[go: up one dir, main page]

WO2019174659A1 - Procédé et ensemble servant à fabriquer de l'eau à teneur réduite en deutérium - Google Patents

Procédé et ensemble servant à fabriquer de l'eau à teneur réduite en deutérium Download PDF

Info

Publication number
WO2019174659A1
WO2019174659A1 PCT/DE2018/100235 DE2018100235W WO2019174659A1 WO 2019174659 A1 WO2019174659 A1 WO 2019174659A1 DE 2018100235 W DE2018100235 W DE 2018100235W WO 2019174659 A1 WO2019174659 A1 WO 2019174659A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
plasma
combustion chamber
catalyst
hho gas
Prior art date
Application number
PCT/DE2018/100235
Other languages
German (de)
English (en)
Inventor
Dieter Erwin SCHULZE
Original Assignee
Karl Bau Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karl Bau Gmbh filed Critical Karl Bau Gmbh
Priority to PCT/DE2018/100235 priority Critical patent/WO2019174659A1/fr
Publication of WO2019174659A1 publication Critical patent/WO2019174659A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/08Processing by evaporation; by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • C01B5/02Heavy water; Preparation by chemical reaction of hydrogen isotopes or their compounds, e.g. 4ND3 + 7O2 ---> 4NO2 + 6D2O, 2D2 + O2 ---> 2D2O
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99005Combustion techniques using plasma gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/201Plasma

Definitions

  • the invention relates to a process for the production of deuterium reduced water. Furthermore, the invention relates to an arrangement for the production of deuterium reduced water with an electrolyzer and a reactor with combustion chamber, wherein the recovered from the electrolysis HHO gas is injected into the reactor, ignited and reacted in a plasma to water of reaction.
  • HHO gas means a mixture of hydrogen and oxygen in the atomic ratio twice H to once O, as it arises as a reaction product in the electrolysis of water.
  • HHO gas is also called brown gas.
  • the HHO gas is generated directly in a DC electrolysis before injection of this HHO gas into the reactor.
  • HHO gas is supplied to a combustion outlet opening, wherein compressed air is injected via an air jet nozzle in the Brownsche gas for pressure equalization.
  • CN 1085191 describes the production of deuterium-free water via steam fractionation.
  • CN 101224929 describes a production process for deuterium-reduced water having a deuterium content of below 150 ppm.
  • a deuterium-reduced water with a deuterium content between 0.2 ppm and 125 ppm is to be produced by a distillation cascade according to CN 101597031.
  • WO 2017/001874 A1 describes a process for the economic production of deuterium-reduced water in which mineral hydrocarbons are oxidized and reaction water having a reduced deuterium content of 122-126 ppm is produced and condensed, after which a further reduction in deuterium is achieved by fractional distillation or Rectification is achieved.
  • WO 2005/65631 A2 describes advantageous applications for cosmetic products.
  • US 2014/141095 A1 describes the use of deuterium reduced Water in insulin resistance
  • WO 1996/33129 A1 describes the use of deuterium-reduced water for cancer treatment.
  • deuterium reduced water should also help against hypertension, such as
  • WO 2014/045072 A1 describes.
  • the disadvantage is that there are hardly any economical processes for the industrial production of deuterium-reduced water.
  • the object of the invention is to provide a method and arrangement starting from DE 10 2016 001 334 A1 for the production of deuterium-reduced water.
  • the object is achieved by a method according to claim 1 or with a
  • the deuterium content in the resulting reaction water actually reduces from originally about 155 ppm of deuterium in the input water to about 60 to 75 ppm of deuterium in the reaction water.
  • the essential idea is that recombination of hydrogen and oxygen is accompanied by a considerable deuterium reduction, as evidenced by US 2005/0109604 A1, for example.
  • Another idea is that when HHO gas is burnt, it can perfectly react in reaction water without any interfering byproducts, with the high energy density resulting in combustion in a very high temperature plasma. Any resulting excess heat can be used for further processes.
  • metal oxide as a catalyst, a high-energy plasma in the combustion of HHO gas at temperatures of
  • the air is supplied so that virtually forms a plasma surrounding air layer, which Keeps extreme temperatures of the flame in the plasma away from the walls of the combustion chamber.
  • the plasma with the surrounding fresh air supplied then reaches as mixed exhaust air at temperatures of below 600 ° C, the combustion chamber adjacent to the exhaust air duct.
  • the exhaust air in this process is emission-free and consists mainly of
  • the nitrogen contained in the supplied air and the other constituents are split and / or taken up in the catalyst. After condensation of the water of reaction
  • the almost exclusively made of oxygen exhaust air can be used for other processes.
  • the exhaust air (oxygen) as well as the heat produced may also be used for a separate methanol synthesis process to supply fuel cells.
  • the electrolysis device splits pure water H 2 0 by means of electrical energy in HHO gas, which is fed directly to the reactor for combustion.
  • the combustion takes place in the combustion chamber of the reactor by injecting and igniting the HHO gas and directing the flame at the catalyst. Due to the catalytic effect, a plasma with temperatures of
  • the combined use of DC electrolysis and ignition of the gas (plasma) results in therapeutically replaceable deuterium-reduced water being obtained after a single pass.
  • a plasma is used, but not with the help of strong magnets od. Like. Must be kept. Instead, the special air duct serves to trap and hold the plasma.
  • Catalyst support plate on which the catalyst is kept, is heated too much and damaged.
  • the influence of the catalyst on the combustion reaction can be controlled particularly well by the fact that the catalyst support plate on which the
  • Catalyst rests is arranged rotatable and / or height adjustable in the combustion chamber.
  • a rotating and lifting device is preferably provided below the catalyst support plate on the cylinder axis of the combustion chamber with external drive means.
  • the device for the combustion chamber is standing cylindrical shape with a circular catalyst support plate formed at the lower end, preferably three HHO gas nozzles in the cylindrical side wall in
  • Cylinder axis directed downwards and above the catalyst support plate are provided.
  • the HHO gas flame is directed obliquely from above onto the catalyst resting on the catalyst support plate.
  • annular space is provided around the combustion chamber, through which the fresh air is guided to the air supply openings.
  • the sucked or pressurized fresh air flows through the annulus on the outside of the combustion chamber directly to the air supply openings, from where the
  • the catalyst contains up to 1/3 of its mass of water to further improve the catalytic action of the metal oxides and the
  • the cylindrical combustion chamber at a gas flow rate of 5 to 20 Nm 3 / h HHO gas has a diameter of 20 to 50 cm and a height of 50 to 150 cm.
  • the catalyst preferably has a total mass of from 1 kg to 10 kg.
  • the catalyst consists of pulverulent and / or coarse-crystalline metal oxides selected from Al 2 O 3 , CuO, ZnO, ZrO 2 , NiO and / or Ga 2 O 3 , particularly preferably predominantly Al 2 0 3 .
  • the intensive combustion of the HHO gas is also formed due to the significantly increased by the grain of the catalyst surface.
  • the catalyst is not consumed in the continuous operation of the reactor. Rather, there is an increase in weight, so an increase in the catalyst due to absorbed from the air elements. Furthermore, it is to be expected that in the plasma by chemical processes with existing carbon from the air gems are formed and accumulate in the catalyst.
  • the gems should have a Mohs hardness of 8 to 10, so that they could be used, for example, for industrial purposes. Accordingly, the purpose of the method described here can additionally or alternatively be gemstone production and / or C0 2 reduction.
  • Plasma temperature for the production of deuterium reduced water can also be used separately to produce technically usable sapphires in a separate process, for example, for new displays, screens or particularly insensitive structures for technical use.
  • the more stable plasma thus produced becomes spatially more material-friendly by superposition with atmospheric oxygen and the process of gemstone formation is amplified similar to the natural formation by the temperatures and the ionized plasma.
  • water preferably 0.2 l / h to 100 l / h, injected during the combustion in the flame region of the plasma in the reactor.
  • water injection nozzles are preferably arranged parallel to the HHO gas nozzles for the HHO gas, which are acted upon by short water pressure pulses and, for example, inject 1 ml to 15 ml per pulse into the combustion chamber. It can be stimulated 10 to 30 pulses per minute.
  • Fig. 1 is a schematic arrangement plan.
  • Fig. 1 the arrangement for the production of deuterium reduced water is shown in a schematic schematic diagram.
  • the arrangement comprises an electrolyzer device 1 (eg an OH5500 type HHO generator), which is connected to a power supply 11, for example via a 440 V / 63 A three-phase current meter. Furthermore, at the Electrolysis apparatus 1 connected to a water line 23, which is supplied by a water supply 21 (for example, from a domestic water connection) via a water pretreatment 2, in particular an ion exchanger.
  • an electrolyzer device 1 eg an OH5500 type HHO generator
  • a power supply 11 for example via a 440 V / 63 A three-phase current meter.
  • a water supply 21 for example, from a domestic water connection
  • a water pretreatment 2 for example, from a domestic water connection
  • the pretreated water is decomposed electrolytically into hydrogen and oxygen in the atomic ratio of two hydrogen atoms to an oxygen atom as so-called brownsches gas (HHO gas) and fed to a HHO gas distributor 12, the gas evenly on three HHO gas lines 13 (FIG. here for the sake of clarity only two lines shown) distributed and the appropriate HHO gas nozzles 14 zumony.
  • HHO gas brownsches gas
  • the HHO gas nozzles 14 for the HHO gas are arranged in a reactor 4, in which the HHO gas is burned.
  • the reactor 4 has a cylindrical combustion chamber 41, which has a catalyst support plate 42 in the lower part of the combustion chamber 41, on which a catalyst 40, here consisting of crystalline Al 2 0 3 powder or grains rests.
  • the catalyst support plate 42 is circular and terminates almost the entire space of the cylindrical combustion chamber 41 at its lower end, wherein a rotating and lifting device 43 under the
  • Catalyst support plate 42 coaxial with the cylinder axis (Z) of
  • Combustion chamber 41 is arranged, with which the catalyst support plate 42 can be rotated and moved up and down.
  • 4 drive means 44 are provided on the outside of the reactor, so that the
  • Catalyst support plate 42 with the catalyst resting thereon 40 is rotatably and / or height-adjustable in the combustion chamber 41 is arranged.
  • the HHO gas nozzles 14 for the HHO gas are arranged above the catalyst support plate 42 so that the HHO gas is directed down to the catalyst 40 at an angle of 30 ° to 75 ° to the cylinder axis (Z).
  • electrical ignition means are provided to ignite the HHO gas. Accordingly, then the flame at the HHO gas combustion directed to the catalyst 40.
  • Embodiment three HHO gas nozzles 14 are provided in the circumferential direction at 120 ° in the wall of the cylindrical combustion chamber 41.
  • Fig. 1 are for drawing easier representation only two
  • HHO gas nozzles 14 shown. Of course, different designs with only one HHO gas nozzle 14, two HHO gas nozzles 14 and also several HHO gas nozzles 14 are conceivable.
  • annular space 32 is formed, which is acted upon by a fan 3 with fresh air 31.
  • a fan 3 is acted upon by a fan 3 with fresh air 31.
  • Air supply openings 33 provided so that the fan 3 easily
  • Combustion chamber 41 near the HHO gas nozzles 14 is supplied.
  • Preference is given in addition to a water injection provided with water from the water pretreatment 2 via a water pipe 23 and a
  • HHO gas nozzles 14 can be fed. Accordingly, are close to the
  • Water distribution 22 with a timing controller 22 provided therein for the injection of a small amount of water, for example, 1 to 15 ml per clocked pressure pulse and water nozzle 24 are prepared.
  • Clock control 22 for example, 20 times per minute trigger a corresponding water pulse.
  • an exhaust duct 45 connects, which dissipates the forming plasma combustion and the annular, the plasma umschmony supplied fresh air 31 as exhaust air.
  • the exhaust air duct 45 and the entire cylindrical combustion chamber 41 are cooled on the outside via the fresh air 31 supplied in the annular space 32.
  • the exhaust duct 45 leads to a heat exchanger 5, from which excess process heat is supplied to a heat sink 51 by means of a circulation power 52. It is preferred that the excess process heat for further thermal utilization, such as power generation, heating purposes or the like is used. Here can also heat for a
  • the heat exchanger 5 may also consist of a plurality of successively connected heat exchangers 5 and
  • Cooling elements consist of which then after passing through the
  • Heat exchanger 5 performs an exhaust duct 53 to the outside.
  • a partial flow of the exhaust air from the exhaust air duct 53 can be supplied as supply air of the fresh air 31.
  • Reactor 4 supply a larger amount of water.
  • Condensate line 61 is led to a treatment for deuterium reduced water 6.
  • the water treatment 6 has a filter and
  • Dosing station 62 in which the water condensate is filtered as a precaution and, if necessary, supplemented with minerals. From the filter and metering station 62, a filling line 63 leads to the filling or further use of the deuterium-reduced water.
  • HHO gas is generated by means of direct current electrolysis, supplied by a mains power supply 11 and the HHO gas distributor 12th fed.
  • the HHO gas is divided into three HHO gas lines 13 for supplying the HHO gas nozzles 14 and, if necessary, regulated in the volume flow.
  • the flowing into the HHO gas nozzles 14 HHO gas is ignited by means not shown, electrical ignition systems and burned directed to the catalyst 40.
  • the catalyst 40 consists of metal oxide, in particular Al 2 O 3 in a powdery, crystalline state.
  • the catalyst 40 causes a plasma with a temperature of about 2800 ° C to 3500 ° C arise.
  • Lifting device 43 the fresh air supply and possibly regulated by additional injection of water.
  • fresh air 31 which is supplied via the fan 3 via the annular space 32 and air supply openings 33 directly in the region of the HHO gas nozzles 14, flows into the combustion chamber 41 and forms a plasma
  • Fresh air 31 leads to a total of cooled exhaust air at a temperature of ⁇ 600 ° C. This exhaust air is then fed to the heat exchanger 5 in the exhaust duct 45.
  • the water distributor with control 22 is provided, which injects short water pulses via the water nozzles 24 near the HHO gas nozzles 14 directly into the combustion flame.
  • the water distributor with control 22 injects short water pulses via the water nozzles 24 near the HHO gas nozzles 14 directly into the combustion flame.
  • the reaction water vapor is largely separated by condensation and the product deuterium produces reduced water.
  • the carbon taken up in the catalyst 40 leads to the formation of gems under the extreme conditions in the plasma. Therefore, the catalyst 40 should be replaced from time to time, for example, once or twice a year.
  • the catalyst 40 of metal oxides, here Al 2 0 3 is not consumed in the combustion process.
  • the process sequence can thus also be used for the production of gemstones and thus for C0 2 reduction.
  • Catalyst 40 in addition, the plasma generated via the catalyst 40 intensified and spatially stable generated. It is expressly pointed out that the combustion process is emission-free and even leads to an enrichment of oxygen in the exhaust air and reduction of C0 2 - content. If, for example, 100,000 l of deuterium-reduced water are produced per day, this leads to a C0 2 reduction in the exhaust air of 1,500 l per year.
  • the HHO combustion piezoelectric electronic ignition devices may preferably be used. Possibly. the HHO gas nozzles 14 are inserted through a corresponding opening in the combustion chamber 41 and, if necessary, extendable, for example, to change the HHO gas nozzle 14 as needed.
  • desalinated water can be used in the combustion chamber 41, which is injected via the water pretreatment 2, in particular by means of an ion exchanger, and the water distributor 22 with clock control via water nozzles 24 directly in the region of the plasma.
  • the additional water injection achieves a greater yield of deuterium-reduced water.
  • Water injection can be used for additional cooling of the reactor 4, if in the combustion monitoring in the combustion chamber 41 excessively high temperatures should arise.
  • the temperature monitoring is preferably carried out via a pyrometer to ensure a fast reaction and non-contact temperature measurement.
  • the ionized plasma can breathe, so that the exhaust air in the region of the exhaust air duct 45 has already cooled below 600 ° C. before entering the heat exchanger 5.
  • the already cooled to below 600 ° C exhaust air is the exhaust duct 45 the
  • Heat exchanger 5 is supplied, in which the excess process heat dissipated and thus the exhaust air is cooled so far that the water contained therein condenses. This resulting water of reaction has a significantly reduced deuterium content.
  • This condensate is fed via condensate line 61 to the filter and metering station 62.
  • a special "Aqua Filter System” can be installed there, containing radioactive substances, nitrate, nitrite, pesticides, solvents, pharmaceutical residues, hormones,
  • Catalyst support plate 42 2 kg Al 2 0 3 - catalyst were kept.
  • the cylindrical combustion chamber 41 had a diameter of 200 mm and a height of 500 mm.
  • 100 l of deuterium-reduced water per day could be produced, which would lead to a C0 2 reduction of 2000 kg per year.
  • the deuterium-reduced water had a deuterium content of ⁇ 80 ppm according to VSMOW (Vienna Standard Mean Ocean Water).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)

Abstract

L'invention concerne un procédé servant à fabriquer de l'eau à teneur réduite en deutérium. Le procédé est caractérisé en ce que du gaz HHO obtenu à partir d'une électrolyse est injecté dans un réacteur (4) et est amorcé et est transformé en présence d'un catalyseur (40) composé d'oxydes de métal à des températures allant de 2800 °C à 3500 °C dans un plasma pour obtenir une eau de réaction en résultant. De l'air est amené au four de combustion, l'air enveloppe le plasma, ce qui permet de refroidir le plasma, puis le plasma est refroidi après la combustion en tant qu'air d'échappement, et l'eau de réaction s'y trouvant est condensée et collectée. L'invention concerne en outre un ensemble servant à fabriquer de l'eau à teneur réduite en deutérium avec un dispositif d'électrolyse (1) et un réacteur (4) pourvu d'une chambre de combustion (41). Le gaz HHO obtenu à partir du dispositif d'électrolyse (1) est injecté dans le réacteur (4), est amorcé et est transformé dans un plasma pour obtenir une eau de réaction. L'ensemble est caractérisé en ce qu'au moins une buse (14) de gaz HHO pour le gaz HHO est prévue dans la chambre de combustion (41), des oxydes de métal sont disposés dans la chambre de combustion (41) en tant que catalyseur (40) sous une forme pulvérulente et/ou sous une forme cristalline grossière, des ouvertures d'amenée d'air (33) sont prévues dans la chambre de combustion (41), et un canal d'air d'échappement (45) est raccordé à la chambre de combustion (41), de l'air frais (31) arrive dans la chambre de combustion (41) par les ouvertures d'amenée d'air (33), l'air frais (31) amené enveloppe en tant qu'air d'échappement le plasma et est guidé dans le canal d'air d'échappement (45) avec l'eau de réaction résultant du plasma.
PCT/DE2018/100235 2018-03-15 2018-03-15 Procédé et ensemble servant à fabriquer de l'eau à teneur réduite en deutérium WO2019174659A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/DE2018/100235 WO2019174659A1 (fr) 2018-03-15 2018-03-15 Procédé et ensemble servant à fabriquer de l'eau à teneur réduite en deutérium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2018/100235 WO2019174659A1 (fr) 2018-03-15 2018-03-15 Procédé et ensemble servant à fabriquer de l'eau à teneur réduite en deutérium

Publications (1)

Publication Number Publication Date
WO2019174659A1 true WO2019174659A1 (fr) 2019-09-19

Family

ID=61899018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/100235 WO2019174659A1 (fr) 2018-03-15 2018-03-15 Procédé et ensemble servant à fabriquer de l'eau à teneur réduite en deutérium

Country Status (1)

Country Link
WO (1) WO2019174659A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865455A1 (fr) 2020-02-17 2021-08-18 Intergreentech GmbH Procédé et dispositif d'extraction des gaz de brown et/ou d'oxygène et d'hydrogène, en particulier pour moteurs à combustion, brûleurs chauffants ou piles à combustible
WO2024069249A1 (fr) * 2022-09-28 2024-04-04 Karimi Kargar Mojtaba Composition à base d'eau appauvrie en deutérium

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278189A (ja) * 1989-04-19 1990-11-14 Shoichi Tanaka 動力発生装置及び加熱装置
CN1085191A (zh) 1993-10-13 1994-04-13 冯宏章 无氘水制备技术
WO1996033129A1 (fr) 1995-04-20 1996-10-24 Kotai Laszlo Procede chimique de production d'eau possedant une teneur limitee en deuterium
US5855921A (en) 1991-10-31 1999-01-05 Somlyai; Gabor Pharmaceutical products for curing tumorous diseases and process for preparing same
KR20000040478A (ko) 1998-12-18 2000-07-05 김상남 브라운 가스 연소용 에어제트 버너
US20040013988A1 (en) 2000-09-28 2004-01-22 Sang-Nam Kim Brown gas combustion apparatus and heating system using the same
US20050109604A1 (en) 2003-11-25 2005-05-26 Zlotopolski Vladimir M. Plant for producing low deuterium water from sea water
WO2005065631A2 (fr) 2003-05-23 2005-07-21 Ioan Nedelcu Produits cosmetiques et d'hygiene, leur procede de preparation et procede d'amelioration de l'etat cutane cosmetologique
CN101224929A (zh) 2008-01-17 2008-07-23 上海上善若水生物工程有限公司 一种饮用超轻水的生产装置和方法
CN101597031A (zh) 2009-06-24 2009-12-09 上海化工研究院 一种重氧水分离装置间歇生产超轻水的方法及其装置
CN102398894A (zh) 2010-09-07 2012-04-04 廖文加 低氘水的制备及其应用
WO2014045072A2 (fr) 2012-09-21 2014-03-27 Hyd Rákkutató És Gyógyszerfejlesztő Kft. Compositions pharmaceutiques pour le traitement de l'hypertension
US20140141095A1 (en) 2010-07-08 2014-05-22 Gábor Somlyai Use of deuterium depleted water for the treatment of insulin resistance
DE102016001334A1 (de) 2015-03-18 2016-09-22 Renate Hamel von der Lieth Verfahren und Ofen zur Umsetzung von Wasserstoff mit Luftsauerstoff sowie von HHO-Gas zu Wasser mit Wirkungsgraden der Wärmegewinnung >95%
WO2017001874A1 (fr) 2015-06-29 2017-01-05 Erdős Elemér Antal Procédé de production économique d'eau potable, en particulier d'eau potable appauvrie en deutérium, utilisée en médecine humaine et vétérinaire
US20170137287A1 (en) * 2014-05-26 2017-05-18 Hongjian Liu Method and system for producing deuterium depleted water

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278189A (ja) * 1989-04-19 1990-11-14 Shoichi Tanaka 動力発生装置及び加熱装置
US5855921A (en) 1991-10-31 1999-01-05 Somlyai; Gabor Pharmaceutical products for curing tumorous diseases and process for preparing same
CN1085191A (zh) 1993-10-13 1994-04-13 冯宏章 无氘水制备技术
WO1996033129A1 (fr) 1995-04-20 1996-10-24 Kotai Laszlo Procede chimique de production d'eau possedant une teneur limitee en deuterium
KR20000040478A (ko) 1998-12-18 2000-07-05 김상남 브라운 가스 연소용 에어제트 버너
US20040013988A1 (en) 2000-09-28 2004-01-22 Sang-Nam Kim Brown gas combustion apparatus and heating system using the same
WO2005065631A2 (fr) 2003-05-23 2005-07-21 Ioan Nedelcu Produits cosmetiques et d'hygiene, leur procede de preparation et procede d'amelioration de l'etat cutane cosmetologique
US20050109604A1 (en) 2003-11-25 2005-05-26 Zlotopolski Vladimir M. Plant for producing low deuterium water from sea water
CN101224929A (zh) 2008-01-17 2008-07-23 上海上善若水生物工程有限公司 一种饮用超轻水的生产装置和方法
CN101597031A (zh) 2009-06-24 2009-12-09 上海化工研究院 一种重氧水分离装置间歇生产超轻水的方法及其装置
US20140141095A1 (en) 2010-07-08 2014-05-22 Gábor Somlyai Use of deuterium depleted water for the treatment of insulin resistance
CN102398894A (zh) 2010-09-07 2012-04-04 廖文加 低氘水的制备及其应用
WO2014045072A2 (fr) 2012-09-21 2014-03-27 Hyd Rákkutató És Gyógyszerfejlesztő Kft. Compositions pharmaceutiques pour le traitement de l'hypertension
US20170137287A1 (en) * 2014-05-26 2017-05-18 Hongjian Liu Method and system for producing deuterium depleted water
DE102016001334A1 (de) 2015-03-18 2016-09-22 Renate Hamel von der Lieth Verfahren und Ofen zur Umsetzung von Wasserstoff mit Luftsauerstoff sowie von HHO-Gas zu Wasser mit Wirkungsgraden der Wärmegewinnung >95%
WO2017001874A1 (fr) 2015-06-29 2017-01-05 Erdős Elemér Antal Procédé de production économique d'eau potable, en particulier d'eau potable appauvrie en deutérium, utilisée en médecine humaine et vétérinaire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865455A1 (fr) 2020-02-17 2021-08-18 Intergreentech GmbH Procédé et dispositif d'extraction des gaz de brown et/ou d'oxygène et d'hydrogène, en particulier pour moteurs à combustion, brûleurs chauffants ou piles à combustible
WO2024069249A1 (fr) * 2022-09-28 2024-04-04 Karimi Kargar Mojtaba Composition à base d'eau appauvrie en deutérium

Similar Documents

Publication Publication Date Title
DE69319621T2 (de) Verfahren und vorrichtung zur pyrolitischen zersetzung von kohlenwasserstoffen
EP1284927B1 (fr) Procede et dispositif de reduction de protoxyde d'azote
DE112014001444T5 (de) Verfahren zum Herstellen von Ruß unter Verwenden eines Extenderfluids
DE102014219274A1 (de) Kraftwerk zur Herstellung von Energie und Ammoniak
WO2008148487A1 (fr) Dispositif et procédé pour réactions catalytiques en phase gazeuse et leur utilisation
DE69511625T2 (de) Verfahren und Vorrichtung zur Pyrolyse von Abfällen mit einer Vorwärmeinheit
WO2019174659A1 (fr) Procédé et ensemble servant à fabriquer de l'eau à teneur réduite en deutérium
DE2657385A1 (de) Vergasungsverfahren
DE2259763C3 (de) Verfahren zur Reinigung von Stickstoffoxide enthaltenden Gasen und Vorrichtung zu dessen Durchführung
DE102013017854A1 (de) Reaktor sowie Verfahren zur Vergasung von Brennstoffen
DE2510765C2 (de) Verfahren zur Wärmebehandlung feinkörnigen oder flüssigen Materials und Ofen zum Durchführen des Verfahrens
DE102014219276A1 (de) Gas und Dampfkraftwerksanlage (GUD) auf der Basis von elektropositiven Metallen mit optional angeschlossenem Fischer-Tropsch Prozess
DE2944855C2 (de) Verfahren zur Herstellung von Furnacerußen mit abgesenkter Struktur
DE102004041815A1 (de) Verfahren und Vorrichtung zur Verdampfung von Flüssigbrennstoffen
EP2703716B1 (fr) Chauffage d'un gaz d'échappement de processus
EP1167492A2 (fr) Procédé et installation pour la production d' un gaz combustible à partir de biomasse
DE112004000758T5 (de) Verfahren zum Reduzieren von Metalloxid und Verfahren zum Herstellen von Wasserstoff
DE102014209529A1 (de) Verbrennung von Lithium bei unterschiedlichen Temperaturen, Drücken und Gasüberschüssen mit porösen Rohren als Brenner
DE102017125707A1 (de) Verfahren und Anlage zur thermischen Behandlung eines Lithiumerzes
AT503440B1 (de) Thermolyse-katalysator für verbrennungsmaschinen
WO2002066914A1 (fr) Dispositif et procede pour pulveriser des matieres, en particulier du verre
DE102019003790A1 (de) Amorphes Silicumdioxid, Vorrichtung zur Herstellung von amporphem Siliciumdioxid, Verfahren zur Herstellung von amporphem Siliciumdioxid, aus amporphem Siliciumdoixid hergestelltes Silicium, und Verfahren zur Herstellung von Silicium
EP3513121B1 (fr) Procédé et four à combustion destiné à transformer de l'hydrogene et de l'oxygene atmospherique en eau ou des gaz de type hho en eau
DE1517977A1 (de) Verfahren und Vorrichtung zur Herstellung eines Gases mit niedrigem Sauerstoffgehalt
AT503356B1 (de) Vorrichtung zum erzeugen von plasma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18715469

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18715469

Country of ref document: EP

Kind code of ref document: A1