[go: up one dir, main page]

WO2019160301A1 - 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법 - Google Patents

시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법 Download PDF

Info

Publication number
WO2019160301A1
WO2019160301A1 PCT/KR2019/001697 KR2019001697W WO2019160301A1 WO 2019160301 A1 WO2019160301 A1 WO 2019160301A1 KR 2019001697 W KR2019001697 W KR 2019001697W WO 2019160301 A1 WO2019160301 A1 WO 2019160301A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
glta
seq
microorganism
corynebacterium
Prior art date
Application number
PCT/KR2019/001697
Other languages
English (en)
French (fr)
Inventor
장재원
이광우
신용욱
이임상
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/470,030 priority Critical patent/US11499173B2/en
Priority to CN202011202500.5A priority patent/CN112175895B/zh
Priority to CN201980001012.7A priority patent/CN110546254B/zh
Priority to BR122020018773-5A priority patent/BR122020018773B1/pt
Priority to BR112019016462-6A priority patent/BR112019016462B1/pt
Priority to MX2020006106A priority patent/MX2020006106A/es
Priority to RU2019115240A priority patent/RU2732815C1/ru
Priority to EP19723304.2A priority patent/EP3561055A4/en
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to JP2020538107A priority patent/JP6998466B2/ja
Priority to AU2019221267A priority patent/AU2019221267B2/en
Publication of WO2019160301A1 publication Critical patent/WO2019160301A1/ko
Priority to PH12020550844A priority patent/PH12020550844A1/en
Priority to ZA2020/03471A priority patent/ZA202003471B/en
Priority to US17/938,508 priority patent/US11667936B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/03Oxo-acid-lyases (4.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03001Citrate (Si)-synthase (2.3.3.1)

Definitions

  • the present application relates to variant polypeptides with reduced citrate synthase activity and methods for producing L-amino acids using the same.
  • the genus Corynebacterium microorganism in particular Corynebacterium glutamicum , is a Gram-positive microorganism that is widely used to produce L-amino acids and other useful substances.
  • various studies have been conducted for the development of highly efficient production microorganisms and fermentation process technology. For example, target-specific approaches such as increasing the expression of genes encoding enzymes involved in L-lysine biosynthesis or removing genes unnecessary for biosynthesis are mainly used. 0838038).
  • L-amino acids L-lysine, L-threonine, L-methionine, L-isoleucine, and L-glycine are amino acids derived from aspartate, and the synthesis level of oxaloacetate, a precursor of aspartate, is L-amino. It can affect the level of amino acid synthesis.
  • Citrate synthase is an enzyme that produces citrate by polymerizing acetylcoei and oxaloacetate produced in the microbial glycolysis process, and is also an important enzyme that determines the influx of carbon into the TCA pathway.
  • the present inventors completed the present invention by confirming that the production of L-amino acid was increased without delay of strain growth rate when using novel variant polypeptides that attenuated citrate synthase activity to a certain level.
  • One object of the present application is to provide a variant polypeptide having a citrate synthase activity in which the 241th asparagine in the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid.
  • Another object of the present application is to provide a polynucleotide encoding the variant polypeptide.
  • Another object of the present application is to provide a genus Corynebacterium microorganism producing the aspartate-derived L-amino acid, comprising the variant polypeptide.
  • Still another object of the present application is to culture the microorganism of the genus Corynebacterium in a medium; It provides a method for producing L-amino acid, comprising recovering L-amino acid from the cultured microorganism or medium.
  • novel variant polypeptides that attenuate the citrate synthase activity of the present application can further improve the production of aspartate-derived L-amino acids without slowing down the growth rate.
  • Figure 1 shows the growth curve of gltA gene deletion and mutation introduction strain.
  • One aspect of the present application for achieving the above object comprises one or more variations in the amino acid sequence of SEQ ID NO: 1, wherein the variation comprises the substitution of the 241th asparagine (asparagines) with another amino acid It is to provide a variant polypeptide having an activity (Citrate synthase).
  • the variant polypeptide may be described as a variant polypeptide having a citrate synthase activity in which the 241th asparagine is substituted with another amino acid in the amino acid sequence of SEQ ID NO: 1.
  • SEQ ID NO: 1 refers to an amino acid sequence having citrate synthase activity. Specifically, it is a protein sequence having citrate synthase activity encoded by the gltA gene.
  • the amino acid sequence of SEQ ID NO: 1 can be obtained from the GenBank of NCBI which is a known database. For example, it may be derived from Corynebacterium glutamicum , but is not limited thereto, and sequences having the same activity as the amino acid sequence may be included without limitation.
  • the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 80% homology or identity thereto may be included, but is not limited thereto.
  • the amino acid sequence may include SEQ ID NO: 1 and amino acid sequence having at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity with SEQ ID NO: 1 .
  • amino acid sequence having at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity with SEQ ID NO: 1 may also be used in the present application.
  • the present invention describes a protein or polypeptide having an amino acid sequence described by a specific sequence number, a protein or polypeptide consisting of an amino acid sequence described by a specific sequence number, and a polypeptide consisting of the amino acid sequence of the sequence number If it has the same or corresponding activity, it is apparent that a protein having an amino acid sequence with some sequences deleted, modified, substituted or added may also be used in the present application. For example, it is obvious that the 'polypeptide consisting of the amino acid sequence of SEQ ID NO: 1' may belong to the 'polypeptide consisting of the amino acid sequence of SEQ ID NO: 1' if it has the same or corresponding activity.
  • a meaningless sequence before or after the amino acid sequence of the corresponding SEQ ID number may occur or occur naturally. It is not intended to exclude existing mutations, or latent mutations thereof, and it is obvious that within the scope of the present application even if such sequences are added or have mutations.
  • the term 'homology' or 'identity' refers to the degree associated with two given amino acid sequences or nucleotide sequences and may be expressed in percentage.
  • the terms homology and identity are often used interchangeably.
  • Sequence homology or identity of conserved polynucleotides or polypeptides is determined by standard alignment algorithms, and the default gap penalty established by the program used may be used together.
  • Substantially, homologous or identical sequences are generally moderate or high stringent conditions along at least about 50%, 60%, 70%, 80% or 90% of the entire or total length of the sequence. You can hybridize in (stringent conditions). Hybridization is also contemplated for polynucleotides containing degenerate codons instead of codons in polynucleotides.
  • the homology, similarity, or identity of a polynucleotide or polypeptide is described, for example, in Smith and Waterman, Adv. Appl. As known in Math (1981) 2: 482, for example, Needleman et al. (1970), J Mol Biol. 48: 443, and can be determined by comparing the sequence information using a GAP computer program.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similarly arranged symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a binary comparison matrix (containing 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. As disclosed by 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or gap opening penalty 10, gap extension penalty 0.5); And (3) no penalty for the end gap.
  • variant polypeptide means that one or more amino acids differ from the recited sequence in conservative substitution and / or modification, but the functions of the polypeptide Or polypeptides whose properties are retained. Variant polypeptides differ from the identified sequence by several amino acid substitutions, deletions or additions. Such variants can generally be identified by modifying one of the polypeptide sequences and evaluating the properties of the modified polypeptide. That is, the ability of the variant can be increased, unchanged, or decreased relative to the native protein. Such variants can generally be identified by modifying one of the polypeptide sequences and evaluating the reactivity of the modified polypeptide.
  • variants may include variants in which one or more portions have been removed, such as an N-terminal leader sequence or a transmembrane domain.
  • variants may include variants in which portions have been removed from the N- and / or C-terminus of the mature protein.
  • variant may be used in terms of variant, modified, mutated protein, variant polypeptide, variant, etc. (in English, modification, modified protein, modified polypeptide, mutant, mutein, divergent, variant, etc.) As long as the term is used in a mutated sense, it is not limited thereto.
  • conservative substitution in this application means the substitution of one amino acid with another amino acid having similar structural and / or chemical properties. Such variants may, for example, have one or more conservative substitutions while still retaining one or more biological activities.
  • Such amino acid substitutions can generally occur based on similarities in the polarity, charge, solubility, hydrophobicity, hydrophilicity and / or amphipathic nature of the residues.
  • the positively charged (basic) amino acids are arginine, lysine, and histidine
  • the negatively charged (acidic) amino acids are glutamic acid and arpart.
  • nonpolar amino acids include glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, and polar or hydrophilic ( hydrophilic) amino acids include serine, threonine, cysteine, tyrosine, asparagine, glutamine, and aromatic amino acids in the nonpolar amino acids include phenylalanine, tryptophan and tyrosine.
  • Variants may also include deletions or additions of amino acids with minimal impact on the properties and secondary structure of the polypeptide.
  • a polypeptide may be conjugated with a signal (or leader) sequence at the protein N-terminus that is involved in the translation of the protein either co-translationally or post-translationally.
  • the polypeptide may also be conjugated with another sequence or linker to identify, purify, or synthesize the polypeptide.
  • Variant polypeptides of the present application comprise one or more variations in the amino acid sequence of SEQ ID NO: 1, and attenuated citrate synthase compared to the amino acid sequence of SEQ ID NO: 1 comprising the substitution of the 241th asparagine with another amino acid (Citrate) It may be a variant polypeptide having a synthase) activity.
  • the variant polypeptide may be described as a variant polypeptide having attenuated citrate synthase activity compared to the amino acid sequence of SEQ ID NO: 1, wherein the 241th asparagine in the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid. Can be.
  • the substitution with another amino acid is not limited as long as the amino acid is different from the amino acid before substitution. That is, when the 241th amino acid in the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid, the other amino acid is not limited as long as it is an amino acid other than asparagine.
  • Variant polypeptides of the present application may be, but are not limited to, reduced or attenuated Citrate synthase activity compared to polypeptides prior to mutations, native wild type polypeptides or unmodified polypeptides.
  • the variant polypeptide of the present application has a 241th asparagine in the amino acid sequence of SEQ ID NO: 1 asparagine glycine (glycine), alanine (alanine), arginine (arginine), aspartate (cyparte), cysteine, Glutamate, glutamine, histidine, proline, serine, tyrosine, isoleucine, leucine, lysine, tryptophan, It can be a variant sequence, substituted with valine, methionine, phenylalanie, or threonine.
  • the variant polypeptide may be, but is not limited to, a variant polypeptide in which the 241th asparagine is replaced with an amino acid other than lysine in the amino acid sequence of SEQ ID NO: 1.
  • the variant polypeptide is a 241th asparagine in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than the acidic and basic amino acid, or an amino acid having an uncharged amino acid chain (charged), It may be a variant sequence, but is not limited thereto.
  • the variant polypeptide may be a variant sequence in which the 241th asparagine in the amino acid sequence of SEQ ID NO: 1 is substituted with a nonpolar amino acid or a hydrophilic amino acid, and specifically, an aromatic amino acid (eg, phenylalanine, tryptophan, tyrosine). ) Or a variant sequence substituted with a hydrophilic amino acid (eg, serine, threonine, tyrosine, cysteine, asparagine, glutamine). More specifically, the variant polypeptide has a reduced citrate synthase activity, in which the 241th asparagine is replaced with threonine, serine, or tyrosine in the amino acid sequence of SEQ ID NO: 1.
  • the variant polypeptide may be substituted with threonine in the 241th asparagine in the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • Such variant polypeptides have weakened citrate synthase activity compared to the sequence of SEQ ID NO: 1. It is apparent that the variant polypeptide in which the 241th amino acid is substituted with another amino acid in the amino acid sequence of SEQ ID NO: 1 includes a variant polypeptide in which the amino acid at the position corresponding to the 241th is substituted with another amino acid.
  • the variant polypeptide in which the 241th asparagine is substituted with another amino acid in the amino acid sequence of SEQ ID NO: 1 of the variant polypeptide may be composed of SEQ ID NO: 3, 59, 61, more specifically, amino acid of SEQ ID NO: 1
  • the variant polypeptide in which the 241th asparagine is replaced with threonine, serine, or tyrosine in the sequence may be composed of SEQ ID NOs: 3, 59, and 61, but is not limited thereto.
  • the variant polypeptide may include an amino acid sequence of SEQ ID NO: 3, 59, 61 or an amino acid sequence having at least 80% homology thereto, but is not limited thereto.
  • the variant polypeptide of the present application is at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% of SEQ ID NO: 3, 59, 61 and SEQ ID NO: 3, 59, 61 Homologous polypeptides may be included.
  • a protein having an amino acid sequence deleted, modified, substituted, or added in some sequences is also included within the scope of the present application.
  • 'Citrate synthase (CS)' of the present application is an enzyme that generates citrate by polymerizing acetylcoei and oxaloacetate generated in the microbial glycolysis process, and determines carbon inflow into the TCA pathway. Is an important enzyme. Specifically, citric acid synthase plays a rate regulation role in the first stage of the TCA cycle. The enzyme also catalyzes the condensation reaction of 2-carbon acetate residues from molecules of acetyl coei with 4-carbon oxaloacetate to form 6-carbon acetate. In the present application, the citrate synthase may be mixed with citrate synthase, Citrate synthase or CS.
  • Another aspect of the present application is to provide a polynucleotide encoding the variant polypeptide.
  • polynucleotide is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds, and are DNA or RNA strands of a certain length or more, and more specifically, the variant polypeptide Means the polynucleotide fragment to be encoded.
  • the polynucleotide encoding the variant polypeptide of the present application may be included without limitation so long as the polynucleotide sequence encoding the variant polypeptide having the weakened citrate synthase activity of the present application.
  • the gene encoding the amino acid sequence of the citrate synthase polypeptide is a gltA gene, and specifically, may be derived from Corynebacterium glutamicum, but is not limited thereto.
  • Polynucleotides of the present application are subject to various modifications to the coding region due to the degeneracy of the codons or taking into account the codons preferred in the organism in which the polypeptide is to be expressed, without changing the amino acid sequence of the polypeptide.
  • any amino acid sequence of SEQ ID NO: 1 may be included without limitation if the 241th amino acid is a polynucleotide sequence encoding a variant polypeptide substituted with another amino acid.
  • the polynucleotide of the present application may be a variant polypeptide of the present application, specifically, a polypeptide consisting of the amino acid sequence of SEQ ID NOs: 3, 59, 61 or a polypeptide having homology thereto, but
  • the present invention is not limited thereto. More specifically, it may be composed of the polynucleotide sequence set forth in SEQ ID NO: 4, 60, 62, but is not limited thereto.
  • probes which can be prepared from known gene sequences, for example, the 241th amino acid in the sequence of the amino acid sequence of SEQ ID NO. Any sequence encoding a protein having the activity of a variant polypeptide substituted with an amino acid can be included without limitation.
  • stringent conditions conditions that enable specific hybridization between polynucleotides. Such conditions are described specifically in the literature (eg, J. Sambrook et al., Homology). For example, genes with high homology, 40% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, particularly specifically 99% or more homologous genes 60 ° C, 1X SSC, 0.1% SDS, specifically 60 ° C, 0.1X SSC, 0.1%, which are hybridized with each other and do not hybridize with less homologous genes, or washing conditions of normal Southern hybridization SDS, more specifically, at a salt concentration and temperature corresponding to 68 ° C., 0.1 ⁇ SSC, 0.1% SDS, may be enumerated once, specifically, two to three times. However, the present invention is not limited thereto, and may be appropriately adjusted by those skilled in the art according to the purpose.
  • Hybridization requires that two polynucleotides have complementary sequences, although mismatch between bases is possible depending on the stringency of the hybridization.
  • complementary is used to describe the relationship between nucleotide bases that can hybridize with each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include isolated polynucleotide fragments that are complementary to the entire sequence as well as substantially similar polynucleotide sequences.
  • polynucleotides having homology can be detected using hybridization conditions including hybridization steps at Tm values of 55 ° C. and using the conditions described above.
  • the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • Another aspect of the present application is to provide a microorganism comprising the variant polypeptide. Specifically, it is to provide a Corynebacterium sp. Microorganism producing L-amino acid containing the variant polypeptide. More specifically, the present invention provides a Corynebacterium sp. Microorganism that produces the aspartate-derived L-amino acid, including the variant polypeptide. For example, the microorganism may be to provide a microorganism transformed with a vector comprising a polynucleotide encoding a variant polypeptide, but is not limited thereto.
  • Microorganisms comprising the mutant polypeptides have improved yield of L-amino acids without inhibiting the growth of microorganisms or inhibiting the rate of sugar consumption compared to microorganisms comprising wild-type polypeptides, thereby obtaining L-amino acids from these microorganisms in high yield. can do.
  • microorganisms comprising the variant polypeptides have a suitable balance between the carbon flow to the TCA pathway and the oxaloacetate feed used as precursor of L-amino acid biosynthesis, by regulating the activity of citrate synthase, As a result, it can be interpreted that the L-amino acid production can be increased, but is not limited thereto.
  • L-amino acid refers to an organic compound having an amine group and a carboxyl functional group.
  • L-amino acid may be an amino acid in the form of ⁇ -amino acid or an L-type stereoisomer.
  • the L-amino acid is asparagine (asparagine), glycine (glycine), alanine (alanine), arginine (arginine), aspartate, aspartate, cysteine, glutamic acid (glutamate), glutamine (glutamine), histidine (histidine) ), Proline, serine, tyrosine, isoleucine, leucine, lysine, tryptophan, valine, methionine, phenylalanine ), Or threonine, and may be, but is not limited to, L-homoserine or a derivative thereof, which is an ⁇ -amino acid as a precursor of L-amino acid.
  • the L-homoserine derivative may include, for example, one or more selected from the group consisting of O-acetylhomoserine, O-succinyl homoserine, and O-phosphohomoserine, but is not limited thereto. It doesn't happen.
  • aspartic acid is an ⁇ -amino acid used for biosynthesis of a protein, and may be used interchangeably as aspartic acid, in general, aspartate is produced from its precursor oxaloacetate and then, L-lysine, L-methionine, L-homoserine or derivatives thereof, L-threonine, L-isoleucine and the like.
  • the term "aspartate-derived L-amino acid” refers to a material that can be biosynthesized using aspartate as a precursor, and is not limited as long as it can be produced through a biosynthesis process using aspartate as a precursor. Do not.
  • the aspartate-derived L-amino acid may include aspartate-derived L-amino acid as well as derivatives thereof.
  • vector refers to a DNA preparation containing a nucleotide sequence of a polynucleotide encoding said target protein operably linked to a suitable regulatory sequence to enable expression of the target protein in a suitable host.
  • the regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation. After being transformed into a suitable host cell, the vector can be replicated or function independent of the host genome and integrated into the genome itself.
  • the vector used in the present application is not particularly limited as long as it can replicate in a host cell, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc. can be used as a phage vector or cosmid vector
  • pBR-based, pUC-based, pBluescriptII-based, etc. pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used.
  • the vector usable in the present application is not particularly limited and known expression vectors may be used.
  • a polynucleotide encoding a target protein may be inserted into a chromosome through a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, such as, but not limited to, homologous recombination.
  • the method may further include a selection marker for checking whether the chromosome is inserted. Selection markers are used to screen for cells transformed with a vector, i.e.
  • telomere length can be used to confirm the insertion of the desired polynucleotide molecule, and to select select phenotypes such as drug resistance, nutritional requirements, resistance to cytotoxic agents or expression of surface proteins. Marking markers can be used. In an environment in which a selective agent is treated, only cells expressing a selection marker survive or exhibit different expression traits, so that transformed cells can be selected.
  • transformation in the present application means introducing a vector comprising a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide in the host cell can be expressed.
  • the transformed polynucleotides may include all of them, as long as they can be expressed in the host cell, either inserted into the chromosome of the host cell or located outside the chromosome.
  • the polynucleotide also includes DNA and RNA encoding the target protein.
  • the polynucleotide may be introduced in any form as long as it can be expressed by being introduced into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal, which are typically operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self replication.
  • the polynucleotide may be introduced into the host cell in its own form and operably linked with a sequence required for expression in the host cell, but is not limited thereto.
  • the transformation method may include any method of introducing a polynucleotide into a cell, and may be performed by selecting a suitable standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (Ca (H 2 PO 4 ) 2 , CaHPO 4 , or Ca 3 (PO 4 ) 2 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, Polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, lithium acetate-DMSO method and the like, but are not limited thereto.
  • electroporation calcium phosphate (Ca (H 2 PO 4 ) 2 , CaHPO 4 , or Ca 3 (PO 4 ) 2 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, Polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, lithium acetate-DMSO method and the like, but
  • operably linked means that the polynucleotide sequence is functionally linked with a promoter sequence for initiating and mediating the transcription of a polynucleotide encoding a target protein of the present application.
  • Operable linkages can be prepared using known genetic recombination techniques, and site-specific DNA cleavage and ligation can be made using, but are not limited to, cleavage and ligation enzymes in the art.
  • microorganism comprising a variant polypeptide refers to a variant polypeptide comprising a polynucleotide encoding a variant polypeptide or transformed with a vector comprising a polynucleotide encoding a variant polypeptide. It may be a host cell or a microorganism capable of expressing. The host cell or microorganism may be a natural wild type or a natural or artificial genetic modification.
  • the microorganism in the present application may be a microorganism expressing a variant polypeptide having a citrate synthase activity in which the 241th asparagine is substituted with another amino acid in the amino acid sequence of SEQ ID NO: 1, but is not limited thereto. It doesn't work.
  • the microorganism including the variant polypeptide may be a microorganism producing L-amino acid.
  • the microorganism including the variant polypeptide may be a microorganism having an increased ability to produce L-amino acid compared to a native or unmodified parent strain, but is not limited thereto.
  • the microorganism comprising the variant polypeptide may be a microorganism that produces aspartate-derived L-amino acid.
  • the microorganism including the variant polypeptide may be a microorganism having increased aspartate-derived L-amino acid production ability as compared to the natural or unmodified parent strain, but is not limited thereto.
  • microorganism examples include, for example, the genus Escherichia , the genus Serratia , the genus Erwinia , the genus Enterobacteria , the genus Salmonella , the genus Streptomyces , and the genus Pseudomonas.
  • Pseudomonas genus
  • Brevibacterium Brevibacterium
  • Corynebacterium may include microbial strains. Specifically, it may be a microorganism of the genus Corynebacterium.
  • the microorganisms of the genus Corynebacterium are, for example, Corynebacterium glutamicum, Corynebacterium ammonia genes , Brevibacterium lactofermentum , Brevibacterium flavu m , or such as Corynebacterium thermoaminogenes amino to Ness (Corynebacterium thermoaminogenes), Corynebacterium epi syeonseu (Corynebacterium efficiens), it is not limited thereto. More specifically, it may be Corynebacterium glutamicum , but is not limited thereto.
  • the microorganism in the case of a microorganism producing L-lysine, increases the activity of a protein encoded by three mutant pyc , hom , and lysC genes to a microorganism of the genus Corynebacterium, thereby increasing L-lysine production capacity.
  • genes encoding homoserine dehydrogenase producing homoserine, a common intermediate of L-threonine and L-isoleucine biosynthetic pathways may be a microorganism that has introduced a mutation to enhance its activity.
  • the microorganism producing L-isoleucine it may be a microorganism that enhances its activity by introducing mutations into a gene encoding L-threonine dehydratase, but is not limited thereto. Therefore, for the purposes of the present application, the microorganism producing L-amino acid may further include the above-described variant polypeptide, thereby increasing the production capacity of the desired L-amino acid.
  • the present application comprises the steps of culturing the microorganism in the medium; And it provides a method for producing L-amino acid, comprising the step of recovering L-amino acid from the cultured microorganism or medium.
  • the L-amino acid may be L-amino acid derived from aspartate.
  • the microbial culture is not particularly limited, but may be carried out by known batch culture method, continuous culture method, fed-batch culture method and the like.
  • the culture conditions are not particularly limited thereto, but using a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid), an appropriate pH (eg, pH 5 to 9, specifically, Can adjust pH 6 to 8, most specifically pH 6.8), and maintain an aerobic condition by introducing oxygen or oxygen-containing gas mixture into the culture.
  • the culture temperature may be maintained at 20 to 45 °C, specifically 25 to 40 °C, can be incubated for about 10 to 160 hours, but is not limited thereto.
  • L-amino acids produced by the culture may be secreted into the medium or remain in the cells.
  • the culture medium used includes sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) as carbon sources.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seeds
  • fatty acids e.g. palmitic acid, stearic acid and linoleic acid
  • alcohols e.g. glycerol and ethanol
  • organic acids e.g. acetic acid
  • Nitrogen sources include nitrogen-containing organic compounds (eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds (eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) and the like can be used individually or in combination, but is not limited thereto.
  • organic compounds eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea
  • inorganic compounds eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • phosphorus potassium dihydrogen phosphate, dipotassium hydrogen phosphate, a corresponding sodium-containing salt, and the like may be used individually or in combination, but is not limited thereto.
  • the medium may include, but is not limited to, essential metals such as other metal salts (eg, magnesium sulf
  • the method for recovering the L-amino acid produced in the culturing step of the present application may collect the desired amino acid from the culture using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC can be used, and the desired L-amino acid can be recovered from the medium or microorganism using any suitable method known in the art.
  • the recovery step may include a purification process, it may be carried out using a suitable method known in the art.
  • the recovered L-amino acid may be a purified form or microbial fermentation broth containing L-amino acid.
  • Example 1 gltA Construction of vector library for introducing mutations in gene ORF
  • a library was prepared by the following method for the purpose of discovering a variant in which the gltA gene expression of Corynebacterium glutamicum ( GltA gene ) or its activity is attenuated.
  • the GenemorphII Random Mutagenesis Kit (Stratagene) was used for the purpose of introducing mutations of 0-4.5 pieces per kb of the DNA fragment (1814 bp) containing the gltA (1314 bp) gene.
  • the chromosome of Corynebacterium glutamicum ATCC13032 (WT) was used as a template, and error-prone PCR was performed using primers SEQ ID NOs: 5 and 6 (Table 1).
  • a reaction solution containing chromosomes 500 ng
  • primers 5 and 6 125 ng each
  • Mutazyme II reaction buffer 1 ⁇
  • dNTP mix 40 mM
  • Mutazyme II DNA polymerase 2.5U
  • the amplified gene fragment was linked to the pCRII vector using the TOPO TA Cloning Kit (Invitrogen), and transformed into E. coli DH5 ⁇ and plated in LB solid medium containing kanamycin (25 mg / l). 20 transformed colonies were selected and plasmids were obtained. As a result of nucleotide sequence analysis, mutations were introduced at different positions at a frequency of 0.5 mutations / kb. Finally, about 10,000 transformed E. coli colonies were taken and the plasmids extracted, which was named pTOPO- gltA (mt) library.
  • Primer Sequence (5 '-> 3') Primer (SEQ ID NO: 5) ATGTTTGAAAGGGATATCGTG Primer (SEQ ID NO: 6) TTAGCGCTCCTCGCGAGGAAC
  • Example 2 gltA Screening gltA mutant strains based on defect production and growth rate
  • a vector pDZ- ⁇ gltA having a gltA gene deletion was prepared as follows. Specifically, DNA fragments located at the 5 'and 3' ends of the gltA gene (each 600bp) were produced in a form linked to a pDZ vector (Korean Patent No. 10-0924065).
  • PCR conditions were denatured at 94 ⁇ C for 2 minutes, 94 ⁇ C 1 minute denaturation, 56 ⁇ C 1 minute annealing, 72 ⁇ C 40 seconds polymerization was repeated 30 times, and then polymerization was performed at 72 ⁇ C for 10 minutes. .
  • the pDZ vector heat-treated at 65 ° C. for 20 minutes and the inserted DNA fragment amplified by PCR were transformed with E. coli DH5 ⁇ and transformed into kanamycin (25 mg / l).
  • kanamycin 25 mg / l.
  • Colonies transformed with the vector into which the gene of interest was selected by PCR using primers SEQ ID NOs: 7 and 8 were obtained by plasmid extraction using a conventionally known plasmid extraction method, and the plasmid was named pDZ- ⁇ gltA .
  • the produced vector pDZ- ⁇ gltA was transformed into Corynebacterium glutamicum ATCC13032 by electric pulse method (Van der Rest et al ., Appl. Microbiol. Biotecnol. 52: 541-545, 1999) to homologous chromosome recombination.
  • the strain which deleted the gltA gene was produced.
  • the strain lacking the gltA gene was named Corynebacterium glutamicum WT :: ⁇ gltA .
  • pTOPO- gltA (mt) library was transformed by the electropulse method against the WT :: ⁇ gltA strain and plated on a flat plate containing kanamycin (25 mg / l) to obtain about 500 colonies. Secured colonies were inoculated into 96 well plates each containing 200 uL of seed medium and incubated at 32 ° C and 1000 rpm for about 9 hours.
  • Glucose 10 g Peptone 10 g, Beef extract 5 g, Yeast extract 5 g, Brain Heart Infusion 18.5 g, NaCl 2.5 g, Urea 2 g, Sorbitol 91 g, Agar 20 g (based on 1 liter of distilled water)
  • Glucose 20 g Peptone 10 g, Yeast extract 5 g, Urea 1.5 g, KH 2 PO 4 4 g, K 2 HPO 4 8 g, MgSO 4 7H 2 O 0.5 g, Biotin 100 ⁇ g, Thiamine HCl 1000 ⁇ g, Calcium- 2000 ⁇ g pantothenic acid, 2000 ⁇ g nicotinamide (based on 1 liter of distilled water)
  • WT and WT were used as controls. Three strains were selected that maintained the growth rate higher than the WT :: ⁇ gltA strain while having a smaller cell mass than the wild type WT strain. The three strains selected were named WT :: gltA (mt) -1 to 3. The other 497 colonies were similar to the strains of WT and WT :: ⁇ gltA , increased cell mass, or showed slow growth rate.
  • Three selected strains WT DNA fragments containing the gltA gene in the chromosome were identified using the primers specified in Example 1 (SEQ ID NOs: 5 and 6) to identify the gltA gene sequences of gltA (mt) -1 to 3.
  • PCR amplification PCR conditions were denatured at 94 ⁇ C for 2 minutes, 94 ⁇ C 1 minute denaturation, 56 ⁇ C 1 minute annealing, 72 ⁇ C 40 seconds polymerization was repeated 30 times, and then polymerization was performed at 72 ⁇ C for 10 minutes. .
  • Example 4 gltA Production of various strains in which asparagine, the 241th amino acid of the gene, is substituted with other amino acids
  • each recombinant vector was prepared by the following method.
  • primers SEQ ID Nos. 11 and 12 in which the restriction enzyme XbaI recognition sites were inserted into the 5 'and 3' fragments at about 600 bp from the 721 to 723th positions of the gltA gene, respectively, using the genomic DNA extracted from the WT strain as a template. Synthesized.
  • primers SEQ ID Nos. 13 to 48 for substituting the 721th to 723th base sequences of the gltA gene were synthesized (Table 3).
  • the pDZ- gltA (N241A) plasmid was constructed in a form in which DNA fragments located at the 5 'and 3' ends of the gltA gene (each 600bp) were connected to a pDZ vector (Korean Patent No. 2009-0094433).
  • the chromosome of the WT strain was used as a template, and the 5 'terminal gene fragment was prepared by PCR using primers SEQ ID NOs: 11 and 13.
  • PCR conditions were denatured at 94 ⁇ C for 2 minutes, 94 ⁇ C 1 minute denaturation, 56 ⁇ C 1 minute annealing, 72 ⁇ C 40 seconds polymerization was repeated 30 times, and then polymerization was performed at 72 ⁇ C for 10 minutes. .
  • the gene fragment located at the 3 'end of the gltA gene was prepared by PCR using SEQ ID NOs: 12 and 14.
  • the amplified DNA fragments were purified using Quiagen's PCR Purification kit and used as insert DNA fragments for vector construction.
  • pDZ vector treated with restriction enzyme XbaI and heat-treated at 65 ° C. for 20 minutes and inserted DNA fragment amplified by PCR were transformed into E. coli DH5 ⁇ .
  • the strain was plated in LB solid medium containing kanamycin (25 mg / l). Colonies transformed with the vector into which the gene of interest was selected by PCR using primers SEQ ID NOs: 11 and 12, and then plasmids were obtained using commonly known plasmid extraction methods.
  • the plasmid was named pDZ- gltA (N241A).
  • primer SEQ ID NO: 11 and 15, 12 and 16 using the pDZ- gltA (N241V), using primers of SEQ ID NOS. 11 and 17, 12 and 18 pDZ- gltA (N241Q), primers SEQ ID NO: 11 and 19, 12 and using a 20 pDZ- gltA (N241H), primers SEQ ID NO: 11 and 21, 12 and 22 using a using a pDZ- gltA (N241R), primers SEQ ID NO: 11 and 23, 12 and 24 pDZ- gltA ( N241P), primers SEQ ID NO: 11 and 25, 12 and 26 using the pDZ- gltA (N241L), primers SEQ ID NO: 11 and 27, 12 and 28 using the pDZ- gltA (N241Y), primers SEQ ID NO: 11 and 29, 12 and using a 30 pDZ- gltA (N241S) primers
  • KCCM11016P was transformed into the Corynebacterium glutamicum KCCM11016P strain (Korean Patent No. 10-0159812) producing lysine by the electric pulse method.
  • 19 strains in which heterologous base substitution mutations were introduced into the gltA gene were KCCM11016P :: gltA (N241A), KCCM11016P :: gltA (N241V), KCCM11016P :: gltA (N241Q), KCCM11016P :: gltA (N241H), KCCM11016P: : gltA (N241R), KCCM11016P :: gltA (N241P), KCCM11016P :: gltA (N241L), KCCM11016P :: gltA (N241Y), KCCM11016P :: gltA (N241S
  • Citrate synthase (CS) activity was measured in the selected strains by a previously reported method (Ooyen et al., Biotechnol. Bioeng., 109 (8): 2070-2081, 2012).
  • the method used in Example 1 was deficient in the gltA gene in the KCCM11016P strain and was named KCCM11016P :: ⁇ gltA .
  • KCCM11016P and KCCM11016P : ⁇ gltA strains were used as a control, and 19 strains were cultured as follows to control sugar consumption, lysine production yield, glutamic acid (GA) concentration in the culture medium, and CS enzyme. Activity was measured.
  • each strain was inoculated into a 250 ml corner-baffle flask containing 25 ml of seed medium and shaken at 200 rpm for 20 hours at 30 ° C.
  • a 250 ml corner-baffle flask containing 24 ml of production medium was then inoculated with 1 ml of seed culture and shaken at 200 rpm for 72 hours at 32 ° C.
  • the composition of the seed medium and the production medium is as follows. After the incubation, the concentrations of L-lysine and glutamic acid were measured using HPLC (Waters 2478).
  • Glucose 20 g Peptone 10 g, Yeast extract 5 g, Urea 1.5 g, KH 2 PO 4 4 g, K 2 HPO 4 8 g, MgSO 4 7H 2 O 0.5 g, Biotin 100 ⁇ g, Thiamine HCl 1000 ⁇ g, Calcium- 2000 ⁇ g pantothenic acid, 2000 ⁇ g nicotinamide (based on 1 liter of distilled water)
  • Cells were recovered by centrifugation for CS enzyme activity, and then washed twice with 100 mM Tris-HCl (pH 7.2, 3 mM L-cysteine, 10 mM MgCl 2 ) buffer, and finally in 2 ml of the same buffer. Suspended. The cell suspension was physically crushed for 10 minutes by a conventional glass bead vortexing method, and then the supernatant was recovered by two centrifugations (13,000 rpm, 4 ° C., 30 minutes), and crude extract for measuring CS enzyme activity. Used as.
  • CS activity was defined as the ratio of DTNB decomposed per minute relative to the parent strain by measuring the absorbance at 412 nm, lysine production capacity, sugar consumption rate, culture components and enzyme activity measurement results are shown in Table 4 below.
  • KCCM11016P 100 43.4 436 4.53 KCCM11016P :: ⁇ gltA 2 49.0 13 1.31 KCCM11016P :: gltA (N241A) 36 46.2 430 3.56 KCCM11016P :: gltA (N241V) 61 44.8 428 4.08 KCCM11016P :: gltA (N241Q) 91 43.9 386 4.21 KCCM11016P :: gltA (N241H) 57 44.0 431 4.33 KCCM11016P :: gltA (N241R) 86 43.5 432 4.68 KCCM11016P :: gltA (N241P) 71 43.9 411 4.66
  • the lysine yield of the strain lacking the gltA gene increased about 5.5% p compared to the parent strain, but did not consume sugar until the second half of the culture. In other words, if the gltA gene is deleted and there is little CS activity, the growth of the strain is inhibited and thus it may be difficult to use industrially. For all strains comprising variant polypeptides in which the 241 th amino acid of SEQ ID NO: 1 was substituted with another amino acid, it was confirmed that the growth of the strain was weakened while maintaining CS activity. In addition, as CS activity weakened, the lysine yield of the parent strain increased by 3 ⁇ 5% p.
  • the lysine yield increased by 3 ⁇ 5% p compared to the parent strain, especially in the case of N241S, N241Y and N241T.
  • strains with increased lysine yields compared to the parent strain were confirmed to reduce the amount of glutamic acid (GA) in the culture.
  • GA glutamic acid
  • KCCM11016P :: gltA (N241T) was deposited in the Korean Culture Center of Microorganisms (KCCM), an international depository organization under the Budapest Treaty on November 20, 2017, with the name CA01-7513. KCCM12154P was given.
  • N241S Three pDZ- gltA (N241S), pDZ- gltA (N241Y), and pDZ- gltA (N241T) vectors of Example 4 were introduced into two strains of Corynebacterium glutamicum KCCM10770P and KCCM11347P by electric pulse method.
  • KCCM10770P used as a control
  • the strains of the KCCM11347P strain and six strains of the gltA gene base substitution strain were cultured in the same manner as in Example 5 to analyze lysine production capacity, sugar consumption rate, and culture components.
  • KCCM10770P Mutant Lysine Production Capacity, Sugar Consumption Rate and Culture Component Analysis Strain LYS yield (%) GA concentration (mg / L) Per consumption rate (g / hr) KCCM10770P 42.6 406 4.27 KCCM10770P :: gltA (N241S) 46.4 350 4.08 KCCM10770P :: gltA (N241Y) 45.9 368 4.20 KCCM10770P :: gltA (N241T) 48.0 240 4.04 KCCM11347P 38.3 440 5.99 KCCM11347P :: gltA (N241S) 41.7 386 5.85 KCCM11347P :: gltA (N241Y) 42.1 402 5.96 KCCM11347P :: gltA (N241T) 43.5 316 5.84
  • Example 7 gltA Production of CJ3P Strain Introduced Mutant (N241T) and Analysis of Lysine Production Capacity
  • genomic DNA extracted from the WT strain was used as a template. Restriction enzymes XbaI at 5 'and 3' fragments at positions about 600 bp back and forth from positions 1131-1134 of the hom gene, respectively, were used. Primer SEQ ID NOS 51 and 52 with the recognition site were synthesized. Primers SEQ ID NOs 53 and 54 for substituting the nucleotide sequence of hom gene were synthesized (Table 7).
  • the pDZ- hom (G378E) plasmid was constructed in which DNA fragments located at the 5 'and 3' ends of the hom gene (each 600bp) were linked to a pDZ vector (Korean Patent No. 2009-0094433).
  • a 5 'terminal gene fragment was prepared by PCR using primers SEQ ID NOs: 51 and 53, using the chromosome of the WT strain as a template. PCR conditions were denatured at 94 ⁇ C for 2 minutes, 94 ⁇ C 1 minute denaturation, 56 ⁇ C 1 minute annealing, 72 ⁇ C 40 seconds polymerization was repeated 30 times, and then polymerization was performed at 72 ⁇ C for 10 minutes. .
  • a gene fragment located at the 3 'end of the hom gene was produced by PCR using SEQ ID NOs: 52 and 54.
  • the amplified DNA fragments were purified using Quiagen's PCR Purification kit and used as insert DNA fragments for vector construction. After treatment with restriction enzyme XbaI , the pDZ vector heat-treated at 65 ° C. for 20 minutes and the inserted DNA fragment amplified by PCR were transformed into E. coli DH5 ⁇ and transformed into kanamycin (25 mg / l). ) was plated in LB solid medium containing.
  • a base substitution variation of the after selecting a primer sequence 51 and the switch colonies transfected with the objective gene is inserted into vector by PCR using 52 using a commonly known plasmid extraction obtained plasmid hom (G378E) in the chromosome Vector pDZ- hom (G378E) was constructed for introduction.
  • Primer (SEQ ID NO: 51) TCCTCTAGACTGGTCGCCTGATGTTCTAC Primer (SEQ ID NO: 52) GACTCTAGATTAGTCCCTTTCGAGGCGGA Primer (SEQ ID NO: 53) GCCAAAACCTCCACGCGATC Primer (SEQ ID NO: 54) ATCGCGTGGAGGTTTTGGCT
  • pDZ- hom (G378E) vector was introduced into the CJ3P and CJ3P :: gltA (N241T) strains in the same manner as in Example 6, with the nucleotide mutation introduced into the hom gene, CJ3P :: hom (G378E) and CJ3P :: gltA (N241T ) to obtain a hom (G378E).
  • the obtained two strains were cultured in the same manner as in Example 5 to analyze the threonine production concentration, sugar consumption rate, and culture components, and are shown in Table 8 below.
  • the strain with the gltA (N241T) variant introduced the threonine concentration and the glutamic acid concentration at the sugar consumption rate similar level.
  • a strain in which only ilvA (V323A) mutation was introduced into CJ3P :: hom (G378E) was also prepared.
  • Recombinant vectors for mutagenesis were produced by the following method.
  • V323A genomic DNA extracted from the WT strain was used as a template and restriction enzymes XbaI at 5 'fragments and 3' fragments at positions about 600 bp back and forth from positions 966 to 969 of the ilvA gene, respectively.
  • primers SEQ ID NOs: 57 and 58 for replacing the nucleotide sequence of the ilvA gene were synthesized (Table 9).
  • the pDZ- ilvA (V323A) plasmid was constructed in which DNA fragments located at the 5 'and 3' ends of the ilvA gene (each 600bp) were linked to a pDZ vector (Korean Patent No. 2009-0094433). 5 'terminal gene fragment was prepared by PCR using primers SEQ ID NOs: 55 and 57. PCR conditions were denatured at 94 ⁇ C for 2 minutes, 94 ⁇ C 1 minute denaturation, 56 ⁇ C 1 minute annealing, 72 ⁇ C 40 seconds polymerization was repeated 30 times, and then polymerization was performed at 72 ⁇ C for 10 minutes. .
  • a gene fragment located at the 3 'end of the ilvA gene was produced by PCR using SEQ ID NOs: 56 and 58.
  • the amplified DNA fragments were purified using Quiagen's PCR Purification kit and used as insert DNA fragments for vector construction. After treatment with restriction enzyme XbaI , the pDZ vector heat-treated at 65 ° C. for 20 minutes and the inserted DNA fragment amplified by PCR were transformed into E. coli DH5 ⁇ and transformed into kanamycin (25 mg / l). ) was plated in LB solid medium containing.
  • the base substitution of ilvA (V323A) was identified on the chromosome.
  • Vector pDZ- ilvA (V323A) was prepared for introduction.
  • Primer (SEQ ID NO 55) ACGGATCCCAGACTCCAAAGCAAAAGCG Primer (SEQ ID NO 56) ACGGATCCAACCAAACTTGCTCACACTC Primer (SEQ ID NO: 57) ACACCACGGCAGAACCAGGTGCAAAGGACA Primer (SEQ ID NO: 58) CTGGTTCTGCCGTGGTGTGCATCATCTCTG
  • the obtained two strains were cultured in the same manner as in Example 5 to analyze isoleucine production concentration, sugar consumption rate and culture components, and are shown in Table 10 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 출원은 시트레이트 신타아제(Citrate synthase) 활성이 약화된 변이형 폴리펩타이드 및 이를 이용하여 아스파테이트 유래 L-아미노산을 생산하는 방법에 관한 것이다.

Description

시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법
본 출원은 시트레이트 신타아제(Citrate synthase) 활성이 약화된 변이형 폴리펩타이드 및 이를 이용하여 L-아미노산을 생산하는 방법에 관한 것이다.
코리네박테리움 속(the genus Corynebacterium) 미생물, 특히 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)은 L-아미노산 및 기타 유용물질 생산에 많이 이용되고 있는 그람 양성의 미생물이다. 상기 L-아미노산 및 기타 유용물질을 생산하기 위하여, 고효율 생산 미생물 및 발효공정기술 개발을 위한 다양한 연구들이 수행되고 있다. 예를 들어, L-라이신 생합성에 관여하는 효소를 코딩하는 유전자의 발현을 증가시키거나 또는 생합성에 불필요한 유전자를 제거하는 것과 같은 목적 물질 특이적 접근 방법이 주로 이용되고 있다 (대한민국 등록특허 제10-0838038호).
한편, L-아미노산 중에서 L-라이신, L-트레오닌, L-메티오닌, L-이소류신, L-글리신은 아스파테이트 유래 아미노산이며, 아스파테이트의 전구체인 옥살로아세테이트(oxaloacetate)의 합성 수준이 상기 L-아미노산의 합성수준에 영향을 미칠 수 있다.
시트레이트 신타아제 (Citrate synthase; CS)는 미생물의 해당과정에서 생성되는 아세틸 코에이와 옥살로아세테이트를 중합하여 시트레이트를 생성하는 효소이며, 또한 TCA 경로로의 탄소유입을 결정하는 중요한 효소이다.
시트레이트 신타아제를 코딩하는 gltA 유전자 결손에 따른 L-라이신 생산균주의 phenotype 변화에 관한 내용은 선행문헌에 보고되어 있다 (Ooyen et al., Biotechnol. Bioeng., 109(8):2070-2081, 2012). 그러나 gltA 유전자 결손 균주의 경우 균주의 생장이 저해될 뿐만 아니라, 당 소모속도가 대폭 감소되어 단위시간당 라이신 생산량이 낮은 단점이 있다. 따라서, 효과적인 L-아미노산의 생산능 증가 및 균주의 생장을 함께 고려한 연구가 여전히 필요한 실정이다.
본 발명자들은 특정한 수준으로 시트레이트 신타아제 활성을 약화시킨 신규한 변이형 폴리펩티드를 이용할 경우 균주 성장속도의 지연 없이 L-아미노산의 생산량이 증가됨을 확인함으로써 본 발명을 완성하였다.
본 출원의 하나의 목적은 서열번호 1의 아미노산 서열에서 241번째 아스파라긴(asparagine)이 다른 아미노산으로 치환된 시트레이트 신타아제(Citrate synthase) 활성을 갖는, 변이형 폴리펩티드를 제공하는 것이다.
본 출원의 다른 목적은 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원의 또 다른 목적은 상기 변이형 폴리펩티드를 포함하는, 아스파테이트 유래 L-아미노산을 생산하는 코리네박테리움 속(the genus Corynebacterium) 미생물을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 코리네박테리움 속 미생물을 배지에서 배양하는 단계; 상기 배양된 미생물 또는 배지로부터 L-아미노산을 회수하는 단계를 포함하는, L-아미노산의 생산방법을 제공하는 것이다.
본 출원의 시트레이트 신타아제 활성을 약화시킨 신규한 변이형 폴리펩티드를 이용할 경우 성장속도의 지연 없이 아스파테이트 유래 L-아미노산의 생산량을 더욱 향상시킬 수 있다.
도 1은 gltA 유전자 결손 및 변이 도입 균주의 생장곡선을 나타낸 것이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는, 서열번호 1의 아미노산 서열에서 하나 이상의 변이를 포함하고, 상기 변이는 241번째 아스파라긴(asparagines)이 다른 아미노산으로 치환된 것을 포함하는, 시트레이트 신타아제(Citrate synthase) 활성을 갖는, 변이형 폴리펩티드를 제공하는 것이다.
구체적으로, 상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴이 다른 아미노산으로 치환된, 시트레이트 신타아제(Citrate synthase) 활성을 갖는, 변이형 폴리펩티드로 기재될 수 있다.
본 출원에서 상기 서열번호 1은 시트레이트 신타아제 활성을 갖는 아미노산 서열을 의미한다. 구체적으로, gltA 유전자에 의해 코딩되는 시트레이트 신타아제 활성을 갖는 단백질 서열이다. 상기 서열번호 1의 아미노산 서열은 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다. 일 예로, 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum) 유래일 수 있으나, 이에 제한되지 않으며 상기 아미노산 서열과 동일한 활성을 갖는 서열은 제한없이 포함될 수 있다. 또한, 서열번호 1의 아미노산 서열 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 상기 아미노산 서열은 서열번호 1 및 상기 서열번호 1과 적어도 80%, 90%, 95%, 96%, 97%, 98%, 또는 99% 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 또는 폴리펩티드', '특정 서열번호로 기재된 아미노산 서열로 이루어진 단백질 또는 폴리펩티드'라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 폴리펩티드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'는, 이와 동일 혹은 상응하는 활성을 가지는 경우라면 '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'에 속할 수 있음은 자명하다. 또한 본 출원의 변이형 폴리펩티드와 동일 혹은 상응하는 활성을 가지는 경우라면 특정 활성을 부여하는 상기 241번째 변이 또는 이에 상응하는 위치의 변이 이외에 해당 서열번호의 아미노산 서열 앞뒤의 무의미한 서열 추가 또는 자연적으로 발생할 수 있는 돌연변이, 혹은 이의 잠재성 돌연변이 (silent mutation)를 제외하는 것이 아니며, 이러한 서열 추가 혹은 돌연변이를 가지는 경우에도 본원의 범위 내에 속하는 것이 자명하다.
본 출원에서 용어 '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.
또한, 임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.
본 출원에서 용어, "변이형 폴리펩티드"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)에 있어서 상기 열거된 서열 (the recited sequence)과 상이하나, 상기 폴리펩티드의 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 지칭한다. 변이형 폴리펩티드는 수 개의 아미노산 치환, 결실 또는 부가에 의해 식별되는 서열(identified sequence)와 상이하다. 이러한 변이형은 일반적으로 상기 폴리펩티드 서열 중 하나를 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 식별될 수 있다. 즉, 변이형의 능력은 본래 단백질(native protein)에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 이러한 변이형은 일반적으로 상기 폴리펩티드 서열 중 하나를 변형하고, 변형된 폴리펩티드의 반응성을 평가하여 식별될 수 있다. 또한, 일부 변이형은 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이형을 포함할 수 있다. 다른 변이형은 성숙 단백질 (mature protein) 의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이형을 포함할 수 있다. 상기 용어 "변이형"은 변이체, 변형, 변이된 단백질, 변이형 폴리펩티드, 변이, 등의 용어(영문 표현으로는 modification, modified protein, modified polypeptide, mutant, mutein, divergent, variant 등)가 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다.
본 출원에서 용어 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 상기 변이형은 하나 이상의 생물학적 활성을 여전히 보유하면서, 예를 들어 하나 이상의 보존적 치환을 가질 수 있다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 예를 들면, 전하를 띠는 곁사슬(electrically charged amino acid)을 갖는 아미노산 중 양으로 하전된 (염기성) 아미노산은 알지닌, 리신, 및 히스티딘을, 음으로 하전된 (산성) 아미노산은 글루탐산 및 아르파르트산을 포함하고; 전하를 띠지 않는 곁사슬(uncharged amino acid)을 갖는 아미노산 중 비극성 아미노산(nonpolar amino acid)은 글리신, 알라닌, 발린, 류신, 이소류신, 메티오닌, 페닐알라닌, 트립토판, 프롤린을 포함하고, 극성(polar) 또는 친수성(hydrophilic) 아미노산은 세린, 트레오닌, 시스테인, 티로신, 아스파라긴, 글루타민을 포함하고, 상기 비극성 아미노산 중 방향족 아미노산은 페닐알라닌, 트립토판 및 티로신을 포함한다.
또한, 변이형은 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 폴리펩티드는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이전(transfer)에 관여하는 단백질 N-말단의 시그널 (또는 리더)서열과 컨쥬게이트 할 수 있다. 또한 상기 폴리펩티드는 폴리펩티드를 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
본 출원의 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 하나 이상의 변이를 포함하고, 241번째 아스파라긴이 다른 아미노산으로 치환된 것을 포함하는, 서열번호 1의 아미노산 서열에 비해 약화된 시트레이트 신타아제(Citrate synthase) 활성을 갖는, 변이형 폴리펩티드일 수 있다. 상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴이 다른 아미노산으로 치환된, 서열번호 1의 아미노산 서열에 비해 약화된 시트레이트 신타아제(Citrate synthase) 활성을 갖는, 변이형 폴리펩티드로 기재될 수 있다.
상기 '다른 아미노산으로 치환'은 치환 전의 아미노산과 다른 아미노산이면 제한되지 않는다. 즉, 서열번호 1의 아미노산 서열에서 241번째 아미노산이 다른 아미노산으로 치환되는 경우, 상기 다른 아미노산은 아스파라긴(asparagine) 이외의 아미노산이면 제한되지 않는다.
본 출원의 변이형 폴리펩티드는 변이 전의 폴리펩티드, 천연의 야생형 폴리펩티드 또는 비변형 폴리펩티드에 비해 시트레이트 신타아제(Citrate synthase) 활성이 감소 또는 약화된 것일 수 있으나, 이에 제한되지 않는다.
구체적으로, 본 출원의 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴 (asparagine)이 글리신(glycine), 알라닌 (alanine), 아르기닌 (arginine), 아스파테이트 (aspartate), 시스테인 (cysteine), 글루탐산 (glutamate), 글루타민 (glutamine), 히스티딘 (histidine), 프롤린 (proline), 세린 (serine), 티로신 (tyrosine), 이소류신 (isoleucine), 류신 (leucine), 라이신 (lysine), 트립토판 (tryptophan), 발린 (valine), 메티오닌 (methionine), 페닐알라닌 (phenylalanie), 또는 트레오닌 (threonine)으로 치환된, 변이형 서열일 수 있다. 보다 구체적으로, 상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴 (asparagine)이 라이신 이외의 다른 아미노산으로 치환된, 변이형 폴리펩티드일 수 있으나, 이에 제한되지 않는다. 또는 상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴 (asparagine)이 산성 아미노산 및 염기성 아미노산 이외의 다른 아미노산으로 치환되거나, 전하를 띠지 않는 곁사슬(uncharged amino acid)을 갖는 아미노산으로 치환된, 변이형 서열일 수 있으나, 이에 제한되지 않는다. 또는 상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴 (asparagine)이 비극성 아미노산 또는 친수성 아미노산으로 치환된 변이형 서열일 수 있고, 구체적으로는 방향족 아미노산(예를 들어, 페닐알라닌, 트립토판, 타이로신) 또는 친수성 아미노산(예를 들어, 세린, 트레오닌, 타이로신, 시스테인, 아스파라긴, 글루타민)으로 치환된, 변이형 서열일 수 있으나, 이에 제한되지 않는다. 더욱 구체적으로, 상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴이 트레오닌 (Threonine), 세린 (Serine) 또는 티로신 (Tyrosine)으로 치환된, 시트레이트 신타아제(Citrate synthase) 활성이 감소된 것일 수 있으나, 이에 제한되지 않는다. 보다 더 구체적으로, 상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴이 트레오닌 (Threonine)으로 치환된 것일 수 있으나, 이에 제한되지 않는다. 이와 같은 변이형 폴리펩티드는 서열번호 1의 서열에 비해 약화된 시트레이트 신타아제(Citrate synthase) 활성을 갖는다. 상기 서열번호 1의 아미노산 서열에서 241번째 아미노산이 다른 아미노산으로 치환된 변이형 폴리펩티드는, 241번째에 상응하는 위치의 아미노산이 다른 아미노산으로 치환된 변이형 폴리펩티드를 포함하는 것은 자명하다.
구체적으로, 상기 변이형 폴리펩티드 중 서열번호 1의 아미노산 서열에서 241번째 아스파라긴이 다른 아미노산으로 치환된 변이형 폴리펩티드는 서열번호 3, 59, 61으로 이루어진 것일 수 있고, 보다 구체적으로는 서열번호 1의 아미노산 서열에서 241번째 아스파라긴이 트레오닌 (Threonine), 세린 (Serine) 또는 티로신 (Tyrosine)으로 치환된 변이형 폴리펩티드는 각각 서열번호 3, 59, 61로 이루어진 것일 수 있으나 이에 제한되지 않는다. 또한, 상기 변이형 폴리펩티드는 서열번호 3, 59, 61의 아미노산 서열 또는 이와 80% 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 본 출원의 상기 변이형 폴리펩티드는 서열번호 3, 59, 61 및 상기 서열번호 3, 59, 61과 적어도 80%, 90%, 95%, 96%, 97%, 98%, 또는 99% 상동성을 가지는 폴리펩티드를 포함할 수 있다. 또한, 이러한 상동성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면 241번째 위치의 아미노산 서열 이외에, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위 내에 포함됨은 자명하다.
본 출원의 용어 '시트레이트 신타아제(Citrate synthase; CS)'는 미생물의 해당과정에서 생성되는 아세틸 코에이와 옥살로아세테이트를 중합하여 시트레이트를 생성하는 효소이며, TCA 경로로의 탄소유입을 결정하는 중요한 효소이다. 구체적으로, 시트르산 합성 효소로서 TCA 회로의 첫 단계에서 속도 조절 역할을 한다. 또한, 상기 효소는 아세틸 코에이와 4-탄소 옥살로아세테이트의 분자로부터의 2-탄소 아세테이트 잔기의 축합 반응을 촉매하여 6-탄소 아세테이트를 형성한다. 본 출원에서 상기 시트레이트 신타아제는 시트레이트 합성효소, Citrate synthase 또는 CS로 혼용될 수 있다.
본 출원의 다른 하나의 양태는 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드 단편을 의미한다.
본 출원의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드는, 본 출원의 약화된 시트레이트 신타아제 활성을 갖는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드서열이라면 제한없이 포함될 수 있다. 본 출원에서 상기 시트레이트 신타아제 폴리펩티드의 아미노산 서열을 코딩하는 유전자는 gltA 유전자이며, 구체적으로 코리네박테리움 글루타미쿰 유래일 수 있으나, 이에 제한되지 않는다.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 폴리펩티드를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 폴리펩티드의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 서열번호 1의 아미노산 서열에서 241번째 아미노산이 다른 아미노산으로 치환된 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열이라면 제한 없이 포함할 수 있다. 예를 들어, 본 출원의 폴리뉴클레오티드는 본 출원의 변이형 폴리펩티드, 구체적으로는 상기 서열번호 3, 59, 61의 아미노산 서열로 이루어진 폴리펩티드 또는 이와 상동성을 가지는 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열일 수 있으나, 이에 제한되는 것은 아니다. 보다 구체적으로는 서열번호 4, 60, 62로 기재된 폴리뉴클레오티드 서열로 구성된 것일 수 있으나, 이에 제한되는 것은 아니다.
또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1의 아미노산 서열의 서열에서 241번째 아미노산이 다른 아미노산으로 치환된 변이형 폴리펩티드의 활성을 가지는 단백질을 코딩하는 서열이라면 제한없이 포함될 수 있다.
상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성이 높은 유전자끼리, 40% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃, 1X SSC, 0.1% SDS, 구체적으로는 60℃, 0.1X SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1X SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다. 그러나 이에 제한되는 것은 아니며, 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 폴리뉴클레오티드가 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 폴리뉴클레오티드 서열뿐만 아니라 전체 서열에 상보적인 단리된 폴리뉴클레오티드 단편을 포함할 수 있다.
구체적으로, 상동성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 출원의 다른 하나의 양태는 상기 변이형 폴리펩티드를 포함하는, 미생물을 제공하는 것이다. 구체적으로는 상기 변이형 폴리펩티드를 포함하는 L-아미노산을 생산하는 코리네박테리움 속(Corynebacterium sp.) 미생물을 제공하는 것이다. 보다 구체적으로는 상기 변이형 폴리펩티드를 포함하는, 아스파테이트 유래 L-아미노산을 생산하는 코리네박테리움 속(Corynebacterium sp.) 미생물을 제공하는 것이다. 예를 들어, 상기 미생물은 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환된 미생물을 제공하는 것일 수 있으나, 이에 제한되지 않는다.
상기 변이형 폴리펩티드를 포함하는 미생물은 야생형 폴리펩티드를 포함하는 미생물에 비하여 미생물의 생육 저해 또는 당 소모속도의 저해함이 없이 L-아미노산의 생산능이 향상되므로, 이들 미생물로부터 L-아미노산을 고수율로 수득할 수 있다. 구체적으로, 상기 변이형 폴리펩티드를 포함하는 미생물은 시트레이트 신타아제의 활성을 조절함으로써, TCA 경로로의 탄소흐름과 L-아미노산 생합성의 전구체로 사용되는 옥살로아세테이트 공급량 사이의 적절한 균형을 이루고, 그 결과로서 L-아미노산 생산량을 증가시킬 수 있다는 것으로 해석할 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어 ”L-아미노산”은 아민기(amine functional group)와 카르복실기(carboxyl functional group)을 갖는 유기화합물로서, 구체적으로는 α-아미노산, 또는 L-형의 입체이성질체 형태인 아미노산일 수 있고, 상기 L-아미노산은 아스파라긴 (asparagine), 글리신(glycine), 알라닌 (alanine), 아르기닌 (arginine), 아스파테이트 (aspartate), 시스테인 (cysteine), 글루탐산 (glutamate), 글루타민 (glutamine), 히스티딘 (histidine), 프롤린 (proline), 세린 (serine), 티로신 (tyrosine), 이소류신 (isoleucine), 류신 (leucine), 라이신 (lysine), 트립토판 (tryptophan), 발린 (valine), 메티오닌 (methionine), 페닐알라닌 (phenylalanie), 또는 트레오닌 (threonine)일 수 있으며, 또한 L-아미노산의 전구체로써 α-아미노산인 L-호모세린 또는 이의 유도체일 수 있으며, 그러나 이에 제한되는 것은 아니다. 상기 L-호모세린 유도체는, 예를 들어, O-아세틸호모세린, O-숙시닐호모세린, 및 O-포스포호모세린으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어 "아스파테이트 (Aspartic acid)”는 단백질의 생합성에 사용되는 α-아미노산으로, 아스파르트산으로 혼용되어 사용될 수 있다. 일반적으로 아스파테이트는 이의 전구체인 옥살로아세테이트로부터 생성된 뒤, 생체 내에서 L-라이신, L-메티오닌, L-호모세린 또는 이의 유도체, L-트레오닌, L-이소류신 등으로 변환될 수 있다.
본 출원에서 용어 "아스파테이트 유래 L-아미노산"은 아스파테이트(Aspartic acid)를 전구체로 하여 생합성할 수 있는 물질을 의미하며, 아스파테이트를 전구체로 하여 생합성 과정을 통해 생산될 수 있는 물질이라면 제한되지 않는다. 상기 아스파테이트 유래 L-아미노산은 아스파테이트 유래 L-아미노산 뿐만 아니라 이의 유도체도 포함할 수 있다. 예를 들어, L-라이신, L-트레오닌, L-메티오닌, L-글리신, 호모세린 또는 이의 유도체(O-아세틸호모세린, O-숙시닐호모세린, O-포스포호모세린), L-이소류신, 및/또는 카다베린 일 수 있으나, 이에 제한되지 않는다. 구체적으로 L-라이신, L-트레오닌, L-메티오닌, 호모세린 또는 이의 유도체, 및/또는 L-이소류신 일 수 있으며, 보다 구체적으로, L-라이신, L-트레오닌 및/또는 L-이소류신 일 수 있으나, 이에 제한되지 않는다.
상기 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
본 출원에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 또한, 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 삽입시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 폴리뉴클레오티드 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다. 상기 형질전환 하는 방법은 폴리뉴클레오티드를 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (Ca(H2PO4)2, CaHPO4, 또는 Ca3(PO4)2) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다. 작동 가능한 연결은 당업계의 공지된 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당업계의 절단 및 연결 효소 등을 사용하여 제작할 수 있으나, 이에 제한되지 않는다.
본 출원에서 사용되는 용어 "변이형 폴리펩티드를 포함하는 미생물"이란, 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하거나, 또는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어 변이형 폴리펩티드를 발현할 수 있는 숙주세포 또는 미생물일 수 있다. 상기 숙주세포 또는 미생물은 천연의 야생형 또는 자연적 또는 인위적으로 유전적 변형이 일어난 것일 수 있다. 구체적으로 본 출원에서의 상기 미생물은 서열번호 1의 아미노산 서열에서 241번째 아스파라긴이 다른 아미노산으로 치환되어, 시트레이트 신타아제(Citrate synthase) 활성을 갖는, 변이형 폴리펩티드를 발현하는 미생물일 수 있으나 이에 제한되지 않는다. 또한 상기 변이형 폴리펩티드를 포함하는 미생물은 L-아미노산을 생산하는 미생물일 수 있다. 구체적으로 상기 변이형 폴리펩티드를 포함하는 미생물은 천연형 또는 비변형된 모균주에 비해서 L-아미노산 생산능이 증가된 미생물일 수 있으나, 이에 제한 되는 것은 아니다. 또한 상기 변이형 폴리펩티드를 포함하는 미생물은 아스파테이트 유래 L-아미노산을 생산하는 미생물 일 수 있다. 구체적으로 상기 변이형 폴리펩티드를 포함하는 미생물은 천연형 또는 비변형된 모균주에 비해서 아스파테이트 유래 L-아미노산 생산능이 증가된 미생물일 수 있으나, 이에 제한 되는 것은 아니다.
상기 미생물은 구체적 예로, 에스케리키아(Escherichia) 속, 세라티아(Serratia) 속, 어위니아(Erwinia) 속, 엔테로박테리아(Enterobacteria) 속, 살모넬라 (Salmonella) 속, 스트렙토마이세스(Streptomyces) 속, 슈도모나스(Pseudomonas) 속, 브레비박테리움(Brevibacterium) 속 또는 코리네박테리움(Corynebacterium) 속 등의 미생물 균주가 포함될 수 있다. 구체적으로 코리네박테리움 속 미생물일 수 있다.
상기 코리네박테리움 속 미생물은 예를 들어 코리네박테리움 글루타미쿰, 코리네박테리움 암모니아게네스, 브레비박테리움 락토퍼멘텀 (Brevibacterium lactofermentum), 브레비박테리움 플라범 (Brevibacterium flavum), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 코리네박테리움 에피션스 (Corynebacterium efficiens) 등이나, 반드시 이에 한정되는 것은 아니다. 더욱 구체적으로는, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)일 수 있으나, 이에 제한되는 것은 아니다.
상기 미생물은, 구체적인 예를 들어, L-라이신을 생산하는 미생물의 경우 코리네박테리움 속 미생물에 3종의 변이 pyc, hom, lysC 유전자가 코딩하는 단백질의 활성이 증가되어 L-라이신 생산능이 증가된 코리네박테리움 글루타미쿰에 gltA 변이가 도입된 미생물일 수 있다.
또한, L-트레오닌, L-이소류신을 생산하는 미생물의 경우 L-트레오닌, L-이소류신 생합성 경로의 공통적 중간체인 호모세린(homoserine)을 생산하는 호모세린 디하이드로게나제(homoserin dehydrogenase)를 코딩하는 유전자에 변이를 도입하여 이의 활성을 강화한 미생물일 수 있다. 특히 L-이소류신을 생산하는 미생물의 경우, 추가적으로 트레오닌 디하이드라타제(L-threonine dehydratase)를 코딩하는 유전자에 변이를 도입하여 이의 활성을 강화한 미생물 일 수 있으나, 이에 제한되지 않는다. 따라서, 본 출원의 목적상 L-아미노산을 생산하는 미생물은 상기 변이형 폴리펩티드를 추가로 포함하여, 목적하는 L-아미노산의 생산능이 증가된 것일 수 있다.
본 출원의 또 하나의 양태로서, 본 출원은 상기 미생물을 배지에서 배양하는 단계; 및 상기 배양된 미생물 또는 배지로부터 L-아미노산을 회수하는 단계를 포함하는, L-아미노산의 생산방법을 제공하는 것이다. 구체적으로는, 상기 L-아미노산은 아스파테이트 유래 L-아미노산일 수 있다.
상기 방법에 있어서, 당업계에 공지된 최적화된 배양 조건 및 효소 활성 조건 에서 당업자에 의해 용이하게 결정될 수 있다. 구체적으로, 미생물 배양은 특별히 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 L-아미노산은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있으나, 이에 제한되지 않는다.
본 출원의 상기 배양 단계에서 생산된 L-아미노산을 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 수집할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 L-아미노산을 회수 할 수 있다.
또한, 상기 회수 단계는 정제 공정을 포함할 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 수행될 수 있다. 따라서, 상기의 회수되는 L-아미노산은 정제된 형태 또는 L-아미노산을 함유한 미생물 발효액일 수 있다.
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 국한되는 것은 아니다.
실시예 1: gltA 유전자 ORF 내 변이 도입용 벡터 라이브러리 제작
코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)gltA 유전자의 발현량 또는 이의 활성이 감쇠된 변이체를 발굴하기 위한 목적으로 아래의 방법으로 라이브러리를 제작하였다.
먼저 gltA (1314 bp) 유전자를 포함하는 DNA 단편 (1814 bp)의 kb 당 0-4.5 개를 변이를 도입하기 위한 목적으로 GenemorphII Random Mutagenesis Kit (Stratagene)을 사용하였다. 코리네박테리움 글루타미쿰 ATCC13032 (WT)의 염색체를 주형으로 하고 프라이머 서열번호 5 및 6을 이용하여 Error-prone PCR을 수행하였다(표 1). 구체적으로, WT 균주의 염색체 (500 ng), 프라이머 5 및 6 (각각 125 ng), Mutazyme II reaction buffer (1Х), dNTP mix (40 mM), Mutazyme II DNA polymerase (2.5U)을 포함하는 반응액은 94˚C에서 2분간 변성 후, 94˚C 1분 변성, 56˚C 1분 어닐링, 72˚C 3분 중합을 25회 반복한 후, 72˚C에서 10분간 중합반응을 수행하였다.
증폭된 유전자 단편은 TOPO TA Cloning Kit (Invitrogen)을 이용하여 pCRII 벡터에 연결하였고, 대장균 DH5α에 형질전환하여 카나마이신 (25 mg/l)이 포함된 LB 고체배지에 도말하였다. 형질전환된 콜로니 20종을 선별한 후 플라스미드를 획득하였고, 염기서열을 분석한 결과 0.5 mutations/kb 빈도로 서로 다른 위치에 변이가 도입된 것을 확인하였다. 최종적으로 약 10,000 개의 형질전환된 대장균 콜로니를 취하여 플라스미드를 추출하였고, 이를 pTOPO-gltA(mt) 라이브러리로 명명하였다.
프라이머 서열 (5' -> 3')
프라이머(서열번호 5) ATGTTTGAAAGGGATATCGTG
프라이머(서열번호 6) TTAGCGCTCCTCGCGAGGAAC
실시예 2: gltA 결손주 제작 및 성장속도를 기반으로 gltA 변이주 스크리닝
야생형의 코리네박테리움 글루타미쿰 ATCC13032에서 gltA 유전자가 결손된 균주를 제작하기 위하여 아래와 같이 gltA 유전자가 결손된 벡터 pDZ-ΔgltA 를 제조하였다. 구체적으로, gltA 유전자의 5' 및 3' 말단에 위치한 DNA 단편들이 (각 600bp) pDZ 벡터(대한민국 등록특허 제10-0924065호)에 연결된 형태로 제작되었다. 보고된 gltA 유전자의 염기서열(서열번호 2)에 근거하여 5' 단편 및 3' 단편에 제한효소 XbaI 인식 부위를 삽입한 프라이머 서열번호 7 및 8 와 이들로부터 각각 600 bp 떨어진 위치에서 프라이머 서열번호 9 및 10 를 합성하였다(표 2). 코리네박테리움 글루타미쿰 ATCC13032의 염색체를 주형으로 5' 말단 유전자 단편은 프라이머 서열번호 7 및 9을 이용하여 PCR을 통해 제작하였다. 동일한 방법으로 gltA 유전자의 3' 말단에 위치한 유전자 단편은 서열번호 8 및 10 를 이용하여 PCR을 통해 제작하였다. PCR 조건은 94˚C에서 2분간 변성 후, 94˚C 1분 변성, 56˚C 1분 어닐링, 72˚C 40초 중합을 30회 반복한 후, 72˚C에서 10분간 중합반응을 수행하였다.
한편 제한효소 XbaI으로 처리한 후, 65℃에서 20분간 열처리한 pDZ 벡터와 상기 PCR을 통하여 증폭한 삽입 DNA 단편을 Infusion Cloning Kit를 사용하여 연결한 후 대장균 DH5α에 형질전환하고 카나마이신 (25 mg/l)이 포합된 LB 고체배지에 도말하였다. 프라이머 서열번호 7 및 8 를 이용한 PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 이 플라스미드를 pDZ-ΔgltA라 명명하였다.
프라이머 서열 (5' -> 3')
프라이머(서열번호 7) CGGGGATCCTCTAGACGATGAAAAACGCCC
프라이머(서열번호 8) CAGGTCGACTCTAGACTGCACGTGGATCGT
프라이머(서열번호 9) ACTGGGACTATTTGTTCGGAAAAA
프라이머(서열번호 10) CGAACAAATAGTCCCAGTTCAACG
상기 제작된 벡터 pDZ-ΔgltA를 코리네박테리움 글루타미쿰 ATCC13032에 전기펄스법(Van der Rest et al., Appl. Microbiol. Biotecnol. 52:541-545, 1999)으로 형질전환하여 상동염색체 재조합에 의해 gltA 유전자가 결손된 균주를 제작하였다. 이와 같이 gltA 유전자가 결손된 균주를 코리네박테리움 글루타미쿰 WT::ΔgltA라고 명명하였다.
또한, WT::ΔgltA 균주를 대상으로 pTOPO-gltA(mt) 라이브러리를 전기펄스법으로 형질전환하고 카나마이신 (25 mg/l)이 포함된 복합평판배지에 도말하여 약 500 개의 콜로니를 확보하였다. 확보된 콜로니를 각각 200 uL의 종배지가 포함된 96 웰 플레이트에 접종하였고, 32 ˚C, 1000 rpm 에서 약 9 시간 동안 배양하였다.
<복합평판배지 (pH 7.0)>
포도당 10 g, 펩톤 10 g, Beef extract 5 g, 효모추출물 5 g, Brain Heart Infusion 18.5 g, NaCl 2.5 g, 요소 2 g, Sorbitol 91 g, 한천 20 g (증류수 1 리터 기준)
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8g, MgSO7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
배양 중 세포 성장은 UV-스펙트로포토메터 마이크로-리더(UV-spectrophotometer micro-reader, Shimazu)를 이용하여 모니터링 하였다 (도 1). WT 및 WT::ΔgltA 균주를 대조구로 이용하였다. 야생형인 WT 균주 대비 균체량이 적으면서 WT::ΔgltA 균주보다 성장속도가 높게 유지되는 균주 3종을 선별하였다. 상기 선별된 3종의 균주는 WT::gltA(mt)-1 내지 3으로 명명하였다. 그 외 497종의 콜로니들은 대조구로 이용된 WT 및 WT::ΔgltA 균주와 유사하거나, 증가된 균체량을 가지거나 혹은 느린 성장속도를 보였다.
실시예 3: gltA 변이주 3종 염기서열 확인
3종의 선별 균주 WT::gltA(mt)-1 내지 3의 gltA 유전자 염기서열을 확인하기 위하여 실시예 1에 명시된 프라이머를 (서열번호 5 및 6) 이용하여 염색체 내 gltA 유전자를 포함한 DNA 단편을 PCR 증폭하였다. PCR 조건은 94˚C에서 2분간 변성 후, 94˚C 1분 변성, 56˚C 1분 어닐링, 72˚C 40초 중합을 30회 반복한 후, 72˚C에서 10분간 중합반응을 수행하였다.
증폭된 유전자의 염기서열을 분석한 결과 3종의 균주는 공통적으로 gltA 유전자 ORF 개시코돈으로부터 하위 721~723bp 사이에 위치한 염기서열에 1~2 개의 변이가 도입된 것을 확인하였다. 즉, WT::gltA(mt)-1 내지 3 균주는 721~723번째 염기서열이 기존 AAC에서 ACC 혹은 ACT로 바뀐, N 말단에서부터 241 번째 아미노산인 아스파라긴이 트레오닌으로 치환된 형태의 시트레이트 신타아제 (CS) 변이체임을 확인하였다.
실시예 4: gltA 유전자의 241번째 아미노산인 아스파라긴이 다른 아미노산으로 치환된 다양한 균주 제작
상기 아미노산 서열1에서 241번째 아미노산의 위치에, 야생형이 가지는 아스파라긴을 제외한 타 proteogenic 아미노산으로의 치환을 시도하였다.
실시예 3에서 확인한 변이인 N241T를 포함한 19종의 이종성 염기 치환변이들을 도입하기 위하여 각각의 재조합 벡터를 아래와 같은 방법으로 제작하였다.
먼저, WT 균주로부터 추출한 게놈 DNA를 주형으로 gltA 유전자의 721~723번째 위치에서 앞뒤로 각각 약 600bp 떨어진 위치에 5' 단편 및 3' 단편에 제한효소 XbaI 인식 부위를 삽입한 프라이머 서열번호 11 및 12을 합성하였다. 19종의 이종성 염기 치환변이들을 도입하기 위하여 gltA 유전자의 721~723번째 염기서열을 치환하기 위한 프라이머 서열번호 13~48을 합성하였다(표 3).
구체적으로, pDZ-gltA(N241A) 플라스미드는 gltA 유전자의 5' 및 3' 말단에 위치한 DNA 단편들이 (각 600bp) pDZ 벡터(대한민국 특허 제2009-0094433호)에 연결된 형태로 제작되었다. WT균주의 염색체를 주형으로 5' 말단 유전자 단편은 프라이머 서열번호 11 및 13을 이용하여 PCR을 통해 제작하였다. PCR 조건은 94˚C에서 2분간 변성 후, 94˚C 1분 변성, 56˚C 1분 어닐링, 72˚C 40초 중합을 30회 반복한 후, 72˚C에서 10분간 중합반응을 수행하였다. 동일한 방법으로 gltA 유전자의 3' 말단에 위치한 유전자 단편은 서열번호 12 및 14를 이용하여 PCR을 통해 제작하였다. 증폭된 DNA 단편을 Quiagen사의 PCR Purification kit를 사용하여 정제한 후, 벡터 제작을 위한 삽입 DNA단편으로 사용하였다.
한편 제한효소 XbaI으로 처리한 후 65℃에서 20분간 열처리한 pDZ 벡터와 상기 PCR을 통하여 증폭한 삽입 DNA 단편을 Infusion Cloning Kit를 사용하여 연결한 후 대장균 DH5α에 형질전환하였다. 상기 균주를 카나마이신 (25 mg/l)이 포합된 LB 고체배지에 도말하였다. 프라이머 서열번호 11 및 12 를 이용한 PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였다. 상기 플라스미드는 pDZ-gltA(N241A)로 명명하였다.
동일한 방법으로 프라이머 서열번호 11 및 15, 12 및 16을 이용하여 pDZ-gltA(N241V), 프라이머 서열번호 11 및 17, 12 및 18을 이용하여 pDZ-gltA(N241Q), 프라이머 서열번호 11 및 19, 12 및 20을 이용하여 pDZ-gltA(N241H), 프라이머 서열번호 11 및 21, 12 및 22을 이용하여 pDZ-gltA(N241R), 프라이머 서열번호 11 및 23, 12 및 24를 이용하여 pDZ-gltA(N241P), 프라이머 서열번호 11 및 25, 12 및 26을 이용하여 pDZ-gltA(N241L), 프라이머 서열번호 11 및 27, 12 및 28을 이용하여 pDZ-gltA(N241Y), 프라이머 서열번호 11 및 29, 12 및 30을 이용하여 pDZ-gltA(N241S), 프라이머 서열번호 11 및 31, 12 및 32를 이용하여 pDZ-gltA(N241K), 프라이머 서열번호 11 및 33, 12 및 34를 이용하여 pDZ-gltA(N241M), 프라이머 서열번호 11 및 35, 12 및 36을 이용하여 pDZ-gltA(N241I), 프라이머 서열번호 11 및 37, 12 및 38을 이용하여 pDZ-gltA(N241E), 프라이머 서열번호 11 및 39, 12 및 40을 이용하여 pDZ-gltA(N241D), 프라이머 서열번호 11 및 41, 12 및 42을 이용하여 pDZ-gltA(N241G), 프라이머 서열번호 11 및 43, 12 및 44을 이용하여 pDZ-gltA(N241W), 프라이머 서열번호 11 및 45, 12 및 46을 이용하여 pDZ-gltA(N241C), 프라이머 서열번호 11 및 47, 12 및 48을 이용하여 pDZ-gltA(N241F), 프라이머 서열번호 11 및 49, 12 및 50을 이용하여 pDZ-gltA(N241T)를 제작하였다.
프라이머 서열 (5' -> 3')
프라이머(서열번호 11) CGGGGATCCTCTAGAAGATGCTGTCTGAGACTGGA
프라이머(서열번호 12) CAGGTCGACTCTAGACGCTAAATTTAGCGCTCCTC
프라이머(서열번호 13) GGAGGTGGAGCATGCCTGCTCGTGGTCAGC
프라이머(서열번호 14) GACCACGAGCAGGCATGCTCCACCTCCACC
프라이머(서열번호 15) GGAGGTGGAGCAGACCTGCTCGTGGTCAGC
프라이머(서열번호 16) GACCACGAGCAGGTCTGCTCCACCTCCACC
프라이머(서열번호 17) GGAGGTGGAGCACTGCTGCTCGTGGTCAGC
프라이머(서열번호 18) GACCACGAGCAGCAGTGCTCCACCTCCACC
프라이머(서열번호 19) GGAGGTGGAGCAGTGCTGCTCGTGGTCAGC
프라이머(서열번호 20) GACCACGAGCAGCACTGCTCCACCTCCACC
프라이머(서열번호 21) GGAGGTGGAGCAGCGCTGCTCGTGGTCAGC
프라이머(서열번호 22) GACCACGAGCAGCGCTGCTCCACCTCCACC
프라이머(서열번호 23) GGAGGTGGAGCATGGCTGCTCGTGGTCAGC
프라이머(서열번호 24) GACCACGAGCAGCCATGCTCCACCTCCACC
프라이머(서열번호 25) GGAGGTGGAGCACAGCTGCTCGTGGTCAGC
프라이머(서열번호 26) GACCACGAGCAGCTGTGCTCCACCTCCACC
프라이머(서열번호 27) GGAGGTGGAGCAGTACTGCTCGTGGTCAGC
프라이머(서열번호 28) GACCACGAGCAGTACTGCTCCACCTCCACC
프라이머(서열번호 29) GGAGGTGGAGCAGGACTGCTCGTGGTCAGC
프라이머(서열번호 30) GACCACGAGCAGTCCTGCTCCACCTCCACC
프라이머(서열번호 31) GGAGGTGGAGCACTTCTGCTCGTGGTCAGC
프라이머(서열번호 32) GACCACGAGCAGAAGTGCTCCACCTCCACC
프라이머(서열번호 33) GGAGGTGGAGCACATCTGCTCGTGGTCAGC
프라이머(서열번호 34) GACCACGAGCAGATGTGCTCCACCTCCACC
프라이머(서열번호 35) GGAGGTGGAGCAGATCTGCTCGTGGTCAGC
프라이머(서열번호 36) GACCACGAGCAGATCTGCTCCACCTCCACC
프라이머(서열번호 37) GGAGGTGGAGCATTCCTGCTCGTGGTCAGC
프라이머(서열번호 38) GACCACGAGCAGGAATGCTCCACCTCCACC
프라이머(서열번호 39) GGAGGTGGAGCAGTCCTGCTCGTGGTCAGC
프라이머(서열번호 40) GACCACGAGCAGGACTGCTCCACCTCCACC
프라이머(서열번호 41) GGAGGTGGAGCAGCCCTGCTCGTGGTCAGC
프라이머(서열번호 42) GACCACGAGCAGGGCTGCTCCACCTCCACC
프라이머(서열번호 43) GGAGGTGGAGCAGCACTGCTCGTGGTCAGC
프라이머(서열번호 44) GACCACGAGCAGTGGTGCTCCACCTCCACC
프라이머(서열번호 45) GGAGGTGGAGCAGCACTGCTCGTGGTCAGC
프라이머(서열번호 46) GACCACGAGCAGTGCTGCTCCACCTCCACC
프라이머(서열번호 47) GGAGGTGGAGCAGAACTGCTCGTGGTCAGC
프라이머(서열번호 48) GACCACGAGCAGTTCTGCTCCACCTCCACC
프라이머(서열번호 49) GGAGGTGGAGCAGGTCTGCTCGTGGTCAGC
프라이머(서열번호 50) GACCACGAGCAGACCTGCTCCACCTCCACC
각각 제작된 벡터를 라이신을 생산하는 코리네박테리움 글루타미쿰 KCCM11016P 균주(대한민국 등록특허 제10-0159812호)에 전기펄스법으로 형질전환하였다. 이와 같이 gltA 유전자에 이종성 염기치환변이들이 도입된 균주 19종은 KCCM11016P::gltA(N241A), KCCM11016P::gltA(N241V), KCCM11016P::gltA(N241Q), KCCM11016P::gltA(N241H), KCCM11016P::gltA(N241R), KCCM11016P::gltA(N241P), KCCM11016P::gltA(N241L), KCCM11016P::gltA(N241Y), KCCM11016P::gltA(N241S), KCCM11016P::gltA(N241K), KCCM11016P::gltA(N241M), KCCM11016P::gltA(N241I), KCCM11016P::gltA(N241E), KCCM11016P::gltA(N241D), KCCM11016P::gltA(N241G), KCCM11016P::gltA(N241W), KCCM11016P::gltA(N241C), KCCM11016P::gltA(N241F), KCCM11016P::gltA(N241T)로 각각 명명하였다.
실시예 5: gltA 변이주에 대한 라이신 생산능 분석 및 시트레이트 신타아제 (Citrate synthase; CS) 활성측정
기존에 보고된 방법 (Ooyen et al., Biotechnol. Bioeng., 109(8):2070-2081, 2012)을 통해 상기 선별된 균주를 대상으로 시트레이트 신타아제 (CS) 활성을 측정하였다. 실시예 1에서 사용한 방법으로 KCCM11016P 균주에 gltA유전자를 결손하고 이 균주를 KCCM11016P::ΔgltA라 명명하였다. KCCM11016P, KCCM11016P::ΔgltA 균주를 대조군으로 사용하고 선별균주 19종을 아래와 같은 방법으로 배양하여 당소모속도, 라이신 생산 수율, 배양 배지내 대표 부산물인 글루탐산(Glutamic acid; GA) 농도, 및 CS 효소 활성을 측정하였다.
먼저, 종 배지 25 ml을 함유하는 250 ml 코너-바플 플라스크에 각 균주들을 접종하고, 30˚C에서 20시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ml을 함유하는 250 ml 코너-바플 플라스크에 1 ml의 종 배양액을 접종하고 32˚C에서 72 시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다. 배양 종료 후 HPLC (Waters 2478)를 이용하여 L-라이신과 글루탐산의 농도를 측정하였다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8g, MgSO7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 7.0)>
포도당 100 g, (NH4)2SO4 40 g, 대두 단백질 2.5 g, 옥수수 침지 고형분(Corn Steep Solids) 5 g, 요소 3 g, KH2PO4 1 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g (증류수 1리터 기준).
CS 효소 활성측정을 위해 원심분리를 통해 균체를 회수한 후, 100 mM Tris-HCl (pH 7.2, 3mM L-cysteine, 10 mM MgCl2) 완충용액으로 2회 세척하였고, 동일한 완충용액 2 ml에 최종 현탁하였다. 균체 현탁액을 일반적인 글래스비드 볼텍싱법으로 10분간 물리적으로 파쇄한 후, 2회의 원심분리 (13,000rpm, 4 ℃, 30분)를 통하여 상층액을 회수, CS 효소 활성 측정을 위한 조효소액 (crude extract)으로 사용하였다. CS 효소 활성 측정을 위하여 효소활성 측정용 반응액 (50mM 트리스, 200mM 포타시움 글루타메이트, pH 7.5, 0.1mM 5,50-디티오비스 (2-나이트로벤조익 엑시드, DTNB), 0.2mM 옥살로아세테이트, 0.15mM acetyl-CoA)에 조효소액을 첨가하여 30℃ 에서 반응하였다. CS 활성은 모균주 대비 분당 분해되는 DTNB를 흡광도 412nm로 측정하여 그 비율로 정의하였으며, 라이신 생산능, 당 소모속도, 배양액 성분 및 효소 활성 측정 결과는 하기 표 4와 같다.
라이신 생산능, 당 소모속도, 배양액 성분 및 CS 효소활성 (%) 측정
균주 CS 활성(%) LYS 수율(%) GA 농도(mg/L) 당 소모속도(g/hr)
KCCM11016P 100 43.4 436 4.53
KCCM11016P::ΔgltA 2 49.0 13 1.31
KCCM11016P::gltA(N241A) 36 46.2 430 3.56
KCCM11016P::gltA(N241V) 61 44.8 428 4.08
KCCM11016P::gltA(N241Q) 91 43.9 386 4.21
KCCM11016P::gltA(N241H) 57 44.0 431 4.33
KCCM11016P::gltA(N241R) 86 43.5 432 4.68
KCCM11016P::gltA(N241P) 71 43.9 411 4.66
KCCM11016P::gltA(N241L) 79 44.7 429 4.51
KCCM11016P::gltA(N241Y) 35 46.9 373 4.59
KCCM11016P::gltA(N241S) 36 46.8 391 4.48
KCCM11016P::gltA(N241K) 61 44.1 409 4.19
KCCM11016P::gltA(N241M) 52 44.0 412 3.89
KCCM11016P::gltA(N241I) 41 46.5 422 3.65
KCCM11016P::gltA(N241E) 51 43.8 401 3.90
KCCM11016P::gltA(N241D) 40 46.1 399 3.51
KCCM11016P::gltA(N241G) 71 44.9 418 4.12
KCCM11016P::gltA(N241W) 45 46.2 308 3.54
KCCM11016P::gltA(N241C) 46 46.6 310 3.69
KCCM11016P::gltA(N241F) 48 45.7 386 4.09
KCCM11016P::gltA(N241T) 31 48.6 351 4.51
gltA 유전자가 결손된 균주의 경우 모균주 대비 라이신 수율이 약 5.5%p 증가하였으나 배양 후반까지 당을 소모하지 못하였다. 즉, gltA 유전자가 결실되어 CS 활성이 거의 없는 경우는 균주의 생장이 억제되어 산업상 활용하기 어렵다고 볼 수 있다. 서열번호 1의 241번째 아미노산이 다른 아미노산으로 치환된 변이형 폴리펩타이드를 포함하는 모든 균주의 경우, 균주의 생장은 산업상 활용가능한 수준으로 유지되면서 CS 활성이 약화됨을 확인하였다. 또한 CS 활성이 약화됨에 따라 모균주 대비 라이신수율은 3~5%p 가량 증가하는 경향을 보였다. 특히 CS 활성이 약 30~60% 정도로 약화된 변이체 중 특히 N241S, N241Y, N241T 3종의 경우 라이신 수율이 모균주 대비 3~5%p 가량 증가하면서 당 소모속도도 유사한 수준을 보였다. 또한 라이신 수율이 모균주 대비 증가한 균주는 배양액 내 글루탐산(Glutamic acid; GA)의 양이 감소되는 것을 확인하였다. 즉, 본 출원의 변이를 도입하는 경우, 라이신 수율은 향상시키고 부산물은 감소시키는 효과가 있음을 해석할 수 있다.
이 결과는 CS 활성 조절을 통해 TCA 경로로의 탄소흐름과 라이신 생합성의 전구체로 사용되는 옥살로아세테이트 공급량 사이의 적절한 균형을 통해 라이신 생산량을 증가시킬 수 있다는 것을 보여준다. 특히 라이신 배양시 부산물로 많이 생성되는 글루탐산의 양이 줄어든 것으로 미루어보아 gltA유전자의 약화가 TCA 경로로의 탄소흐름을 억제하며 이는 탄소의 흐름이 라이신 생합성 방향으로 유도되어 라이신 생산능 증가에 큰 효과가 있다는 것을 확인하였다.
상기 제작된 균주 중 KCCM11016P::gltA(N241T)는 부다페스트 조약 하의 국제기탁기관인 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2017년 11월 20일자로 명칭을 CA01-7513으로 기탁하여 기탁번호 KCCM12154P를 부여 받았다.
실시예 6: 선별된 gltA 변이주 라이신 생산능 분석
L-라이신을 생산하는 코리네박테리움 글루타미쿰 KCCM10770P(대한민국등록특허 제10-0924065호) 및 KCCM11347P (대한민국 등록특허 제10-0073610호)에 실시예 5에서 선별된 gltA 유전자 변이 3종을 도입하였다. 상기 3종은 CS 활성이 감소되어 라이신 수율이 증가하면서 당소모속도가 모균주대비 유사한 것으로 선별하였다. 실시예 4의 pDZ-gltA(N241S), pDZ-gltA(N241Y), pDZ-gltA(N241T) 벡터 3종을 전기펄스법으로 코리네박테리움 글루타미쿰 KCCM10770P 및 KCCM11347P 균주 2종에 도입하여 KCCM10770P::gltA(N241S), KCCM10770P::gltA(N241Y), KCCM10770P::gltA(N241T), KCCM11347P::gltA(N241S), KCCM11347P::gltA(N241Y), KCCM11347P::gltA(N241T) 균주 6종을 제작하였다. 대조군으로 사용된 KCCM10770P KCCM11347P 균주와 gltA 유전자 염기 치환변이 도입 균주 6종의 상기 균주들을 실시예 5와 같은 방법으로 배양하여 라이신 생산능, 당소모 속도 및 배양액 성분을 분석하였다.
일정 시간 배양 후 배양액 라이신 생산능, 당 소모속도 및 배양액 성분을 분석하였다. 그 결과는 하기 표 5에 나타내었다.
gltA 변이주 라이신 생산능, 당소모 속도 및 배양액 성분 분석
균주 LYS 수율(%) GA 농도(mg/L) 당 소모속도(g/hr)
KCCM10770P 42.6 406 4.27
KCCM10770P::gltA(N241S) 46.4 350 4.08
KCCM10770P::gltA(N241Y) 45.9 368 4.20
KCCM10770P::gltA(N241T) 48.0 240 4.04
KCCM11347P 38.3 440 5.99
KCCM11347P::gltA(N241S) 41.7 386 5.85
KCCM11347P::gltA(N241Y) 42.1 402 5.96
KCCM11347P::gltA(N241T) 43.5 316 5.84
표 5의 결과와 같이, 2종류의 라이신 생산균주 KCCM10770P 및 KCCM11347P에서 gltA 서열의 241번째 아미노산이 다른 아미노산으로 치환된 변이를 도입한 경우, 모두 라이신 수율은 증가하고 부산물의 수율은 감소하면서 당소모 속도는 모균주와 유사하였다. 그중 3종의 변이 중 241번째 아스파라긴이 트레오닌으로 치환된 변이(N241T)는 당소모 속도가 모균주와 유사 또는 소폭 증가하면서 라이신 수율이 가장 큰 폭으로 증가됨을 확인할 수 있었다. 또한, N241T 변이는 모균주 대비 가장 큰 폭으로 글루탐산이 감소됨을 확인하였다. 이로부터 실시예 6에서 보였던 결과와 마찬가지로 gltA 유전자가 약화되면서 TCA경로가 감소된 것이 배양액 내 글루탐산의 감소량으로 확인되었다.
실시예 7: gltA 변이주(N241T)가 도입된 CJ3P 균주 제작 및 라이신 생산능 분석
L-라이신을 생산하는 다른 코리네박테리움 글루타미쿰에 속하는 균주에서도 상기와 동일한 효과가 있는지를 확인하기 위하여, 야생주에 3종의 변이[pyc(P458S), hom(V59A), lysC(T311I)]를 도입하여 L-라이신 생산능을 갖게된 코리네박테리움 글루타미쿰 CJ3P(Binder et al. Genome Biology, 2012, 13:R40)를 대상으로, 실시예 6과 같은 방법으로 gltA(N241T) 변이가 도입된 균주를 제작하였다. 상기 제작된 균주는 CJ3::gltA(N241T)으로 명명하였다. 대조군인 CJ3P균주와 CJ3::gltA(N241T)를 상기 실시예 5와 동일한 방법으로 배양하여 라이신 생산능, 당소모 속도 및 배양액 성분을 분석하여 하기 표 6에 나타내었다.
CJ3P유래 gltA(N241T) 변이주 라이신 생산능, 당소모 속도 및 배양액 성분 분석
균주 LYS 수율(%) GA 농도(mg/L) 당 소모속도(g/hr)
CJ3P 9.2 2689 5.86
CJ3P::gltA(N241T) 13.5 1983 5.51
라이신 생산능, 당소모속도 및 배양액 성분 중 글루탐산의 농도 분석결과, gltA(N241T)의 변이체가 도입된 균주에서 당소모속도 유사수준에서 라이신 수율이 증가하고 글루탐산의 농도가 감소되는 것을 확인하였다.
실시예 8: gltA 변이주(N241T)가 도입된 트레오닌 균주 제작 및 트레오닌 생산능 분석
gltA(N241T) 변이 도입에 의한 L-트레오닌 생산능 변화를 명확히 확인하기 위하여, L-트레오닌, L-이소류신 생합성 경로의 공통적 중간체인 호모세린(homoserine)을 생산하는 호모세린 디하이드로게나제(homoserin dehydrogenase)를 코딩하는 유전자에 변이를 도입하여 강화하였다. 구체적으로, 실시예 7에서 사용된 CJ3P::gltA(N241T) 균주에 기 공지된 hom(G378E) 변이 (R. Winkels, S. et al., Appl. Microbiol. Biotechnol. 45, 612-620, 1996)가 도입된 균주를 제작하였다. 또한 이의 대조군으로 CJ3P에 hom(G378E) 변이만 도입된 균주도 제작하였다. 변이도입을 위한 재조합벡터는 아래와 같은 방법으로 제작되었다.
hom(G378E)를 도입하는 벡터를 제작하기 위하여 먼저, WT 균주로부터 추출한 게놈 DNA를 주형으로 hom유전자의 1131~1134번째 위치에서 앞뒤로 각각 약 600bp 떨어진 위치에 5' 단편 및 3' 단편에 제한효소 XbaI 인식 부위를 삽입한 프라이머 서열번호 51 및 52 합성하였다. hom유전자의 염기서열을 치환하기 위한 프라이머 서열번호 53 및 54를 합성하였다(표 7). pDZ-hom(G378E) 플라스미드는 hom 유전자의 5' 및 3' 말단에 위치한 DNA 단편들이 (각 600bp) pDZ 벡터(대한민국 특허 제2009-0094433호)에 연결된 형태로 제작되었다. WT균주의 염색체를 주형으로 5' 말단 유전자 단편이 프라이머 서열번호 51 및 53을 이용한 PCR을 통해 제작되었다. PCR 조건은 94˚C에서 2분간 변성 후, 94˚C 1분 변성, 56˚C 1분 어닐링, 72˚C 40초 중합을 30회 반복한 후, 72˚C 에서 10분간 중합반응을 수행하였다. 동일한 방법으로 hom 유전자의 3' 말단에 위치한 유전자 단편이 서열번호 52 및 54를 이용한 PCR을 통해 제작되었다. 증폭된 DNA 단편을 Quiagen사의 PCR Purification kit를 사용하여 정제한 후, 벡터 제작을 위한 삽입 DNA단편으로 사용하였다. 한편 제한효소 XbaI으로 처리한 후, 65℃에서 20분간 열처리한 pDZ 벡터와 상기 PCR을 통하여 증폭한 삽입 DNA 단편을 Infusion Cloning Kit를 사용하여 연결한 후 대장균 DH5α 에 형질전환하고 카나마이신 (25 mg/l)이 포합된 LB 고체배지에 도말하였다. 프라이머 서열 51 및 52 를 이용한 PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하여 hom(G378E)의 염기치환변이를 염색체상에 도입하기 위한 벡터 pDZ-hom(G378E)를 제작하였다.
프라이머 서열 (5' -> 3')
프라이머(서열번호 51) TCCTCTAGACTGGTCGCCTGATGTTCTAC
프라이머(서열번호 52) GACTCTAGATTAGTCCCTTTCGAGGCGGA
프라이머(서열번호 53) GCCAAAACCTCCACGCGATC
프라이머(서열번호 54) ATCGCGTGGAGGTTTTGGCT
pDZ-hom(G378E) 벡터를 CJ3P 및 CJ3P::gltA(N241T) 균주에 실시예 6과 같은 방법으로 hom 유전자에 뉴클레오티드 변이가 도입된 균주, CJ3P::hom(G378E)과 CJ3P::gltA(N241T)-hom(G378E)를 획득하였다. 획득한 2종의 균주를 상기 실시예 5와 동일한 방법으로 배양하여 트레오닌 생산농도, 당소모 속도 및 배양액 성분을 분석하여 하기 표 8에 나타내었다.
트레오닌 생산농도, 당 소모속도 및 배양액 성분
균주 Thr농도 (g/L) GA 농도(mg/L) 당 소모속도(g/hr)
CJ3P::hom(G378E) 2.8 2769 5.36
CJ3P::gltA(N241T)-hom(G378E) 6.1 1891 5.17
트레오닌 생산능, 당 소모속도 및 배양액 성분 중 글루탐산의 농도 분석결과, gltA(N241T)의 변이체가 도입된 균주에서 당소모속도 유사수준에서 트레오닌 농도가 증가하고 글루탐산의 농도가 감소되는 것을 확인하였다.
실시예 9: gltA 변이주(N241T)가 도입된 이소류신 균주 제작 및 이소류신 생산능 분석
gltA(N241T)변이 도입에 의한 L-이소류신 생산능에 미치는 효과를 확인하고자 기 공지된 트레오닌 디하이드라타제(L-threonine dehydratase)를 코딩하는 유전자에 변이를 도입하여 강화하였다. 구체적으로, 실시예 7에서 사용된 CJ3P::gltA(N241T)-hom(G378E) 균주에 기 공지된 ilvA(V323A) 변이 (S. Morbach et al., Appl. Enviro. Microbiol., 62(12): 4345-4351, 1996)가 도입된 균주를 제작하였다. 또한 이의 대조군으로 CJ3P::hom(G378E)에 ilvA(V323A) 변이만 도입된 균주도 제작하였다. 변이도입을 위한 재조합벡터는 아래와 같은 방법으로 제작되었다.
ilvA(V323A)를 도입하는 벡터를 제작하기 위하여 먼저, WT 균주로부터 추출한 게놈 DNA를 주형으로 ilvA유전자의 966~969번째 위치에서 앞뒤로 각각 약 600bp 떨어진 위치에 5' 단편 및 3' 단편에 제한효소 XbaI 인식 부위를 삽입한 프라이머 서열번호 55 및 56을 합성하였다. 또한 ilvA유전자의 염기서열을 치환하기 위한 프라이머 서열번호 57 및 58을 합성하였다(표 9). pDZ- ilvA(V323A) 플라스미드는 ilvA 유전자의 5' 및 3' 말단에 위치한 DNA 단편들이 (각 600bp) pDZ 벡터(대한민국 특허 제2009-0094433호)에 연결된 형태로 제작되었다. WT균주의 염색체를 주형으로 5' 말단 유전자 단편은 프라이머 서열번호 55 및 57을 이용하여 PCR을 통해 제작하였다. PCR 조건은 94˚C에서 2분간 변성 후, 94˚C 1분 변성, 56˚C 1분 어닐링, 72˚C 40초 중합을 30회 반복한 후, 72˚C 에서 10분간 중합반응을 수행하였다.
동일한 방법으로 ilvA 유전자의 3' 말단에 위치한 유전자 단편이 서열번호 56 및 58를 이용한 PCR을 통해 제작되었다. 증폭된 DNA 단편을 Quiagen사의 PCR Purification kit를 사용하여 정제한 후, 벡터 제작을 위한 삽입 DNA단편으로 사용하였다. 한편 제한효소 XbaI으로 처리한 후, 65℃에서 20분간 열처리한 pDZ 벡터와 상기 PCR을 통하여 증폭한 삽입 DNA 단편을 Infusion Cloning Kit를 사용하여 연결한 후 대장균 DH5α 에 형질전환하고 카나마이신 (25 mg/l)이 포합된 LB 고체배지에 도말하였다. 프라이머 서열 55 및 56 를 이용한 PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하여 ilvA(V323A)의 염기치환변이를 염색체상에 도입하기 위한 벡터 pDZ-ilvA(V323A)를 제작하였다.
프라이머 서열 (5' -> 3')
프라이머(서열번호 55) ACGGATCCCAGACTCCAAAGCAAAAGCG
프라이머(서열번호 56) ACGGATCCAACCAAACTTGCTCACACTC
프라이머(서열번호 57) ACACCACGGCAGAACCAGGTGCAAAGGACA
프라이머(서열번호 58) CTGGTTCTGCCGTGGTGTGCATCATCTCTG
pDZ-ilvA(V323A) 벡터를 CJ3P::hom(G378E) 및 CJ3P::gltA(N241T)-hom(G378E) 균주에 실시예 6과 같은 방법으로 ilvA유전자에 뉴클레오티드 변이가 도입된 균주, CJ3P::hom(G378E)-ilvA(V323A)과 CJ3P::gltA(N241T)-hom(G378E)-ilvA(V323A)를 획득하였다. 획득한 2종의 균주를 상기 실시예 5와 동일한 방법으로 배양하여 이소류신 생산농도, 당소모 속도 및 배양액 성분을 분석하여 하기 표 10에 나타내었다.
이소류신 생산농도, 당소모 속도 및 배양액 성분
균주 Ile농도 (g/L) GA 농도(mg/L) 당 소모속도(g/hr)
CJ3P::hom(G378E)-ilvA(V323A) 0.5 2912 4.92
CJ3P::gltA(N241T)-hom(G378E)-ilvA(V323A) 1.6 2006 5.13
이소류신 생산능, 당 소모속도 및 배양액 성분 중 글루탐산의 농도 분석결과, gltA(N241T)의 변이체가 도입된 균주에서 당소모속도 유사수준에서 이소류신 농도가 크게 증가하고 글루탐산의 농도가 감소되는 것을 확인하였다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2019001697-appb-I000001

Claims (13)

  1. 서열번호 1의 아미노산 서열에서 241번째 아스파라긴(asparagine)이 다른 아미노산으로 치환된 시트레이트 신타아제(Citrate synthase) 활성을 갖는, 변이형 폴리펩티드.
  2. 제1항에 있어서, 상기 241번째 아스파라긴은 라이신 이외의 다른 아미노산으로 치환되는, 변이형 폴리펩티드.
  3. 제1항에 있어서, 상기 다른 아미노산은 방향족 아미노산 또는 친수성 아미노산인, 변이형 폴리펩티드.
  4. 제1항에 있어서, 상기 241번째 아스파라긴은 트레오닌 (Threonine), 세린 (Serine) 또는 티로신 (Tyrosine)으로 치환되는, 변이형 폴리펩티드.
  5. 제1항의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드.
  6. 제1항의 변이형 폴리펩티드를 포함하는, 코리네박테리움 속(Corynebacterium sp.) 미생물.
  7. 제 6항에 있어서, 상기 코리네박테리움속 미생물은 L-아미노산을 생산하는, 코리네박테리움 속(Corynebacterium sp.) 미생물.
  8. 제 6항에 있어서, 상기 코리네박테리움속 미생물은 아스파테이트 유래 L-아미노산을 생산하는, 코리네박테리움 속(Corynebacterium sp.) 미생물.
  9. 제6항에 있어서, 상기 코리네박테리움속 미생물은 라이신, 트레오닌, 메티오닌, 호모세린 또는 이의 유도체, 및 이소류신으로 이루어진 군으로부터 선택되는 1 종 이상의 L-아미노산을 생산하는, 코리네박테리움 속 미생물.
  10. 제6항에 있어서, 상기 코리네박테리움속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, 코리네박테리움 속 미생물.
  11. 제6항의 미생물을 배지에서 배양하는 단계; 및
    상기 배양된 미생물 또는 배지로부터 L-아미노산을 회수하는 단계를 포함하는, L-아미노산의 생산방법.
  12. 제 11항에 있어서, 상기 L-아미노산은 아스파테이트 유래 L-아미노산인, L-아미노산의 생산방법.
  13. 제11항에 있어서, 상기 L-아미노산은 라이신, 트레오닌, 메티오닌, 호모세린 또는 이의 유도체, 및 이소류신으로 이루어진 군으로부터 선택되는 1 종 이상인, L-아미노산의 생산방법.
PCT/KR2019/001697 2018-02-13 2019-02-12 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법 WO2019160301A1 (ko)

Priority Applications (13)

Application Number Priority Date Filing Date Title
RU2019115240A RU2732815C1 (ru) 2018-02-13 2019-02-12 Модифицированный полипептид с пониженной активностью цитратсинтазы и способ получения L-аминокислоты с использованием этого полипептида
CN201980001012.7A CN110546254B (zh) 2018-02-13 2019-02-12 柠檬酸合酶活性减弱的修饰多肽及利用其产生l-氨基酸的方法
BR122020018773-5A BR122020018773B1 (pt) 2018-02-13 2019-02-12 Polipeptídeo modificado tendo atividade de citrato sintase, microrganismo do gênero corynebacterium e método para produzir um l-aminoácido
BR112019016462-6A BR112019016462B1 (pt) 2018-02-13 2019-02-12 Polipeptídeo modificado tendo atividade de citrato sintase, microrganismo do gênero corynebacterium e método para produzir um laminoácido
MX2020006106A MX2020006106A (es) 2018-02-13 2019-02-12 Polipeptido modificado con actividad atenuada de citrato sintasa y procedimiento para producir l-aminoacido utilizando el mismo.
US16/470,030 US11499173B2 (en) 2018-02-13 2019-02-12 Modified polypeptide with attenuated activity of citrate synthase and method for producing L-amino acid using the same
AU2019221267A AU2019221267B2 (en) 2018-02-13 2019-02-12 Modified polypeptide with attenuated activity of citrate synthase and method for producing L-amino acids using same
EP19723304.2A EP3561055A4 (en) 2018-02-13 2019-02-12 MODIFIED POLYPEPTIDE WITH MITIGATED CITRATE SYNTHASE ACTIVITY AND A L-AMINO ACID PRODUCTION METHOD USING IT
JP2020538107A JP6998466B2 (ja) 2018-02-13 2019-02-12 クエン酸シンターゼの活性が弱化された変異型ポリペプチド及びそれを用いたl-アミノ酸生産方法
CN202011202500.5A CN112175895B (zh) 2018-02-13 2019-02-12 柠檬酸合酶活性减弱的修饰多肽及利用其产生l-氨基酸的方法
PH12020550844A PH12020550844A1 (en) 2018-02-13 2020-06-08 Modified polypeptide with attenuated activity of citrate synthase and method for producing l-amino acid using the same
ZA2020/03471A ZA202003471B (en) 2018-02-13 2020-06-10 Modified polypeptide with attenuated activity of citrate synthase and method for producing l-amino acids using same
US17/938,508 US11667936B2 (en) 2018-02-13 2022-10-06 Modified polypeptide with attenuated activity of citrate synthase and method for producing L-amino acid using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0017400 2018-02-13
KR1020180017400A KR101915433B1 (ko) 2018-02-13 2018-02-13 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/470,030 A-371-Of-International US11499173B2 (en) 2018-02-13 2019-02-12 Modified polypeptide with attenuated activity of citrate synthase and method for producing L-amino acid using the same
US17/938,508 Division US11667936B2 (en) 2018-02-13 2022-10-06 Modified polypeptide with attenuated activity of citrate synthase and method for producing L-amino acid using the same

Publications (1)

Publication Number Publication Date
WO2019160301A1 true WO2019160301A1 (ko) 2019-08-22

Family

ID=64329080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001697 WO2019160301A1 (ko) 2018-02-13 2019-02-12 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법

Country Status (12)

Country Link
US (2) US11499173B2 (ko)
EP (1) EP3561055A4 (ko)
JP (1) JP6998466B2 (ko)
KR (1) KR101915433B1 (ko)
CN (2) CN110546254B (ko)
AU (1) AU2019221267B2 (ko)
BR (1) BR122020018773B1 (ko)
MX (1) MX2020006106A (ko)
PH (1) PH12020550844A1 (ko)
RU (1) RU2732815C1 (ko)
WO (1) WO2019160301A1 (ko)
ZA (1) ZA202003471B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630903A (zh) * 2019-09-26 2022-06-14 Cj第一制糖株式会社 内消旋-二氨基庚二酸脱氢酶的修饰多肽及使用其生产l-苏氨酸的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915433B1 (ko) * 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법
KR102285951B1 (ko) * 2020-01-30 2021-08-04 씨제이제일제당 주식회사 시트레이트 신타아제의 활성이 약화된 신규한 변이형 폴리펩티드 및 이를 이용한 l-아미노산 생산 방법
KR102344689B1 (ko) * 2020-09-01 2021-12-29 씨제이제일제당 주식회사 L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
JP2023540518A (ja) * 2020-09-03 2023-09-25 デサン・コーポレイション L-リジン生産能が向上したコリネバクテリウムグルタミクム変異株およびこれを用いたl-リジンの生産方法
KR102703188B1 (ko) * 2020-09-03 2024-09-06 대상 주식회사 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022050524A1 (ko) * 2020-09-03 2022-03-10 대상 주식회사 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
CN114540261B (zh) * 2020-11-24 2024-02-02 北京化工大学 一种产氨基己二酸的基因工程菌
KR102277034B1 (ko) * 2021-01-29 2021-07-13 씨제이제일제당 (주) 신규한 dahp 신타아제 변이체 및 이를 이용한 l-라이신 생산 방법
KR102525073B1 (ko) * 2021-03-10 2023-04-24 씨제이제일제당 주식회사 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법
KR102525074B1 (ko) * 2021-03-10 2023-04-24 씨제이제일제당 주식회사 신규한 시트레이트 신타아제 변이체 및 이를 이용한 o-아세틸-l-호모세린 또는 l-메티오닌 생산 방법
KR102525072B1 (ko) * 2021-03-10 2023-04-24 씨제이제일제당 주식회사 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법
EP4101927A4 (en) * 2021-04-28 2023-10-11 CJ CheilJedang Corporation NEW ISOCITRATE DEHYDROGENASE KINASE/PHOSPHATASE VARIANT AND METHOD FOR PRODUCING L-TRYPTOPHAN USING THIS VARIANT
CN116555130A (zh) * 2022-01-27 2023-08-08 廊坊梅花生物技术开发有限公司 产苏氨酸基因工程菌的构建方法
CN116622600A (zh) * 2022-02-14 2023-08-22 廊坊梅花生物技术开发有限公司 苏氨酸生产菌株的构建方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
KR100838038B1 (ko) 2006-12-29 2008-06-12 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법
KR20090094433A (ko) 2006-11-10 2009-09-07 쇼와 덴코 가부시키가이샤 가공성이 우수한 내마모성 알루미늄 합금재 및 그 제조 방법
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
US20090280542A1 (en) * 2006-07-13 2009-11-12 Degussa Gmbh Method of production of l-amino acids
US20120214211A1 (en) * 2007-09-27 2012-08-23 Forschungszentrum Julich Gmbh Process for the Fermentative Preparation of Organic Chemical Compounds Using Coryneform Bacteria in which the SugR Gene is Present in Attenuated Form
KR101915433B1 (ko) * 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623825B2 (ja) 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
DE10359661A1 (de) * 2003-12-18 2005-07-28 Basf Ag Genvarianten die für Proteine aus dem Stoffwechselweg von Feinchemikalien codieren
DE102004009454A1 (de) * 2004-02-27 2005-09-15 Degussa Ag Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von rekombinanten Mikroorganismen
CN102177246B (zh) * 2008-09-08 2015-02-11 味之素株式会社 生产l-氨基酸的微生物和l-氨基酸的生产方法
EP2796555B1 (en) * 2011-12-21 2018-08-29 Cj Cheiljedang Corporation Method for producing l-lysine using microorganisms having ability to produce l-lysine
BR112014017088B1 (pt) * 2012-01-10 2022-04-19 Cj Cheiljedang Corporation Microrganismos de corynebacterium que podem utilizar xilose e método para a produção de l-lisina utilizando os mesmos
KR102104658B1 (ko) 2013-05-13 2020-04-27 우정케미칼주식회사 고기능성 폴리아미드 중합체, 이를 포함하는 방사 도프 조성물 및 그의 성형물
RU2549690C1 (ru) * 2013-10-08 2015-04-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП "ГосНИИгенетика") L-ЛИЗИН-ПРОДУЦИРУЮЩАЯ БАКТЕРИЯ Corynebacterium glutamicum ИЛИ Brevibacterium flavum, УСТОЙЧИВАЯ К ФУЗИДИНОВОЙ КИСЛОТЕ, И СПОСОБ МИКРОБИОЛОГИЧЕСКОГО СИНТЕЗА L-ЛИЗИНА С ЕЕ ИСПОЛЬЗОВАНИЕМ
KR101565770B1 (ko) * 2013-12-13 2015-11-04 씨제이제일제당 주식회사 L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신을 생산하는 방법
KR101825777B1 (ko) * 2014-06-05 2018-02-07 씨제이제일제당 (주) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
KR101641770B1 (ko) * 2014-06-23 2016-07-22 씨제이제일제당 (주) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
KR101835935B1 (ko) * 2014-10-13 2018-03-12 씨제이제일제당 (주) L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
US20090280542A1 (en) * 2006-07-13 2009-11-12 Degussa Gmbh Method of production of l-amino acids
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR20090094433A (ko) 2006-11-10 2009-09-07 쇼와 덴코 가부시키가이샤 가공성이 우수한 내마모성 알루미늄 합금재 및 그 제조 방법
KR100838038B1 (ko) 2006-12-29 2008-06-12 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법
US20120214211A1 (en) * 2007-09-27 2012-08-23 Forschungszentrum Julich Gmbh Process for the Fermentative Preparation of Organic Chemical Compounds Using Coryneform Bacteria in which the SugR Gene is Present in Attenuated Form
KR101915433B1 (ko) * 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
"Atlas of Protein Sequence and Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
ATSCHUL, [S.] [F. ET AL., J MOLEC BIO, vol. 215, 1990, pages 403
AYED, A: "A stable intermediate in the equilibrium unfolding of Escheri- chia coli citrate synthase", PROTEIN SCIENCE, vol. 8, 1999, pages 11 16 - 1126, XP55625039 *
BINDER ET AL., GENOME BIOLOGY, vol. 13, 2012, pages R40
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
EIKMANNS, B ET AL.: "Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase", MIC- ROBIOLOGY, vol. 140, 1994, pages 1817 - 1828, XP55625036 *
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
KISPAL, G ET AL.: "Metabolic Studies on Citrate Synthase Mutants of Yeast", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 19, 1989, pages 11204 - 11210, XP55625038 *
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
OOYEN ET AL., BIOTECHNOL. BIOENG., vol. 109, no. 8, 2012, pages 2070 - 2081
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
QUANDT, E. M.: "Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment", ELIFE, vol. 4, 2015, pages 1 - 22, XP55625041 *
R. WINKELS, S. ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 45, 1996, pages 612 - 620
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: doi:10.1016/S0168-9525(00)02024-2
S. MORBACH ET AL., APPL. ENVIRO. MICROBIOL., vol. 62, no. 12, 1996, pages 4345 - 4351
SAUMGART, M.: "Deletion of the aconitase gene in corynebacterium glutami- :um causes strong selection pressure for secondary mutations inactivating :itrate synthase", JOURNAL OF BACTERIOLOGY, vol. 193, no. 24, 7 October 2011 (2011-10-07), pages 6864 - 6873, XP55625044 *
See also references of EP3561055A4
SHIIO, I: "Production of aspartic acid and lysine by citrate synthase mu- tants of brevibacterium flavum", AGRIC. BIOL. CHEM., vol. 46, no. 1, 1982, pages 101 - 107, XP001320247 *
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482
VAN DER REST ET AL., APPL. MICROBIOL. BIOTECNOL., vol. 52, 1999, pages 541 - 545
VAN OOYEN, J: "Improved I-lysine production eith corynebacterium glutami- cum and systemic insight into citrate synthase flux and activity", BIOTECH- NOLOGY AND BIOENGINEERING, vol. 109, no. 8, 2012, pages 2070 - 2081, XP055111478 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630903A (zh) * 2019-09-26 2022-06-14 Cj第一制糖株式会社 内消旋-二氨基庚二酸脱氢酶的修饰多肽及使用其生产l-苏氨酸的方法
CN114630903B (zh) * 2019-09-26 2024-02-06 Cj第一制糖株式会社 内消旋-二氨基庚二酸脱氢酶的修饰多肽及使用其生产l-苏氨酸的方法

Also Published As

Publication number Publication date
BR122020018773B1 (pt) 2021-06-22
RU2732815C1 (ru) 2020-09-22
US11499173B2 (en) 2022-11-15
EP3561055A1 (en) 2019-10-30
KR101915433B1 (ko) 2018-11-05
AU2019221267A1 (en) 2020-06-25
JP2021510298A (ja) 2021-04-22
JP6998466B2 (ja) 2022-02-04
BR112019016462A2 (pt) 2020-04-07
AU2019221267B2 (en) 2022-03-31
PH12020550844A1 (en) 2021-05-17
US20210355514A1 (en) 2021-11-18
ZA202003471B (en) 2021-06-30
EP3561055A4 (en) 2020-10-14
CN112175895B (zh) 2024-05-03
US11667936B2 (en) 2023-06-06
CN110546254B (zh) 2020-11-24
US20230046561A1 (en) 2023-02-16
CN112175895A (zh) 2021-01-05
CN110546254A (zh) 2019-12-06
MX2020006106A (es) 2020-08-24

Similar Documents

Publication Publication Date Title
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2022163934A1 (ko) 신규한 d-알라닌-d-알라닌 리가아제 a 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2020111436A1 (ko) Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2022231368A1 (ko) 신규한 글루타메이트 합성 효소 서브 유니트 알파 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022231369A1 (ko) 신규한 포르메이트 의존성 포스포리보실글리신아미드 포밀 전이효소 변이체 및 이를 이용한 imp 생산 방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2022163916A1 (ko) 신규한 dahp 신타아제 변이체 및 이를 이용한 l-라이신 생산 방법
WO2022215796A1 (ko) 신규한 전사 조절자 변이체 및 이를 이용한 l-발린 생산 방법
WO2021177731A1 (ko) 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
WO2018093033A1 (ko) L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2022149865A2 (ko) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
WO2022154190A1 (ko) 신규한 포스포노아세테이트 하이드롤라제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163922A1 (ko) 신규한 아스파라긴 신타제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022163920A1 (ko) 신규한 시스테인 설피네이트 디설피나제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022163909A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2022108383A1 (ko) L-글루타민 생산능이 향상된 미생물 및 이를 이용한 l-글루타민 생산 방법
WO2022225320A1 (ko) 신규한 포스포글리세린산 디하이드로게나제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022225319A1 (ko) 신규한 l-세린 암모니아 분해 효소 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2021101000A1 (ko) 아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물
WO2022163937A1 (ko) 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022154180A1 (ko) 신규한 포름아미도피리미딘-dna 글리코실라제 변이체 및 이를 이용한 imp 생산 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019723304

Country of ref document: EP

Effective date: 20190521

WWE Wipo information: entry into national phase

Ref document number: 122020018773

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016462

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019016462

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190808

ENP Entry into the national phase

Ref document number: 2019221267

Country of ref document: AU

Date of ref document: 20190212

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020538107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE