[go: up one dir, main page]

WO2019178927A1 - 一种oled面板及oled显示器 - Google Patents

一种oled面板及oled显示器 Download PDF

Info

Publication number
WO2019178927A1
WO2019178927A1 PCT/CN2018/087205 CN2018087205W WO2019178927A1 WO 2019178927 A1 WO2019178927 A1 WO 2019178927A1 CN 2018087205 W CN2018087205 W CN 2018087205W WO 2019178927 A1 WO2019178927 A1 WO 2019178927A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
inorganic film
refractive index
layer
inorganic
Prior art date
Application number
PCT/CN2018/087205
Other languages
English (en)
French (fr)
Inventor
倪晶
徐湘伦
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/102,768 priority Critical patent/US10418598B1/en
Publication of WO2019178927A1 publication Critical patent/WO2019178927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of display technologies, and in particular, to an OLED panel and an OLED display.
  • OLED display is a promising flat panel display technology with self-illumination, simple structure, ultra-thin, fast response, wide viewing angle, low power consumption and flexible display. And other characteristics.
  • OLED displays have been favored by major display manufacturers, and become the third generation display after CRT (Cathode Ray Tube) display and liquid crystal display (LCD).
  • CRT Cathode Ray Tube
  • LCD liquid crystal display
  • the film layer such as the organic light-emitting material used in the OLED panel is very sensitive to water and oxygen, the requirements for water and oxygen are extremely strict, and in general, the flexible film layer is packaged on the organic light-emitting material.
  • the commonly used packaging structure is an inorganic or organic film layer, the inorganic film layer is usually very dense, and its waterproof oxygen resistance is good, but the film layer stress exists during the deposition process, so that the inorganic film layer has poor bending property and is prone to cracking and peeling.
  • the crack after cracking easily diffuses in the inorganic film layer, and the barrier property of the organic film layer is weak, but it can effectively release stress and block the risk of further crack propagation of the inorganic film layer.
  • the OLED panel mostly adopts a structure in which an inorganic film layer and an organic film layer overlap, and the use of the complementary advantages of the high water oxygen barrier capability of the inorganic film layer and the stress release of the organic film layer can better satisfy the service life of the OLED panel.
  • the inventors of the present application have found in the long-term research that the current OLED panel adopts the inorganic film layer-organic film layer-inorganic film layer of such a package structure, which has poor performance of blocking external water oxygen, and the package structure is applied to the OLED panel.
  • the light output efficiency has a great influence.
  • the technical problem to be solved by the present application is to provide an OLED panel and an OLED display, which can effectively increase the light extraction efficiency of the OLED panel while effectively blocking external water and oxygen.
  • an OLED panel including:
  • OLED device comprising an organic light emitting layer
  • the thin film encapsulation structure formed on the OLED device and covering the organic light emitting layer, the thin film encapsulation structure comprising:
  • the refractive index of the first inorganic film layer is greater than the refractive index of the first organic film layer, and the refractive index of the second inorganic film layer and the refractive index of the fourth inorganic film layer are both smaller than the first a refractive index of the triple inorganic film layer, and a refractive index difference between the refractive index of the first inorganic film layer and the first organic film layer is 0.1-0.3, and the first inorganic film layer has a thickness of 100-300 nm a thickness, the first organic film layer has a thickness of 3000 to 8000 nm, the second inorganic film layer has a thickness of 50 to 1000 nm, and the third inorganic film layer has a thickness of 10 to 300 nm, the fourth inorganic film The layer has a thickness of 50-1000 nm.
  • an OLED panel including:
  • OLED device comprising an organic light emitting layer
  • the thin film encapsulation structure formed on the OLED device and covering the organic light emitting layer, the thin film encapsulation structure comprising:
  • the refractive index of the first inorganic film layer is greater than the refractive index of the first organic film layer, and the refractive index of the second inorganic film layer and the refractive index of the fourth inorganic film layer are both smaller than the first The refractive index of the three inorganic film layers.
  • an OLED display the OLED display includes an OLED display panel, and the OLED display panel includes:
  • OLED device comprising an organic light emitting layer
  • the thin film encapsulation structure formed on the OLED device and covering the organic light emitting layer, the thin film encapsulation structure comprising:
  • the refractive index of the first inorganic film layer is greater than the refractive index of the first organic film layer, and the refractive index of the second inorganic film layer and the refractive index of the fourth inorganic film layer are both smaller than the first The refractive index of the three inorganic film layers.
  • the OLED panel in the present application includes: an OLED device, the OLED device includes an organic light emitting layer; a thin film encapsulation structure formed on the OLED device and covering the organic light emitting layer, the film
  • the package structure includes a first inorganic film layer, a first organic film layer, a second inorganic film layer, a third inorganic film layer, and a fourth inorganic film layer, wherein the first inorganic film layer has a refractive index greater than that of the first
  • the refractive index of the organic film layer, the refractive index of the second inorganic film layer, and the refractive index of the fourth inorganic film layer are both smaller than the refractive index of the third inorganic film layer, by setting the thin film encapsulation structure to include a plurality of inorganic film layers and matching
  • the refractive index between the various film layers can improve the light-emitting efficiency while ensuring the water-proof performance of the OLED panel, and reduce the
  • FIG. 1 is a schematic structural view of an embodiment of an OLED panel of the present application.
  • FIG. 2 is a schematic structural view of another embodiment of an OLED panel of the present application.
  • 3 is a graph for verifying the light extraction efficiency of the OLED panel in the present application by using optical simulation software
  • FIG. 5 is a schematic structural diagram of an embodiment of an OLED display of the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of an OLED panel according to the present application.
  • the OLED panel includes an OLED device 11 and a thin film encapsulation structure 12 .
  • the OLED device 11 includes an organic light emitting layer 111.
  • the organic light emitting layer 111 includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the OLED device 11 may further include a substrate, an anode layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a cathode layer, and the like, which are well known to those skilled in the art. I will not repeat them here.
  • the thin film encapsulation structure 12 is formed on the OLED device 11 and covers the organic light emitting layer 111.
  • the thin film encapsulation structure 12 includes a first inorganic film layer 121, a first organic film layer 122, a second inorganic film layer 123, and a third inorganic film layer. 124 and a fourth inorganic film layer 125.
  • the first inorganic film layer 121 is formed on the OLED device 11; the first organic film layer 122 is formed on a side of the first inorganic film layer 121 away from the OLED device 11; and the second inorganic film layer 123 is formed on the first organic film On the layer 122; a third inorganic film layer 124 is formed on the second inorganic film layer 123; a fourth inorganic film layer 125 is formed on the third inorganic film layer 124, that is, the first inorganic film layer 121, the first organic film layer 122.
  • the second inorganic film layer 123, the third inorganic film layer 124, and the fourth inorganic film layer 125 are sequentially disposed.
  • the thin film encapsulation structure in the present embodiment includes four inorganic film layers, which can improve the water vapor resistance of the OLED panel.
  • the refractive index of the first inorganic film layer 121 is greater than the refractive index of the first organic film layer 122, and the refractive index of the second inorganic film layer 123 and the refractive index of the fourth inorganic film layer 125 are both smaller than the third.
  • the first inorganic film layer 121 when light is worn
  • the first organic film layer 122 functions as a divergence expansion of the light
  • the second inorganic film layer 123 Continued to divergence and enlargement, and the second inorganic film layer 123 can cover more optical paths, and then the light that has been divergently enlarged enters the third inorganic film layer 124 having a relatively high refractive index, and at the same time, due to the third inorganic film layer
  • the refractive index of 124 is greater than the refractive index of the fourth inorganic film layer 125, some of the light is reflected, and the reflected light is continuously reflected and amplified by the second
  • the OLED panel by providing a plurality of inorganic film layers and matching the refractive index between the film layers, the OLED panel can improve the water-oxygen resistance while improving the light-emitting rate and reducing the light-emitting efficiency of the film package structure. loss.
  • the refractive index difference between the refractive index of the first inorganic film layer 121 and the first organic film layer 122 is 0.1-0.3, that is, the refractive index of the first inorganic film layer 121 is greater than the first
  • the refractive index of the organic film layer 122 ranges from 0.1 to 0.3.
  • the first inorganic film layer 121 has a refractive index of 1.8-2.3
  • the first organic film layer 122 has a refractive index of 1.6-2.0
  • the second inorganic film layer 123 has a refractive index of 1.4-1.7
  • the third inorganic film layer 124 has a refractive index of 1.8 to 2.3
  • the fourth inorganic film layer 125 has a refractive index of 1.4 to 1.7, that is, the light extraction efficiency of the OLED device is improved by setting a certain refractive index of each film layer.
  • the first inorganic film layer 121 has a thickness of 100-300 nm
  • the first organic film layer 122 has a thickness of 3000-8000 nm
  • the second inorganic film layer 123 has a thickness of 50-1000 nm
  • the triple inorganic film layer 124 has a thickness of 10 to 300 nm
  • the fourth inorganic film layer 125 has a thickness of 50 to 1000 nm, that is, by setting a certain thickness of each film layer, improving when the film package structure 12 has a minimum thickness.
  • the light extraction efficiency of the OLED panel has a thickness of 100-300 nm
  • the first organic film layer 122 has a thickness of 3000-8000 nm
  • the second inorganic film layer 123 has a thickness of 50-1000 nm
  • the triple inorganic film layer 124 has a thickness of 10 to 300 nm
  • the fourth inorganic film layer 125 has a thickness of 50 to 1000 nm, that is, by setting a certain thickness of each
  • the material of the first inorganic film layer 121 and the material of the third inorganic film layer 124 are the same or different, and the material of the first inorganic film layer 121 and the material of the third inorganic film layer 124 are At least one of titanium dioxide, silicon nitride, silicon oxide, and zirconium oxide, that is, the first inorganic film layer 121 and the third inorganic film layer are controlled by selecting materials of the first inorganic film layer 121 and the third inorganic film layer 124.
  • the refractive index of 124 is controlled by selecting materials of the first inorganic film layer 121 and the third inorganic film layer 124.
  • the material of the second inorganic film layer 123 and the material of the fourth inorganic film layer 125 are the same or different, and the material of the second inorganic film layer 123 and the material of the fourth inorganic film layer 125 are At least one of silicon oxynitride and aluminum oxide, that is, the refractive indices of the second inorganic film layer 123 and the fourth inorganic film layer 125 are controlled by selecting materials of the second inorganic film layer 123 and the fourth inorganic film layer 125.
  • the first inorganic film layer 121, the second inorganic film layer 123, the third inorganic film layer 124, and the fourth inorganic film layer 125 are subjected to plasma enhanced chemical vapor deposition (PECVD), pulsed laser. Preparation is carried out by deposition (PLD) or sputtering process (Sputter).
  • PECVD plasma enhanced chemical vapor deposition
  • PLD deposition
  • Sputter sputtering process
  • the first organic film layer 122 is prepared by plasma enhanced chemical vapor deposition (PECVD), ink jet printing (IJP), or a coating process.
  • PECVD plasma enhanced chemical vapor deposition
  • IJP ink jet printing
  • the OLED device 11 further includes a cover layer 112 and a lithium fluoride layer 113 .
  • the cover layer 112 is formed on the organic light-emitting layer 111, the lithium fluoride layer 113 is formed on the cover layer 112, and the first inorganic film layer 121 is formed on the lithium fluoride layer 113.
  • the cover layer 112 is made of an organic material.
  • the thin film package structure 12 is formed on the OLED device 11, it is possible to generate black spots on the OLED device 11, and thus the OLED device 11 includes the cover layer 112 and the fluorination.
  • the lithium layer 113 protects the OLED device 11.
  • FIG. 3 is a graph for verifying the light extraction efficiency of the OLED panel in the present application by using optical simulation software.
  • the materials of the first inorganic film layer 121 and the third inorganic film layer 124 are set to silicon nitride, and the thicknesses of the first inorganic film layer 121 and the third inorganic film layer 124 are both set to 200 nm, and
  • the materials of the second inorganic film layer 123 and the fourth inorganic film layer 125 are set to be silicon oxynitride, and the thicknesses of the second inorganic film layer 123 and the fourth inorganic film layer 125 are set to be the same, and FIG. 3 shows that nitrogen is present.
  • the variation of the thickness of the silicon oxide (the second inorganic film layer 123 and the fourth inorganic film layer 125), the light extraction efficiency of the OLED panel in the present application is relative to the prior art OLED panel (the thin film packaging structure only includes: the inorganic film layer - the organic film
  • the growth curve of the light-emitting efficiency of the layer-inorganic film layer can be seen from FIG. 3, and the OLED panel in the present application significantly improves the light-emitting efficiency.
  • FIG. 4 is a graph showing the light extraction efficiency of the OLED panel in the present application in actual experiments.
  • the materials of the first inorganic film layer 121 and the third inorganic film layer 124 are set as silicon nitride
  • the materials of the second inorganic film layer 123 and the fourth inorganic film layer 125 are set as silicon oxynitride
  • the thickness of the second inorganic film layer 123, the third inorganic film layer 124, and the fourth inorganic film layer 125 is set to 300 nm
  • the thickness of the first organic film layer 122 is set to 6000 nm
  • the thickness of an inorganic film layer 121 is 900 nm, and the current efficiency of the OLED panel in the present application is about 11% higher when the brightness is 500 cd/mm 2 (the light transmittance per unit area of the OLED panel in the prior art is 6 Cd/A, The light-emitting area per unit area of the OLED panel in the present application is 6.7 Cd/A), thereby verifying that the OLED panel in the present application can effectively improve the light-emitting efficiency of the OLED panel.
  • FIG. 5 is a schematic structural diagram of an OLED display device according to an embodiment of the present disclosure.
  • the OLED panel 20 includes the OLED panel 21 in any of the above embodiments. Narration.
  • the thin film encapsulation structure of the OLED panel of the present application includes a plurality of inorganic film layers and a refractive index and a thickness of each of the film layers, which can effectively improve the water and oxygen resistance of the OLED panel while being different from the prior art. Improve light extraction efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED面板及OLED显示器,该OLED面板包括:OLED器件(11);薄膜封装结构(12),形成在OLED器件(11)上,包括依序设置的第一无机膜层(121)、第一有机膜层(122)、第二无机膜层(123)、第三无机膜层(124)以及第四无机膜层(125),其中,第一无机膜层(121)的折射率大于第一有机膜层(122)的折射率,第二无机膜层(123)的折射率和第四无机膜层(125)的折射率均小于第三无机膜层(124)的折射率。通过该OLED面板,能够提高OLED面板的出光效率。

Description

一种OLED面板及OLED显示器 【技术领域】
本申请涉及显示技术领域,特别是涉及一种OLED面板及OLED显示器。
【背景技术】
有机发光二极管(Organic Light Emitting Diode,OLED)显示器是一种极具发展前景的平板显示技术,它具有自发光、结构简单、超轻薄、响应速度快、宽视角、低功耗及可实现柔性显示等特性。目前OLED显示器得到了各大显示器厂家的青睐,并成为继CRT(Cathode Ray Tube)显示器与液晶显示器(Liquid Crystal Display,LCD)之后的第三代显示器。
由于OLED面板中使用的有机发光材料等膜层对水和氧气非常敏感,因而对水和氧气的要求极其严格,一般而言,会在有机发光材料上再进行柔性膜层封装。常用的封装结构为无机或有机膜层,无机膜层通常很致密,其防水氧性能好,但是在沉积过程中有膜层应力存在,使得无机膜层弯折性不好,容易产生破裂和剥离,破裂后的裂纹很容易在无机膜层中扩散,有机膜层的阻隔水氧性能较弱,然而其可以有效释放应力,阻挡无机膜层进一步裂缝延伸的风险。因而目前OLED面板多采用无机膜层和有机膜层交叠的结构,利用无机膜层的高水氧阻隔能力和有机膜层的应力释放等互补优势,能够较好的满足OLED面板的使用寿命。
本申请的发明人在长期的研究中发现,目前的OLED面板采用的无机膜层-有机膜层-无机膜层的这种封装结构,其阻隔外界水氧的性能不佳,封装结构对OLED面板的出光效率影响较大。
【发明内容】
本申请主要解决的技术问题是提供一种OLED面板及OLED显示器,能够在有效阻隔外界水氧的同时,增大OLED面板的出光效率。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种OLED面板,包括:
OLED器件,所述OLED器件包括有机发光层;
薄膜封装结构,形成在所述OLED器件上,且覆盖所述有机发光层,所述 薄膜封装结构包括:
第一无机膜层,形成在所述OLED器件上;
第一有机膜层,形成在所述第一无机膜层远离所述OLED器件的一侧;
第二无机膜层,形成在所述第一有机膜层上;
第三无机膜层,形成在所述第二无机膜层上;
第四无机膜层,形成在所述第三无机膜层上,
其中,所述第一无机膜层的折射率大于所述第一有机膜层的折射率,所述第二无机膜层的折射率和所述第四无机膜层的折射率均小于所述第三无机膜层的折射率,且所述第一无机膜层的折射率与所述第一有机膜层的折射率差值为0.1-0.3,同时所述第一无机膜层具有100-300nm的厚度,所述第一有机膜层具有3000-8000nm的厚度,所述第二无机膜层具有50-1000nm的厚度,所述第三无机膜层具有10-300nm的厚度,所述第四无机膜层具有50-1000nm的厚度。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种OLED面板,包括:
OLED器件,所述OLED器件包括有机发光层;
薄膜封装结构,形成在所述OLED器件上,且覆盖所述有机发光层,所述薄膜封装结构包括:
第一无机膜层,形成在所述OLED器件上;
第一有机膜层,形成在所述第一无机膜层远离所述OLED器件的一侧;
第二无机膜层,形成在所述第一有机膜层上;
第三无机膜层,形成在所述第二无机膜层上;
第四无机膜层,形成在所述第三无机膜层上,
其中,所述第一无机膜层的折射率大于所述第一有机膜层的折射率,所述第二无机膜层的折射率和所述第四无机膜层的折射率均小于所述第三无机膜层的折射率。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种OLED显示器,所述OLED显示器包括OLED显示面板,所述OLED显示面板包括:
OLED器件,所述OLED器件包括有机发光层;
薄膜封装结构,形成在所述OLED器件上,且覆盖所述有机发光层,所述薄膜封装结构包括:
第一无机膜层,形成在所述OLED器件上;
第一有机膜层,形成在所述第一无机膜层远离所述OLED器件的一侧;
第二无机膜层,形成在所述第一有机膜层上;
第三无机膜层,形成在所述第二无机膜层上;
第四无机膜层,形成在所述第三无机膜层上,
其中,所述第一无机膜层的折射率大于所述第一有机膜层的折射率,所述第二无机膜层的折射率和所述第四无机膜层的折射率均小于所述第三无机膜层的折射率。
本申请的有益效果是:区别于现有技术的情况,本申请中的OLED面板包括:OLED器件,OLED器件包括有机发光层;薄膜封装结构,形成在OLED器件上,且覆盖有机发光层,薄膜封装结构包括依序设置的第一无机膜层、第一有机膜层、第二无机膜层、第三无机膜层以及第四无机膜层,其中,第一无机膜层的折射率大于第一有机膜层的折射率,第二无机膜层的折射率和第四无机膜层的折射率均小于第三无机膜层的折射率,通过将薄膜封装结构设置成包括多层无机膜层以及配合各个膜层之间的折射率,在保证OLED面板抗水氧性能的同时,能够提高出光效率,降低薄膜封装结构对出光效率的损耗。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请OLED面板一实施方式的结构示意图;
图2是本申请OLED面板另一实施方式的结构示意图;
图3是利用光学模拟软件验证本申请中OLED面板出光效率的曲线图;
图4是实际实验中测出本申请中OLED面板出光效率的曲线图;
图5是本申请OLED显示器一实施方式的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参阅图1,图1是本申请OLED面板一实施方式的结构示意图,该OLED面板包括:OLED器件11以及薄膜封装结构12。
OLED器件11包括有机发光层111,可选的,有机发光层111包括红色子像素、绿色子像素以及蓝色子像素。
可以理解的事,OLED器件11还可以包括基板、阳极层、空穴注入层、空穴传输层、电子传输层、电子注入层、阴极层等其他被本领域的技术人员所熟知的膜层,在此不再赘述。
薄膜封装结构12形成在OLED器件11上,且覆盖有机发光层111,薄膜封装结构12包括:第一无机膜层121、第一有机膜层122、第二无机膜层123、第三无机膜层124以及第四无机膜层125。
具体的,第一无机膜层121形成在OLED器件11上;第一有机膜层122形成在第一无机膜层121远离OLED器件11的一侧;第二无机膜层123形成在第一有机膜层122上;第三无机膜层124形成在第二无机膜层123上;第四无机膜层125形成在第三无机膜层124上,即,第一无机膜层121、第一有机膜层122、第二无机膜层123、第三无机膜层124以及第四无机膜层125依序进行设置。
相对于现有技术中的薄膜封装结构只包括无机膜层-有机膜层-无机膜层,本实施方式中的薄膜封装结构包括四层无机膜层,能够提高OLED面板的抗水氧性能。
同时在本实施方式中,第一无机膜层121的折射率大于第一有机膜层122的折射率,第二无机膜层123的折射率和第四无机膜层125的折射率均小于第三无机膜层124的折射率。
具体而言,在光依次穿过第一无机膜层121、第一有机膜层122、第二无机膜层123、第三无机膜层124以及第四无机膜层125的过程中,当光穿过第一无机膜层121进入到折射率更低的第一有机膜层122时,第一有机膜层122对光起到一个发散扩大的作用,进一步地,光进入第二无机膜层123后被继续发散扩大,且第二无机膜层123能够包覆住更多的光路,然后已经经过发散扩大的光进入到折射率相对较高的第三无机膜层124,同时由于第三无机膜层124的折 射率大于第四无机膜层125的折射率,一些光会被反射,反射的光被继续反射并被第二无机膜层123和第一无机膜层121放大,产生共振效应,从而改善出光效率。
上述实施方式中的OLED面板,通过设置多层无机膜层以及配合各个膜层之间的折射率,在保证OLED面板抗水氧性能的同时,能够提高出光率,降低薄膜封装结构对出光效率的损耗。
可选的,在一个应用场景中,第一无机膜层121的折射率与第一有机膜层122的折射率差值为0.1-0.3,即,第一无机膜层121的折射率大于第一有机膜层122的折射率,其差值范围为:0.1-0.3。
可选的,在一个应用场景中,第一无机膜层121具有1.8-2.3的折射率,第一有机膜层122具有1.6-2.0的折射率,第二无机膜层123具有1.4-1.7的折射率,第三无机膜层124具有1.8-2.3的折射率,第四无机膜层125具有1.4-1.7的折射率,即,通过设定各个膜层一定的折射率,改善OLED器件的出光效率。
可选的,在一个应用场景中,第一无机膜层121具有100-300nm的厚度,第一有机膜层122具有3000-8000nm的厚度,第二无机膜层123具有50-1000nm的厚度,第三无机膜层124具有10-300nm的厚度,第四无机膜层125具有50-1000nm的厚度,即,通过设定各个膜层一定的厚度,在保证薄膜封装结构12具有最小的厚度时,改善OLED面板的出光效率。
可选的,在一个应用场景中,第一无机膜层121的材料和第三无机膜层124的材料相同或者不相同,第一无机膜层121的材料和第三无机膜层124的材料为二氧化钛、氮化硅、氧化硅、氧化锆中的至少一种,即,通过选用第一无机膜层121以及第三无机膜层124的材料来控制第一无机膜层121以及第三无机膜层124的折射率。
可选的,在一个应用场景中,第二无机膜层123的材料和第四无机膜层125的材料相同或者不相同,第二无机膜层123的材料和第四无机膜层125的材料为氮氧化硅、氧化铝中的至少一种,即,通过选用第二无机膜层123以及第四无机膜层125的材料来控制第二无机膜层123以及第四无机膜层125的折射率。
可选的,在一个应用场景中,第一无机膜层121、第二无机膜层123、第三无机膜层124与第四无机膜层125采用等离子增强化学气相沉淀法(PECVD)、脉冲激光沉积(PLD)、或溅射工艺(Sputter)进行制备。
可选的,在一个应用场景中,第一有机膜层122采用等离子增强化学气相 沉淀法(PECVD)、喷墨打印技术(IJP)、或涂布工艺进行制备。
参阅图2,图2是本申请OLED面板另一实施方式的结构示意图,与图1实施方式不同的是,在本实施方式中,OLED器件11还包括:覆盖层112以及氟化锂层113。
覆盖层112形成在有机发光层111上,氟化锂层113形成在覆盖层112上,第一无机膜层121形成在氟化锂层113上。
可选的,覆盖层112由有机材料制成,当在OLED器件11上形成薄膜封装结构12时,有可能在OLED器件11上产生黑斑,因此通过设置OLED器件11包括覆盖层112以及氟化锂层113以对OLED器件11进行保护。
参阅图3,图3是利用光学模拟软件验证本申请中OLED面板出光效率的曲线图。
模拟测试时,将第一无机膜层121和第三无机膜层124的材料设置为氮化硅,且将第一无机膜层121和第三无机膜层124的厚度均设置为200nm,同时将第二无机膜层123和第四无机膜层125的材料设置为氮氧化硅,且将第二无机膜层123和第四无机膜层125的厚度设置为相同,图3表示的是随着氮氧化硅(第二无机膜层123和第四无机膜层125)厚度的变化,本申请中OLED面板的出光效率相对于现有技术中OLED面板(薄膜封装结构只包括:无机膜层-有机膜层-无机膜层)出光效率的增长变化曲线,从图3可以看出,本申请中的OLED面板使得出光效率明显改善。
参阅图4,图4是实际实验中测出本申请中OLED面板出光效率的曲线图。
在该实验中,将第一无机膜层121和第三无机膜层124的材料设置为氮化硅,第二无机膜层123和第四无机膜层125的材料设置为氮氧化硅,且将第二无机膜层123、第三无机膜层124以及第四无机膜层125的厚度设置为300nm,将第一有机膜层122的厚度设置为6000nm,实验数据结果如图4所示,在第一无机膜层121厚度为900nm,在亮度为500cd/mm 2时,本申请中的OLED面板的电流效率高出11%左右(现有技术中的OLED面板的单位面积通光量为6Cd/A,而本申请中OLED面板的单位面积通光量为6.7Cd/A),从而验证了本申请中的OLED面板能够有效提高OLED面板的出光效率。
参阅图5,图5是本申请OLED显示器一实施方式的结构示意图,该OLED显示器20包括上述任一项实施方式中的OLED面板21,具体的OLED面板21可参见上述实施方式,在此不再赘述。
总而言之,区别于现有技术的情况,本申请中的OLED面板的薄膜封装结构包括多层无机膜层以及配合各个膜层的折射率、厚度,在提高OLED面板抗水氧性能的同时,能够有效提高出光效率。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种OLED面板,其中,包括:
    OLED器件,所述OLED器件包括有机发光层;
    薄膜封装结构,形成在所述OLED器件上,且覆盖所述有机发光层,所述薄膜封装结构包括:
    第一无机膜层,形成在所述OLED器件上;
    第一有机膜层,形成在所述第一无机膜层远离所述OLED器件的一侧;
    第二无机膜层,形成在所述第一有机膜层上;
    第三无机膜层,形成在所述第二无机膜层上;
    第四无机膜层,形成在所述第三无机膜层上,
    其中,所述第一无机膜层的折射率大于所述第一有机膜层的折射率,所述第二无机膜层的折射率和所述第四无机膜层的折射率均小于所述第三无机膜层的折射率,且所述第一无机膜层的折射率与所述第一有机膜层的折射率差值为0.1-0.3,同时所述第一无机膜层具有100-300nm的厚度,所述第一有机膜层具有3000-8000nm的厚度,所述第二无机膜层具有50-1000nm的厚度,所述第三无机膜层具有10-300nm的厚度,所述第四无机膜层具有50-1000nm的厚度。
  2. 根据权利要求1所述的OLED面板,其中,
    所述第一无机膜层具有1.8-2.3的折射率,所述第一有机膜层具有1.6-2.0的折射率,所述第二无机膜层具有1.4-1.7的折射率,所述第三无机膜层具有1.8-2.3的折射率,所述第四无机膜层具有1.4-1.7的折射率。
  3. 根据权利要求1所述的OLED面板,其中,
    所述第一无机膜层的材料和所述第三无机膜层的材料相同或者不相同,
    所述第一无机膜层的材料和所述第三无机膜层的材料为二氧化钛、氮化硅、氧化硅、氧化锆中的至少一种。
  4. 根据权利要求1所述的OLED面板,其中,
    所述第二无机膜层的材料和所述第四无机膜层的材料相同或者不相同,
    所述第二无机膜层的材料和所述第四无机膜层的材料为氮氧化硅、氧化铝中的至少一种。
  5. 根据权利要求1所述的OLED面板,其中,
    所述第一无机膜层、所述第二无机膜层、所述第三无机膜层与所述第四无机膜层采用等离子增强化学气相沉淀法、脉冲激光沉积、或溅射工艺进行制备。
  6. 根据权利要求1所述的OLED面板,其中,
    所述第一有机膜层采用等离子增强化学气相沉淀法、喷墨打印技术、或涂布工艺进行制备。
  7. 根据权利要求1所述的OLED面板,其中,所述OLED器件还包括:
    覆盖层,形成在所述有机发光层上;
    氟化锂层,形成在所述覆盖层上;
    其中,所述第一无机膜层形成在所述氟化锂层上。
  8. 一种OLED面板,其中,包括:
    OLED器件,所述OLED器件包括有机发光层;
    薄膜封装结构,形成在所述OLED器件上,且覆盖所述有机发光层,所述薄膜封装结构包括:
    第一无机膜层,形成在所述OLED器件上;
    第一有机膜层,形成在所述第一无机膜层远离所述OLED器件的一侧;
    第二无机膜层,形成在所述第一有机膜层上;
    第三无机膜层,形成在所述第二无机膜层上;
    第四无机膜层,形成在所述第三无机膜层上,
    其中,所述第一无机膜层的折射率大于所述第一有机膜层的折射率,所述第二无机膜层的折射率和所述第四无机膜层的折射率均小于所述第三无机膜层的折射率。
  9. 根据权利要求8所述的OLED面板,其中,
    所述第一无机膜层的折射率与所述第一有机膜层的折射率差值为0.1-0.3。
  10. 根据权利要求8所述的OLED面板,其中,
    所述第一无机膜层具有1.8-2.3的折射率,所述第一有机膜层具有1.6-2.0的折射率,所述第二无机膜层具有1.4-1.7的折射率,所述第三无机膜层具有1.8-2.3的折射率,所述第四无机膜层具有1.4-1.7的折射率。
  11. 根据权利要求8所述的OLED面板,其中,
    所述第一无机膜层具有100-300nm的厚度,所述第一有机膜层具有3000-8000nm的厚度,所述第二无机膜层具有50-1000nm的厚度,所述第三无机膜层具有10-300nm的厚度,所述第四无机膜层具有50-1000nm的厚度。
  12. 根据权利要求8所述的OLED面板,其中,
    所述第一无机膜层的材料和所述第三无机膜层的材料相同或者不相同,
    所述第一无机膜层的材料和所述第三无机膜层的材料为二氧化钛、氮化硅、氧化硅、氧化锆中的至少一种。
  13. 根据权利要求8所述的OLED面板,其中,
    所述第二无机膜层的材料和所述第四无机膜层的材料相同或者不相同,
    所述第二无机膜层的材料和所述第四无机膜层的材料为氮氧化硅、氧化铝中的至少一种。
  14. 根据权利要求8所述的OLED面板,其中,
    所述第一无机膜层、所述第二无机膜层、所述第三无机膜层与所述第四无机膜层采用等离子增强化学气相沉淀法、脉冲激光沉积、或溅射工艺进行制备。
  15. 根据权利要求8所述的OLED面板,其中,
    所述第一有机膜层采用等离子增强化学气相沉淀法、喷墨打印技术、或涂布工艺进行制备。
  16. 根据权利要求8所述的OLED面板,其中,所述OLED器件还包括:
    覆盖层,形成在所述有机发光层上;
    氟化锂层,形成在所述覆盖层上;
    其中,所述第一无机膜层形成在所述氟化锂层上。
  17. 一种OLED显示器,其中,所述OLED显示器包括OLED显示面板,所述OLED显示面板包括:
    OLED器件,所述OLED器件包括有机发光层;
    薄膜封装结构,形成在所述OLED器件上,且覆盖所述有机发光层,所述薄膜封装结构包括:
    第一无机膜层,形成在所述OLED器件上;
    第一有机膜层,形成在所述第一无机膜层远离所述OLED器件的一侧;
    第二无机膜层,形成在所述第一有机膜层上;
    第三无机膜层,形成在所述第二无机膜层上;
    第四无机膜层,形成在所述第三无机膜层上,
    其中,所述第一无机膜层的折射率大于所述第一有机膜层的折射率,所述第二无机膜层的折射率和所述第四无机膜层的折射率均小于所述第三无机膜层的折射率。
  18. 根据权利要求17所述的OLED显示器,其中,
    所述第一无机膜层的折射率与所述第一有机膜层的折射率差值为0.1-0.3。
  19. 根据权利要求17所述的OLED显示器,其中,
    所述第一无机膜层具有1.8-2.3的折射率,所述第一有机膜层具有1.6-2.0的折射率,所述第二无机膜层具有1.4-1.7的折射率,所述第三无机膜层具有1.8-2.3的折射率,所述第四无机膜层具有1.4-1.7的折射率。
  20. 根据权利要求17所述的OLED显示器,其中,
    所述第一无机膜层具有100-300nm的厚度,所述第一有机膜层具有3000-8000nm的厚度,所述第二无机膜层具有50-1000nm的厚度,所述第三无机膜层具有10-300nm的厚度,所述第四无机膜层具有50-1000nm的厚度。
PCT/CN2018/087205 2018-03-21 2018-05-17 一种oled面板及oled显示器 WO2019178927A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/102,768 US10418598B1 (en) 2018-03-21 2018-08-14 OLED panel and its method of manufacturing, OLED display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810234384.1 2018-03-21
CN201810234384.1A CN108511614B (zh) 2018-03-21 2018-03-21 一种oled面板及oled显示器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/102,768 Continuation US10418598B1 (en) 2018-03-21 2018-08-14 OLED panel and its method of manufacturing, OLED display

Publications (1)

Publication Number Publication Date
WO2019178927A1 true WO2019178927A1 (zh) 2019-09-26

Family

ID=63377689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087205 WO2019178927A1 (zh) 2018-03-21 2018-05-17 一种oled面板及oled显示器

Country Status (3)

Country Link
US (1) US10418598B1 (zh)
CN (1) CN108511614B (zh)
WO (1) WO2019178927A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190100B (zh) 2019-05-28 2021-07-23 武汉华星光电半导体显示技术有限公司 发光面板及显示装置
CN112310301B (zh) * 2019-07-30 2022-07-29 江苏三月科技股份有限公司 一种有机电致发光器件及其制备方法与制备的显示装置
CN110970572B (zh) * 2019-11-14 2025-06-17 京东方科技集团股份有限公司 封装结构、显示面板及显示装置
CN111063825A (zh) * 2019-12-09 2020-04-24 武汉华星光电半导体显示技术有限公司 柔性oled封装结构及其制作方法、显示装置
US11637268B2 (en) * 2020-01-14 2023-04-25 Samsung Display Co., Ltd. Display device
CN111584744A (zh) * 2020-05-13 2020-08-25 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN111697160B (zh) 2020-06-22 2022-11-29 云谷(固安)科技有限公司 显示面板及显示装置
CN112038501B (zh) * 2020-09-08 2021-08-10 长春海谱润斯科技股份有限公司 一种顶发射有机电致发光器件
CN112581868B (zh) * 2020-12-09 2021-11-02 惠州市华星光电技术有限公司 柔性显示面板及其制备方法
KR20220082982A (ko) * 2020-12-10 2022-06-20 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN113036054B (zh) * 2021-03-02 2024-04-05 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN113809265B (zh) * 2021-08-30 2024-02-06 武汉天马微电子有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014909A1 (en) * 2012-07-11 2014-01-16 Samsung Display Co. Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN104900812A (zh) * 2015-04-23 2015-09-09 京东方科技集团股份有限公司 薄膜封装结构及其制作方法和显示装置
CN105470405A (zh) * 2014-09-25 2016-04-06 三星显示有限公司 有机发光二极管显示器及其制造方法
CN107104125A (zh) * 2016-02-19 2017-08-29 株式会社日本显示器 显示装置及显示装置的制造方法
CN107683537A (zh) * 2015-06-19 2018-02-09 三星Sdi株式会社 有机发光显示器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280901A (ja) * 2006-04-12 2007-10-25 Hitachi Displays Ltd 有機el表示装置
KR20140033867A (ko) * 2012-09-11 2014-03-19 엘지디스플레이 주식회사 유기 전계 발광 표시 패널
KR102060622B1 (ko) * 2013-06-27 2019-12-31 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102136790B1 (ko) * 2013-11-15 2020-07-23 삼성디스플레이 주식회사 플렉서블 디스플레이 장치와, 이의 제조 방법
KR101985923B1 (ko) * 2014-05-16 2019-06-04 어플라이드 머티어리얼스, 인코포레이티드 배리어 층 스택, 배리어 층 스택을 제조하기 위한 방법, 및 울트라-하이 배리어 층 및 반사방지 시스템
CN106684256A (zh) * 2016-12-23 2017-05-17 上海天马有机发光显示技术有限公司 一种显示面板及其制作方法
CN106711347A (zh) * 2016-12-28 2017-05-24 武汉华星光电技术有限公司 一种oled器件及其基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014909A1 (en) * 2012-07-11 2014-01-16 Samsung Display Co. Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN105470405A (zh) * 2014-09-25 2016-04-06 三星显示有限公司 有机发光二极管显示器及其制造方法
CN104900812A (zh) * 2015-04-23 2015-09-09 京东方科技集团股份有限公司 薄膜封装结构及其制作方法和显示装置
CN107683537A (zh) * 2015-06-19 2018-02-09 三星Sdi株式会社 有机发光显示器
CN107104125A (zh) * 2016-02-19 2017-08-29 株式会社日本显示器 显示装置及显示装置的制造方法

Also Published As

Publication number Publication date
US20190296268A1 (en) 2019-09-26
CN108511614B (zh) 2020-02-07
US10418598B1 (en) 2019-09-17
CN108511614A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019178927A1 (zh) 一种oled面板及oled显示器
US10811466B2 (en) Organic light emitting display panel and method for manufacturing the same
US10818876B2 (en) Organic light-emitting diode (OLED) display panel and manufacturing method thereof
CN103500745B (zh) 柔性显示基板及其制备方法、柔性显示装置
US9704930B2 (en) OLED display panel and fabrication method thereof, and display device
CN107957813B (zh) 一种柔性触控显示屏及其制作方法
WO2018086191A1 (zh) Oled显示器及其制作方法
CN104576700B (zh) Coa型woled结构及制作方法
US10361401B2 (en) Organic electroluminescent display device and display apparatus
TWI287942B (en) Light emitting device
CN104538428B (zh) Coa型woled结构及制作方法
WO2016033885A1 (zh) 有机发光二极管显示面板及其制作方法、显示装置
WO2020258870A1 (zh) 显示面板及其制备方法
WO2019242114A1 (zh) 显示面板及其制作方法
WO2018072283A1 (zh) Oled显示器及其制作方法
US20110121355A1 (en) Organic light emitting diode display and method of manufacturing the same
CN107785501B (zh) 柔性oled面板的封装方法及封装结构
WO2015085711A1 (zh) 一种有机电致发光显示器件及显示装置
CN104952791A (zh) Amoled显示器件的制作方法及其结构
CN106654045B (zh) Oled封装方法与oled封装结构
US11196021B2 (en) Composite film layer, having alternately-stacked sub-film layers with different refractive indexes
JP2015149258A (ja) 電気光学装置、電気光学装置の製造方法、電子機器
WO2020237830A1 (zh) 柔性有机发光二极管显示面板及其制造方法
US10724139B2 (en) Encapsulation method for OLED Panel
US11118266B2 (en) Method for depositing protection film of light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910526

Country of ref document: EP

Kind code of ref document: A1