[go: up one dir, main page]

WO2019167916A1 - Swirling-type dissolution method and swirling-type dissolution device - Google Patents

Swirling-type dissolution method and swirling-type dissolution device Download PDF

Info

Publication number
WO2019167916A1
WO2019167916A1 PCT/JP2019/007198 JP2019007198W WO2019167916A1 WO 2019167916 A1 WO2019167916 A1 WO 2019167916A1 JP 2019007198 W JP2019007198 W JP 2019007198W WO 2019167916 A1 WO2019167916 A1 WO 2019167916A1
Authority
WO
WIPO (PCT)
Prior art keywords
dissolved
fluid
cylindrical container
swirl
container
Prior art date
Application number
PCT/JP2019/007198
Other languages
French (fr)
Japanese (ja)
Inventor
好人 柴内
和徳 小林
Original Assignee
ニチラク機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチラク機械株式会社 filed Critical ニチラク機械株式会社
Publication of WO2019167916A1 publication Critical patent/WO2019167916A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7179Feed mechanisms characterised by the means for feeding the components to the mixer using sprayers, nozzles or jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7544Discharge mechanisms characterised by the means for discharging the components from the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed

Definitions

  • the present invention relates to a swirling melting method and a swirling melting apparatus.
  • the substance to be dissolved such as powder, granules, small solids, or fibers, and fluids such as liquids are agitated.
  • a device that dissolves As this dissolving device, a liquid supply unit that supplies liquid into the tank, a decompression unit that depressurizes the inside of the tank, and a transfer device that transfers fine objects from the outside of the tank to the inside of the tank using a pressure difference inside and outside the tank
  • a stirring unit that stirs a transferred fine object together with a liquid (Patent Document 1).
  • the transfer device includes a fine material guiding portion extending in and out of the tank, and a gas introducing portion for introducing gas into the fine material guiding portion, and the fine material guiding portion has a tip opened vertically downward in the tank. Having a nozzle.
  • Patent Document 1 in order to prevent the inner surface of the nozzle from getting wet with liquid, the gas is continuously released.
  • the gas released from the tip of the nozzle rises in the liquid as continuous bubbles.
  • a substance to be dissolved such as a fine substance
  • a powder having low viscosity and easily dissolving hereinafter referred to as an easily dissolved substance
  • skim milk powder has no problem, but carboxymethyl cellulose (CMC), pectin, wheat flour, etc.
  • difficultly dissolved materials materials to be dissolved that are difficult to dissolve
  • adhering powder near the tip of the nozzle during dissolution grows without peeling off.
  • nozzle clogging That is, by repeating the batch process, there is a risk that the fine objects attached to the inner surface of the nozzle may be stacked, and between the batch process and the next batch process, the fine objects are immersed in the liquid and cause nozzle clogging. It becomes.
  • An object of the present invention is to provide a swirl-type melting method and a swirl-type melting apparatus capable of performing high-precision melting even for highly viscous materials to be dissolved.
  • the swirl-type dissolution method of the present invention includes a fluid-like material introducing step of introducing a fluid-like material from the introducing portion into a cylindrical container having an introducing portion and a discharging portion, and the fluid state introduced in the fluid-like material introducing step.
  • To-be-dissolved substance supply control step for allowing or preventing the supply of an object to the inside of the cylindrical container, and swirl flow for causing the fluid-like substance and the object to be dissolved to flow downstream while swirling inside the cylindrical container
  • the axial center of the cylindrical container and the material to be dissolved The supplied in sheet process, characterized in that respectively coincide with the supply axis of the lysate.
  • the swirl-type dissolving apparatus of the present invention is a swirl-type dissolving apparatus for producing a melt by dissolving at least a part while swirling a fluid-like substance and a fine substance-like substance to be melted.
  • a cylindrical container having an introduction part to be discharged and a discharge part from which the dissolved substance is discharged to the outside, a fluid-like substance introduction part for introducing the fluid substance from the introduction part into the cylindrical container, and A swirl generator that swirls the fluid-like material introduced from the introduction portion inside the cylindrical container, and a material to be dissolved that is disposed in the vicinity of the inner wall of the cylindrical container and supplies the material to be dissolved to the cylindrical container
  • a supply unit, and a dissolved material supply control unit that allows or prevents supply of the material to be dissolved into the cylindrical container, and the fluid and the material to be dissolved are inside the cylindrical container.
  • the swirling axis inside the cylindrical container The axis of the serial tubular container, characterized by matching each of the said in the feed axis of the lysate supplied in the melt feeding step.
  • fine substances having high viscosity such as carboxymethyl cellulose (CMC), pectin, and wheat flour can be exemplified as the substance to be dissolved, and water for dissolving the substance to be dissolved can be exemplified as the fluid substance.
  • the fluid-like material introducing step is performed by the fluid-like material introducing portion
  • the swirl generating step is performed by the swirl generating portion.
  • the material to be dissolved is confined in the axial core of the cylindrical container by the large centrifugal force of the fluid, so there is no mixing with the fluid, As it approaches the discharge side, the fluid is turbulent, and the material to be dissolved and the fluid are mixed and dissolution occurs. Then, the swirling discharge process is performed, and the dissolved material in which at least a part of the fluid-like material and the material to be dissolved is dissolved is discharged from the discharging portion while swirling the inside of the cylindrical container.
  • the lysate discharged from the discharge part includes a completely lysed product completely dissolved and a semi-lysed product partially dissolved. If the material to be dissolved is easy to dissolve and the tube container is long enough to carry out the swirl flow process, it can be completely dissolved.
  • the material supply control unit prevents the material to be dissolved from being supplied into the cylindrical container. Even if the supply of the material to be melted to the inside of the cylindrical container is prevented, the fluid-like substance flows toward the discharge portion on the downstream side while swirling inside the cylindrical container.
  • control of introduction of a material to be dissolved into a cylindrical container is often performed by a valve, but contact between the material to be dissolved and a fluid material occurs on the downstream side of this valve, and the inner wall of the cylindrical container Adhesion of the material to be dissolved becomes a problem.
  • the melted material supply control unit is installed in the vicinity of the inner wall of the cylindrical container, and when the melted material supply control unit prevents the melted material from being supplied to the inside of the cylindrical container. Since the fluid matter swirls inside the cylindrical container, the swirling flow of the fluid matter comes into contact with the downstream side of the melt supply control unit and has an effect of removing the adherent melt material. That is, due to the swirling flow of the fluid-like material, a cleaning effect is exerted on the downstream side of the dissolved material supply control unit, and adhesion of the dissolved material to the dissolved material supply control unit is prevented.
  • the melt supply control unit can intermittently introduce the melt into the cylindrical container, and the flow rate of the melt during the melting operation can be easily adjusted.
  • the pivot axis inside the cylindrical container coincides with the axial center of the cylindrical container and the supply axis of the dissolved material supplied by the dissolved material supply unit, Due to the centrifugal force generated by the swirling flow, a coating layer made of a fluid substance is formed on the inner wall of the cylindrical container, and the material to be dissolved can be prevented from coming into direct contact with the inner surface of the cylindrical container. .
  • the non-dissolved material is a fine material such as a powder or a small solid material, since it contains a large amount of air, the bulk density is small, so that it can be used favorably for dissolving most of the fine materials. From the above, even a highly viscous material to be dissolved can be dissolved with high accuracy without clogging the material to be dissolved.
  • the melt supply control step controls the supply amount of the melt to be supplied to the cylindrical container by the melt supply valve, and the swirl flow step includes the melt dissolution step. It is good also as a structure where the downstream side of the said to-be-dissolved material supply valve contacts the swirling flow of the said fluid-like material or the said melted material when a material supply valve is closed.
  • the melt supply control unit may include a melt supply valve that controls a supply amount of the melt to be introduced into the cylindrical container.
  • melt supply valve is installed near the inner surface of the cylindrical container, when the melt supply valve is closed, the swirl flow of the fluid contacts the downstream side of the valve and adheres to it. The dissolved object is removed, and adhesion of the dissolved object is prevented.
  • the fluid-like material introducing step and the swirl generating step include the fluid-like material from the tangential direction of the inner periphery of the cylindrical container in a plane orthogonal to the swivel axis. It is good also as a structure implemented by injecting inside a cylindrical container.
  • the fluid-like material introducing portion and the swirl generating portion are arranged such that the fluid-like material is introduced from the tangential direction of the inner periphery of the cylindrical container in a plane orthogonal to the swivel axis. It is good also as a structure provided with the injection part injected to the inside of a cylindrical container.
  • a so-called cyclone system is adopted, and the fluid to be dissolved can be reliably swirled to dissolve the material to be dissolved with high accuracy.
  • the fluid-like material introduction part and the swirl generation part are constituted by the injection part, the number of parts can be reduced and the manufacturing cost can be reduced.
  • the melt supply step may be configured to depressurize the inside of the cylindrical container.
  • the melt supply unit may include a decompression unit that decompresses the inside of the cylindrical container.
  • the melt supply step may be configured to pressurize the melt and press-fit into the cylindrical container.
  • the melted material supply unit may include a press-fitting unit that pressurizes the melted material and press-fits the melted material into the cylindrical container.
  • the press-fitting portion is operated to pressurize the material to be dissolved and press-fit into the cylindrical container. Accordingly, since the material to be dissolved is smoothly introduced into the cylindrical container, the material to be dissolved is reliably dissolved and the dissolution accuracy is improved.
  • the swirl discharge step discharges the semi-dissolved material in which the fluid-like material and the material to be dissolved are partially dissolved from the discharge portion to a sealed container, and the semi-dissolved material is sealed. It is good also as a structure provided with the stirring process which stirs inside a container and melt
  • a sealed container for storing the fluid-like material discharged from the discharge part and a semi-dissolved material in which the material to be dissolved is partially dissolved, and the semi-dissolved material provided in the sealed container It is good also as a structure provided with the stirring part which stirs inside the said airtight container and melt
  • the material to be dissolved supplied on the liquid surface is liable to infiltrate partly while floating on the liquid surface.
  • the material to be dissolved is supplied directly below the liquid level in the sealed container, the material to be dissolved is completely dissolved by eliminating the waste by immediately stirring in the stirring unit. Further, this configuration has an advantage that foaming at the liquid level can be prevented.
  • the discharge port of the discharge part is located below the liquid level of the semi-dissolved material inside the sealed container, and the dissolution object supplying step is performed between the inside and the outside of the sealed container. It is good also as a structure which suck
  • the discharge port of the discharge unit is located below the liquid level of the semi-dissolved material inside the sealed container, and the dissolved material supply unit includes the inside and the outside of the sealed container.
  • the to-be-dissolved substance supply process is implemented by operating the vacuum pump.
  • the melted substance supply step generates a differential pressure between the inside and the outside of the sealed container, and this differential pressure creates a negative pressure inside the cylindrical container, and the melted substance is sucked and introduced into the cylindrical container. Therefore, since it is not necessary to provide the cylindrical container with a decompression device for decompressing the inside of the cylindrical container, the structure of the cylindrical container can be simplified.
  • FIG. 1 is a schematic view of a swirl type melting apparatus according to a first embodiment of the present invention.
  • Schematic which shows the turning type
  • Schematic which shows the position of an injection part in 2nd Embodiment.
  • Schematic which shows the position of an injection part in 2nd Embodiment.
  • Schematic which shows the position of an injection part in 2nd Embodiment.
  • Schematic which shows the turning type
  • Schematic which shows the turning type
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 7. Schematic which shows the modification of this invention. Schematic which shows the modification of this invention. Schematic which shows the modification of this invention. Schematic which shows the modification of this invention. Schematic which shows the modification of this invention.
  • a swirl type melting device 10 is a device for producing a melted material by dissolving at least a part while swirling a fluid-like material and a fine material-like material to be melted.
  • To-be-dissolved substance supply unit 2 fluid-like substance introducing unit 3, swirl generation unit 4 and to-be-dissolved substance supply control unit 5 provided in container 1, sealed container 6 connected to cylindrical container 1, and sealed container 6 and a stirring unit 7 provided in the apparatus 6.
  • the cylindrical container 1 includes a container main body 11 having a top plate 110, an introduction portion 12 provided on the outer periphery of the container main body 11 on the side close to the top plate 110, and a fluid-like material introduced therein, And a cylindrical discharge part 13 that is formed on the opposite side to discharge the melted substance into the sealed container 6.
  • the shape in a plane orthogonal to the axis of the container body 11 is preferably a circle, but may be an ellipse or a polygon.
  • the introduction part 12 has an introduction port formed in the peripheral surface of the container body 11.
  • the discharge part 13 is a cylindrical member having one end connected to the container body 11 and the other end opened to the inside of the sealed container 6.
  • the material to be dissolved is preferably a fine material having a high viscosity such as carboxymethylcellulose (CMC), pectin, or wheat flour, but other fine materials are also applicable.
  • the fluid-like material include water that dissolves the material to be dissolved and other fluids.
  • the material to be dissolved has a lower bulk specific gravity than the fluid.
  • the ratio of the material to be dissolved and the fluid is, for example, 3:97.
  • a semi-dissolved material in which a part of a material to be dissolved is dissolved in a fluid-like material is discharged from the discharge unit 13, and the semi-dissolved material is completely dissolved inside the sealed container 6. .
  • the object to be dissolved is completely dissolved in the fluid in the sealed container 6 by increasing the axial length of the container body 11 or using the object to be dissolved having a low viscosity. .
  • the completely dissolved solution is dissolved more finely in the closed container 6.
  • the melt supply unit 2 includes a melt storage unit 21 made of a hopper and the like, and a communication pipe that is provided between the melt storage unit 21 and the top plate 110 and supplies the melt into the container body 11. 22 and a decompression pump 23 provided in the sealed container 6.
  • the fluid-like material introduction unit 3 introduces a fluid-like material from the introduction unit 12 into the cylindrical container 1, and is provided with a pump or the like at the end of a cylindrical unit (not shown) communicated with the introduction unit 12. This is a configuration in which a lysate supply source is provided.
  • the swirl generator 4 swirls the fluid substance introduced from the introduction part 12 along the inner peripheral surface of the cylindrical container 1.
  • the swirl generation part 4 is a fluid that is linearly fed from the fluid object introduction part 3.
  • the injection unit 4A employs a so-called cyclone mechanism, and is melted in a cylindrical part (not shown in FIG. 1) in which the shaft core is disposed so as to face the tangent to the inner peripheral surface of the container body 11.
  • a structure provided with an object supply source can be adopted.
  • the to-be-dissolved substance supply control part 5 controls the supply amount of the to-be-dissolved substance introduce
  • the to-be-dissolved substance supply control part 5 is arrange
  • the fluid and the material to be dissolved flow in a direction toward the discharge unit 13 while turning, that is, downstream. That is, inside the container main body 11, the fluid-like material introducing unit 3, the swirl generation unit 4, and the discharge unit 13 constitute a swirl flow unit.
  • the swivel axis P1 inside the cylindrical container 1 coincides with the axis P2 of the cylindrical container 1 and the supply axis P3 of the material to be dissolved supplied through the communication pipe 22 of the material supply part 2 to be dissolved.
  • the sealed container 6 is a container for storing the semi-dissolved material discharged from the discharge unit 13 and completely dissolving it by the stirring unit 7, a discharge mechanism 61 is connected to the lower part thereof, and the above-described decompression pump 23 is connected to the upper part. Are connected.
  • the discharge mechanism 61 includes a pipe 62 that sends a completely dissolved solution to the next step, and a solution supply pump 63 provided in the pipe 62.
  • the discharge port 13 ⁇ / b> A of the discharge unit 13 is positioned below the liquid level L of the semi-dissolved material inside the sealed container 6.
  • the decompression pump 23 sucks and introduces the material to be dissolved into the cylindrical container 1 by the differential pressure between the inside and the outside of the sealed container 6.
  • the stirring unit 7 includes a stirring blade 71 that stirs and completely dissolves the semi-dissolved material stored in the sealed container 6, and a drive unit 72 that rotationally drives the stirring blade 71.
  • the fluid-like material introducing unit 3 performs a fluid-like material introducing step to introduce the fluid-like material into the cylindrical container 1 through the introducing unit 12, and the swirl generating unit 4 performs the swirling flow step. Then, the fluid is swirled inside the cylindrical container 1. Then, the fluid-like substance swirls along the inner peripheral surface of the cylindrical container 1 and, depending on the weight of the fluid-like substance and the direction of the fluid-like substance sent by the swirl generator 4, the discharge part 13 is located downstream. Turn towards.
  • the to-be-dissolved substance supply control part 5 is controlled, supply of the to-be-dissolved substance to the cylindrical container 1 is permitted, and a to-be-dissolved substance supply process is implemented.
  • the swirl flow process is performed inside the cylindrical container 1, and the fluid and the substance to be dissolved flow downstream while swirling inside the cylindrical container 1.
  • a large centrifugal force acts on the fluid material having a large specific gravity
  • the material to be dissolved having a specific gravity smaller than that of the fluid material is the axis of the cylindrical container 1. It becomes easy to flow to the discharge part 13 side along.
  • the substance to be dissolved is confined in the axial core of the cylindrical container 1 by the large centrifugal force of the fluid, so it is difficult to dissolve with the fluid, As it approaches the discharge unit 13 side, the fluid-like material turbulently flows and the material to be dissolved is easily dissolved.
  • the material to be dissolved is gradually dissolved in the fluid.
  • the object to be dissolved inside the container main body 11, the object to be dissolved is not completely dissolved in the fluid-like material, and the discharge part is a semi-dissolved material in which a part of the object to be dissolved is dissolved in the fluid-like part.
  • the swivel discharge process carried out from 13 to the sealed container 6 is performed. When the axial length of the container body 11 is increased or a material to be dissolved having a low viscosity is used, the material to be dissolved is completely dissolved in the fluid-like material in the sealed container 6. To the sealed container 6 is completely dissolved.
  • the semi-dissolved material continues to be sent to the sealed container 6 through the discharge portion 13, and the liquid level of the semi-dissolved material and the complete dissolved material is positioned above the discharge port 13 ⁇ / b> A of the discharge portion 13.
  • the decompression pump 23 is operated to carry out the melt supply process. That is, when the pressure difference between the inside and the outside of the sealed container 6 is generated by the decompression pump 23, the material to be dissolved is sucked into the inside of the cylindrical container 1.
  • the stirring part 7 is operated and a stirring process is implemented. In the stirring step, the semi-dissolved material stored in the sealed container 6 is stirred to become a complete dissolved material.
  • the complete lysate is sent to the next step by the discharge mechanism 61.
  • the material supply control unit 5 prevents the material to be dissolved from being supplied into the cylindrical container. Even if the supply of the material to be melted to the inside of the cylindrical container 1 is prevented, the fluid-like substance flows toward the discharge portion on the downstream side while turning inside the cylindrical container. Here, since the fluid-like substance is swirling inside the cylindrical container 1, the swirling flow of the fluid-like substance contacts the downstream side of the substance-to-be-dissolved supply control unit 5, and the adhered substance to be dissolved is removed.
  • a fluid-like material introduction unit 3 performs a fluid-like material introduction step
  • a swirl generation unit 4 performs a swirl generation step
  • a to-be-dissolved material supply control unit 5 performs a to-be-dissolved material supply control step.
  • the swivel axis P1 inside the cylindrical container 1 coincides with the axis P2 of the cylindrical container 1 and the supply axis P3 of the material to be dissolved supplied by the material supply unit 2.
  • a coating layer made of a fluid-like material is formed on the inner wall of the cylindrical container 1 by the centrifugal force generated by the swirling flow of the fluid-like material, and the material to be dissolved comes into direct contact with the inner surface of the cylindrical container 1. Can be prevented. Therefore, even a highly viscous material to be dissolved can be dissolved with high accuracy without clogging the material to be dissolved.
  • the supply amount of the melt to be supplied to the cylindrical container 1 is controlled by the melt supply valve constituting the melt supply control unit 5. It is possible to accurately control the supply amount of the substance to be dissolved into the interior of the container, and to dissolve the substance to be dissolved with high precision.
  • the melted material supply valve is installed in the vicinity of the inner surface of the top plate 110 of the cylindrical container 1, when the melted material supply valve is closed, the swirling flow of the fluid is downstream in the valve. And the adhered material to be dissolved is removed to prevent the material to be dissolved from adhering.
  • the fluid-like material introducing portion 3 and the swirl generating portion 4 are constituted by the injection portion 4A that injects the fluid-like material into the inside of the cylindrical container 1 from the tangential direction of the inner periphery of the cylindrical container 1, the fluid
  • the injection unit 4A serves as both the fluid material introducing unit 3 and the swirl generating unit 4, thereby reducing the number of parts and reducing the manufacturing cost. be able to.
  • Dissolved material in which at least a part is dissolved by the swirling discharge process is discharged from the discharge unit 13 to the sealed container 6 and is stirred and completely dissolved by the stirring unit 7 inside the sealed container 6 by the stirring process. Therefore, even if the melt discharged from the discharge unit 13 is a semi-dissolved product, the melt can be stirred by the stirring unit 7 to obtain a complete melt.
  • the discharge port 13A of the discharge unit 13 is located below the level of the semi-dissolved material inside the sealed container 6, and the dissolved material supply step is performed between the inside and the outside of the sealed container 6 by the decompression pump 23. Since the object to be dissolved is sucked and introduced into the cylindrical container 1 by the differential pressure, it is not necessary to provide the cylindrical container 1 with a decompression device for decompressing the inside of the cylindrical container 1. The structure can be simplified.
  • FIG. 2 A second embodiment of the present invention will be described with reference to FIG. 2 and FIGS. 3A to 3C.
  • the second embodiment is different from the first embodiment in that the hermetic container 6 and the stirring unit 7 are omitted, and the other configurations are the same as those of the first embodiment.
  • the structure similar to 1st Embodiment attaches
  • the swivel melting device In FIG. 2, the swivel dissolving device 20 swivels around the axial core while flowing the cylindrical container 1 and the fluid substance introduced into the cylindrical container 1 along the axial core of the cylindrical container 1. 4A to be performed, and the to-be-dissolved substance supply part 2 and the to-be-dissolved substance supply control part 5 which were each provided in the cylindrical container 1 are provided.
  • the container body 11 of the cylindrical container 1 is made of stainless steel, other metal materials, or plastic materials, and is provided at the cylindrical part 14 with one end joined to the top plate 110 and the other end of the cylindrical part 14. And a tapered portion 15 having a tapered shape. An opening at the tapered tip of the taper portion 15 is a discharge portion 13.
  • the cylindrical container 1 is arrange
  • an introduction port 101 in which the lower end of the communication pipe 22 is opened is formed in the center of the top plate 110.
  • the axis of the introduction port 101 coincides with the axis of the cylindrical container 1 and the axis of the discharge part 13.
  • the injection unit 4 ⁇ / b> A employs a so-called cyclonic mechanism, and serves as both the fluid-like material introduction unit 3 and the swirl generation unit 4.
  • 4 A of injection parts are provided in the upper end part of the cylindrical part 14, and the fluid part supply source (not shown) connected to the communication part 41 which the one end opened inside the cylindrical container 1, and the other end of the communication part 41 It is equipped with.
  • FIG. 2 two injection parts 4A are provided.
  • the two injection parts 4 ⁇ / b> A are arranged symmetrically with the axis of the cylindrical part 14 in between.
  • the communicating portion 41 is arranged such that its axis is directed in the tangential direction of the inner peripheral surface of the cylindrical portion 14.
  • the direction in which the ejection unit 4A ejects the fluid-like material is not limited to the tangential direction of the inner peripheral surface of the cylindrical portion 14, but is a plane orthogonal to the axis of the introduction port 101. As long as it is inside and orthogonal to the radial direction, it may be located away from the inner peripheral surface of the cylindrical portion 14 in the axial direction. Furthermore, in order to make it flow along the axial center of the cylindrical container 1 of the injection part 4A, it is good also as a structure which injects a fluid state toward diagonally downward. Further, the number of the injection units 4A is not limited to two, and may be one as shown in FIG. 3B or three as shown in FIG. 3C, for example. In the case where a plurality of injection parts 4A are provided, these are preferably arranged at equal intervals along the circumference of the cylindrical part 14.
  • the melt supply unit 2 includes a melt storage unit (not shown in FIG. 2), a communication pipe 22 provided between the melt storage unit and the top plate 110, and a vacuum provided after the taper unit 15. And a press-fitting portion 25 provided on the upstream side of the melted material supply control unit 5.
  • the decompression unit 24 decompresses the inside of the cylindrical container 1, and includes, for example, a decompression pump that communicates with the cylindrical container 1, a metering pump that communicates with the discharge unit 13, and the like.
  • the press-fitting part 25 pressurizes the inside of the communication pipe 22 to press-fit a material to be dissolved into the cylindrical container 1 and is composed of a pressurization pump (not shown).
  • the melt supply control unit 5 is a melt supply valve that is provided in the middle of the communication pipe 22 and controls the supply of the melt into the cylindrical container 1. By adjusting, the quantity of the to-be-dissolved material supplied to the cylindrical container 1 can be controlled accurately.
  • the valve main body 51 is disposed close to the top plate 110, and the configuration can be exemplified by a butterfly valve, a ball valve, and the like.
  • the press-fitting part 25 is configured so that the melted substance sent from the melted substance storage part (not shown in FIG. 2) together with air, nitrogen, and other gases is transferred to the inside of the communication pipe 22 by a gas compression device, a gear pump, and other mechanisms (not shown). Pressurize with.
  • the swirl type melting method of the second embodiment will be described.
  • the fluid-like material introducing step and the turning step are performed simultaneously. That is, the fluidized material is ejected in the direction orthogonal to the radial direction within the plane orthogonal to the axial center of the introduction port 101 by operating the injection unit 4A. Then, the fluid is swung along the inner surface of the cylindrical container 1 around the axis of the inlet 101 and flows toward the discharge unit 13 due to the weight of the fluid and the like.
  • the fluid-like material flows in a spiral shape (vortex) toward the discharge portion 13 inside the cylindrical container 1 (see arrow Q1). At this time, since a large centrifugal force acts on the fluid-like material, the fluid-like material contacts the outer peripheral portion of the inner surface of the top plate 110.
  • valve main body 51 of the dissolved material supply control unit 5 is opened to supply the dissolved material into the cylindrical container 1.
  • the inside of the cylindrical container 1 is decompressed by the decompression unit 24, and further, the interior of the communication tube 22 is pressurized by the pressurization unit 54.
  • the material to be dissolved is forcibly introduced into the inside of the cylindrical container 1 from the introduction port 101 of the cylindrical container 1 along the axis.
  • a swirl flow process is performed inside the cylindrical container 1, a swirl flow process is performed. In other words, the substance to be dissolved is dissolved in the fluid, but as described above, centrifugal force acts on the fluid, so that the substance to be dissolved is directed to the discharge unit 13 while being maintained at the axial center of the inlet 101. To flow.
  • the centrifugal force of the fluid material is large, and the fluid material flows toward the discharge unit 13 without being mixed with the material to be dissolved. Then, the substance to be dissolved is turbulent as it approaches the discharge unit 13, and the substance to be dissolved dissolves in the fluid from the interface.
  • the length of the container body 11 in the axial direction is increased, so that the swirl flow process is sufficiently performed, and the substance to be dissolved is completely converted into a fluid-like material inside the container body 11. Dissolved. And from the discharge part 13, the melt
  • dissolved in the fluid body is discharged
  • the valve main body 51 of the melt supply control unit 5 is closed so that the melt is not supplied into the cylindrical container 1 through the inlet 101. In this state, since the fluid matter swirls inside the cylindrical container 1, the swirl flow of the fluid matter contacts and adheres to the vicinity of the opening of the communication pipe 22 on the downstream side of the valve body 512. Remove dissolved material.
  • the following effects can be obtained in addition to the effects (1) to (3) of the first embodiment.
  • the decompression unit 24 for decompressing the inside of the cylindrical container 1 is provided, the introduction of the substance to be dissolved into the inside of the cylindrical container 1 is smoothly performed. As a result, the material to be dissolved and the fluid-like material are reliably mixed, and the dissolution accuracy is improved.
  • the object to be melted pressurized by the press-fitting part 25 is configured to be press-fitted into the cylindrical container 1 through the communication pipe 22, the material to be melted is smoothly introduced into the cylindrical container 1, Mixing of the material to be dissolved and the fluid-like material is ensured, and the dissolution accuracy is improved.
  • FIG. 1 A third embodiment of the present invention will be described with reference to FIG.
  • the third embodiment is different from the second embodiment in the configuration in which the inside of the cylindrical container 1 is decompressed and the point in which the sealed container 6 and the stirring unit 7 are provided, and other configurations are the same as those in the second embodiment. is there.
  • the structure same as 2nd Embodiment attaches
  • the swirl type melting device 30 includes a vortex melting unit 8, a sealed container 6 connected to the vortex melting unit 8, a fluid material supply mechanism 91 that supplies a fluid material to the inside of the sealed container 6,
  • the mixture transfer mechanism 92 for sending the semi-dissolved material stored in the sealed container 6 to the vortex dissolution unit 8 and the gas phase part P above the liquid level L of the mixture stored in the sealed container 6 are decompressed.
  • a decompression pump 23 and an agitation unit 7 for agitating the mixture stored in the sealed container 6 are provided.
  • the vortex dissolution unit 8 has the same structure as that of the swirl type dissolution apparatus 20 of the second embodiment, but the lysate conveyed from the vortex lysis unit 8 to the sealed container 6 may be a complete lysate, but a semi-dissolve. But you can.
  • dissolution conveyed from the vortex dissolution unit 8 is a semi-dissolution thing.
  • One end of the injection unit 4 ⁇ / b> A opens into the cylindrical container 1, and the other end is connected to the mixture transfer mechanism 92.
  • the melt supply control unit 5 includes a valve main body 51 provided in the communication pipe 22 and is controlled so that the melt is supplied to the inside of the flow tube container 1 with high accuracy.
  • the fluid-like substance supply mechanism 91 includes a pipe 911 having one end opened inside the sealed container 6, a fluid-like substance supply tank (not shown) that is connected to the other end of the pipe 911 and supplies the fluid-like substance to the sealed container 6,
  • the pipe 911 includes a flow meter 912 and a valve 913 provided respectively.
  • the tip of the pipe 911 serves as a nozzle, and fluid is sprayed from the nozzle inside the sealed container 6.
  • the flow meter 912 is controlled to send a fluid at a constant flow rate into the sealed container 6.
  • the mixture transfer mechanism 92 includes a channel portion 921 having one end opened at the bottom of the hermetic container 6 and the other end communicating with the injection unit 4A, a pressure gauge 922, a drainage pump 923, and a drainage pump 923, respectively. It has a flow meter 924, a circulation valve 925, and a branch pipe 926 connected to the circulation valve 925.
  • the pressure gauge 922 detects and displays the pressure of the mixture transported through the flow path portion 921.
  • the drainage pump 923 sends a fluid or mixture inside the sealed container 6 to the injection unit 4A, and examples of the configuration include a centrifugal pump and a rotary pump.
  • the circulation valve 925 switches the transfer destination of the fluid or melted substance between the injection unit 4A and the branch pipe 926.
  • the branch pipe 926 is connected to a melt storage tank (not shown).
  • the agitation unit 7 agitates the mixture stored in the sealed container 6, and includes a shear mixer 73 and a movable blade part 74.
  • the shear mixer 73 includes an impeller 75, a stator 76, and a motor 77, and sends the stirred semi-dissolved material to the injection unit 4 ⁇ / b> A via the mixture transfer mechanism 92.
  • the stator 76 is an annular member disposed inside the sealed container 6 and accommodates the impeller 75 inside.
  • the stator 76 is provided with a plurality of holes through which the mixture can flow.
  • the impeller 75 has a shaft 75A connected to the motor 77 and a plurality of blades 75B provided on the shaft 75A.
  • the movable blade portion 74 includes a main shaft portion 74A in which the shaft core extends vertically, a plurality of blade main body portions 74C provided on the main shaft portion 74A via attachment stays 75C, and a motor that rotates the main shaft portion 74A. 74D.
  • the decompression pump 23 is provided in the communication pipe 23 ⁇ / b> A, and the end of the communication pipe 23 ⁇ / b> A is connected to the top plate 6 ⁇ / b> A of the sealed container 6.
  • the fluid-like material supply mechanism 91 is operated to supply the fluid-like material into the sealed container 6.
  • the fluid is sent to the vortex dissolution unit 8 through the mixture transfer mechanism 92, and returned from the vortex dissolution unit 8 to the sealed container 6.
  • the fluid-like material is ejected from the ejection unit 4 ⁇ / b> A toward the inside of the cylindrical container 1, and the fluid-like material introduction step and the swirl generation step are performed simultaneously. To do.
  • the fluid-like material turns along the inner peripheral surface of the cylindrical container 1 and flows toward the discharge unit 13 (see FIG. 2).
  • the decompression pump 23 When the fluid-like material reaches a predetermined height position of the sealed container 6, the decompression pump 23 is operated to decompress the gas phase portion P of the sealed container 6. Since the inside of the sealed container 6 and the inside of the cylindrical container 1 are in communication, the inside of the cylindrical container 1 is depressurized as the gas phase portion P is depressurized. Further, in order to perform the melted substance supply step, the valve body 51 of the melted substance supply control unit 5 is opened to remove the melted substance from the inlet 101 (see FIG. 2) of the cylindrical container 1. 1 inside.
  • the swirl flow process is performed as in the second embodiment. That is, centrifugal force acts on the swirling fluid, and the material to be dissolved flows in a spiral toward the discharge portion 13 while being maintained at the axial center of the inlet 101 (see FIG. 2).
  • the centrifugal force of the fluid material is large, and the fluid material flows toward the discharge unit 13 without being mixed with the material to be dissolved.
  • to-be-dissolved material mixes and melt
  • a stirring step is performed by the stirring unit 7, and the semi-dissolved product is stirred to become a complete dissolved product. That is, when the movable blade portion 74 is operated, the semi-dissolved material is stirred, and further, the semi-dissolved material is further sheared and dissolved by the shear mixer 73. The stirred dissolved material is again sent to the cylindrical container 1, and subsequently supplied material to be dissolved is dissolved, and this dissolved material is sent to the sealed container 6 and further stirred and dissolved by the stirring blade 71. .
  • the stirring part 7 Even if it is a case where it is not fully stirred by the stirring part 7, even if it is a to-be-dissolved substance with high viscosity by sending between the cylindrical container 1 and the airtight container 6 alternately, In addition, it will be dissolved in the fluid material.
  • the above process is performed until the dissolved material finally has a predetermined concentration, that is, the dissolved material and the fluid are in a predetermined ratio, for example, the dissolved material and the fluid are 97: 3.
  • the supply amount of the material to be dissolved and the fluid material is adjusted.
  • the circulation valve 925 When the dissolved material and the fluid material reach a predetermined ratio, the circulation valve 925 is operated to store the dissolved material in a dissolved material storage tank (not shown).
  • the above process is batch-processed as in the first embodiment.
  • the circulation valve 925 is returned to the original position, and the valve body 51 of the dissolved material supply control unit 5 is closed to stop the supply of the fluid material into the cylindrical container 1. .
  • the fluid is continuously swirling along the inner surface of the cylindrical container 1, so that the material to be dissolved is downstream of the valve of the material supply control unit 5. Is cleaned by contact with the swirling fluid.
  • the fourth embodiment is different from the third embodiment in the configuration for introducing a fluid substance into the cylindrical container 1 and the configuration of the stirring unit 7, and the other configurations are the same as those in the third embodiment.
  • the same components as those in the third embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the swirl type melting device 40 includes a vortex melting unit 8, a sealed container 6 connected to the vortex melting unit 8, a discharge mechanism 61 connected to the sealed container 6, and a decompression connected to the sealed container 6.
  • the discharge mechanism 61 is controlled based on the pump 23, the stirring unit 7 that stirs the semi-dissolved material stored in the sealed container 6, and the liquid level L of the dissolved material that is stirred and completely dissolved by the stirring unit 7. And a liquid level control mechanism 81.
  • the introduction of the fluid substance into the cylindrical container 1 is performed through the communication portion 41 of the injection unit 4A.
  • the communication portion 41 is provided with a flow rate adjusting valve 42 so that the flow rate of the fluid-like material sent to the inside of the cylindrical container 1 is constant.
  • FIG. 5 only one injection unit 4 ⁇ / b> A of the vortex melting unit 8 is shown, but in the present embodiment, one or more injection units 4 ⁇ / b> A may be provided.
  • the agitation unit 7 includes a shear mixer 73, and the movable blade portion 74 is omitted.
  • the liquid level control mechanism 81 includes an upper limit value detection sensor 82 and a lower limit value detection sensor 83 provided in the sealed container 6, and a dissolved liquid level L between the upper limit value detection sensor 82 and the lower limit value detection sensor 83.
  • a liquid level controller 84 that drives and controls the melt supply pump 63 is provided.
  • the upper limit value detection sensor 82 and the lower limit value detection sensor 83 are configured by, for example, optical sensors or the like provided inside the sealed container 6.
  • the swirl type melting method of the fourth embodiment will be described.
  • the fluid-like material introducing step and the turning step are performed simultaneously. That is, the injection unit 4 ⁇ / b> A is operated to inject a fluid substance into the cylindrical container 1.
  • the inside of the sealed container 6 is decompressed by operating the decompression pump 23.
  • the valve body 51 of the to-be-dissolved material supply control part 5 is opened, and the to-be-dissolved material is supplied to the inside of the cylindrical container 1.
  • a swirl flow process is performed, and the semi-dissolved material is sent from the discharge unit 13 to the sealed container 6. Since the inside of the sealed container 6 continues to be depressurized, the inside of the cylindrical container 1 is also depressurized and the material to be dissolved continues to be supplied.
  • a semi-dissolved material is sent from the discharge unit 13 to the inside of the sealed container 6, and a stirring process is performed inside the sealed container 6. That is, the stirring unit 7 is operated, and the semi-dissolved product is stirred by the stirring unit 7 to become a complete dissolved product.
  • the amount of complete dissolved matter inside the sealed container 6 increases, and the liquid level L rises.
  • the liquid supply control unit 84 drives the melt supply pump 63. By driving the melt supply pump 63, the complete melt is sent to the next step.
  • continuous operation is performed instead of batch processing.
  • valve body 51 of the substance to be dissolved supply control unit 5 is closed to close the inside of the cylindrical container 1 of the fluid substance as in the third embodiment.
  • a fifth embodiment of the present invention will be described with reference to FIG.
  • the fifth embodiment is different from the fourth embodiment in that a fluid-like material supply mechanism 91 is provided to supply a fluid-like material to the inside of the sealed container 6, and other configurations are the fourth embodiment. Is the same.
  • the same components as those in the fourth embodiment are denoted by the same reference numerals and description thereof is omitted. (Swivel melting device) In FIG.
  • the swivel dissolving device 50 includes a vortex dissolving unit 8, a sealed container 6, a discharge mechanism 61, a fluid-like material supply mechanism 91, a mixture transfer mechanism 92, a decompression pump 23, a stirring unit 7, and a liquid level control mechanism 81. It is prepared for.
  • the fluid-like material supply mechanism 91 is operated to supply the fluid-like material into the sealed container 6. The fluid is sent to the vortex dissolution unit 8 through the mixture transfer mechanism 92, and returned from the vortex dissolution unit 8 to the sealed container 6.
  • the liquid supply control unit 84 causes the dissolved supply pump. 63 is driven. By driving the melt supply pump 63, the complete melt is sent to the next step.
  • the sixth embodiment is different from the second embodiment in that the fluid-like material introducing unit and the swirl generating unit are separated, and the other configurations are the same as those of the second embodiment.
  • the same configurations as those of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the swivel dissolving device 60 of the sixth embodiment includes a cylindrical container 1, a to-be-dissolved material supply unit 2, a fluid-like material introducing unit 3, and swirl generation respectively provided in the cylindrical container 1. It comprises the part 4 and the to-be-dissolved substance supply control part 5, and is comprised.
  • the fluid-like material introducing unit 3 includes a communicating part 41 having one end connected to the cylindrical container 1 via the swirl generating part 4 and a fluid-like substance passing through the communicating part 41 connected to the other end of the communicating part 41. 1 and a fluid-like material supply source (not shown) that is supplied to the inside.
  • the communication part 41 corresponds to the radial direction and axial center of the cylindrical container 1 (refer FIG. 8).
  • the swivel generator 4 includes a ring-shaped flow path changing portion 43 provided on the outer periphery of the container body 11 of the cylindrical container 1, and a ring shape having a U-shaped cross section in which the flow path changing portion 43 is fitted to the tip of the opening. Part 44. An end of the communication part 41 is connected to the ring-shaped part 44. Between the flow path changing portion 43 and the ring-shaped portion 44, a ring-shaped main flow channel 431 through which a fluid-like material sent from the communicating portion 41 flows is formed. A plurality of sub-channels 432 communicating with the main channel 431 are formed side by side in the circumferential direction in the channel changing unit 43, and these sub-channels 432 are containers formed in the container body 11.
  • the plurality of sub-channels 432 are arranged at equal intervals along the circumferential direction of the cylindrical container 1.
  • four sets of sub-channels 432 and container-side channels 111 are shown, but in the present embodiment, the number is not limited to this.
  • the sub-channel 432 and the container-side channel 111 have the same axis, and these axes intersect the radial direction of the container body 11.
  • the flow of the fluid-like material that is linearly fed from the fluid-like material introduction unit 3 through the inside of the communication unit 41 is changed by the main channel 431, the sub-channel 432, and the container-side channel 111, and the cylinder It turns along the inner peripheral surface of the container 1.
  • the sub-channel 432 and the container-side channel 111 may have the same opening, or one may be larger than the other.
  • a fluid-like substance introducing step is performed by the fluid-like substance introducing unit 3. That is, the fluid-like material is sent to the swirl generator 4 through the communication portion 41.
  • a swirl generation process is performed. That is, after the fluid-like material flows through the main channel 431, the channel is changed by the sub-channel 432 and the container-side channel 111 and swirls along the inner peripheral surface of the cylindrical container 1.
  • the swirling fluid substance flows toward the discharge unit 13 due to its own weight or the like.
  • valve main body 51 of the melt supply control unit 5 is opened to supply the melt into the cylindrical container 1 to perform the melt supply process.
  • a swirl flow process is performed inside the cylindrical container 1.
  • the material to be dissolved dissolved in the fluid in the swirl flow process is discharged to the outside through the discharge unit 13.
  • the swivel generator 4 includes a ring-shaped flow path changing portion 43 provided in the cylindrical container 1, and a ring-shaped portion 44 having a U-shaped cross section in which the flow path changing portion 43 is fitted to the opening end. It is equipped with.
  • the flow path changing section 43 includes a main flow path 431 formed between the ring-shaped section 44 and a plurality of flow paths for changing the flow path of the main flow path 431 so that fluid-like matter swirls the cylindrical container 1.
  • a sub-channel 432 is formed. Therefore, the structure of the fluid-like material introducing unit 3 can be simplified.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the dissolved material supply step is performed after the fluid-like material introduction step.
  • the fluid-like material introducing step may be performed after the dissolved material supply step, and further, the fluid-like material introducing step and the material to be dissolved may be simultaneously performed.
  • the fluid is water, in the present invention, it may be a liquid other than water, or a gas such as air or nitrogen.
  • the to-be-dissolved material was made into fine things with high viscosity, such as wheat flour, carboxymethylcellulose (CMC), and pectin, in this invention, it is good also as a fine thing with low viscosity. Moreover, it is good also considering a to-be-dissolved object as a fluid instead of a fine thing.
  • CMC carboxymethylcellulose
  • the vortex melting unit 8 is arranged along the top and bottom, but in the present invention, the arrangement shown in FIG. 9 may be used. That is, as indicated by reference numeral A in FIG. 9, in addition to the arrangement of the vortex dissolution units 8 of the third embodiment, fourth embodiment, and fifth embodiment, the container body 11 extends vertically as indicated by reference numeral B. May be arranged such that the discharge part 13 is bent into an L shape and the upper outer peripheral part of the sealed container 6 is penetrated. Furthermore, as indicated by reference symbol C, the container main body 11 and the discharge part 13 may be disposed obliquely, and the discharge part 13 may be disposed through the lower outer peripheral portion of the sealed container 6 from obliquely upward to downward.
  • the discharge portion 13 may be disposed so as to penetrate the lower portion of the sealed container 6 from obliquely downward to upward.
  • the container body 11 and the discharge portion 13 may be disposed horizontally, and as indicated by reference numeral F, the container body 11 is horizontally disposed and the discharge portion 13 is sealed. You may penetrate the upper outer peripheral part of the container 6 and bend
  • the discharge portion 13 may be arranged toward a line parallel to the tangent to the inner peripheral surface of the sealed container 6, and reference numeral F2 As shown, the discharge portion 13 may be disposed toward the axis of the sealed container 6, and further, as indicated by reference numeral F ⁇ b> 3, the root portion of the discharge portion 13 is directed to the axis of the sealed container 6. Further, it may be arranged such that the middle is bent and the front end side is aligned with the tangent to the inner peripheral surface of the sealed container 6.
  • the container body 11 is connected to a large diameter portion 11A having a large diameter, a small diameter portion 11B having a small diameter, and a conical portion 11C connecting the large diameter portion 11A and the small diameter portion 11B. It is good also as what shortens the axial direction length of 11 A of large diameter parts, and lengthens the axial direction length of the small diameter part 11B. By making the small diameter portion 11B longer, the swirl flow process can be sufficiently performed. Furthermore, as shown in FIG. 11B, the container body 11 may be formed from a cylindrical portion 11D having the same diameter along the axial direction. In this case, it is possible to sufficiently perform the swirl flow step by increasing the axial length of the cylindrical portion 11D. Moreover, in 2nd Embodiment and 6th Embodiment, the structure which decompresses the inside of the cylindrical container 1 does not need to be employ

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

A fluid material introduction unit (3) performs a fluid material introduction step, a swirling generation unit (4) performs a swirling generation step, and a to-be-dissolved material feeding control unit (5) performs a to-be-dissolved material feeding control step to allow a to-be-dissolved material to be fed into a cylindrical container (1). A swirling fluidization step for causing the fluid material and the to-be-dissolved material to move toward a discharge part (13) on a downstream side while swirling in the cylindrical container (1), is performed, whereby, a swirling discharge step for discharging, through the discharge part (13) to the outside of a sealed container (6), a semi-dissolved material which is a resultant material of at least a part of the to-be-dissolved material having been dissolved in the fluid material, is performed.

Description

旋回型溶解方法及び旋回型溶解装置Swivel melting method and swirl melting apparatus
 本発明は、旋回型溶解方法及び旋回型溶解装置に関する。 The present invention relates to a swirling melting method and a swirling melting apparatus.
 食品工業や医薬品工業、その他の産業分野において、粉体状、顆粒状、小固形物状、あるいはファイバー状等のような微細物状の被溶解物と、液体等の流体状物とを撹拌して溶解する装置がある。
 この溶解装置として、タンク内に液体を供給する液体供給部と、タンク内を減圧する減圧部と、タンク内外の圧力差を利用してタンクの外部からタンクの内部に微細物を移送する移送装置と、移送された微細物を液体とともに撹拌する撹拌部と、を備えた従来例がある(特許文献1)。移送装置は、タンクの内外に延びる微細物誘導部と、微細物誘導部に気体を導入する気体導入部と、を備えており、微細物誘導部は、タンク内で鉛直下方に先端が開口しているノズルを有する。
In the food industry, pharmaceutical industry, and other industrial fields, the substance to be dissolved, such as powder, granules, small solids, or fibers, and fluids such as liquids are agitated. There is a device that dissolves.
As this dissolving device, a liquid supply unit that supplies liquid into the tank, a decompression unit that depressurizes the inside of the tank, and a transfer device that transfers fine objects from the outside of the tank to the inside of the tank using a pressure difference inside and outside the tank In addition, there is a conventional example including a stirring unit that stirs a transferred fine object together with a liquid (Patent Document 1). The transfer device includes a fine material guiding portion extending in and out of the tank, and a gas introducing portion for introducing gas into the fine material guiding portion, and the fine material guiding portion has a tip opened vertically downward in the tank. Having a nozzle.
 特許文献1の従来例において、微細物を液体に溶解するため、予め、ノズルの先端開口をタンクに貯留された液体中に没入しておき、微細物誘導部内に気体を導入し、当該気体をノズルの先端開口から放出する。
 気体放出工程の継続中、微細物誘導部及びノズルを介して、微細物と気体との混合物がタンク内の液体中に移送する。混合物はタンク内で撹拌されて溶解される。このような溶解作業は、バッチ処理されることがある。
 特許文献1の従来例では、ノズルの先端がタンク内の液体に開口されているので、微細物の溶解作業をバッチ処理すると、バッチ処理と次のバッチ処理との間において、ノズルの内部に液体が逆流し、ノズル内面に付着した微細物が液体に浸されるおそれがある。そのため、バッチ処理と次のバッチ処理との間で気体の放出が継続して行われる。
In the conventional example of Patent Document 1, in order to dissolve the fine object in the liquid, the tip opening of the nozzle is previously immersed in the liquid stored in the tank, the gas is introduced into the fine object guide part, and the gas is It discharges from the tip opening of the nozzle.
During the continuation of the gas discharge process, the mixture of the fine substance and the gas is transferred into the liquid in the tank through the fine substance guiding part and the nozzle. The mixture is stirred and dissolved in the tank. Such a melting operation may be batch processed.
In the conventional example of Patent Document 1, since the tip of the nozzle is opened to the liquid in the tank, when the fine material melting operation is batch processed, the liquid is placed inside the nozzle between the batch processing and the next batch processing. May flow backward, and there is a risk that fine objects adhering to the inner surface of the nozzle may be immersed in the liquid. Therefore, the gas is continuously released between the batch process and the next batch process.
特開2017-77554号公報JP 2017-77554 A
 特許文献1の従来例では、ノズルの内面が液体で濡れることを防止するために、気体の放出が継続して行われる。ノズルの先端から放出される気体は、連続した泡となって液中を上昇する。
 ここで、微細物等の被溶解物として、脱脂粉乳のような粘性が低く容易に溶解する粉体(以下、易溶解物という)は問題がないが、カルボキシメチルセルロース(CMC)、ペクチン、小麦粉等のような溶解時の粘度や付着性が高く溶解しにくい被溶解物(以下、難溶解物という)ものでは、溶解時の偶発的なノズル先端付近への微量の付着粉が剥がれずに成長し、ノズル詰まりを生じさせるおそれがある。
 即ち、バッチ処理を繰り返すことで、ノズルの内面に付着された微細物が積層されるおそれがあり、バッチ処置と次のバッチ処理との間において、微細物が液体に浸されてノズル詰まりの原因となる。
In the conventional example of Patent Document 1, in order to prevent the inner surface of the nozzle from getting wet with liquid, the gas is continuously released. The gas released from the tip of the nozzle rises in the liquid as continuous bubbles.
Here, as a substance to be dissolved such as a fine substance, a powder having low viscosity and easily dissolving (hereinafter referred to as an easily dissolved substance) such as skim milk powder has no problem, but carboxymethyl cellulose (CMC), pectin, wheat flour, etc. In the case of materials to be dissolved that are difficult to dissolve (hereinafter referred to as difficultly dissolved materials) with high viscosity and adhesion when dissolved, a small amount of adhering powder near the tip of the nozzle during dissolution grows without peeling off. There is a risk of nozzle clogging.
That is, by repeating the batch process, there is a risk that the fine objects attached to the inner surface of the nozzle may be stacked, and between the batch process and the next batch process, the fine objects are immersed in the liquid and cause nozzle clogging. It becomes.
 本発明の目的は、粘性の高い被溶解物であっても、精度の高い溶解を行うことができる旋回型溶解方法及び旋回型溶解装置を提供することにある。 An object of the present invention is to provide a swirl-type melting method and a swirl-type melting apparatus capable of performing high-precision melting even for highly viscous materials to be dissolved.
 本発明の旋回型溶解方法は、導入部と排出部を有する筒状容器に前記導入部から流体状物を導入する流体状物導入工程と、前記流体状物導入工程で導入された前記流体状物を前記筒状容器の内部で旋回させる旋回発生工程と、前記筒状容器へ微細物状の被溶解物を供給する被溶解物供給工程と、前記筒状容器の内壁の近傍において前記被溶解物の前記筒状容器の内部への供給を許容あるいは阻止する被溶解物供給制御工程と、前記流体状物及び前記被溶解物を前記筒状容器の内部で旋回させながら下流へ流動させる旋回流動工程と、前記流体状物及び前記被溶解物の少なくとも一部が溶解した溶解物を旋回させながら前記排出部から排出する旋回排出工程と、を備え、前記旋回流動工程での旋回軸は、前記筒状容器の軸心と、前記被溶解物供給工程で供給される前記被溶解物の供給軸とそれぞれ一致することを特徴とする。 The swirl-type dissolution method of the present invention includes a fluid-like material introducing step of introducing a fluid-like material from the introducing portion into a cylindrical container having an introducing portion and a discharging portion, and the fluid state introduced in the fluid-like material introducing step. A swirl generating step for swirling an object inside the cylindrical container, a dissolved substance supplying step for supplying a fine substance-like dissolved substance to the cylindrical container, and the dissolution target in the vicinity of the inner wall of the cylindrical container To-be-dissolved substance supply control step for allowing or preventing the supply of an object to the inside of the cylindrical container, and swirl flow for causing the fluid-like substance and the object to be dissolved to flow downstream while swirling inside the cylindrical container And a swirl discharge step of discharging from the discharge section while swirling the dissolved material in which at least a part of the fluid and the material to be dissolved is swirled, The axial center of the cylindrical container and the material to be dissolved The supplied in sheet process, characterized in that respectively coincide with the supply axis of the lysate.
 本発明の旋回型溶解装置は、流体状物及び微細物状の被溶解物を旋回させながら少なくとも一部を溶解させて溶解物を製造する旋回型溶解装置であって、前記流体状物が導入される導入部と前記溶解物が外部に排出される排出部とを有する筒状容器と、前記導入部から前記流体状物を前記筒状容器の内部に導入する流体状物導入部と、前記導入部から導入された流体状物を前記筒状容器の内部で旋回させる旋回発生部と、前記筒状容器の内壁の近傍に配置され前記筒状容器へ前記被溶解物を供給する被溶解物供給部と、前記被溶解物の前記筒状容器の内部への供給を許容あるいは阻止する被溶解物供給制御部と、を備え、前記流体状物及び前記被溶解物が前記筒状容器の内部で旋回させながら下流へ流動し、前記筒状容器の内部の旋回軸は、前記筒状容器の軸心と、前記被溶解物供給工程で供給される前記被溶解物の供給軸とにそれぞれ一致することを特徴とする。
 本発明では、被溶解物として、カルボキシメチルセルロース(CMC)、ペクチン、小麦粉等の粘度が高い微細物を例示でき、流体状物として、被溶解物を溶解する水を例示できる。
The swirl-type dissolving apparatus of the present invention is a swirl-type dissolving apparatus for producing a melt by dissolving at least a part while swirling a fluid-like substance and a fine substance-like substance to be melted. A cylindrical container having an introduction part to be discharged and a discharge part from which the dissolved substance is discharged to the outside, a fluid-like substance introduction part for introducing the fluid substance from the introduction part into the cylindrical container, and A swirl generator that swirls the fluid-like material introduced from the introduction portion inside the cylindrical container, and a material to be dissolved that is disposed in the vicinity of the inner wall of the cylindrical container and supplies the material to be dissolved to the cylindrical container A supply unit, and a dissolved material supply control unit that allows or prevents supply of the material to be dissolved into the cylindrical container, and the fluid and the material to be dissolved are inside the cylindrical container. The swirling axis inside the cylindrical container The axis of the serial tubular container, characterized by matching each of the said in the feed axis of the lysate supplied in the melt feeding step.
In the present invention, fine substances having high viscosity such as carboxymethyl cellulose (CMC), pectin, and wheat flour can be exemplified as the substance to be dissolved, and water for dissolving the substance to be dissolved can be exemplified as the fluid substance.
 本発明では、流体状物導入部により流体状物導入工程を実施し、旋回発生部により旋回発生工程を実施する。流体状物導入工程により、流体状物が導入部から筒状容器の内部に連続して導入され、さらに、旋回発生工程により、流体状物が筒状容器の内部で旋回すると、筒状容器の内部で旋回流動工程が実施されることになり、流体状物が筒状容器の内部で旋回しながら下流側にある排出部に向けて流動する。
 筒状容器の内面に沿って流体状物が螺旋状に流動する状態で、被溶解物供給制御部により、被溶解物供給制御工程を実施し、被溶解物の筒状容器の内部への導入を許容する。すると、旋回流動工程が実施されることになり、流体状物及び被溶解物が筒状容器の内部で旋回しながら下流側にある排出部に向かって流動する。
 ここで、被溶解物が流体状物より比重が小さい場合では、比重の大きい流体状物には大きな遠心力が働き、流体状物より比重が小さい被溶解物は、筒状容器の内面に沿って排出部側に流動しやすくなる。被溶解物は、導入部から筒状容器の内部に導入された直後では、流体状物の大きな遠心力により、筒状容器の軸芯に閉じ込められるので、流体状物との混合がないが、排出部側に近づくにつれて、流体状物が乱流し、被溶解物と流体状物とが混合し、溶解が生じる。
 そして、旋回排出工程が実施され、流体状物及び被溶解物の少なくとも一部が溶解した溶解物が筒状容器の内部を旋回しながら排出部から排出する。ここで、排出部から排出される溶解物とは、完全に溶解された完全溶解物の他、一部が溶解された半溶解物も含まれる。被溶解物が溶解しやすく、また、旋回流動工程を実施するために十分な長さが筒状容器にあれば、完全溶解することが可能である。
In the present invention, the fluid-like material introducing step is performed by the fluid-like material introducing portion, and the swirl generating step is performed by the swirl generating portion. When the fluid-like material is continuously introduced from the introduction portion into the cylindrical container by the fluid-like material introducing step, and when the fluid-like material is swirled inside the cylindrical container by the swirl generation step, A swirl flow process is performed inside, and the fluid-like material flows toward the discharge portion on the downstream side while swirling inside the cylindrical container.
In a state where the fluid substance spirally flows along the inner surface of the cylindrical container, the dissolved substance supply control unit performs the dissolved substance supply control process, and introduces the dissolved substance into the cylindrical container. Is acceptable. Then, a swirl flow process will be implemented and a fluid-like substance and a to-be-dissolved substance will flow toward the discharge part in the downstream, swirling inside a cylindrical container.
Here, when the specific gravity of the material to be dissolved is smaller than that of the fluid material, a large centrifugal force acts on the fluid material having a large specific gravity, and the material to be dissolved having a specific gravity smaller than that of the fluid material follows the inner surface of the cylindrical container. It becomes easy to flow to the discharge part side. Immediately after being introduced into the cylindrical container from the introduction part, the material to be dissolved is confined in the axial core of the cylindrical container by the large centrifugal force of the fluid, so there is no mixing with the fluid, As it approaches the discharge side, the fluid is turbulent, and the material to be dissolved and the fluid are mixed and dissolution occurs.
Then, the swirling discharge process is performed, and the dissolved material in which at least a part of the fluid-like material and the material to be dissolved is dissolved is discharged from the discharging portion while swirling the inside of the cylindrical container. Here, the lysate discharged from the discharge part includes a completely lysed product completely dissolved and a semi-lysed product partially dissolved. If the material to be dissolved is easy to dissolve and the tube container is long enough to carry out the swirl flow process, it can be completely dissolved.
 予め定められた量の被溶解物が筒状容器の内部に送られたなら、被溶解物供給制御部により、被溶解物の筒状容器の内部への供給を阻止する。被溶解物の筒状容器の内部への供給が阻止されても、流体状物が筒状容器の内部で旋回しながら下流側にある排出部に向かって流動する。
 一般的には、被溶解物の筒状容器への導入制御はバルブで行われることが多いが、このバルブの下流側において被溶解物と流体状物との接触が起こり、筒状容器の内壁に対する被溶解物の付着が問題になる。しかしながら、本発明では、被溶解物供給制御部が筒状容器の内壁の近傍に設置されており、被溶解物供給制御部により被溶解物の筒状容器の内部への供給が阻止された時に、筒状容器の内部に流体状物が旋回しているので、流体状物の旋回流が被溶解物供給制御部の下流側に接触し、付着した被溶解物を除去する作用がある。即ち、流体状物の旋回流により、被溶解物供給制御部の下流側において、洗浄効果が発現し、被溶解物供給制御部への被溶解物の付着が防止される。
 本発明では、被溶解物供給制御部によって、間欠的な被溶解物の筒状容器の内部への導入が可能になり、溶解運転時の被溶解物の流量を容易に調整することができる。
When a predetermined amount of the material to be dissolved is sent into the cylindrical container, the material supply control unit prevents the material to be dissolved from being supplied into the cylindrical container. Even if the supply of the material to be melted to the inside of the cylindrical container is prevented, the fluid-like substance flows toward the discharge portion on the downstream side while swirling inside the cylindrical container.
In general, control of introduction of a material to be dissolved into a cylindrical container is often performed by a valve, but contact between the material to be dissolved and a fluid material occurs on the downstream side of this valve, and the inner wall of the cylindrical container Adhesion of the material to be dissolved becomes a problem. However, in the present invention, the melted material supply control unit is installed in the vicinity of the inner wall of the cylindrical container, and when the melted material supply control unit prevents the melted material from being supplied to the inside of the cylindrical container. Since the fluid matter swirls inside the cylindrical container, the swirling flow of the fluid matter comes into contact with the downstream side of the melt supply control unit and has an effect of removing the adherent melt material. That is, due to the swirling flow of the fluid-like material, a cleaning effect is exerted on the downstream side of the dissolved material supply control unit, and adhesion of the dissolved material to the dissolved material supply control unit is prevented.
In the present invention, the melt supply control unit can intermittently introduce the melt into the cylindrical container, and the flow rate of the melt during the melting operation can be easily adjusted.
 さらに、本発明では、前記筒状容器の内部の旋回軸は、筒状容器の軸心と、被溶解物供給部で供給される被溶解物の供給軸とにそれぞれ一致するから、流体状物の旋回流によって発生した遠心力により、筒状容器の内壁に流体状物からなるコーティング層が形成されることになり、筒状容器の内面に被溶解物が直接接触するのを防ぐことができる。なお、一般的に、非溶解物が粉体や小固形物などの微細物の場合、多量の空気を含むために、かさ密度は小さいので、ほとんどの微細物の溶解に良好に利用できる。
 以上のことから、粘性の高い被溶解物であっても、被溶解物の詰まりがなく、精度の高い溶解を行うことができる。
Furthermore, in the present invention, since the pivot axis inside the cylindrical container coincides with the axial center of the cylindrical container and the supply axis of the dissolved material supplied by the dissolved material supply unit, Due to the centrifugal force generated by the swirling flow, a coating layer made of a fluid substance is formed on the inner wall of the cylindrical container, and the material to be dissolved can be prevented from coming into direct contact with the inner surface of the cylindrical container. . In general, when the non-dissolved material is a fine material such as a powder or a small solid material, since it contains a large amount of air, the bulk density is small, so that it can be used favorably for dissolving most of the fine materials.
From the above, even a highly viscous material to be dissolved can be dissolved with high accuracy without clogging the material to be dissolved.
 本発明の旋回型溶解方法では、前記被溶解物供給制御工程は、被溶解物供給バルブにより前記筒状容器へ供給する被溶解物の供給量を制御し、前記旋回流動工程は、前記被溶解物供給バルブが閉じられたときに前記被溶解物供給バルブより下流側が、前記流体状物又は前記溶解物の旋回流に接触する構成としてもよい。
 本発明の旋回型溶解装置では、前記被溶解物供給制御部は、前記筒状容器へ導入する被溶解物の供給量を制御する被溶解物供給バルブを備えた構成としてもよい。
 以上の構成では、被溶解物供給バルブによって、筒状容器の内部への被溶解物の供給量を精度よく制御することができるので、必要な量の被溶解物を筒状容器の内部に導入することで、被溶解物の溶解を精度よく行うことができる。
 しかも、被溶解物供給バルブが筒状容器の内面の近傍に設置されているため、被溶解物供給バルブが閉の時に、流体状物の旋回流が当該バルブ内の下流側に接触し、付着した被溶解物を除去し、被溶解物の付着が防止される。
In the swirl type melting method of the present invention, the melt supply control step controls the supply amount of the melt to be supplied to the cylindrical container by the melt supply valve, and the swirl flow step includes the melt dissolution step. It is good also as a structure where the downstream side of the said to-be-dissolved material supply valve contacts the swirling flow of the said fluid-like material or the said melted material when a material supply valve is closed.
In the swirl type melting device of the present invention, the melt supply control unit may include a melt supply valve that controls a supply amount of the melt to be introduced into the cylindrical container.
In the above configuration, since the supply amount of the melted material into the cylindrical container can be accurately controlled by the melted material supply valve, a necessary amount of the melted material is introduced into the cylindrical container. By doing so, dissolution of the material to be dissolved can be performed with high accuracy.
In addition, since the melt supply valve is installed near the inner surface of the cylindrical container, when the melt supply valve is closed, the swirl flow of the fluid contacts the downstream side of the valve and adheres to it. The dissolved object is removed, and adhesion of the dissolved object is prevented.
 本発明の旋回型溶解方法では、前記流体状物導入工程と前記旋回発生工程とは、前記旋回軸と直交する平面内で、前記筒状容器の内周の接線方向から前記流体状物を前記筒状容器の内部に噴射することで実施される構成としてもよい。
 本発明の旋回型溶解装置では、前記流体状物導入部と前記旋回発生部とは、前記旋回軸と直交する平面内で、前記筒状容器の内周の接線方向から前記流体状物を前記筒状容器の内部に噴射する噴射部を備えた構成としてもよい。
 これらの構成では、いわゆるサイクロン方式を採用することになり、流体状物を確実に旋回させて精度よく被溶解物を溶解できる。しかも、流体状物導入部と旋回発生部とを噴射部から構成するので、部品点数の減少が図れて製造コストを低下させることができる。
In the swirl-type melting method of the present invention, the fluid-like material introducing step and the swirl generating step include the fluid-like material from the tangential direction of the inner periphery of the cylindrical container in a plane orthogonal to the swivel axis. It is good also as a structure implemented by injecting inside a cylindrical container.
In the swirl-type dissolving device of the present invention, the fluid-like material introducing portion and the swirl generating portion are arranged such that the fluid-like material is introduced from the tangential direction of the inner periphery of the cylindrical container in a plane orthogonal to the swivel axis. It is good also as a structure provided with the injection part injected to the inside of a cylindrical container.
In these configurations, a so-called cyclone system is adopted, and the fluid to be dissolved can be reliably swirled to dissolve the material to be dissolved with high accuracy. In addition, since the fluid-like material introduction part and the swirl generation part are constituted by the injection part, the number of parts can be reduced and the manufacturing cost can be reduced.
 本発明の旋回型溶解方法では、前記被溶解物供給工程は、前記筒状容器の内部を減圧する構成としてもよい。
 本発明の旋回型溶解装置では、前記被溶解物供給部は、前記筒状容器の内部を減圧する減圧部を備えた構成としてもよい。
 これらの構成では、筒状容器の内部を減圧することにより、被溶解物の筒状容器の内部への導入が円滑に実施される。そのため、被溶解物の溶解が確実に行われ、溶解精度が向上する。
In the swirl type melting method of the present invention, the melt supply step may be configured to depressurize the inside of the cylindrical container.
In the swirl type melting device of the present invention, the melt supply unit may include a decompression unit that decompresses the inside of the cylindrical container.
In these configurations, by reducing the pressure inside the cylindrical container, the material to be dissolved is smoothly introduced into the cylindrical container. Therefore, the material to be dissolved is reliably dissolved and the dissolution accuracy is improved.
 本発明の旋回型溶解方法では、前記被溶解物供給工程は、前記被溶解物を加圧して前記筒状容器の内部へ圧入する構成としてもよい。
 本発明の旋回型溶解装置では、前記被溶解物供給部は、前記被溶解物を加圧して前記筒状容器の内部へ圧入する圧入部を備えた構成としてもよい。
 この構成では、圧入部を作動して被溶解物を加圧して筒状容器の内部に圧入する。これにより、被溶解物の筒状容器の内部への導入が円滑に実施されるため、被溶解物の溶解が確実に行われ、溶解精度が向上する。
In the swirl type melting method of the present invention, the melt supply step may be configured to pressurize the melt and press-fit into the cylindrical container.
In the swirl type melting device of the present invention, the melted material supply unit may include a press-fitting unit that pressurizes the melted material and press-fits the melted material into the cylindrical container.
In this configuration, the press-fitting portion is operated to pressurize the material to be dissolved and press-fit into the cylindrical container. Accordingly, since the material to be dissolved is smoothly introduced into the cylindrical container, the material to be dissolved is reliably dissolved and the dissolution accuracy is improved.
 本発明の旋回型溶解方法では、前記旋回排出工程は、前記流体状物及び前記被溶解物を一部溶解した半溶解物を前記排出部から密閉容器に排出し、前記半溶解物を前記密閉容器の内部で撹拌して完全に溶解する撹拌工程を備えた構成としてもよい。
 本発明の旋回型溶解装置では、前記排出部から排出された前記流体状物及び前記被溶解物を一部溶解した半溶解物を収納する密閉容器と、前記密閉容器に設けられ前記半溶解物を前記密閉容器の内部で撹拌して完全に溶解する撹拌部とを備えた構成としてもよい。
 これらの構成では、筒状容器の内部で十分に被溶解物が溶解されておらず、半溶解物として排出部から排出される場合であっても、排出部から密閉容器の内部に送られる半溶解物が撹拌部により撹拌されるので、完全な溶解物を得ることができる。
 前述の構成では、半溶解物を密閉容器に排出する際に、密閉容器内の液面上に供給する方法と、液面下に供給する方法があり、本発明は、それを限定するものではないが、後者は、実用上利点が大きい。
 特に、付着性の高い難溶解性の被溶解物では、一般的に液面上に供給された被溶解物は液面を浮遊しながら一部浸潤してダマになりやすいが、前述の構成で被溶解物を密閉容器内の液面下に直接供給した場合、撹拌部で即座に撹拌することで、ダマがなくなって被溶解物が完全に溶解する。さらに、この構成では液面での泡立ちを防止できる利点もある。
In the swirl type dissolution method of the present invention, the swirl discharge step discharges the semi-dissolved material in which the fluid-like material and the material to be dissolved are partially dissolved from the discharge portion to a sealed container, and the semi-dissolved material is sealed. It is good also as a structure provided with the stirring process which stirs inside a container and melt | dissolves completely.
In the swirl type dissolution apparatus of the present invention, a sealed container for storing the fluid-like material discharged from the discharge part and a semi-dissolved material in which the material to be dissolved is partially dissolved, and the semi-dissolved material provided in the sealed container It is good also as a structure provided with the stirring part which stirs inside the said airtight container and melt | dissolves completely.
In these configurations, even if the substance to be dissolved is not sufficiently dissolved inside the cylindrical container and is discharged from the discharge part as a semi-dissolved substance, the semi-dissolved substance is sent from the discharge part to the inside of the sealed container. Since the lysate is stirred by the stirring part, a complete lysate can be obtained.
In the above-described configuration, when the semi-dissolved material is discharged into the sealed container, there are a method of supplying the liquid on the liquid level in the sealed container and a method of supplying the liquid under the liquid surface, and the present invention is not limited thereto. However, the latter has great practical advantages.
In particular, in the case of a highly soluble and poorly soluble material to be dissolved, the material to be dissolved supplied on the liquid surface is liable to infiltrate partly while floating on the liquid surface. When the material to be dissolved is supplied directly below the liquid level in the sealed container, the material to be dissolved is completely dissolved by eliminating the waste by immediately stirring in the stirring unit. Further, this configuration has an advantage that foaming at the liquid level can be prevented.
 本発明の旋回型溶解方法では、前記排出部の排出口は、前記密閉容器の内部において前記半溶解物の液面下に位置し、前記被溶解物供給工程は、前記密閉容器の内部と外部との差圧によって前記被溶解物を前記筒状容器の内部へ吸引導入する構成としてもよい。
 本発明の旋回型溶解装置では、前記排出部の排出口は、前記密閉容器の内部において前記半溶解物の液面下に位置し、前記被溶解物供給部は、前記密閉容器の内部と外部との差圧によって前記被溶解物を前記筒状容器の内部へ吸引導入する減圧ポンプを備えた構成としてもよい。
 これらの構成では、減圧ポンプを作動して、被溶解物供給工程を実施する。被溶解物供給工程により、密閉容器の内部と外部とに差圧が生じ、この差圧によって筒状容器の内部に負圧が生じて被溶解物が筒状容器の内部へ吸引導入される。そのため、筒状容器の内部を減圧するための減圧装置を筒状容器に設けることを要しないので、筒状容器の構造を簡易なものにできる。
In the swirl-type dissolution method of the present invention, the discharge port of the discharge part is located below the liquid level of the semi-dissolved material inside the sealed container, and the dissolution object supplying step is performed between the inside and the outside of the sealed container. It is good also as a structure which suck | inhales and introduces the said to-be-dissolved material into the inside of the said cylindrical container by the differential pressure | voltage with this.
In the swirl type dissolution apparatus of the present invention, the discharge port of the discharge unit is located below the liquid level of the semi-dissolved material inside the sealed container, and the dissolved material supply unit includes the inside and the outside of the sealed container. It is good also as a structure provided with the pressure reduction pump which attracts | sucks and introduces the said to-be-dissolved substance into the inside of the said cylindrical container by the differential pressure | voltage with this.
In these structures, the to-be-dissolved substance supply process is implemented by operating the vacuum pump. The melted substance supply step generates a differential pressure between the inside and the outside of the sealed container, and this differential pressure creates a negative pressure inside the cylindrical container, and the melted substance is sucked and introduced into the cylindrical container. Therefore, since it is not necessary to provide the cylindrical container with a decompression device for decompressing the inside of the cylindrical container, the structure of the cylindrical container can be simplified.
本発明の第1実施形態にかかる旋回型溶解装置の概略図。1 is a schematic view of a swirl type melting apparatus according to a first embodiment of the present invention. 本発明の第2実施形態にかかる旋回型溶解装置を示す概略図。Schematic which shows the turning type | mold melt | dissolution apparatus concerning 2nd Embodiment of this invention. 第2実施形態において、噴射部の位置を示す概略図。Schematic which shows the position of an injection part in 2nd Embodiment. 第2実施形態において、噴射部の位置を示す概略図。Schematic which shows the position of an injection part in 2nd Embodiment. 第2実施形態において、噴射部の位置を示す概略図。Schematic which shows the position of an injection part in 2nd Embodiment. 本発明の第3実施形態にかかる旋回型溶解装置を示す概略図。Schematic which shows the turning type | mold melt | dissolution apparatus concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる旋回型溶解装置を示す概略図。Schematic which shows the turning type | mold melt | dissolution apparatus concerning 4th Embodiment of this invention. 本発明の第5実施形態にかかる旋回型溶解装置を示す概略図。Schematic which shows the turning type | mold melt | dissolution apparatus concerning 5th Embodiment of this invention. 本発明の第6実施形態にかかる旋回型溶解装置を示す概略図。Schematic which shows the turning type | mold melt | dissolution apparatus concerning 6th Embodiment of this invention. 図7のVIII-VIII線に沿う矢視断面図。FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 7. 本発明の変形例を示す概略図。Schematic which shows the modification of this invention. 本発明の変形例を示す概略図。Schematic which shows the modification of this invention. 本発明の変形例を示す概略図。Schematic which shows the modification of this invention. 本発明の変形例を示す概略図。Schematic which shows the modification of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。
[第1実施形態]
 本発明の第1実施形態は、本発明の概要を示すものである。
 第1実施形態を図1に基づいて説明する。
  (旋回型溶解装置)
 図1において、旋回型溶解装置10は、流体状物及び微細物状の被溶解物を旋回させながら少なくとも一部を溶解させて溶解物を製造する装置であり、筒状容器1と、筒状容器1にそれぞれ設けられた被溶解物供給部2、流体状物導入部3、旋回発生部4及び被溶解物供給制御部5と、筒状容器1に接続された密閉容器6と、密閉容器6に設けられた撹拌部7と、を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
1st Embodiment of this invention shows the outline | summary of this invention.
A first embodiment will be described with reference to FIG.
(Swivel melting device)
In FIG. 1, a swirl type melting device 10 is a device for producing a melted material by dissolving at least a part while swirling a fluid-like material and a fine material-like material to be melted. To-be-dissolved substance supply unit 2, fluid-like substance introducing unit 3, swirl generation unit 4 and to-be-dissolved substance supply control unit 5 provided in container 1, sealed container 6 connected to cylindrical container 1, and sealed container 6 and a stirring unit 7 provided in the apparatus 6.
 筒状容器1は、天板110を有する容器本体11と、容器本体11の天板110に近い側の外周に設けられ流体状物が導入される導入部12と、容器本体11の天板110とは反対側に形成され溶解物を密閉容器6に排出する筒状の排出部13とを有する。
 容器本体11の軸芯と直交する平面内の形状は、円形が好ましいが、楕円や多角形でもよい。
 導入部12は、容器本体11の周面に形成された導入口を有する。
 排出部13は、一端が容器本体11に接続され、他端が密閉容器6の内部に開口している筒状部材である。
 被溶解物は、カルボキシメチルセルロース(CMC)、ペクチン、小麦粉等の粘度が高い微細物が好ましいが、それ以外の微細物も適用可能である。流体状物は、被溶解物を溶解する水や、他の流体を例示できる。被溶解物は流体状物より嵩比重が小さい。被溶解物と流体状物との比率は、例えば、3:97である。
 本実施形態では、排出部13からは流体状物に被溶解物の一部が溶解された半溶解物が排出されるものであり、半溶解物は密閉容器6の内部で完全に溶解される。なお、本実施形態では、容器本体11の軸方向長さを長くしたり、粘度の低い被溶解物を用いたりすることで、密閉容器6で被溶解物が流体状物に完全に溶解される。完全に溶解された溶解物は、密閉容器6の内部で、より微細に溶解されることになる。
The cylindrical container 1 includes a container main body 11 having a top plate 110, an introduction portion 12 provided on the outer periphery of the container main body 11 on the side close to the top plate 110, and a fluid-like material introduced therein, And a cylindrical discharge part 13 that is formed on the opposite side to discharge the melted substance into the sealed container 6.
The shape in a plane orthogonal to the axis of the container body 11 is preferably a circle, but may be an ellipse or a polygon.
The introduction part 12 has an introduction port formed in the peripheral surface of the container body 11.
The discharge part 13 is a cylindrical member having one end connected to the container body 11 and the other end opened to the inside of the sealed container 6.
The material to be dissolved is preferably a fine material having a high viscosity such as carboxymethylcellulose (CMC), pectin, or wheat flour, but other fine materials are also applicable. Examples of the fluid-like material include water that dissolves the material to be dissolved and other fluids. The material to be dissolved has a lower bulk specific gravity than the fluid. The ratio of the material to be dissolved and the fluid is, for example, 3:97.
In the present embodiment, a semi-dissolved material in which a part of a material to be dissolved is dissolved in a fluid-like material is discharged from the discharge unit 13, and the semi-dissolved material is completely dissolved inside the sealed container 6. . In the present embodiment, the object to be dissolved is completely dissolved in the fluid in the sealed container 6 by increasing the axial length of the container body 11 or using the object to be dissolved having a low viscosity. . The completely dissolved solution is dissolved more finely in the closed container 6.
 被溶解物供給部2は、ホッパ等からなる被溶解物貯蔵部21と、被溶解物貯蔵部21と天板110との間に設けられ被溶解物を容器本体11の内部へ供給する連通管22と、密閉容器6に設けられた減圧ポンプ23と、を備えている。
 流体状物導入部3は、導入部12から流体状物を筒状容器1の内部に導入するものであり、導入部12に連通された図示しない筒状部の端部にポンプ等からなる被溶解物供給源が設けられた構成である。
 旋回発生部4は、導入部12から導入された流体状物を筒状容器1の内周面に沿って旋回させるものであり、例えば、流体状物導入部3から直線状に送られる流体状物の流路を筒状容器1の内周面に沿うように変更する流路変更部を有する。なお、流体状物導入部3と旋回発生部4とを、筒状容器1の内周の接線方向から流体状物を筒状容器の内部に噴射する噴射部4Aから構成してもよい。噴射部4Aは、いわゆる、サイクロン方式の機構を採用するものであり、軸芯が容器本体11の内周面の接線を向いて配置された筒状部(図1で図示せず)に被溶解物供給源が設けられた構造を採用できる。
 噴射部4Aは、1つでもよく、複数でもよい。複数配置する場合には、これらが等間隔に配置されることが望ましい。
The melt supply unit 2 includes a melt storage unit 21 made of a hopper and the like, and a communication pipe that is provided between the melt storage unit 21 and the top plate 110 and supplies the melt into the container body 11. 22 and a decompression pump 23 provided in the sealed container 6.
The fluid-like material introduction unit 3 introduces a fluid-like material from the introduction unit 12 into the cylindrical container 1, and is provided with a pump or the like at the end of a cylindrical unit (not shown) communicated with the introduction unit 12. This is a configuration in which a lysate supply source is provided.
The swirl generator 4 swirls the fluid substance introduced from the introduction part 12 along the inner peripheral surface of the cylindrical container 1. For example, the swirl generation part 4 is a fluid that is linearly fed from the fluid object introduction part 3. It has a flow path changing unit that changes the flow path of the object so as to be along the inner peripheral surface of the cylindrical container 1. In addition, you may comprise the fluid-like material introduction part 3 and the rotation generation | occurrence | production part 4 from the injection part 4A which injects a fluid-like substance into the inside of a cylindrical container from the tangential direction of the inner periphery of the cylindrical container 1. FIG. The injection unit 4A employs a so-called cyclone mechanism, and is melted in a cylindrical part (not shown in FIG. 1) in which the shaft core is disposed so as to face the tangent to the inner peripheral surface of the container body 11. A structure provided with an object supply source can be adopted.
There may be one injection unit 4A or a plurality of injection units 4A. When arranging a plurality, it is desirable to arrange them at equal intervals.
 被溶解物供給制御部5は、筒状容器1へ導入する被溶解物の供給量を制御するものであり、例えば、被溶解物供給バルブを備えている。
 被溶解物供給制御部5は、天板110に近接して配置されており、連通管22の被溶解物供給制御部5より下流側に溜まった被溶解物が流体状物あるいは半溶解物に接触可能とされている。
 容器本体11の内部では、流体状物及び被溶解物が旋回しながら排出部13に向かう方向、つまり、下流へ流動する。即ち、容器本体11の内部であって、流体状物導入部3及び旋回発生部4と排出部13との間は、旋回流動部を構成する。
 筒状容器1の内部の旋回軸P1は、筒状容器1の軸心P2と、被溶解物供給部2の連通管22を通じて供給される被溶解物の供給軸P3とにそれぞれ一致する。
The to-be-dissolved substance supply control part 5 controls the supply amount of the to-be-dissolved substance introduce | transduced into the cylindrical container 1, for example, is provided with the to-be-dissolved substance supply valve.
The to-be-dissolved substance supply control part 5 is arrange | positioned in proximity to the top plate 110, and the to-be-dissolved substance collected downstream from the to-be-dissolved substance supply control part 5 of the communicating pipe 22 turns into a fluid state substance or a semi-dissolved substance. It is possible to contact.
Inside the container body 11, the fluid and the material to be dissolved flow in a direction toward the discharge unit 13 while turning, that is, downstream. That is, inside the container main body 11, the fluid-like material introducing unit 3, the swirl generation unit 4, and the discharge unit 13 constitute a swirl flow unit.
The swivel axis P1 inside the cylindrical container 1 coincides with the axis P2 of the cylindrical container 1 and the supply axis P3 of the material to be dissolved supplied through the communication pipe 22 of the material supply part 2 to be dissolved.
 密閉容器6は、排出部13から排出された半溶解物を収納し撹拌部7で完全に溶解するための容器であり、その下部に排出機構61が連結され、その上部に前述の減圧ポンプ23が連結されている。
 排出機構61は、完全に溶解された溶解物を次の工程に送るパイプ62と、パイプ62に設けられた溶解物供給ポンプ63とを有する。
 排出部13の排出口13Aは、密閉容器6の内部において半溶解物の液面Lの下に位置する。
 減圧ポンプ23は、密閉容器6の内部と外部との差圧によって被溶解物を筒状容器1の内部へ吸引導入するものである。
 撹拌部7は、密閉容器6の内部に収納された半溶解物を撹拌して完全に溶解する撹拌翼71と、撹拌翼71を回転駆動する駆動部72とを有する。
The sealed container 6 is a container for storing the semi-dissolved material discharged from the discharge unit 13 and completely dissolving it by the stirring unit 7, a discharge mechanism 61 is connected to the lower part thereof, and the above-described decompression pump 23 is connected to the upper part. Are connected.
The discharge mechanism 61 includes a pipe 62 that sends a completely dissolved solution to the next step, and a solution supply pump 63 provided in the pipe 62.
The discharge port 13 </ b> A of the discharge unit 13 is positioned below the liquid level L of the semi-dissolved material inside the sealed container 6.
The decompression pump 23 sucks and introduces the material to be dissolved into the cylindrical container 1 by the differential pressure between the inside and the outside of the sealed container 6.
The stirring unit 7 includes a stirring blade 71 that stirs and completely dissolves the semi-dissolved material stored in the sealed container 6, and a drive unit 72 that rotationally drives the stirring blade 71.
  (旋回型溶解方法)
 次に、第1実施形態の旋回型溶解方法を説明する。
 流体状物導入部3により、流体状物導入工程を実施して、筒状容器1の内部に導入部12を通じて流体状物を導入し、さらに、旋回発生部4により、旋回流動工程を実施して、流体状物を筒状容器1の内部で旋回する。すると、流体状物は、筒状容器1の内周面に沿って旋回するとともに、流体状物の自重や旋回発生部4で送られる流体状物の向きによって、排出部13がある下流側に向かって旋回する。
(Swivel melting method)
Next, the swirl type melting method of the first embodiment will be described.
The fluid-like material introducing unit 3 performs a fluid-like material introducing step to introduce the fluid-like material into the cylindrical container 1 through the introducing unit 12, and the swirl generating unit 4 performs the swirling flow step. Then, the fluid is swirled inside the cylindrical container 1. Then, the fluid-like substance swirls along the inner peripheral surface of the cylindrical container 1 and, depending on the weight of the fluid-like substance and the direction of the fluid-like substance sent by the swirl generator 4, the discharge part 13 is located downstream. Turn towards.
 その後、被溶解物供給制御部5を制御し、筒状容器1への被溶解物の供給を許容して被溶解物供給工程を実施する。
 すると、筒状容器1の内部で旋回流動工程が実施され、流体状物及び被溶解物が筒状容器1の内部で旋回しながら下流へ流動する。ここで、被溶解物が流体状物より比重が小さい場合では、比重の大きい流体状物には大きな遠心力が働き、流体状物より比重が小さい被溶解物は、筒状容器1の軸芯に沿って排出部13側に流動しやすくなる。被溶解物は、導入部から筒状容器の内部に導入された直後では、流体状物の大きな遠心力により、筒状容器1の軸芯に閉じ込められるので、流体状物と溶解しにくいが、排出部13側に近づくにつれて、流体状物が乱流し、被溶解物が溶解されやすくなる。
 被溶解物が流体状物に徐々に溶解される。第1実施形態では、容器本体11の内部では、被溶解物が完全に流体状物に溶解されることがなく、被溶解物の一部が流体状部に溶解された半溶解物として排出部13から密閉容器6へ搬出される旋回排出工程が実施される。なお、容器本体11の軸方向長さを長くしたり、粘度の低い被溶解物を用いたりする場合では、密閉容器6で被溶解物が流体状物に完全に溶解されるので、排出部13から密閉容器6へは完全な溶解物が搬出される。
Then, the to-be-dissolved substance supply control part 5 is controlled, supply of the to-be-dissolved substance to the cylindrical container 1 is permitted, and a to-be-dissolved substance supply process is implemented.
Then, the swirl flow process is performed inside the cylindrical container 1, and the fluid and the substance to be dissolved flow downstream while swirling inside the cylindrical container 1. Here, when the material to be dissolved has a specific gravity smaller than that of the fluid material, a large centrifugal force acts on the fluid material having a large specific gravity, and the material to be dissolved having a specific gravity smaller than that of the fluid material is the axis of the cylindrical container 1. It becomes easy to flow to the discharge part 13 side along. Immediately after being introduced into the cylindrical container from the introduction part, the substance to be dissolved is confined in the axial core of the cylindrical container 1 by the large centrifugal force of the fluid, so it is difficult to dissolve with the fluid, As it approaches the discharge unit 13 side, the fluid-like material turbulently flows and the material to be dissolved is easily dissolved.
The material to be dissolved is gradually dissolved in the fluid. In the first embodiment, inside the container main body 11, the object to be dissolved is not completely dissolved in the fluid-like material, and the discharge part is a semi-dissolved material in which a part of the object to be dissolved is dissolved in the fluid-like part. The swivel discharge process carried out from 13 to the sealed container 6 is performed. When the axial length of the container body 11 is increased or a material to be dissolved having a low viscosity is used, the material to be dissolved is completely dissolved in the fluid-like material in the sealed container 6. To the sealed container 6 is completely dissolved.
 半溶解物が排出部13を通じて密閉容器6に送られ続け、半溶解物や完全な溶解物の液面が排出部13の排出口13Aより上方に位置することになる。
 そして、減圧ポンプ23を作動して、被溶解物供給工程を実施する。つまり、減圧ポンプ23により、密閉容器6の内部と外部との差圧を生じさせると、被溶解物が筒状容器1の内部へ吸引導入される。
 そして、撹拌部7を作動して撹拌工程を実施する。撹拌工程では、密閉容器6の内部に収納された半溶解物が撹拌されて完全な溶解物となる。完全な溶解物は、排出機構61によって、次の工程に送られる。
 予め定められた量の被溶解物が筒状容器1の内部に送られたなら、被溶解物供給制御部5により、被溶解物の筒状容器の内部への供給を阻止する。
 被溶解物の筒状容器1の内部への供給が阻止されても、流体状物が筒状容器の内部で旋回しながら下流側にある排出部に向かって流動する。ここで、筒状容器1の内部で流体状物が旋回しているので、流体状物の旋回流が被溶解物供給制御部5の下流側に接触し、付着した被溶解物を除去する。
The semi-dissolved material continues to be sent to the sealed container 6 through the discharge portion 13, and the liquid level of the semi-dissolved material and the complete dissolved material is positioned above the discharge port 13 </ b> A of the discharge portion 13.
Then, the decompression pump 23 is operated to carry out the melt supply process. That is, when the pressure difference between the inside and the outside of the sealed container 6 is generated by the decompression pump 23, the material to be dissolved is sucked into the inside of the cylindrical container 1.
And the stirring part 7 is operated and a stirring process is implemented. In the stirring step, the semi-dissolved material stored in the sealed container 6 is stirred to become a complete dissolved material. The complete lysate is sent to the next step by the discharge mechanism 61.
When a predetermined amount of the material to be dissolved is sent into the cylindrical container 1, the material supply control unit 5 prevents the material to be dissolved from being supplied into the cylindrical container.
Even if the supply of the material to be melted to the inside of the cylindrical container 1 is prevented, the fluid-like substance flows toward the discharge portion on the downstream side while turning inside the cylindrical container. Here, since the fluid-like substance is swirling inside the cylindrical container 1, the swirling flow of the fluid-like substance contacts the downstream side of the substance-to-be-dissolved supply control unit 5, and the adhered substance to be dissolved is removed.
 (第1実施形態の効果)
(1)流体状物導入部3により流体状物導入工程を実施し、旋回発生部4により旋回発生工程を実施し、被溶解物供給制御部5により、被溶解物供給制御工程を実施して被溶解物の筒状容器1の内部への供給を許容すると、流体状物及び被溶解物が筒状容器1の内部で旋回しながら下流側にある排出部13に向かって流動する旋回流動工程が実施されることになり、流体状物に被溶解物の少なくとも一部が溶解した半溶解物が排出部13から密閉容器6の外部に排出する旋回排出工程が実施される。本実施形態では、筒状容器1の内部の旋回軸P1は、筒状容器1の軸心P2と、被溶解物供給部2で供給される被溶解物の供給軸P3とにそれぞれ一致するから、流体状物の旋回流によって発生した遠心力により、筒状容器1の内壁に流体状物からなるコーティング層が形成されることになり、筒状容器1の内面に被溶解物が直接接触するのを防ぐことができる。そのため、粘性の高い被溶解物であっても、被溶解物の詰まりがなく、精度の高い溶解を行うことができる。
(Effect of 1st Embodiment)
(1) A fluid-like material introduction unit 3 performs a fluid-like material introduction step, a swirl generation unit 4 performs a swirl generation step, and a to-be-dissolved material supply control unit 5 performs a to-be-dissolved material supply control step. When supply of the material to be dissolved into the cylindrical container 1 is allowed, a swirl flow process in which the fluid and the material to be dissolved flow toward the discharge unit 13 on the downstream side while swirling inside the cylindrical container 1. As a result, a swivel discharge process is performed in which a semi-dissolved material in which at least a part of the material to be dissolved is dissolved in the fluid is discharged from the discharge unit 13 to the outside of the sealed container 6. In the present embodiment, the swivel axis P1 inside the cylindrical container 1 coincides with the axis P2 of the cylindrical container 1 and the supply axis P3 of the material to be dissolved supplied by the material supply unit 2. A coating layer made of a fluid-like material is formed on the inner wall of the cylindrical container 1 by the centrifugal force generated by the swirling flow of the fluid-like material, and the material to be dissolved comes into direct contact with the inner surface of the cylindrical container 1. Can be prevented. Therefore, even a highly viscous material to be dissolved can be dissolved with high accuracy without clogging the material to be dissolved.
(2)被溶解物供給制御工程は、被溶解物供給制御部5を構成する被溶解物供給バルブによって、筒状容器1へ供給する被溶解物の供給量を制御するので、筒状容器1の内部への被溶解物の供給量を精度よく制御することができ、被溶解物の溶解を精度よく行うことができる。
 しかも、被溶解物供給バルブが筒状容器1の天板110の内面の近傍に設置されているため、被溶解物供給バルブが閉の時に、流体状物の旋回流が当該バルブ内の下流側に接触し、付着した被溶解物を除去して被溶解物の付着が防止される。
(2) In the melt supply control step, the supply amount of the melt to be supplied to the cylindrical container 1 is controlled by the melt supply valve constituting the melt supply control unit 5. It is possible to accurately control the supply amount of the substance to be dissolved into the interior of the container, and to dissolve the substance to be dissolved with high precision.
In addition, since the melted material supply valve is installed in the vicinity of the inner surface of the top plate 110 of the cylindrical container 1, when the melted material supply valve is closed, the swirling flow of the fluid is downstream in the valve. And the adhered material to be dissolved is removed to prevent the material to be dissolved from adhering.
(3)流体状物導入部3と旋回発生部4とを、筒状容器1の内周の接線方向から流体状物を筒状容器1の内部に噴射する噴射部4Aから構成すれば、流体状物を確実に旋回させて精度よく被溶解物を溶解できる他、噴射部4Aが流体状物導入部3と旋回発生部4とを兼ねるので、部品点数の減少が図れて製造コストを低下させることができる。 (3) If the fluid-like material introducing portion 3 and the swirl generating portion 4 are constituted by the injection portion 4A that injects the fluid-like material into the inside of the cylindrical container 1 from the tangential direction of the inner periphery of the cylindrical container 1, the fluid In addition to being able to accurately dissolve the object to be melted by swirling the solid object, the injection unit 4A serves as both the fluid material introducing unit 3 and the swirl generating unit 4, thereby reducing the number of parts and reducing the manufacturing cost. be able to.
(4)旋回排出工程により、少なくとも一部が溶解された溶解物を排出部13から密閉容器6に排出し、撹拌工程により、密閉容器6の内部で撹拌部7により撹拌して完全に溶解したから、排出部13から排出される溶解物が半溶解物であっても、撹拌部7により撹拌されて完全な溶解物を得ることができる。 (4) Dissolved material in which at least a part is dissolved by the swirling discharge process is discharged from the discharge unit 13 to the sealed container 6 and is stirred and completely dissolved by the stirring unit 7 inside the sealed container 6 by the stirring process. Therefore, even if the melt discharged from the discharge unit 13 is a semi-dissolved product, the melt can be stirred by the stirring unit 7 to obtain a complete melt.
(5)排出部13の排出口13Aは、密閉容器6の内部において半溶解物の液面下に位置し、被溶解物供給工程は、減圧ポンプ23によって、密閉容器6の内部と外部との差圧によって被溶解物を筒状容器1の内部へ吸引導入するから、筒状容器1の内部を減圧するための減圧装置を筒状容器1に設けることを要しないので、筒状容器1の構造を簡易なものにできる。 (5) The discharge port 13A of the discharge unit 13 is located below the level of the semi-dissolved material inside the sealed container 6, and the dissolved material supply step is performed between the inside and the outside of the sealed container 6 by the decompression pump 23. Since the object to be dissolved is sucked and introduced into the cylindrical container 1 by the differential pressure, it is not necessary to provide the cylindrical container 1 with a decompression device for decompressing the inside of the cylindrical container 1. The structure can be simplified.
[第2実施形態]
 本発明の第2実施形態を図2及び図3A~図3Cに基づいて説明する。
 第2実施形態は、密閉容器6及び撹拌部7を省略した点が第1実施形態と異なるもので、他の構成は第1実施形態と同じである。ここで、第2実施形態において、第1実施形態と同様の構成は同一符号を付して説明を省略する。
  (旋回型溶解装置)
 図2において、旋回型溶解装置20は、筒状容器1と、筒状容器1の内部に導入された流体状物を筒状容器1の軸芯に沿って流動させながら軸芯を中心に旋回させる噴射部4Aと、筒状容器1にそれぞれ設けられた被溶解物供給部2及び被溶解物供給制御部5とを備えている。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. 2 and FIGS. 3A to 3C.
The second embodiment is different from the first embodiment in that the hermetic container 6 and the stirring unit 7 are omitted, and the other configurations are the same as those of the first embodiment. Here, in 2nd Embodiment, the structure similar to 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.
(Swivel melting device)
In FIG. 2, the swivel dissolving device 20 swivels around the axial core while flowing the cylindrical container 1 and the fluid substance introduced into the cylindrical container 1 along the axial core of the cylindrical container 1. 4A to be performed, and the to-be-dissolved substance supply part 2 and the to-be-dissolved substance supply control part 5 which were each provided in the cylindrical container 1 are provided.
 筒状容器1の容器本体11は、ステンレス、その他の金属材料やプラスチック材料から形成されており、一端が天板110に接合された円筒状部14と、円筒状部14の他端に設けられた先窄み状のテーパ部15とを有する。テーパ部15の先細り先端の開口は排出部13とされる。
 第2実施形態では、筒状容器1は、その軸芯が上下に沿うように配置されている。天板110の中心には連通管22の下端が開口する導入口101が形成されている。導入口101の軸芯は筒状容器1の軸芯と排出部13の軸芯とにそれぞれ一致する。
The container body 11 of the cylindrical container 1 is made of stainless steel, other metal materials, or plastic materials, and is provided at the cylindrical part 14 with one end joined to the top plate 110 and the other end of the cylindrical part 14. And a tapered portion 15 having a tapered shape. An opening at the tapered tip of the taper portion 15 is a discharge portion 13.
In 2nd Embodiment, the cylindrical container 1 is arrange | positioned so that the axial center may follow along an up-down direction. In the center of the top plate 110, an introduction port 101 in which the lower end of the communication pipe 22 is opened is formed. The axis of the introduction port 101 coincides with the axis of the cylindrical container 1 and the axis of the discharge part 13.
 噴射部4Aは、いわゆる、サイクロン方式の機構を採用するものであり、流体状物導入部3と旋回発生部4とを兼ねる。
 噴射部4Aは、円筒状部14の上端部に設けられ、一端が筒状容器1の内部に開口した連通部41と、連通部41の他端に接続された図示しない流体状物供給源と、を備えている。
 図2では、噴射部4Aは、2個設けられている。図3Aに示される通り、2個の噴射部4Aは、円筒状部14の軸芯を挟んで対称配置されている。連通部41は、その軸芯が円筒状部14の内周面の接線方向に向けて配置されている。
 なお、第2実施形態では、噴射部4Aが流体状物を噴射する向きは、円筒状部14の内周面の接線方向に限定されるものではなく、導入口101の軸芯と直交する平面内であって径方向に直交する方向であれば、円筒状部14の内周面から軸芯方向に向かって離れた位置であってもよい。さらに、噴射部4Aの筒状容器1の軸芯に沿って流動させるために、斜め下方に向けて流体状物を噴射させる構成としてもよい。
 また、噴射部4Aの個数は2個に限定されるものではなく、例えば、図3Bに示される通り、1個であってもよく、図3Cに示される通り、3個であってもよい。噴射部4Aを複数設ける場合には、これらは、円筒状部14の周に沿って等間隔に配置されることが好ましい。
The injection unit 4 </ b> A employs a so-called cyclonic mechanism, and serves as both the fluid-like material introduction unit 3 and the swirl generation unit 4.
4 A of injection parts are provided in the upper end part of the cylindrical part 14, and the fluid part supply source (not shown) connected to the communication part 41 which the one end opened inside the cylindrical container 1, and the other end of the communication part 41 It is equipped with.
In FIG. 2, two injection parts 4A are provided. As shown in FIG. 3A, the two injection parts 4 </ b> A are arranged symmetrically with the axis of the cylindrical part 14 in between. The communicating portion 41 is arranged such that its axis is directed in the tangential direction of the inner peripheral surface of the cylindrical portion 14.
In the second embodiment, the direction in which the ejection unit 4A ejects the fluid-like material is not limited to the tangential direction of the inner peripheral surface of the cylindrical portion 14, but is a plane orthogonal to the axis of the introduction port 101. As long as it is inside and orthogonal to the radial direction, it may be located away from the inner peripheral surface of the cylindrical portion 14 in the axial direction. Furthermore, in order to make it flow along the axial center of the cylindrical container 1 of the injection part 4A, it is good also as a structure which injects a fluid state toward diagonally downward.
Further, the number of the injection units 4A is not limited to two, and may be one as shown in FIG. 3B or three as shown in FIG. 3C, for example. In the case where a plurality of injection parts 4A are provided, these are preferably arranged at equal intervals along the circumference of the cylindrical part 14.
 被溶解物供給部2は、図2では図示しない被溶解物貯蔵部と、被溶解物貯蔵部と天板110との間に設けられた連通管22と、テーパ部15以降に設けられた減圧部24と、連通管22であって被溶解物供給制御部5より上流側に設けられた圧入部25とを備えている。
 減圧部24は、筒状容器1の内部を減圧するものであり、例えば、筒状容器1と連通する減圧ポンプや排出部13に連通する定量ポンプ等から構成される。
 圧入部25は、連通管22の内部を加圧して被溶解物を筒状容器1へ圧入するものであり、図示しない加圧ポンプから構成される。
The melt supply unit 2 includes a melt storage unit (not shown in FIG. 2), a communication pipe 22 provided between the melt storage unit and the top plate 110, and a vacuum provided after the taper unit 15. And a press-fitting portion 25 provided on the upstream side of the melted material supply control unit 5.
The decompression unit 24 decompresses the inside of the cylindrical container 1, and includes, for example, a decompression pump that communicates with the cylindrical container 1, a metering pump that communicates with the discharge unit 13, and the like.
The press-fitting part 25 pressurizes the inside of the communication pipe 22 to press-fit a material to be dissolved into the cylindrical container 1 and is composed of a pressurization pump (not shown).
 被溶解物供給制御部5は、連通管22の途中に設けられ、筒状容器1の内部に被溶解物の供給を制御する被溶解物供給バルブであり、そのバルブ本体51の開度を微調整することで、筒状容器1へ供給する被溶解物の量を精度よく制御できる。
 バルブ本体51は天板110に近接配置されており、その構成は、例えば、バタフライバルブやボールバルブ等を例示できる。
 圧入部25は、図示しない気体圧縮装置、歯車ポンプ、その他の機構により、図2では図示しない被溶解物貯蔵部から送られる被溶解物を、空気、窒素、その他の気体とともに連通管22の内部で加圧する。
The melt supply control unit 5 is a melt supply valve that is provided in the middle of the communication pipe 22 and controls the supply of the melt into the cylindrical container 1. By adjusting, the quantity of the to-be-dissolved material supplied to the cylindrical container 1 can be controlled accurately.
The valve main body 51 is disposed close to the top plate 110, and the configuration can be exemplified by a butterfly valve, a ball valve, and the like.
The press-fitting part 25 is configured so that the melted substance sent from the melted substance storage part (not shown in FIG. 2) together with air, nitrogen, and other gases is transferred to the inside of the communication pipe 22 by a gas compression device, a gear pump, and other mechanisms (not shown). Pressurize with.
  (旋回型溶解方法)
 第2実施形態の旋回型溶解方法を説明する。
 まず、流体状物導入工程と旋回工程とを同時に実施する。つまり、噴射部4Aを作動して導入口101の軸芯と直交する平面内であって径方向に直交する方向に向けて流体状物を噴射する。すると、流体状物が、導入口101の軸芯を中心として筒状容器1の内面に沿って旋回するとともに、流体状物の自重等によって、排出部13に向けて流動する。流体状物は、筒状容器1の内部を排出部13に向けて螺旋状(渦状)に流動する(矢印Q1参照)。この際、流体状物には大きな遠心力が働いているので、流体状物は天板110の内面のうち外周部には接する。
(Swivel melting method)
The swirl type melting method of the second embodiment will be described.
First, the fluid-like material introducing step and the turning step are performed simultaneously. That is, the fluidized material is ejected in the direction orthogonal to the radial direction within the plane orthogonal to the axial center of the introduction port 101 by operating the injection unit 4A. Then, the fluid is swung along the inner surface of the cylindrical container 1 around the axis of the inlet 101 and flows toward the discharge unit 13 due to the weight of the fluid and the like. The fluid-like material flows in a spiral shape (vortex) toward the discharge portion 13 inside the cylindrical container 1 (see arrow Q1). At this time, since a large centrifugal force acts on the fluid-like material, the fluid-like material contacts the outer peripheral portion of the inner surface of the top plate 110.
 その後、被溶解物供給制御部5のバルブ本体51を開操作して被溶解物を筒状容器1の内部に供給する。この際、筒状容器1の内部を減圧部24で減圧し、さらに、加圧部54で連通管22の内部を加圧する。すると、筒状容器1の導入口101から、その軸芯に沿って被溶解物が筒状容器1の内部に強制的に導入される。
 筒状容器1の内部では、旋回流動工程が実施される。つまり、被溶解物が流体状物に溶解されるが、前述の通り、流体状物には遠心力が働くので、被溶解物は、導入口101の軸芯に維持されながら排出部13に向けて流動する。この際、被溶解物が筒状容器1の内部に供給された直後では、流体状物の遠心力が大きく、流体状物は被溶解物と混合することなく排出部13に向けて流動するが、被溶解物が排出部13に近づくに従って乱流し、流体状物に被溶解物が界面から溶解する。
Thereafter, the valve main body 51 of the dissolved material supply control unit 5 is opened to supply the dissolved material into the cylindrical container 1. At this time, the inside of the cylindrical container 1 is decompressed by the decompression unit 24, and further, the interior of the communication tube 22 is pressurized by the pressurization unit 54. Then, the material to be dissolved is forcibly introduced into the inside of the cylindrical container 1 from the introduction port 101 of the cylindrical container 1 along the axis.
Inside the cylindrical container 1, a swirl flow process is performed. In other words, the substance to be dissolved is dissolved in the fluid, but as described above, centrifugal force acts on the fluid, so that the substance to be dissolved is directed to the discharge unit 13 while being maintained at the axial center of the inlet 101. To flow. At this time, immediately after the material to be dissolved is supplied to the inside of the cylindrical container 1, the centrifugal force of the fluid material is large, and the fluid material flows toward the discharge unit 13 without being mixed with the material to be dissolved. Then, the substance to be dissolved is turbulent as it approaches the discharge unit 13, and the substance to be dissolved dissolves in the fluid from the interface.
 第2実施形態では、容器本体11の軸方向の長さを長くすることにより、旋回流動工程が十分に実施されることになり、容器本体11の内部で被溶解物が流体状物に完全に溶解される。
 そして、排出部13からは、流動体物に完全に被溶解物が溶解された溶解物が外部に排出される。
 以上の工程が終了したら、被溶解物供給制御部5のバルブ本体51を閉操作して、被溶解物が導入口101を通じて筒状容器1の内部へ供給されないようにする。この状態では、筒状容器1の内部で流体状物が旋回しているので、流体状物の旋回流は、バルブ本体512の下流側であって連通管22の開口付近に接触し、付着した被溶解物を除去する。
In the second embodiment, the length of the container body 11 in the axial direction is increased, so that the swirl flow process is sufficiently performed, and the substance to be dissolved is completely converted into a fluid-like material inside the container body 11. Dissolved.
And from the discharge part 13, the melt | dissolution thing by which the to-be-dissolved substance was completely melt | dissolved in the fluid body is discharged | emitted outside.
When the above steps are completed, the valve main body 51 of the melt supply control unit 5 is closed so that the melt is not supplied into the cylindrical container 1 through the inlet 101. In this state, since the fluid matter swirls inside the cylindrical container 1, the swirl flow of the fluid matter contacts and adheres to the vicinity of the opening of the communication pipe 22 on the downstream side of the valve body 512. Remove dissolved material.
 (第2実施形態の効果)
 第2実施形態では第1実施形態の(1)~(3)の効果を奏することができる他、次の効果を奏することができる。
(6)筒状容器1の内部を減圧する減圧部24を備えたので、被溶解物の筒状容器1の内部への導入が円滑に実施される。そのため、被溶解物と流体状物との混合が確実に行われ、溶解精度が向上する。
(7)圧入部25により加圧した被溶解物を、連通管22を通じて筒状容器1へ圧入する構成としたので、被溶解物の筒状容器1の内部への導入が円滑に実施され、被溶解物と流体状物との混合が確実に行われて溶解精度が向上する。
(Effect of 2nd Embodiment)
In the second embodiment, the following effects can be obtained in addition to the effects (1) to (3) of the first embodiment.
(6) Since the decompression unit 24 for decompressing the inside of the cylindrical container 1 is provided, the introduction of the substance to be dissolved into the inside of the cylindrical container 1 is smoothly performed. As a result, the material to be dissolved and the fluid-like material are reliably mixed, and the dissolution accuracy is improved.
(7) Since the object to be melted pressurized by the press-fitting part 25 is configured to be press-fitted into the cylindrical container 1 through the communication pipe 22, the material to be melted is smoothly introduced into the cylindrical container 1, Mixing of the material to be dissolved and the fluid-like material is ensured, and the dissolution accuracy is improved.
[第3実施形態]
 本発明の第3実施形態を図4に基づいて説明する。第3実施形態は、筒状容器1の内部を減圧する構成と密閉容器6及び撹拌部7を設けた点とが第2実施形態と異なるもので、他の構成は第2実施形態と同じである。第3実施形態において、第2実施形態と同一の構成は同一符号を付して説明を省略する。
  (旋回型溶解装置)
 図4において、旋回型溶解装置30は、渦溶解ユニット8と、渦溶解ユニット8に接続される密閉容器6と、密閉容器6の内部に流体状物を供給する流体状物供給機構91と、密閉容器6の内部に収納された半溶解物を渦溶解ユニット8に送る混合物移送機構92と、密閉容器6の内部に収納された混合物の液面Lより上にある気相部Pを減圧する減圧ポンプ23と、密閉容器6の内部に収納された混合物を撹拌する撹拌部7と、を備えている。
[Third Embodiment]
A third embodiment of the present invention will be described with reference to FIG. The third embodiment is different from the second embodiment in the configuration in which the inside of the cylindrical container 1 is decompressed and the point in which the sealed container 6 and the stirring unit 7 are provided, and other configurations are the same as those in the second embodiment. is there. In 3rd Embodiment, the structure same as 2nd Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.
(Swivel melting device)
In FIG. 4, the swirl type melting device 30 includes a vortex melting unit 8, a sealed container 6 connected to the vortex melting unit 8, a fluid material supply mechanism 91 that supplies a fluid material to the inside of the sealed container 6, The mixture transfer mechanism 92 for sending the semi-dissolved material stored in the sealed container 6 to the vortex dissolution unit 8 and the gas phase part P above the liquid level L of the mixture stored in the sealed container 6 are decompressed. A decompression pump 23 and an agitation unit 7 for agitating the mixture stored in the sealed container 6 are provided.
 渦溶解ユニット8は、第2実施形態の旋回型溶解装置20と同一構造であるが、渦溶解ユニット8から密閉容器6に搬送される溶解物は、完全な溶解物でもよいが、半溶解物でもよい。第3実施形態では、密閉容器6及び撹拌部7が備えられているので、渦溶解ユニット8から搬送される溶解物は半溶解物が好適である。
 噴射部4Aは、一端が筒状容器1の内部に開口し、他端が混合物移送機構92と接続されている。
 被溶解物供給制御部5は、連通管22に設けられたバルブ本体51を備えており、流筒状容器1の内部への被熔解物の供給が精度よく行われるように制御される。
The vortex dissolution unit 8 has the same structure as that of the swirl type dissolution apparatus 20 of the second embodiment, but the lysate conveyed from the vortex lysis unit 8 to the sealed container 6 may be a complete lysate, but a semi-dissolve. But you can. In 3rd Embodiment, since the airtight container 6 and the stirring part 7 are provided, the melt | dissolution conveyed from the vortex dissolution unit 8 is a semi-dissolution thing.
One end of the injection unit 4 </ b> A opens into the cylindrical container 1, and the other end is connected to the mixture transfer mechanism 92.
The melt supply control unit 5 includes a valve main body 51 provided in the communication pipe 22 and is controlled so that the melt is supplied to the inside of the flow tube container 1 with high accuracy.
 流体状物供給機構91は、一端が密閉容器6の内部に開口されたパイプ911と、パイプ911の他端に接続され密閉容器6に流体状物を供給する図示しない流体状物供給タンクと、パイプ911にそれぞれ設けられた流量計912及びバルブ913とを有する。
 パイプ911の先端はノズルとなっており、このノズルから流体状物が密閉容器6の内部で噴霧される。
 流量計912は密閉容器6の内部に一定流量の流体状物を送るように制御する。
The fluid-like substance supply mechanism 91 includes a pipe 911 having one end opened inside the sealed container 6, a fluid-like substance supply tank (not shown) that is connected to the other end of the pipe 911 and supplies the fluid-like substance to the sealed container 6, The pipe 911 includes a flow meter 912 and a valve 913 provided respectively.
The tip of the pipe 911 serves as a nozzle, and fluid is sprayed from the nozzle inside the sealed container 6.
The flow meter 912 is controlled to send a fluid at a constant flow rate into the sealed container 6.
 混合物移送機構92は、密閉容器6の底部に一端が開口され他端が噴射部4Aに連通された流路部921と、流路部921にそれぞれ設けられた圧力計922、排液ポンプ923、流量計924及び循環バルブ925と、循環バルブ925に接続された分岐管926とを有する。
 圧力計922は、流路部921を移送する混合物の圧力を検出・表示する。
 排液ポンプ923は、密閉容器6の内部の流体状物や混合物を噴射部4Aに送るものであり、その構成として、例えば、遠心ポンプやロータリーポンプを例示できる。
 循環バルブ925は、流体状物や溶解物の移送先を噴射部4Aと、分岐管926とに切り換えるものである。
 分岐管926には図示しない溶解物収納タンクが接続されている。
The mixture transfer mechanism 92 includes a channel portion 921 having one end opened at the bottom of the hermetic container 6 and the other end communicating with the injection unit 4A, a pressure gauge 922, a drainage pump 923, and a drainage pump 923, respectively. It has a flow meter 924, a circulation valve 925, and a branch pipe 926 connected to the circulation valve 925.
The pressure gauge 922 detects and displays the pressure of the mixture transported through the flow path portion 921.
The drainage pump 923 sends a fluid or mixture inside the sealed container 6 to the injection unit 4A, and examples of the configuration include a centrifugal pump and a rotary pump.
The circulation valve 925 switches the transfer destination of the fluid or melted substance between the injection unit 4A and the branch pipe 926.
The branch pipe 926 is connected to a melt storage tank (not shown).
 撹拌部7は、密閉容器6の内部に収納された混合物を撹拌するものであり、シャーミキサー73と、可動翼部74とを有する。
 シャーミキサー73は、インペラ75、ステータ76、及びモータ77を有するものであり、撹拌した半溶解物を、混合物移送機構92を介して噴射部4Aに送るものである。ステータ76は、密閉容器6の内部に配置された環状の部材であり、インペラ75を内側に収容する。ステータ76には、混合物が流通可能な複数の孔が設けられている。
 インペラ75は、モータ77に接続された軸75Aと、軸75Aに設けられた複数の羽根75Bとを有する。インペラ75の羽根75Bとステータ76との間には隙間が存在する。
 可動翼部74は、軸芯が上下に伸びて配置された主軸部74Aと、主軸部74Aに取付ステー75Cを介して設けられた複数の翼本体部74Cと、主軸部74Aを回動するモータ74Dとを有する。
 減圧ポンプ23は、連通パイプ23Aに設けられ、連通パイプ23Aの端部は密閉容器6の天板6Aに接続されている。
The agitation unit 7 agitates the mixture stored in the sealed container 6, and includes a shear mixer 73 and a movable blade part 74.
The shear mixer 73 includes an impeller 75, a stator 76, and a motor 77, and sends the stirred semi-dissolved material to the injection unit 4 </ b> A via the mixture transfer mechanism 92. The stator 76 is an annular member disposed inside the sealed container 6 and accommodates the impeller 75 inside. The stator 76 is provided with a plurality of holes through which the mixture can flow.
The impeller 75 has a shaft 75A connected to the motor 77 and a plurality of blades 75B provided on the shaft 75A. There is a gap between the blades 75 </ b> B of the impeller 75 and the stator 76.
The movable blade portion 74 includes a main shaft portion 74A in which the shaft core extends vertically, a plurality of blade main body portions 74C provided on the main shaft portion 74A via attachment stays 75C, and a motor that rotates the main shaft portion 74A. 74D.
The decompression pump 23 is provided in the communication pipe 23 </ b> A, and the end of the communication pipe 23 </ b> A is connected to the top plate 6 </ b> A of the sealed container 6.
  (旋回型溶解方法)
 次に、第3実施形態の旋回型溶解方法を説明する。
 まず、流体状物供給機構91を作動して密閉容器6の内部に流体状物を供給する。流体状物は、混合物移送機構92を通じて渦溶解ユニット8に送られ、この渦溶解ユニット8から密閉容器6に戻される。
 ここで、渦溶解ユニット8では、第2実施形態と同様に、噴射部4Aから流体状物を筒状容器1の内部に向けて噴射し、流体状物導入工程と旋回発生工程とを同時に実施する。すると、流体状物は、筒状容器1の内周面に沿って旋回するとともに、排出部13に向けて流動する(図2参照)。
 流体状物が密閉容器6の所定高さ位置に達したなら、減圧ポンプ23を作動し密閉容器6の気相部Pを減圧する。密閉容器6の内部と筒状容器1の内部とが連通されているので、気相部Pの減圧に伴って、筒状容器1の内部が減圧されることになる。
 さらに、被溶解物供給工程を実施するために、被溶解物供給制御部5のバルブ本体51を開操作して筒状容器1の導入口101(図2参照)から被溶解物を筒状容器1の内部に導入する。
(Swivel melting method)
Next, the swirl type melting method of the third embodiment will be described.
First, the fluid-like material supply mechanism 91 is operated to supply the fluid-like material into the sealed container 6. The fluid is sent to the vortex dissolution unit 8 through the mixture transfer mechanism 92, and returned from the vortex dissolution unit 8 to the sealed container 6.
Here, in the vortex melting unit 8, as in the second embodiment, the fluid-like material is ejected from the ejection unit 4 </ b> A toward the inside of the cylindrical container 1, and the fluid-like material introduction step and the swirl generation step are performed simultaneously. To do. Then, the fluid-like material turns along the inner peripheral surface of the cylindrical container 1 and flows toward the discharge unit 13 (see FIG. 2).
When the fluid-like material reaches a predetermined height position of the sealed container 6, the decompression pump 23 is operated to decompress the gas phase portion P of the sealed container 6. Since the inside of the sealed container 6 and the inside of the cylindrical container 1 are in communication, the inside of the cylindrical container 1 is depressurized as the gas phase portion P is depressurized.
Further, in order to perform the melted substance supply step, the valve body 51 of the melted substance supply control unit 5 is opened to remove the melted substance from the inlet 101 (see FIG. 2) of the cylindrical container 1. 1 inside.
 筒状容器1の内部では、第2実施形態と同様に、旋回流動工程が実施される。つまり、旋回されている流体状物には遠心力が働き、被溶解物は、導入口101(図2参照)の軸芯に維持されながら排出部13に向けて螺旋状に流動する。被溶解物が筒状容器1の内部に導入された直後では、流体状物の遠心力が大きく、流体状物は被溶解物と混合することなく排出部13に向けて流動するが、被溶解物が排出部13に近づくに従って乱流する。すると、流体状物に被溶解物が混合して溶解し、半溶解物として排出部13を通じて密閉容器6に送られる。 In the inside of the cylindrical container 1, the swirl flow process is performed as in the second embodiment. That is, centrifugal force acts on the swirling fluid, and the material to be dissolved flows in a spiral toward the discharge portion 13 while being maintained at the axial center of the inlet 101 (see FIG. 2). Immediately after the material to be dissolved is introduced into the cylindrical container 1, the centrifugal force of the fluid material is large, and the fluid material flows toward the discharge unit 13 without being mixed with the material to be dissolved. The turbulent flow as the object approaches the discharge unit 13. Then, to-be-dissolved material mixes and melt | dissolves in a fluid state thing, and it sends to the airtight container 6 through the discharge part 13 as a semi-dissolved material.
 密閉容器6の内部では、撹拌部7により撹拌工程が実施され、半溶解物が撹拌されて完全な溶解物となる。つまり、可動翼部74を作動すると、半溶解物を撹拌し、さらに、シャーミキサー73により、半溶解物をさらにせん断して溶解する。
 撹拌された溶解物は、再度、筒状容器1に送られ、引き続き供給される被溶解物が溶解され、この溶解物が密閉容器6に送られて撹拌翼71によりさらに、撹拌・溶解される。これにより、撹拌部7により十分に撹拌されていない場合であっても、筒状容器1と密閉容器6との間を交互に送られることで、粘度の高い被溶解物であっても、完全に、流動性物に溶解されることになる。
 以上の工程は、最終的に被溶解物が所定濃度、つまり、被溶解物と流体状物とが所定の比率、例えば、被溶解物と流体状物とが97:3となるまで行われる。被溶解物と流体状物とを所定の比率にするには、被溶解物と流体状物との供給量を調整する。
Inside the sealed container 6, a stirring step is performed by the stirring unit 7, and the semi-dissolved product is stirred to become a complete dissolved product. That is, when the movable blade portion 74 is operated, the semi-dissolved material is stirred, and further, the semi-dissolved material is further sheared and dissolved by the shear mixer 73.
The stirred dissolved material is again sent to the cylindrical container 1, and subsequently supplied material to be dissolved is dissolved, and this dissolved material is sent to the sealed container 6 and further stirred and dissolved by the stirring blade 71. . Thereby, even if it is a case where it is not fully stirred by the stirring part 7, even if it is a to-be-dissolved substance with high viscosity by sending between the cylindrical container 1 and the airtight container 6 alternately, In addition, it will be dissolved in the fluid material.
The above process is performed until the dissolved material finally has a predetermined concentration, that is, the dissolved material and the fluid are in a predetermined ratio, for example, the dissolved material and the fluid are 97: 3. In order to obtain a predetermined ratio between the material to be dissolved and the fluid material, the supply amount of the material to be dissolved and the fluid material is adjusted.
 被溶解物と流体状物とが所定の比率になったなら、循環バルブ925を操作し、溶解物を、図示しない溶解物収納タンクに収納させる。
 以上の工程は第1実施形態と同様にバッチ処理される。
 バッチ処理が終了したら、循環バルブ925を元の位置に戻し、さらに、被溶解物供給制御部5のバルブ本体51を閉操作して流体状物の筒状容器1の内部への供給を中止する。
 この状態では、第2実施形態と同様に、流体状物は、筒状容器1の内面に沿って旋回し続けているので、被溶解物供給制御部5のバルブの下流側にある被溶解物は、旋回する流体状物と接触することで洗浄される。
When the dissolved material and the fluid material reach a predetermined ratio, the circulation valve 925 is operated to store the dissolved material in a dissolved material storage tank (not shown).
The above process is batch-processed as in the first embodiment.
When the batch processing is completed, the circulation valve 925 is returned to the original position, and the valve body 51 of the dissolved material supply control unit 5 is closed to stop the supply of the fluid material into the cylindrical container 1. .
In this state, as in the second embodiment, the fluid is continuously swirling along the inner surface of the cylindrical container 1, so that the material to be dissolved is downstream of the valve of the material supply control unit 5. Is cleaned by contact with the swirling fluid.
 (第3実施形態の効果)
 第3実施形態では、第1実施形態の(1)~(5)と同様の効果を奏することができる他、次の効果を奏することができる。
(8)密閉容器6への流体状物の供給を、パイプ911を通じて先端の噴霧ノズルから行うので、ノズルから流体状物が半溶解物に向けて噴霧されることになり、撹拌部7で撹拌された際に、半溶解物が泡だった際に、この泡を消すことができる。
(9)撹拌部7は、シャーミキサー73と可動翼部74とを有する構成であるため、半溶解物を確実に完全な溶解物とすることができる。
(Effect of the third embodiment)
In the third embodiment, in addition to the same effects as (1) to (5) of the first embodiment, the following effects can be achieved.
(8) Since the fluid-like material is supplied to the sealed container 6 from the spray nozzle at the tip through the pipe 911, the fluid-like material is sprayed from the nozzle toward the semi-dissolved material. When the semi-dissolved material is foamed, the foam can be extinguished.
(9) Since the stirring unit 7 is configured to include the shear mixer 73 and the movable blade portion 74, the semi-dissolved material can be made into a completely dissolved material.
[第4実施形態]
 本発明の第4実施形態を図5に基づいて説明する。
 第4実施形態は、筒状容器1への流体状物の導入構成と撹拌部7の構成が第3実施形態とは異なり、他の構成は第3実施形態と同じである。第4実施形態において、第3実施形態と同一の構成は同一符号を付して説明を省略する。
  (旋回型溶解装置)
 図5において、旋回型溶解装置40は、渦溶解ユニット8と、渦溶解ユニット8に接続された密閉容器6と、密閉容器6に連結された排出機構61と、密閉容器6に接続された減圧ポンプ23と、密閉容器6の内部に収納された半溶解物を撹拌する撹拌部7と、撹拌部7で撹拌されて完全に溶解された溶解物の液面Lに基づいて排出機構61を制御する液面制御機構81と、を備えている。
 第4実施形態では、第3実施形態とは異なり、筒状容器1への流体状物の導入は、噴射部4Aの連通部41を通じて行われる。連通部41には、流量調節バルブ42が設けられており、筒状容器1の内部に送られる流体状物の流量が一定となるようになっている。なお、図5では、渦溶解ユニット8の噴射部4Aが1つのみ示されているが、本実施形態では、噴射部4Aは、1つでも複数でもよい。
[Fourth Embodiment]
A fourth embodiment of the present invention will be described with reference to FIG.
The fourth embodiment is different from the third embodiment in the configuration for introducing a fluid substance into the cylindrical container 1 and the configuration of the stirring unit 7, and the other configurations are the same as those in the third embodiment. In the fourth embodiment, the same components as those in the third embodiment are denoted by the same reference numerals and description thereof is omitted.
(Swivel melting device)
In FIG. 5, the swirl type melting device 40 includes a vortex melting unit 8, a sealed container 6 connected to the vortex melting unit 8, a discharge mechanism 61 connected to the sealed container 6, and a decompression connected to the sealed container 6. The discharge mechanism 61 is controlled based on the pump 23, the stirring unit 7 that stirs the semi-dissolved material stored in the sealed container 6, and the liquid level L of the dissolved material that is stirred and completely dissolved by the stirring unit 7. And a liquid level control mechanism 81.
In the fourth embodiment, unlike the third embodiment, the introduction of the fluid substance into the cylindrical container 1 is performed through the communication portion 41 of the injection unit 4A. The communication portion 41 is provided with a flow rate adjusting valve 42 so that the flow rate of the fluid-like material sent to the inside of the cylindrical container 1 is constant. In FIG. 5, only one injection unit 4 </ b> A of the vortex melting unit 8 is shown, but in the present embodiment, one or more injection units 4 </ b> A may be provided.
 撹拌部7は、シャーミキサー73から構成され、可動翼部74が省略されている。
 液面制御機構81は、密閉容器6にそれぞれ設けられた上限値検知センサ82及び下限値検知センサ83と、上限値検知センサ82と下限値検知センサ83との間に溶解物の液面Lがある場合に、溶解物供給ポンプ63を駆動制御する液面制御部84とを備えている。上限値検知センサ82及び下限値検知センサ83は、例えば、密閉容器6の内部にそれぞれ設けられた光学センサ等から構成される。
The agitation unit 7 includes a shear mixer 73, and the movable blade portion 74 is omitted.
The liquid level control mechanism 81 includes an upper limit value detection sensor 82 and a lower limit value detection sensor 83 provided in the sealed container 6, and a dissolved liquid level L between the upper limit value detection sensor 82 and the lower limit value detection sensor 83. In some cases, a liquid level controller 84 that drives and controls the melt supply pump 63 is provided. The upper limit value detection sensor 82 and the lower limit value detection sensor 83 are configured by, for example, optical sensors or the like provided inside the sealed container 6.
  (旋回型溶解方法)
 第4実施形態の旋回型溶解方法を説明する。
 まず、流体状物導入工程と旋回工程とを同時に実施する。つまり、噴射部4Aを作動して流体状物を筒状容器1の内部に噴射する。なお、減圧ポンプ23を操作して密閉容器6の内部を減圧しておく。
 そして、被溶解物供給制御部5のバルブ本体51を開操作して被溶解物を筒状容器1の内部に供給する。筒状容器1の内部では、旋回流動工程が実施され、半溶解物が排出部13から密閉容器6に送られる。密閉容器6の内部は減圧され続けているので、筒状容器1の内部も減圧されて被溶解物が供給され続ける。
(Swivel melting method)
The swirl type melting method of the fourth embodiment will be described.
First, the fluid-like material introducing step and the turning step are performed simultaneously. That is, the injection unit 4 </ b> A is operated to inject a fluid substance into the cylindrical container 1. The inside of the sealed container 6 is decompressed by operating the decompression pump 23.
And the valve body 51 of the to-be-dissolved material supply control part 5 is opened, and the to-be-dissolved material is supplied to the inside of the cylindrical container 1. Inside the cylindrical container 1, a swirl flow process is performed, and the semi-dissolved material is sent from the discharge unit 13 to the sealed container 6. Since the inside of the sealed container 6 continues to be depressurized, the inside of the cylindrical container 1 is also depressurized and the material to be dissolved continues to be supplied.
 密閉容器6の内部には、排出部13から半溶解物が送られ、撹拌工程が密閉容器6の内部で実施される。つまり、撹拌部7が作動して、半溶解物が撹拌部7で撹拌されて完全な溶解物となる。
 密閉容器6の内部での完全な溶解物の量が多くなり、液面Lが上昇する。液面Lが下限値検知センサ83を超え、上限値検知センサ82より低い位置にある場合に、液面制御部84により、溶解物供給ポンプ63を駆動する。溶解物供給ポンプ63の駆動により、完全な溶解物は次の工程に送られる。
 このように、第4実施形態では、バッチ処理ではなく、連続運転がされることになる。
 所定量の被溶解物が筒状容器1に供給されたら、第3実施形態と同様に、被溶解物供給制御部5のバルブ本体51を閉操作して流体状物の筒状容器1の内部への供給を中止する。この状態では、被溶解物供給制御部5のバルブ本体51の下流側にある被溶解物は、旋回する流体状物と接触することで洗浄される。
A semi-dissolved material is sent from the discharge unit 13 to the inside of the sealed container 6, and a stirring process is performed inside the sealed container 6. That is, the stirring unit 7 is operated, and the semi-dissolved product is stirred by the stirring unit 7 to become a complete dissolved product.
The amount of complete dissolved matter inside the sealed container 6 increases, and the liquid level L rises. When the liquid level L exceeds the lower limit detection sensor 83 and is lower than the upper limit detection sensor 82, the liquid supply control unit 84 drives the melt supply pump 63. By driving the melt supply pump 63, the complete melt is sent to the next step.
Thus, in the fourth embodiment, continuous operation is performed instead of batch processing.
When a predetermined amount of the substance to be dissolved is supplied to the cylindrical container 1, the valve body 51 of the substance to be dissolved supply control unit 5 is closed to close the inside of the cylindrical container 1 of the fluid substance as in the third embodiment. The supply to In this state, the material to be dissolved on the downstream side of the valve main body 51 of the material supply control unit 5 is cleaned by coming into contact with the swirling fluid.
 (第4実施形態の効果)
 第4実施形態では、第1実施形態の(1)~(5)の効果を奏する他、次の効果を奏することができる。
(10)密閉容器6の内部に収納された半溶解物あるいは完全な溶解物の液面Lに基づいて排出機構61を制御する液面制御機構81を備えたから、密閉容器6の内部で完全に溶解された溶解物の液面Lが所定位置にある場合に、排出機構61の溶解物供給ポンプ63が駆動される。そのため、完全な溶解物が自動的に次の工程に送られるため、連続運転を実施できる。
(Effect of 4th Embodiment)
In the fourth embodiment, in addition to the effects (1) to (5) of the first embodiment, the following effects can be obtained.
(10) Since the liquid level control mechanism 81 for controlling the discharge mechanism 61 based on the liquid level L of the semi-dissolved material or the complete dissolved material stored in the closed container 6 is provided, When the liquid level L of the dissolved solution is at a predetermined position, the dissolved material supply pump 63 of the discharge mechanism 61 is driven. Therefore, since a complete melt is automatically sent to the next step, continuous operation can be performed.
[第5実施形態]
 本発明の第5実施形態を図6に基づいて説明する。
 第5実施形態は、密閉容器6の内部に流体状物を供給するために流体状物供給機構91を設ける点が第4実施形態とは相違するものであり、他の構成は第4実施形態と同じである。
 第5実施形態では、第4実施形態と同様の構成は、同一符号を付して説明を省略する。
  (旋回型溶解装置)
 図6において、旋回型溶解装置50は、渦溶解ユニット8、密閉容器6、排出機構61、流体状物供給機構91、混合物移送機構92、減圧ポンプ23、撹拌部7及び液面制御機構81を備えて構成されている。
 第5実施形態では、流体状物供給機構91を作動して密閉容器6の内部に流体状物を供給する。流体状物は、混合物移送機構92を通じて渦溶解ユニット8に送られ、この渦溶解ユニット8から密閉容器6に戻される。
[Fifth Embodiment]
A fifth embodiment of the present invention will be described with reference to FIG.
The fifth embodiment is different from the fourth embodiment in that a fluid-like material supply mechanism 91 is provided to supply a fluid-like material to the inside of the sealed container 6, and other configurations are the fourth embodiment. Is the same.
In the fifth embodiment, the same components as those in the fourth embodiment are denoted by the same reference numerals and description thereof is omitted.
(Swivel melting device)
In FIG. 6, the swivel dissolving device 50 includes a vortex dissolving unit 8, a sealed container 6, a discharge mechanism 61, a fluid-like material supply mechanism 91, a mixture transfer mechanism 92, a decompression pump 23, a stirring unit 7, and a liquid level control mechanism 81. It is prepared for.
In the fifth embodiment, the fluid-like material supply mechanism 91 is operated to supply the fluid-like material into the sealed container 6. The fluid is sent to the vortex dissolution unit 8 through the mixture transfer mechanism 92, and returned from the vortex dissolution unit 8 to the sealed container 6.
  (旋回型溶解方法)
 渦溶解ユニット8では、噴射部4Aから流体状物を噴射する。流体状物は、筒状容器1の内周面に沿って旋回するとともに、排出部13に向けて流動する。そして、減圧ポンプ23を作動し密閉容器6を通じて筒状容器1の内部を減圧する。この状態で、被溶解物供給制御部5のバルブ本体51を開操作して被溶解物を筒状容器1の内部に導入する。
 筒状容器1の内部では、被溶解物が流体状物に溶解されて半溶解物となり、密閉容器6に送られる。密閉容器6の内部では、撹拌部7により、半溶解物が撹拌され、混合物移送機構92により、渦溶解ユニット8に戻され、この循環工程が続けられる。
 密閉容器6の内部での完全な溶解物の量が多くなり、液面Lが下限値検知センサ83と上限値検知センサ82との間に位置すると、液面制御部84により、溶解物供給ポンプ63を駆動する。
 溶解物供給ポンプ63の駆動により、完全な溶解物は次の工程に送られる。
 (第5実施形態の効果)
 第5実施形態では、第4実施形態と同様の効果を奏することができる。
(Swivel melting method)
In the vortex dissolution unit 8, a fluid is ejected from the ejection unit 4 </ b> A. The fluid-like material swirls along the inner peripheral surface of the cylindrical container 1 and flows toward the discharge unit 13. Then, the decompression pump 23 is operated to decompress the inside of the cylindrical container 1 through the sealed container 6. In this state, the valve body 51 of the melt supply control unit 5 is opened to introduce the melt into the cylindrical container 1.
Inside the cylindrical container 1, the substance to be dissolved is dissolved in a fluid substance to become a semi-dissolved substance, and is sent to the sealed container 6. Inside the sealed container 6, the semi-dissolved material is stirred by the stirring unit 7 and returned to the vortex dissolution unit 8 by the mixture transfer mechanism 92, and this circulation process is continued.
When the amount of the completely dissolved substance in the closed container 6 increases and the liquid level L is located between the lower limit detection sensor 83 and the upper limit detection sensor 82, the liquid supply control unit 84 causes the dissolved supply pump. 63 is driven.
By driving the melt supply pump 63, the complete melt is sent to the next step.
(Effect of 5th Embodiment)
In the fifth embodiment, the same effects as in the fourth embodiment can be obtained.
[第6実施形態]
 本発明の第6実施形態を図7及び図8に基づいて説明する。
 第6実施形態は、流体状物導入部と旋回発生部とを分けた点が第2実施形態とは異なるもので、他の構成は第2実施形態と同じである。第6実施形態において、第2実施形態と同様構成は、同一符号を付して説明を省略する。
  (旋回型溶解装置)
 図7及び図8において、第6実施形態の旋回型溶解装置60は、筒状容器1と、筒状容器1にそれぞれ設けられた被溶解物供給部2、流体状物導入部3、旋回発生部4及び被溶解物供給制御部5とを備えて構成されている。
 流体状物導入部3は、旋回発生部4を介して一端が筒状容器1に接続された連通部41と、連通部41の他端に接続され連通部41を通じて流体状物を筒状容器1の内部に供給する図示しない流体状物供給源と、を備えている。連通部41は、第2実施形態の連通部41とは異なり、筒状容器1の径方向と軸芯が一致する(図8参照)。
[Sixth Embodiment]
A sixth embodiment of the present invention will be described with reference to FIGS.
The sixth embodiment is different from the second embodiment in that the fluid-like material introducing unit and the swirl generating unit are separated, and the other configurations are the same as those of the second embodiment. In the sixth embodiment, the same configurations as those of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
(Swivel melting device)
7 and 8, the swivel dissolving device 60 of the sixth embodiment includes a cylindrical container 1, a to-be-dissolved material supply unit 2, a fluid-like material introducing unit 3, and swirl generation respectively provided in the cylindrical container 1. It comprises the part 4 and the to-be-dissolved substance supply control part 5, and is comprised.
The fluid-like material introducing unit 3 includes a communicating part 41 having one end connected to the cylindrical container 1 via the swirl generating part 4 and a fluid-like substance passing through the communicating part 41 connected to the other end of the communicating part 41. 1 and a fluid-like material supply source (not shown) that is supplied to the inside. Unlike the communication part 41 of 2nd Embodiment, the communication part 41 corresponds to the radial direction and axial center of the cylindrical container 1 (refer FIG. 8).
 旋回発生部4は、筒状容器1の容器本体11の外周に設けられたリング状の流路変更部43と、流路変更部43が開口部先端に嵌合した断面コ字状のリング状部44と、を備えている。リング状部44には連通部41の端部が接続されている。
 流路変更部43とリング状部44との間には連通部41から送られる流体状物が流通するリング状のメイン流路431が形成されている。流路変更部43には、メイン流路431と連通する複数のサブ流路432が周方向に沿って並んで形成されており、これらのサブ流路432は、容器本体11に形成された容器側流路111と連通されている。
 複数のサブ流路432は、筒状容器1の周方向に沿って互いに等間隔となるように配置されている。なお、図8では、4組のサブ流路432及び容器側流路111が示されているが、本実施形態では、その数はこれに限定するものではない。
 サブ流路432と容器側流路111とは、軸芯が一致しており、これらの軸芯は、容器本体11の径方向とは交差する。これにより、流体状物導入部3から連通部41の内部を通って直線状に送られる流体状物がメイン流路431、サブ流路432及び容器側流路111によって流路が変更され、筒状容器1の内周面に沿って旋回する。
 なお、サブ流路432と容器側流路111とは、その開口が同じ大きさであってもよく、一方が他方に比べて大きくてもよい。
The swivel generator 4 includes a ring-shaped flow path changing portion 43 provided on the outer periphery of the container body 11 of the cylindrical container 1, and a ring shape having a U-shaped cross section in which the flow path changing portion 43 is fitted to the tip of the opening. Part 44. An end of the communication part 41 is connected to the ring-shaped part 44.
Between the flow path changing portion 43 and the ring-shaped portion 44, a ring-shaped main flow channel 431 through which a fluid-like material sent from the communicating portion 41 flows is formed. A plurality of sub-channels 432 communicating with the main channel 431 are formed side by side in the circumferential direction in the channel changing unit 43, and these sub-channels 432 are containers formed in the container body 11. It communicates with the side flow path 111.
The plurality of sub-channels 432 are arranged at equal intervals along the circumferential direction of the cylindrical container 1. In FIG. 8, four sets of sub-channels 432 and container-side channels 111 are shown, but in the present embodiment, the number is not limited to this.
The sub-channel 432 and the container-side channel 111 have the same axis, and these axes intersect the radial direction of the container body 11. As a result, the flow of the fluid-like material that is linearly fed from the fluid-like material introduction unit 3 through the inside of the communication unit 41 is changed by the main channel 431, the sub-channel 432, and the container-side channel 111, and the cylinder It turns along the inner peripheral surface of the container 1.
The sub-channel 432 and the container-side channel 111 may have the same opening, or one may be larger than the other.
  (旋回型溶解方法)
 第6実施形態の旋回型溶解方法を説明する。
 まず、流体状物導入部3により流体状物導入工程を実施する。つまり、連通部41を通じて流体状物を旋回発生部4に流体状物を送る。
 旋回発生部4に流体状物が送られると、旋回発生工程が実施される。つまり、流体状物は、メイン流路431を流通した後、サブ流路432及び容器側流路111で流路が変更されて筒状容器1の内周面に沿って旋回する。旋回する流体状物は、その自重等によって、排出部13に向けて流動する。
 その後、第2実施形態と同様に、被溶解物供給制御部5のバルブ本体51を開操作して被溶解物を筒状容器1の内部に供給して被溶解物供給工程を実施する。そして、筒状容器1の内部では、旋回流動工程が実施される。
 旋回流動工程で流体状物に溶解された被溶解物は、排出部13を通じて外部に排出される。
(Swivel melting method)
The swirl type melting method of the sixth embodiment will be described.
First, a fluid-like substance introducing step is performed by the fluid-like substance introducing unit 3. That is, the fluid-like material is sent to the swirl generator 4 through the communication portion 41.
When the fluid-like material is sent to the swirl generation unit 4, a swirl generation process is performed. That is, after the fluid-like material flows through the main channel 431, the channel is changed by the sub-channel 432 and the container-side channel 111 and swirls along the inner peripheral surface of the cylindrical container 1. The swirling fluid substance flows toward the discharge unit 13 due to its own weight or the like.
Thereafter, similarly to the second embodiment, the valve main body 51 of the melt supply control unit 5 is opened to supply the melt into the cylindrical container 1 to perform the melt supply process. A swirl flow process is performed inside the cylindrical container 1.
The material to be dissolved dissolved in the fluid in the swirl flow process is discharged to the outside through the discharge unit 13.
 (第6実施形態の効果)
 第6実施形態では、第2実施形態の効果の他、次の効果を奏することができる。
(11)旋回発生部4は、筒状容器1に設けられたリング状の流路変更部43と、流路変更部43が開口部先端に嵌合した断面コ字状のリング状部44と、を備えている。流路変更部43には、リング状部44との間に形成されたメイン流路431と、メイン流路431の流路を流体状物が筒状容器1を旋回するように変更する複数のサブ流路432とが形成されている。そのため、流体状物導入部3の構造を簡易なものにできる。
(Effect of 6th Embodiment)
In the sixth embodiment, in addition to the effects of the second embodiment, the following effects can be achieved.
(11) The swivel generator 4 includes a ring-shaped flow path changing portion 43 provided in the cylindrical container 1, and a ring-shaped portion 44 having a U-shaped cross section in which the flow path changing portion 43 is fitted to the opening end. It is equipped with. The flow path changing section 43 includes a main flow path 431 formed between the ring-shaped section 44 and a plurality of flow paths for changing the flow path of the main flow path 431 so that fluid-like matter swirls the cylindrical container 1. A sub-channel 432 is formed. Therefore, the structure of the fluid-like material introducing unit 3 can be simplified.
[変形例]
 なお、本発明は前述の各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、前記各実施形態では、流体状物導入工程の後に被溶解物供給工程を実施したが、本発明では、流体状物導入工程と被溶解物供給工程との前後は限定されるものではなく、例えば、被溶解物供給工程の後に流体状物導入工程を実施してもよく、さらには、流体状物導入工程と被溶解物供給工程とを同時に実施してもよい。
 また、流体状物を水としたが、本発明では、水以外の液体や、空気、窒素等の気体としてもよい。
 さらに、各実施形態では、被溶解物を、小麦粉、カルボキシメチルセルロース(CMC)、ペクチン等の粘度が高い微細物としたが、本発明では、粘度の低い微細物としてもよい。また、微細物に代えて、被溶解物を流体としてもよい。
[Modification]
The present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in each of the above-described embodiments, the dissolved material supply step is performed after the fluid-like material introduction step. However, in the present invention, before and after the fluid-like material introduction step and the dissolved material supply step are not limited. For example, the fluid-like material introducing step may be performed after the dissolved material supply step, and further, the fluid-like material introducing step and the material to be dissolved may be simultaneously performed.
Although the fluid is water, in the present invention, it may be a liquid other than water, or a gas such as air or nitrogen.
Furthermore, in each embodiment, although the to-be-dissolved material was made into fine things with high viscosity, such as wheat flour, carboxymethylcellulose (CMC), and pectin, in this invention, it is good also as a fine thing with low viscosity. Moreover, it is good also considering a to-be-dissolved object as a fluid instead of a fine thing.
 また、第3実施形態、第4実施形態及び第5実施形態では、渦溶解ユニット8を上下に沿って配置したが、本発明では、図9で示される配置としてもよい。つまり、図9の符号Aで示される通り、第3実施形態、第4実施形態及び第5実施形態の渦溶解ユニット8の配置の他、符号Bで示される通り、容器本体11を上下に沿って配置し、排出部13をL字型に曲げて密閉容器6の上部外周部を貫通させて配置するものでもよい。さらに、符号Cで示される通り、容器本体11と排出部13とを斜めに配置し、排出部13を斜め上から下に向けて密閉容器6の下部外周部を貫通させて配置するものでもよい。符号Dで示される通り、符号Cで示される場合とは反対に、排出部13を斜め下から上に向けて密閉容器6の下部を貫通させて配置するものでもよい。さらに、符号Eで示される通り、容器本体11と排出部13とを水平に位置させて配置するものでもよく、符号Fで示される通り、容器本体11を水平に配置し、排出部13を密閉容器6の上部外周部を貫通させ途中で下方に折り曲げるものでもよい。 In the third embodiment, the fourth embodiment, and the fifth embodiment, the vortex melting unit 8 is arranged along the top and bottom, but in the present invention, the arrangement shown in FIG. 9 may be used. That is, as indicated by reference numeral A in FIG. 9, in addition to the arrangement of the vortex dissolution units 8 of the third embodiment, fourth embodiment, and fifth embodiment, the container body 11 extends vertically as indicated by reference numeral B. May be arranged such that the discharge part 13 is bent into an L shape and the upper outer peripheral part of the sealed container 6 is penetrated. Furthermore, as indicated by reference symbol C, the container main body 11 and the discharge part 13 may be disposed obliquely, and the discharge part 13 may be disposed through the lower outer peripheral portion of the sealed container 6 from obliquely upward to downward. . As indicated by reference numeral D, in contrast to the case indicated by reference numeral C, the discharge portion 13 may be disposed so as to penetrate the lower portion of the sealed container 6 from obliquely downward to upward. Further, as indicated by reference numeral E, the container body 11 and the discharge portion 13 may be disposed horizontally, and as indicated by reference numeral F, the container body 11 is horizontally disposed and the discharge portion 13 is sealed. You may penetrate the upper outer peripheral part of the container 6 and bend | fold downward below.
 さらに、符号Eで示される配置とした場合、図10の符号F1で示される通り、排出部13を密閉容器6の内周面の接線と平行な線に向けて配置するものでもよく、符号F2で示される通り、排出部13を密閉容器6の軸芯に向けて配置するものでもよく、さらには、符号F3で示される通り、排出部13の根本部分を密閉容器6の軸芯に向けるとともに、途中を折り曲げて、その先端側が密閉容器6の内周面の接線と配向となるように配置するものでもよい。 Further, in the case of the arrangement shown by reference numeral E, as shown by reference numeral F1 in FIG. 10, the discharge portion 13 may be arranged toward a line parallel to the tangent to the inner peripheral surface of the sealed container 6, and reference numeral F2 As shown, the discharge portion 13 may be disposed toward the axis of the sealed container 6, and further, as indicated by reference numeral F <b> 3, the root portion of the discharge portion 13 is directed to the axis of the sealed container 6. Further, it may be arranged such that the middle is bent and the front end side is aligned with the tangent to the inner peripheral surface of the sealed container 6.
 また、本発明では、図11Aに示される通り、容器本体11を、大きな径の大径部11Aと、小さな径の小径部11Bと、大径部11Aと小径部11Bとを接続する円錐部11Cとを有し、大径部11Aの軸方向の長さを短くし、小径部11Bの軸方向長さを長くするものとしてもよい。小径部11Bを長くすることで、旋回流動工程を十分に実施することが可能となる。
 さらに、図11Bに示される通り、容器本体11を軸方向に沿って同じ径の円筒状部11Dから形成してもよい。この場合、円筒状部11Dの軸方向長さを長くすることで、旋回流動工程を十分に実施することが可能となる。
 また、第2実施形態及び第6実施形態では、筒状容器1の内部を減圧する構成を採用しなくてもよい。
Further, in the present invention, as shown in FIG. 11A, the container body 11 is connected to a large diameter portion 11A having a large diameter, a small diameter portion 11B having a small diameter, and a conical portion 11C connecting the large diameter portion 11A and the small diameter portion 11B. It is good also as what shortens the axial direction length of 11 A of large diameter parts, and lengthens the axial direction length of the small diameter part 11B. By making the small diameter portion 11B longer, the swirl flow process can be sufficiently performed.
Furthermore, as shown in FIG. 11B, the container body 11 may be formed from a cylindrical portion 11D having the same diameter along the axial direction. In this case, it is possible to sufficiently perform the swirl flow step by increasing the axial length of the cylindrical portion 11D.
Moreover, in 2nd Embodiment and 6th Embodiment, the structure which decompresses the inside of the cylindrical container 1 does not need to be employ | adopted.
 1…筒状容器、10、20,30,40,50,60…旋回型溶解装置、12…導入部、13…排出部、2…被溶解物供給部、21…被溶解物貯蔵部、22…連通管、23…減圧ポンプ、24…減圧部、25…圧入部、3…流体状物導入部、4…旋回発生部、4A…噴射部、5…被溶解物供給制御部、61…排出機構、62…パイプ、63…溶解物供給ポンプ、7…撹拌部、71…撹拌翼、72…駆動部、73…シャーミキサー、74…可動翼部、81…液面制御機構、82…上限値検知センサ、83…下限値検知センサ、84…液面制御部、L…液面、P…気相部、P1…旋回軸、P2…軸心、P3…供給軸 DESCRIPTION OF SYMBOLS 1 ... Cylindrical container 10, 20, 30, 40, 50, 60 ... Swirling type | mold dissolution apparatus, 12 ... Introduction part, 13 ... Discharge part, 2 ... To-be-dissolved substance supply part, 21 ... To-be-dissolved substance storage part, 22 ... Communication pipe, 23 ... Decompression pump, 24 ... Depressurization section, 25 ... Press-fitting section, 3 ... Fluid material introduction section, 4 ... Rotation generating section, 4A ... Injection section, 5 ... Dissolved substance supply control section, 61 ... Discharge Mechanism: 62 ... Pipe, 63 ... Melt supply pump, 7 ... Stirring section, 71 ... Stirring blade, 72 ... Drive section, 73 ... Shear mixer, 74 ... Movable blade section, 81 ... Liquid level control mechanism, 82 ... Upper limit value Detection sensor, 83 ... Lower limit detection sensor, 84 ... Liquid level controller, L ... Liquid level, P ... Gas phase, P1 ... Swivel axis, P2 ... Axis center, P3 ... Supply axis

Claims (14)

  1.  導入部と排出部を有する筒状容器に前記導入部から流体状物を導入する流体状物導入工程と、
     前記流体状物導入工程で導入された前記流体状物を前記筒状容器の内部で旋回させる旋回発生工程と、
     前記筒状容器へ微細物状の被溶解物を供給する被溶解物供給工程と、
     前記筒状容器の内壁の近傍において前記被溶解物の前記筒状容器の内部への導入を許容あるいは阻止する被溶解物供給制御工程と、
     前記流体状物及び前記被溶解物を前記筒状容器の内部で旋回させながら下流へ流動させる旋回流動工程と、
     前記流体状物及び前記被溶解物の少なくとも一部が溶解した溶解物を旋回させながら前記排出部から排出する旋回排出工程と、を備え、
     前記旋回流動工程での旋回軸は、前記筒状容器の軸心と、前記被溶解物供給工程で供給される前記被溶解物の供給軸とそれぞれ一致する
     ことを特徴とする旋回型溶解方法。
    A fluid-like material introducing step of introducing a fluid-like material from the introduction portion into a cylindrical container having an introduction portion and a discharge portion;
    A swirl generating step of swirling the fluid-like material introduced in the fluid-like material introducing step inside the cylindrical container;
    To-be-dissolved substance supplying step of supplying a to-be-dissolved object in a fine form to the cylindrical container,
    To-be-dissolved substance supply control step for allowing or preventing introduction of the to-be-dissolved substance into the cylindrical container in the vicinity of the inner wall of the cylindrical container;
    A swirl flow step of flowing the fluid and the material to be dissolved while swirling inside the cylindrical container; and
    A swirl discharge step of discharging from the discharge unit while swirling the dissolved material in which at least a part of the fluid and the material to be dissolved is dissolved, and
    A swirl type melting method characterized in that a swivel axis in the swirl flow step coincides with an axial center of the cylindrical container and a supply axis of the material to be melted supplied in the melted material feed step.
  2.  請求項1に記載された旋回型溶解方法において、
     前記被溶解物供給制御工程は、被溶解物供給バルブにより前記筒状容器へ供給する前記被溶解物の供給量を制御し、
     前記旋回流動工程は、前記被溶解物供給バルブが閉じられたときに前記被溶解物供給バルブより下流側が、前記流体状物又は前記溶解物の旋回流に接触する
     ことを特徴とする旋回型溶解方法。
    The swirl type melting method according to claim 1,
    The melt supply control step controls the supply amount of the melt to be supplied to the cylindrical container by the melt supply valve.
    In the swirl flow step, the swirl type dissolution is characterized in that when the melt supply valve is closed, the downstream side of the melt supply valve contacts the fluid or the swirl flow of the melt. Method.
  3.  請求項1又は請求項2に記載された旋回型溶解方法において、
     前記流体状物導入工程と前記旋回発生工程とは、前記旋回軸と直交する平面内で、前記筒状容器の内周の接線方向から前記流体状物を前記筒状容器の内部に噴射することで実施される
     ことを特徴とする旋回型溶解方法。
    In the swirl type melting method according to claim 1 or 2,
    The fluid-like material introducing step and the swirl generation step are to inject the fluid-like material into the cylindrical container from a tangential direction of the inner periphery of the cylindrical container in a plane orthogonal to the swivel axis. A swirl-type melting method, characterized in that
  4.  請求項1ないし請求項3のいずれか1項に記載された旋回型溶解方法において、
     前記被溶解物供給工程は、前記筒状容器の内部を減圧する
     ことを特徴とする旋回型溶解方法。
    The swirl-type melting method according to any one of claims 1 to 3,
    In the melt-dissolving material supplying step, the inside of the cylindrical container is depressurized.
  5.  請求項1ないし請求項3のいずれか1項に記載された旋回型溶解方法において、
     前記被溶解物供給工程は、前記被溶解物を加圧して前記筒状容器の内部へ圧入する
     ことを特徴とする旋回型溶解方法。
    The swirl-type melting method according to any one of claims 1 to 3,
    In the melt-dissolving material supplying step, the melt-dissolving material is pressurized and press-fitted into the cylindrical container.
  6.  請求項1ないし請求項5のいずれか1項に記載された旋回型溶解方法において、
     前記旋回排出工程は、前記流体状物及び前記被溶解物を一部溶解した半溶解物を前記排出部から密閉容器に排出し、
     前記半溶解物を前記密閉容器の内部で撹拌して完全に溶解する撹拌工程を備えた
     ことを特徴とする旋回型溶解方法。
    In the swirl type melting method according to any one of claims 1 to 5,
    In the swivel discharge step, the semi-dissolved material in which the fluid-like material and the material to be dissolved are partially dissolved is discharged from the discharge portion to a sealed container,
    A swirl-type dissolution method characterized by comprising an agitation step of agitating the semi-dissolved material inside the airtight container to completely dissolve it.
  7.  請求項6に記載された旋回型溶解方法において、
     前記排出部の排出口は、前記密閉容器の内部において前記半溶解物の液面下に位置し、
     前記被溶解物供給工程は、前記密閉容器の内部と外部との差圧によって前記被溶解物を前記筒状容器の内部へ吸引導入する
     ことを特徴とする旋回型溶解方法。
    In the swirl type melting method according to claim 6,
    The discharge port of the discharge part is located below the liquid level of the semi-dissolved material inside the sealed container,
    In the swirl-type melting method, the melted material supply step sucks and introduces the melted material into the cylindrical container by a differential pressure between the inside and the outside of the sealed container.
  8.  流体状物及び微細物状の被溶解物を旋回させながら少なくとも一部を溶解させて溶解物を製造する旋回型溶解装置であって、
     前記流体状物が導入される導入部と前記溶解物が外部に排出される排出部とを有する筒状容器と、
     前記導入部から前記流体状物を前記筒状容器の内部に導入する流体状物導入部と、
     前記導入部から導入された前記流体状物を前記筒状容器の内部で旋回させる旋回発生部と、
     前記筒状容器の内壁の近傍に配置され前記筒状容器へ前記被溶解物を供給する被溶解物供給部と、
     前記被溶解物の前記筒状容器の内部への供給を許容あるいは阻止する被溶解物供給制御部と、を備え、前記流体状物及び前記被溶解物が前記筒状容器の内部で旋回させながら下流へ流動し、
     前記筒状容器の内部の旋回軸は、前記筒状容器の軸心と、前記導入部で導入される前記被溶解物の供給軸とにそれぞれ一致する
     ことを特徴とする旋回型溶解装置。
    A swirl type dissolving apparatus for producing a melt by dissolving at least a part while swirling a fluid and a fine material to be dissolved,
    A cylindrical container having an introduction part into which the fluid-like substance is introduced and a discharge part through which the dissolved substance is discharged to the outside;
    A fluid-like material introduction part for introducing the fluid-like material from the introduction part into the cylindrical container;
    A swirl generator that swirls the fluid-like material introduced from the introducer inside the cylindrical container;
    A to-be-dissolved material supply unit that is disposed in the vicinity of the inner wall of the cylindrical container and supplies the to-be-dissolved material to the cylindrical container;
    A to-be-dissolved substance supply control unit that allows or blocks the supply of the to-be-dissolved substance to the inside of the cylindrical container, and the fluid-like substance and the to-be-dissolved substance are swung inside the cylindrical container. Flows downstream,
    A swivel-type melting apparatus, wherein a swivel axis inside the cylindrical container coincides with an axial center of the tubular container and a supply axis of the material to be melted introduced by the introduction part.
  9.  請求項8に記載された旋回型溶解装置において、
     前記被溶解物供給制御部は、前記筒状容器へ導入する前記被溶解物の供給量を制御する被溶解物供給バルブを備えた
     ことを特徴とする旋回型溶解装置。
    The swirl type melting device according to claim 8,
    The resolving material supply control unit includes a resolving material supply valve for controlling a supply amount of the dissolving material to be introduced into the cylindrical container.
  10.  請求項8又は請求項9に記載された旋回型溶解装置において、
     前記流体状物導入部と前記旋回発生部とは、前記旋回軸と直交する平面内で、前記筒状容器の内周の接線方向から前記流体状物を前記筒状容器の内部に噴射する噴射部を備えた
     ことを特徴とする旋回型溶解装置。
    The swirl type melting device according to claim 8 or 9,
    The fluid-like material introducing portion and the swirl generating portion are jets that inject the fluid-like material into the cylindrical container from a tangential direction of the inner periphery of the cylindrical container in a plane orthogonal to the swivel axis. A swirl-type melting apparatus comprising a section.
  11.  請求項8ないし請求項10のいずれか1項に記載された旋回型溶解装置において、
     前記被溶解物供給部は、前記筒状容器の内部を減圧する減圧部を備えた
     ことを特徴とする旋回型溶解装置。
    The swirl type melting apparatus according to any one of claims 8 to 10,
    The melted material supply unit includes a decompression unit that decompresses the inside of the cylindrical container.
  12.  請求項8ないし請求項10のいずれか1項に記載された旋回型溶解装置において、
     前記被溶解物供給部は、前記被溶解物を加圧して前記筒状容器の内部へ圧入する圧入部を備えた
     ことを特徴とする旋回型溶解装置。
    The swirl type melting apparatus according to any one of claims 8 to 10,
    The melt-dissolving material supply unit includes a press-fitting unit that pressurizes the melt-dissolving material and press-fits into the cylindrical container.
  13.  請求項8ないし請求項12のいずれか1項に記載された旋回型溶解装置において、
     前記排出部から排出された前記流体状物及び前記被溶解物を一部溶解した半溶解物を収納する密閉容器と、前記密閉容器に設けられ前記半溶解物を前記密閉容器の内部で撹拌して完全に溶解する撹拌部とを備えた
     ことを特徴とする旋回型溶解装置。
    The swirl type melting apparatus according to any one of claims 8 to 12,
    A sealed container for storing the fluid-like material discharged from the discharge part and a semi-dissolved material in which the material to be dissolved is partially dissolved, and the semi-dissolved material provided in the sealed container is stirred inside the sealed container. And a stirring unit that completely dissolves.
  14.  請求項13に記載された旋回型溶解装置において、
     前記排出部の排出口は、前記密閉容器の内部において前記半溶解物の液面下に位置し、
     前記被溶解物供給部は、前記密閉容器の内部と外部との差圧によって前記被溶解物を前記筒状容器の内部へ吸引導入する減圧ポンプを備えた
     ことを特徴とする旋回型溶解装置。
    The swirl type melting device according to claim 13,
    The discharge port of the discharge part is located below the liquid level of the semi-dissolved material inside the sealed container,
    The resolving material supply unit includes a decompression pump that sucks and introduces the material to be dissolved into the cylindrical container by a differential pressure between the inside and the outside of the sealed container.
PCT/JP2019/007198 2018-02-27 2019-02-26 Swirling-type dissolution method and swirling-type dissolution device WO2019167916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-033268 2018-02-27
JP2018033268A JP2019147104A (en) 2018-02-27 2018-02-27 Revolution type melting method and revolution type melting device

Publications (1)

Publication Number Publication Date
WO2019167916A1 true WO2019167916A1 (en) 2019-09-06

Family

ID=67805005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007198 WO2019167916A1 (en) 2018-02-27 2019-02-26 Swirling-type dissolution method and swirling-type dissolution device

Country Status (2)

Country Link
JP (1) JP2019147104A (en)
WO (1) WO2019167916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4327924A4 (en) * 2021-12-23 2025-04-30 Reica Co., Ltd. SYSTEM FOR MIXING A LIQUID AND A POWDER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022099895A (en) * 2020-12-23 2022-07-05 デンカ株式会社 Continuous mixer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234A (en) * 1991-06-24 1993-01-08 Catalysts & Chem Ind Co Ltd Apparatus for mixing powder into liquid
JPH078771A (en) * 1993-06-29 1995-01-13 Yuji Kawamichi Method and device for mixing and dissolving powder
JPH10328542A (en) * 1997-06-03 1998-12-15 Nippon Steel Corp Quicklime dissolving method and apparatus
WO2004076042A1 (en) * 2003-02-28 2004-09-10 Okutama Kogyo Co., Ltd. Mixing device and slurrying device
JP2007130610A (en) * 2005-11-14 2007-05-31 Tookemi:Kk Dispersion apparatus of powder of polymer flocculant
JP2008163440A (en) * 2007-01-05 2008-07-17 Dowa Metals & Mining Co Ltd Liquid and powder mixing apparatus, metal recovery system, liquid and powder mixing method, and metal recovery method
JP2017077554A (en) * 2015-10-21 2017-04-27 ニチラク機械株式会社 Transfer method of minute substance, transfer device for minute substance, dissolution method of minute substance and dissolution method of minute substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234A (en) * 1991-06-24 1993-01-08 Catalysts & Chem Ind Co Ltd Apparatus for mixing powder into liquid
JPH078771A (en) * 1993-06-29 1995-01-13 Yuji Kawamichi Method and device for mixing and dissolving powder
JPH10328542A (en) * 1997-06-03 1998-12-15 Nippon Steel Corp Quicklime dissolving method and apparatus
WO2004076042A1 (en) * 2003-02-28 2004-09-10 Okutama Kogyo Co., Ltd. Mixing device and slurrying device
JP2007130610A (en) * 2005-11-14 2007-05-31 Tookemi:Kk Dispersion apparatus of powder of polymer flocculant
JP2008163440A (en) * 2007-01-05 2008-07-17 Dowa Metals & Mining Co Ltd Liquid and powder mixing apparatus, metal recovery system, liquid and powder mixing method, and metal recovery method
JP2017077554A (en) * 2015-10-21 2017-04-27 ニチラク機械株式会社 Transfer method of minute substance, transfer device for minute substance, dissolution method of minute substance and dissolution method of minute substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4327924A4 (en) * 2021-12-23 2025-04-30 Reica Co., Ltd. SYSTEM FOR MIXING A LIQUID AND A POWDER

Also Published As

Publication number Publication date
JP2019147104A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
US20200230558A1 (en) Microbubble generating device
US6796704B1 (en) Apparatus and method for mixing components with a venturi arrangement
CA1191509A (en) Mixing apparatus
EP2540387B1 (en) In-line fluid mixing device
FI98892C (en) Polymer dissolution method and apparatus
WO2019167916A1 (en) Swirling-type dissolution method and swirling-type dissolution device
CN108671789A (en) A kind of powder and liquid premixing machine
EP1453596B1 (en) Method and apparatus for mixing pulverous material with liquid
CN204017684U (en) A kind of flour dissolving tank improving material dissolution speed
CN211612398U (en) Big monomer mixing stirring equipment
CN105417772A (en) Material mixing system
JP4850729B2 (en) Method and apparatus for mixing powder and liquid
CN208771232U (en) A kind of mixing and stirring system
WO2013156792A2 (en) Apparatus and method for entraining a powder in a fluid
CN101837258A (en) Mixing and impelling type horizontal premixing device and method thereof
JP2002248330A (en) Continuously mixing device of powder and liquid
CN1939581B (en) Continuous power/liquid mixing apparatus
JP7201272B1 (en) Powder-liquid mixing system
KR20180111326A (en) Air guide tube and Impeller using the same
CN108745021A (en) A kind of mixing and stirring system
CN210544575U (en) Material mixing device
JP3185655B2 (en) Method and apparatus for manufacturing coal ash improvement treatment material
CN201537467U (en) Staggering combination type horizontal solid and liquid pre-mixing tank
JP4781525B2 (en) Powder solidifying material mixing system
WO1998051406A1 (en) Prewetting mixer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760205

Country of ref document: EP

Kind code of ref document: A1