extraction electrodes can be reduced, the effective resistance of the extraction electrodes can be reduced and the power consumption can be reduced.
- the shortest distance W14 in the X-axis direction between the side surface 74C and the side surface 74D (hereinafter referred to as “distance W14”) is the main surface 70A and the main surface 70B. Is greater than the distance H14. According to this, in the tuning fork type crystal resonator element 10, it becomes easy to provide the second extraction electrode 84b so that the distance D14 between the first extraction electrode 84a and the second extraction electrode 84b in the holding portion 74 is increased.
- the second extraction electrode 84 b is provided on the side surface 74 ⁇ / b> D of the holding portion 74, that is, the side surface 70 ⁇ / b> D of the support arm portion 70. That is, the first extraction electrode 84 a and the second extraction electrode 84 b are provided on the side surface 74 ⁇ / b> C and the side surface 74 ⁇ / b> D of the holding portion 74 that face each other.
- the distance W14 between the side surface 74C and the side surface 74D corresponds to the distance D14 between the first extraction electrode 84a and the second extraction electrode 84b.
- the distance D14 between the first extraction electrode 84a and the second extraction electrode 84b in the holding portion 74 is larger than the configuration in which the second extraction electrode 84b is provided on the main surface 70A or the main surface 70B. it can. Therefore, the stray capacitance generated between the extraction electrodes of the tuning fork type crystal resonator element 10 can be reduced.
- the shape of the holding portion 74 is the main surface 70 ⁇ / b> A and the main It is a substantially rectangular shape having a pair of long sides composed of the surface 70B and a pair of short sides composed of the side surface 74C and the side surface 74D. According to this, the facing area between the first connection electrode 86a and the second extraction electrode 84b can be reduced. Therefore, the stray capacitance generated between the first connection electrode 86a and the second extraction electrode 84b of the tuning fork type crystal resonator element 10 can be reduced.
- the support arm portion 70 is provided between the first vibrating arm portion 60a and the second vibrating arm portion 60b.
- the tuning fork type crystal resonator element 10 can be downsized. Further, the difference between the length of the first extraction electrode 84a and the length of the second extraction electrode 84b can be reduced. Therefore, the difference in electrical resistance between the first extraction electrode 84a and the second extraction electrode 84b of the tuning fork type crystal resonator element 10 can be reduced. Further, in the tuning fork type crystal resonator element 10, the influence of the difference in stray capacitance can be reduced.
- the support arm portion 70 is bundled at the connecting portion 72 when the main surface 70A is viewed in plan.
- the support arm portion 70 is formed with recesses on both sides of the side surface 70C and the side surface 70D.
- the connecting portion 72 is formed with a hole that opens to both the main surface 70A and the main surface 70B and opens to the side surface 70C.
- the side surface 72C corresponds to the inner surface of the hole.
- the connecting portion 72 is formed with a hole that opens to the main surface 70A, the main surface 70B, and the side surface 70D and has the side surface 72D as an inner surface.
- the shortest distance W12 in the X-axis direction between the side surface 72C and the side surface 72D in the connecting portion 72 (hereinafter referred to as “distance W12”) is between the side surface 74C and the side surface 74D in the holding portion 74. It is smaller than the distance W14.
- the side surface 72 ⁇ / b> C and the side surface 72 ⁇ / b> D of the connecting portion 72 are provided inside the holding portion 74 in a cross-sectional view orthogonal to the extending direction from the base 50 of the support arm portion 70.
- vibration propagating from the first vibrating arm portion 60a and the second vibrating arm portion 60b to the holding portion 74 via the connecting portion 72 can be reduced. That is, vibration leakage of the tuning fork type crystal resonator element 10 can be suppressed.
- the configuration of the connecting portion is not limited to the above as long as vibration leakage can be reduced.
- the support arm portion may be formed with a hole that is open on one main surface and is surrounded by the one main surface when the one main surface is viewed in plan in the connecting portion.
- the hole portion may be a bottomed groove portion, or may be a through hole that also opens on the other main surface.
- the support arm portion may be formed with a notch portion having an inner surface provided on one main surface and one side surface and provided on the other main surface side and the other side surface in the connection portion. . That is, the support arm portion may be provided with one main surface in the connecting portion, and when the one main surface is viewed in plan, an end portion of the one main surface is provided inside the other main surface. .
- a first extraction electrode 84 a is provided on the side surface 74 ⁇ / b> C in the connecting portion 72.
- the shortest distance D12 in the X-axis direction between the first extraction electrode 84a and the second extraction electrode 84b (hereinafter referred to as “distance D12”) is the main surface 70A and the main surface. It is larger than the shortest distance H12 in the Z′-axis direction with respect to 70B (hereinafter referred to as “distance H12”).
- the distance between the first extraction electrode 84a and the second extraction electrode 84b. can be the smallest at the connecting portion 72.
- the tuning-fork type crystal resonator element 10 compared with a configuration in which a pair of extraction electrodes is provided on a pair of main surfaces of the support arm portion, between the first extraction electrode 84 a and the second extraction electrode 84 b in the connection portion 72.
- the distance D12 can be increased. Therefore, in the tuning fork type crystal resonator element 10, vibration leakage can be reduced, and stray capacitance generated between the extraction electrodes can be reduced.
- the distance W12 between the side surface 72C and the side surface 72D is larger than the distance H12 between the main surface 70A and the main surface 70B in the connecting portion 72. According to this, arrangement
- the second extraction electrode 84 b is provided on the side surface 72 ⁇ / b> D of the connecting portion 72.
- the distance W12 between the side surface 72C and the side surface 72D corresponds to the distance D12 between the first extraction electrode 84a and the second extraction electrode 84b.
- the distance D12 between the 1st extraction electrode 84a and the 2nd extraction electrode 84b in the connection part 72 is large compared with the structure in which the 2nd extraction electrode 84b is provided in 70 A of main surfaces, or the main surface 70B. it can. Therefore, the stray capacitance generated between the extraction electrodes of the tuning fork type crystal resonator element 10 can be reduced.
- FIG. 8 is a plan view schematically showing the configuration of the support arm portion of the tuning-fork type crystal resonator element according to the second embodiment.
- FIG. 9 is a cross-sectional view schematically showing a cross-sectional configuration of the holding portion of the support arm portion according to the second embodiment.
- FIG. 10 is a cross-sectional view schematically showing a cross-sectional configuration of the connecting portion of the support arm portion according to the second embodiment.
- the support arm portion 270 of the tuning fork type crystal resonator element according to the second embodiment has a holding portion 274 and a connecting portion 272, as in the tuning fork type crystal resonator element 10 according to the first embodiment.
- the main surface 270 ⁇ / b> A and the main surface 270 ⁇ / b> B are provided across the connecting portion 272.
- the holding portion 274 has a side surface 274C and a side surface 274D
- the connecting portion 272 has a side surface 272C and a side surface 272D.
- the tuning fork type crystal resonator element according to the second embodiment includes a first extraction electrode 284a, a second extraction electrode 284b, a first connection electrode 286a, and a second connection electrode 286b.
- the second extraction electrode 284b is provided on the main surface 270B.
- the shortest distance D24 between the first extraction electrode 284a and the second extraction electrode 284b in the holding portion 274 is the main surface 270A and the main surface 270B. It is larger than the distance H24 between.
- the distance W24 between the side surface 274C and the side surface 274D in the holding portion 274 is larger than the distance H24 between the main surface 270A and the main surface 270B.
- the shortest distance D22 between the first extraction electrode 284a and the second extraction electrode 284b in the connecting portion 272 is between the main surface 270A and the main surface 270B. It is larger than the distance H22. Further, the distance W22 between the side surface 272C and the side surface 272D in the connecting portion 272 is larger than the distance H22 between the main surface 270A and the main surface 270B.
- the second extraction electrode 284b provided on the main surface 270B can be provided wide. That is, in the tuning fork type crystal resonator element according to the second embodiment, the electrical resistance of the second extraction electrode 284b can be reduced. Further, in the configuration of the tuning fork type crystal resonator element according to the second embodiment, the first extraction electrode 284a and the second extraction electrode 284b are more than the configuration in which the pair of extraction electrodes are provided on the pair of main surfaces of the support arm portion. Can be reduced. Thereby, stray capacitance generated between the extraction electrodes can be reduced. Therefore, the power consumption of the tuning fork type crystal resonator element according to the second embodiment can be reduced.
- FIG. 11 is a plan view schematically showing the configuration of the support arm portion of the tuning-fork type crystal resonator element according to the third embodiment.
- the support arm portion 370 of the tuning fork type crystal resonator element according to the third embodiment includes a holding portion 374 and a connecting portion 372.
- the main surface 370 ⁇ / b> A and the main surface 370 ⁇ / b> B are provided over the connecting portion 372.
- the holding portion 374 has a side surface 374C and a side surface 374D
- the connecting portion 372 has a side surface 372C and a side surface 372D.
- the tuning fork type crystal resonator element according to the second embodiment includes a first extraction electrode 384a, a second extraction electrode 384b, a first connection electrode 386a, and a second connection electrode 386b.
- the difference between the tuning fork type crystal resonator element according to the third embodiment and the tuning fork type crystal resonator element 10 according to the first embodiment is that the second connection electrode 386b is provided closer to the base than the first connection electrode 386a,
- the second extraction electrode 384b is provided on the main surface 370B of the support arm portion 370.
- the first extraction electrode 384a is provided outside the second connection electrode 386b
- the second extraction electrode 384b is provided outside the first connection electrode 386a.
- FIG. 11 is a plan view schematically showing a configuration of a tuning fork type crystal resonator element according to the fourth embodiment.
- the tuning fork type crystal resonator element 410 includes a base 450, a first vibrating arm portion 460a, a second vibrating arm portion 460b, and a support arm portion. 470.
- the support arm portion 470 includes a first vibrating arm portion 460a and a second vibrating arm portion 460b. It is a point provided outside the area between. Specifically, the first vibrating arm portion 460a is provided between the support arm portion 470 and the second vibrating arm portion 460b.
- the efficiency of exchanging vibration energy between the first vibrating arm portion 460a and the second vibrating arm portion 460b is improved. To do. Therefore, the influence of the support arm portion 470 on the exchange of vibration energy between the first vibrating arm portion 460a and the second vibrating arm portion 460b is reduced, and vibration leakage of the tuning fork type crystal vibrating element 410 can be suppressed.
- a base a first vibrating arm and a second vibrating arm that extend from the base, a first main surface and a second main surface that extend from the base and face each other,
- a support arm portion having a first side surface and a second side surface that connect the first main surface and the second main surface and face each other; a first excitation electrode provided on the first vibration arm portion and the second vibration arm portion; A second excitation electrode; a first connection electrode and a second connection electrode provided on the first main surface of the support arm; a first extraction electrode that electrically connects the first excitation electrode and the first connection electrode; , A second extraction electrode for electrically connecting the second excitation electrode and the second connection electrode, the first extraction electrode is provided on the first side surface of the support arm, and the second extraction electrode is supported It is provided on the first main surface, the second main surface, or the second side surface of the arm portion, and at least a part of the support arm portion includes a first extraction electrode and a second extraction electrode.
- Distance is greater than the distance between the first
- the distance between the first side surface and the second side surface may be greater than the distance between the first main surface and the second main surface.
- the second extraction electrode may be provided on the second side surface of the support arm portion.
- the first connection electrode may be provided closer to the base than the second connection electrode, and the second extraction electrode may be provided on the first main surface or the second main surface of the support arm portion.
- the second connection electrode may be provided closer to the base than the first connection electrode, and the second extraction electrode may be provided on the first main surface or the second main surface of the support arm portion.
- At least a part of the support arm portion has a pair of long sides including the first main surface and the second main surface, the first side surface, and the first side surface.
- the substantially rectangular shape which has a pair of short side which consists of 2 side surfaces may be sufficient.
- the support arm portion may be provided between the first vibrating arm portion and the second vibrating arm portion.
- the first vibrating arm portion may be provided between the support arm portion and the second vibrating arm portion.
- the support arm portion includes a holding portion provided with the first connection electrode and the second connection electrode, and a connecting portion that connects the holding portion and the base portion, and the support arm portion is a plan view of the first main surface. Sometimes, it may be bundled at the connecting portion.
- the distance between the first extraction electrode and the second extraction electrode may be larger than the distance between the first main surface and the second main surface.
- the distance between the first side surface and the second side surface may be larger than the distance between the first main surface and the second main surface.
- each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
- the vibration element and the vibrator of the present invention can be used for a timing device or a load sensor.
- each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
A vibration element (10) according to the present invention is provided with: a base part (50); a first vibration arm part (60a) and a second vibration arm part (60b); a support arm part (70); a first excitation electrode (82a) and a second excitation electrode (82b); a first connection electrode (86a) and a second connection electrode (86b); and a first lead-out electrode (84a) and a second lead-out electrode (84b). The first lead-out electrode (84a) is provided on a first lateral surface (70C) of the support arm part (70); the second lead-out electrode (84b) is provided on a first main surface (70A), a second main surface (70B) or a second lateral surface (70D) of the support arm part (70); and the distance (D14) between the first lead-out electrode (84a) and the second lead-out electrode (84b) is longer than the distance (H14) between the first main surface (70A) and the second main surface (70B) in at least a part of the support arm part (70).
Description
本発明は、振動素子に関する。
The present invention relates to a vibration element.
モバイルコンピュータ、携帯ゲーム機、携帯電話、ICカード、通信基地局、などの電子機器において、タイミングデバイスや振動ジャイロセンサなどの電子機器として振動子が広く使用されている。電子機器の小型化や高性能化に伴い、振動子も、小型化及び高性能化が求められている。
In electronic devices such as mobile computers, portable game machines, mobile phones, IC cards, and communication base stations, vibrators are widely used as electronic devices such as timing devices and vibration gyro sensors. Along with the downsizing and high performance of electronic equipment, the vibrator is also required to be downsized and high performance.
例えば、特許文献1には、基部と、基部から延出する振動腕部と、基部に接続された連結部及び連結部に接続された保持部を有し連結部において括れている支持腕部と、一対の振動腕部に設けられた励振電極と、保持部に設けられた接続電極と、連結部に設けられ励振電極と接続電極とを電気的に接続する引出電極と、を備えている振動素子が開示されている。
For example, Patent Document 1 includes a base, a vibrating arm extending from the base, a connecting portion connected to the base, and a holding arm connected to the connecting portion. A vibration comprising: an excitation electrode provided on the pair of vibrating arms; a connection electrode provided on the holding part; and an extraction electrode provided on the coupling part for electrically connecting the excitation electrode and the connection electrode. An element is disclosed.
しかしながら、特許文献1に開示されたように第1引出電極が支持腕部の第1主面に設けられ第2引出電極が支持腕部の第2主面に設けられた振動素子では、振動素子を小型化しようとすると、支持腕部において電極が接近又は対向する。特に、電気抵抗を低減するために引出電極を広幅化しようとすると、引出電極間で発生する浮遊容量が増大し、実効抵抗Re(Re=R1×(1+C0/CL)、R1:等価直列抵抗、C0:浮遊容量、CL:負荷容量)が増大する恐れがある。
However, as disclosed in Patent Document 1, in the vibration element in which the first extraction electrode is provided on the first main surface of the support arm portion and the second extraction electrode is provided on the second main surface of the support arm portion, the vibration element When trying to reduce the size, the electrodes approach or face each other at the support arm. In particular, when trying to widen the extraction electrode in order to reduce the electrical resistance, the stray capacitance generated between the extraction electrodes increases, and the effective resistance Re (Re = R1 × (1 + C0 / CL), R1: equivalent series resistance, (C0: stray capacitance, CL: load capacitance) may increase.
ところで、特許文献2には、支持腕部の第1側面に第1引出電極が設けられ、支持腕部の第2側面に第2引出電極が設けられた振動素子が開示されている。当該振動素子において、支持腕部の保持部では、第1主面と第2主面との間の距離が、第1側面と第2側面との間の距離と略等しい。また、当該振動素子は、保持部よりも狭幅な連結部において、第1側面と第2側面との間の距離が、第1主面と第2主面との間の距離よりも小さいと考えられる。したがって、当該振動素子の構成は、支持腕部の主面に引出電極を設ける構成より、引出電極間で発生する浮遊容量を低減できない課題があった。
Incidentally, Patent Document 2 discloses a vibration element in which a first extraction electrode is provided on a first side surface of a support arm portion, and a second extraction electrode is provided on a second side surface of the support arm portion. In the vibration element, in the holding portion of the support arm portion, the distance between the first main surface and the second main surface is substantially equal to the distance between the first side surface and the second side surface. Further, in the vibration element, in the connection portion narrower than the holding portion, the distance between the first side surface and the second side surface is smaller than the distance between the first main surface and the second main surface. Conceivable. Therefore, the configuration of the vibration element has a problem that the stray capacitance generated between the extraction electrodes cannot be reduced as compared with the configuration in which the extraction electrode is provided on the main surface of the support arm portion.
本発明はこのような事情に鑑みてなされたものであり、本発明の目的は浮遊容量が低減できる振動素子を提供することである。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a vibration element capable of reducing stray capacitance.
本発明の一態様に係る振動素子は、基部と、基部から延出する第1振動腕部及び第2振動腕部と、基部から延出し、互いに対向する第1主面及び第2主面と、第1主面と第2主面とを繋ぎ互いに対向する第1側面及び第2側面と、を有する支持腕部と、第1振動腕部及び第2振動腕部に設けられた第1励振電極及び第2励振電極と、支持腕部の第1主面に設けられた第1接続電極及び第2接続電極と、第1励振電極と第1接続電極とを電気的に接続する第1引出電極と、第2励振電極と第2接続電極とを電気的に接続する第2引出電極と、を備え、第1引出電極は、支持腕部の第1側面に設けられ、第2引出電極は、支持腕部の第1主面、第2主面、又は第2側面に設けられ、支持腕部の少なくとも一部において、第1引出電極と第2引出電極との間の距離は、第1主面と第2主面との間の距離よりも大きい。
A resonator element according to one aspect of the present invention includes a base, a first vibrating arm and a second vibrating arm that extend from the base, and a first main surface and a second main surface that extend from the base and face each other. , A supporting arm portion having a first side surface and a second side surface that connect the first main surface and the second main surface and face each other, and a first excitation provided on the first vibrating arm portion and the second vibrating arm portion. A first lead that electrically connects the electrode and the second excitation electrode, the first connection electrode and the second connection electrode provided on the first main surface of the support arm, and the first excitation electrode and the first connection electrode; An electrode, and a second extraction electrode that electrically connects the second excitation electrode and the second connection electrode. The first extraction electrode is provided on the first side surface of the support arm, and the second extraction electrode is The first extraction electrode and the second extraction are provided on the first main surface, the second main surface, or the second side surface of the support arm portion, and at least part of the support arm portion. The distance between the poles is greater than the distance between the first major surface and a second major surface.
本発明によれば、浮遊容量が低減できる振動素子を提供することが可能となる。
According to the present invention, it is possible to provide a vibration element that can reduce stray capacitance.
以下、図面を参照しながら本発明の実施形態について説明する。但し、第2実施形態以降において、第1実施形態と同一又は類似の構成要素は、第1実施形態と同一又は類似の符号で表し、詳細な説明を適宜省略する。また、第2実施形態以降の実施形態において得られる効果について、第1実施形態と同様のものについては説明を適宜省略する。各実施形態の図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施形態に限定して解するべきではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, in the second and subsequent embodiments, the same or similar components as those in the first embodiment are denoted by the same or similar reference numerals as those in the first embodiment, and detailed description thereof is omitted as appropriate. Moreover, about the effect acquired in embodiment after 2nd Embodiment, description is abbreviate | omitted suitably about the thing similar to 1st Embodiment. The drawings of the embodiments are exemplifications, the dimensions and shapes of the respective parts are schematic, and the technical scope of the present invention should not be understood as being limited to the embodiments.
各々の図面には、各々の図面相互の関係を明確にし、各部材の位置関係を理解する助けとするために、便宜的に第1方向D1、第2方向D2、及び第3方向D3からなる直交座標系を付すことがある。第1方向D1、第2方向D2、及び第3方向D3とは、図1に示す3つの基準となる方向を意味し、それぞれ正方向(矢印の方向)及び負方向(矢印とは反対の方向)を含むものとする。また、図中に示す第1方向D1、第2方向D2、及び第3方向D3は、例えばそれぞれ互いに直交する方向であるが、それぞれ互いに交差する方向であればこれに限定されるものではなく、互いに90°以外の角度で交差する方向であってもよい。
Each drawing includes a first direction D1, a second direction D2, and a third direction D3 for the sake of convenience in order to clarify the relationship between the drawings and to help understand the positional relationship between the members. An orthogonal coordinate system may be attached. The first direction D1, the second direction D2, and the third direction D3 mean the three reference directions shown in FIG. 1, and are the positive direction (the direction of the arrow) and the negative direction (the direction opposite to the arrow), respectively. ). In addition, the first direction D1, the second direction D2, and the third direction D3 shown in the drawing are, for example, directions that are orthogonal to each other, but are not limited to these as long as they intersect each other. The directions may intersect each other at an angle other than 90 °.
以下の説明において、圧電振動子(Piezoelectric Resonator Unit)の一例として、水晶振動素子(Quartz Crystal Resonator)を備えた水晶振動子(Quartz Crystal Resonator Unit)を例に挙げて説明する。水晶振動素子は、印加電圧に応じて振動する圧電体として、水晶によって形成された水晶片(Quartz Crystal Element)を利用するものである。水晶振動子は振動子の一例に相当し、水晶振動素子は振動素子の一例に相当し、水晶片は振動基板の一例に相当する。
In the following description, as an example of a piezoelectric vibrator (Piezoelectric Resonator Unit), a crystal vibrator (Quartz Crystal Resonator Unit) including a quartz crystal resonator element (Quartz Crystal Resonator) will be described as an example. The quartz resonator element uses a quartz piece (Quartz Crystal Element) formed of quartz as a piezoelectric body that vibrates according to an applied voltage. A crystal resonator corresponds to an example of a resonator, a crystal resonator element corresponds to an example of a resonator element, and a crystal piece corresponds to an example of a vibration substrate.
なお、本発明の実施形態に係る振動基板は水晶片に限定されるものではない。振動基板は、圧電単結晶、圧電セラミック、圧電薄膜、圧電高分子膜、などの任意の圧電材料によって形成された圧電片であってもよい。一例として、圧電単結晶は、ニオブ酸リチウム(LiNbO3)を挙げることができる。同様に、圧電セラミックは、チタン酸バリウム(BaTiO3)、チタン酸鉛(PbTiO3)、チタン酸ジルコン酸鉛(Pb(ZrxTi1-x)O3;PZT)、窒化アルミニウム(AlN)、ニオブ酸リチウム(LiNbO3)、メタニオブ酸リチウム(LiNb2O6)、チタン酸ビスマス(Bi4Ti3O12)タンタル酸リチウム(LiTaO3)、四ホウ酸リチウム(Li2B4O7)、ランガサイト(La3Ga5SiO14)、五酸化タンタル(Ta2O5)、などを挙げることができる。圧電薄膜は、石英、サファイアなどの基板上に上記の圧電セラミックをスパッタリング法などによって成膜したものを挙げることができる。圧電高分子膜は、ポリ乳酸(PLA)、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン/三フッ化エチレン(VDF/TrFE)共重合体、などを挙げることができる。上記の各種圧電材料は、互いに積層して用いられてもよく、他の部材に積層されてもよい。また、本発明の実施形態に係る振動素子は、圧電振動素子に限定されるものではない。このとき、振動基板は、圧電性を有しない絶縁性材料又は圧電性の小さい絶縁性材料によって形成されてもよく、半導体材料、導電性材料、などによって形成されてもよい。
Note that the vibration substrate according to the embodiment of the present invention is not limited to a crystal piece. The vibration substrate may be a piezoelectric piece formed of an arbitrary piezoelectric material such as a piezoelectric single crystal, a piezoelectric ceramic, a piezoelectric thin film, or a piezoelectric polymer film. As an example, the piezoelectric single crystal can include lithium niobate (LiNbO 3 ). Similarly, piezoelectric ceramics include barium titanate (BaTiO 3 ), lead titanate (PbTiO 3 ), lead zirconate titanate (Pb (Zr x Ti 1-x ) O 3; PZT), aluminum nitride (AlN), niobium. Lithium oxide (LiNbO 3 ), lithium metaniobate (LiNb 2 O 6 ), bismuth titanate (Bi 4 Ti 3 O 12 ) lithium tantalate (LiTaO 3 ), lithium tetraborate (Li 2 B 4 O 7 ), langa Site (La 3 Ga 5 SiO 14 ), tantalum pentoxide (Ta 2 O 5 ), and the like can be given. Examples of the piezoelectric thin film include a film obtained by forming the above piezoelectric ceramic on a substrate such as quartz or sapphire by a sputtering method or the like. Examples of the piezoelectric polymer film include polylactic acid (PLA), polyvinylidene fluoride (PVDF), vinylidene fluoride / ethylene trifluoride (VDF / TrFE) copolymer, and the like. The various piezoelectric materials described above may be used by being stacked on each other, or may be stacked on other members. Further, the vibration element according to the embodiment of the present invention is not limited to the piezoelectric vibration element. At this time, the vibration substrate may be formed of an insulating material having no piezoelectricity or an insulating material having low piezoelectricity, or may be formed of a semiconductor material, a conductive material, or the like.
<第1実施形態>
まず、図1から図5を参照しつつ、本発明の第1実施形態に係る音叉型水晶振動子(Tuning-Fork Quartz Crystal Resonator Unit)1の構成について説明する。図1は、第1実施形態に係る音叉型水晶振動子の構成を概略的に示す分解斜視図である。図2は、図1に示した音叉型水晶振動子のII-II線に沿った断面の構成を概略的に示す断面図である。図3は、第1実施形態に係る音叉型水晶振動素子の第1主面側の構成を概略的に示す平面図である。図4は、第1実施形態に係る音叉型水晶振動素子の第2主面側の構成を概略的に示す平面図である。図5は、図3に示した音叉型水晶振動素子のV-V線に沿った断面の構成を概略的に示す断面図である。なお、図1及び図2において、音叉型水晶振動素子10に設けられた励振電極、接続電極、引出電極、などの電極群については、一部又は全部の図示を省略している。また、図3及び図4において、基部及び振動腕部の側面に設けられた引出電極については、一部又は全部の図示を省略している。 <First Embodiment>
First, the configuration of a tuning-fork quartz crystal resonator unit (Tuning-Fork Quartz Crystal Resonator Unit) 1 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator according to the first embodiment. FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG. FIG. 3 is a plan view schematically showing the configuration of the first main surface side of the tuning-fork type crystal resonator element according to the first embodiment. FIG. 4 is a plan view schematically showing the configuration of the second main surface side of the tuning fork type crystal resonator element according to the first embodiment. FIG. 5 is a cross-sectional view schematically showing a cross-sectional configuration along line VV of the tuning-fork type crystal vibrating element shown in FIG. 1 and 2, some or all of the electrode groups such as the excitation electrode, the connection electrode, and the extraction electrode provided in the tuning fork typecrystal resonator element 10 are omitted. 3 and 4, some or all of the extraction electrodes provided on the side surfaces of the base portion and the vibrating arm portion are omitted.
まず、図1から図5を参照しつつ、本発明の第1実施形態に係る音叉型水晶振動子(Tuning-Fork Quartz Crystal Resonator Unit)1の構成について説明する。図1は、第1実施形態に係る音叉型水晶振動子の構成を概略的に示す分解斜視図である。図2は、図1に示した音叉型水晶振動子のII-II線に沿った断面の構成を概略的に示す断面図である。図3は、第1実施形態に係る音叉型水晶振動素子の第1主面側の構成を概略的に示す平面図である。図4は、第1実施形態に係る音叉型水晶振動素子の第2主面側の構成を概略的に示す平面図である。図5は、図3に示した音叉型水晶振動素子のV-V線に沿った断面の構成を概略的に示す断面図である。なお、図1及び図2において、音叉型水晶振動素子10に設けられた励振電極、接続電極、引出電極、などの電極群については、一部又は全部の図示を省略している。また、図3及び図4において、基部及び振動腕部の側面に設けられた引出電極については、一部又は全部の図示を省略している。 <First Embodiment>
First, the configuration of a tuning-fork quartz crystal resonator unit (Tuning-Fork Quartz Crystal Resonator Unit) 1 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator according to the first embodiment. FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG. FIG. 3 is a plan view schematically showing the configuration of the first main surface side of the tuning-fork type crystal resonator element according to the first embodiment. FIG. 4 is a plan view schematically showing the configuration of the second main surface side of the tuning fork type crystal resonator element according to the first embodiment. FIG. 5 is a cross-sectional view schematically showing a cross-sectional configuration along line VV of the tuning-fork type crystal vibrating element shown in FIG. 1 and 2, some or all of the electrode groups such as the excitation electrode, the connection electrode, and the extraction electrode provided in the tuning fork type
音叉型水晶振動子1は、圧電振動子の一種であり、振動子の一例に相当する。図1に示すように、音叉型水晶振動子1は、音叉型水晶振動素子10と、蓋部材20と、ベース部材30と、接合部材40と、を備えている。音叉型水晶振動素子10は、振動素子の一種であり、圧電駆動型の振動素子に相当する。ベース部材30及び蓋部材20は、音叉型水晶振動素子10を収容するための保持器である。ここで図示した例では、蓋部材20は凹状、具体的には開口部を有する箱状、をなしており、ベース部材30は平板状をなしている。蓋部材20及びベース部材30の形状は、上記に限定されるものではなく、例えばベース部材が凹状をなしていてもよく、蓋部材及びベース部材の両方が互いに対向する側に開口部を有する凹状であってもよい。
The tuning fork type crystal resonator 1 is a kind of piezoelectric resonator and corresponds to an example of a resonator. As shown in FIG. 1, the tuning fork crystal resonator 1 includes a tuning fork crystal resonator element 10, a lid member 20, a base member 30, and a bonding member 40. The tuning fork type crystal vibrating element 10 is a kind of vibrating element and corresponds to a piezoelectric driving type vibrating element. The base member 30 and the lid member 20 are holders for housing the tuning fork type crystal resonator element 10. In the example illustrated here, the lid member 20 has a concave shape, specifically, a box shape having an opening, and the base member 30 has a flat plate shape. The shapes of the lid member 20 and the base member 30 are not limited to the above. For example, the base member may have a concave shape, and both the lid member and the base member have a concave shape having openings on the sides facing each other. It may be.
音叉型水晶振動素子10は、水晶片11、第1励振電極82a、第2励振電極82b、第1引出電極84a、第2引出電極84b、第1接続電極86a、及び第2接続電極86bを備えている。水晶片11は、X軸、Y´軸、及びZ´軸からなる直交座標系において、X軸及びY´軸によって特定される面と平行な面(以下、「XY´面」と呼ぶ。他の軸又は他の方向によって特定される面についても同様である。)が主面となり、Z´軸と平行な方向が厚さとなるように形成される。例えば、水晶片11は、人工水晶(Synthetic Quartz Crystal)の結晶体を切断及び研磨加工して水晶基板とし、当該水晶基板を音叉型に加工したものである。水晶片11は、振動基板の一種であり、圧電効果によって励振される圧電片の一例に相当する。
The tuning fork type crystal resonator element 10 includes a crystal piece 11, a first excitation electrode 82a, a second excitation electrode 82b, a first extraction electrode 84a, a second extraction electrode 84b, a first connection electrode 86a, and a second connection electrode 86b. ing. The crystal piece 11 is referred to as a plane parallel to a plane specified by the X axis and the Y ′ axis (hereinafter referred to as “XY ′ plane”) in an orthogonal coordinate system including the X axis, the Y ′ axis, and the Z ′ axis. The same applies to the surface specified by the other axis or other directions.) Is the main surface, and the direction parallel to the Z ′ axis is the thickness. For example, the crystal piece 11 is obtained by cutting and polishing a crystal of an artificial crystal (Synthetic Quartz Crystal) to form a crystal substrate, and processing the crystal substrate into a tuning fork type. The crystal piece 11 is a kind of vibration substrate and corresponds to an example of a piezoelectric piece excited by a piezoelectric effect.
なお、Y´軸は、X軸を回転軸としたとき、Y軸を、+Y側をZ軸の+側に傾けるように回転させてなる軸である。Z´軸は、Z軸を、+Z側をY軸の-側に傾けるように回転させてなる軸である。X軸、Y軸、及びZ軸は、それぞれ水晶の結晶軸であり、X軸が電気軸(極性軸)、Y軸が機械軸、Z軸が光学軸に相当する。なお、温度変化による共振周波数変化を小さくする観点から、前記回転させる傾きは-5度以上15度以下の範囲(0度を含む)で行われるものとする。したがって、本発明の実施形態においては、Y´軸及びZ´軸がそれぞれY軸及びZ軸となる構成も含むものとする。
The Y ′ axis is an axis obtained by rotating the Y axis so that the + Y side is tilted to the + side of the Z axis when the X axis is the rotation axis. The Z ′ axis is an axis obtained by rotating the Z axis so that the + Z side is inclined toward the − side of the Y axis. The X axis, the Y axis, and the Z axis are crystal axes of quartz, respectively. The X axis corresponds to an electric axis (polarity axis), the Y axis corresponds to a mechanical axis, and the Z axis corresponds to an optical axis. Note that, from the viewpoint of reducing the change in the resonance frequency due to the temperature change, the rotation inclination is performed in the range of −5 degrees to 15 degrees (including 0 degrees). Therefore, the embodiment of the present invention includes a configuration in which the Y ′ axis and the Z ′ axis become the Y axis and the Z axis, respectively.
第1実施形態において、音叉型水晶振動素子10は、Y´軸が第1方向D1と平行となり、X軸が第2方向D2と平行となり、Z´軸が第3方向D3と平行と定めた。以下において、X軸、Y´軸、及びZ´軸と平行な方向を、それぞれ、X軸方向、Y´軸方向、及びZ´軸方向と呼称する。さらに、X軸方向においては、+X軸方向を第2方向D2の正方向とし、-X軸方向を第2方向D2の負方向とする。同様に、Y´軸方向においては、+Y´軸方向を第1方向D1の正方向とし、-Y´軸方向を第1方向D1の負方向とする。Z´軸方向においては、+Z´軸方向を第3方向D3の正方向とし、-Z´軸方向を第3方向D3の負方向とする。
In the first embodiment, the tuning fork type crystal resonator element 10 has the Y ′ axis parallel to the first direction D1, the X axis parallel to the second direction D2, and the Z ′ axis parallel to the third direction D3. . Hereinafter, directions parallel to the X axis, the Y ′ axis, and the Z ′ axis are referred to as an X axis direction, a Y ′ axis direction, and a Z ′ axis direction, respectively. Further, in the X-axis direction, the + X-axis direction is the positive direction of the second direction D2, and the −X-axis direction is the negative direction of the second direction D2. Similarly, in the Y′-axis direction, the + Y′-axis direction is the positive direction of the first direction D1, and the −Y′-axis direction is the negative direction of the first direction D1. In the Z′-axis direction, the + Z′-axis direction is the positive direction of the third direction D3, and the −Z′-axis direction is the negative direction of the third direction D3.
図1に示すように、水晶片11は、基部50と、第1振動腕部60aと、第2振動腕部60bと、支持腕部70とを有している。図2に示すように、水晶片11は、互いに対向する第1主面12A及び第2主面12Bを有している。第1主面12Aは、ベース部材30側に位置し、第2主面12Bは、蓋部材20側に位置している。
As shown in FIG. 1, the crystal piece 11 has a base 50, a first vibrating arm 60a, a second vibrating arm 60b, and a support arm 70. As shown in FIG. 2, the crystal piece 11 has a first main surface 12A and a second main surface 12B that face each other. The first main surface 12A is located on the base member 30 side, and the second main surface 12B is located on the lid member 20 side.
まず、基部50について説明する。
基部50は、水晶片11の-Y´軸方向(第1方向D1負方向)側の端部において、略平板状に設けられている。基部50は、第1振動腕部60a、第2振動腕部60b、及び支持腕部70を連結している。基部50のY´軸方向に沿った長さは、例えば、50μm以上300μm以下である。 First, thebase 50 will be described.
Thebase 50 is provided in a substantially flat plate shape at the end of the crystal piece 11 on the −Y′-axis direction (first direction D1 negative direction) side. The base 50 connects the first vibrating arm 60 a, the second vibrating arm 60 b, and the support arm 70. The length along the Y′-axis direction of the base 50 is, for example, 50 μm or more and 300 μm or less.
基部50は、水晶片11の-Y´軸方向(第1方向D1負方向)側の端部において、略平板状に設けられている。基部50は、第1振動腕部60a、第2振動腕部60b、及び支持腕部70を連結している。基部50のY´軸方向に沿った長さは、例えば、50μm以上300μm以下である。 First, the
The
次に、第1振動腕部60a及び第2振動腕部60bについて説明する。
第1振動腕部60a及び第2振動腕部60bは、基部50から+Y´軸方向(第1方向D1正方向)に互いに並行に延出している。一対の振動腕部を構成する第1振動腕部60a及び第2振動腕部60bはX軸方向に並んでいる。第1振動腕部60aは、第2振動腕部60bの+X軸方向(第2方向D2正方向)側に設けられている。図3及び図4に示すように、第1振動腕部60aは、腕部62a及び錘部64aを有し、第2振動腕部60bは、腕部62b及び錘部64bを有している。腕部62a及び腕部62bは、基部50に接続されている。錘部64a及び錘部64bは、それぞれ、腕部62a及び腕部62bの基部50に接続された端部とは反対側の端部に接続されている。つまり、水晶片11の第1主面12Aを平面視したとき、水晶片11の外形は、基部50と一対の第1振動腕部60a及び第2振動腕部60bとによって、略U字状に設けられている。 Next, the first vibratingarm portion 60a and the second vibrating arm portion 60b will be described.
The first vibratingarm portion 60a and the second vibrating arm portion 60b extend in parallel to each other in the + Y′-axis direction (first direction D1 positive direction) from the base portion 50. The first vibrating arm portion 60a and the second vibrating arm portion 60b constituting the pair of vibrating arm portions are arranged in the X-axis direction. The first vibrating arm portion 60a is provided on the + X axis direction (second direction D2 positive direction) side of the second vibrating arm portion 60b. As shown in FIGS. 3 and 4, the first vibrating arm portion 60a has an arm portion 62a and a weight portion 64a, and the second vibrating arm portion 60b has an arm portion 62b and a weight portion 64b. The arm part 62 a and the arm part 62 b are connected to the base part 50. The weight part 64a and the weight part 64b are connected to the ends of the arm part 62a and the arm part 62b opposite to the ends connected to the base part 50, respectively. That is, when the first main surface 12A of the crystal piece 11 is viewed in plan, the outer shape of the crystal piece 11 is substantially U-shaped by the base 50 and the pair of first vibrating arm portions 60a and the second vibrating arm portions 60b. Is provided.
第1振動腕部60a及び第2振動腕部60bは、基部50から+Y´軸方向(第1方向D1正方向)に互いに並行に延出している。一対の振動腕部を構成する第1振動腕部60a及び第2振動腕部60bはX軸方向に並んでいる。第1振動腕部60aは、第2振動腕部60bの+X軸方向(第2方向D2正方向)側に設けられている。図3及び図4に示すように、第1振動腕部60aは、腕部62a及び錘部64aを有し、第2振動腕部60bは、腕部62b及び錘部64bを有している。腕部62a及び腕部62bは、基部50に接続されている。錘部64a及び錘部64bは、それぞれ、腕部62a及び腕部62bの基部50に接続された端部とは反対側の端部に接続されている。つまり、水晶片11の第1主面12Aを平面視したとき、水晶片11の外形は、基部50と一対の第1振動腕部60a及び第2振動腕部60bとによって、略U字状に設けられている。 Next, the first vibrating
The first vibrating
第1振動腕部60aの腕部62aには、第1主面12A側及び第2主面12B側に開口する有底の溝部63aが形成されている。第2振動腕部60bの腕部62bには、第1主面12A側及び第2主面12B側に開口する有底の溝部63bが形成されている。溝部63a及び溝部63bは、Y´軸方向(第1方向D1)に沿って延在している。図3及び図4に示すように、溝部63aの先端(基部50側とは反対側の端)は、腕部62aと錘部64aとの境界に位置し、溝部63aの基端(基部50側の端)は、基部50と腕部62aとの境界に位置している。溝部63bの先端及び基端も同様である。腕部62a及び腕部62bは、図5に示すように、略H字状の断面形状を有している。このように溝部63a及び溝部63bを設けることで、音叉型水晶振動素子10では、第1振動腕部60a及び第2振動腕部60bの動きやすさが向上され、第1振動腕部60a及び第2振動腕部60bから基部50への振動漏れが抑制できる。また、音叉型水晶振動素子10の等価直列抵抗、CI(Crystal Impedance)値が小さくでき、消費電力が低減できる。なお、溝部63a及び溝部63bの長さは特に限定されるものではなく、それぞれ、錘部64a及び錘部64bにも形成されてもよく、基部50にも形成されてもよい。
The arm portion 62a of the first vibrating arm portion 60a has a bottomed groove portion 63a that opens to the first main surface 12A side and the second main surface 12B side. The arm portion 62b of the second vibrating arm portion 60b is formed with a bottomed groove portion 63b that opens to the first main surface 12A side and the second main surface 12B side. The groove 63a and the groove 63b extend along the Y′-axis direction (first direction D1). As shown in FIGS. 3 and 4, the tip of the groove 63a (the end opposite to the base 50 side) is located at the boundary between the arm 62a and the weight 64a, and the base end (base 50 side) of the groove 63a. Is positioned at the boundary between the base portion 50 and the arm portion 62a. The same applies to the distal end and the proximal end of the groove 63b. As shown in FIG. 5, the arm part 62a and the arm part 62b have a substantially H-shaped cross-sectional shape. By providing the groove 63a and the groove 63b as described above, in the tuning fork type crystal resonator element 10, the ease of movement of the first vibrating arm 60a and the second vibrating arm 60b is improved, and the first vibrating arm 60a and the first vibrating arm 60a 2 Vibration leakage from the vibrating arm portion 60b to the base portion 50 can be suppressed. Further, the equivalent series resistance and CI (Crystal Impedance) value of the tuning fork type crystal resonator element 10 can be reduced, and the power consumption can be reduced. In addition, the length of the groove part 63a and the groove part 63b is not specifically limited, Each may be formed also in the weight part 64a and the weight part 64b, and may be formed also in the base part 50, respectively.
第1振動腕部60aの錘部64aは、略平板状の形状を有している。図3及び図4に示すように、錘部64aのX軸方向(第2方向D2)に沿った幅W1は、腕部62aのX軸方向(第2方向D2)に沿った幅W2よりも大きい。幅W2に対する幅W1の比(W1/W2)は、2以上10以下であることが望ましく、5以上7以下であることがさらに望ましい。第2振動腕部60bの錘部64bについても同様である。これにより、音叉型水晶振動素子10では、屈曲振動する水晶振動素子の圧縮部と伸張部との間で発生する熱伝導により生じる振動エネルギの損失などに起因する熱弾性損失が低減でき、さらに錘部64a及び錘部64bの捻じれなどに起因する振動漏れが抑制できる。
The weight portion 64a of the first vibrating arm portion 60a has a substantially flat plate shape. As shown in FIGS. 3 and 4, the width W1 along the X-axis direction (second direction D2) of the weight portion 64a is larger than the width W2 along the X-axis direction (second direction D2) of the arm portion 62a. large. The ratio of the width W1 to the width W2 (W1 / W2) is preferably 2 or more and 10 or less, and more preferably 5 or more and 7 or less. The same applies to the weight portion 64b of the second vibrating arm portion 60b. As a result, the tuning fork type crystal resonator element 10 can reduce the thermoelastic loss due to the loss of vibration energy caused by the heat conduction generated between the compression portion and the extension portion of the crystal resonator element that flexes and vibrates. Vibration leakage caused by twisting of the portion 64a and the weight portion 64b can be suppressed.
なお、錘部は、腕部よりも単位長さ当たりの質量が大きければ、その形状を上記に限定されるものではない。例えば、錘部は、腕部の幅と同じ大きさの幅を有しており、腕部よりも厚い形状であってもよい。また、錘部は、錘部に該当する振動腕の表面や、凹部を形成してそこに金などの金属を設けることによって構成されていてもよい。さらに、錘部は、腕部よりも質量密度の高い物質から構成されていてもよい。
Note that the shape of the weight portion is not limited to the above as long as the mass per unit length is larger than that of the arm portion. For example, the weight part may have a width that is the same as the width of the arm part and may be thicker than the arm part. Further, the weight portion may be configured by forming a surface of a vibrating arm corresponding to the weight portion or a concave portion and providing a metal such as gold there. Furthermore, the weight portion may be made of a material having a mass density higher than that of the arm portion.
次に、支持腕部70について説明する。
支持腕部70は、基部50から+Y´軸方向(第1方向D1正方向)に延出しており、第1振動腕部60aと第2振動腕部60bとの間に設けられている。支持腕部70、第1振動腕部60a、及び第2振動腕部60bは、X軸方向に沿って互いに並んでいる。支持腕部70のY´軸方向に沿った長さは、第1振動腕部60a及び第2振動腕部60bのY´軸方向に沿った長さよりも小さい。図3及び図4に示すように、支持腕部70の先端は、錘部64a及び錘部64bよりも基部50側に位置している。これによれば、音叉型水晶振動素子10では、錘部64a及び錘部64bが支持腕部70に接触することに起因した振動特性の劣化が抑制できる。 Next, thesupport arm part 70 will be described.
Thesupport arm portion 70 extends in the + Y′-axis direction (first direction D1 positive direction) from the base portion 50, and is provided between the first vibrating arm portion 60a and the second vibrating arm portion 60b. The support arm portion 70, the first vibrating arm portion 60a, and the second vibrating arm portion 60b are aligned with each other along the X-axis direction. The length of the support arm 70 along the Y′-axis direction is smaller than the length of the first vibrating arm 60 a and the second vibrating arm 60 b along the Y′-axis. As shown in FIGS. 3 and 4, the distal end of the support arm portion 70 is located closer to the base portion 50 than the weight portion 64a and the weight portion 64b. According to this, in the tuning fork type crystal resonator element 10, it is possible to suppress deterioration of vibration characteristics due to the weight portion 64 a and the weight portion 64 b coming into contact with the support arm portion 70.
支持腕部70は、基部50から+Y´軸方向(第1方向D1正方向)に延出しており、第1振動腕部60aと第2振動腕部60bとの間に設けられている。支持腕部70、第1振動腕部60a、及び第2振動腕部60bは、X軸方向に沿って互いに並んでいる。支持腕部70のY´軸方向に沿った長さは、第1振動腕部60a及び第2振動腕部60bのY´軸方向に沿った長さよりも小さい。図3及び図4に示すように、支持腕部70の先端は、錘部64a及び錘部64bよりも基部50側に位置している。これによれば、音叉型水晶振動素子10では、錘部64a及び錘部64bが支持腕部70に接触することに起因した振動特性の劣化が抑制できる。 Next, the
The
支持腕部70は、保持部74と、基部50と保持部74とを連結する連結部72と、を有している。支持腕部70の主面70Aを平面視したとき、連結部72及び保持部74はY´軸方向(第1方向D1)に並んでいる。つまり、支持腕部70は、先端部に保持部74を有し、基端部に連結部72を有している。
The support arm portion 70 includes a holding portion 74 and a connecting portion 72 that connects the base portion 50 and the holding portion 74. When the main surface 70A of the support arm 70 is viewed in plan, the connecting portion 72 and the holding portion 74 are arranged in the Y′-axis direction (first direction D1). That is, the support arm portion 70 has the holding portion 74 at the distal end portion and the connecting portion 72 at the proximal end portion.
支持腕部70は、Z´軸方向(第3方向D3)で互いに対向する主面70A及び主面70Bを有している。また、支持腕部70は、主面70Aと主面70Bとを繋ぎ、X軸方向(第2方向D2)で互いに対向する側面70C及び側面70Dを有している。主面70Aは、水晶片11の第1主面12Aの一部に相当し、主面70Bは、水晶片11の第2主面12Bの一部に相当する。主面70A及び主面70Bは、連結部72及び保持部74に亘って設けられている。側面70Cは、第1振動腕部60a側に位置し、側面70Dは、第2振動腕部60b側に位置している。保持部74は、第1振動腕部60a側において主面70Aと主面70Bとを繋ぐ側面74Cと、第2振動腕部60b側において主面70Aと主面70Bとを繋ぐ側面74Dと、を有している。連結部72は、第1振動腕部60a側において主面70Aと主面70Bとを繋ぐ側面72Cと、第2振動腕部60b側において主面70Aと主面70Bとを繋ぐ側面72Dと、を有している。つまり、保持部74の側面74Cは、支持腕部70の側面70Cの一部であり、連結部72の側面72Cは、支持腕部70の側面70Cの一部である。保持部74の側面74Dは、支持腕部70の側面70Dの一部であり、連結部72の側面72Dは、支持腕部70の側面70Dの一部である。
The support arm portion 70 has a main surface 70A and a main surface 70B that face each other in the Z′-axis direction (third direction D3). The support arm portion 70 has a side surface 70C and a side surface 70D that connect the main surface 70A and the main surface 70B and face each other in the X-axis direction (second direction D2). The main surface 70A corresponds to a part of the first main surface 12A of the crystal piece 11, and the main surface 70B corresponds to a part of the second main surface 12B of the crystal piece 11. 70 A of main surfaces and 70 B of main surfaces are provided over the connection part 72 and the holding | maintenance part 74. As shown in FIG. The side surface 70C is located on the first vibrating arm portion 60a side, and the side surface 70D is located on the second vibrating arm portion 60b side. The holding portion 74 includes a side surface 74C that connects the main surface 70A and the main surface 70B on the first vibrating arm portion 60a side, and a side surface 74D that connects the main surface 70A and the main surface 70B on the second vibrating arm portion 60b side. Have. The connecting portion 72 includes a side surface 72C that connects the main surface 70A and the main surface 70B on the first vibrating arm portion 60a side, and a side surface 72D that connects the main surface 70A and the main surface 70B on the second vibrating arm portion 60b side. Have. That is, the side surface 74 </ b> C of the holding portion 74 is a part of the side surface 70 </ b> C of the support arm portion 70, and the side surface 72 </ b> C of the connecting portion 72 is a part of the side surface 70 </ b> C of the support arm portion 70. The side surface 74D of the holding portion 74 is a part of the side surface 70D of the support arm portion 70, and the side surface 72D of the connecting portion 72 is a part of the side surface 70D of the support arm portion 70.
次に、第1励振電極82a及び第2励振電極82bについて説明する。
第1励振電極82a及び第2励振電極82bは、供給された印加電圧によって第1振動腕部60a及び第2振動腕部60b中に電場を形成し、圧電効果によって第1振動腕部60a及び第2振動腕部60bを励振させる。 Next, thefirst excitation electrode 82a and the second excitation electrode 82b will be described.
Thefirst excitation electrode 82a and the second excitation electrode 82b form an electric field in the first vibration arm portion 60a and the second vibration arm portion 60b by the supplied applied voltage, and the first vibration arm portion 60a and the second vibration electrode portion 60b by the piezoelectric effect. The two vibrating arms 60b are excited.
第1励振電極82a及び第2励振電極82bは、供給された印加電圧によって第1振動腕部60a及び第2振動腕部60b中に電場を形成し、圧電効果によって第1振動腕部60a及び第2振動腕部60bを励振させる。 Next, the
The
第1励振電極82a及び第2励振電極82bは、図3及び図4に示すように、第1振動腕部60a及び第2振動腕部60bに設けられている。図5に示すように、第1振動腕部60aの腕部62aにおいて、第1励振電極82aは、溝部63aの内部における腕部62aの表面に設けられている。また、第2励振電極82bは、X軸方向(第2方向D2)において第1励振電極82aと対向するように、腕部62aの外側の側面に設けられている。第2振動腕部60bの腕部62bでは、第2励振電極82bが溝部63bの内部における腕部62bの表面に設けられ、第1励振電極82aが腕部62bの外側の側面に設けられている。また、図3及び図4に示すように、第1振動腕部60aの錘部64aの第1主面12A及び第2主面12Bには、第2励振電極82bが設けられている。第2振動腕部60bの錘部64bの第1主面12A及び第2主面12Bには、第1励振電極82aが設けられている。
1st excitation electrode 82a and 2nd excitation electrode 82b are provided in the 1st vibration arm part 60a and the 2nd vibration arm part 60b, as shown in FIG.3 and FIG.4. As shown in FIG. 5, in the arm portion 62a of the first vibrating arm portion 60a, the first excitation electrode 82a is provided on the surface of the arm portion 62a inside the groove portion 63a. The second excitation electrode 82b is provided on the outer side surface of the arm portion 62a so as to face the first excitation electrode 82a in the X-axis direction (second direction D2). In the arm portion 62b of the second vibrating arm portion 60b, the second excitation electrode 82b is provided on the surface of the arm portion 62b inside the groove portion 63b, and the first excitation electrode 82a is provided on the outer side surface of the arm portion 62b. . Further, as shown in FIGS. 3 and 4, the second excitation electrode 82b is provided on the first main surface 12A and the second main surface 12B of the weight portion 64a of the first vibrating arm portion 60a. A first excitation electrode 82a is provided on the first main surface 12A and the second main surface 12B of the weight portion 64b of the second vibrating arm portion 60b.
次に、第1引出電極84a及び第2引出電極84bについて説明する。
第1引出電極84aは、第1振動腕部60aに設けられた第1励振電極82aと、第2振動腕部60bに設けられた第1励振電極82aと、を電気的に接続している。さらに、第1引出電極84aは、第1励振電極82aと第1接続電極86aとを電気的に接続している。第2引出電極84bは、第1振動腕部60aに設けられた第2励振電極82bと、第2振動腕部60bに設けられた第2励振電極82bと、を電気的に接続している。さらに、第2引出電極84bは、第2励振電極82bと第2接続電極86bとを電気的に接続している。 Next, thefirst extraction electrode 84a and the second extraction electrode 84b will be described.
Thefirst extraction electrode 84a electrically connects the first excitation electrode 82a provided on the first vibrating arm 60a and the first excitation electrode 82a provided on the second vibrating arm 60b. Further, the first extraction electrode 84a electrically connects the first excitation electrode 82a and the first connection electrode 86a. The second extraction electrode 84b electrically connects the second excitation electrode 82b provided on the first vibrating arm 60a and the second excitation electrode 82b provided on the second vibrating arm 60b. Further, the second extraction electrode 84b electrically connects the second excitation electrode 82b and the second connection electrode 86b.
第1引出電極84aは、第1振動腕部60aに設けられた第1励振電極82aと、第2振動腕部60bに設けられた第1励振電極82aと、を電気的に接続している。さらに、第1引出電極84aは、第1励振電極82aと第1接続電極86aとを電気的に接続している。第2引出電極84bは、第1振動腕部60aに設けられた第2励振電極82bと、第2振動腕部60bに設けられた第2励振電極82bと、を電気的に接続している。さらに、第2引出電極84bは、第2励振電極82bと第2接続電極86bとを電気的に接続している。 Next, the
The
第1引出電極84a及び第2引出電極84bは、基部50及び支持腕部70に設けられている。基部50において、第1引出電極84a及び第2引出電極84bは、第1主面12A及び第2主面12Bの両方に設けられている。また、図3及び図4において図示を省略しているが、第1引出電極84a及び第2引出電極84bは、基部50の第1主面12Aと第2主面12Bとを繋ぐ側面にも設けられている。つまり、第1引出電極84aは、基部50の側面に設けられた部分によって、基部50の第1主面12Aに設けられた部分と、基部50の第2主面12Bに設けられた部分と、が電気的に接続されている。同様に、第2引出電極84bは、基部50の側面に設けられた部分によって、基部50の第1主面12Aに設けられた部分と、基部50の第2主面12Bに設けられた部分と、が電気的に接続されている。
The first extraction electrode 84 a and the second extraction electrode 84 b are provided on the base 50 and the support arm 70. In the base 50, the first extraction electrode 84a and the second extraction electrode 84b are provided on both the first main surface 12A and the second main surface 12B. Although not shown in FIGS. 3 and 4, the first extraction electrode 84a and the second extraction electrode 84b are also provided on the side surface connecting the first main surface 12A and the second main surface 12B of the base 50. It has been. That is, the first extraction electrode 84a includes a portion provided on the first main surface 12A of the base 50, a portion provided on the second main surface 12B of the base 50, and a portion provided on the side surface of the base 50. Are electrically connected. Similarly, the second extraction electrode 84b includes a portion provided on the first main surface 12A of the base portion 50 and a portion provided on the second main surface 12B of the base portion 50 by a portion provided on the side surface of the base portion 50. , Are electrically connected.
支持腕部70において、第1引出電極84aは、側面70Cに設けられ、第2引出電極84bは、側面70Dに設けられている。第1引出電極84aは、例えば基部50の第1主面12Aから支持腕部70の側面70Cに亘って延在し、連結部72の側面72C及び保持部74の側面74Cに設けられている。第2引出電極84bは、例えば基部50の第2主面12Bから支持腕部70の側面70Dに亘って延在し、連結部72の側面72D及び保持部74の側面74Dに設けられている。支持腕部70において、第2引出電極84bの第1方向D1に沿った長さは、第1引出電極84aの第1方向D1に沿った長さよりも大きい。言い換えると、第1引出電極84aは、保持部74の基端部、すなわち保持部74の基部50側の端部まで延在している。第2引出電極84bは、保持部74の先端部、すなわち保持部74の錘部64a,64b側の端部まで延在している。なお、第1引出電極84a及び第2引出電極84bは、支持腕部70の異なる側面にそれぞれ設けられていれば上記に限定されるものではない。第1引出電極84aが側面70Dに設けられ、第2引出電極84bが側面70Cに設けられてもよい。
In the support arm portion 70, the first extraction electrode 84a is provided on the side surface 70C, and the second extraction electrode 84b is provided on the side surface 70D. The first extraction electrode 84a extends, for example, from the first main surface 12A of the base portion 50 to the side surface 70C of the support arm portion 70, and is provided on the side surface 72C of the coupling portion 72 and the side surface 74C of the holding portion 74. The second extraction electrode 84b extends, for example, from the second main surface 12B of the base portion 50 to the side surface 70D of the support arm portion 70, and is provided on the side surface 72D of the connecting portion 72 and the side surface 74D of the holding portion 74. In the support arm portion 70, the length of the second extraction electrode 84b along the first direction D1 is larger than the length of the first extraction electrode 84a along the first direction D1. In other words, the first extraction electrode 84 a extends to the proximal end portion of the holding portion 74, that is, the end portion of the holding portion 74 on the base portion 50 side. The second extraction electrode 84b extends to the distal end portion of the holding portion 74, that is, the end portion of the holding portion 74 on the weight portions 64a and 64b side. The first extraction electrode 84a and the second extraction electrode 84b are not limited to the above as long as they are provided on different side surfaces of the support arm portion 70, respectively. The first extraction electrode 84a may be provided on the side surface 70D, and the second extraction electrode 84b may be provided on the side surface 70C.
次に、第1接続電極86a及び第2接続電極86bについて説明する。
第1接続電極86a及び第2接続電極86bには、印加電位が互いに異なる一対の駆動信号が外部から供給される。一方の駆動信号は、第1接続電極86aから第1引出電極84aを通して第1励振電極82aに供給される。当該一方の駆動信号と対を成す他方の駆動信号は、第2接続電極86bから第2引出電極84bを通して第2励振電極82bに供給される。 Next, thefirst connection electrode 86a and the second connection electrode 86b will be described.
A pair of drive signals having different applied potentials are supplied to thefirst connection electrode 86a and the second connection electrode 86b from the outside. One drive signal is supplied from the first connection electrode 86a to the first excitation electrode 82a through the first extraction electrode 84a. The other drive signal paired with the one drive signal is supplied from the second connection electrode 86b to the second excitation electrode 82b through the second extraction electrode 84b.
第1接続電極86a及び第2接続電極86bには、印加電位が互いに異なる一対の駆動信号が外部から供給される。一方の駆動信号は、第1接続電極86aから第1引出電極84aを通して第1励振電極82aに供給される。当該一方の駆動信号と対を成す他方の駆動信号は、第2接続電極86bから第2引出電極84bを通して第2励振電極82bに供給される。 Next, the
A pair of drive signals having different applied potentials are supplied to the
第1接続電極86a及び第2接続電極86bは、支持腕部70の主面70A(第1主面12A)に設けられている。第1接続電極86a及び第2接続電極86bは、支持腕部70の保持部74に設けられている。第1接続電極86a及び第2接続電極86bは、Y´軸方向(第1方向D1)に沿って並んでいる。第1接続電極86aは、保持部74の基端部に位置している。第2接続電極86bは、保持部74の先端部に位置している。支持腕部70の主面70Aを平面視したとき、第1接続電極86aは、第2接続電極86bと連結部72との間に位置している。
The first connection electrode 86a and the second connection electrode 86b are provided on the main surface 70A (first main surface 12A) of the support arm portion 70. The first connection electrode 86 a and the second connection electrode 86 b are provided on the holding portion 74 of the support arm portion 70. The first connection electrode 86a and the second connection electrode 86b are arranged along the Y′-axis direction (first direction D1). The first connection electrode 86 a is located at the proximal end portion of the holding portion 74. The second connection electrode 86 b is located at the tip of the holding part 74. When the main surface 70 </ b> A of the support arm 70 is viewed in plan, the first connection electrode 86 a is located between the second connection electrode 86 b and the coupling portion 72.
図3に示すように、第1接続電極86aのX軸方向(第2方向D2)に沿った幅は、保持部74のX軸方向(第2方向D2)に沿った幅と略等しい。第2接続電極86bは、第1方向D1において第1接続電極86a及び第1引出電極84aから離れており短絡の恐れがないため、第2接続電極86bのX軸方向(第2方向D2)に沿った幅は、保持部74のX軸方向(第2方向D2)に沿った幅と略等しくてもよい。例えば、第1接続電極86a及び第2接続電極86bは、第1主面12Aを平面視したとき、略四角形状である。これによれば、音叉型水晶振動素子10が小型化したとしても、音叉型水晶振動素子10の接続電極86a,86bと、後述する導電性保持部材36a,36bとの接合面積の低減が抑制できる。すなわち、音叉型水晶振動素子10の小型化にともなって発生していた、ベース部材30に対する音叉型水晶振動素子10の接合強度の低下が抑制できる。また、音叉型水晶振動素子10とベース部材30との電気的接続の安定性が増加する。
As shown in FIG. 3, the width of the first connection electrode 86a along the X-axis direction (second direction D2) is substantially equal to the width of the holding portion 74 along the X-axis direction (second direction D2). Since the second connection electrode 86b is separated from the first connection electrode 86a and the first extraction electrode 84a in the first direction D1 and there is no fear of a short circuit, the second connection electrode 86b extends in the X-axis direction (second direction D2). The width along may be substantially equal to the width along the X-axis direction (second direction D2) of the holding portion 74. For example, the first connection electrode 86a and the second connection electrode 86b have a substantially rectangular shape when the first main surface 12A is viewed in plan. According to this, even if the tuning fork type crystal resonator element 10 is downsized, it is possible to suppress a reduction in the bonding area between the connection electrodes 86a and 86b of the tuning fork type crystal resonator element 10 and conductive holding members 36a and 36b described later. . In other words, it is possible to suppress a decrease in the bonding strength of the tuning fork type quartz vibrating element 10 to the base member 30 which has occurred with the downsizing of the tuning fork type quartz vibrating element 10. Further, the stability of the electrical connection between the tuning fork type crystal resonator element 10 and the base member 30 is increased.
なお、第1接続電極及び第2接続電極は、支持腕部の主面から側面に亘って延在してもよい。これによれば、音叉型水晶振動素子のベース部材との接合強度がさらに向上し、音叉型水晶振動素子とベース部材との電気的接続の安定性がさらに増加する。
The first connection electrode and the second connection electrode may extend from the main surface to the side surface of the support arm portion. According to this, the bonding strength between the tuning fork type crystal resonator element and the base member is further improved, and the stability of the electrical connection between the tuning fork type crystal resonator element and the base member is further increased.
次に、蓋部材20について説明する。
蓋部材20の形状は、凹状をなしており、ベース部材30の第3主面32Aに向かって開口した箱状である。ベース部材30に接合されて蓋部材20及びベース部材30に囲まれた内部空間26が蓋部材20に設けられる。この内部空間26に音叉型水晶振動素子10が収容される。蓋部材20の形状は、例えば、第1方向D1に平行な長辺と、第2方向D2に平行な短辺と、第3方向D3に平行な高さとで定義される。蓋部材20の材質は特に限定されるものではないが、例えば金属などの導電性材料で構成される。導電性材料を含むことで、蓋部材20の内部空間26へ出入りする電磁波の少なくとも一部を遮蔽する電磁シールド機能が得られる。 Next, thelid member 20 will be described.
The shape of thelid member 20 has a concave shape and is a box shape opened toward the third main surface 32A of the base member 30. An inner space 26 joined to the base member 30 and surrounded by the lid member 20 and the base member 30 is provided in the lid member 20. The tuning fork type crystal resonator element 10 is accommodated in the internal space 26. The shape of the lid member 20 is defined by, for example, a long side parallel to the first direction D1, a short side parallel to the second direction D2, and a height parallel to the third direction D3. The material of the lid member 20 is not particularly limited, but is made of a conductive material such as metal. By including the conductive material, an electromagnetic shielding function for shielding at least a part of the electromagnetic waves entering and leaving the internal space 26 of the lid member 20 is obtained.
蓋部材20の形状は、凹状をなしており、ベース部材30の第3主面32Aに向かって開口した箱状である。ベース部材30に接合されて蓋部材20及びベース部材30に囲まれた内部空間26が蓋部材20に設けられる。この内部空間26に音叉型水晶振動素子10が収容される。蓋部材20の形状は、例えば、第1方向D1に平行な長辺と、第2方向D2に平行な短辺と、第3方向D3に平行な高さとで定義される。蓋部材20の材質は特に限定されるものではないが、例えば金属などの導電性材料で構成される。導電性材料を含むことで、蓋部材20の内部空間26へ出入りする電磁波の少なくとも一部を遮蔽する電磁シールド機能が得られる。 Next, the
The shape of the
蓋部材20は、ベース部材30の第3主面32Aに対向する天面部21と、天面部21の外縁に接続されており且つ天面部21の主面に対して交差する方向に延在する側壁部22と、を有する。音叉型水晶振動素子10を収容することができれば蓋部材20の形状は特に限定されるものではない。例えば、天面部21の主面の法線方向から平面視したときに略矩形状をなしている。図2に示すように、蓋部材20は、内面24及び外面25を有している。内面24は、内部空間26側の面であり、外面25は、内面24とは反対側の面である。また、蓋部材20は、凹状の開口端部、すなわち側壁部22のベース部材30に近い側の端部において、ベース部材30の第3主面32Aに対向する対向面23を有する。この対向面23は、音叉型水晶振動素子10の周囲を囲むように枠状に延在している。
The lid member 20 is connected to the top surface portion 21 facing the third main surface 32A of the base member 30 and the outer edge of the top surface portion 21 and extends in a direction intersecting the main surface of the top surface portion 21. Part 22. The shape of the lid member 20 is not particularly limited as long as the tuning fork type crystal resonator element 10 can be accommodated. For example, it has a substantially rectangular shape when viewed from the normal direction of the main surface of the top surface portion 21. As shown in FIG. 2, the lid member 20 has an inner surface 24 and an outer surface 25. The inner surface 24 is a surface on the inner space 26 side, and the outer surface 25 is a surface opposite to the inner surface 24. The lid member 20 has a facing surface 23 that faces the third main surface 32 </ b> A of the base member 30 at the concave opening end, that is, the end of the side wall 22 near the base member 30. The facing surface 23 extends in a frame shape so as to surround the periphery of the tuning fork type crystal resonator element 10.
次に、ベース部材30について説明する。
ベース部材30は、音叉型水晶振動素子10を励振可能に保持するものである。ベース部材30は平板状をなしている。ベース部材30は、第1方向D1方向に平行な長辺と、第2方向D2に平行な短辺と、第3方向D3に平行な厚さとを有する。ベース部材30は基体31を有する。基体31は、互いに対向する第3主面32A(表面)及び第4主面32B(裏面)を有する。基体31は、絶縁性セラミックなどの焼結材である。具体的には、ベース部材30は、基体31としてアルミナを用いている。基体31は、耐熱性材料から構成されることが好ましい。熱履歴によって音叉型水晶振動素子10にかかる応力を抑制する観点から、基体31は、水晶片11に近い熱膨張率を有する材料によって設けられてもよく、例えば水晶によって設けられてもよい。 Next, thebase member 30 will be described.
Thebase member 30 holds the tuning-fork type crystal resonator element 10 so that it can be excited. The base member 30 has a flat plate shape. The base member 30 has a long side parallel to the first direction D1, a short side parallel to the second direction D2, and a thickness parallel to the third direction D3. The base member 30 has a base 31. The base 31 has a third main surface 32A (front surface) and a fourth main surface 32B (back surface) that face each other. The base 31 is a sintered material such as an insulating ceramic. Specifically, the base member 30 uses alumina as the base 31. The base 31 is preferably made of a heat resistant material. From the viewpoint of suppressing the stress applied to the tuning fork type crystal resonator element 10 by the thermal history, the base 31 may be provided by a material having a thermal expansion coefficient close to that of the crystal piece 11, and may be provided by, for example, crystal.
ベース部材30は、音叉型水晶振動素子10を励振可能に保持するものである。ベース部材30は平板状をなしている。ベース部材30は、第1方向D1方向に平行な長辺と、第2方向D2に平行な短辺と、第3方向D3に平行な厚さとを有する。ベース部材30は基体31を有する。基体31は、互いに対向する第3主面32A(表面)及び第4主面32B(裏面)を有する。基体31は、絶縁性セラミックなどの焼結材である。具体的には、ベース部材30は、基体31としてアルミナを用いている。基体31は、耐熱性材料から構成されることが好ましい。熱履歴によって音叉型水晶振動素子10にかかる応力を抑制する観点から、基体31は、水晶片11に近い熱膨張率を有する材料によって設けられてもよく、例えば水晶によって設けられてもよい。 Next, the
The
ベース部材30は、第3主面32Aに設けられた第1電極パッド33a及び第2電極パッド33bと、第4主面32Bに設けられた第1外部電極35a及び第2外部電極35bと、を有する。第1電極パッド33a及び第2電極パッド33bは、ベース部材30と音叉型水晶振動素子10とを電気的に接続するための端子である。また、第1外部電極35a及び第2外部電極35bは、図示しない回路基板と音叉型水晶振動子1とを電気的に接続するための端子である。第1電極パッド33a及び第2電極パッド33bは、第1方向D1に沿って並んでいる。第1外部電極35a及び第2外部電極35bは、第1方向D1に沿って並んでいる。第1電極パッド33aは、第3方向D3に延在する第1ビア電極34aを介して第1外部電極35aに電気的に接続され、第1方向D1に沿って延在している。第2電極パッド33bは、第3方向D3に延在する第2ビア電極34bを介して第2外部電極35bに電気的に接続され、第1方向D1に沿って延在している。第1ビア電極34a及び第2ビア電極34bは、基体31を第3方向D3に貫通するビアホール内に形成される。なお、ベース部材30の第4主面32B側には、外部電極として、電気信号等が入出力されないダミー電極、蓋部材20に接地電位を供給して蓋部材20の電磁シールド機能を向上させる接地電極、等が設けられてもよい。
The base member 30 includes a first electrode pad 33a and a second electrode pad 33b provided on the third main surface 32A, and a first external electrode 35a and a second external electrode 35b provided on the fourth main surface 32B. Have. The first electrode pad 33 a and the second electrode pad 33 b are terminals for electrically connecting the base member 30 and the tuning fork type crystal vibrating element 10. The first external electrode 35 a and the second external electrode 35 b are terminals for electrically connecting a circuit board (not shown) and the tuning fork type crystal resonator 1. The first electrode pad 33a and the second electrode pad 33b are arranged along the first direction D1. The first external electrode 35a and the second external electrode 35b are arranged along the first direction D1. The first electrode pad 33a is electrically connected to the first external electrode 35a via the first via electrode 34a extending in the third direction D3, and extends along the first direction D1. The second electrode pad 33b is electrically connected to the second external electrode 35b via the second via electrode 34b extending in the third direction D3, and extends along the first direction D1. The first via electrode 34a and the second via electrode 34b are formed in a via hole that penetrates the base 31 in the third direction D3. Note that the fourth main surface 32B side of the base member 30 is a dummy electrode as an external electrode through which an electric signal or the like is not input / output, and grounding that improves the electromagnetic shielding function of the lid member 20 by supplying a ground potential to the lid member 20. An electrode or the like may be provided.
次に、第1導電性保持部材36a及び第2導電性保持部材36bについて説明する。
第1導電性保持部材36a及び第2導電性保持部材36bは、ベース部材30の第3主面32Aと支持腕部70の主面70Aとの間に設けられている。第1導電性保持部材36aは、第1接続電極86aと第1電極パッド33aとを電気的に接続している。第2導電性保持部材36bは、第2接続電極86bと第2電極パッド33bとを電気的に接続している。また、第1導電性保持部材36a及び第2導電性保持部材36bは、第1振動腕部60a及び第2振動腕部60bが励振可能となるように、ベース部材30から間隔を空けて音叉型水晶振動素子10を保持している。第1導電性保持部材36a及び第2導電性保持部材36bは、例えば、エポキシ系樹脂あるいはシリコーン系樹脂を主剤とする熱硬化樹脂や紫外線硬化樹脂等を含む導電性接着剤によって構成されており、接着剤に導電性を与えるための導電性粒子、などの添加剤を含んでいる。第1導電性保持部材36a及び第2導電性保持部材36bは、前駆体である導電性接着剤ペーストが塗布された後に、加熱、紫外線照射などによって引き起こされる化学反応によって導電性接着剤ペーストを硬化させて設けられる。さらに、強度を増加させる目的、あるいはベース部材30と音叉型水晶振動素子10との間隔を保つ目的で、第1導電性保持部材36a及び第2導電性保持部材36bにフィラーが添加されてもよい。当該フィラーは、セラミックス、樹脂などによって形成された球状フィラーや繊維状フィラーであり、例えば導電性粒子よりも大きい。また、当該フィラーは、導電性を有してもよく、例えば金属フィラーであってもよい。なお、第1導電性保持部材36a及び第2導電性保持部材36bは、金属半田によって設けられてもよい。 Next, the first conductive holdingmember 36a and the second conductive holding member 36b will be described.
The first conductive holdingmember 36 a and the second conductive holding member 36 b are provided between the third main surface 32 A of the base member 30 and the main surface 70 A of the support arm portion 70. The first conductive holding member 36a electrically connects the first connection electrode 86a and the first electrode pad 33a. The second conductive holding member 36b electrically connects the second connection electrode 86b and the second electrode pad 33b. Further, the first conductive holding member 36a and the second conductive holding member 36b are tuned fork-type spaced apart from the base member 30 so that the first vibrating arm portion 60a and the second vibrating arm portion 60b can be excited. The crystal resonator element 10 is held. The first conductive holding member 36a and the second conductive holding member 36b are made of, for example, a conductive adhesive containing a thermosetting resin or an ultraviolet curable resin mainly composed of an epoxy resin or a silicone resin, Additives such as conductive particles for imparting conductivity to the adhesive are included. The first conductive holding member 36a and the second conductive holding member 36b cure the conductive adhesive paste by a chemical reaction caused by heating, ultraviolet irradiation or the like after the conductive adhesive paste as a precursor is applied. Provided. Furthermore, a filler may be added to the first conductive holding member 36a and the second conductive holding member 36b for the purpose of increasing the strength or maintaining the distance between the base member 30 and the tuning fork type crystal vibrating element 10. . The filler is a spherical filler or a fibrous filler formed of ceramics, resin or the like, and is larger than, for example, conductive particles. Moreover, the said filler may have electroconductivity, for example, a metal filler may be sufficient. The first conductive holding member 36a and the second conductive holding member 36b may be provided by metal solder.
第1導電性保持部材36a及び第2導電性保持部材36bは、ベース部材30の第3主面32Aと支持腕部70の主面70Aとの間に設けられている。第1導電性保持部材36aは、第1接続電極86aと第1電極パッド33aとを電気的に接続している。第2導電性保持部材36bは、第2接続電極86bと第2電極パッド33bとを電気的に接続している。また、第1導電性保持部材36a及び第2導電性保持部材36bは、第1振動腕部60a及び第2振動腕部60bが励振可能となるように、ベース部材30から間隔を空けて音叉型水晶振動素子10を保持している。第1導電性保持部材36a及び第2導電性保持部材36bは、例えば、エポキシ系樹脂あるいはシリコーン系樹脂を主剤とする熱硬化樹脂や紫外線硬化樹脂等を含む導電性接着剤によって構成されており、接着剤に導電性を与えるための導電性粒子、などの添加剤を含んでいる。第1導電性保持部材36a及び第2導電性保持部材36bは、前駆体である導電性接着剤ペーストが塗布された後に、加熱、紫外線照射などによって引き起こされる化学反応によって導電性接着剤ペーストを硬化させて設けられる。さらに、強度を増加させる目的、あるいはベース部材30と音叉型水晶振動素子10との間隔を保つ目的で、第1導電性保持部材36a及び第2導電性保持部材36bにフィラーが添加されてもよい。当該フィラーは、セラミックス、樹脂などによって形成された球状フィラーや繊維状フィラーであり、例えば導電性粒子よりも大きい。また、当該フィラーは、導電性を有してもよく、例えば金属フィラーであってもよい。なお、第1導電性保持部材36a及び第2導電性保持部材36bは、金属半田によって設けられてもよい。 Next, the first conductive holding
The first conductive holding
次に、封止部材37及び接合部材40について説明する。
ベース部材30の第3主面32Aには、封止部材37が設けられている。封止部材37は、接合部材40よりも基体31との密着性が良好であり、蓋部材20とベース部材30との接合強度を向上させるために設けられている。図1に示す例では、封止部材37の形状は、第3主面32Aを平面視したときに矩形の枠状である。また、第3主面32Aを平面視したときに、封止部材37が音叉型水晶振動素子10を囲むように設けられており、第1電極パッド33a及び第2電極パッド33bが封止部材37の内側に配置されている。封止部材37は、導電性材料により構成されている。例えば、封止部材37の材料が第1電極パッド33a及び第2電極パッド33bと同じ材料で構成され、封止部材37の形成工程が第1電極パッド33a及び第2電極パッド33bの形成工程で同時に実施される。これにより、製造工程の簡略化が図れる。 Next, the sealingmember 37 and the joining member 40 will be described.
A sealingmember 37 is provided on the third main surface 32 </ b> A of the base member 30. The sealing member 37 has better adhesion to the base 31 than the bonding member 40 and is provided to improve the bonding strength between the lid member 20 and the base member 30. In the example shown in FIG. 1, the shape of the sealing member 37 is a rectangular frame shape when the third main surface 32A is viewed in plan. Further, the sealing member 37 is provided so as to surround the tuning fork type crystal resonator element 10 when the third main surface 32A is viewed in plan, and the first electrode pad 33a and the second electrode pad 33b are the sealing member 37. It is arranged inside. The sealing member 37 is made of a conductive material. For example, the material of the sealing member 37 is made of the same material as the first electrode pad 33a and the second electrode pad 33b, and the forming process of the sealing member 37 is the forming process of the first electrode pad 33a and the second electrode pad 33b. At the same time. Thereby, the manufacturing process can be simplified.
ベース部材30の第3主面32Aには、封止部材37が設けられている。封止部材37は、接合部材40よりも基体31との密着性が良好であり、蓋部材20とベース部材30との接合強度を向上させるために設けられている。図1に示す例では、封止部材37の形状は、第3主面32Aを平面視したときに矩形の枠状である。また、第3主面32Aを平面視したときに、封止部材37が音叉型水晶振動素子10を囲むように設けられており、第1電極パッド33a及び第2電極パッド33bが封止部材37の内側に配置されている。封止部材37は、導電性材料により構成されている。例えば、封止部材37の材料が第1電極パッド33a及び第2電極パッド33bと同じ材料で構成され、封止部材37の形成工程が第1電極パッド33a及び第2電極パッド33bの形成工程で同時に実施される。これにより、製造工程の簡略化が図れる。 Next, the sealing
A sealing
接合部材40は、蓋部材20及びベース部材30の各全周に亘って設けられている。具体的には、接合部材40は封止部材37上に設けられ、矩形の枠状に形成されている。封止部材37及び接合部材40は、蓋部材20の側壁部22の対向面23と、ベース部材30の第3主面32Aと、の間に挟まれる。
The joining member 40 is provided over the entire circumference of the lid member 20 and the base member 30. Specifically, the joining member 40 is provided on the sealing member 37 and is formed in a rectangular frame shape. The sealing member 37 and the joining member 40 are sandwiched between the facing surface 23 of the side wall portion 22 of the lid member 20 and the third main surface 32 </ b> A of the base member 30.
蓋部材20及びベース部材30の両者が封止部材37及び接合部材40を挟んで接合されることによって、音叉型水晶振動素子10が、蓋部材20とベース部材30とによって囲まれた内部空間(キャビティ)26に封止される。内部空間26は、気圧が大気圧よりも低圧であることが好ましく、真空状態であることが更に好ましい。これによれば、第1励振電極82a及び第2励振電極82bなどの電極群の酸化を抑制することができる。したがって、音叉型水晶振動子1は、励振電極の厚みや質量の変化に起因した周波数特性の経時的な変動、引出電極の電気抵抗の増大に起因した消費電力の増加及び信号の遅延、などの動作不良の発生を低減できる。なお、封止部材は不連続な枠状に設けられていてもよく、接合部材は不連続な枠状に設けられていてもよい。
When the lid member 20 and the base member 30 are joined together with the sealing member 37 and the joining member 40 interposed therebetween, the tuning fork type crystal resonator element 10 is surrounded by the lid member 20 and the base member 30 (inside space ( Cavity) 26 is sealed. The internal space 26 is preferably at a lower pressure than the atmospheric pressure, and more preferably in a vacuum state. According to this, oxidation of electrode groups, such as the 1st excitation electrode 82a and the 2nd excitation electrode 82b, can be suppressed. Therefore, the tuning fork type crystal resonator 1 has a frequency characteristic variation with time due to changes in the thickness and mass of the excitation electrode, an increase in power consumption due to an increase in electrical resistance of the extraction electrode, and a signal delay. Occurrence of malfunction can be reduced. The sealing member may be provided in a discontinuous frame shape, and the joining member may be provided in a discontinuous frame shape.
次に、音叉型水晶振動素子10の動作について説明する。
第1励振電極82a及び第2励振電極82bによって印加される駆動信号(交番電圧)により音叉型水晶振動素子10に電界が生じる。駆動信号は、外部から第1接続電極86a及び第2接続電極86bを介して第1励振電極82a及び第2励振電極82bに印加される。そして、水晶片11の圧電効果によって、第1振動腕部60a及び第2振動腕部60bの根元部を支点として、第1振動腕部60a及び第2振動腕部60bが図3及び図4に示す矢印A方向と矢印B方向とに交互に撓むように変位する屈曲振動を発生させる。矢印A方向は、第1振動腕部60a及び第2振動腕部60bが互いに離れる方向であり、矢印B方向は、第1振動腕部60a及び第2振動腕部60bが互いに近づく方向である。すなわち、音叉型水晶振動素子10の第1振動腕部60a及び第2振動腕部60bが、X軸方向において逆相の屈曲振動モードで振動する。 Next, the operation of the tuning fork typecrystal resonator element 10 will be described.
An electric field is generated in the tuning fork typecrystal resonator element 10 by a drive signal (alternating voltage) applied by the first excitation electrode 82a and the second excitation electrode 82b. The drive signal is applied to the first excitation electrode 82a and the second excitation electrode 82b from the outside via the first connection electrode 86a and the second connection electrode 86b. Then, due to the piezoelectric effect of the crystal piece 11, the first vibrating arm 60a and the second vibrating arm 60b are shown in FIGS. 3 and 4 with the roots of the first vibrating arm 60a and the second vibrating arm 60b as fulcrums. A bending vibration is generated that is displaced so as to bend alternately in the direction indicated by the arrows A and B. An arrow A direction is a direction in which the first vibrating arm portion 60a and the second vibrating arm portion 60b are separated from each other, and an arrow B direction is a direction in which the first vibrating arm portion 60a and the second vibrating arm portion 60b are close to each other. That is, the first vibrating arm portion 60a and the second vibrating arm portion 60b of the tuning fork type crystal vibrating element 10 vibrate in a bending vibration mode having an opposite phase in the X axis direction.
第1励振電極82a及び第2励振電極82bによって印加される駆動信号(交番電圧)により音叉型水晶振動素子10に電界が生じる。駆動信号は、外部から第1接続電極86a及び第2接続電極86bを介して第1励振電極82a及び第2励振電極82bに印加される。そして、水晶片11の圧電効果によって、第1振動腕部60a及び第2振動腕部60bの根元部を支点として、第1振動腕部60a及び第2振動腕部60bが図3及び図4に示す矢印A方向と矢印B方向とに交互に撓むように変位する屈曲振動を発生させる。矢印A方向は、第1振動腕部60a及び第2振動腕部60bが互いに離れる方向であり、矢印B方向は、第1振動腕部60a及び第2振動腕部60bが互いに近づく方向である。すなわち、音叉型水晶振動素子10の第1振動腕部60a及び第2振動腕部60bが、X軸方向において逆相の屈曲振動モードで振動する。 Next, the operation of the tuning fork type
An electric field is generated in the tuning fork type
なお、音叉型水晶振動素子10は、逆相の屈曲振動モードを主振動とするが、同相の屈曲振動モードでも振動し得る。当該同相の屈曲振動モードは、第1振動腕部60a及び第2振動腕部60bが同時に+X軸方向に変位し、次に-X軸方向に変位することを順次繰り返す屈曲振動モードである。当該逆相の屈曲振動モードは、第1振動腕部60a及び第2振動腕部60bの一方が+X軸方向に変位し且つ他方が-X軸方向に変位し、次に一方が-X軸方向に変位し且つ他方が+X軸方向に変位することを順次繰り返す屈曲振動モードである。音叉型水晶振動素子10では、逆相の屈曲振動モードの周波数と同相の屈曲振動モードの周波数とが、望ましくは離れている。これによれば、音叉型水晶振動素子10において、同相の屈曲振動モードと逆相の屈曲振動モードとの結合が抑制できる。つまり、音叉型水晶振動素子10の同相の屈曲振動モードの振動姿勢と逆相の屈曲振動モードの振動姿勢との混在が低減できる。
Note that the tuning fork type crystal resonator element 10 uses the anti-phase bending vibration mode as the main vibration, but can also vibrate in the in-phase bending vibration mode. The in-phase bending vibration mode is a bending vibration mode in which the first vibrating arm portion 60a and the second vibrating arm portion 60b are sequentially displaced in the + X axis direction and then displaced in the −X axis direction sequentially. In the anti-phase bending vibration mode, one of the first vibrating arm portion 60a and the second vibrating arm portion 60b is displaced in the + X-axis direction and the other is displaced in the -X-axis direction, and then one is in the -X-axis direction And a bending vibration mode in which the other is sequentially displaced in the + X-axis direction. In the tuning fork type crystal resonator element 10, the frequency of the anti-bending vibration mode and the frequency of the in-phase bending vibration mode are desirably separated from each other. According to this, in the tuning fork type crystal resonator element 10, the coupling between the in-phase bending vibration mode and the anti-phase bending vibration mode can be suppressed. In other words, it is possible to reduce the in-phase bending vibration mode vibration posture and the anti-phase bending vibration mode vibration posture of the tuning fork type crystal resonator element 10.
なお、本発明の一実施形態に係る振動素子の振動(駆動)方式は、圧電駆動に限定されない。例えば、本発明の一実施形態に係る振動素子は、圧電基板を用いた圧電駆動型のもの以外に、静電気力を用いた静電駆動型や、磁力を利用したローレンツ駆動型などの振動素子であってもよい。
Note that the vibration (drive) method of the vibration element according to the embodiment of the present invention is not limited to piezoelectric drive. For example, the vibration element according to an embodiment of the present invention is a vibration element such as an electrostatic drive type using electrostatic force or a Lorentz drive type using magnetic force, in addition to a piezoelectric drive type using a piezoelectric substrate. There may be.
次に、図6及び図7を参照しつつ、支持腕部70のより詳細な構成について説明する。図6は、第1実施形態に係る支持腕部の保持部における断面の構成を概略的に示す断面図である。図7は、第1実施形態に係る支持腕部の連結部における断面の構成を概略的に示す断面図である。
Next, a more detailed configuration of the support arm unit 70 will be described with reference to FIGS. 6 and 7. FIG. 6 is a cross-sectional view schematically showing a cross-sectional configuration of the holding portion of the support arm portion according to the first embodiment. FIG. 7 is a cross-sectional view schematically showing a cross-sectional configuration of the connecting portion of the support arm portion according to the first embodiment.
図6に示すように、保持部74において、第1引出電極84aが側面74Cに設けられている。また、保持部74において、第1引出電極84aと第2引出電極84bとの間のX軸方向における最短となる距離D14(以下、「距離D14」とする。)は、主面70Aと主面70Bとの間のZ´軸方向における最短となる距離H14(以下、「距離H14」とする。)よりも大きい。これによれば、支持腕部の一対の主面に一対の引出電極が設けられる構成と比較して、保持部74における第1引出電極84aと第2引出電極84bとの間の距離D14が大きくできる。したがって、音叉型水晶振動素子10では、引出電極間で発生する浮遊容量が低減できるため、引出電極の実効抵抗を低減して消費電力を低減できる。
As shown in FIG. 6, in the holding portion 74, a first extraction electrode 84a is provided on the side surface 74C. In the holding portion 74, the shortest distance D14 (hereinafter referred to as “distance D14”) in the X-axis direction between the first extraction electrode 84a and the second extraction electrode 84b is the main surface 70A and the main surface. It is larger than the shortest distance H14 (hereinafter referred to as “distance H14”) in the Z′-axis direction with respect to 70B. According to this, the distance D14 between the first extraction electrode 84a and the second extraction electrode 84b in the holding portion 74 is larger than the configuration in which the pair of extraction electrodes are provided on the pair of main surfaces of the support arm portion. it can. Therefore, in the tuning fork type crystal resonator element 10, since the stray capacitance generated between the extraction electrodes can be reduced, the effective resistance of the extraction electrodes can be reduced and the power consumption can be reduced.
図6に示すように、保持部74において、側面74Cと側面74Dとの間のX軸方向における最短となる距離W14(以下、「距離W14」とする。)は、主面70Aと主面70Bとの間の距離H14よりも大きい。これによれば、音叉型水晶振動素子10においては、保持部74における第1引出電極84aと第2引出電極84bとの間の距離D14が大きくなるように第2引出電極84bを設け易くなる。
As shown in FIG. 6, in the holding portion 74, the shortest distance W14 in the X-axis direction between the side surface 74C and the side surface 74D (hereinafter referred to as “distance W14”) is the main surface 70A and the main surface 70B. Is greater than the distance H14. According to this, in the tuning fork type crystal resonator element 10, it becomes easy to provide the second extraction electrode 84b so that the distance D14 between the first extraction electrode 84a and the second extraction electrode 84b in the holding portion 74 is increased.
図6に示すように、第2引出電極84bは、保持部74の側面74D、すなわち支持腕部70の側面70Dに設けられている。つまり、第1引出電極84a及び第2引出電極84bは、それぞれ、保持部74の互いに対向する側面74C及び側面74Dに設けられている。このとき、保持部74において、側面74Cと側面74Dとの間の距離W14は、第1引出電極84aと第2引出電極84bとの間の距離D14に相当する。これによれば、第2引出電極84bが主面70A又は主面70Bに設けられる構成と比較して、保持部74における第1引出電極84aと第2引出電極84bとの間の距離D14が大きくできる。したがって、音叉型水晶振動素子10の引出電極間で発生する浮遊容量が低減できる。
As shown in FIG. 6, the second extraction electrode 84 b is provided on the side surface 74 </ b> D of the holding portion 74, that is, the side surface 70 </ b> D of the support arm portion 70. That is, the first extraction electrode 84 a and the second extraction electrode 84 b are provided on the side surface 74 </ b> C and the side surface 74 </ b> D of the holding portion 74 that face each other. At this time, in the holding portion 74, the distance W14 between the side surface 74C and the side surface 74D corresponds to the distance D14 between the first extraction electrode 84a and the second extraction electrode 84b. According to this, the distance D14 between the first extraction electrode 84a and the second extraction electrode 84b in the holding portion 74 is larger than the configuration in which the second extraction electrode 84b is provided on the main surface 70A or the main surface 70B. it can. Therefore, the stray capacitance generated between the extraction electrodes of the tuning fork type crystal resonator element 10 can be reduced.
図6に示すように、支持腕部70の基部50からの延出方向であるY´軸方向(第1方向D1)と直交する断面視において、保持部74の形状は、主面70A及び主面70Bからなる一対の長辺と、側面74C及び側面74Dからなる一対の短辺と、を有する略長方形状である。これによれば、第1接続電極86aと第2引出電極84bとの対向面積が小さくできる。したがって、音叉型水晶振動素子10の第1接続電極86aと第2引出電極84bとの間で発生する浮遊容量が低減できる。
As shown in FIG. 6, in a cross-sectional view orthogonal to the Y′-axis direction (first direction D <b> 1) that is the extending direction from the base 50 of the support arm 70, the shape of the holding portion 74 is the main surface 70 </ b> A and the main It is a substantially rectangular shape having a pair of long sides composed of the surface 70B and a pair of short sides composed of the side surface 74C and the side surface 74D. According to this, the facing area between the first connection electrode 86a and the second extraction electrode 84b can be reduced. Therefore, the stray capacitance generated between the first connection electrode 86a and the second extraction electrode 84b of the tuning fork type crystal resonator element 10 can be reduced.
支持腕部70は、第1振動腕部60aと第2振動腕部60bとの間に設けられている。これによれば、音叉型水晶振動素子10の小型化が図れる。また、第1引出電極84aの長さと第2引出電極84bの長さとの差が小さくできる。したがって、音叉型水晶振動素子10の第1引出電極84a及び第2引出電極84bの電気抵抗の差が小さくできる。また、音叉型水晶振動素子10においては、浮遊容量の差の影響を低減することができる。
The support arm portion 70 is provided between the first vibrating arm portion 60a and the second vibrating arm portion 60b. According to this, the tuning fork type crystal resonator element 10 can be downsized. Further, the difference between the length of the first extraction electrode 84a and the length of the second extraction electrode 84b can be reduced. Therefore, the difference in electrical resistance between the first extraction electrode 84a and the second extraction electrode 84b of the tuning fork type crystal resonator element 10 can be reduced. Further, in the tuning fork type crystal resonator element 10, the influence of the difference in stray capacitance can be reduced.
支持腕部70は、主面70Aを平面視したとき、連結部72において括れている。具体的には、連結部72において、支持腕部70には側面70C及び側面70Dの両側に凹部が形成されている。言い換えると、連結部72には、主面70A及び主面70Bの両方に開口し、且つ側面70Cに開口する穴部が形成されている。側面72Cは、当該穴部の内面に相当する。同様に、連結部72には、主面70A、主面70B、及び側面70Dに開口し、側面72Dを内面とする穴部が形成されている。つまり、連結部72における側面72Cと側面72Dとの間のX軸方向における最短となる距離W12(以下、「距離W12」とする。)は、保持部74における側面74Cと側面74Dとの間の距離W14よりも小さい。図7に示すように、支持腕部70の基部50からの延出方向と直交する断面視において、連結部72の側面72C及び側面72Dは、保持部74の内側に設けられている。
The support arm portion 70 is bundled at the connecting portion 72 when the main surface 70A is viewed in plan. Specifically, in the connecting portion 72, the support arm portion 70 is formed with recesses on both sides of the side surface 70C and the side surface 70D. In other words, the connecting portion 72 is formed with a hole that opens to both the main surface 70A and the main surface 70B and opens to the side surface 70C. The side surface 72C corresponds to the inner surface of the hole. Similarly, the connecting portion 72 is formed with a hole that opens to the main surface 70A, the main surface 70B, and the side surface 70D and has the side surface 72D as an inner surface. That is, the shortest distance W12 in the X-axis direction between the side surface 72C and the side surface 72D in the connecting portion 72 (hereinafter referred to as “distance W12”) is between the side surface 74C and the side surface 74D in the holding portion 74. It is smaller than the distance W14. As shown in FIG. 7, the side surface 72 </ b> C and the side surface 72 </ b> D of the connecting portion 72 are provided inside the holding portion 74 in a cross-sectional view orthogonal to the extending direction from the base 50 of the support arm portion 70.
これによれば、音叉型水晶振動素子10が動作しているとき、第1振動腕部60a及び第2振動腕部60bから連結部72を介して保持部74に伝搬する振動が低減できる。つまり、音叉型水晶振動素子10の振動漏れが抑制できる。
According to this, when the tuning fork type crystal resonator element 10 is operating, vibration propagating from the first vibrating arm portion 60a and the second vibrating arm portion 60b to the holding portion 74 via the connecting portion 72 can be reduced. That is, vibration leakage of the tuning fork type crystal resonator element 10 can be suppressed.
なお、連結部の構成は、振動漏れを低減することが可能であれば上記に限定されるものではない。例えば、支持腕部は、連結部において、一方の主面に開口し、且つ当該一方の主面を平面視したときに当該一方の主面に囲まれている穴部が形成されてもよい。当該穴部は、有底の溝部であってもよく、他方の主面にも開口する貫通孔であってもよい。また、支持腕部は、連結部において、一方の主面及び一方の側面に開口し、且つ他方の主面側及び他方の側面側に設けられた内面を有する切欠き部が形成されてもよい。つまり、支持腕部は、連結部において、一方の主面が括れ、当該一方の主面を平面視したとき、当該一方の主面の端部が他方の主面の内側に設けられてもよい。
It should be noted that the configuration of the connecting portion is not limited to the above as long as vibration leakage can be reduced. For example, the support arm portion may be formed with a hole that is open on one main surface and is surrounded by the one main surface when the one main surface is viewed in plan in the connecting portion. The hole portion may be a bottomed groove portion, or may be a through hole that also opens on the other main surface. Further, the support arm portion may be formed with a notch portion having an inner surface provided on one main surface and one side surface and provided on the other main surface side and the other side surface in the connection portion. . That is, the support arm portion may be provided with one main surface in the connecting portion, and when the one main surface is viewed in plan, an end portion of the one main surface is provided inside the other main surface. .
図7に示すように、保持部74と同様に、連結部72において、第1引出電極84aが側面74Cに設けられている。また、連結部72において、第1引出電極84aと第2引出電極84bとの間のX軸方向における最短となる距離D12(以下、「距離D12」とする。)は、主面70Aと主面70Bとの間のZ´軸方向における最短となる距離H12(以下、「距離H12」とする。)よりも大きい。支持腕部70は連結部72で括れているため、第1引出電極84aが支持腕部70の側面70Cに設けられる構成においては、第1引出電極84aと第2引出電極84bとの間の距離は、連結部72で最も小さくなり得る。しかしながら、音叉型水晶振動素子10では、支持腕部の一対の主面に一対の引出電極が設ける構成と比較して、連結部72における第1引出電極84aと第2引出電極84bとの間の距離D12を大きくできる。したがって、音叉型水晶振動素子10では、振動漏れが低減でき、且つ引出電極間で発生する浮遊容量が低減できる。
As shown in FIG. 7, similarly to the holding portion 74, a first extraction electrode 84 a is provided on the side surface 74 </ b> C in the connecting portion 72. In the connecting portion 72, the shortest distance D12 in the X-axis direction between the first extraction electrode 84a and the second extraction electrode 84b (hereinafter referred to as “distance D12”) is the main surface 70A and the main surface. It is larger than the shortest distance H12 in the Z′-axis direction with respect to 70B (hereinafter referred to as “distance H12”). Since the support arm portion 70 is confined by the connecting portion 72, in the configuration in which the first extraction electrode 84a is provided on the side surface 70C of the support arm portion 70, the distance between the first extraction electrode 84a and the second extraction electrode 84b. Can be the smallest at the connecting portion 72. However, in the tuning-fork type crystal resonator element 10, compared with a configuration in which a pair of extraction electrodes is provided on a pair of main surfaces of the support arm portion, between the first extraction electrode 84 a and the second extraction electrode 84 b in the connection portion 72. The distance D12 can be increased. Therefore, in the tuning fork type crystal resonator element 10, vibration leakage can be reduced, and stray capacitance generated between the extraction electrodes can be reduced.
図7に示すように、保持部74と同様に、連結部72において、側面72Cと側面72Dとの間の距離W12は、主面70Aと主面70Bとの間の距離H12よりも大きい。これによれば、連結部72における第1引出電極84aと第2引出電極84bとの間の距離D12が大きくなるような第2引出電極84bの配置が容易になる。したがって、音叉型水晶振動素子10の引出電極間で発生する浮遊容量が低減できる。
7, similarly to the holding portion 74, the distance W12 between the side surface 72C and the side surface 72D is larger than the distance H12 between the main surface 70A and the main surface 70B in the connecting portion 72. According to this, arrangement | positioning of the 2nd extraction electrode 84b that the distance D12 between the 1st extraction electrode 84a and the 2nd extraction electrode 84b in the connection part 72 becomes large becomes easy. Therefore, the stray capacitance generated between the extraction electrodes of the tuning fork type crystal resonator element 10 can be reduced.
図7に示すように、保持部74と同様に、第2引出電極84bは、連結部72の側面72Dに設けられている。このとき、連結部72において、側面72Cと側面72Dとの間の距離W12は、第1引出電極84aと第2引出電極84bとの間の距離D12に相当する。これによれば、第2引出電極84bが主面70A又は主面70Bに設けられる構成と比較して、連結部72における第1引出電極84aと第2引出電極84bとの間の距離D12が大きくできる。したがって、音叉型水晶振動素子10の引出電極間で発生する浮遊容量が低減できる。
As shown in FIG. 7, similarly to the holding portion 74, the second extraction electrode 84 b is provided on the side surface 72 </ b> D of the connecting portion 72. At this time, in the connecting portion 72, the distance W12 between the side surface 72C and the side surface 72D corresponds to the distance D12 between the first extraction electrode 84a and the second extraction electrode 84b. According to this, the distance D12 between the 1st extraction electrode 84a and the 2nd extraction electrode 84b in the connection part 72 is large compared with the structure in which the 2nd extraction electrode 84b is provided in 70 A of main surfaces, or the main surface 70B. it can. Therefore, the stray capacitance generated between the extraction electrodes of the tuning fork type crystal resonator element 10 can be reduced.
図7に示すように、保持部74と同様に、支持腕部70の基部50からの延出方向であるY´軸方向(第1方向D1)と直交する断面視において、連結部72の形状は、主面70A及び主面70Bからなる一対の長辺と、側面72C及び側面72Dからなる一対の短辺と、を有する略長方形状である。
As shown in FIG. 7, similarly to the holding portion 74, the shape of the connecting portion 72 in a cross-sectional view orthogonal to the Y′-axis direction (first direction D <b> 1) that is the extending direction from the base portion 50 of the support arm portion 70. Is a substantially rectangular shape having a pair of long sides composed of the main surface 70A and the main surface 70B and a pair of short sides composed of the side surface 72C and the side surface 72D.
以下に、本発明の他の実施形態に係る音叉型水晶振動素子の構成について説明する。なお、下記の実施形態では、上記の第1実施形態と共通の事柄については記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については逐次言及しない。また、第1実施形態と同様の符号が付された構成は、第1実施形態における構成と同様の構成及び機能を有するものとする。
Hereinafter, the configuration of a tuning fork type crystal resonator element according to another embodiment of the present invention will be described. In the following embodiment, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be mentioned sequentially. In addition, the configuration given the same reference numerals as in the first embodiment has the same configuration and function as the configuration in the first embodiment.
<第2実施形態>
図8~図10を参照しつつ、第2実施形態に係る音叉型水晶振動素子の支持腕部270の構成について説明する。図8は、第2実施形態に係る音叉型水晶振動素子の支持腕部の構成を概略的に示す平面図である。図9は、第2実施形態に係る支持腕部の保持部における断面の構成を概略的に示す断面図である。図10は、第2実施形態に係る支持腕部の連結部における断面の構成を概略的に示す断面図である。 Second Embodiment
The configuration of thesupport arm portion 270 of the tuning fork type crystal resonator element according to the second embodiment will be described with reference to FIGS. FIG. 8 is a plan view schematically showing the configuration of the support arm portion of the tuning-fork type crystal resonator element according to the second embodiment. FIG. 9 is a cross-sectional view schematically showing a cross-sectional configuration of the holding portion of the support arm portion according to the second embodiment. FIG. 10 is a cross-sectional view schematically showing a cross-sectional configuration of the connecting portion of the support arm portion according to the second embodiment.
図8~図10を参照しつつ、第2実施形態に係る音叉型水晶振動素子の支持腕部270の構成について説明する。図8は、第2実施形態に係る音叉型水晶振動素子の支持腕部の構成を概略的に示す平面図である。図9は、第2実施形態に係る支持腕部の保持部における断面の構成を概略的に示す断面図である。図10は、第2実施形態に係る支持腕部の連結部における断面の構成を概略的に示す断面図である。 Second Embodiment
The configuration of the
第2実施形態に係る音叉型水晶振動素子の支持腕部270は、第1実施形態に係る音叉型水晶振動素子10と同様、保持部274及び連結部272を有しており、保持部274及び連結部272に亘って設けられた主面270A及び主面270Bを有している。保持部274は側面274C及び側面274Dを有し、連結部272は、側面272C及び側面272Dを有している。また、第2実施形態に係る音叉型水晶振動素子は、第1引出電極284a、第2引出電極284b、第1接続電極286a、及び第2接続電極286bを備えている。
The support arm portion 270 of the tuning fork type crystal resonator element according to the second embodiment has a holding portion 274 and a connecting portion 272, as in the tuning fork type crystal resonator element 10 according to the first embodiment. The main surface 270 </ b> A and the main surface 270 </ b> B are provided across the connecting portion 272. The holding portion 274 has a side surface 274C and a side surface 274D, and the connecting portion 272 has a side surface 272C and a side surface 272D. The tuning fork type crystal resonator element according to the second embodiment includes a first extraction electrode 284a, a second extraction electrode 284b, a first connection electrode 286a, and a second connection electrode 286b.
第2実施形態に係る音叉型水晶振動素子と第1実施形態に係る音叉型水晶振動素子10との相違点は、第2引出電極284bが主面270Bに設けられている点である。このような構成においても、図9の断面図に示すように、保持部274における第1引出電極284aと第2引出電極284bとの間の最短となる距離D24は、主面270Aと主面270Bとの間の距離H24よりも大きい。また、保持部274における側面274Cと側面274Dとの間の距離W24は、主面270Aと主面270Bとの間の距離H24よりも大きい。同様に、図10の断面図に示すように、連結部272における第1引出電極284aと第2引出電極284bとの間の最短となる距離D22は、主面270Aと主面270Bとの間の距離H22よりも大きい。また、連結部272における側面272Cと側面272Dとの間の距離W22は、主面270Aと主面270Bとの間の距離H22よりも大きい。
The difference between the tuning fork type crystal resonator element according to the second embodiment and the tuning fork type crystal resonator element 10 according to the first embodiment is that the second extraction electrode 284b is provided on the main surface 270B. Even in such a configuration, as shown in the cross-sectional view of FIG. 9, the shortest distance D24 between the first extraction electrode 284a and the second extraction electrode 284b in the holding portion 274 is the main surface 270A and the main surface 270B. It is larger than the distance H24 between. Further, the distance W24 between the side surface 274C and the side surface 274D in the holding portion 274 is larger than the distance H24 between the main surface 270A and the main surface 270B. Similarly, as shown in the cross-sectional view of FIG. 10, the shortest distance D22 between the first extraction electrode 284a and the second extraction electrode 284b in the connecting portion 272 is between the main surface 270A and the main surface 270B. It is larger than the distance H22. Further, the distance W22 between the side surface 272C and the side surface 272D in the connecting portion 272 is larger than the distance H22 between the main surface 270A and the main surface 270B.
主面270Bの幅に相当する距離W24が側面274Dの幅に相当する距離H24よりも大きいため、主面270Bに設けられた第2引出電極284bを広幅に設けることができる。つまり、第2実施形態に係る音叉型水晶振動素子では、第2引出電極284bの電気抵抗が低減できる。また、第2実施形態に係る音叉型水晶振動素子の構成においては、支持腕部の一対の主面に一対の引出電極が設けられる構成よりも、第1引出電極284aと第2引出電極284bとの対向面積を低減できる。これにより、引出電極間で発生する浮遊容量が低減できる。したがって、第2実施形態に係る音叉型水晶振動素子の消費電力が低減できる。
Since the distance W24 corresponding to the width of the main surface 270B is larger than the distance H24 corresponding to the width of the side surface 274D, the second extraction electrode 284b provided on the main surface 270B can be provided wide. That is, in the tuning fork type crystal resonator element according to the second embodiment, the electrical resistance of the second extraction electrode 284b can be reduced. Further, in the configuration of the tuning fork type crystal resonator element according to the second embodiment, the first extraction electrode 284a and the second extraction electrode 284b are more than the configuration in which the pair of extraction electrodes are provided on the pair of main surfaces of the support arm portion. Can be reduced. Thereby, stray capacitance generated between the extraction electrodes can be reduced. Therefore, the power consumption of the tuning fork type crystal resonator element according to the second embodiment can be reduced.
<第3実施形態>
図11を参照しつつ、第3実施形態に係る音叉型水晶振動素子の支持腕部370の構成について説明する。図11は、第3実施形態に係る音叉型水晶振動素子の支持腕部の構成を概略的に示す平面図である。 <Third Embodiment>
With reference to FIG. 11, the configuration of thesupport arm portion 370 of the tuning fork type crystal resonator element according to the third embodiment will be described. FIG. 11 is a plan view schematically showing the configuration of the support arm portion of the tuning-fork type crystal resonator element according to the third embodiment.
図11を参照しつつ、第3実施形態に係る音叉型水晶振動素子の支持腕部370の構成について説明する。図11は、第3実施形態に係る音叉型水晶振動素子の支持腕部の構成を概略的に示す平面図である。 <Third Embodiment>
With reference to FIG. 11, the configuration of the
第3実施形態に係る音叉型水晶振動素子の支持腕部370は、第1実施形態に係る音叉型水晶振動素子10と同様、保持部374及び連結部372を有しており、保持部374及び連結部372に亘って設けられた主面370A及び主面370Bを有している。保持部374は側面374C及び側面374Dを有し、連結部372は、側面372C及び側面372Dを有している。また、第2実施形態に係る音叉型水晶振動素子は、第1引出電極384a、第2引出電極384b、第1接続電極386a、及び第2接続電極386bを備えている。
Similar to the tuning fork type crystal resonator element 10 according to the first embodiment, the support arm portion 370 of the tuning fork type crystal resonator element according to the third embodiment includes a holding portion 374 and a connecting portion 372. The main surface 370 </ b> A and the main surface 370 </ b> B are provided over the connecting portion 372. The holding portion 374 has a side surface 374C and a side surface 374D, and the connecting portion 372 has a side surface 372C and a side surface 372D. The tuning fork type crystal resonator element according to the second embodiment includes a first extraction electrode 384a, a second extraction electrode 384b, a first connection electrode 386a, and a second connection electrode 386b.
第3実施形態に係る音叉型水晶振動素子と第1実施形態に係る音叉型水晶振動素子10との相違点は、第2接続電極386bが第1接続電極386aよりも基部の近くに設けられ、第2引出電極384bが支持腕部370の主面370Bに設けられている点である。支持腕部370の主面370Bを平面視したとき、第1引出電極384aは第2接続電極386bの外側に設けられ、第2引出電極384bは第1接続電極386aの外側に設けられている。これにより、接続電極と引出電極との間で発生する浮遊容量が低減できる。したがって、第3実施形態に係る音叉型水晶振動素子の消費電力が低減できる。
The difference between the tuning fork type crystal resonator element according to the third embodiment and the tuning fork type crystal resonator element 10 according to the first embodiment is that the second connection electrode 386b is provided closer to the base than the first connection electrode 386a, The second extraction electrode 384b is provided on the main surface 370B of the support arm portion 370. When the main surface 370B of the support arm 370 is viewed in plan, the first extraction electrode 384a is provided outside the second connection electrode 386b, and the second extraction electrode 384b is provided outside the first connection electrode 386a. Thereby, the stray capacitance generated between the connection electrode and the extraction electrode can be reduced. Therefore, the power consumption of the tuning fork type crystal resonator element according to the third embodiment can be reduced.
<第4実施形態>
図12を参照しつつ、第4実施形態に係る音叉型水晶振動素子410の構成について説明する。図11は、第4実施形態に係る音叉型水晶振動素子の構成を概略的に示す平面図である。 <Fourth embodiment>
With reference to FIG. 12, a configuration of a tuning-fork typecrystal vibrating element 410 according to the fourth embodiment will be described. FIG. 11 is a plan view schematically showing a configuration of a tuning fork type crystal resonator element according to the fourth embodiment.
図12を参照しつつ、第4実施形態に係る音叉型水晶振動素子410の構成について説明する。図11は、第4実施形態に係る音叉型水晶振動素子の構成を概略的に示す平面図である。 <Fourth embodiment>
With reference to FIG. 12, a configuration of a tuning-fork type
第4実施形態に係る音叉型水晶振動素子410は、第1実施形態に係る音叉型水晶振動素子10と同様、基部450、第1振動腕部460a、第2振動腕部460b、及び支持腕部470を備えている。
Similar to the tuning fork type crystal resonator element 10 according to the first embodiment, the tuning fork type crystal resonator element 410 according to the fourth embodiment includes a base 450, a first vibrating arm portion 460a, a second vibrating arm portion 460b, and a support arm portion. 470.
第4実施形態に係る音叉型水晶振動素子410と第1実施形態に係る音叉型水晶振動素子10との相違点は、支持腕部470が第1振動腕部460aと第2振動腕部460bとの間の領域の外側に設けられている点である。具体的には、第1振動腕部460aが支持腕部470と第2振動腕部460bの間に設けられている。
The difference between the tuning fork type crystal resonator element 410 according to the fourth embodiment and the tuning fork type crystal resonator element 10 according to the first embodiment is that the support arm portion 470 includes a first vibrating arm portion 460a and a second vibrating arm portion 460b. It is a point provided outside the area between. Specifically, the first vibrating arm portion 460a is provided between the support arm portion 470 and the second vibrating arm portion 460b.
これによれば、第1振動腕部460aと第2振動腕部460bとが接近するため、第1振動腕部460aと第2振動腕部460bとの間での振動エネルギの交換の効率が向上する。したがって、第1振動腕部460aと第2振動腕部460bとの間での振動エネルギの交換に対する支持腕部470の影響が低減され、音叉型水晶振動素子410の振動漏れが抑制できる。
According to this, since the first vibrating arm portion 460a and the second vibrating arm portion 460b approach each other, the efficiency of exchanging vibration energy between the first vibrating arm portion 460a and the second vibrating arm portion 460b is improved. To do. Therefore, the influence of the support arm portion 470 on the exchange of vibration energy between the first vibrating arm portion 460a and the second vibrating arm portion 460b is reduced, and vibration leakage of the tuning fork type crystal vibrating element 410 can be suppressed.
<付記>
以下に、本発明の実施形態の一部又は全部を付記として記載する。なお、本発明は以下の付記に限定されるものではない。 <Appendix>
Hereinafter, some or all of the embodiments of the present invention will be described as supplementary notes. The present invention is not limited to the following supplementary notes.
以下に、本発明の実施形態の一部又は全部を付記として記載する。なお、本発明は以下の付記に限定されるものではない。 <Appendix>
Hereinafter, some or all of the embodiments of the present invention will be described as supplementary notes. The present invention is not limited to the following supplementary notes.
本発明の一態様によれば、基部と、基部から延出する第1振動腕部及び第2振動腕部と、基部から延出し、互いに対向する第1主面及び第2主面と、第1主面と第2主面とを繋ぎ互いに対向する第1側面及び第2側面と、を有する支持腕部と、第1振動腕部及び第2振動腕部に設けられた第1励振電極及び第2励振電極と、支持腕部の第1主面に設けられた第1接続電極及び第2接続電極と、第1励振電極と第1接続電極とを電気的に接続する第1引出電極と、第2励振電極と第2接続電極とを電気的に接続する第2引出電極と、を備え、第1引出電極は、支持腕部の第1側面に設けられ、第2引出電極は、支持腕部の第1主面、第2主面、又は第2側面に設けられ、支持腕部の少なくとも一部において、第1引出電極と第2引出電極との間の距離は、第1主面と第2主面との間の距離よりも大きい、振動素子が提供される。
According to one aspect of the present invention, a base, a first vibrating arm and a second vibrating arm that extend from the base, a first main surface and a second main surface that extend from the base and face each other, A support arm portion having a first side surface and a second side surface that connect the first main surface and the second main surface and face each other; a first excitation electrode provided on the first vibration arm portion and the second vibration arm portion; A second excitation electrode; a first connection electrode and a second connection electrode provided on the first main surface of the support arm; a first extraction electrode that electrically connects the first excitation electrode and the first connection electrode; , A second extraction electrode for electrically connecting the second excitation electrode and the second connection electrode, the first extraction electrode is provided on the first side surface of the support arm, and the second extraction electrode is supported It is provided on the first main surface, the second main surface, or the second side surface of the arm portion, and at least a part of the support arm portion includes a first extraction electrode and a second extraction electrode. Distance is greater than the distance between the first major surface and a second major surface, the vibration device is provided.
支持腕部の少なくとも一部において、第1側面と第2側面との間の距離は、第1主面と第2主面との間の距離よりも大きくてもよい。
In at least a part of the support arm portion, the distance between the first side surface and the second side surface may be greater than the distance between the first main surface and the second main surface.
第2引出電極は、支持腕部の第2側面に設けられていてもよい。
The second extraction electrode may be provided on the second side surface of the support arm portion.
第1接続電極は、第2接続電極よりも基部の近くに設けられ、第2引出電極は、支持腕部の第1主面又は第2主面に設けられていてもよい。
The first connection electrode may be provided closer to the base than the second connection electrode, and the second extraction electrode may be provided on the first main surface or the second main surface of the support arm portion.
第2接続電極は、第1接続電極よりも基部の近くに設けられ、第2引出電極は、支持腕部の第1主面又は第2主面に設けられていてもよい。
The second connection electrode may be provided closer to the base than the first connection electrode, and the second extraction electrode may be provided on the first main surface or the second main surface of the support arm portion.
支持腕部の基部からの延出方向と直交する断面視において、支持腕部の少なくとも一部の形状は、第1主面及び第2主面からなる一対の長辺と、第1側面及び第2側面からなる一対の短辺と、を有する略長方形状であってもよい。
In a cross-sectional view orthogonal to the extending direction from the base portion of the support arm portion, at least a part of the support arm portion has a pair of long sides including the first main surface and the second main surface, the first side surface, and the first side surface. The substantially rectangular shape which has a pair of short side which consists of 2 side surfaces may be sufficient.
支持腕部は、第1振動腕部と第2振動腕部との間に設けられていてもよい。
The support arm portion may be provided between the first vibrating arm portion and the second vibrating arm portion.
第1振動腕部は、支持腕部と第2振動腕部の間に設けられていてもよい。
The first vibrating arm portion may be provided between the support arm portion and the second vibrating arm portion.
支持腕部は、第1接続電極及び第2接続電極が設けられた保持部と、保持部と基部とを連結する連結部と、を備え、支持腕部は、第1主面を平面視したとき、連結部において括れていてもよい。
The support arm portion includes a holding portion provided with the first connection electrode and the second connection electrode, and a connecting portion that connects the holding portion and the base portion, and the support arm portion is a plan view of the first main surface. Sometimes, it may be bundled at the connecting portion.
連結部において、第1引出電極と第2引出電極との間の距離は、第1主面と第2主面との間の距離よりも大きくてもよい。
In the connecting portion, the distance between the first extraction electrode and the second extraction electrode may be larger than the distance between the first main surface and the second main surface.
連結部において、第1側面と第2側面との間の距離は、第1主面と第2主面との間の距離よりも大きくてもよい。
In the connecting portion, the distance between the first side surface and the second side surface may be larger than the distance between the first main surface and the second main surface.
以上説明したように、本発明の一態様によれば、浮遊容量が低減できる振動素子を提供することが可能となる。
As described above, according to one embodiment of the present invention, it is possible to provide a resonator element that can reduce stray capacitance.
なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。例えば、本発明の振動素子および振動子は、タイミングデバイスまたは荷重センサに用いることができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
The embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof. In other words, those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. For example, the vibration element and the vibrator of the present invention can be used for a timing device or a load sensor. In addition, each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
1…音叉型水晶振動子(振動子)
10…音叉型水晶振動素子(振動素子)
11…水晶片
12A…第1主面
12B…第2主面
20…蓋部材
30…ベース部材
33a,33b…電極パッド
36a,36b…導電性保持部材
40…接合部材
50…基部
60a,60b…振動腕部
62a,62b…腕部
64a,64b…錘部
63a,63b…溝部
70…支持腕部
72…連結部
74…保持部
82a,82b…励振電極
84a,84b…引出電極
86a,86b…接続電極 1 ... Tuning fork type crystal resonator (vibrator)
10 ... Tuning fork type crystal vibrating element (vibrating element)
DESCRIPTION OFSYMBOLS 11 ... Crystal piece 12A ... 1st main surface 12B ... 2nd main surface 20 ... Lid member 30 ... Base member 33a, 33b ... Electrode pad 36a, 36b ... Conductive holding member 40 ... Joining member 50 ... Base 60a, 60b ... Vibration Arm part 62a, 62b ... Arm part 64a, 64b ... Weight part 63a, 63b ... Groove part 70 ... Support arm part 72 ... Connection part 74 ... Holding part 82a, 82b ... Excitation electrode 84a, 84b ... Extraction electrode 86a, 86b ... Connection electrode
10…音叉型水晶振動素子(振動素子)
11…水晶片
12A…第1主面
12B…第2主面
20…蓋部材
30…ベース部材
33a,33b…電極パッド
36a,36b…導電性保持部材
40…接合部材
50…基部
60a,60b…振動腕部
62a,62b…腕部
64a,64b…錘部
63a,63b…溝部
70…支持腕部
72…連結部
74…保持部
82a,82b…励振電極
84a,84b…引出電極
86a,86b…接続電極 1 ... Tuning fork type crystal resonator (vibrator)
10 ... Tuning fork type crystal vibrating element (vibrating element)
DESCRIPTION OF
Claims (11)
- 基部と、
前記基部から延出する第1振動腕部及び第2振動腕部と、
前記基部から延出し、互いに対向する第1主面及び第2主面と、前記第1主面と前記第2主面とを繋ぎ互いに対向する第1側面及び第2側面と、を有する支持腕部と、
前記第1振動腕部及び前記第2振動腕部に設けられた第1励振電極及び第2励振電極と、
前記支持腕部の前記第1主面に設けられた第1接続電極及び第2接続電極と、
前記第1励振電極と前記第1接続電極とを電気的に接続する第1引出電極と、
前記第2励振電極と前記第2接続電極とを電気的に接続する第2引出電極と、
を備え、
前記第1引出電極は、前記支持腕部の前記第1側面に設けられ、
前記第2引出電極は、前記支持腕部の前記第1主面、前記第2主面、又は前記第2側面に設けられ、
前記支持腕部の少なくとも一部において、前記第1引出電極と前記第2引出電極との間の距離は、前記第1主面と前記第2主面との間の距離よりも大きい、振動素子。 The base,
A first vibrating arm and a second vibrating arm extending from the base;
A support arm having a first main surface and a second main surface that extend from the base and face each other, and a first side surface and a second side surface that connect the first main surface and the second main surface and face each other. And
A first excitation electrode and a second excitation electrode provided on the first vibrating arm portion and the second vibrating arm portion;
A first connection electrode and a second connection electrode provided on the first main surface of the support arm,
A first extraction electrode that electrically connects the first excitation electrode and the first connection electrode;
A second extraction electrode that electrically connects the second excitation electrode and the second connection electrode;
With
The first extraction electrode is provided on the first side surface of the support arm;
The second extraction electrode is provided on the first main surface, the second main surface, or the second side surface of the support arm portion,
In at least a part of the support arm portion, a vibration element in which a distance between the first extraction electrode and the second extraction electrode is larger than a distance between the first main surface and the second main surface . - 前記支持腕部の少なくとも一部において、前記第1側面と前記第2側面との間の距離は、前記第1主面と前記第2主面との間の距離よりも大きい、
請求項1に記載の振動素子。 In at least a part of the support arm portion, a distance between the first side surface and the second side surface is larger than a distance between the first main surface and the second main surface.
The vibration element according to claim 1. - 前記第2引出電極は、前記支持腕部の前記第2側面に設けられている、
請求項1又は2に記載の振動素子。 The second extraction electrode is provided on the second side surface of the support arm portion,
The vibration element according to claim 1. - 前記第1接続電極は、前記第2接続電極よりも前記基部の近くに設けられ、
前記第2引出電極は、前記支持腕部の前記第1主面又は前記第2主面に設けられている、
請求項1又は2に記載の振動素子。 The first connection electrode is provided closer to the base than the second connection electrode;
The second extraction electrode is provided on the first main surface or the second main surface of the support arm portion,
The vibration element according to claim 1. - 前記第2接続電極は、前記第1接続電極よりも前記基部の近くに設けられ、
前記第2引出電極は、前記支持腕部の前記第1主面又は前記第2主面に設けられている、
請求項1から3のいずれか1項に記載の振動素子。 The second connection electrode is provided closer to the base than the first connection electrode;
The second extraction electrode is provided on the first main surface or the second main surface of the support arm portion,
The vibration element according to claim 1. - 前記支持腕部の前記基部からの延出方向と直交する断面視において、前記支持腕部の少なくとも一部の形状は、前記第1主面及び前記第2主面からなる一対の長辺と、前記第1側面及び前記第2側面からなる一対の短辺と、を有する略長方形状である、
請求項1から5のいずれか1項に記載の振動素子。 In a cross-sectional view orthogonal to the extending direction of the support arm from the base, at least a part of the support arm has a pair of long sides including the first main surface and the second main surface, A substantially rectangular shape having a pair of short sides composed of the first side surface and the second side surface,
The vibration element according to claim 1. - 前記支持腕部は、前記第1振動腕部と前記第2振動腕部との間に設けられている、
請求項1から6のいずれか1項に記載の振動素子。 The support arm is provided between the first vibrating arm and the second vibrating arm.
The vibration element according to claim 1. - 前記第1振動腕部は、前記支持腕部と前記第2振動腕部の間に設けられている、
請求項1から6のいずれか1項に記載の振動素子。 The first vibrating arm portion is provided between the support arm portion and the second vibrating arm portion.
The vibration element according to claim 1. - 前記支持腕部は、前記第1接続電極及び前記第2接続電極が設けられた保持部と、前記保持部と前記基部とを連結する連結部と、を備え、
前記支持腕部は、前記第1主面を平面視したとき、前記連結部において括れている、
請求項1から8のいずれか1項に記載の振動素子。 The support arm includes a holding portion provided with the first connection electrode and the second connection electrode, and a connecting portion that connects the holding portion and the base portion,
The support arm portion is bundled in the connecting portion when the first main surface is viewed in plan view.
The vibration element according to claim 1. - 前記連結部において、前記第1引出電極と前記第2引出電極との間の距離は、前記第1主面と前記第2主面との間の距離よりも大きい、
請求項9に記載の振動素子。 In the connecting portion, a distance between the first extraction electrode and the second extraction electrode is larger than a distance between the first main surface and the second main surface.
The vibration element according to claim 9. - 前記連結部において、前記第1側面と前記第2側面との間の距離は、前記第1主面と前記第2主面との間の距離よりも大きい、
請求項9又は10に記載の振動素子。 In the connecting portion, a distance between the first side surface and the second side surface is larger than a distance between the first main surface and the second main surface.
The vibration element according to claim 9 or 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-067414 | 2018-03-30 | ||
JP2018067414 | 2018-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188078A1 true WO2019188078A1 (en) | 2019-10-03 |
Family
ID=68059853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008988 WO2019188078A1 (en) | 2018-03-30 | 2019-03-07 | Vibration element |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019188078A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014165669A (en) * | 2013-02-25 | 2014-09-08 | Sii Crystal Technology Inc | Piezoelectric vibrator, oscillator, electronic apparatus and radio clock |
JP2015008353A (en) * | 2013-06-24 | 2015-01-15 | セイコーエプソン株式会社 | Vibration element, vibration device, electronic device, moving object, and method of manufacturing vibration element |
JP2016092755A (en) * | 2014-11-11 | 2016-05-23 | エスアイアイ・クリスタルテクノロジー株式会社 | Piezoelectric vibrating piece and piezoelectric vibrator |
JP2016146597A (en) * | 2015-02-09 | 2016-08-12 | セイコーエプソン株式会社 | Vibration piece manufacturing method, vibration piece, vibrator, oscillator, real time clock, electronic apparatus, and mobile object |
JP2016213524A (en) * | 2015-04-28 | 2016-12-15 | セイコーエプソン株式会社 | Vibration piece, vibrator, oscillator, real time clock, sensor, electronic apparatus and moving object |
JP2017085345A (en) * | 2015-10-28 | 2017-05-18 | 京セラクリスタルデバイス株式会社 | Tuning-fork type crystal vibrating element |
JP2017228818A (en) * | 2016-06-20 | 2017-12-28 | 日本電波工業株式会社 | Tuning fork crystal unit |
-
2019
- 2019-03-07 WO PCT/JP2019/008988 patent/WO2019188078A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014165669A (en) * | 2013-02-25 | 2014-09-08 | Sii Crystal Technology Inc | Piezoelectric vibrator, oscillator, electronic apparatus and radio clock |
JP2015008353A (en) * | 2013-06-24 | 2015-01-15 | セイコーエプソン株式会社 | Vibration element, vibration device, electronic device, moving object, and method of manufacturing vibration element |
JP2016092755A (en) * | 2014-11-11 | 2016-05-23 | エスアイアイ・クリスタルテクノロジー株式会社 | Piezoelectric vibrating piece and piezoelectric vibrator |
JP2016146597A (en) * | 2015-02-09 | 2016-08-12 | セイコーエプソン株式会社 | Vibration piece manufacturing method, vibration piece, vibrator, oscillator, real time clock, electronic apparatus, and mobile object |
JP2016213524A (en) * | 2015-04-28 | 2016-12-15 | セイコーエプソン株式会社 | Vibration piece, vibrator, oscillator, real time clock, sensor, electronic apparatus and moving object |
JP2017085345A (en) * | 2015-10-28 | 2017-05-18 | 京セラクリスタルデバイス株式会社 | Tuning-fork type crystal vibrating element |
JP2017228818A (en) * | 2016-06-20 | 2017-12-28 | 日本電波工業株式会社 | Tuning fork crystal unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102035499B (en) | Vibrating reed, vibrator, oscillator, and electronic apparatus | |
JP5168002B2 (en) | Vibrator and oscillator | |
JP2007258917A (en) | Piezoelectric device | |
US10181836B2 (en) | Resonator element, resonator, oscillator, electronic device, and moving object | |
JP2007258918A (en) | Piezoelectric device | |
JP4715652B2 (en) | Piezoelectric vibrating piece | |
WO2004064252A1 (en) | Piezoelectric vibration piece and piezoelectric device using piezoelectric vibration piece, portable phone device using iezoelectric device and electronic apparatus using piezoelectric device | |
US9135906B2 (en) | Ultrasonic generator | |
US11824521B2 (en) | Vibration substrate having a pair of holding portions and a beam portion connecting the holding portions, vibrator, and vibrator unit | |
CN102013881A (en) | Flexural vibration piece, flexural vibrator, and electronic device | |
JP7283044B2 (en) | Vibration element and vibrator | |
CN102629860B (en) | Vibrator element, vibrator, oscillator, and electronic device | |
JP2017085327A (en) | Crystal diaphragm, and crystal vibration device | |
WO2019188381A1 (en) | Vibration element | |
WO2019188078A1 (en) | Vibration element | |
JP4784168B2 (en) | Piezoelectric vibrating piece and piezoelectric device | |
US12255599B2 (en) | Piezoelectric resonator unit and oscillator provided with the same | |
JP5434712B2 (en) | Piezoelectric vibrating piece and piezoelectric device | |
JP7076692B2 (en) | Vibration element and oscillator equipped with it | |
JP2010206821A (en) | Piezoelectric vibration piece | |
JP2019149705A (en) | Vibration element and vibrator including the same | |
JP7043035B2 (en) | Tuning fork type piezoelectric vibrator and its manufacturing method | |
JP2009100076A (en) | Piezoelectric vibrating piece | |
CN114868335A (en) | Piezoelectric vibration element, piezoelectric vibrator, and electronic device | |
WO2020202961A1 (en) | Tuning-fork-type piezoelectric vibrator and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19774590 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19774590 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |