[go: up one dir, main page]

WO2019176465A1 - Method for producing cellulose nanofiber dispersion - Google Patents

Method for producing cellulose nanofiber dispersion Download PDF

Info

Publication number
WO2019176465A1
WO2019176465A1 PCT/JP2019/006001 JP2019006001W WO2019176465A1 WO 2019176465 A1 WO2019176465 A1 WO 2019176465A1 JP 2019006001 W JP2019006001 W JP 2019006001W WO 2019176465 A1 WO2019176465 A1 WO 2019176465A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
plate
preliminary
defibration
nanofiber dispersion
Prior art date
Application number
PCT/JP2019/006001
Other languages
French (fr)
Japanese (ja)
Inventor
利一 村松
啓吾 渡部
淳之 重見
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2020505716A priority Critical patent/JP7402154B2/en
Publication of WO2019176465A1 publication Critical patent/WO2019176465A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration

Definitions

  • the present invention relates to a method for producing a highly transparent cellulose nanofiber dispersion that is produced with low power consumption.
  • Cellulose nanofibers obtained by refining cellulose are fibers having a nano-level fiber diameter of about 1 to 100 nm, and the dispersion has high transparency. For this reason, application to transparency, for example, optical film, film coating agent, compounding to glass, etc. is expected. For this reason, various studies have been made on methods for producing cellulose nanofibers (see Patent Document 1).
  • An object of the present invention is to provide a method for producing a cellulose nanofiber dispersion that efficiently produces a highly transparent cellulose nanofiber dispersion with low power consumption.
  • the present invention provides the following (1) to (7).
  • a method for producing a cellulose nanofiber dispersion comprising producing a highly transparent cellulose nanofiber dispersion from chemically modified cellulose, comprising the following steps (A) and (B): Step (A): preliminary defibrating step of beating the chemically modified cellulose using a single disc type refiner, Step (B): This defibrating step of defibrating the cellulose obtained in the preliminary defibrating step (A) by treatment with a high-pressure disperser at a treatment pressure of 1 MPa to 400 MPa.
  • the plate used in the refiner is a viscous beating plate, a fine bar type plate, a plate having a structure for closing the raw material flow path, a grindstone plate, a flat without a groove.
  • the method for producing a cellulose nanofiber dispersion according to (1) which is any one of metal plates.
  • the concentration of the chemically modified cellulose during treatment is 2.5 to 15% by mass, according to any one of (1) to (3) Of manufacturing cellulose nanofiber dispersion liquid.
  • the present invention it is possible to provide a method for efficiently producing a highly transparent cellulose nanofiber dispersion with low power consumption. Moreover, according to this invention, generation
  • the method for producing a cellulose nanofiber dispersion according to the present invention includes a step (A): a preliminary defibrating step of beating a chemically modified cellulose using a single disk type refiner, and a step (B): the preliminary defibrating step. And a main defibrating step of defibrating the cellulose obtained in (A) by treatment with a high-pressure disperser at a treatment pressure of 1 MPa to 400 MPa.
  • cellulose fibers are defibrated by different mechanisms by combining preliminary defibration by mechanical beating processing with a conventional beating device and main defibration, so that while reducing power consumption, transparency can be reduced.
  • a high cellulose nanofiber dispersion can be produced.
  • a highly transparent cellulose nanofiber dispersion can be obtained by the present invention.
  • the refinement of chemically modified cellulose as a raw material proceeds, and the outside of the cellulose fiber is loosened. Therefore, in this subsequent defibration, shear energy such as an ultra-high pressure homogenizer easily acts on the cellulose, and a cellulose nanofiber dispersion with high transparency can be produced efficiently.
  • the cellulose raw material refers to materials in various forms mainly composed of cellulose, and pulp (bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, refined linter, jute, Manila hemp , Pulp derived from herbs such as kenaf), natural cellulose such as cellulose produced by microorganisms such as acetic acid bacteria, regenerated cellulose spun after dissolving cellulose in some solvent such as copper ammonia solution, morpholine derivative, and the above Examples thereof include fine cellulose obtained by depolymerizing cellulose by subjecting the cellulose raw material to mechanical treatment such as hydrolysis, alkaline hydrolysis, enzymatic decomposition, explosion treatment, and vibration ball mill.
  • mechanical treatment such as hydrolysis, alkaline hydrolysis, enzymatic decomposition, explosion treatment, and vibration ball mill.
  • the oxidation of the cellulose raw material can be performed using a known method, and is not particularly limited, but the amount of carboxyl groups is 0.5 mmol / g with respect to the absolute dry mass of the cellulose nanofiber. It is preferable to adjust so as to be ⁇ 3.0 mmol / g.
  • cellulose can be obtained by oxidizing cellulose in water in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, or a mixture thereof.
  • an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, or a mixture thereof.
  • the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized, and a cellulose fiber having an aldehyde group and a carboxyl group or a carboxylate group on the surface can be obtained.
  • the concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
  • An N-oxyl compound refers to a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it promotes the target oxidation reaction.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing the cellulose as a raw material.
  • a catalytic amount capable of oxidizing the cellulose as a raw material For example, with respect to 1 g of absolutely dry cellulose, 0.01 to 10 mmol is preferable, 0.02 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is more preferable. Further, it is preferably about 0.1 to 4 mmol / L with respect to the reaction system.
  • Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water.
  • an iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted.
  • the total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and further preferably 0.5 to 5 mmol with respect to 1 g of absolutely dry cellulose.
  • oxidizing agent known ones can be used, and for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like can be used.
  • sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact.
  • the appropriate amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.7 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol with respect to 1 g of absolutely dry cellulose. . Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 to 40 ° C., and may be room temperature of about 15 to 30 ° C.
  • a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced.
  • an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
  • the reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is usually 0.5 to 6 hours, for example, about 1 to 4 hours.
  • the oxidation reaction may be performed in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first-stage reaction. Can be oxidized well.
  • Another example of the carboxylation (oxidation) method is a method of oxidizing by contacting a gas containing ozone and a cellulose raw material.
  • oxidation reaction By this oxidation reaction, at least the hydroxyl groups at the 2nd and 6th positions of the glucopyranose ring are oxidized and the cellulose chain is decomposed.
  • the ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3 , and more preferably 70 to 220 g / m 3 .
  • the amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, and more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass.
  • the ozone treatment temperature is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C.
  • the ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 300 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
  • an additional oxidation treatment may be performed using an oxidizing agent.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, peracetic acid and the like. For example, these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and a cellulose raw material can be immersed in the solution for additional oxidation treatment.
  • the amount of the carboxyl group, carboxylate group, and aldehyde group of the cellulose fiber can be adjusted by controlling the amount of the oxidizing agent added and the reaction time.
  • the carboxyl group content is measured, for example, by preparing 60 mL of a 0.5 mass% slurry (aqueous dispersion) of oxidized cellulose, adding 0.1 M hydrochloric acid aqueous solution to pH 2.5, and then adding 0.05 N sodium hydroxide.
  • the electrical conductivity was measured by dropping the aqueous solution until the pH reached 11, and the amount was calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid where the change in electrical conductivity was slow, using the following formula: can do.
  • Amount of carboxyl group [mmol / g oxidized cellulose or cellulose nanofiber] A [mL] x 0.05 / oxidized cellulose mass [g]
  • the carboxymethylation of the cellulose raw material can be performed using a known method, and is not particularly limited.
  • the degree of carboxymethyl group substitution per anhydroglucose unit of cellulose is 0.01 to 0.00. It is preferable to adjust to 50.
  • the following production method can be mentioned, but it may be synthesized by a conventionally known method or a commercially available product may be used.
  • Cellulose is used as a starting material, and 3 to 20 times by weight water and / or lower alcohol as a solvent, specifically methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc.
  • the mixing ratio of the lower alcohol is 60 to 95% by mass.
  • the mercerizing agent 0.5 to 20 times moles of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide is used per anhydroglucose residue of the bottoming material.
  • a bottoming raw material, a solvent, and a mercerizing agent are mixed, and a mercerization process is performed at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • a carboxymethylating agent is added in an amount of 0.05 to 10.0 times mol per glucose residue, a reaction temperature of 30 to 90 ° C., preferably 40 to 80 ° C., and a reaction time of 30 minutes to 10 hours, preferably 1 hour.
  • the etherification reaction is performed for ⁇ 4 hours.
  • the following method can be used. That is, 1) About 2.0 g of carboxymethylated cellulose fiber (absolutely dry) is precisely weighed and put into a 300 mL conical stoppered Erlenmeyer flask. 2) Add 100 mL of a solution of 100 mL of special concentrated nitric acid to 1000 mL of nitric acid methanol and shake for 3 hours to convert the carboxymethyl cellulose salt (CM cellulose) into hydrogenated CM cellulose. 3) Weigh accurately 1.5 to 2.0 g of hydrogenated CM-modified cellulose (absolutely dry), and put into a 300 mL Erlenmeyer flask with a stopper.
  • CM cellulose carboxymethyl cellulose salt
  • F ′ Factor of 0.1N H 2 SO 4
  • F Factor of 0.1N NaOH
  • the cationization of the cellulose raw material can be performed using a known method, and for example, ammonium, phosphonium, sulfonium, or a group having ammonium, phosphonium or sulfonium can be contained in the cellulose molecule by cationization.
  • a group containing ammonium is preferred, and a group containing quaternary ammonium is particularly preferred.
  • a specific cationization method is not particularly limited, but as an example, a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2hydroxypropyltrimethylammonium chloride or a halohydrin type thereof is used as a cellulose raw material.
  • Cationic modification having a group containing a quaternary ammonium by reacting a catalyst alkali metal hydroxide (sodium hydroxide, potassium hydroxide, etc.) in the presence of water and / or an alcohol having 1 to 4 carbon atoms.
  • a catalyst alkali metal hydroxide sodium hydroxide, potassium hydroxide, etc.
  • Cellulose can be obtained.
  • the degree of cation substitution per glucose unit of the cation-modified cellulose obtained is controlled by the addition amount of the cationizing agent to be reacted, the composition ratio of water and / or alcohol having 1 to 4 carbon atoms. Can be adjusted.
  • the degree of substitution herein refers to the number of substituents introduced per unit structure (glucopyranose ring) constituting cellulose. In other words, it is defined as “a value obtained by dividing the number of moles of the introduced substituent by the total number of moles of hydroxyl groups of the glucopyranose ring”. Since pure cellulose has three substitutable hydroxyl groups per unit structure (glucopyranose ring), the theoretical maximum value of the degree of substitution of the cellulose fiber of the present invention is 3 (minimum value is 0).
  • the degree of cation substitution per glucose unit of cationized cellulose is preferably 0.01 to 0.40.
  • the celluloses repel each other electrically. For this reason, the cellulose which introduce
  • the cation substitution degree per glucose unit is smaller than 0.01, nano-defibration cannot be sufficiently performed.
  • the degree of cation substitution per glucose unit is larger than 0.40, the fiber form cannot be maintained because it swells or dissolves and may not be obtained as a nanofiber.
  • the degree of cation substitution per glucose unit can be calculated from the following equation by measuring the nitrogen content with a total nitrogen analyzer TN-10 (Mitsubishi Chemical) after drying the sample (cation-modified cellulose). .
  • the degree of substitution referred to here represents the average value of the number of moles of substituents per mole of anhydroglucose unit.
  • Degree of cation substitution (162 ⁇ N) / (1-151.6 ⁇ N) N: Nitrogen content
  • a method for obtaining an esterified cellulose fiber or an esterified cellulose nanofiber by esterifying a cellulose raw material or a defibrated cellulose fiber is not particularly limited, and examples thereof include a method of reacting compound A with a cellulose raw material or a defibrated cellulose fiber. It is done. Compound A will be described later.
  • Examples of the method of reacting compound A with cellulose raw material or defibrated cellulose fiber include a method of mixing powder or aqueous solution of compound A with cellulose raw material or defibrated cellulose fiber, and compound A into a slurry of cellulose raw material or defibrated cellulose fiber.
  • the method of adding the aqueous solution of this is mentioned.
  • a method in which an aqueous solution of Compound A is mixed with a cellulose raw material, a defibrated cellulose fiber or a slurry thereof is preferable.
  • compound A examples include phosphoric acid compounds (eg, phosphoric acid, polyphosphoric acid), phosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof.
  • Compound A may be in the form of a salt.
  • a phosphoric acid compound is preferable because it is low in cost, easy to handle, and can improve the fibrillation efficiency by introducing a phosphate group into cellulose of a cellulose raw material (eg, pulp fiber).
  • the phosphate compound may be any compound having a phosphate group.
  • phosphoric acid sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, diphosphate
  • examples include potassium hydrogen, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate.
  • the phosphoric acid compound used may be one type or a combination of two or more types.
  • phosphoric acid phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid
  • Ammonium salt is preferable, sodium salt of phosphoric acid is more preferable, and sodium dihydrogen phosphate and disodium hydrogen phosphate are more preferable.
  • the pH of the aqueous solution of the phosphoric acid compound is preferably 7 or less because the efficiency of introduction of phosphate groups is increased. From the viewpoint of suppressing the hydrolysis of pulp fibers, a pH of 3 to 7 is more preferable.
  • esterification method examples include the following methods.
  • Compound A is added to a cellulose raw material or a suspension of defibrated cellulose fibers (for example, a solid content concentration of 0.1 to 10% by mass) with stirring to introduce phosphate groups into the cellulose.
  • the cellulose raw material or defibrated cellulose fiber is 100 parts by mass
  • the compound A is a phosphoric acid compound
  • the addition amount of the compound A is preferably 0.2 parts by mass or more, preferably 1 part by mass or more as the amount of phosphorus element. Is more preferable.
  • the upper limit is preferably 500 parts by mass or less, and more preferably 400 parts by mass or less. Thereby, the yield corresponding to the usage-amount of the compound A can be obtained efficiently. Therefore, 0.2 to 500 parts by mass is preferable, and 1 to 400 parts by mass is more preferable.
  • Compound B When reacting Compound A with cellulose raw material or defibrated cellulose fiber, Compound B may be further added to the reaction system.
  • Examples of the method of adding Compound B to the reaction system include a method of adding Compound B to a slurry of cellulose raw material or defibrated cellulose fiber, an aqueous solution of Compound A, or a slurry of cellulose raw material or defibrated cellulose fiber and Compound A. It is done.
  • Compound B is not particularly limited, but preferably exhibits basicity, more preferably a nitrogen-containing compound exhibiting basicity.
  • “Show basic” usually means that the aqueous solution of Compound B is pink to red in the presence of a phenolphthalein indicator, or / and the pH of the aqueous solution of Compound B is greater than 7.
  • the nitrogen-containing compound showing basicity is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable. Examples of the compound having an amino group include urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like.
  • the amount of compound B added is preferably 2 to 1000 parts by mass, and more preferably 100 to 700 parts by mass.
  • the reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C.
  • the reaction time is not particularly limited, but is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are in any of these ranges, cellulose can be prevented from being excessively esterified and easily dissolved, and the yield of phosphorylated esterified cellulose can be improved. it can.
  • a suspension of esterified cellulose fiber or esterified cellulose nanofiber is usually obtained.
  • the suspension of esterified cellulose fiber or esterified cellulose nanofiber is dehydrated as necessary.
  • Heat treatment is preferably performed after dehydration. Thereby, hydrolysis of a cellulose raw material or a defibrated cellulose fiber can be suppressed.
  • the heating temperature is preferably 100 to 170 ° C. While water is included in the heat treatment, heating is performed at 130 ° C or less (more preferably 110 ° C or less), and after removing water, heating is performed at 100 to 170 ° C. More preferably, it is processed.
  • phosphate esterified cellulose In phosphate esterified cellulose, a phosphate group substituent is introduced into the cellulose, and the cellulose repels electrically. Therefore, the phosphate esterified cellulose fiber can be easily defibrated up to cellulose nanofibers (the defibration performed until the cellulose nanofibers are thus formed is also referred to as nano-defibration).
  • the phosphate group substitution degree per glucose unit of the phosphate esterified cellulose fiber is preferably 0.001 or more. Thereby, sufficient defibration (for example, nano defibration) can be implemented.
  • the upper limit of the degree of phosphate group substitution per glucose unit of the phosphate esterified cellulose fiber is preferably 0.40 or less.
  • the phosphate group substitution degree per glucose unit of the phosphate esterified cellulose fiber is preferably 0.001 to 0.40.
  • the degree of phosphate group substitution per glucose unit of cellulose nanofibers (phosphate esterified cellulose nanofibers) modified by phosphoric esterification is preferably 0.001 or more.
  • the upper limit is preferably 0.40 or less. Therefore, the phosphate group substitution degree per glucose unit of the phosphate esterified cellulose nanofiber is preferably 0.001 to 0.40. It is preferable that the phosphorylated cellulose fiber is subjected to a washing treatment such as washing with cold water after boiling. Thereby, defibration can be performed efficiently.
  • the reaction tank used in the step of chemically modifying this cellulose raw material to obtain modified cellulose is not particularly limited, but a tank provided with a stirring blade, a pulper, a kneader, a ribbon type mixing device, a screw type mixing An apparatus etc. can be illustrated.
  • a tank or a pulper provided with a stirring blade capable of stirring a liquid or liquid slurry it is preferable to use a tank or a pulper provided with a stirring blade capable of stirring a liquid or liquid slurry.
  • a kneader, ribbon type mixer, screw type mixer that can mix and agitate them is used. It is preferable to do.
  • the dispersion of chemically modified cellulose obtained in the chemical modification step of cellulose is a step of washing with water after the dehydration treatment.
  • a fiber dispersion can be obtained.
  • a centrifugal, vacuum dehydration or pressure dehydration type dehydration apparatus can be used. Specifically, basket-type centrifuges, decanter-type centrifuges, etc. as centrifugal separation types, drum-type vacuum dehydrators as vacuum dehydration types, horizontal belt filters, etc., filter presses, tube presses, screw presses as pressure dehydration types Belt press horizontal belt filter, poly disk filter, vibrating screen and the like.
  • pressure dehydration type filter press, tube press, screw press
  • centrifugal separation type basic type, decanter type
  • vacuum dehydration type Drum type vacuum dehydrator, horizontal belt filter
  • the concentration of the chemically modified cellulose dispersion is 2.5% by mass to 15% by mass, more preferably 3% by mass in order to efficiently perform the preliminary defibrating step. Adjust to ⁇ 10% by mass.
  • the amount is less than 0.5% by mass, the presence of the modified pulp is too small to efficiently defibrate.
  • it exceeds 15% by mass the viscosity of the chemically modified cellulose dispersion is too high to efficiently defibrate.
  • the apparatus used in the preliminary defibrating beating process is a single disk type refiner.
  • the single disc type refiner has high plate surface accuracy and can be operated with a narrow plate clearance. Carrying out the preliminary defibrating step (A) leads to loosening the outer layer of the cellulose fibers and fibrillation inside, so that cellulose nanofibers can be easily obtained in this defibrating step (B) and the load is reduced.
  • the treatment rate of chemically modified cellulose in a single disc type refiner is 30 m 3 / hr or less.
  • the treatment rate is 30 m 3 / hr or less.
  • the single disk type refiner includes a papermaking plate (viscous beating plate, fine bar type plate), a plate (plate with a dam) that closes the raw material flow path, and a grindstone plate. Any flat metal plate without grooves is used.
  • the plate clearance of the refiner used in the preliminary defibrating step (A) is 0.01 mm to 0.4 mm, more preferably 0.1 mm to 0.3 mm. If the thickness is less than 0.01 mm, the plate will be abruptly worn. If the thickness exceeds 0.4 mm, the clearance is too wide and the processing is difficult to proceed.
  • a conventional refiner that adjusts the clearance by moving the rotor side plate using a hydraulic or pneumatic jack may be used, but a ball screw type clearance adjustment mechanism is more preferable.
  • the use of a refiner with a squeezer and further precise control of the clearance between the plates by means of a laser position measurement mechanism or the like enables efficient pre-defibration.
  • the peripheral speed of the plate is preferably 24.5 m / s or more, more preferably 30 m / s or more. By setting the peripheral speed of the plate to 24.5 m / s or more, preliminary defibration can be performed efficiently.
  • the rotational shear rate of the refiner plate is 100 (1 / ms) or more, more preferably 150 (1 / ms) or more.
  • the rotational shear rate of the plate (the peripheral speed of the plate / plate clearance).
  • the rotational shear rate of the plate is less than 100 (1 / ms)
  • preliminary defibration cannot be performed efficiently.
  • a normal head case-shaped refiner may be used, but in order to prevent heat generation due to stirring of the raw material staying inside the head case, the space inside the head case is 10 L or less. It is better to do.
  • a cooling water jacket for cooling the pulp is installed in the space inside the head case so that the treatment is performed while suppressing the influence of heat on the pulp.
  • the present defibration means that cellulose obtained by preliminary defibration is applied with a strong shearing force using a high-pressure disperser, and an average fiber length of 0.5 to 5 ⁇ m and an average fiber width of 3 to Defibration up to 100 nm.
  • a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 1 MPa to 400 MPa to the chemically modified cellulose dispersion and can apply a strong shearing force.
  • a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 10 MPa to 400 MPa and a strong shear force to the chemically modified cellulose dispersion is preferably used.
  • the chemically modified cellulose is defibrated to form cellulose nanofibers, and the cellulose nanofibers are dispersed in the medium to produce a cellulose nanofiber dispersion.
  • AFM atomic force microscope
  • Example 1 Pulp raw material adjustment: oxidized pulp
  • Bleached unbeaten pulp (Nippon Paper Co., Ltd.) 5 g (absolutely dried) derived from coniferous trees, TEMPO (Tokyo Kasei Co., Ltd.) 78 mg (0.5 mmol) and sodium bromide (Wako Pure Chemical Industries, Ltd.) 756 mg (7.35 mmol) )
  • TEMPO Tokyo Kasei Co., Ltd.
  • sodium bromide Wi-Fi Pure Chemical Industries, Ltd.
  • sodium hypochlorite manufactured by Wako Pure Chemical Industries, Ltd.
  • a liquid feed pump was added so that sodium hypochlorite was added at a rate of 0.23 mmol / min per gram of pulp.
  • the addition was continued until the total amount of sodium hypochlorite added was 22.5 mmol.
  • the pH in the system was lowered, but a 3N sodium hydroxide aqueous solution was successively added to adjust the pH to 10.
  • reaction time was taken as the reaction time.
  • the reaction solution was neutralized with hydrochloric acid until neutral, and then the reaction solution was filtered through a glass filter and sufficiently washed with water to obtain an oxidized pulp.
  • the carboxyl group amount of oxidized pulp was measured by the following method. Prepare 60 mL of 0.5% by mass slurry of oxidized pulp, add 0.1 M hydrochloric acid aqueous solution to pH 2.5, then add 0.05 N aqueous sodium hydroxide solution dropwise until the pH reaches 11 was calculated from the amount (a) of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity was gradual, using the following equation.
  • Amount of carboxyl group [mmol / g oxidized pulp] A [mL] x 0.05 / oxidized pulp mass [g]
  • the carboxyl group content of the obtained oxidized pulp was 1.60 mmol / g.
  • the slurry of oxidized pulp that had undergone the above oxidation treatment was subjected to a preliminary defibration treatment using a single disk type refiner made by Aikawa Tekko.
  • a fine bar type plate was used, and the shape of the plate blade was a blade width of 0.8 mm, a groove width of 1.5 mm, a blade length of 90 mm, a blade angle of 15 °, and a plate clearance of 0.1 mm.
  • the processing speed of the preliminary defibrating by the refiner is 1 m 3 / hr, the raw material concentration of the oxidized pulp slurry used for the preliminary defibrating processing is 3% (w / v), and the peripheral speed of the refiner plate is 40.2 m / s.
  • the rotational shear rate of the plate was 402.0 (1 / ms), and the number of refiner passes was 1. As a result, the preliminary defibrating treatment could be operated without any problems.
  • the power consumption of preliminary defibration was 0.76 kWh / kg.
  • Example 2 Among the experimental conditions of Example 1, the plate is a dam formed on the outer periphery of a fine bar type plate, and the shape of the plate blade is a blade width of 0.8 mm, a groove width of 1.0 mm, a blade length of 80 mm,
  • the experiment was performed under the same conditions as those of Example 1 except that the blade angle was changed to 15 ° and the treatment speed was changed to 3 m 3 / hr. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.17 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 44.5%.
  • Example 3 Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the plate was changed to a grindstone plate (no blade) and the processing speed was changed to 3 m 3 / hr. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.18 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 44.1%.
  • Example 4 Of the experimental conditions of Example 1, the plate is a viscous beating plate, and the shape of the plate blade is a blade width of 4.5 mm, a groove width of 3.5-4.5 mm, a blade length of 95 mm, and a blade angle of 10 °.
  • the plate clearance is 0.13 mm
  • the processing speed is 19.2 m 3 / hr
  • the plate peripheral speed is 24.6 m / s
  • the rotational shear rate of the plate is 189.2 (1 / ms)
  • the experiment was performed under the same conditions as in Example 1 except that the number of treatments was set to 3. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.03 kWh / kg
  • the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 52.3%.
  • Example 5 Of the experimental conditions of Example 1, the plate is of the dam type (3-stage dam), and the shape of the plate blade is 4.0 mm blade width, 4.0 mm groove width, 75-85 mm blade length, and 0 ° blade angle.
  • the processing speed was 9.0 m 3 / hr
  • the peripheral speed of the plate was 24.6 m / s
  • the rotational shear rate of the plate was 246.0 (1 / ms)
  • the number of processing by the refiner was 2.
  • the experiment was performed under the same conditions as in Example 1 except for the above. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.05 kWh / kg
  • the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 51.6%.
  • Example 6 Among the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the raw material concentration was changed to 5 percent. As a result, it was possible to operate without problems in both the preliminary defibrating process and the main defibrating process.
  • the power consumption of preliminary defibration was 0.65 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 69.0%.
  • Example 7 Among the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was changed to 3 m 3 / hr. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.25 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 54.6%.
  • Example 8 Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was changed to 3 m 3 / hr and the raw material concentration was changed to 5%. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.28 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 63.3%.
  • Example 9 Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was changed to 9 m 3 / hr. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.07 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 52.7%.
  • Example 10 Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was changed to 9 m 3 / hr and the raw material concentration was changed to 5%. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.08 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 63.5%.
  • Example 11 Of the experimental conditions of Example 1, the processing speed was 15 m 3 / hr, the plate peripheral speed was 24.6 m / s, the rotational shear rate of the plate was 246.0 (1 / ms), and the number of processing by the refiner was 3.
  • the experiment was performed under the same conditions as in Example 1 except that. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.03 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 57.3%.
  • Example 12 Of the experimental conditions of Example 1, the plate clearance was 0.08 mm, the processing speed was 23.4 m 3 / hr, the plate peripheral speed was 30.7 m / s, and the rotational shear rate of the plate was 383.8 (1 / ms).
  • the experiment was performed under the same conditions as in Example 1 except that the number of treatments by the refiner was set to 8. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.03 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 63.3%.
  • Example 13 Among the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the raw material concentration was changed to 7%. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.45 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 70.0%.
  • Example 14 Of the experimental conditions of Example 1, the processing speed was 3 m 3 / hr, the plate peripheral speed was 55.8 m / s, and the rotational shear rate of the plate was changed to 558.0 (1 / ms). The experiment was performed under the same conditions as the experimental conditions. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.57 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 67.3%.
  • Example 15 Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was 9 m 3 / hr, the raw material concentration was 10%, and the number of treatments by the refiner was 3. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.12 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 60.2%.
  • Example 16 Of the experimental conditions of Example 1, the plate clearance was 0.22 mm, the processing speed was 11.6 m 3 / hr, the raw material concentration was 5%, the plate peripheral speed was 30.7 m / s, and the rotational shear rate of the plate was 139.
  • the experiment was performed under the same conditions as those of Example 1 except that 5 (1 / ms) and the number of treatments by the refiner were set to 4. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.29 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 68.0%.
  • Table 1 shows refiner conditions, power consumption, and experimental results of Examples 1 to 16.
  • Example 3 Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was 40 m 3 / hr and the number of treatments by the refiner was 3. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems.
  • the power consumption of preliminary defibration was 0.07 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg.
  • the transparency of the obtained cellulose nanofiber dispersion was 33%, which was low.
  • Example 4 Among the experimental conditions of Example 1, the preliminary defibration was performed under the same conditions as the experimental conditions of Example 1 except that the raw material concentration was 16% and the number of treatments by the refiner was 3, but the viscosity of the sample was high. The operability was poor and the preliminary defibration was not possible.
  • Example 5 Of the experimental conditions of Example 1, the plate peripheral speed is 15 m / s, the rotational shear rate of the plate is 150.0 (1 / ms), and the number of treatments by the refiner is 3, and the same as the experimental conditions of Example 1. The experiment was conducted under conditions. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 1.8 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Further, the transparency of the obtained cellulose nanofiber dispersion was 35.2%, which was low.
  • Table 2 shows the refiner conditions, power consumption, and experimental results of Comparative Examples 1 to 5.
  • Examples 1 to 16 high-quality cellulose nanofiber dispersions with low power consumption and high transparency could be produced. Further, the operability of the preliminary defibration and the main defibration was good, and the clogging of the dispersion nozzle did not occur. Furthermore, the number of preliminary defibration and the number of passes of ultrahigh pressure homo may be appropriately adjusted according to the required transparency.
  • Comparative Example 1 On the other hand, in Comparative Example 1, clogging occurred in the dispersion nozzle in this defibrating process, resulting in poor operability. Further, the transparency of the obtained cellulose nanofiber dispersion was lower than that of Examples 1 to 16. In Comparative Example 2, a metal touch occurred and preliminary defibration could not be performed. In Comparative Example 3, the transparency of the obtained cellulose nanofiber dispersion was lower than that in Examples 1-16. In Comparative Example 4, the viscosity of the sample was too high, the operability was poor, and preliminary defibration could not be performed. In Comparative Example 5, the transparency of the obtained cellulose nanofiber dispersion was lower than that in Examples 1-16.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

This method for producing a high-transparency cellulose nanofiber dispersion has a preliminary defibration step for beating chemically modified cellulose using a single disk-type refiner, and a main defibration step for defibrating pulp obtained in the preliminary defibration step through treatment by a high-pressure disperser at a treatment pressure of 1-400 MPa.

Description

セルロースナノファイバー分散液の製造方法Method for producing cellulose nanofiber dispersion
 本発明は、少ない電力消費量で製造される、透明度の高いセルロースナノファイバー分散液の製造方法に関する。 The present invention relates to a method for producing a highly transparent cellulose nanofiber dispersion that is produced with low power consumption.
 セルロースを微細化して得られたセルロースナノファイバーは、1~100nm程度のナノレベルの繊維径を有する繊維であり、その分散液は高い透明性を有している。このため透明性を求められる用途、例えば光学フィルム、フィルム用のコーティング剤、ガラスへの複合化等への応用が期待される。そのため、セルロースナノファイバーの製造方法に関して種々の検討が行われている(特許文献1参照)。 Cellulose nanofibers obtained by refining cellulose are fibers having a nano-level fiber diameter of about 1 to 100 nm, and the dispersion has high transparency. For this reason, application to transparency, for example, optical film, film coating agent, compounding to glass, etc. is expected. For this reason, various studies have been made on methods for producing cellulose nanofibers (see Patent Document 1).
特開2008-1728号公報JP 2008-1728 A
 しかしながら、従来のセルロースナノファイバーの製造方法では、一般的に超高圧ホモジナイザーのようなせん断力の強い分散機により複数回、微細化の処理を行うため、製造に莫大な電力を使用する。また、超高圧ホモジナイザーは、非常に細い間隙に、サンプルを押し込み高圧とするため、パルプのような大きな繊維を処理する場合、詰まりなどを発生させ、非常に生産性、作業性が劣ることなどが問題であった。 However, in the conventional method for producing cellulose nanofibers, a large amount of electric power is used for production because the finer treatment is generally performed several times by a dispersing machine having a strong shearing force such as an ultra-high pressure homogenizer. In addition, the ultra-high pressure homogenizer pushes the sample into a very narrow gap to make it high pressure, so when processing large fibers such as pulp, clogging may occur, resulting in extremely poor productivity and workability. It was a problem.
 本発明は、少ない電力消費量で、透明度の高いセルロースナノファイバー分散液を効率よく製造するセルロースナノファイバー分散液の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a cellulose nanofiber dispersion that efficiently produces a highly transparent cellulose nanofiber dispersion with low power consumption.
 本発明は、以下の(1)~(7)を提供する。 The present invention provides the following (1) to (7).
 (1)下記(A)、(B)の工程を有することを特徴とする、化学変性したセルロースから透明度の高いセルロースナノファイバー分散液を製造するセルロースナノファイバー分散液の製造方法。
 工程(A):シングルディスクタイプのリファイナーを用いて前記化学変性したセルロースを叩解処理する予備解繊工程、
 工程(B):前記予備解繊工程(A)で得られたセルロースを1MPa~400MPaの処理圧での高圧式分散機による処理で解繊する本解繊工程。
(1) A method for producing a cellulose nanofiber dispersion comprising producing a highly transparent cellulose nanofiber dispersion from chemically modified cellulose, comprising the following steps (A) and (B):
Step (A): preliminary defibrating step of beating the chemically modified cellulose using a single disc type refiner,
Step (B): This defibrating step of defibrating the cellulose obtained in the preliminary defibrating step (A) by treatment with a high-pressure disperser at a treatment pressure of 1 MPa to 400 MPa.
 (2)前記予備解繊工程(A)において、前記リファイナーで使用するプレートは、粘状叩解用プレート、ファインバータイププレート、原料流路を塞ぐ構造を有するプレート、砥石プレート、溝の無い平らな金属プレートの何れかであることを特徴とする(1)記載のセルロースナノファイバー分散液の製造方法。 (2) In the preliminary defibrating step (A), the plate used in the refiner is a viscous beating plate, a fine bar type plate, a plate having a structure for closing the raw material flow path, a grindstone plate, a flat without a groove. The method for producing a cellulose nanofiber dispersion according to (1), which is any one of metal plates.
 (3)前記予備解繊工程(A)において、前記化学変性したセルロースの処理速度が30m3/hr以下であることを特徴とする(1)または(2)記載のセルロースナノファイバー分散液の製造方法。 (3) Production of cellulose nanofiber dispersion according to (1) or (2), wherein in the preliminary defibrating step (A), the treatment rate of the chemically modified cellulose is 30 m 3 / hr or less. Method.
 (4)前記予備解繊工程(A)において、前記化学変性したセルロースの処理時の濃度が2.5~15質量%であることを特徴とする(1)~(3)の何れかに記載のセルロースナノファイバー分散液の製造方法。 (4) In the preliminary defibrating step (A), the concentration of the chemically modified cellulose during treatment is 2.5 to 15% by mass, according to any one of (1) to (3) Of manufacturing cellulose nanofiber dispersion liquid.
 (5)前記予備解繊工程(A)において、前記プレートのクリアランスが0.01~0.4mmであることを特徴とする(2)~(4)の何れかに記載のセルロースナノファイバー分散液の製造方法。 (5) The cellulose nanofiber dispersion according to any one of (2) to (4), wherein in the preliminary defibrating step (A), the clearance of the plate is 0.01 to 0.4 mm. Manufacturing method.
 (6)前記予備解繊工程(A)において、前記プレートの周速が24.5m/s以上であることを特徴とする(2)~(5)の何れかに記載のセルロースナノファイバー分散液の製造方法。 (6) The cellulose nanofiber dispersion according to any one of (2) to (5), wherein the peripheral speed of the plate is 24.5 m / s or more in the preliminary defibrating step (A) Manufacturing method.
 (7)前記予備解繊工程(A)において、前記プレートの回転のせん断速度が100(1/ms)以上であることを特徴とする(2)~(6)の何れかに記載のセルロースナノファイバー分散液の製造方法。 (7) The cellulose nanostructure according to any one of (2) to (6), wherein in the preliminary defibrating step (A), the shear rate of rotation of the plate is 100 (1 / ms) or more. A method for producing a fiber dispersion.
 本発明によれば、少ない電力消費量で、透明度の高いセルロースナノファイバー分散液を効率よく製造する方法を提供することができる。また、本発明によれば、化学変性したセルロースをナノファイバー化する本解繊工程において、生産性を悪化させる解繊機での詰まりの発生を抑制することができる。 According to the present invention, it is possible to provide a method for efficiently producing a highly transparent cellulose nanofiber dispersion with low power consumption. Moreover, according to this invention, generation | occurrence | production of the blockage | clogging in the defibrating machine which deteriorates productivity can be suppressed in this defibrating process which converts the chemically modified cellulose into nanofibers.
 本発明のセルロースナノファイバー分散液の製造方法は、工程(A):シングルディスクタイプのリファイナーを用いて化学変性したセルロースを叩解処理する予備解繊工程、及び、工程(B):前記予備解繊工程(A)で得られたセルロースを1MPa~400MPaの処理圧での高圧式分散機による処理で解繊する本解繊工程、を有することを特徴とする。 The method for producing a cellulose nanofiber dispersion according to the present invention includes a step (A): a preliminary defibrating step of beating a chemically modified cellulose using a single disk type refiner, and a step (B): the preliminary defibrating step. And a main defibrating step of defibrating the cellulose obtained in (A) by treatment with a high-pressure disperser at a treatment pressure of 1 MPa to 400 MPa.
 本発明は、従来の叩解装置による機械的叩解処理による予備解繊と、本解繊とを組み合わせることにより、各々異なる機構によってセルロース繊維の解繊が行われるため、消費電力を抑えながら、透明度の高いセルロースナノファイバー分散液を製造することができる。 In the present invention, cellulose fibers are defibrated by different mechanisms by combining preliminary defibration by mechanical beating processing with a conventional beating device and main defibration, so that while reducing power consumption, transparency can be reduced. A high cellulose nanofiber dispersion can be produced.
 本発明により透明度の高いセルロースナノファイバー分散液が得られる理由は以下のように推察される。予備解繊では、原料となる化学変性したセルロースの微細化が進み、また、セルロース繊維の外側がほぐされた状態になる。そのため、その後の本解繊で超高圧ホモジナイザー等のせん断エネルギーがセルロースに作用しやすくなり、効率的に透明度の高いセルロースナノファイバー分散液を製造することができる。 The reason why a highly transparent cellulose nanofiber dispersion can be obtained by the present invention is presumed as follows. In preliminary defibration, the refinement of chemically modified cellulose as a raw material proceeds, and the outside of the cellulose fiber is loosened. Therefore, in this subsequent defibration, shear energy such as an ultra-high pressure homogenizer easily acts on the cellulose, and a cellulose nanofiber dispersion with high transparency can be produced efficiently.
(1)セルロース原料
 本発明において、セルロース原料とは、セルロースを主体とした様々な形態の材料をいい、パルプ(晒又は未晒木材パルプ、晒又は未晒非木材パルプ、精製リンター、ジュート、マニラ麻、ケナフ等の草本由来のパルプなど)、酢酸菌等の微生物によって生産されるセルロース等の天然セルロース、セルロースを銅アンモニア溶液、モルホリン誘導体等の何らかの溶媒に溶解した後に紡糸された再生セルロース、及び上記セルロース原料に加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル等の機械的処理等をすることによってセルロースを解重合した微細セルロースなどが例示される。
(1) Cellulose raw material In the present invention, the cellulose raw material refers to materials in various forms mainly composed of cellulose, and pulp (bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, refined linter, jute, Manila hemp , Pulp derived from herbs such as kenaf), natural cellulose such as cellulose produced by microorganisms such as acetic acid bacteria, regenerated cellulose spun after dissolving cellulose in some solvent such as copper ammonia solution, morpholine derivative, and the above Examples thereof include fine cellulose obtained by depolymerizing cellulose by subjecting the cellulose raw material to mechanical treatment such as hydrolysis, alkaline hydrolysis, enzymatic decomposition, explosion treatment, and vibration ball mill.
(2)セルロースの化学変性工程
 (酸化)
 本発明において、セルロース原料の酸化は公知の方法を用いて行うことができ、特に限定されるものではないが、セルロースナノファイバーの絶乾質量に対して、カルボキシル基の量が0.5mmol/g~3.0mmol/gになるように調整することが好ましい。
(2) Chemical modification process of cellulose (Oxidation)
In the present invention, the oxidation of the cellulose raw material can be performed using a known method, and is not particularly limited, but the amount of carboxyl groups is 0.5 mmol / g with respect to the absolute dry mass of the cellulose nanofiber. It is preferable to adjust so as to be ˜3.0 mmol / g.
 その一例として、セルロースをN-オキシル化合物、及び、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用いて水中で酸化することにより得ることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基またはカルボキシレート基を有するセルロース系ファイバーを得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下が好ましい。N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。 For example, cellulose can be obtained by oxidizing cellulose in water in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, or a mixture thereof. By this oxidation reaction, the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized, and a cellulose fiber having an aldehyde group and a carboxyl group or a carboxylate group on the surface can be obtained. The concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less. An N-oxyl compound refers to a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it promotes the target oxidation reaction.
 N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロースに対して、0.01~10mmolが好ましく、0.02~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。また、反応系に対し0.1~4mmol/L程度がよい。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing the cellulose as a raw material. For example, with respect to 1 g of absolutely dry cellulose, 0.01 to 10 mmol is preferable, 0.02 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is more preferable. Further, it is preferably about 0.1 to 4 mmol / L with respect to the reaction system.
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。 Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water. Further, an iodide is a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and further preferably 0.5 to 5 mmol with respect to 1 g of absolutely dry cellulose.
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムは好ましい。酸化剤の適切な使用量は、例えば、絶乾1gのセルロースに対して、0.5~500mmolが好ましく、0.7~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolが最も好ましい。また、例えば、N-オキシル化合物1molに対して1~40molが好ましい。 As the oxidizing agent, known ones can be used, and for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like can be used. Of these, sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact. The appropriate amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.7 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol with respect to 1 g of absolutely dry cellulose. . Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
 セルロースの酸化工程は、比較的温和な条件であっても反応を効率よく進行させることができる。よって、反応温度は4~40℃が好ましく、また15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から水が好ましい。 In the cellulose oxidation step, the reaction can proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 to 40 ° C., and may be room temperature of about 15 to 30 ° C. As the reaction proceeds, a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced. In order to make the oxidation reaction proceed efficiently, an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11. The reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば、1~4時間程度である。また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。 The reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is usually 0.5 to 6 hours, for example, about 1 to 4 hours. The oxidation reaction may be performed in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first-stage reaction. Can be oxidized well.
 カルボキシル化(酸化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位及び6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50~250g/m3であることが好ましく、70~220g/m3であることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1~30質量部であることが好ましく、5~30質量部であることがより好ましい。オゾン処理温度は、0~50℃であることが好ましく、20~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1~360分程度であり、30~300分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸等が挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。 Another example of the carboxylation (oxidation) method is a method of oxidizing by contacting a gas containing ozone and a cellulose raw material. By this oxidation reaction, at least the hydroxyl groups at the 2nd and 6th positions of the glucopyranose ring are oxidized and the cellulose chain is decomposed. The ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3 , and more preferably 70 to 220 g / m 3 . The amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, and more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass. The ozone treatment temperature is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C. The ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 300 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved. After the ozone treatment, an additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, peracetic acid and the like. For example, these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and a cellulose raw material can be immersed in the solution for additional oxidation treatment.
 セルロース系ファイバーのカルボキシル基、カルボキシレート基、アルデヒド基の量は、上記した酸化剤の添加量、反応時間をコントロールすることで調整することができる。カルボキシル基量の測定方法は例えば、酸化セルロースの0.5質量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量〔mmol/g酸化セルロース又はセルロースナノファイバー〕
  =a〔mL〕×0.05/酸化セルロース質量〔g〕
The amount of the carboxyl group, carboxylate group, and aldehyde group of the cellulose fiber can be adjusted by controlling the amount of the oxidizing agent added and the reaction time. The carboxyl group content is measured, for example, by preparing 60 mL of a 0.5 mass% slurry (aqueous dispersion) of oxidized cellulose, adding 0.1 M hydrochloric acid aqueous solution to pH 2.5, and then adding 0.05 N sodium hydroxide. The electrical conductivity was measured by dropping the aqueous solution until the pH reached 11, and the amount was calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid where the change in electrical conductivity was slow, using the following formula: can do.
Amount of carboxyl group [mmol / g oxidized cellulose or cellulose nanofiber]
= A [mL] x 0.05 / oxidized cellulose mass [g]
 (カルボキシメチル化)
 本発明において、セルロース原料のカルボキシメチル化は公知の方法を用いて行うことができ、特に限定されるものではないが、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01~0.50となるように調整することが好ましい。その一例として次のような製造方法を挙げることができるが、従来公知の方法で合成してもよく、市販品を使用してもよい。セルロースを発底原料にし、溶媒に3~20質量倍の水及び/又は低級アルコール、具体的にはメタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合媒体を使用する。なお、低級アルコールの混合割合は、60~95質量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍モル添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行う。
(Carboxymethylation)
In the present invention, the carboxymethylation of the cellulose raw material can be performed using a known method, and is not particularly limited. However, the degree of carboxymethyl group substitution per anhydroglucose unit of cellulose is 0.01 to 0.00. It is preferable to adjust to 50. As an example, the following production method can be mentioned, but it may be synthesized by a conventionally known method or a commercially available product may be used. Cellulose is used as a starting material, and 3 to 20 times by weight water and / or lower alcohol as a solvent, specifically methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc. Or a mixed medium of two or more. The mixing ratio of the lower alcohol is 60 to 95% by mass. As the mercerizing agent, 0.5 to 20 times moles of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide is used per anhydroglucose residue of the bottoming material. A bottoming raw material, a solvent, and a mercerizing agent are mixed, and a mercerization process is performed at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Thereafter, a carboxymethylating agent is added in an amount of 0.05 to 10.0 times mol per glucose residue, a reaction temperature of 30 to 90 ° C., preferably 40 to 80 ° C., and a reaction time of 30 minutes to 10 hours, preferably 1 hour. The etherification reaction is performed for ˜4 hours.
 グルコース単位当たりのカルボキシメチル置換度の測定方法としては、例えば、次の方法を用いることができる。すなわち、1)カルボキシメチル化セルロース繊維(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。2)硝酸メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(CM化セルロース)を水素型CM化セルロースにする。3)水素型CM化セルロース(絶乾)を1.5~2.0g精秤し、300mL容共栓付き三角フラスコに入れる。4)80%メタノール15mLで水素型CM化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。5)指示薬として、フェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定する。6)カルボキシメチル置換度(DS)を、次式によって算出する。
A=[(100×F’-(0.1NのH2SO4)(mL)×F)×0.1]/(水素型CM化セルロースの絶乾質量(g))
DS=0.162×A/(1-0.058×A)
A:水素型CM化セルロースの1gの中和に要する1NのNaOH量(mL)
F’:0.1NのH2SO4のファクター
F:0.1NのNaOHのファクター
As a method for measuring the degree of carboxymethyl substitution per glucose unit, for example, the following method can be used. That is, 1) About 2.0 g of carboxymethylated cellulose fiber (absolutely dry) is precisely weighed and put into a 300 mL conical stoppered Erlenmeyer flask. 2) Add 100 mL of a solution of 100 mL of special concentrated nitric acid to 1000 mL of nitric acid methanol and shake for 3 hours to convert the carboxymethyl cellulose salt (CM cellulose) into hydrogenated CM cellulose. 3) Weigh accurately 1.5 to 2.0 g of hydrogenated CM-modified cellulose (absolutely dry), and put into a 300 mL Erlenmeyer flask with a stopper. 4) Wet the hydrogenated CM cellulose with 15 mL of 80% methanol, add 100 mL of 0.1N NaOH, and shake at room temperature for 3 hours. 5) Back titrate excess NaOH with 0.1N H 2 SO 4 using phenolphthalein as indicator. 6) The degree of carboxymethyl substitution (DS) is calculated by the following formula.
A = [(100 × F ′ − (0.1 N H 2 SO 4 ) (mL) × F) × 0.1] / (absolute dry mass of hydrogenated CM-modified cellulose (g))
DS = 0.162 × A / (1−0.058 × A)
A: 1N NaOH amount (mL) required for neutralizing 1 g of hydrogenated CM-modified cellulose
F ′: Factor of 0.1N H 2 SO 4 F: Factor of 0.1N NaOH
 (カチオン化)
 本発明において、セルロース原料のカチオン化は公知の方法を用いて行うことができ、カチオン化により例えば、アンモニウム、ホスホニウム、スルホニウム、これらアンモニウム、ホスホニウムまたはスルホニウムを有する基をセルロース分子に有することができるが、アンモニウムを有する基が好ましく、特に、四級アンモニウムを含む基が好ましい。具体的なカチオン化の方法としては、特に限定されるものではないが、一例として、セルロース原料にグリシジルトリメチルアンモニウムクロリド、3-クロロ-2ヒドロキシプロピルトリメチルアンモニウムクロライド又はそのハロヒドリン型などのカチオン化剤と触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を水及び/又は炭素数1~4のアルコールの存在下で反応させることによって、四級アンモニウムを含む基を有する、カチオン変性されたセルロースを得ることができる。
(Cationization)
In the present invention, the cationization of the cellulose raw material can be performed using a known method, and for example, ammonium, phosphonium, sulfonium, or a group having ammonium, phosphonium or sulfonium can be contained in the cellulose molecule by cationization. A group containing ammonium is preferred, and a group containing quaternary ammonium is particularly preferred. A specific cationization method is not particularly limited, but as an example, a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2hydroxypropyltrimethylammonium chloride or a halohydrin type thereof is used as a cellulose raw material. Cationic modification having a group containing a quaternary ammonium by reacting a catalyst alkali metal hydroxide (sodium hydroxide, potassium hydroxide, etc.) in the presence of water and / or an alcohol having 1 to 4 carbon atoms. Cellulose can be obtained.
 なお、この方法において、得られるカチオン変性されたセルロースのグルコース単位当たりのカチオン置換度は、反応させるカチオン化剤の添加量、水及び/又は炭素数1~4のアルコールの組成比率をコントロールすることによって、調整することができる。ここでいう置換度とは、セルロースを構成する単位構造(グルコピラノース環)あたりの導入された置換基の個数を示す。言い換えると、「導入された置換基のモル数を、グルコピラノース環の水酸基の総モル数で割った値」として定義する。純粋セルロースは単位構造(グルコピラノース環)あたり3個の置換可能な水酸基を有しているため、本発明のセルロース繊維の置換度の理論最大値は3(最小値は0)である。 In this method, the degree of cation substitution per glucose unit of the cation-modified cellulose obtained is controlled by the addition amount of the cationizing agent to be reacted, the composition ratio of water and / or alcohol having 1 to 4 carbon atoms. Can be adjusted. The degree of substitution herein refers to the number of substituents introduced per unit structure (glucopyranose ring) constituting cellulose. In other words, it is defined as “a value obtained by dividing the number of moles of the introduced substituent by the total number of moles of hydroxyl groups of the glucopyranose ring”. Since pure cellulose has three substitutable hydroxyl groups per unit structure (glucopyranose ring), the theoretical maximum value of the degree of substitution of the cellulose fiber of the present invention is 3 (minimum value is 0).
 本発明において、カチオン化されたセルロースのグルコース単位当たりのカチオン置換度は0.01~0.40であることが好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのカチオン置換度が0.01より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのカチオン置換度が0.40より大きいと、膨潤あるいは溶解するため、繊維形態を維持できなくなり、ナノファイバーとして得られなくなる場合がある。 In the present invention, the degree of cation substitution per glucose unit of cationized cellulose is preferably 0.01 to 0.40. By introducing a cationic substituent into cellulose, the celluloses repel each other electrically. For this reason, the cellulose which introduce | transduced the cation substituent can be nano-defibrated easily. In addition, when the cation substitution degree per glucose unit is smaller than 0.01, nano-defibration cannot be sufficiently performed. On the other hand, if the degree of cation substitution per glucose unit is larger than 0.40, the fiber form cannot be maintained because it swells or dissolves and may not be obtained as a nanofiber.
 グルコース単位当たりのカチオン置換度は、試料(カチオン変性されたセルロース)を乾燥させた後に、全窒素分析計TN-10(三菱化学)で窒素含有量を測定し、次式により算出することができる。ここで言う置換度とは、無水グルコース単位1モル当たりの置換基のモル数の平均値を表している。
 カチオン置換度=(162×N)/(1-151.6×N)
  N:窒素含有量
The degree of cation substitution per glucose unit can be calculated from the following equation by measuring the nitrogen content with a total nitrogen analyzer TN-10 (Mitsubishi Chemical) after drying the sample (cation-modified cellulose). . The degree of substitution referred to here represents the average value of the number of moles of substituents per mole of anhydroglucose unit.
Degree of cation substitution = (162 × N) / (1-151.6 × N)
N: Nitrogen content
 (エステル化)
 セルロース原料または解繊セルロース繊維をエステル化して、エステル化セルロース繊維またはエステル化セルロースナノファイバーを得る方法は、特に限定されないが例えば、セルロース原料または解繊セルロース繊維に対し化合物Aを反応させる方法が挙げられる。化合物Aについては後述する。
(Esterification)
A method for obtaining an esterified cellulose fiber or an esterified cellulose nanofiber by esterifying a cellulose raw material or a defibrated cellulose fiber is not particularly limited, and examples thereof include a method of reacting compound A with a cellulose raw material or a defibrated cellulose fiber. It is done. Compound A will be described later.
 セルロース原料または解繊セルロース繊維に対し化合物Aを反応させる方法としては例えば、セルロース原料または解繊セルロース繊維に化合物Aの粉末又は水溶液を混合する方法、セルロース原料または解繊セルロース繊維のスラリーに化合物Aの水溶液を添加する方法等が挙げられる。これらのうち、反応の均一性が高まり、且つエステル化効率が高くなることから、セルロース原料または解繊セルロース繊維又はそのスラリーに化合物Aの水溶液を混合する方法が好ましい。 Examples of the method of reacting compound A with cellulose raw material or defibrated cellulose fiber include a method of mixing powder or aqueous solution of compound A with cellulose raw material or defibrated cellulose fiber, and compound A into a slurry of cellulose raw material or defibrated cellulose fiber. The method of adding the aqueous solution of this is mentioned. Among these, since the uniformity of the reaction is enhanced and the esterification efficiency is increased, a method in which an aqueous solution of Compound A is mixed with a cellulose raw material, a defibrated cellulose fiber or a slurry thereof is preferable.
 化合物Aとしては例えば、リン酸系化合物(例、リン酸、ポリリン酸)、亜リン酸、ホスホン酸、ポリホスホン酸、これらのエステル等が挙げられる。化合物Aは、塩の形態でもよい。上記の中でも、低コストであり、扱いやすく、またセルロース原料(例、パルプ繊維)のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由から、リン酸系化合物が好ましい。リン酸系化合物は、リン酸基を有する化合物であればよく、例えば、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。用いられるリン酸系化合物は、1種、あるいは2種以上の組み合わせでもよい。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸のナトリウム塩がより好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがさらに好ましい。また、反応の均一性が高まり、且つリン酸基導入の効率が高くなることから、エステル化においてはリン酸系化合物の水溶液を用いることが好ましい。リン酸系化合物の水溶液のpHは、リン酸基導入の効率が高くなることから、7以下が好ましい。パルプ繊維の加水分解を抑える観点から、pH3~7がより好ましい。 Examples of compound A include phosphoric acid compounds (eg, phosphoric acid, polyphosphoric acid), phosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof. Compound A may be in the form of a salt. Among them, a phosphoric acid compound is preferable because it is low in cost, easy to handle, and can improve the fibrillation efficiency by introducing a phosphate group into cellulose of a cellulose raw material (eg, pulp fiber). . The phosphate compound may be any compound having a phosphate group. For example, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, diphosphate Examples include potassium hydrogen, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate. . The phosphoric acid compound used may be one type or a combination of two or more types. Among these, phosphoric acid, phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid, from the viewpoint that phosphoric acid group introduction efficiency is high, is easy to be defibrated in the following defibrating process, and is industrially applicable. Ammonium salt is preferable, sodium salt of phosphoric acid is more preferable, and sodium dihydrogen phosphate and disodium hydrogen phosphate are more preferable. In addition, it is preferable to use an aqueous solution of a phosphoric acid compound in the esterification because the uniformity of the reaction is enhanced and the efficiency of introduction of phosphoric acid groups is increased. The pH of the aqueous solution of the phosphoric acid compound is preferably 7 or less because the efficiency of introduction of phosphate groups is increased. From the viewpoint of suppressing the hydrolysis of pulp fibers, a pH of 3 to 7 is more preferable.
 エステル化の方法としては例えば、以下の方法が挙げられる。セルロース原料または解繊セルロース繊維の懸濁液(例えば、固形分濃度0.1~10質量%)に化合物Aを撹拌しながら添加し、セルロースにリン酸基を導入する。セルロース原料または解繊セルロース繊維を100質量部とした際に、化合物Aがリン酸系化合物の場合、化合物Aの添加量はリン元素量として、0.2質量部以上が好ましく、1質量部以上がより好ましい。これにより、エステル化セルロース繊維またはエステル化セルロースナノファイバーの収率をより向上させることができる。上限は500質量部以下が好ましく、400質量部以下がより好ましい。これにより化合物Aの使用量に見合った収率を効率よく得ることができる。従って、0.2~500質量部が好ましく、1~400質量部がより好ましい。 Examples of the esterification method include the following methods. Compound A is added to a cellulose raw material or a suspension of defibrated cellulose fibers (for example, a solid content concentration of 0.1 to 10% by mass) with stirring to introduce phosphate groups into the cellulose. When the cellulose raw material or defibrated cellulose fiber is 100 parts by mass, when the compound A is a phosphoric acid compound, the addition amount of the compound A is preferably 0.2 parts by mass or more, preferably 1 part by mass or more as the amount of phosphorus element. Is more preferable. Thereby, the yield of esterified cellulose fiber or esterified cellulose nanofiber can be further improved. The upper limit is preferably 500 parts by mass or less, and more preferably 400 parts by mass or less. Thereby, the yield corresponding to the usage-amount of the compound A can be obtained efficiently. Therefore, 0.2 to 500 parts by mass is preferable, and 1 to 400 parts by mass is more preferable.
 セルロース原料または解繊セルロース繊維に対し化合物Aを反応させる際、さらに化合物Bを反応系に加えてもよい。化合物Bを反応系に加える方法としては例えば、セルロース原料または解繊セルロース繊維のスラリー、化合物Aの水溶液、又はセルロース原料もしくは解繊セルロース繊維と化合物Aのスラリーに、化合物Bを添加する方法が挙げられる。 When reacting Compound A with cellulose raw material or defibrated cellulose fiber, Compound B may be further added to the reaction system. Examples of the method of adding Compound B to the reaction system include a method of adding Compound B to a slurry of cellulose raw material or defibrated cellulose fiber, an aqueous solution of Compound A, or a slurry of cellulose raw material or defibrated cellulose fiber and Compound A. It is done.
 化合物Bは特に限定されないが、塩基性を示すことが好ましく、塩基性を示す窒素含有化合物がより好ましい。「塩基性を示す」とは通常、フェノールフタレイン指示薬の存在下で化合物Bの水溶液が桃~赤色を呈すること、または/および化合物Bの水溶液のpHが7より大きいことを意味する。塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。アミノ基を有する化合物として例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。この中でも低コストで扱いやすい点で、尿素が好ましい。化合物Bの添加量は、2~1000質量部が好ましく、100~700質量部がより好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、通常1~600分程度であり、30~480分が好ましい。エステル化反応の条件がこれらのいずれかの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを抑制することができ、リン酸エステル化セルロースの収率を向上させることができる。 Compound B is not particularly limited, but preferably exhibits basicity, more preferably a nitrogen-containing compound exhibiting basicity. “Show basic” usually means that the aqueous solution of Compound B is pink to red in the presence of a phenolphthalein indicator, or / and the pH of the aqueous solution of Compound B is greater than 7. The nitrogen-containing compound showing basicity is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable. Examples of the compound having an amino group include urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Of these, urea is preferable because it is easy to handle at low cost. The amount of compound B added is preferably 2 to 1000 parts by mass, and more preferably 100 to 700 parts by mass. The reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C. The reaction time is not particularly limited, but is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are in any of these ranges, cellulose can be prevented from being excessively esterified and easily dissolved, and the yield of phosphorylated esterified cellulose can be improved. it can.
 セルロース原料または解繊セルロース繊維に化合物Aを反応させた後、通常はエステル化セルロース繊維またはエステル化セルロースナノファイバーの懸濁液が得られる。エステル化セルロース繊維またはエステル化セルロースナノファイバーの懸濁液は必要に応じて脱水される。脱水後には加熱処理を行うことが好ましい。これにより、セルロース原料または解繊セルロース繊維の加水分解を抑えることができる。加熱温度は、100~170℃が好ましく、加熱処理の際に水が含まれている間は130℃以下(更に好ましくは110℃以下)で加熱し、水を除いた後100~170℃で加熱処理することがより好ましい。 After reacting compound A with cellulose raw material or defibrated cellulose fiber, a suspension of esterified cellulose fiber or esterified cellulose nanofiber is usually obtained. The suspension of esterified cellulose fiber or esterified cellulose nanofiber is dehydrated as necessary. Heat treatment is preferably performed after dehydration. Thereby, hydrolysis of a cellulose raw material or a defibrated cellulose fiber can be suppressed. The heating temperature is preferably 100 to 170 ° C. While water is included in the heat treatment, heating is performed at 130 ° C or less (more preferably 110 ° C or less), and after removing water, heating is performed at 100 to 170 ° C. More preferably, it is processed.
 リン酸エステル化セルロースにおいては、セルロースにリン酸基置換基が導入されており、セルロース同士が電気的に反発する。そのため、リン酸エステル化セルロース繊維は容易にセルロースナノファイバーまで解繊することができる(このようにセルロースナノファイバーとなるまで行う解繊を、ナノ解繊ともいう。)。リン酸エステル化セルロース繊維のグルコース単位当たりのリン酸基置換度は0.001以上が好ましい。これにより、十分な解繊(例えばナノ解繊)が実施できる。リン酸エステル化セルロース繊維のグルコース単位当たりのリン酸基置換度の上限は0.40以下が好ましい。これにより、リン酸エステル化セルロース繊維の膨潤又は溶解を抑制し、セルロースナノファイバーが得られない事態の発生を抑制することができる。従って、リン酸エステル化セルロース繊維のグルコース単位当たりのリン酸基置換度は、0.001~0.40であることが好ましい。また、リン酸エステル化により変性されているセルロースナノファイバー(リン酸エステル化セルロースナノファイバー)のグルコース単位当たりのリン酸基置換度は0.001以上が好ましい。上限は、0.40以下が好ましい。したがって、リン酸エステル化セルロースナノファイバーのグルコース単位当たりのリン酸基置換度は0.001~0.40であることが好ましい。リン酸エステル化セルロース繊維に対して、煮沸後冷水で洗浄する等の洗浄処理がなされることが好ましい。これにより解繊を効率よく行うことができる。 In phosphate esterified cellulose, a phosphate group substituent is introduced into the cellulose, and the cellulose repels electrically. Therefore, the phosphate esterified cellulose fiber can be easily defibrated up to cellulose nanofibers (the defibration performed until the cellulose nanofibers are thus formed is also referred to as nano-defibration). The phosphate group substitution degree per glucose unit of the phosphate esterified cellulose fiber is preferably 0.001 or more. Thereby, sufficient defibration (for example, nano defibration) can be implemented. The upper limit of the degree of phosphate group substitution per glucose unit of the phosphate esterified cellulose fiber is preferably 0.40 or less. Thereby, swelling or melt | dissolution of phosphate esterified cellulose fiber can be suppressed, and generation | occurrence | production of the situation where a cellulose nanofiber cannot be obtained can be suppressed. Accordingly, the phosphate group substitution degree per glucose unit of the phosphate esterified cellulose fiber is preferably 0.001 to 0.40. Further, the degree of phosphate group substitution per glucose unit of cellulose nanofibers (phosphate esterified cellulose nanofibers) modified by phosphoric esterification is preferably 0.001 or more. The upper limit is preferably 0.40 or less. Therefore, the phosphate group substitution degree per glucose unit of the phosphate esterified cellulose nanofiber is preferably 0.001 to 0.40. It is preferable that the phosphorylated cellulose fiber is subjected to a washing treatment such as washing with cold water after boiling. Thereby, defibration can be performed efficiently.
 なお、このセルロース原料を化学変性させ、変性セルロースを得る工程で使用される反応タンクは特に限定されるものではないが、撹拌羽根を設けたタンク、パルパー、ニーダー、リボン型混合装置、スクリュー型混合装置等を例示することができる。これらの中でも概ね原料濃度3%以下で反応を進める場合は、液体や液状のスラリーの撹拌を行うことができる撹拌羽根を設けたタンクやパルパーを使用することが好ましい。また、概ね原料濃度3%を超える条件で反応を進める場合は、反応物が液状の形態を取らず固形状であるため、それらを混合撹拌できるニーダー、リボン型混合装置、スクリュー型混合装置を使用することが好ましい。 The reaction tank used in the step of chemically modifying this cellulose raw material to obtain modified cellulose is not particularly limited, but a tank provided with a stirring blade, a pulper, a kneader, a ribbon type mixing device, a screw type mixing An apparatus etc. can be illustrated. Among these, when the reaction proceeds at a raw material concentration of about 3% or less, it is preferable to use a tank or a pulper provided with a stirring blade capable of stirring a liquid or liquid slurry. In addition, when the reaction is carried out under conditions where the raw material concentration exceeds 3%, since the reactants are solid and not in liquid form, a kneader, ribbon type mixer, screw type mixer that can mix and agitate them is used. It is preferable to do.
(3)脱水・洗浄工程
 本発明において、セルロースの化学変性工程で得られた化学変性セルロースの分散液を、脱水処理後に水で洗浄する工程であり、この工程を行うことにより不純物が少ないセルロースナノファイバー分散液を得ることができる。
(3) Dehydration / washing step In the present invention, the dispersion of chemically modified cellulose obtained in the chemical modification step of cellulose is a step of washing with water after the dehydration treatment. A fiber dispersion can be obtained.
 この工程では、遠心分離式、真空脱水式、加圧脱水式のタイプの脱水装置を使用することができる。具体的には、遠心分離式としてバスケット型遠心分離機、デカンタ型遠心分離機など、真空脱水式としてドラム型真空脱水機、水平ベルトフィルターなど、加圧脱水式としてフィルタープレス、チューブプレス、スクリュープレス、ベルトプレス水平ベルトフィルター、ポリディスクフィルター、振動スクリーンなどを挙げることができる。これらの中でも脱水原料に強いせん断力を加えることなく脱水を行うことができるため、加圧脱水式(フィルタープレス、チューブプレス、スクリュープレス)、遠心分離式(バスケット型、デカンタ型)、真空脱水式(ドラム型真空脱水機、水平ベルトフィルター)が好ましい。また、これらの複数を組み合わせて使用することもできる。 In this step, a centrifugal, vacuum dehydration or pressure dehydration type dehydration apparatus can be used. Specifically, basket-type centrifuges, decanter-type centrifuges, etc. as centrifugal separation types, drum-type vacuum dehydrators as vacuum dehydration types, horizontal belt filters, etc., filter presses, tube presses, screw presses as pressure dehydration types Belt press horizontal belt filter, poly disk filter, vibrating screen and the like. Among these, since dehydration can be performed without applying strong shearing force to the dehydrated raw material, pressure dehydration type (filter press, tube press, screw press), centrifugal separation type (basket type, decanter type), vacuum dehydration type (Drum type vacuum dehydrator, horizontal belt filter) is preferable. A plurality of these can also be used in combination.
(4)化学変性セルロースの濃度調整工程
 本発明において、予備解繊工程を効率よく行うために、化学変性セルロースの分散液の濃度を2.5質量%~15質量%、より好ましくは3質量%~10質量%に調整する。0.5質量%未満であると変性パルプの存在が少なすぎるため効率的に解繊できない。一方、15質量%を超えると化学変性セルロース分散液の粘度が高すぎて効率的に解繊することができない。
(4) Chemically modified cellulose concentration adjusting step In the present invention, the concentration of the chemically modified cellulose dispersion is 2.5% by mass to 15% by mass, more preferably 3% by mass in order to efficiently perform the preliminary defibrating step. Adjust to ˜10% by mass. When the amount is less than 0.5% by mass, the presence of the modified pulp is too small to efficiently defibrate. On the other hand, if it exceeds 15% by mass, the viscosity of the chemically modified cellulose dispersion is too high to efficiently defibrate.
(5)予備解繊工程(A)
 本発明において、予備解繊の叩解処理で使用される装置はシングルディスクタイプのリファイナーである。シングルディスクタイプのリファイナーは、プレート面の精度が高く、プレートクリアランスを狭めて運転できる。予備解繊工程(A)を行うことによりセルロース繊維の外層をほぐすことや内部のフィブリル化につながり、本解繊工程(B)でセルロースナノファイバーが得やすくなり負荷が低減される。
(5) Pre-defibration process (A)
In the present invention, the apparatus used in the preliminary defibrating beating process is a single disk type refiner. The single disc type refiner has high plate surface accuracy and can be operated with a narrow plate clearance. Carrying out the preliminary defibrating step (A) leads to loosening the outer layer of the cellulose fibers and fibrillation inside, so that cellulose nanofibers can be easily obtained in this defibrating step (B) and the load is reduced.
 予備解繊工程(A)において、シングルディスクタイプのリファイナーにおける化学変性セルロースの処理速度は、30m3/hr以下である。処理速度を30m3/hr以下とすることにより、透明度の高いセルロースナノファイバー分散液を製造することができる。 In the preliminary defibrating step (A), the treatment rate of chemically modified cellulose in a single disc type refiner is 30 m 3 / hr or less. By setting the treatment rate to 30 m 3 / hr or less, a highly transparent cellulose nanofiber dispersion can be produced.
 予備解繊工程(A)において、シングルディスクタイプのリファイナーには、製紙用のプレート(粘状叩解用プレート、ファインバータイププレート)、原料流路を塞ぐ構造を有するプレート(ダム付きプレート)、砥石プレート、溝の無い平らな金属プレートの何れかが用いられる。 In the preliminary defibrating process (A), the single disk type refiner includes a papermaking plate (viscous beating plate, fine bar type plate), a plate (plate with a dam) that closes the raw material flow path, and a grindstone plate. Any flat metal plate without grooves is used.
 予備解繊工程(A)で用いるリファイナーのプレートクリアランスは0.01mm~0.4mm、より好ましくは0.1mm~0.3mmである。0.01mm未満だとプレートの摩耗が激しくなり、また0.4mmを超えるとクリアランスが広すぎて処理が進みにくい。また予備解繊工程(A)では、油圧式やエアー式のジャッキを用いてロータ側プレートを移動させクリアランスを調整させる通常のリファイナーを用いても良いが、より好ましくはボールねじ式のクリアランス調整機構を持ったリファイナーを用い、更にレーザー位置測定機構などでプレート間のクリアランスを厳密に制御した方が、効率よく予備解繊を行うことができる。 The plate clearance of the refiner used in the preliminary defibrating step (A) is 0.01 mm to 0.4 mm, more preferably 0.1 mm to 0.3 mm. If the thickness is less than 0.01 mm, the plate will be abruptly worn. If the thickness exceeds 0.4 mm, the clearance is too wide and the processing is difficult to proceed. In the preliminary defibrating step (A), a conventional refiner that adjusts the clearance by moving the rotor side plate using a hydraulic or pneumatic jack may be used, but a ball screw type clearance adjustment mechanism is more preferable. The use of a refiner with a squeezer and further precise control of the clearance between the plates by means of a laser position measurement mechanism or the like enables efficient pre-defibration.
 また予備解繊工程(A)において、プレートの周速は、好ましくは24.5m/s以上、より好ましくは30m/s以上である。プレートの周速を24.5m/s以上とすることにより、効率よく予備解繊を行うことができる。また予備解繊工程(A)において、リファイナーのプレートの回転せん断速度は、100(1/ms)以上、より好ましくは、150(1/ms)以上である。 In the preliminary defibrating step (A), the peripheral speed of the plate is preferably 24.5 m / s or more, more preferably 30 m / s or more. By setting the peripheral speed of the plate to 24.5 m / s or more, preliminary defibration can be performed efficiently. In the preliminary defibrating step (A), the rotational shear rate of the refiner plate is 100 (1 / ms) or more, more preferably 150 (1 / ms) or more.
 ここでプレートの回転せん断速度=(プレートの周速度/プレートクリアランス)である。プレートの回転せん断速度が100(1/ms)未満である場合には、効率よく予備解繊を行うことができない。また、予備解繊工程(A)では、通常のヘッドケース形状のリファイナーを用いても良いが、ヘッドケース内部に滞留する原料を攪拌することによる発熱を防止するため、ヘッドケース内空間を10L以下とした方が良い。また、より好ましくは、ヘッドケース内空間にパルプの冷却のための、冷却水ジャケットを設置することにより、パルプへの熱の影響を抑えながら処理した方が良い。 Here, the rotational shear rate of the plate = (the peripheral speed of the plate / plate clearance). When the rotational shear rate of the plate is less than 100 (1 / ms), preliminary defibration cannot be performed efficiently. In the preliminary defibrating step (A), a normal head case-shaped refiner may be used, but in order to prevent heat generation due to stirring of the raw material staying inside the head case, the space inside the head case is 10 L or less. It is better to do. More preferably, a cooling water jacket for cooling the pulp is installed in the space inside the head case so that the treatment is performed while suppressing the influence of heat on the pulp.
(6)本解繊工程(B)
 本発明において、本解繊とは、予備解繊によって得られたセルロースを、高圧式分散機を用いて強力なせん断力を印加して、平均繊維長0.5~5μm、平均繊維幅3~100nmまで解繊を行うことをいう。特に、セルロースナノファイバーを効率よく得るには、化学変性セルロース分散液に1MPa~400MPaの圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。より好ましくは、化学変性セルロース分散液に10MPa~400MPaの圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。この処理により、化学変性セルロースが解繊してセルロースナノファイバーが形成され、かつセルロースナノファイバーが媒体中に分散して、セルロースナノファイバー分散液が製造される。なお媒体としては、取扱い容易性から水を用いることが好ましい。
<平均繊維長及び平均繊維幅の測定方法>
 セルロースナノファイバーの平均繊維長及び平均繊維幅は、原子間力顕微鏡(AFM)を用いてセルロースナノファイバーを観察することで測定することができる。
(6) This defibrating process (B)
In the present invention, the present defibration means that cellulose obtained by preliminary defibration is applied with a strong shearing force using a high-pressure disperser, and an average fiber length of 0.5 to 5 μm and an average fiber width of 3 to Defibration up to 100 nm. In particular, in order to efficiently obtain cellulose nanofibers, it is preferable to use a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 1 MPa to 400 MPa to the chemically modified cellulose dispersion and can apply a strong shearing force. More preferably, a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 10 MPa to 400 MPa and a strong shear force to the chemically modified cellulose dispersion is preferably used. By this treatment, the chemically modified cellulose is defibrated to form cellulose nanofibers, and the cellulose nanofibers are dispersed in the medium to produce a cellulose nanofiber dispersion. In addition, it is preferable to use water as a medium from the ease of handling.
<Measuring method of average fiber length and average fiber width>
The average fiber length and average fiber width of the cellulose nanofiber can be measured by observing the cellulose nanofiber using an atomic force microscope (AFM).
 次に実施例に基づき本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
 [実施例1]
 (パルプ原料の調整:酸化パルプ)
 針葉樹由来の漂白済み未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(東京化成社製)78mg(0.5mmol)と臭化ナトリウム(和光純薬社製)756mg(7.35mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで攪拌した。ここに次亜塩素酸ナトリウム(和光純薬社製)2.3mmolを水溶液の形態で加え、次いで、次亜塩素酸ナトリウムをパルプ1g当たり0.23mmol/分の添加速度となるように送液ポンプを用いて徐々に添加し、パルプの酸化を行った。次亜塩素酸ナトリウムの全添加量が22.5mmolとなるまで添加を継続した。反応中は系内のpHは低下するが、3N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。水酸化ナトリウム水溶液を添加し始めてから(すなわち、酸化反応が開始されてpHの低下が見られた時点から)、添加を終了するまで(すなわち、酸化反応が終了してpHの低下が見られなくなった時点まで)の時間を反応時間とした。この反応液を塩酸にて中性になるまで中和した後、反応後の液をガラスフィルターで濾過し、十分に水洗することで酸化処理したパルプを得た。
[Example 1]
(Pulp raw material adjustment: oxidized pulp)
Bleached unbeaten pulp (Nippon Paper Co., Ltd.) 5 g (absolutely dried) derived from coniferous trees, TEMPO (Tokyo Kasei Co., Ltd.) 78 mg (0.5 mmol) and sodium bromide (Wako Pure Chemical Industries, Ltd.) 756 mg (7.35 mmol) ) Was dissolved in 500 mL of the dissolved aqueous solution and stirred until the pulp was uniformly dispersed. To this, 2.3 mmol of sodium hypochlorite (manufactured by Wako Pure Chemical Industries, Ltd.) was added in the form of an aqueous solution, and then a liquid feed pump was added so that sodium hypochlorite was added at a rate of 0.23 mmol / min per gram of pulp. Was added gradually to oxidize the pulp. The addition was continued until the total amount of sodium hypochlorite added was 22.5 mmol. During the reaction, the pH in the system was lowered, but a 3N sodium hydroxide aqueous solution was successively added to adjust the pH to 10. From the start of the addition of the aqueous sodium hydroxide solution (that is, from the time when the oxidation reaction is started and a decrease in pH is observed) until the addition is completed (that is, the oxidation reaction is completed and no decrease in pH is observed) The reaction time was taken as the reaction time. The reaction solution was neutralized with hydrochloric acid until neutral, and then the reaction solution was filtered through a glass filter and sufficiently washed with water to obtain an oxidized pulp.
 (酸化パルプのカルボキシル基量の測定)
 酸化パルプのカルボキシル基量は、次の方法で測定した。酸化パルプの0.5質量%スラリーを60mL調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した。
  カルボキシル基量〔mmol/g酸化パルプ〕
           = a〔mL〕× 0.05/酸化パルプ質量〔g〕
 この測定の結果、得られた酸化パルプのカルボキシル基量は1.60mmol/gであった。
(Measurement of carboxyl group content of oxidized pulp)
The carboxyl group amount of oxidized pulp was measured by the following method. Prepare 60 mL of 0.5% by mass slurry of oxidized pulp, add 0.1 M hydrochloric acid aqueous solution to pH 2.5, then add 0.05 N aqueous sodium hydroxide solution dropwise until the pH reaches 11 Was calculated from the amount (a) of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity was gradual, using the following equation.
Amount of carboxyl group [mmol / g oxidized pulp]
= A [mL] x 0.05 / oxidized pulp mass [g]
As a result of this measurement, the carboxyl group content of the obtained oxidized pulp was 1.60 mmol / g.
(酸化パルプの予備解繊)
 上記酸化処理を経た酸化パルプのスラリーを相川鉄工製シングルディスクタイプのリファイナーを用いて予備解繊処理を行った。リファイナーは、ファインバータイプのプレートを用い、プレート刃の形状は、刃幅0.8mm、溝幅1.5mm、刃長90mm、刃角度15°とし、プレートクリアランス0.1mmとした。リファイナーによる予備解繊の処理速度を1m3/hr、予備解繊処理に用いた酸化パルプのスラリーの原料濃度を3%(w/v)とし、リファイナーのプレートの周速度を40.2m/s、プレートの回転せん断速度を402.0(1/ms)、リファイナーパス回数を1とした。その結果、予備解繊処理は問題なく操業を行うことができた。予備解繊の消費電力は、0.76kWh/kgであった。
(Preliminary defibration of oxidized pulp)
The slurry of oxidized pulp that had undergone the above oxidation treatment was subjected to a preliminary defibration treatment using a single disk type refiner made by Aikawa Tekko. As the refiner, a fine bar type plate was used, and the shape of the plate blade was a blade width of 0.8 mm, a groove width of 1.5 mm, a blade length of 90 mm, a blade angle of 15 °, and a plate clearance of 0.1 mm. The processing speed of the preliminary defibrating by the refiner is 1 m 3 / hr, the raw material concentration of the oxidized pulp slurry used for the preliminary defibrating processing is 3% (w / v), and the peripheral speed of the refiner plate is 40.2 m / s. The rotational shear rate of the plate was 402.0 (1 / ms), and the number of refiner passes was 1. As a result, the preliminary defibrating treatment could be operated without any problems. The power consumption of preliminary defibration was 0.76 kWh / kg.
 (酸化パルプの本解繊)
 予備解繊処理を施したパルプスラリーを濃度3%(w/v)にて、超高圧ホモジナイザーによる処理を処理圧140MPaでおこなった。その結果、本解繊処理は問題なく操業を行うことができた。この時の消費電力は1.8kWh/kgであった。また、得られたセルロースナノファイバー分散液を1%(w/v)に希釈後、超音波装置にて脱泡し、紫外可視分光光度計(UV-1800、島津製作所製)の660nmの波長にて測定した透過度(%)、即ち透明度は71.0%であった。
(This defibration of oxidized pulp)
The pulp slurry subjected to the preliminary defibrating treatment was treated with an ultrahigh pressure homogenizer at a concentration of 3% (w / v) at a treatment pressure of 140 MPa. As a result, the defibrating treatment could be operated without any problems. The power consumption at this time was 1.8 kWh / kg. Further, the obtained cellulose nanofiber dispersion was diluted to 1% (w / v) and then defoamed with an ultrasonic device to obtain a wavelength of 660 nm of an ultraviolet-visible spectrophotometer (UV-1800, manufactured by Shimadzu Corporation). The transmittance (%) measured in this manner, that is, the transparency was 71.0%.
 [実施例2]
 実施例1の実験条件のうち、プレートをファインバータイプのプレートの外周にダムが形成されたものであり、プレート刃の形状が、刃幅0.8mm、溝幅1.0mm、刃長80mm、刃角度15°のものに変更し、処理速度を3m3/hrに変更した以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.17kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、44.5%であった。
[Example 2]
Among the experimental conditions of Example 1, the plate is a dam formed on the outer periphery of a fine bar type plate, and the shape of the plate blade is a blade width of 0.8 mm, a groove width of 1.0 mm, a blade length of 80 mm, The experiment was performed under the same conditions as those of Example 1 except that the blade angle was changed to 15 ° and the treatment speed was changed to 3 m 3 / hr. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.17 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. The transparency of the obtained cellulose nanofiber dispersion was 44.5%.
 [実施例3]
 実施例1の実験条件のうち、プレートを砥石プレート(刃なし)に変更し、処理速度を3m3/hrに変更した以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.18kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、44.1%であった。
[Example 3]
Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the plate was changed to a grindstone plate (no blade) and the processing speed was changed to 3 m 3 / hr. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.18 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 44.1%.
 [実施例4]
 実施例1の実験条件のうち、プレートを粘状叩解用プレートであり、プレート刃の形状が、刃幅4.5mm、溝幅3.5-4.5mm、刃長95mm、刃角度10°のものに変更し、プレートクリアランスを0.13mm、処理速度を19.2m3/hrに、プレート周速を24.6m/s、プレートの回転せん断速度を189.2(1/ms)、リファイナーによる処理回数を3とした以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.03kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、52.3%であった。
[Example 4]
Of the experimental conditions of Example 1, the plate is a viscous beating plate, and the shape of the plate blade is a blade width of 4.5 mm, a groove width of 3.5-4.5 mm, a blade length of 95 mm, and a blade angle of 10 °. The plate clearance is 0.13 mm, the processing speed is 19.2 m 3 / hr, the plate peripheral speed is 24.6 m / s, the rotational shear rate of the plate is 189.2 (1 / ms), by the refiner The experiment was performed under the same conditions as in Example 1 except that the number of treatments was set to 3. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.03 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 52.3%.
 [実施例5]
 実施例1の実験条件のうち、プレートをダム付きタイプ(3段ダム)であり、プレート刃の形状が、刃幅4.0mm、溝幅4.0mm、刃長75-85mm、刃角度0°のものに変更し、処理速度を9.0m3/hrに、プレート周速を24.6m/s、プレートの回転せん断速度を246.0(1/ms)、リファイナーによる処理回数を2とした以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.05kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、51.6%であった。
[Example 5]
Of the experimental conditions of Example 1, the plate is of the dam type (3-stage dam), and the shape of the plate blade is 4.0 mm blade width, 4.0 mm groove width, 75-85 mm blade length, and 0 ° blade angle. The processing speed was 9.0 m 3 / hr, the peripheral speed of the plate was 24.6 m / s, the rotational shear rate of the plate was 246.0 (1 / ms), and the number of processing by the refiner was 2. The experiment was performed under the same conditions as in Example 1 except for the above. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.05 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 51.6%.
 [実施例6]
 実施例1の実験条件のうち、原料濃度を5パーセントに変更した以外は実施例1の実験条件と同じ条件で実験を行った。その結果予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.65kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、69.0%であった。
[Example 6]
Among the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the raw material concentration was changed to 5 percent. As a result, it was possible to operate without problems in both the preliminary defibrating process and the main defibrating process. The power consumption of preliminary defibration was 0.65 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 69.0%.
 [実施例7]
 実施例1の実験条件のうち、処理速度を3m3/hrに変更した以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.25kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、54.6%であった。
[Example 7]
Among the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was changed to 3 m 3 / hr. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.25 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 54.6%.
 [実施例8]
 実施例1の実験条件のうち、処理速度を3m3/hrに、原料濃度を5%に変更した以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.28kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、63.3%であった。
[Example 8]
Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was changed to 3 m 3 / hr and the raw material concentration was changed to 5%. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.28 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 63.3%.
 [実施例9]
 実施例1の実験条件のうち、処理速度を9m3/hrに変更した以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.07kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、52.7%であった。
[Example 9]
Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was changed to 9 m 3 / hr. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.07 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 52.7%.
 [実施例10]
 実施例1の実験条件のうち、処理速度を9m3/hrに、原料濃度を5%に変更した以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.08kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、63.5%であった。
[Example 10]
Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was changed to 9 m 3 / hr and the raw material concentration was changed to 5%. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.08 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 63.5%.
 [実施例11]
 実施例1の実験条件のうち、処理速度を15m3/hrに、プレート周速を24.6m/s、プレートの回転せん断速度を246.0(1/ms)、リファイナーによる処理回数を3とした以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.03kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、57.3%であった。
[Example 11]
Of the experimental conditions of Example 1, the processing speed was 15 m 3 / hr, the plate peripheral speed was 24.6 m / s, the rotational shear rate of the plate was 246.0 (1 / ms), and the number of processing by the refiner was 3. The experiment was performed under the same conditions as in Example 1 except that. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.03 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 57.3%.
 [実施例12]
 実施例1の実験条件のうち、プレートクリアランスを0.08mm、処理速度を23.4m3/hrに、プレート周速30.7m/s、プレートの回転せん断速度を383.8(1/ms)、リファイナーによる処理回数を8とした以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.03kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、63.3%であった。
[Example 12]
Of the experimental conditions of Example 1, the plate clearance was 0.08 mm, the processing speed was 23.4 m 3 / hr, the plate peripheral speed was 30.7 m / s, and the rotational shear rate of the plate was 383.8 (1 / ms). The experiment was performed under the same conditions as in Example 1 except that the number of treatments by the refiner was set to 8. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.03 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 63.3%.
 [実施例13]
 実施例1の実験条件のうち、原料濃度を7%に変更した以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.45kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、70.0%であった。
[Example 13]
Among the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the raw material concentration was changed to 7%. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.45 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 70.0%.
 [実施例14]
 実施例1の実験条件のうち、処理速度を3m3/hrに、プレート周速55.8m/s、プレートの回転せん断速度を558.0(1/ms)に変更した以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.57kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、67.3%であった。
[Example 14]
Of the experimental conditions of Example 1, the processing speed was 3 m 3 / hr, the plate peripheral speed was 55.8 m / s, and the rotational shear rate of the plate was changed to 558.0 (1 / ms). The experiment was performed under the same conditions as the experimental conditions. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.57 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 67.3%.
 [実施例15]
 実施例1の実験条件のうち、処理速度を9m3/hrに、原料濃度を10%に、リファイナーによる処理回数を3とした以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.12kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、60.2%であった。
[Example 15]
Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was 9 m 3 / hr, the raw material concentration was 10%, and the number of treatments by the refiner was 3. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.12 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 60.2%.
 [実施例16]
 実施例1の実験条件のうち、プレートクリアランスを0.22mm、処理速度を11.6m3/hrに、原料濃度を5%、プレート周速30.7m/s、プレートの回転せん断速度を139.5(1/ms)、リファイナーによる処理回数を4とした以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.29kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、68.0%であった。
[Example 16]
Of the experimental conditions of Example 1, the plate clearance was 0.22 mm, the processing speed was 11.6 m 3 / hr, the raw material concentration was 5%, the plate peripheral speed was 30.7 m / s, and the rotational shear rate of the plate was 139. The experiment was performed under the same conditions as those of Example 1 except that 5 (1 / ms) and the number of treatments by the refiner were set to 4. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.29 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 68.0%.
 実施例1~16のリファイナー条件、消費電力、実験結果は表1の通りであった。
Figure JPOXMLDOC01-appb-T000001
 
Table 1 shows refiner conditions, power consumption, and experimental results of Examples 1 to 16.
Figure JPOXMLDOC01-appb-T000001
 [比較例1]
 予備解繊処理を行わず、本解繊の超高圧ホモジナイザーによる処理を処理圧140MPaで1回行った。その結果、本解繊処理においては、分散ノズルに詰まりが発生した。本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、30.0%であった。
[Comparative Example 1]
The preliminary defibrating treatment was not performed, and the treatment with the ultrahigh pressure homogenizer of this defibration was performed once at a treatment pressure of 140 MPa. As a result, in the defibrating process, clogging occurred in the dispersion nozzle. The power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 30.0%.
 [比較例2]
 リファイナーのプレートとして、プレート刃の形状が刃幅2.2mm、溝幅3.8-4.8mm、刃長95mm、刃角度0°のカットタイプのプレートを用い、プレートクリアランスを0.1mmとして予備解繊を行おうとしたが、メタルタッチが生じ予備解繊を行うことが出来なかった。
[Comparative Example 2]
As a refiner plate, a cut type plate with a blade width of 2.2 mm, a groove width of 3.8 to 4.8 mm, a blade length of 95 mm, and a blade angle of 0 ° is used as the refiner plate, and the plate clearance is set to 0.1 mm. An attempt was made to defibrate, but a metal touch occurred and preliminary defibration was not possible.
 [比較例3]
 実施例1の実験条件のうち、処理速度を40m3/hrに、リファイナーによる処理回数を3とした以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、0.07kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、33%であり低かった。
[Comparative Example 3]
Of the experimental conditions of Example 1, the experiment was performed under the same conditions as those of Example 1 except that the treatment speed was 40 m 3 / hr and the number of treatments by the refiner was 3. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 0.07 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Moreover, the transparency of the obtained cellulose nanofiber dispersion was 33%, which was low.
 [比較例4]
 実施例1の実験条件のうち、原料濃度を16パーセントに、リファイナーによる処理回数を3とした以外は実施例1の実験条件と同じ条件で予備解繊を行うとしたが、サンプルの粘度が高く、操業性が悪く、予備解繊を行うことが出来なかった。
[Comparative Example 4]
Among the experimental conditions of Example 1, the preliminary defibration was performed under the same conditions as the experimental conditions of Example 1 except that the raw material concentration was 16% and the number of treatments by the refiner was 3, but the viscosity of the sample was high. The operability was poor and the preliminary defibration was not possible.
 [比較例5]
 実施例1の実験条件のうち、プレート周速を15m/s、プレートの回転せん断速度を150.0(1/ms)、リファイナーによる処理回数を3とした以外は実施例1の実験条件と同じ条件で実験を行った。この場合予備解繊、本解繊の両工程とも問題なく操業を行うことができた。予備解繊の消費電力は、1.8kWh/kg、本解繊の消費電力は、1.8kWh/kgであった。また得られたセルロースナノファイバー分散液の透明度は、35.2%であり低かった。
[Comparative Example 5]
Of the experimental conditions of Example 1, the plate peripheral speed is 15 m / s, the rotational shear rate of the plate is 150.0 (1 / ms), and the number of treatments by the refiner is 3, and the same as the experimental conditions of Example 1. The experiment was conducted under conditions. In this case, both the preliminary defibration and the main defibration processes could be operated without any problems. The power consumption of preliminary defibration was 1.8 kWh / kg, and the power consumption of this defibration was 1.8 kWh / kg. Further, the transparency of the obtained cellulose nanofiber dispersion was 35.2%, which was low.
 比較例1~5のリファイナー条件、消費電力、実験結果は表2の通りであった。
Figure JPOXMLDOC01-appb-T000002
 
Table 2 shows the refiner conditions, power consumption, and experimental results of Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000002
 実施例1~16においては、低消費電力で、透明度が高い高品質なセルロースナノファイバー分散液が製造できた。また、予備解繊及び本解繊の操業性は良好で、分散ノズルの詰まりは発生しなかった。更に、求める透明度に応じ予備解繊の回数及び超高圧ホモのパス回数は適宜調整すればよい。 In Examples 1 to 16, high-quality cellulose nanofiber dispersions with low power consumption and high transparency could be produced. Further, the operability of the preliminary defibration and the main defibration was good, and the clogging of the dispersion nozzle did not occur. Furthermore, the number of preliminary defibration and the number of passes of ultrahigh pressure homo may be appropriately adjusted according to the required transparency.
 これに対して比較例1では、本解繊処理において分散ノズルに詰まりが発生し操業性が不良であった。また得られたセルロースナノファイバー分散液の透明度は、実施例1~16に比較して低いものであった。比較例2では、メタルタッチが発生し予備解繊を行うことが出来なかった。比較例3では、得られたセルロースナノファイバー分散液の透明度は、実施例1~16に比較して低いものであった。比較例4では、サンプルの粘度が高すぎて操業性が悪く、予備解繊を行うことが出来なかった。比較例5では、得られたセルロースナノファイバー分散液の透明度は、実施例1~16に比較して低いものであった。 On the other hand, in Comparative Example 1, clogging occurred in the dispersion nozzle in this defibrating process, resulting in poor operability. Further, the transparency of the obtained cellulose nanofiber dispersion was lower than that of Examples 1 to 16. In Comparative Example 2, a metal touch occurred and preliminary defibration could not be performed. In Comparative Example 3, the transparency of the obtained cellulose nanofiber dispersion was lower than that in Examples 1-16. In Comparative Example 4, the viscosity of the sample was too high, the operability was poor, and preliminary defibration could not be performed. In Comparative Example 5, the transparency of the obtained cellulose nanofiber dispersion was lower than that in Examples 1-16.

Claims (7)

  1.  下記の(A)、(B)の工程を有することを特徴とする、化学変性したセルロースから透明度の高いセルロースナノファイバー分散液を製造するセルロースナノファイバー分散液の製造方法。
     工程(A):シングルディスクタイプのリファイナーを用いて前記化学変性したセルロースを叩解処理する予備解繊工程、
     工程(B):前記予備解繊工程(A)で得られたセルロースを1MPa~400MPaの処理圧での高圧式分散機による処理で解繊する本解繊工程。
    The manufacturing method of the cellulose nanofiber dispersion which manufactures a highly transparent cellulose nanofiber dispersion liquid from the chemically modified cellulose characterized by having the process of following (A) and (B).
    Step (A): preliminary defibrating step of beating the chemically modified cellulose using a single disc type refiner,
    Step (B): This defibrating step of defibrating the cellulose obtained in the preliminary defibrating step (A) by treatment with a high-pressure disperser at a treatment pressure of 1 MPa to 400 MPa.
  2.  前記予備解繊工程(A)において、前記リファイナーで使用するプレートは、粘状叩解用プレート、ファインバータイププレート、原料流路を塞ぐ構造を有するプレート、砥石プレート、溝の無い平らな金属プレートの何れかであることを特徴とする請求項1記載のセルロースナノファイバー分散液の製造方法。 In the preliminary defibrating step (A), the plate used in the refiner is a viscous beating plate, a fine bar type plate, a plate having a structure for closing the raw material flow path, a grindstone plate, a flat metal plate without grooves. It is either, The manufacturing method of the cellulose nanofiber dispersion liquid of Claim 1 characterized by the above-mentioned.
  3.  前記予備解繊工程(A)において、前記化学変性したセルロースの処理速度が30m3/hr以下であることを特徴とする請求項1または2記載のセルロースナノファイバー分散液の製造方法。 The method for producing a cellulose nanofiber dispersion according to claim 1 or 2, wherein, in the preliminary defibrating step (A), a processing rate of the chemically modified cellulose is 30 m 3 / hr or less.
  4.  前記予備解繊工程(A)において、前記化学変性したセルロースの処理時の濃度が2.5~15質量%であることを特徴とする請求項1~3の何れか一項に記載のセルロースナノファイバー分散液の製造方法。 The cellulose nanoparticle according to any one of claims 1 to 3, wherein, in the preliminary defibrating step (A), a concentration of the chemically modified cellulose during treatment is 2.5 to 15% by mass. A method for producing a fiber dispersion.
  5.  前記予備解繊工程(A)において、前記プレートのクリアランスが0.01~0.4mmであることを特徴とする請求項2~4の何れか一項に記載のセルロースナノファイバー分散液の製造方法。 The method for producing a cellulose nanofiber dispersion according to any one of claims 2 to 4, wherein, in the preliminary defibrating step (A), the clearance of the plate is 0.01 to 0.4 mm. .
  6.  前記予備解繊工程(A)において、前記プレートの周速が24.5m/s以上であることを特徴とする請求項2~5の何れか一項に記載のセルロースナノファイバー分散液の製造方法。 6. The method for producing a cellulose nanofiber dispersion according to claim 2, wherein in the preliminary defibrating step (A), the peripheral speed of the plate is 24.5 m / s or more. .
  7.  前記予備解繊工程(A)において、前記プレートの回転のせん断速度が100(1/ms)以上であることを特徴とする請求項2~6の何れか一項に記載のセルロースナノファイバー分散液の製造方法。 The cellulose nanofiber dispersion according to any one of claims 2 to 6, wherein, in the preliminary defibrating step (A), a shear rate of rotation of the plate is 100 (1 / ms) or more. Manufacturing method.
PCT/JP2019/006001 2018-03-14 2019-02-19 Method for producing cellulose nanofiber dispersion WO2019176465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505716A JP7402154B2 (en) 2018-03-14 2019-02-19 Method for producing cellulose nanofiber dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018046229 2018-03-14
JP2018-046229 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019176465A1 true WO2019176465A1 (en) 2019-09-19

Family

ID=67906668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006001 WO2019176465A1 (en) 2018-03-14 2019-02-19 Method for producing cellulose nanofiber dispersion

Country Status (2)

Country Link
JP (1) JP7402154B2 (en)
WO (1) WO2019176465A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075796A (en) * 2020-08-20 2022-02-22 华南理工大学 Plant-based cellulose nanofibrils as well as preparation method and application thereof
JP2024163130A (en) * 2019-10-21 2024-11-21 旭化成株式会社 Fine cellulose fiber and resin composite
US12163287B2 (en) 2021-07-28 2024-12-10 Asahi Kasei Kabushiki Kaisha Fine cellulose fibers and production method therefor, nonwoven fabric, and fiber-reinforced resin and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015134870A (en) * 2014-01-17 2015-07-27 国立大学法人 東京大学 Method for producing fine cellulose fiber dispersion, method for producing fine cellulose fiber, and method for finely dispersing dried oxidized cellulose fiber
JP2017002135A (en) * 2015-06-05 2017-01-05 日本製紙株式会社 Cellulose nano-fiber dry solid material and production method therefor, and dry solid material re-dispersion
JP2017002136A (en) * 2015-06-05 2017-01-05 日本製紙株式会社 Cellulose nano-fiber dispersion production method and cellulose nano-fiber dried solid redispersion method
WO2017057710A1 (en) * 2015-09-30 2017-04-06 日本製紙株式会社 Cellulose nanofiber dispersion liquid and method for producing same
JP2017160396A (en) * 2016-03-11 2017-09-14 国立大学法人 東京大学 Cellulose oxide fiber, fine cellulose fiber dispersion and manufacturing method of fine cellulose fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015134870A (en) * 2014-01-17 2015-07-27 国立大学法人 東京大学 Method for producing fine cellulose fiber dispersion, method for producing fine cellulose fiber, and method for finely dispersing dried oxidized cellulose fiber
JP2017002135A (en) * 2015-06-05 2017-01-05 日本製紙株式会社 Cellulose nano-fiber dry solid material and production method therefor, and dry solid material re-dispersion
JP2017002136A (en) * 2015-06-05 2017-01-05 日本製紙株式会社 Cellulose nano-fiber dispersion production method and cellulose nano-fiber dried solid redispersion method
WO2017057710A1 (en) * 2015-09-30 2017-04-06 日本製紙株式会社 Cellulose nanofiber dispersion liquid and method for producing same
JP2017160396A (en) * 2016-03-11 2017-09-14 国立大学法人 東京大学 Cellulose oxide fiber, fine cellulose fiber dispersion and manufacturing method of fine cellulose fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024163130A (en) * 2019-10-21 2024-11-21 旭化成株式会社 Fine cellulose fiber and resin composite
CN114075796A (en) * 2020-08-20 2022-02-22 华南理工大学 Plant-based cellulose nanofibrils as well as preparation method and application thereof
CN114075796B (en) * 2020-08-20 2022-12-16 华南理工大学 A plant-based cellulose nanofibril and its preparation method and application
US12163287B2 (en) 2021-07-28 2024-12-10 Asahi Kasei Kabushiki Kaisha Fine cellulose fibers and production method therefor, nonwoven fabric, and fiber-reinforced resin and production method therefor

Also Published As

Publication number Publication date
JPWO2019176465A1 (en) 2021-03-11
JP7402154B2 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
JP5544053B1 (en) Cellulose nanofiber
JP6199858B2 (en) Method for producing anion-modified cellulose nanofiber dispersion
JP6228707B1 (en) Acid-type carboxymethylated cellulose nanofiber and method for producing the same
JP6951978B2 (en) Anion-modified cellulose nanofiber dispersion liquid and its manufacturing method
JP5731253B2 (en) Method for producing cellulose nanofiber
WO2012132903A1 (en) Method for producing cellulose nanofibers
JP7554770B2 (en) Method for producing modified cellulose microfibrils
JP7402154B2 (en) Method for producing cellulose nanofiber dispersion
JP7095065B2 (en) Dehydration method of chemically modified pulp dispersion
JP5179616B2 (en) Method for producing cellulose nanofiber
WO2018110627A1 (en) Method for manufacturing dry solid of chemically modified pulp
JP7033920B2 (en) Cellulose nanofiber dispersion liquid and its manufacturing method
JP2018100383A (en) Method for producing carboxylated cellulose nanofiber
JP6015232B2 (en) Method for producing oxidized cellulose and cellulose nanofiber
JP7019236B2 (en) Manufacturing method of cellulose nanofibers
JP7656136B1 (en) Cellulose nanofiber manufacturing equipment
JP7704939B1 (en) Cellulose nanofiber manufacturing equipment
JP7098467B2 (en) Manufacturing method of cellulose nanofibers
JP2019172849A (en) Process for producing modified pulp
JP2024136432A (en) Cellulose nanofiber manufacturing apparatus and method for manufacturing cellulose nanofiber
JP2024136431A (en) Cellulose nanofiber manufacturing apparatus and method for manufacturing cellulose nanofiber
JP7250455B2 (en) Composition containing anion-modified cellulose nanofibers
JP7239294B2 (en) Method for producing anion-modified cellulose nanofiber
JP2023148586A (en) fine cellulose fiber
JP6015233B2 (en) Method for producing oxidized cellulose and cellulose nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767736

Country of ref document: EP

Kind code of ref document: A1