WO2019163605A1 - ガラスキャリア付銅箔及びその製造方法 - Google Patents
ガラスキャリア付銅箔及びその製造方法 Download PDFInfo
- Publication number
- WO2019163605A1 WO2019163605A1 PCT/JP2019/005111 JP2019005111W WO2019163605A1 WO 2019163605 A1 WO2019163605 A1 WO 2019163605A1 JP 2019005111 W JP2019005111 W JP 2019005111W WO 2019163605 A1 WO2019163605 A1 WO 2019163605A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass carrier
- layer
- less
- copper
- copper foil
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 186
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 174
- 239000011889 copper foil Substances 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000010949 copper Substances 0.000 claims abstract description 112
- 229910052802 copper Inorganic materials 0.000 claims abstract description 106
- 238000000034 method Methods 0.000 claims description 47
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 238000005240 physical vapour deposition Methods 0.000 claims description 32
- 238000007788 roughening Methods 0.000 claims description 23
- 229910052719 titanium Inorganic materials 0.000 claims description 20
- 230000000873 masking effect Effects 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 14
- 229910052804 chromium Inorganic materials 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 238000005530 etching Methods 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 239000011888 foil Substances 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 225
- 238000004544 sputter deposition Methods 0.000 description 54
- 230000015572 biosynthetic process Effects 0.000 description 30
- 239000010936 titanium Substances 0.000 description 26
- 239000002346 layers by function Substances 0.000 description 24
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 19
- 229910052799 carbon Inorganic materials 0.000 description 19
- 238000011156 evaluation Methods 0.000 description 18
- 238000005520 cutting process Methods 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 11
- 238000000151 deposition Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 239000012634 fragment Substances 0.000 description 8
- 230000008021 deposition Effects 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 229910000990 Ni alloy Inorganic materials 0.000 description 5
- 238000005422 blasting Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000005361 soda-lime glass Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000002390 adhesive tape Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000005388 borosilicate glass Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- -1 nitrogen-containing organic compounds Chemical class 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- CUPFNGOKRMWUOO-UHFFFAOYSA-N hydron;difluoride Chemical compound F.F CUPFNGOKRMWUOO-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/062—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of wood
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/13—Mountings, e.g. non-detachable insulating substrates characterised by the shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/001—General methods for coating; Devices therefor
- C03C17/002—General methods for coating; Devices therefor for flat glass, e.g. float glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/06—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
- C03C17/09—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3639—Multilayers containing at least two functional metal layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49838—Geometry or layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49866—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/151—Deposition methods from the vapour phase by vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/30—Aspects of methods for coating glass not covered above
- C03C2218/34—Masking
Definitions
- the present invention relates to a copper foil with a glass carrier and a method for producing the same.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2005-76091
- a release layer and an ultrathin copper foil are sequentially formed on a smooth surface of a carrier copper foil whose average surface roughness Rz is reduced to 0.01 ⁇ m or more and 2.0 ⁇ m or less.
- a method for producing an ultrathin copper foil with a carrier including laminating is disclosed, and it is also disclosed that a multilayer printed wiring board is obtained by applying high density ultrafine wiring (fine pattern) with this ultrathin copper foil with a carrier. Has been.
- Patent Document 2 International Publication No. 2017/150283 discloses a copper foil with a carrier provided with a carrier (for example, a glass carrier), a release layer, an antireflection layer, and an ultrathin copper layer in this order. It is described that a layer, an antireflection layer and an ultrathin copper layer are formed by sputtering.
- Patent Document 3 International Publication No. 2017/1502864 discloses a carrier-attached copper including a carrier (for example, a glass carrier), an intermediate layer (for example, a close-contact metal layer and a peeling auxiliary layer), a peeling layer, and an ultrathin copper layer.
- a foil is disclosed, which describes forming an intermediate layer, a release layer and an ultrathin copper layer by sputtering.
- each layer is formed by sputtering on a carrier such as glass having excellent surface flatness, so that an extremely low arithmetic average of 1.0 nm to 100 nm on the outer surface of the ultrathin copper layer. Roughness Ra is realized.
- Patent Document 4 Japanese Patent Laid-Open No. 2016-137727 discloses a laminated body in which a part or the whole of the outer periphery of a metal carrier and a metal foil is covered with a resin. It is said that peeling of the metal foil during handling can be reduced by preventing contact with other members.
- Patent Document 5 International Publication No.
- Patent Document 6 Japanese Patent Laid-Open No. 2000-331537 discloses a copper foil with a carrier in which the surface roughness in the vicinity of the left and right edges of the copper foil carrier is larger than that in the central portion. It is said that problems such as peeling of the copper layer from the carrier do not occur when handling the copper foil with the carrier or preparing the copper clad laminate.
- the carrier-attached copper foil is cut so as to have a size that can be processed by the mounting equipment, and downsized to about 100 mm width, for example.
- the peel strength of the peel layer exposed at the cut interface is low, so the copper layer may be peeled off from the carrier due to a load during cutting.
- the intended circuit pattern cannot be formed, and there is a problem that it cannot proceed to the subsequent steps.
- problems such as chipping (chip cracks) are likely to occur at the end of the glass when the carrier-attached copper foil is cut.
- the present inventors recently provided a linear uneven region as a cutting margin on the surface of an essentially flat glass carrier, so that the copper layer is peeled off at the cut portion even when downsized. It has been found that it is difficult to easily form an intended circuit pattern and that a fine-pitch circuit mounting substrate can be desirably realized.
- the object of the present invention is that it is difficult to peel off the copper layer at the cut portion even if it is downsized to a size capable of circuit mounting, the intended circuit pattern can be easily formed, and a fine pitch circuit mounting board can be desirably realized. It is to provide a copper foil with a glass carrier.
- the glass carrier has a plurality of flat regions having a maximum height Rz of less than 1.0 ⁇ m measured in accordance with JIS B 0601-2001 at least on the surface of the copper layer side, and conforms to JIS B 0601-2001
- a rugged area having a maximum height Rz of 1.0 ⁇ m or more and 30.0 ⁇ m or less, and the rugged area is provided in the form of a line that defines the plurality of flat areas.
- a copper foil is provided.
- the said copper foil with a glass carrier Providing a glass carrier, wherein at least one surface is a flat surface having a maximum height Rz measured in accordance with JIS B 0601-2001 of less than 1.0 ⁇ m; A roughening process is performed on a predetermined region on the surface of the glass carrier, and a concavo-convex region having a maximum height Rz measured in accordance with JIS B 0601-2001 of 1.0 ⁇ m to 30.0 ⁇ m A step of forming the pattern into a linear pattern defining the region; Forming a release layer on the glass carrier; Forming a copper layer having a thickness of 0.1 ⁇ m or more and 3.0 ⁇ m or less on the release layer; A method is provided comprising:
- maximum height Rz measured in accordance with JIS B 0601-2001 is simply referred to as “maximum height Rz” or “Rz”.
- FIG. 1 It is a perspective view which shows typically the one aspect
- the copper foil 10 with a glass carrier of the present invention includes a glass carrier 12, a release layer 16, and a copper layer 18 in this order.
- the release layer 16 is a layer provided on the glass carrier 12.
- the copper layer 18 is provided on the release layer 16 and has a thickness of 0.1 ⁇ m or more and 3.0 ⁇ m or less.
- the glass carrier-attached copper foil 10 may further include an intermediate layer 14 between the glass carrier 12 and the release layer 16. Further, the glass carrier-attached copper foil 10 may further include a functional layer 17 between the release layer 16 and the copper layer 18.
- the glass carrier 12 has at least a plurality of flat regions F having a maximum height Rz of less than 1.0 ⁇ m on the surface on the copper layer 18 side, And an uneven region R having a maximum height Rz of 1.0 ⁇ m to 30.0 ⁇ m. And this uneven
- region R is provided in the linear form of the pattern which divides the several flat area
- the copper layer 18 is hardly peeled off at the cut portion even when downsized. Therefore, it is easy to form an intended circuit pattern, and it is possible to desirably realize a circuit board with a fine pitch. That is, since the glass carrier 12 has a flat region F having a small maximum height Rz, the surface on the flat region F of the copper layer 18 laminated on the glass carrier 12 via the release layer 16 also has a flat shape. The flat surface of the copper layer 18 makes it possible to form a fine pattern.
- the glass carrier 12 also has a concavo-convex region R having a large maximum height Rz, and due to the anchor effect due to the concavo-convex, the peel strength at the portions formed on the concavo-convex region R of the release layer 16 and the copper layer 18. Becomes higher. And since the uneven
- FIG. 4 shows a copper foil with a glass carrier 10 ′ obtained by cutting in the uneven region R.
- the peel strength of the peel layer 16 at the cut surface is high, and therefore the copper layer 18 from the cut surface has Undesirable peeling can be extremely effectively prevented not only at the time of cutting but also after cutting (for example, at the time of transporting or handling the copper foil with a carrier in the mounting process).
- an intended circuit pattern can be easily formed, and a fine-pitch circuit mounting board can be desirably realized.
- region R is planned to be cut
- the cutting of the copper foil with glass carrier 10 may be performed according to a known method, and is not particularly limited. Examples of preferable cutting methods include dicing, water cutter, laser cutter and the like.
- the glass carrier 12 is made of glass.
- the form of the glass carrier 12 may be any of a sheet, a film, and a plate.
- the glass carrier 12 may be a laminate of these sheets, films, plates and the like.
- the glass carrier 12 is preferably capable of functioning as a support having rigidity such as a glass plate. More preferably, from the viewpoint of preventing warpage of the glass carrier-attached copper foil 10 in a process involving heating, the coefficient of thermal expansion (CTE) is less than 25 ppm / K (typically 1.0 ppm / K or more and 23 ppm / K or less). It is glass.
- the glass carrier 12 preferably has a Vickers hardness of 100 HV or more, more preferably 150 HV or more and 2500 HV or less.
- a Vickers hardness 100 HV or more, more preferably 150 HV or more and 2500 HV or less.
- Glass carrier 12 is preferably a glass containing SiO 2, more preferably a SiO 2 50 wt% or more, further preferably glass containing SiO 2 60 wt% or more.
- the glass constituting the glass carrier 12 include quartz glass, borosilicate glass, alkali-free glass, soda lime glass, aminosilicate glass, and combinations thereof, more preferably borosilicate glass and alkali-free glass. , Soda lime glass, and combinations thereof, particularly preferably alkali-free glass, soda lime glass, and combinations thereof, most preferably alkali-free glass.
- the glass carrier 12 is composed of borosilicate glass, non-alkali glass or soda lime glass, it is preferable because chipping of the glass carrier 12 can be reduced when the copper foil 10 with glass carrier is cut.
- the alkali-free glass is a glass mainly containing silicon dioxide, aluminum oxide, boron oxide, and alkaline earth metal oxides such as calcium oxide and barium oxide, and further containing boric acid and substantially no alkali metal. That is.
- This alkali-free glass has a low and stable coefficient of thermal expansion in the range of 3 ppm / K to 5 ppm / K in a wide temperature range from 0 ° C. to 350 ° C., thus minimizing glass warpage in processes involving heating. There is an advantage that you can.
- the thickness of the glass carrier 12 is preferably from 100 ⁇ m to 2000 ⁇ m, more preferably from 300 ⁇ m to 1800 ⁇ m, still more preferably from 400 ⁇ m to 1100 ⁇ m. When the thickness is within such a range, it is possible to reduce the thickness of the printed wiring board and reduce the warpage that occurs when mounting electronic components while ensuring an appropriate strength that does not hinder handling.
- Each flat region F of the glass carrier 12 has a maximum height Rz of less than 1.0 ⁇ m, preferably 0.001 ⁇ m to 0.5 ⁇ m, more preferably 0.001 ⁇ m to 0.1 ⁇ m, and even more preferably 0. It is 0.001 to 0.08 ⁇ m, particularly preferably 0.001 to 0.05 ⁇ m, and most preferably 0.001 to 0.02 ⁇ m.
- the maximum height Rz of the flat region F the lower the maximum height Rz that is desirable on the outermost surface of the copper layer 18 stacked on the glass carrier 12 (that is, the surface opposite to the release layer 16).
- the line / space (L / S) is about 13 ⁇ m or less / 13 ⁇ m or less (for example, from 12 ⁇ m / 12 ⁇ m to 2 ⁇ m / 2 ⁇ m). This is suitable for forming a highly miniaturized wiring pattern.
- region R of the glass carrier 12 is 1.0 to 30.0 micrometers in maximum height Rz, Preferably it is 1.5 to 28.0 micrometers, More preferably, it is 2.0 to 26.0 micrometers, More preferably Is 2.5 ⁇ m or more and 24.0 ⁇ m or less, particularly preferably 5.0 ⁇ m or more and 22.0 ⁇ m or less, and most preferably 10.0 ⁇ m or more and 20.0 ⁇ m or less.
- the adhesion with the release layer 16 in the uneven region R is improved, and when the glass carrier-attached copper foil 10 is cut in accordance with the pattern of the uneven region R, it is possible to ensure a good peel strength on the cut surface.
- the peel strength of the glass carrier 12 in the uneven region R is preferably 30 gf / cm or more and 3000 gf / cm or less, more preferably 50 gf / cm or more and 2800 gf / cm or less, still more preferably 200 gf / cm or more and 2500 gf / cm or less.
- they are 400 gf / cm or more and 2300 gf / cm or less, Most preferably, they are 1000 gf / cm or more and 2000 gf / cm or less.
- This peel strength is a value measured according to JIS Z 0237-2009, as will be mentioned in the examples described later.
- the pattern of the uneven region R is provided in a lattice shape, a fence shape, or a cross shape, which is preferable because a plurality of flat regions F can be easily divided into uniform shapes and sizes suitable for a circuit mounting board.
- the line width of the pattern of the concavo-convex region R is preferably 1 mm or more and 50 mm or less, more preferably 1.5 mm or more and 45 mm or less, further preferably 2.0 mm or more and 40 mm or less, and particularly preferably 2.5 mm or more and 35 mm or less. is there. By making it within such a range, it becomes easy to position and cut the cutting means such as a cutter to the uneven region R, and various advantages of the uneven region R are desirably realized while securing a large flat region F. can do.
- the unevenness with respect to the total area of the flat region F and the uneven region R of the glass carrier 12 is preferably 0.01 or more and 0.5 or less, more preferably 0.02 or more and 0.45 or less, still more preferably 0.05 or more and 0.40 or less, and particularly preferably 0.00. 1 or more and 0.35 or less.
- the intermediate layer 14 provided as desired is a layer that is interposed between the carrier 12 and the release layer 16 and contributes to ensuring adhesion between the carrier 12 and the release layer 16.
- the metal constituting the intermediate layer 14 include Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga, Mo, and combinations thereof (hereinafter referred to as metals).
- M preferably Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, Mo and combinations thereof, more preferably Cu, Ti, Zr, Al, Cr, W, Ni, Mo and combinations thereof, more preferably Cu, Ti, Al, Cr, Ni, Mo and combinations thereof, particularly preferably Cu, Ti, Al, Ni and combinations thereof.
- the intermediate layer 14 may be a pure metal or an alloy.
- the metal constituting the intermediate layer 14 may contain inevitable impurities due to raw material components, film formation processes, and the like.
- the upper limit of the metal content is not particularly limited, and may be 100 atomic%.
- the intermediate layer 14 is preferably a layer formed by physical vapor deposition (PVD), and more preferably a layer formed by sputtering. It is particularly preferable that the intermediate layer 14 is a layer formed by a magnetron sputtering method using a metal target because the uniformity of the film thickness distribution can be improved.
- the thickness of the intermediate layer 14 is preferably 10 nm to 1000 nm, more preferably 30 nm to 800 nm, still more preferably 60 nm to 600 nm, and particularly preferably 100 nm to 400 nm. This thickness is a value measured by analyzing the cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
- TEM-EDX energy dispersive X-ray spectrometer
- the intermediate layer 14 may have a single-layer structure or a structure with two or more layers.
- the intermediate layer 14 is preferably composed of a layer containing a metal composed of Cu, Al, Ti, Ni, or a combination thereof (for example, an alloy or an intermetallic compound).
- Al, Ti, or a combination thereof (for example, an alloy or an intermetallic compound) is preferable, and a layer mainly containing Al or a layer mainly containing Ti is more preferable.
- the intermediate layer 14 is preferably configured to have a two-layer structure.
- an example of a preferable two-layer configuration of the intermediate layer 14 includes a laminated structure including a Ti-containing layer adjacent to the glass carrier 12 and a Cu-containing layer adjacent to the release layer 16.
- the peel strength also changes. Therefore, it is preferable to appropriately adjust the constituent elements and the thickness of each layer.
- the category of “metal M-containing layer” includes alloys containing an element other than metal M as long as the peelability of the carrier is not impaired. Therefore, the intermediate layer 14 can also be referred to as a layer mainly containing the metal M. From the above points, the content of the metal M in the intermediate layer 14 is preferably 50 atom% or more and 100 atom% or less, more preferably 60 atom% or more and 100 atom% or less, and further preferably 70 atom% or more and 100 atom% or less. % Or less, particularly preferably 80 atom% or more and 100 atom% or less, and most preferably 90 atom% or more and 100 atom% or less.
- an example of a preferable alloy is a Ni alloy.
- the Ni alloy preferably has a Ni content of 45 wt% or more and 98 wt% or less, more preferably 55 wt% or more and 90 wt% or less, and further preferably 65 wt% or more and 85 wt% or less.
- a preferred Ni alloy is an alloy of Ni and at least one selected from the group consisting of Cr, W, Ta, Co, Cu, Ti, Zr, Si, C, Nd, Nb and La, more preferably It is at least one alloy selected from the group consisting of Ni and Cr, W, Cu and Si.
- the release layer 16 is a layer that enables the glass carrier 12 to be peeled off, and can be made of a known material that is employed as a release layer for the copper foil with a carrier.
- the release layer 16 may be either an organic release layer or an inorganic release layer.
- organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like.
- nitrogen-containing organic compounds include triazole compounds and imidazole compounds.
- examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, Cu, Al, Nb, Zr, Ta, Ag, In, Sn, and Ga.
- the release layer 16 is preferably a carbon layer, that is, a layer mainly containing carbon from the viewpoint of ease of peeling and film formation, and more preferably a layer mainly made of carbon or hydrocarbon. More preferably, it is made of amorphous carbon which is a hard carbon film.
- the release layer 16 (that is, the carbon layer) preferably has a carbon concentration measured by XPS of 60 atomic% or more, more preferably 70 atomic% or more, still more preferably 80 atomic% or more, and particularly preferably 85. It is at least atomic percent.
- the upper limit value of the carbon concentration is not particularly limited, and may be 100 atomic%, but 98 atomic% or less is realistic.
- the release layer 16 (particularly the carbon layer) can contain inevitable impurities (for example, oxygen, hydrogen, etc. derived from the surrounding environment such as the atmosphere).
- metal atoms may be mixed into the release layer 16 (particularly the carbon layer) due to the method of forming the functional layer 17 or the copper layer 18.
- Carbon has low interdiffusion and reactivity with carriers, and prevents metal bonds from forming due to high-temperature heating between the copper foil layer and the bonding interface even when subjected to press processing at temperatures exceeding 300 ° C. Thus, it is possible to maintain a state where the carrier can be easily peeled and removed.
- the release layer 16 is also a layer formed by a vapor phase method such as sputtering, which suppresses excessive impurities in the amorphous carbon, and the continuous productivity with the formation of the intermediate layer 14 provided as desired.
- the thickness of the release layer 16 (particularly the carbon layer) is preferably 1 nm or more and 20 nm or less, and more preferably 1 nm or more and 10 nm or less. This thickness is a value measured by analyzing the cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
- TEM-EDX energy dispersive X-ray spectrometer
- a functional layer 17 may be provided between the release layer 16 and the copper layer 18 if desired.
- the functional layer 17 is not particularly limited as long as it imparts desired functions such as an etching stopper function and an antireflection function to the copper foil 10 with glass carrier.
- the metal constituting the functional layer 17 include Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, Mo, and combinations thereof, and more preferably Ti, Zr, Al , Cr, W, Ni, Mo and combinations thereof, more preferably Ti, Al, Cr, Ni, Mo and combinations thereof, particularly preferably Ti, Mo and combinations thereof.
- the functional layer 17 becomes a layer that is harder to be etched by the copper flash etchant than the copper layer 18, and therefore can function as an etching stopper layer. Further, since the above-described metal constituting the functional layer 17 also has a function of preventing light reflection, the functional layer 17 is an antireflection layer for improving visibility in image inspection (for example, automatic image inspection (AOI)). Can also function.
- the functional layer 17 may be a pure metal or an alloy.
- the metal constituting the functional layer 17 may contain inevitable impurities due to raw material components, film forming processes, and the like.
- the functional layer 17 is preferably a layer formed by physical vapor deposition (PVD), and more preferably a layer formed by sputtering.
- the thickness of the functional layer 17 is preferably 1 nm to 500 nm, more preferably 10 nm to 400 nm, still more preferably 30 nm to 300 nm, and particularly preferably 50 nm to 200 nm.
- the copper layer 18 is a layer made of copper.
- the copper constituting the copper layer 18 may contain inevitable impurities due to raw material components, film forming processes, and the like.
- the copper layer 18 may be manufactured by any method, for example, wet film formation methods such as electroless copper plating and electrolytic copper plating, physical vapor deposition (PVD) methods such as sputtering and vacuum evaporation, It may be a copper layer formed by vapor deposition or a combination thereof. Particularly preferred is a copper layer formed by a physical vapor deposition (PVD) method such as a sputtering method or vacuum vapor deposition from the viewpoint of facilitating a fine pitch by ultrathinning, and most preferably produced by a sputtering method. Copper layer.
- PVD physical vapor deposition
- the copper layer 18 is preferably a non-roughened copper layer.
- preliminary roughening, soft etching treatment, cleaning treatment, oxidation-reduction may be used as long as it does not hinder wiring pattern formation during printed wiring board manufacture.
- a secondary roughening may be caused by the treatment.
- the thickness of the copper layer 18 is 0.05 ⁇ m or more and 3.0 ⁇ m or less, preferably 0.10 ⁇ m or more and 2.5 ⁇ m or less, more preferably 0.15 ⁇ m or more and 2 or less.
- the copper layer 18 having a thickness in such a range is preferably manufactured by a sputtering method from the viewpoint of in-plane uniformity of the film thickness and productivity in the form of a sheet or roll.
- the outermost surface of the copper layer 18 preferably has a flat shape corresponding to the surface shape of the flat region F of the glass carrier 12 and an uneven shape corresponding to the surface shape of the uneven region R of the glass carrier 12. That is, as shown in FIGS. 1 and 2, the intermediate layer 14 (if present), the release layer 16, and the functional layer 17 (if present) are disposed on the glass carrier 12 having the flat region F and the uneven region R.
- the intermediate layer 14 (if present), the release layer 16, and the functional layer 17 are disposed on the glass carrier 12 having the flat region F and the uneven region R.
- the surface profile of the flat region F and the uneven region R of the glass carrier 12 is transferred to the surface of each layer.
- a desired surface profile corresponding to the shape of each region of the glass carrier 12 is given to the outermost surface of the copper layer 18.
- a surface having a flat shape corresponding to the flat region F of the glass carrier 12 on the outermost surface of the copper layer 18 has a maximum height Rz of less than 1.0 ⁇ m, preferably 0. 0.001 ⁇ m to 0.5 ⁇ m, more preferably 0.001 ⁇ m to 0.1 ⁇ m, still more preferably 0.001 ⁇ m to 0.08 ⁇ m, particularly preferably 0.001 ⁇ m to 0.05 ⁇ m, and most preferably 0.001 ⁇ m. It is 0.02 ⁇ m or less.
- the surface having the concavo-convex shape corresponding to the concavo-convex region R of the glass carrier 12 on the outermost surface of the copper layer 18 typically has a maximum height Rz of 1.0 ⁇ m to 30.0 ⁇ m. Yes, preferably 1.5 ⁇ m to 28.0 ⁇ m, more preferably 2.0 ⁇ m to 26.0 ⁇ m, still more preferably 2.5 ⁇ m to 24.0 ⁇ m, particularly preferably 5.0 ⁇ m to 22.0 ⁇ m, most Preferably they are 10.0 micrometers or more and 20.0 micrometers or less.
- the intermediate layer 14 (if present), release layer 16, functional layer 17 (if present) and copper layer 18 were all formed by physical vapor deposition (PVD) film, ie, physical vapor deposition (PVD) method.
- PVD physical vapor deposition
- a film is preferable, and a sputtered film, that is, a film formed by a sputtering method is more preferable.
- the copper foil with glass carrier of the present invention (1) prepares a glass carrier, (2) performs a roughening treatment on a predetermined region of the glass carrier surface, and (3) a glass carrier. It can manufacture by forming various layers, such as a peeling layer and a copper layer, on it.
- the glass carrier 12 which is a flat surface where the maximum height Rz of at least one surface is less than 1.0 micrometer is prepared.
- This maximum height Rz is preferably 0.001 ⁇ m to 0.5 ⁇ m, more preferably 0.001 ⁇ m to 0.1 ⁇ m, still more preferably 0.001 ⁇ m to 0.08 ⁇ m, and particularly preferably 0.001 ⁇ m to 0 ⁇ m. .05 ⁇ m or less, most preferably 0.001 ⁇ m or more and 0.02 ⁇ m or less.
- glass products are generally excellent in flatness, a commercially available glass sheet, glass film and glass plate having a flat surface satisfying Rz within the above range may be used as the glass carrier 12. Or you may provide Rz within the said range by grind
- the preferable material and characteristics of the glass carrier 12 are as described above.
- This maximum height Rz is preferably 1.1 ⁇ m or more and 20.0 ⁇ m or less, more preferably 1.2 ⁇ m or more and 15.0 ⁇ m or less, further preferably 1.3 ⁇ m or more and 10.0 ⁇ m or less, and particularly preferably 1.4 ⁇ m or more and 7 or less.
- 0.0 ⁇ m or less most preferably 1.5 ⁇ m or more and 5.0 ⁇ m or less.
- the roughening process may be performed according to a known method, and the maximum height Rz within the above range can be realized, and the uneven region R can be formed in a desired pattern (using masking as necessary).
- a preferred roughening treatment method is blasting or etching, more preferably blasting, in that the desired uneven region R of Rz can be efficiently formed.
- the roughening process by the blasting process can be performed by projecting a particulate medium (projection material) from a nozzle onto a predetermined area on the surface of the glass carrier 12 (that is, an area where the uneven area R is to be formed). .
- a preferable discharge diameter of the nozzle is 0.5 mm or more and 10.0 mm or less, and more preferably 0.75 mm or more and 8.5 mm or less.
- the particle size of the media is preferably 1.0 ⁇ m or more and 1000 ⁇ m or less, more preferably 2.0 mm or more and 800 mm or less, and the projection amount is preferably 10 g / min or more and 3000 g / min or less, more preferably 25 g. / Min to 2750 g / min.
- a preferable discharge pressure of the medium is 0.005 MPa or more and 0.5 MPa or less, and more preferably 0.01 MPa or more and 0.1 MPa or less.
- the material for the media include alumina, zirconia, silicon carbide, iron, aluminum, zinc, glass, steel, and boron carbide.
- the Mohs hardness of the media is preferably 4 or more, more preferably 5.5 or more, and even more preferably 6.0 or more.
- preferable examples of the roughening treatment by the etching treatment include a wet process using a solution containing hydrofluoric acid (hydrofluoric acid) and a reaction using a process gas containing fluorine (for example, CF 4 or SF 6 ).
- RIE reactive ion etching
- the masking layer 20 is formed in a portion other than a predetermined region (that is, a region where the uneven region R is to be formed) on the surface of the glass carrier 12 before the roughening treatment. It is preferable to do this. In this case, it is desirable to remove the masking layer 20 after the roughening treatment. In particular, when the roughening treatment is performed by an etching treatment, it is preferable to use a masking layer. However, even in the case of a blast treatment, a masking layer can be used as necessary.
- intermediate layer 14 On glass carrier 12 subjected to roughening treatment, intermediate layer 14, release layer 16, functional layer 17, and thickness 0.1 ⁇ m to 3.0 ⁇ m as desired
- the following copper layer 18 is formed.
- the formation of each of the intermediate layer 14 (if present), the release layer 16, the functional layer 17 (if present), and the copper layer 18 is performed by physical vapor deposition (from the viewpoint of facilitating the fine pitch by ultrathinning). It is preferably carried out by the PVD method.
- PVD physical vapor deposition
- PVD physical vapor deposition
- the sputtering method is most preferred from the viewpoint of ensuring film thickness uniformity over the entire area.
- the film formation by physical vapor deposition (PVD) method is not particularly limited as long as it is performed according to known conditions using a known vapor deposition apparatus.
- the sputtering method may be any of various known methods such as magnetron sputtering, dipole sputtering, and counter target sputtering.
- magnetron sputtering has a high film formation rate and high productivity. It is preferable at a high point.
- Sputtering may be performed by any power source of DC (direct current) and RF (high frequency).
- a plate-type target whose target shape is widely known can be used, but it is desirable to use a cylindrical target from the viewpoint of target use efficiency.
- PVD physical vapor deposition
- the intermediate layer 14 is formed by physical vapor deposition (PVD) (preferably sputtering), Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn
- PVD physical vapor deposition
- a target composed of at least one metal selected from the group consisting of Ga and Mo and perform magnetron sputtering in a non-oxidizing atmosphere.
- the purity of the target is preferably 99.9% or higher.
- an inert gas such as argon gas is preferably used.
- the flow rate of the argon gas is not particularly limited as long as it is appropriately determined according to the sputtering chamber size and film forming conditions.
- the pressure at the time of film formation in the range of 0.1 Pa or more and 20 Pa or less from the viewpoint of continuous film formation without malfunction such as abnormal discharge and plasma irradiation defect.
- This pressure range may be set by adjusting the deposition power and the flow rate of argon gas according to the device structure, capacity, vacuum pump exhaust capacity, rated capacity of the deposition power source, and the like.
- the sputtering power is film thickness uniformity of the film formation, in consideration of productivity and the like may be appropriately set within a range of 0.05 W / cm 2 or more 10.0 W / cm 2 or less per unit area of the target.
- Film formation of the release layer 16 by physical vapor deposition (PVD) is preferably performed using a carbon target in an inert atmosphere such as argon.
- the carbon target is preferably composed of graphite, but may contain inevitable impurities (for example, oxygen and carbon derived from the surrounding environment such as the atmosphere).
- the purity of the carbon target is preferably 99.99% or more, more preferably 99.999% or more.
- This pressure range may be set by adjusting the deposition power and the flow rate of argon gas according to the device structure, capacity, vacuum pump exhaust capacity, rated capacity of the deposition power source, and the like. Further, the sputtering power is film thickness uniformity of the film formation, in consideration of productivity and the like may be appropriately set within a range of 0.05 W / cm 2 or more 10.0 W / cm 2 or less per unit area of the target.
- the film formation of the functional layer 17 by physical vapor deposition (PVD) method is selected from the group consisting of Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, and Mo. It is preferable to carry out by a magnetron sputtering method using a target composed of at least one kind of metal. The purity of the target is preferably 99.9% or higher.
- the film formation of the functional layer 17 by the magnetron sputtering method is preferably performed in an inert gas atmosphere such as argon at a pressure of 0.1 Pa to 20 Pa.
- the sputtering pressure is more preferably 0.2 Pa to 15 Pa, and still more preferably 0.3 Pa to 10 Pa.
- the pressure range may be controlled by adjusting the deposition power and the flow rate of argon gas according to the device structure, capacity, vacuum pump exhaust capacity, rated power supply capacity, and the like.
- the flow rate of the argon gas is not particularly limited as long as it is appropriately determined according to the sputtering chamber size and film forming conditions.
- the sputtering power is film thickness uniformity of the film formation, in consideration of productivity and the like may be appropriately set within a range of 1.0 W / cm 2 or more 15.0W / cm 2 or less per unit area of the target.
- the carrier temperature during film formation is preferably adjusted in the range of 25 ° C. or more and 300 ° C. or less, more preferably 40 ° C. or more and 200 ° C. or less, and further preferably 50 ° C. or more and 150 ° C. or less.
- Film formation of the copper layer 18 by physical vapor deposition (PVD) is preferably performed in an inert atmosphere such as argon using a copper target.
- the copper target is preferably composed of metallic copper, but may contain unavoidable impurities.
- the purity of the copper target is preferably 99.9% or more, more preferably 99.99%, and still more preferably 99.999% or more.
- a stage cooling mechanism may be provided during sputtering.
- This pressure range may be set by adjusting the deposition power and the flow rate of argon gas according to the device structure, capacity, vacuum pump exhaust capacity, rated capacity of the deposition power source, and the like. Further, the sputtering power is film thickness uniformity of the film formation, in consideration of productivity and the like may be appropriately set within a range of 0.05 W / cm 2 or more 10.0 W / cm 2 or less per unit area of the target.
- Example 1 As shown in FIG. 1, after forming the uneven region R on the glass carrier 12, the intermediate layer 14 (Ti-containing layer and Cu-containing layer), the carbon layer as the release layer 16, the functional layer 17, and the copper layer 18. Were formed in this order to prepare a copper foil 10 with a glass carrier.
- the specific procedure is as follows. Note that the maximum height Rz mentioned in the following examples is a value measured with a non-contact surface shape measuring instrument (New View 5032 manufactured by Zygo Corporation) in accordance with JIS B 0601-2001.
- glass carrier A glass sheet (material: soda lime glass, manufactured by Central Glass Co., Ltd.) having a flat surface with a maximum height Rz of 2.7 nm and a thickness of 1.1 mm was prepared.
- a titanium layer having a thickness of 100 nm was formed as a Ti-containing layer by sputtering under the following apparatus and conditions.
- -Equipment Single-wafer type magnetoroton sputtering equipment (manufactured by Canon Tokki Co., Ltd., MLS464)
- -Target 8 inch (203.2 mm) diameter Ti target (purity 99.999%)
- -Ultimate vacuum less than 1 x 10-4
- a copper layer having a thickness of 100 nm was formed as a Cu-containing layer by sputtering under the following apparatus and conditions.
- -Equipment Single wafer DC sputtering equipment (manufactured by Canon Tokki Co., Ltd., MLS464)
- -Target 8 inch (203.2 mm) diameter copper target (purity 99.98%)
- -Ultimate vacuum less than 1 x 10-4
- Pa-Gas Argon gas (flow rate: 100 sccm) -Sputtering pressure: 0.35Pa -Sputtering power: 1000 W (6.2 W / cm 2 ) -Deposition temperature: 40 ° C
- the copper layer 18 with a film thickness of 300 nm was formed by sputtering under the following apparatus and conditions to obtain a copper foil 10 with a glass carrier.
- -Equipment Single wafer DC sputtering equipment (manufactured by Canon Tokki Co., Ltd., MLS464)
- -Target 8 inch (203.2 mm) diameter copper target (purity 99.98%)
- -Ultimate vacuum less than 1 x 10-4
- Examples 2-11 In the roughening treatment step of the glass carrier 12, the maximum height Rz and / or the concavo-convex region R of the glass carrier 12 is appropriately changed by appropriately changing the blasting conditions and / or the separation distance (line width) between the masking layers 20.
- a glass carrier-attached copper foil 10 was produced in the same manner as in Example 1 except that the average line width of the pattern was changed.
- the measurement of the peel strength in the concavo-convex area was performed in the same manner as in Example 1.
- Table 1 shows the maximum height Rz, the peel strength, the average line width of the pattern, and the ratio of the area of the uneven region R to the total area of the flat region F and the uneven region R in the uneven region R of the glass carrier 12. It is shown.
- ⁇ Evaluation 1 Number of particulate fragments generated by cutting an uneven region> Using a dicing apparatus, the glass carrier-attached copper foil 10 was cut in parallel with the linear pattern so as to pass through the center of the uneven region in the line width direction. The area of 10 cm 2 including the cut end of the copper foil with glass carrier 10 was observed with a microscope, and the number of particulate fragments having a diameter of 20 ⁇ m or more generated by cutting was counted. The number of particulate fragments thus obtained was rated according to the following criteria.
- Evaluation A The number of particulate fragments is less than 10 Evaluation B: The number of particulate fragments is 10 or more and less than 50 Evaluation C: The number of particulate fragments is 50 or more and less than 100 Evaluation D: The number of particulate fragments is 100 or more
- ⁇ Evaluation 3 Number of chippings generated by cutting the uneven area> Using a dicing apparatus, the glass carrier-attached copper foil 10 was cut in parallel with the linear pattern so as to pass through the center of the uneven region in the line width direction. The cut end of the copper foil 10 with glass carrier was observed with a microscope, and the number of chippings with a size extending from the glass end to an area of 1 mm or more was counted and converted into the number per cut length of 1 cm. . The number of chippings thus obtained was rated according to the following criteria.
- Evaluation A The number of chippings of 1 mm or more per cut length of 1 cm is less than 10
- Evaluation B The number of chippings of 1 mm or more per cut length of 1 cm is 10 or more and less than 30
- Evaluation C 1 mm or more of cut length of 1 cm More than 30 chippings
- Examples 1 to 7 and 9 to 11 in which the maximum height Rz of the uneven area in the glass carrier is in the range of 1.0 ⁇ m to 30.0 ⁇ m are good in all of the evaluations 1 to 3 It turns out that it is a result. Therefore, by cutting these copper foils with a glass carrier according to the pattern of the concavo-convex region, while effectively preventing peeling of the copper layer and the like from the cut end, and generation of particulate debris and chipping on the glass carrier. It is possible to downsize to a size that allows circuit mounting.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
ガラスキャリアと、
前記ガラスキャリア上に設けられる剥離層と、
前記剥離層上に設けられる、厚さ0.1μm以上3.0μm以下の銅層と、
を備え、
前記ガラスキャリアが、少なくとも前記銅層側の表面に、JIS B 0601-2001に準拠して測定される最大高さRzが1.0μm未満である複数の平坦領域と、JIS B 0601-2001に準拠して測定される最大高さRzが1.0μm以上30.0μm以下である凹凸領域とを有し、該凹凸領域が、前記複数の平坦領域を区画するパターンの線状に設けられる、ガラスキャリア付銅箔が提供される。
少なくとも一方の表面が、JIS B 0601-2001に準拠して測定される最大高さRzが1.0μm未満の平坦面である、ガラスキャリアを用意する工程と、
前記ガラスキャリアの表面の所定の領域に粗化処理を行って、JIS B 0601-2001に準拠して測定される最大高さRzが1.0μm以上30.0μm以下である凹凸領域を、複数の領域を区画するパターンの線状に形成する工程と、
前記ガラスキャリア上に、剥離層を形成する工程と、
前記剥離層上に、厚さ0.1μm以上3.0μm以下の銅層を形成する工程と、
を含む、方法が提供される。
本発明のガラスキャリア付銅箔の一例が図1及び2に模式的に示される。図1及び2に示されるように、本発明のガラスキャリア付銅箔10は、ガラスキャリア12と、剥離層16と、銅層18とをこの順に備えたものである。剥離層16は、ガラスキャリア12上に設けられる層である。銅層18は剥離層16上に設けられ、厚さ0.1μm以上3.0μm以下の層である。所望により、ガラスキャリア付銅箔10は、ガラスキャリア12と剥離層16との間に中間層14をさらに有していてもよい。また、ガラスキャリア付銅箔10は、剥離層16と銅層18との間に機能層17をさらに有していてもよい。さらに、ガラスキャリア12の両面に上下対称となるように上述の各種層を順に備えてなる構成としてもよい。ガラスキャリア付銅箔10は、上述した態様のガラスキャリア12を備えること以外は、公知の層構成を採用すればよく特に限定されない。いずれにせよ、本発明においては、図2及び3に示されるように、ガラスキャリア12は、少なくとも銅層18側の表面に最大高さRzが1.0μm未満である複数の平坦領域Fと、最大高さRzが1.0μm以上30.0μm以下である凹凸領域Rとを有する。そして、この凹凸領域Rが、互いに個別化された複数の平坦領域Fを区画するパターンの線状に設けられる。
本発明のガラスキャリア付銅箔10は、(1)ガラスキャリアを用意し、(2)ガラスキャリア表面の所定の領域に粗化処理を行い、(3)ガラスキャリア上に剥離層、銅層等の各種層を形成することにより製造することができる。
まず、少なくとも一方の表面の最大高さRzが1.0μm未満の平坦面である、ガラスキャリア12を用意する。この最大高さRzは、好ましくは0.001μm以上0.5μm以下、より好ましくは0.001μm以上0.1μm以下、さらに好ましくは0.001μm以上0.08μm以下、特に好ましくは0.001μm以上0.05μm以下、最も好ましくは0.001μm以上0.02μm以下である。一般的にガラス製品は平坦性に優れるものであることから、上記範囲内のRzを満たす平坦面を有する市販のガラスシート、ガラスフィルム及びガラス板をガラスキャリア12として用いればよい。あるいは、上記Rzを満たさないガラスキャリア12表面に公知の手法で研磨加工を施すことで上記範囲内のRzを付与してもよい。ガラスキャリア12の好ましい材質や特性については前述したとおりである。
次に、ガラスキャリア12の表面の所定の領域に粗化処理を行って、最大高さRzが1.0μm以上30.0μm以下である凹凸領域Rを、互いに個別化された複数の領域を区画するパターンの線状に形成する。この最大高さRzは、好ましくは1.1μm以上20.0μm以下、より好ましくは1.2μm以上15.0μm以下、さらに好ましくは1.3μm以上10.0μm以下、特に好ましくは1.4μm以上7.0μm以下、最も好ましくは1.5μm以上5.0μm以下である。粗化処理は公知の手法に従って行えばよく、上記範囲内の最大高さRzを実現でき、かつ、(必要に応じてマスキングを併用して)所望のパターンで凹凸領域Rを形成することが出来る限り特に限定されない。好ましい粗化処理の手法は、所望のRzの凹凸領域Rを効率良く形成可能な点でブラスト処理又はエッチング処理であり、より好ましくはブラスト処理である。ブラスト処理による粗化処理は、ガラスキャリア12の表面の所定領域(すなわち凹凸領域Rが形成されるべき領域)に対して粒子状のメディア(投射材)をノズルから投射することにより行うことができる。好ましいノズルの吐出径は0.5mm以上10.0mm以下であり、より好ましくは0.75mm以上8.5mm以下である。メディアの粒径は1.0μm以上1000μm以下であるのが好ましく、より好ましくは2.0mm以上800mm以下であり、投射量は10g/分以上3000g/分以下であるのが好ましく、より好ましくは25g/分以上2750g/分以下である。また、好ましいメディアの吐出圧力は0.005MPa以上0.5MPa以下であり、より好ましくは0.01MPa以上0.1MPa以下である。メディアの材質の好ましい例としては、アルミナ、ジルコニア、炭化ケイ素、鉄、アルミ、亜鉛、ガラス、スチール及びボロンカーバイトが挙げられる。メディアのモース硬度は4以上が好ましく、より好ましくは5.5以上、さらに好ましくは6.0以上である。一方、エッチング処理による粗化処理の好ましい例としては、フッ酸(フッ化水素酸)を含む溶液を用いたウエットプロセス、及びフッ素を含むプロセスガス(例えばCF4やSF6等)を用いた反応性イオンエッチング(RIE:Reactive ion etching)によるドライプロセスが挙げられる。
粗化処理を行ったガラスキャリア12上に、所望により中間層14、剥離層16、所望により機能層17、及び厚さ0.1μm以上3.0μm以下の銅層18を形成する。中間層14(存在する場合)、剥離層16、機能層17(存在する場合)及び銅層18の各層の形成は、極薄化によるファインピッチ化に対応しやすい観点から、物理気相堆積(PVD)法により行われるのが好ましい。物理気相堆積(PVD)法の例としては、スパッタリング法、真空蒸着法、及びイオンプレーティング法が挙げられるが、0.05nm以上5000nm以下といった幅広い範囲で膜厚制御できる点、広い幅ないし面積にわたって膜厚均一性を確保できる点等から、最も好ましくはスパッタリング法である。特に、中間層14(存在する場合)、剥離層16、機能層17(存在する場合)及び銅層18の全ての層をスパッタリング法により形成することで、製造効率が格段に高くなる。物理気相堆積(PVD)法による成膜は公知の気相成膜装置を用いて公知の条件に従って行えばよく特に限定されない。例えば、スパッタリング法を採用する場合、スパッタリング方式は、マグネトロンスパッタリング、2極スパッタリング法、対向ターゲットスパッタリング法等、公知の種々の方法であってよいが、マグネトロンスパッタリングが、成膜速度が速く生産性が高い点で好ましい。スパッタリングはDC(直流)及びRF(高周波)のいずれの電源で行ってもよい。また、ターゲット形状も広く知られているプレート型ターゲットを使用することができるが、ターゲット使用効率の観点から円筒形ターゲットを用いることが望ましい。以下、中間層14(存在する場合)、剥離層16、機能層17(存在する場合)及び銅層18の各層の物理気相堆積(PVD)法(好ましくはスパッタリング法)による成膜について説明する。
図1に示されるように、ガラスキャリア12上に凹凸領域Rを形成した後、中間層14(Ti含有層及びCu含有層)、剥離層16としての炭素層、機能層17、及び銅層18をこの順に成膜してガラスキャリア付銅箔10を作製した。具体的な手順は以下のとおりである。なお、以下の例において言及される最大高さRzはJIS B 0601-2001に準拠して非接触表面形状測定機(Zygo株式会社製NewView5032)で測定された値である。
最大高さRz2.7nmの平坦面を有する200mm×250mmで厚さ1.1mmのガラスシート(材質:ソーダライムガラス、セントラル硝子株式会社製)を用意した。
図5に示されるように、ガラスキャリア12表面にマスキング層20を、4つの矩形状マスキング領域が2.5mmの平均線幅で互いに離間して配置されるパターンに形成した。このマスキング層20の形成は、感光性フィルムを用いてロールラミネーションにより行った。次に、ブロワブラスト装置(株式会社不二製作所製、LDQ-3(AB))を用いて、マスキング層20で部分的に被覆されたガラスキャリア12表面に対して、吐出径5mmのノズルから、粒径0.16mmのメディア(アルミナ)を0.05MPaの吐出圧力で30秒間投射することで、ガラスキャリア12の露出部分に対して粗化処理を行った。こうして、ガラスキャリア12表面に、平均2.5mmの線幅を有する最大高さRz1.0μmの凹凸領域Rを格子状のパターンで形成した。その後、マスキング層20を除去して平坦領域Fを露出させた。
粗化処理を行った側のガラスキャリア12表面に、Ti含有層として厚さ100nmのチタン層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式マグネロトンスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)のTiターゲット(純度99.999%)
‐ 到達真空度:1×10-4Pa未満
‐ キャリアガス:Ar(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:1000W(3.1W/cm2)
‐ 成膜時温度:40℃
Ti含有層の上に、Cu含有層として厚さ100nmの銅層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)の銅ターゲット(純度99.98%)
‐ 到達真空度:1×10-4Pa未満
‐ ガス:アルゴンガス(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:1000W(6.2W/cm2)
‐ 成膜時温度:40℃
Cu含有層の上に、剥離層16として厚さ6nmのアモルファスカーボン層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)の炭素ターゲット(純度99.999%)
‐ 到達真空度:1×10-4Pa未満
‐ キャリアガス:Ar(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:250W(0.7W/cm2)
‐ 成膜時温度:40℃
剥離層16の表面に、機能層17として厚さ100nmのチタン層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)のチタンターゲット(純度99.999%)
‐ キャリアガス:Ar(流量:100sccm)
‐ 到達真空度:1×10-4Pa未満
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:1000W(3.1W/cm2)
機能層17の上に、膜厚300nmの銅層18を以下の装置及び条件でスパッタリングにより形成して、ガラスキャリア付銅箔10を得た。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)の銅ターゲット(純度99.98%)
‐ 到達真空度:1×10-4Pa未満
‐ キャリアガス:Ar(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:1000W(3.1W/cm2)
‐ 成膜時温度:40℃
マスキング層20の形成を行わなかったこと以外は上記(1)~(7)と同様にして、片面の全域が凹凸領域であるガラスキャリア付銅箔を作製した。このガラスキャリア付銅箔の銅層側に電解メッキにより銅を18μm積層し、測定サンプルを得た。この測定サンプルに対して、JIS Z 0237-2009に準拠して、電解メッキした銅層を剥離した時の剥離強度(gf/cm)を、測定幅10mm、測定長さ17mm、及び剥離速度50mm/分の条件で測定した。こうして測定された凹凸領域の剥離強度は表1に示されるとおりであった。
ガラスキャリア12の粗化処理工程において、ブラスト処理の条件及び/又はマスキング層20同士の離間距離(線幅)を適宜変更することにより、ガラスキャリア12の凹凸領域Rの最大高さRz及び/又はパターンの平均線幅を変化させたこと以外は、例1と同様にしてガラスキャリア付銅箔10の作製を行った。また、凹凸領域の剥離強度の測定も例1と同様にして行った。
例1~11のガラスキャリア付銅箔10について、以下に示されるとおり、各種評価を行った。評価結果は表1に示されるとおりであった。また、表1にはガラスキャリア12の凹凸領域Rにおける最大高さRz、剥離強度、パターンの平均線幅、並びに平坦領域F及び凹凸領域Rの合計面積に対する凹凸領域Rの面積の比率も併せて示してある。
ダイシング装置を用いて、ガラスキャリア付銅箔10を凹凸領域の線幅方向の中央を通るように線状パターンと平行に切断した。ガラスキャリア付銅箔10の切断端部を含む10cm2の領域を顕微鏡観察して、切断により発生した直径20μm以上の粒子状破片の数をカウントした。こうして得られた粒子状破片数を以下の基準で格付けした。
評価A:粒子状破片数が10個未満
評価B:粒子状破片数が10個以上50個未満
評価C:粒子状破片数が50個以上100個未満
評価D:粒子状破片数が100個以上
ステンレスカッターを用いて、ガラスキャリア付銅箔10を凹凸領域の線幅方向の中央を通るように線状パターンと平行に切断した。ガラスキャリア付銅箔10の切断端部に隣接する銅層18に粘着テープ(セロハンテープ)を貼り付け、この粘着テープを剥離した。このとき、粘着テープの剥離に伴う切断端部における銅層18の剥離の有無ないし程度を観察し、以下の基準で格付けした。
評価A:切断端部から銅層が剥離しなかった。
評価B:切断端部から銅層が部分的に剥離した。
評価C:切断端部から銅層の大部分が剥離した。
評価D:粘着テープを貼る前から切断端部から銅層が自然に剥離していた。
ダイシング装置を用いて、ガラスキャリア付銅箔10を凹凸領域の線幅方向の中央を通るように線状パターンと平行に切断した。ガラスキャリア付銅箔10の切断端部を顕微鏡観察して、ガラス端部から1mm以上の領域に及ぶサイズのチッピング(はま欠け)の個数をカウントし、切断長さ1cm辺りの個数に換算した。こうして得られたチッピング数を以下の基準で格付けした。
評価A:切断長さ1cm辺りの1mm以上のチッピング数が10個未満
評価B:切断長さ1cm辺りの1mm以上のチッピング数が10個以上30個未満
評価C:切断長さ1cm辺りの1mm以上のチッピング数が30個以上
Claims (16)
- ガラスキャリアと、
前記ガラスキャリア上に設けられる剥離層と、
前記剥離層上に設けられる、厚さ0.1μm以上3.0μm以下の銅層と、
を備え、
前記ガラスキャリアが、少なくとも前記銅層側の表面に、JIS B 0601-2001に準拠して測定される最大高さRzが1.0μm未満である複数の平坦領域と、JIS B 0601-2001に準拠して測定される最大高さRzが1.0μm以上30.0μm以下である凹凸領域とを有し、該凹凸領域が、前記複数の平坦領域を区画するパターンの線状に設けられる、ガラスキャリア付銅箔。 - 前記銅層の最外面が、前記ガラスキャリアの前記平坦領域の表面形状に対応した平坦形状と、前記ガラスキャリアの前記凹凸領域の表面形状に対応した凹凸形状とを有する、請求項1に記載のガラスキャリア付銅箔。
- 前記ガラスキャリアと前記剥離層との間に、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga及びMoからなる群から選択される少なくとも1種の金属を含む中間層をさらに備えた、請求項1又は2に記載のガラスキャリア付銅箔。
- 前記剥離層と前記銅層との間に、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni及びMoからなる群から選択される少なくとも1種の金属で構成される機能層をさらに備えた、請求項1~3のいずれか一項に記載のガラスキャリア付銅箔。
- 前記ガラスキャリアがSiO2を含むガラスである、請求項1~4のいずれか一項に記載のガラスキャリア付銅箔。
- 前記凹凸領域のパターンの線幅が1mm以上50mm以下である、請求項1~5のいずれか一項に記載のガラスキャリア付銅箔。
- 前記凹凸領域のパターンが、格子状、柵状又は十字状に設けられる、請求項1~6のいずれか一項に記載のガラスキャリア付銅箔。
- 前記ガラスキャリアの前記平坦領域及び前記凹凸領域の合計面積に対する、前記凹凸領域の面積の比率が0.01以上0.5以下である、請求項1~7のいずれか一項に記載のガラスキャリア付銅箔。
- 前記凹凸領域における前記ガラスキャリアの剥離強度が30gf/cm以上3000gf/cm以下である、請求項1~8のいずれか一項に記載のガラスキャリア付銅箔。
- 前記ガラスキャリア付銅箔が複数枚に分割されるように、前記凹凸領域が前記パターンに従って切断されることが予定されている、請求項1~9のいずれか一項に記載のガラスキャリア付銅箔。
- 請求項1~10のいずれか一項に記載のガラスキャリア付銅箔の製造方法であって、
少なくとも一方の表面が、JIS B 0601-2001に準拠して測定される最大高さRzが1.0μm未満の平坦面である、ガラスキャリアを用意する工程と、
前記ガラスキャリアの表面の所定の領域に粗化処理を行って、JIS B 0601-2001に準拠して測定される最大高さRzが1.0μm以上30.0μm以下である凹凸領域を、複数の領域を区画するパターンの線状に形成する工程と、
前記ガラスキャリア上に、剥離層を形成する工程と、
前記剥離層上に、厚さ0.1μm以上3.0μm以下の銅層を形成する工程と、
を含む、方法。 - 前記粗化処理がブラスト処理又はエッチング処理である、請求項11に記載の方法。
- 前記粗化処理の前に、前記ガラスキャリアの表面の前記所定の領域以外の部分にマスキング層を形成する工程と、
前記粗化処理後に、前記マスキング層を除去する工程と、
をさらに含む、請求項11又は12に記載の方法。 - 前記粗化処理がブラスト処理であって、該ブラスト処理が、吐出径0.5mm以上10.0mm以下のノズルから、粒径1.0μm以上1000μm以下のメディアを0.01MPa以上0.1MPa以下の吐出圧力で前記ガラスキャリアに対して投射することを含む、請求項12又は13に記載の方法。
- 前記剥離層の形成が、物理気相堆積(PVD)法により行われる、請求項11~14のいずれか一項に記載の方法。
- 前記銅層の形成が、物理気相堆積(PVD)法により行われる、請求項11~15のいずれか一項に記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/971,154 US11756845B2 (en) | 2018-02-20 | 2019-02-13 | Copper foil with glass carrier and production method therefor |
KR1020207015006A KR102386554B1 (ko) | 2018-02-20 | 2019-02-13 | 유리 캐리어를 구비하는 구리박 및 그 제조 방법 |
JP2020501703A JP6806951B2 (ja) | 2018-02-20 | 2019-02-13 | ガラスキャリア付銅箔及びその製造方法 |
CN201980006742.6A CN111511543B (zh) | 2018-02-20 | 2019-02-13 | 带玻璃载体的铜箔及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-027929 | 2018-02-20 | ||
JP2018027929 | 2018-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163605A1 true WO2019163605A1 (ja) | 2019-08-29 |
Family
ID=67688081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005111 WO2019163605A1 (ja) | 2018-02-20 | 2019-02-13 | ガラスキャリア付銅箔及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11756845B2 (ja) |
JP (1) | JP6806951B2 (ja) |
KR (1) | KR102386554B1 (ja) |
CN (1) | CN111511543B (ja) |
TW (1) | TWI741255B (ja) |
WO (1) | WO2019163605A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022124116A1 (ja) | 2020-12-08 | 2022-06-16 | 三井金属鉱業株式会社 | キャリア付金属箔及びその製造方法 |
WO2022138238A1 (ja) * | 2020-12-23 | 2022-06-30 | 三井金属鉱業株式会社 | 配線基板及びそのトリミング方法、並びに多層配線板 |
WO2023189839A1 (ja) | 2022-03-31 | 2023-10-05 | 三井金属鉱業株式会社 | キャリア付金属箔 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005076091A (ja) * | 2003-09-01 | 2005-03-24 | Furukawa Circuit Foil Kk | キャリア付き極薄銅箔の製造方法、及びその製造方法で製造されたキャリア付き極薄銅箔 |
JP2016049651A (ja) * | 2014-08-29 | 2016-04-11 | Jx金属株式会社 | キャリア付銅箔の製造方法、銅張積層板の製造方法、プリント配線板の製造方法、電子機器の製造方法、キャリア付銅箔、銅張積層板、プリント配線板及び電子機器 |
JP2016203409A (ja) * | 2015-04-16 | 2016-12-08 | 三井金属鉱業株式会社 | キャリア付銅箔、キャリア付銅張積層板、及びプリント配線板の製造方法 |
WO2017150284A1 (ja) * | 2016-02-29 | 2017-09-08 | 三井金属鉱業株式会社 | キャリア付銅箔、並びに配線層付コアレス支持体及びプリント配線板の製造方法 |
WO2017150283A1 (ja) * | 2016-02-29 | 2017-09-08 | 三井金属鉱業株式会社 | キャリア付銅箔及びその製造方法、並びに配線層付コアレス支持体及びプリント配線板の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5423034A (en) * | 1977-07-25 | 1979-02-21 | Hitachi Ltd | Manufacture of high tensile fine mesh |
JPH02199638A (ja) * | 1989-01-27 | 1990-08-08 | Toppan Printing Co Ltd | マスター用ガラス基板 |
JP4329953B2 (ja) | 1999-05-19 | 2009-09-09 | 古河電気工業株式会社 | 高密度超微細配線板用銅箔 |
TW200420208A (en) * | 2002-10-31 | 2004-10-01 | Furukawa Circuit Foil | Ultra-thin copper foil with carrier, method of production of the same, and printed circuit board using ultra-thin copper foil with carrier |
US7976956B2 (en) * | 2005-08-01 | 2011-07-12 | Furukawa Circuit Foil., Ltd. | Laminated circuit board |
KR20130098359A (ko) * | 2010-10-06 | 2013-09-04 | 후루카와 덴키 고교 가부시키가이샤 | 동박 및 그 제조 방법, 캐리어 부착 동박 및 그 제조 방법, 프린트 배선판, 다층 프린트 배선판 |
CN102548200A (zh) * | 2011-12-29 | 2012-07-04 | 广东生益科技股份有限公司 | 电路基板及其制作方法 |
JP5204908B1 (ja) * | 2012-03-26 | 2013-06-05 | Jx日鉱日石金属株式会社 | キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板用キャリア付銅箔及びプリント配線板 |
JP6373189B2 (ja) | 2012-10-04 | 2018-08-15 | Jx金属株式会社 | キャリア付金属箔 |
TWI621381B (zh) | 2014-04-02 | 2018-04-11 | Jx Nippon Mining & Metals Corp | Laminated body with metal foil with carrier |
JP6497149B2 (ja) | 2015-03-18 | 2019-04-10 | 凸版印刷株式会社 | 配線基板積層体、これを用いた半導体装置及び半導体装置の製造方法 |
JP6657609B2 (ja) * | 2015-06-12 | 2020-03-04 | 凸版印刷株式会社 | 配線回路基板、半導体装置、配線回路基板の製造方法および半導体装置の製造方法 |
WO2019082795A1 (ja) * | 2017-10-26 | 2019-05-02 | 三井金属鉱業株式会社 | 極薄銅箔及びキャリア付極薄銅箔、並びにプリント配線板の製造方法 |
-
2019
- 2019-02-13 US US16/971,154 patent/US11756845B2/en active Active
- 2019-02-13 CN CN201980006742.6A patent/CN111511543B/zh active Active
- 2019-02-13 KR KR1020207015006A patent/KR102386554B1/ko active Active
- 2019-02-13 WO PCT/JP2019/005111 patent/WO2019163605A1/ja active Application Filing
- 2019-02-13 JP JP2020501703A patent/JP6806951B2/ja active Active
- 2019-02-19 TW TW108105368A patent/TWI741255B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005076091A (ja) * | 2003-09-01 | 2005-03-24 | Furukawa Circuit Foil Kk | キャリア付き極薄銅箔の製造方法、及びその製造方法で製造されたキャリア付き極薄銅箔 |
JP2016049651A (ja) * | 2014-08-29 | 2016-04-11 | Jx金属株式会社 | キャリア付銅箔の製造方法、銅張積層板の製造方法、プリント配線板の製造方法、電子機器の製造方法、キャリア付銅箔、銅張積層板、プリント配線板及び電子機器 |
JP2016203409A (ja) * | 2015-04-16 | 2016-12-08 | 三井金属鉱業株式会社 | キャリア付銅箔、キャリア付銅張積層板、及びプリント配線板の製造方法 |
WO2017150284A1 (ja) * | 2016-02-29 | 2017-09-08 | 三井金属鉱業株式会社 | キャリア付銅箔、並びに配線層付コアレス支持体及びプリント配線板の製造方法 |
WO2017150283A1 (ja) * | 2016-02-29 | 2017-09-08 | 三井金属鉱業株式会社 | キャリア付銅箔及びその製造方法、並びに配線層付コアレス支持体及びプリント配線板の製造方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022124116A1 (ja) | 2020-12-08 | 2022-06-16 | 三井金属鉱業株式会社 | キャリア付金属箔及びその製造方法 |
KR20230117139A (ko) | 2020-12-08 | 2023-08-07 | 미쓰이금속광업주식회사 | 캐리어를 구비하는 금속박 및 그 제조 방법 |
CN116669906A (zh) * | 2020-12-08 | 2023-08-29 | 三井金属矿业株式会社 | 带载体的金属箔及其制造方法 |
WO2022138238A1 (ja) * | 2020-12-23 | 2022-06-30 | 三井金属鉱業株式会社 | 配線基板及びそのトリミング方法、並びに多層配線板 |
TWI807546B (zh) * | 2020-12-23 | 2023-07-01 | 日商三井金屬鑛業股份有限公司 | 配線基板及其修整方法、以及多層配線板 |
WO2023189839A1 (ja) | 2022-03-31 | 2023-10-05 | 三井金属鉱業株式会社 | キャリア付金属箔 |
JP7427846B1 (ja) | 2022-03-31 | 2024-02-05 | 三井金属鉱業株式会社 | キャリア付金属箔 |
KR20240168332A (ko) | 2022-03-31 | 2024-11-29 | 미쓰이금속광업주식회사 | 캐리어 구비 금속박 |
Also Published As
Publication number | Publication date |
---|---|
KR20200079515A (ko) | 2020-07-03 |
JP6806951B2 (ja) | 2021-01-06 |
CN111511543A (zh) | 2020-08-07 |
CN111511543B (zh) | 2022-02-11 |
TW201936386A (zh) | 2019-09-16 |
TWI741255B (zh) | 2021-10-01 |
US20200411396A1 (en) | 2020-12-31 |
JPWO2019163605A1 (ja) | 2021-03-18 |
KR102386554B1 (ko) | 2022-04-14 |
US11756845B2 (en) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7412523B2 (ja) | キャリア付銅箔 | |
WO2019163605A1 (ja) | ガラスキャリア付銅箔及びその製造方法 | |
JP6836689B2 (ja) | ガラスキャリア付銅箔及びその製造方法 | |
TWI798981B (zh) | 附有載體金屬箔及其製造方法 | |
JP7239789B1 (ja) | 配線基板の製造方法 | |
CN112969581A (zh) | 层叠体 | |
TWI804203B (zh) | 附載體金屬箔以及其使用方法及製造方法 | |
JP7427846B1 (ja) | キャリア付金属箔 | |
TW202446188A (zh) | 配線板的製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19758322 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020501703 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207015006 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19758322 Country of ref document: EP Kind code of ref document: A1 |