WO2019160019A1 - Solid electrolyte assembly - Google Patents
Solid electrolyte assembly Download PDFInfo
- Publication number
- WO2019160019A1 WO2019160019A1 PCT/JP2019/005290 JP2019005290W WO2019160019A1 WO 2019160019 A1 WO2019160019 A1 WO 2019160019A1 JP 2019005290 W JP2019005290 W JP 2019005290W WO 2019160019 A1 WO2019160019 A1 WO 2019160019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- electrode layer
- conductive electrode
- mixed conductive
- layer
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 164
- 239000000463 material Substances 0.000 claims abstract description 51
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 29
- 229910052746 lanthanum Inorganic materials 0.000 claims description 22
- 239000002131 composite material Substances 0.000 claims description 14
- 229910052712 strontium Inorganic materials 0.000 claims description 10
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 8
- 229910052586 apatite Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052772 Samarium Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 238000003475 lamination Methods 0.000 abstract description 3
- 238000005304 joining Methods 0.000 abstract description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 239000013078 crystal Substances 0.000 description 15
- 239000010408 film Substances 0.000 description 12
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- 229910001882 dioxygen Inorganic materials 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000004549 pulsed laser deposition Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910018921 CoO 3 Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- -1 oxygen ion Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/126—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/41—Oxygen pumping cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a solid electrolyte assembly having oxide ion conductivity.
- the solid electrolyte assembly of the present invention is used in various fields using its oxygen ion conductivity.
- an electrolyte membrane for an electrochemical cell comprising an oxide ion conductor having a composition as described above and having a perovskite crystal structure.
- This electrolyte film has a columnar crystal structure that grows in a direction perpendicular to the film surface and grows to the film surface. In the columnar crystal structure grown to the film surface, the 112 direction is oriented perpendicular to the film surface.
- an apatite-type crystal is formed in the vicinity of a bonding interface in which a first layer mainly composed of La 2 SiO 5 and a second layer mainly composed of La 2 Si 2 O 7 are brought into contact with each other.
- a crystal-oriented ceramic is described in which a lanthanum silicate having a structure is produced, and the crystal of the lanthanum silicate is oriented along the vertical direction with respect to the original bonding interface.
- Patent Document 3 describes an electrolyte / electrode assembly in which a solid electrolyte made of an apatite complex oxide is interposed between an anode side electrode and a cathode side electrode. An intermediate layer in which oxide ion conduction is isotropic is interposed between the cathode side electrode and the solid electrolyte.
- the intermediate layer is made of cerium oxide doped with samarium, yttrium, gadolinium or lanthanum.
- the solid electrolyte is made of La x Si 6 O 1.5X + 12 (8 ⁇ X ⁇ 10). According to this electrolyte / electrode assembly, this document describes that the power generation performance of a solid oxide fuel cell is improved.
- JP 2008-10411 A International Publication 2012/015061 JP2013-51101A
- an object of the present invention is to provide a device that can fully utilize the oxide ion conductivity inherently possessed by a solid electrolyte.
- the present inventor has intensively studied to solve the above-mentioned problems.
- the solid electrolyte is inherently present by joining a material to the oxide ion conductive solid electrolyte so that a specific state is obtained. It has been found that the oxide ion conductivity can be sufficiently extracted.
- the solid electrolyte assembly of the present invention has been made on the basis of the above findings, and is a polycrystalline solid electrolyte having oxide ion conductivity, laminated in contact with the solid electrolyte, and oxide ion conductivity and electronic conductivity.
- FIG. 1 is a schematic view of a cross section along the thickness direction showing an embodiment of a device using the solid electrolyte assembly of the present invention.
- the solid electrolyte assembly 10 of the present invention includes a layer (hereinafter referred to as “solid electrolyte layer”) 11 made of a solid electrolyte.
- the solid electrolyte layer 11 is made of a solid electrolyte having oxide ion conductivity at a predetermined temperature or higher.
- an electrode layer hereinafter referred to as “mixed conductive electrode layer” 12 having a mixed conductivity laminated in contact with the solid electrolyte layer 11 is joined.
- the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are in direct contact with each other, and no other layer is interposed therebetween.
- the mixed conductive electrode layer 12 is made of a material having oxide ion conductivity and electronic conductivity.
- a solid electrolyte assembly 10 is constituted by the solid electrolyte layer 11 and the mixed conductive electrode layer 12.
- a metal electrode 13 may be further disposed on the surface opposite to the surface on which the mixed conductive electrode layer 12 is disposed, of the two surfaces of the solid electrolyte layer 11.
- the device 20 is configured by arranging the solid electrolyte layer 11, the mixed conductive electrode layer 12 and the metal electrode 13 in this order.
- the solid electrolyte layer 11 and the metal electrode 13 are in direct contact with each other, and no other layer is interposed therebetween.
- the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are shown in different sizes, but the magnitude relationship between them is not limited to this, and for example, the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are the same. It may be a size. The same applies to the solid electrolyte layer 11 and the metal electrode 13, and both may be the same size, or for example, the size of the solid electrolyte layer 11 may be larger than that of the metal electrode 13.
- the electric resistance between the solid electrolyte layer 11 and the mixed conductive electrode layer 12 is greatly reduced by bonding the mixed conductive electrode layer 12 to the solid electrolyte layer 11. It has been found that it can be made. Moreover, in order to reduce the electrical resistance in the device 20, it is thought that it is first important to increase the oxide ion conductivity of the solid electrolyte layer 11, but the device 20 is made using a material having high oxide ion conductivity. It has been found that the electrical resistance of the entire device 20 tends to increase.
- the solid electrolyte layer 11 which is a layer having oxide ion conductivity is adjacent to the device 20.
- the mixed conductive electrode layer 12 having oxide ion conductivity and electronic conductivity is adopted, and the material constituting the solid electrolyte layer 11 and the material constituting the mixed conductive electrode layer 12 are Also, it has been found that it is effective that the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are uniaxially oriented along the stacking direction.
- the device 20 can be operated at a low temperature, or the device 20 having a high oxygen permeation amount can be obtained.
- the material constituting the solid electrolyte layer 11 and / or the material constituting the mixed conductive electrode layer 12 is non-oriented or the crystals of both layers are oriented, If any of the orientation directions is not coincident with the stacking direction, the electrical resistance at the interface between the solid electrolyte layer 11 and the mixed conductive electrode layer 12 becomes high, and high oxide ion conductivity is exhibited. It will not be a thing.
- the solid electrolyte layer 11 serving as a substrate is heated to 300 ° C. to 700 ° C.
- a thin film of the mixed conductive electrode layer 12 is formed on the solid electrolyte layer 11 using a physical vapor deposition method or a chemical vapor deposition method in an atmosphere in which the oxygen partial pressure is controlled while heating to 0 ° C. Epitaxial growth may be performed.
- a uniaxially oriented thin film of the mixed conductive electrode layer 12 can be formed on the solid electrolyte layer 11 by using atomic layer deposition (ALD).
- ALD atomic layer deposition
- Whether or not the material constituting the solid electrolyte layer 11 and the material constituting the mixed conductive electrode layer 12 are uniaxially oriented is determined from cross-sectional observation by a TEM (transmission electron microscope) of the bonding interface.
- the lattice constants and plane spacings of the solid electrolyte layer 11 and the mixed conductive electrode layer 12 can be calculated from a diffraction pattern obtained by performing X-ray diffraction measurement while swinging.
- the c-axis of the material constituting the solid electrolyte layer 11 and the c-axis of the material constituting the mixed conductive electrode layer 12 are both mixed with the solid electrolyte layer 11.
- the orientation is preferably along the direction of lamination with the electrode layer 12.
- the c-axis being oriented along the stacking direction means that the direction in which the c-axis extends in each crystal of the solid electrolyte that is a polycrystal coincides with the direction in which the layers are stacked.
- the solid electrolyte layer 11 is a conductor in which oxide ions are carriers.
- a polycrystalline material is used as the solid electrolyte constituting the solid electrolyte layer 11. Examples of such materials include various materials known so far as materials having oxide ion conductivity. For example, yttria stabilized zirconium (YSZ), lanthanum gallate (LaGaO 3 ), and the like can be given.
- an oxide of lanthanum as the material constituting the solid electrolyte layer 11 because the oxide ion conductivity is further increased.
- the lanthanum oxide include a composite oxide containing lanthanum and gallium, a composite oxide obtained by adding strontium, magnesium, cobalt, or the like to the composite oxide, or a composite oxide containing lanthanum and molybdenum.
- the oxide ion conductivity is high, it is preferable to use an oxide ion conductive material made of a complex oxide of lanthanum and silicon.
- an apatite complex oxide containing lanthanum and silicon for example, an apatite complex oxide containing lanthanum and silicon can be given.
- the apatite-type composite oxide contains lanthanum, which is a trivalent element, silicon, which is a tetravalent element, and O, and its composition is La x Si 6 O 1.5x + 12 (X is a number of 8 or more and 10 or less. Is preferable from the viewpoint of high oxide ion conductivity.
- this apatite-type composite oxide is used as the solid electrolyte layer 11, it is preferable that the c-axis coincide with the thickness direction of the solid electrolyte layer 11.
- the most preferred composition of this apatite type complex oxide is La 9.33 Si 6 O 26 .
- This composite oxide can be produced, for example, according to the method described in JP2013-51101A.
- a in the formula is one or more elements selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr and Ba.
- T in the formula is an element containing Si or Ge or both.
- M in the formula is one or more elements selected from the group consisting of B, Ge, Zn, Sn, W and Mo. From the viewpoint of enhancing the c-axis orientation, M is preferably one or more elements selected from the group consisting of B, Ge, and Zn.
- x is preferably ⁇ 1.00 or more and 1.00 or less, more preferably 0.00 or more and 0.70 or less, from the viewpoint of improving the degree of orientation and oxide ion conductivity. More preferably, it is from 45 to 0.65.
- Y in the formula is preferably 0.40 or more and 3.00 or less, more preferably 0.40 or more and 2.00 or less, from the viewpoint of filling the T element position in the apatite type crystal lattice. More preferably, it is 40 or more and 1.00 or less.
- z is preferably ⁇ 3.00 or more and 2.00 or less, and ⁇ 2.00 or more and 1.50 or less from the viewpoint of maintaining electrical neutrality in the apatite crystal lattice. Is more preferably -1.00 or more and 1.00 or less.
- the ratio of the number of moles of A to the number of moles of M in other words, (9.33 + x) / y in the formula is 3.00 or more and 26 from the viewpoint of maintaining the spatial occupancy in the apatite type crystal lattice. It is preferably 0.0 or less, more preferably 6.20 or more and 26.0 or less, and still more preferably 12.00 or more and 16.0 or less.
- a complex oxide in which A is lanthanum that is, a complex oxide represented by La 9.33 + x [T 6.00- y My ] O 26.0 + z
- the composite oxide represented by the general formula (1) can be produced, for example, according to the method described in International Publication WO2016 / 111110.
- the thickness of the solid electrolyte layer 11 is preferably 10 nm or more and 1000 ⁇ m or less, more preferably 50 nm or more and 700 ⁇ m or less, and more preferably 100 nm or more and 500 ⁇ m or less from the viewpoint of effectively reducing the electric resistance of the solid electrolyte assembly 10. It is more preferable that The thickness of the solid electrolyte layer 11 can be measured using, for example, a stylus type step meter or an electron microscope.
- the mixed conductive electrode layer 12 is made of a material having oxide ion conductivity and electronic conductivity.
- the mixed conductive electrode layer 12 is preferably made of a material having a catalytic action.
- the catalytic action here means an action of reducing oxygen molecules (O 2 ) to oxide ions (O 2 ⁇ ) and an action of oxidizing oxide ions (O 2 ⁇ ) to oxygen molecules (O 2 ). It is.
- examples of such materials include (La, Sr) MnO 3 , (La, Sr) CoO 3 , (La, Sr) (Co, Sc) in which a part of atoms such as LaCoO 3 and LaMnO 3 is substituted with other atoms. Fe) O 3 and the like.
- the material constituting the mixed conductive electrode layer 12 and the material constituting the solid electrolyte layer 11 described above are both in the stacking direction of the solid electrolyte layer 11 and the mixed conductive electrode layer 12.
- the electric resistance at the interface between both layers 11 and 12 is reduced.
- lattice matching is performed on a plane orthogonal to the c-axis.
- either the a-axis or b-axis lattice constant of the mixed conductive electrode layer 12 or the spacing between the planes may be matched with that of the solid electrolyte layer 11. Furthermore, even when the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are not matched, the lattice orthogonal to the orientation direction of the solid electrolyte layer 11 can be obtained by heating the solid electrolyte assembly 10. Depending on the constant or face spacing, the lattice constant or face spacing of the mixed conducting electrode layer 12 can be matched, thereby allowing uniaxially oriented crystals to grow.
- a is 9.28 mm or more. It is preferable that it is 9.84 mm or less.
- d is preferably 4.54 to 5.04, more preferably 4.60 to 4.97, and still more preferably 4.64 to 4.92.
- the lattice constant and interplanar spacing d of the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are diffraction peaks obtained by performing X-ray diffraction measurement while the mixed conductive electrode layer 12 is joined to the solid electrolyte layer 11 and then swung.
- Calculated from The X-ray diffraction measurement conditions at this time are Cu-K ⁇ rays, diffraction angle (2 ⁇ / ⁇ ) of 10 ° to 140 °, tilt angle ( ⁇ swing) of -5 ° to 45 °, in-plane rotation ( ⁇ swing) ) was set to 0 to 360 °.
- the lattice constant a and the spacing d are calculated based on the diffraction data of the standard material such as ICSD® (inorganic crystal structure database). You can also.
- the crystal form of the solid electrolyte layer 11 is a hexagonal crystal and the lattice constant a is 9.60 ⁇
- the (110) plane spacing of the solid electrolyte layer 11 is 4.80 ⁇ .
- the lattice mismatch of the plane orthogonal to the c-axis is as low as 2.2%.
- the electrode layer 12 is considered to be locally epitaxially grown.
- the material constituting the mixed conductive electrode layer 12 is preferably a perovskite oxide.
- the lattice matching is successfully achieved when the material constituting the mixed conductive electrode layer 12 is a perovskite oxide. I can plan well.
- the space group of the perovskite oxide is R-3c because lattice matching can be achieved more successfully.
- ABO 3 a material constituting the mixed conductive electrode layer 12 from the viewpoint of further improving the oxide ion conductivity.
- A is preferably one or more metal elements selected from, for example, La, Sr, Ba, and Ca, and a particularly preferable metal element is at least one of La and Sr.
- B preferably uses, for example, one or more metal elements selected from Co, Ni, Mn, Cr, Ti, Fe, and Cu, and a particularly preferable metal element is at least one of Co and Ni. It is a seed.
- the material represented by the general formula (2) is preferably a composite oxide containing La, Sr, Co, and Ni.
- a particularly preferable one is represented by La 0.6 Sr 0.4 Co 0.9 Ni 0.1 O 3- ⁇ .
- the mixed conductive electrode layer 12 made of the complex oxide represented by the general formula (2) can be formed on one surface of the solid electrolyte layer 11 by using various thin film forming methods, for example.
- the thin film forming method include physical vapor deposition and chemical vapor deposition.
- the mixed conductive electrode layer 12 can be formed more successfully by using physical vapor deposition.
- physical vapor deposition methods it is particularly preferable to use a PLD (Pulsed Laser Deposition) method.
- the mixed conductive electrode layer 12 can effectively reduce the electric resistance between the mixed conductive electrode layer 12 and the solid electrolyte layer 11 if it has a predetermined thickness.
- the thickness along the stacking direction of the mixed conductive electrode layer 12 bonded to the solid electrolyte layer 11 is preferably 80 nm or more, more preferably 100 nm or more, and 100 nm or more and 1000 nm or less. Even more preferred.
- the thickness of the mixed conductive electrode layer 12 can be measured with a stylus profilometer or an electron microscope.
- the metal electrode 13 formed on the opposite side of the mixed conductive electrode layer 12 with the solid electrolyte layer 11 interposed therebetween is advantageous in that it is easy to form and has high catalytic activity.
- it is configured.
- the platinum group element include platinum, ruthenium, rhodium, palladium, osmium, and iridium. These elements can be used individually by 1 type or in combination of 2 or more types. Further, a cermet containing a platinum group element can be used as the metal electrode 13.
- the solid electrolyte joined body 10 and the device 20 of the embodiment shown in FIG. 1 can be suitably manufactured by, for example, the method described below.
- the solid electrolyte layer 11 is manufactured by a known method.
- the methods described in JP2013-51101A and International Publication WO2016 / 111110 described above can be employed.
- the mixed conductive electrode layer 12 is formed on one of the two surfaces of the solid electrolyte layer 11.
- the PLD method described above can be used to form the mixed conductive electrode layer 12.
- the material constituting the solid electrolyte layer 11 and the material constituting the mixed conductive electrode layer 12 are uniaxially oriented along the stacking direction of the solid electrolyte layer 11 and the mixed conductive electrode layer 12. Therefore, when the mixed conductive electrode layer 12 is formed on one surface of the solid electrolyte layer 11 using the PLD method described above, the solid electrolyte layer 11 may be heated to a predetermined temperature.
- the heating temperature is preferably set to, for example, 600 ° C. or more and 700 ° C.
- the metal electrode 13 is formed on the surface of the solid electrolyte layer 11 opposite to the surface on which the mixed conductive electrode layer 12 is formed.
- a paste containing platinum group metal particles is used to form the metal electrode 13.
- the paste is applied to the surface of the solid electrolyte layer 11 to form a coating film, and the coating film is baked to form an electrode made of a porous body.
- Firing conditions can be a temperature of 600 ° C. or more and a time of 30 minutes or more and 120 minutes or less.
- the atmosphere can be an oxygen-containing atmosphere such as air.
- the target solid electrolyte joined body 10 and the device 20 are obtained by the above method.
- the device 20 thus obtained is suitably used as, for example, an oxygen permeable element, an oxygen sensor, or a solid oxide fuel cell using the high oxide ion conductivity.
- the mixed conductive electrode layer 12 it is advantageous to use the mixed conductive electrode layer 12 as a cathode, that is, as an electrode where an oxygen gas reduction reaction takes place.
- the metal electrode 13 is connected to the anode of the direct current power source, and the mixed conductive electrode layer 12 is connected to the cathode of the direct current power source.
- a predetermined DC voltage is applied between Thereby, oxygen receives electrons on the mixed conductive electrode layer 12 side and oxide ions are generated.
- the generated oxide ions move through the solid electrolyte layer 11 and reach the metal electrode 13.
- the oxide ions reaching the metal electrode 13 emit electrons and become oxygen gas.
- the solid electrolyte layer 11 can transmit the oxygen gas contained in the atmosphere on the mixed conductive electrode layer 12 side to the electrode 13 side through the solid electrolyte layer 11.
- a current collecting layer made of a conductive material such as platinum may be formed on at least one of the surface of the mixed conductive electrode layer 12 and the surface of the metal electrode 13.
- the applied voltage is preferably set to 0.1 V or more and 4.0 V or less from the viewpoint of increasing the permeation amount of oxygen gas.
- the oxide ion conductivity of the solid electrolyte layer 11 is sufficiently high.
- the oxide ion conductivity is preferably 1.0 ⁇ 10 ⁇ 3 S / cm or more in terms of conductivity.
- the oxide ions generated on the mixed conductive electrode layer 12 side move to the metal electrode 13 side via the solid electrolyte layer 11, resulting in a current. Occurs. Since the current value depends on the oxygen gas concentration on the mixed conduction electrode layer 12 side, the oxygen gas concentration on the mixed conduction electrode layer 12 side can be measured by measuring the current value.
- the mixed conductive electrode layer 12 is disposed only on one surface of the solid electrolyte layer 11, but instead of this, as described in Examples described later, the mixed conductive electrode layer 11 is included in the solid electrolyte layer 11.
- a separate mixed conductive electrode layer 12 may be disposed on the surface facing the substrate 12.
- the mixed conductive electrode layers 12 may be the same or different. Also good.
- the material constituting the solid electrolyte layer 11, the material constituting one mixed conductive electrode layer 12, and the material constituting the other mixed conductive electrode layer 12 are all along the stacking direction thereof. Uniaxial orientation is preferred.
- Example 1 the solid electrolyte joined body 10 and the device 20 having the structure shown in FIG. 1 were manufactured according to the following steps (1) to (4).
- (1) Production of Solid Electrolyte Layer 11 La 2 O 3 powder and SiO 2 powder were blended at a molar ratio of 1: 1, ethanol was added, and the mixture was mixed by a ball mill. The mixture was dried, ground in a mortar and fired at 1650 ° C. for 3 hours in an atmospheric atmosphere using a platinum crucible. Ethanol was added to the fired product and pulverized with a ball mill to obtain a fired powder. The fired powder was put into a 20 mm ⁇ molding machine and pressed from one direction to be uniaxially molded.
- CIP cold isostatic pressing
- the oxide ion conductivity at 500 ° C. was 4.22 ⁇ 10 ⁇ 2 S / cm.
- the thickness of the solid electrolyte layer 11 was 350 ⁇ m. From observation with a polarizing microscope, it was confirmed that the solid electrolyte layer 11 was composed of a polycrystal.
- the mixed conductive electrode layer 12 was formed on one surface of the solid electrolyte layer 11 manufactured in (1) by the following procedure. Set solid electrolyte layer 11 and target La 0.6 Sr 0.4 Co 0.9 Ni 0.1 O 3- ⁇ (hereinafter, this substance is abbreviated as “LSCNO”) into the chamber of the PLD apparatus. Then, heating was performed in advance at 600 ° C. while evacuating the chamber. Thereafter, oxygen is introduced into the chamber and the atmosphere is controlled so as to be 5.5 ⁇ 10 ⁇ 4 torr, and then evaporated particles generated by laser ablation are deposited on the solid electrolyte layer 11 using a KrF excimer laser.
- LSCNO La 0.6 Sr 0.4 Co 0.9 Ni 0.1 O 3- ⁇
- a mixed conductive electrode layer 12 was formed.
- the mixed conductive electrode layer 12 thus obtained was confirmed to be composed of a polycrystalline body by TEM cross-sectional observation of the interface with the solid electrolyte layer 11.
- the distance between the (110) plane of the solid electrolyte layer 11 and the (010) plane of the mixed conductive electrode layer 12 is the same, and the c axis of the material constituting the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are configured. It was confirmed that the c-axis of the material to be oriented was aligned along the stacking direction.
- the mixed conductive electrode layer 12 was a perovskite oxide having a space group of R-3c. Furthermore, the plane spacing of the (110) plane of the solid electrolyte layer 11 calculated based on the lattice constant obtained from the diffraction pattern is 4.80 mm, and the plane spacing of the (010) plane of the mixed conductive electrode layer 12 is It was 4.68 cm. The lattice mismatch was 2.45%.
- the metal electrode 13 was formed in the surface on the opposite side to the surface in which the mixed conductive electrode layer 12 was formed among the solid electrolyte layers 11 manufactured by (1).
- the metal electrode 13 was formed by sputtering using a platinum target.
- a metal film 13 was obtained by annealing a platinum film formed on the surface of the solid electrolyte layer 11 opposite to the surface on which the mixed conductive electrode layer 12 was formed by sputtering at 600 ° C. for 1 hour.
- the thickness of the metal electrode 13 was 100 nm.
- Example 2 instead of the step (3) of Example 1, the step (2) of the same example was performed to obtain a device 20 in which the mixed conductive electrode layer 12 was disposed on each surface of the solid electrolyte layer 11.
- Example 1 In the step (2) of Example 1, the mixed conductive electrode layer 12 was formed at room temperature. Except this, it carried out similarly to Example 1, and obtained the solid electrolyte conjugate
- Comparative Example 2 In this comparative example, a paste containing LSCNO was applied to each surface of the solid electrolyte layer 11 obtained in the step (1) of Example 1 to form a coating film. By baking for a period of time, the mixed conductive electrode layer 12 having a thickness of 300 nm or more was formed.
- Example 3 In this comparative example, the solid electrolyte layer 11 that performs the process (1) of Example 1 was formed. Next, the step (3) of the same example was performed, and a metal electrode 13 made of platinum was formed in the solid electrolyte layer 11 instead of the mixed conductive electrode layer 12 of the first example. A metal electrode 13 made of platinum was also formed on the opposite surface. The thickness of the metal electrode 13 was 100 nm or more.
- the measurement was performed at 600 ° C. Air is supplied to the mixed conductive electrode layer 12 side of the device and N 2 gas is supplied to the metal electrode 13 side at 200 ml / min, respectively, and a DC voltage of 1.0 V is applied between the mixed conductive electrode layer 12 and the metal electrode 13. did.
- An oxygen concentration meter was attached to the metal electrode 13 side, a change in oxygen concentration in the atmosphere on the metal electrode 13 side before and after voltage application was measured, and an oxygen transmission rate (ml ⁇ cm ⁇ 2 ⁇ min ⁇ 1 ) was calculated. Further, the oxygen transmission efficiency was calculated by the formula [oxygen transmission amount measured with an oxygen concentration meter] / [oxygen transmission amount measured from current density] ⁇ 100.
- a solid electrolyte assembly having a high oxygen transmission rate is provided.
- the device can be operated at a low temperature and the oxygen supply amount can be increased.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
Abstract
A solid electrolyte assembly (10), formed by joining: a polycrystalline solid electrolyte (11) having oxide ion conductivity; and a mixed conduction electrode layer (12), which is laminated on the solid electrolyte (11) so as to be in contact and which has oxide ion conductivity and electron conductivity. The material constituting the solid electrolyte (11) and the material constituting the mixed conduction electrode layer (12) are uniaxially oriented in the direction of lamination of the solid electrolyte (11) and the mixed conduction electrode layer (12). The c-axis of the material constituting the solid electrolyte (11) and the c-axis of the material constituting the mixed conduction electrode layer (12) are preferably both oriented along the direction of lamination.
Description
本発明は、酸化物イオン伝導性を有する固体電解質の接合体に関する。本発明の固体電解質接合体は、その酸素イオン伝導性を利用した様々な分野に利用される。
The present invention relates to a solid electrolyte assembly having oxide ion conductivity. The solid electrolyte assembly of the present invention is used in various fields using its oxygen ion conductivity.
酸化物イオン伝導性の固体電解質が種々知られている。かかる固体電解質は、例えば酸素透過素子、燃料電池の電解質、及びガスセンサなどとして様々な分野で用いられている。例えば特許文献1には、一般式:La1-XSrXGa1-YMgYO3(式中、X=0.05~0.3、Y=0.025~0.3)で表される成分組成を有し、ペロブスカイト型結晶構造を有する酸化物イオン伝導体からなる電気化学セル用電解質膜が記載されている。この電解質膜は、膜面に垂直方向に成長し膜表面まで成長した柱状晶組織を有している。膜表面まで成長した柱状晶組織は、112方向が膜面に対して垂直方向に配向している。
Various oxide ion conductive solid electrolytes are known. Such solid electrolytes are used in various fields, for example, as oxygen permeable elements, fuel cell electrolytes, and gas sensors. For example, Patent Document 1 includes a general formula: La 1-X Sr X Ga 1-Y Mg Y O 3 (where X = 0.05 to 0.3, Y = 0.025 to 0.3). There is described an electrolyte membrane for an electrochemical cell comprising an oxide ion conductor having a composition as described above and having a perovskite crystal structure. This electrolyte film has a columnar crystal structure that grows in a direction perpendicular to the film surface and grows to the film surface. In the columnar crystal structure grown to the film surface, the 112 direction is oriented perpendicular to the film surface.
特許文献2には、La2SiO5を主成分とする第1の層とLa2Si2O7を主成分とする第2の層とを接触させた接合界面の近傍に、アパタイト型の結晶構造を有するランタンケイ酸塩が生成され、そのランタンケイ酸塩の結晶が、元の接合界面に対して、c軸が垂直方向に沿って配向している結晶配向セラミックスが記載されている。
In Patent Document 2, an apatite-type crystal is formed in the vicinity of a bonding interface in which a first layer mainly composed of La 2 SiO 5 and a second layer mainly composed of La 2 Si 2 O 7 are brought into contact with each other. A crystal-oriented ceramic is described in which a lanthanum silicate having a structure is produced, and the crystal of the lanthanum silicate is oriented along the vertical direction with respect to the original bonding interface.
特許文献3には、アノード側電極とカソード側電極との間にアパタイト型複合酸化物からなる固体電解質が介装された電解質・電極接合体が記載されている。カソード側電極と固体電解質との間には、酸化物イオン伝導が等方性を示す中間層が介装されている。中間層は、サマリウム、イットリウム、ガドリニウム又はランタンがドープされた酸化セリウムからなる。固体電解質は、LaxSi6O1.5X+12(8≦X≦10)からなる。この電解質・電極接合体によれば、固体酸化物形燃料電池の発電性能が向上すると、同文献には記載されている。
Patent Document 3 describes an electrolyte / electrode assembly in which a solid electrolyte made of an apatite complex oxide is interposed between an anode side electrode and a cathode side electrode. An intermediate layer in which oxide ion conduction is isotropic is interposed between the cathode side electrode and the solid electrolyte. The intermediate layer is made of cerium oxide doped with samarium, yttrium, gadolinium or lanthanum. The solid electrolyte is made of La x Si 6 O 1.5X + 12 (8 ≦ X ≦ 10). According to this electrolyte / electrode assembly, this document describes that the power generation performance of a solid oxide fuel cell is improved.
特許文献1ないし3に記載のとおり、酸化物イオン伝導性の固体電解質を利用したデバイスは種々提案されているものの、デバイス全体で評価した場合、固体電解質が本来的に有している酸化物イオン伝導性を十分に引き出しているとは言えなかった。
As described in Patent Documents 1 to 3, although various devices using oxide ion conductive solid electrolytes have been proposed, the oxide ions inherently possessed by the solid electrolyte when evaluated as a whole device. It could not be said that the conductivity was drawn sufficiently.
したがって本発明の課題は、固体電解質が本来的に有している酸化物イオン伝導性を十分に活用できるデバイスを提供することにある。
Therefore, an object of the present invention is to provide a device that can fully utilize the oxide ion conductivity inherently possessed by a solid electrolyte.
前記の課題を解決すべく本発明者は鋭意検討したところ、酸化物イオン伝導性の固体電解質に特定の状態となるよう材料を接合させて接合体となすことで、固体電解質が本来的に有している酸化物イオン伝導性を十分に引き出し得ることを知見した。
The present inventor has intensively studied to solve the above-mentioned problems. As a result, the solid electrolyte is inherently present by joining a material to the oxide ion conductive solid electrolyte so that a specific state is obtained. It has been found that the oxide ion conductivity can be sufficiently extracted.
本発明の固体電解質接合体は前記知見に基づきなされたものであり、酸化物イオン伝導性を有する多結晶の固体電解質と、該固体電解質に接して積層され且つ酸化物イオン伝導性及び電子伝導性を有する混合伝導電極層とが接合されてなり、
前記固体電解質を構成する材料と、前記混合伝導電極層を構成する材料とが、いずれも、該固体電解質と該混合伝導電極層が積層方向に沿って一軸配向している。このような固体電解質接合体を提供することによって前記の課題を解決したものである。 The solid electrolyte assembly of the present invention has been made on the basis of the above findings, and is a polycrystalline solid electrolyte having oxide ion conductivity, laminated in contact with the solid electrolyte, and oxide ion conductivity and electronic conductivity. A mixed conductive electrode layer having
In both the material constituting the solid electrolyte and the material constituting the mixed conductive electrode layer, the solid electrolyte and the mixed conductive electrode layer are uniaxially oriented along the stacking direction. The above-described problems are solved by providing such a solid electrolyte assembly.
前記固体電解質を構成する材料と、前記混合伝導電極層を構成する材料とが、いずれも、該固体電解質と該混合伝導電極層が積層方向に沿って一軸配向している。このような固体電解質接合体を提供することによって前記の課題を解決したものである。 The solid electrolyte assembly of the present invention has been made on the basis of the above findings, and is a polycrystalline solid electrolyte having oxide ion conductivity, laminated in contact with the solid electrolyte, and oxide ion conductivity and electronic conductivity. A mixed conductive electrode layer having
In both the material constituting the solid electrolyte and the material constituting the mixed conductive electrode layer, the solid electrolyte and the mixed conductive electrode layer are uniaxially oriented along the stacking direction. The above-described problems are solved by providing such a solid electrolyte assembly.
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1に示すとおり、本発明の固体電解質接合体10は、固体電解質からなる層(以下「固体電解質層」という。)11を備えている。固体電解質層11は、所定の温度以上で酸化物イオン伝導性を有する固体電解質からなる。固体電解質層11の一面には、該固体電解質層11に接して積層された混合伝導性を有する電極層(以下「混合伝導電極層」という。)12が接合されている。図1に示す実施形態においては、固体電解質層11と混合伝導電極層12が直接接しており、両者間に他の層は介在していない。混合伝導電極層12は、酸化物イオン伝導性及び電子伝導性を有する材料からなる。これら固体電解質層11及び混合伝導電極層12から固体電解質接合体10が構成されている。
Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. As shown in FIG. 1, the solid electrolyte assembly 10 of the present invention includes a layer (hereinafter referred to as “solid electrolyte layer”) 11 made of a solid electrolyte. The solid electrolyte layer 11 is made of a solid electrolyte having oxide ion conductivity at a predetermined temperature or higher. On one surface of the solid electrolyte layer 11, an electrode layer (hereinafter referred to as “mixed conductive electrode layer”) 12 having a mixed conductivity laminated in contact with the solid electrolyte layer 11 is joined. In the embodiment shown in FIG. 1, the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are in direct contact with each other, and no other layer is interposed therebetween. The mixed conductive electrode layer 12 is made of a material having oxide ion conductivity and electronic conductivity. A solid electrolyte assembly 10 is constituted by the solid electrolyte layer 11 and the mixed conductive electrode layer 12.
図1に示すとおり、固体電解質層11の2つの面のうち、混合伝導電極層12が配置されている面と反対側の面には、更に金属電極13が配置されていてもよい。この場合、固体電解質層11、混合伝導電極層12及び金属電極13がこのような順序で配置されていることによりデバイス20が構成される。図1に示す実施形態においては、固体電解質層11と金属電極13とは直接に接しており、両者間に他の層は介在していない。
As shown in FIG. 1, a metal electrode 13 may be further disposed on the surface opposite to the surface on which the mixed conductive electrode layer 12 is disposed, of the two surfaces of the solid electrolyte layer 11. In this case, the device 20 is configured by arranging the solid electrolyte layer 11, the mixed conductive electrode layer 12 and the metal electrode 13 in this order. In the embodiment shown in FIG. 1, the solid electrolyte layer 11 and the metal electrode 13 are in direct contact with each other, and no other layer is interposed therebetween.
図1においては、固体電解質層11と混合伝導電極層12とが異なるサイズで示されているが、両者の大小関係はこれに限られず、例えば固体電解質層11と混合伝導電極層12とは同じサイズであってもよい。固体電解質層11と金属電極13に関しても同様であり、両者は同じサイズであってもよく、あるいは例えば金属電極13よりも固体電解質層11のサイズの方が大きくなっていてもよい。
In FIG. 1, the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are shown in different sizes, but the magnitude relationship between them is not limited to this, and for example, the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are the same. It may be a size. The same applies to the solid electrolyte layer 11 and the metal electrode 13, and both may be the same size, or for example, the size of the solid electrolyte layer 11 may be larger than that of the metal electrode 13.
本発明者の検討の結果、固体電解質接合体10において、固体電解質層11に混合伝導電極層12を接合することで、固体電解質層11と混合伝導電極層12との間の電気抵抗を大きく低減させ得ることが判明した。また、デバイス20における電気抵抗を低減させるためには、固体電解質層11の酸化物イオン伝導性を高めることがまず重要であると考えられるが、酸化物イオン伝導性の高い材料を用いてデバイス20を構成すると、デバイス20全体での電気抵抗が高くなる傾向にあることが判った。特に、固体電解質層として、酸化物イオン伝導性の高い材料の一つである、ランタンの酸化物を含む固体電解質層を用いた場合、電気抵抗が高くなり、固体電解質接合体10中の酸素透過速度が低下する傾向にあるとの知見が得られた。この理由は現在のところ明確でないが、固体電解質層と、それに隣接して配される電極又は混合伝導電極層との界面の電気抵抗が高いことに起因しているのではないかと本発明者は考えている。
As a result of the study by the present inventors, in the solid electrolyte assembly 10, the electric resistance between the solid electrolyte layer 11 and the mixed conductive electrode layer 12 is greatly reduced by bonding the mixed conductive electrode layer 12 to the solid electrolyte layer 11. It has been found that it can be made. Moreover, in order to reduce the electrical resistance in the device 20, it is thought that it is first important to increase the oxide ion conductivity of the solid electrolyte layer 11, but the device 20 is made using a material having high oxide ion conductivity. It has been found that the electrical resistance of the entire device 20 tends to increase. In particular, when a solid electrolyte layer containing a lanthanum oxide, which is one of materials having high oxide ion conductivity, is used as the solid electrolyte layer, the electrical resistance increases, and oxygen permeation through the solid electrolyte assembly 10 is increased. The knowledge that the speed tends to decrease was obtained. The reason for this is not clear at present, but the present inventor believes that it may be due to the high electrical resistance at the interface between the solid electrolyte layer and the electrode or mixed conductive electrode layer disposed adjacent thereto. thinking.
デバイス20における電気抵抗の増大、及びそれに起因する酸素透過速度の低下の問題を解決すべく本発明者が鋭意検討したところ、酸化物イオン伝導性を有する層である固体電解質層11に隣接して配される層として、酸化物イオン伝導性及び電子伝導性を有する混合伝導電極層12を採用し、且つ固体電解質層11を構成する材料と、混合伝導電極層12を構成する材料とが、いずれも、固体電解質層11と混合伝導電極層12との積層方向に沿って一軸配向していることが有効であることが判明した。これによって、デバイス20の低温作動化を図ることができ、あるいは高い酸素透過量を有するデバイス20を得ることができる。これに対して、固体電解質層11を構成する材料、及び/又は混合伝導電極層12を構成する材料が無配向である場合や、両層の結晶が配向している場合であっても、それらの配向方向のいずれかでも積層方向に一致していない場合には、固体電解質層11と混合伝導電極層12との間の界面における電気抵抗が高くなってしまい、高い酸化物イオン伝導性を示すものとはならない。
As a result of extensive studies by the present inventor to solve the problem of an increase in electrical resistance in the device 20 and a decrease in oxygen permeation rate resulting therefrom, the solid electrolyte layer 11 which is a layer having oxide ion conductivity is adjacent to the device 20. As the layer to be disposed, the mixed conductive electrode layer 12 having oxide ion conductivity and electronic conductivity is adopted, and the material constituting the solid electrolyte layer 11 and the material constituting the mixed conductive electrode layer 12 are Also, it has been found that it is effective that the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are uniaxially oriented along the stacking direction. As a result, the device 20 can be operated at a low temperature, or the device 20 having a high oxygen permeation amount can be obtained. On the other hand, even if the material constituting the solid electrolyte layer 11 and / or the material constituting the mixed conductive electrode layer 12 is non-oriented or the crystals of both layers are oriented, If any of the orientation directions is not coincident with the stacking direction, the electrical resistance at the interface between the solid electrolyte layer 11 and the mixed conductive electrode layer 12 becomes high, and high oxide ion conductivity is exhibited. It will not be a thing.
固体電解質層11を構成する材料と、混合伝導電極層12を構成する材料を、前記積層方向に沿っていずれも一軸配向させるためには、例えば、基板となる固体電解質層11を300℃~700℃に加熱しながら、酸素分圧をコントロールした雰囲気で、物理気相蒸着法や化学気相蒸着法など利用し、固体電解質層11上に混合伝導電極層12の薄膜を形成し、局所的にエピタキシャル成長させればよい。また、原子層堆積法(ALD)を用い、固体電解質層11上に、混合伝導電極層12の一軸配向薄膜を形成することもできる。ただし、これらの手法に限定されるものではない。
In order to align the material constituting the solid electrolyte layer 11 and the material constituting the mixed conductive electrode layer 12 uniaxially along the laminating direction, for example, the solid electrolyte layer 11 serving as a substrate is heated to 300 ° C. to 700 ° C. A thin film of the mixed conductive electrode layer 12 is formed on the solid electrolyte layer 11 using a physical vapor deposition method or a chemical vapor deposition method in an atmosphere in which the oxygen partial pressure is controlled while heating to 0 ° C. Epitaxial growth may be performed. In addition, a uniaxially oriented thin film of the mixed conductive electrode layer 12 can be formed on the solid electrolyte layer 11 by using atomic layer deposition (ALD). However, it is not limited to these methods.
固体電解質層11を構成する材料と、混合伝導電極層12を構成する材料とが、いずれも一軸配向しているか否かは、接合界面のTEM(透過型電子顕微鏡)による断面観察から判断することができ、固体電解質層11及び混合伝導電極層12の格子定数や面間隔は、搖動させながらX線回折測定を行うことで得られる回折パターンから算出することができる。
Whether or not the material constituting the solid electrolyte layer 11 and the material constituting the mixed conductive electrode layer 12 are uniaxially oriented is determined from cross-sectional observation by a TEM (transmission electron microscope) of the bonding interface. The lattice constants and plane spacings of the solid electrolyte layer 11 and the mixed conductive electrode layer 12 can be calculated from a diffraction pattern obtained by performing X-ray diffraction measurement while swinging.
一層高い酸化物イオン伝導性を得る観点から、固体電解質層11を構成する材料のc軸と、混合伝導電極層12を構成する材料のc軸とが、いずれも、固体電解質層11と混合伝導電極層12との積層方向に沿って配向していることが好ましい。ここで、c軸が積層方向に沿って配向しているとは、多結晶体である固体電解質の個々の結晶におけるc軸の延びる方向と、層が積層する方向とが一致していることをいう。
From the viewpoint of obtaining higher oxide ion conductivity, the c-axis of the material constituting the solid electrolyte layer 11 and the c-axis of the material constituting the mixed conductive electrode layer 12 are both mixed with the solid electrolyte layer 11. The orientation is preferably along the direction of lamination with the electrode layer 12. Here, the c-axis being oriented along the stacking direction means that the direction in which the c-axis extends in each crystal of the solid electrolyte that is a polycrystal coincides with the direction in which the layers are stacked. Say.
固体電解質層11は、酸化物イオンがキャリアとなる導電体である。固体電解質層11を構成する固体電解質としては多結晶の材料が用いられる。そのような材料としては、酸化物イオン伝導性を有する材料としてこれまで知られている種々の材料が挙げられる。例えば、イットリア安定化ジルコニウム(YSZ)や、ランタンガレート(LaGaO3)、などが挙げられる。
The solid electrolyte layer 11 is a conductor in which oxide ions are carriers. A polycrystalline material is used as the solid electrolyte constituting the solid electrolyte layer 11. Examples of such materials include various materials known so far as materials having oxide ion conductivity. For example, yttria stabilized zirconium (YSZ), lanthanum gallate (LaGaO 3 ), and the like can be given.
特に、固体電解質層11を構成する材料として、ランタンの酸化物を用いると、酸化物イオン伝導性が一層高くなる点から好ましい。ランタンの酸化物としては、例えばランタン及びガリウムを含む複合酸化物や、該複合酸化物にストロンチウム、マグネシウム又はコバルトなどを添加した複合酸化物、ランタン及びモリブデンを含む複合酸化物などが挙げられる。特に、酸化物イオン伝導性が高いことから、ランタン及びケイ素の複合酸化物からなる酸化物イオン伝導性材料を用いることが好ましい。
In particular, it is preferable to use an oxide of lanthanum as the material constituting the solid electrolyte layer 11 because the oxide ion conductivity is further increased. Examples of the lanthanum oxide include a composite oxide containing lanthanum and gallium, a composite oxide obtained by adding strontium, magnesium, cobalt, or the like to the composite oxide, or a composite oxide containing lanthanum and molybdenum. In particular, since the oxide ion conductivity is high, it is preferable to use an oxide ion conductive material made of a complex oxide of lanthanum and silicon.
ランタン及びケイ素の複合酸化物としては、例えばランタン及びケイ素を含むアパタイト型複合酸化物が挙げられる。アパタイト型複合酸化物としては、三価元素であるランタンと、四価元素であるケイ素と、Oとを含有し、その組成がLaxSi6O1.5x+12(Xは8以上10以下の数を表す。)で表されるものが、酸化物イオン伝導性が高い点から好ましい。このアパタイト型複合酸化物を固体電解質層11として用いる場合には、c軸を固体電解質層11の厚み方向と一致させることが好ましい。このアパタイト型複合酸化物の最も好ましい組成は、La9.33Si6O26である。この複合酸化物は、例えば特開2013-51101号公報に記載の方法に従い製造することができる。
As a complex oxide of lanthanum and silicon, for example, an apatite complex oxide containing lanthanum and silicon can be given. The apatite-type composite oxide contains lanthanum, which is a trivalent element, silicon, which is a tetravalent element, and O, and its composition is La x Si 6 O 1.5x + 12 (X is a number of 8 or more and 10 or less. Is preferable from the viewpoint of high oxide ion conductivity. When this apatite-type composite oxide is used as the solid electrolyte layer 11, it is preferable that the c-axis coincide with the thickness direction of the solid electrolyte layer 11. The most preferred composition of this apatite type complex oxide is La 9.33 Si 6 O 26 . This composite oxide can be produced, for example, according to the method described in JP2013-51101A.
固体電解質層11を構成する材料の別の例として、一般式(1):A9.33+x[T6.00-yMy]O26.0+zで表される複合酸化物が挙げられる。この複合酸化物もアパタイト型構造を有するものである。式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si若しくはGe又はその両方を含む元素である。式中のMは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。c軸配向性を高める観点から、MはB、Ge及びZnからなる群から選ばれる一種又は二種以上の元素であることが好ましい。
Another example of the material constituting the solid electrolyte layer 11 is a composite oxide represented by the general formula (1): A 9.33 + x [T 6.00- y My ] O 26.0 + z . This composite oxide also has an apatite structure. A in the formula is one or more elements selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr and Ba. T in the formula is an element containing Si or Ge or both. M in the formula is one or more elements selected from the group consisting of B, Ge, Zn, Sn, W and Mo. From the viewpoint of enhancing the c-axis orientation, M is preferably one or more elements selected from the group consisting of B, Ge, and Zn.
式中のxは、配向度及び酸化物イオン伝導性を高める観点から、-1.00以上1.00以下であることが好ましく、0.00以上0.70以下であることが更に好ましく、0.45以上0.65以下であることが一層好ましい。式中のyは、アパタイト型結晶格子におけるT元素位置を埋める観点から、0.40以上3.00以下であることが好ましく、0.40以上2.00以下であることが更に好ましく、0.40以上1.00以下であることが一層好ましい。式中のzは、アパタイト型結晶格子内での電気的中性を保つという観点から、-3.00以上2.00以下であることが好ましく、-2.00以上1.50以下であることが更に好ましく、-1.00以上1.00以下であることが一層好ましい。
In the formula, x is preferably −1.00 or more and 1.00 or less, more preferably 0.00 or more and 0.70 or less, from the viewpoint of improving the degree of orientation and oxide ion conductivity. More preferably, it is from 45 to 0.65. Y in the formula is preferably 0.40 or more and 3.00 or less, more preferably 0.40 or more and 2.00 or less, from the viewpoint of filling the T element position in the apatite type crystal lattice. More preferably, it is 40 or more and 1.00 or less. In the formula, z is preferably −3.00 or more and 2.00 or less, and −2.00 or more and 1.50 or less from the viewpoint of maintaining electrical neutrality in the apatite crystal lattice. Is more preferably -1.00 or more and 1.00 or less.
前記式中、Mのモル数に対するAのモル数の比率、言い換えれば前記式における(9.33+x)/yは、アパタイト型結晶格子における空間的な占有率を保つ観点から、3.00以上26.0以下であることが好ましく、6.20以上26.0以下であることが更に好ましく、12.00以上16.0以下であることが一層好ましい。
In the above formula, the ratio of the number of moles of A to the number of moles of M, in other words, (9.33 + x) / y in the formula is 3.00 or more and 26 from the viewpoint of maintaining the spatial occupancy in the apatite type crystal lattice. It is preferably 0.0 or less, more preferably 6.20 or more and 26.0 or less, and still more preferably 12.00 or more and 16.0 or less.
前記の一般式(1)で表される複合酸化物のうち、Aがランタンである複合酸化物、すなわちLa9.33+x[T6.00-yMy]O26.0+zで表される複合酸化物を用いると、酸化物イオン伝導性が一層高くなる観点から好ましい。La9.33+x[T6.00-yMy]O26.0+zで表される複合酸化物の具体例としては、La9.33+x(Si4.70B1.30)O26.0+z、La9.33+x(Si4.70Ge1.30)O26.0+z、La9.33+x(Si4.70Zn1.30)O26.0+z、La9.33+x(Si4.70W1.30)O26.0+z、La9.33+x(Si4.70Sn1.30)O26.0+x、La9.33+x(Ge4.70B1.30)O26.0+zなどを挙げることができる。前記の一般式(1)で表される複合酸化物は、例えば国際公開WO2016/111110に記載の方法に従い製造することができる。
Of the complex oxides represented by the general formula (1), a complex oxide in which A is lanthanum, that is, a complex oxide represented by La 9.33 + x [T 6.00- y My ] O 26.0 + z When used, it is preferable from the viewpoint of further increasing the oxide ion conductivity. Specific examples of the La 9.33 + x [T 6.00- y M y] O 26.0 + z composite oxide represented by, La 9.33 + x (Si 4.70 B 1.30) O 26.0 + z, La 9.33 + x (Si 4.70 Ge 1.30 ) O 26.0 + z , La 9.33 + x (Si 4.70 Zn 1.30 ) O 26.0 + z , La 9.33 + x (Si 4.70 W 1.30 ) O 26.0 + z , La 9.33 + x (Si 4.70 Sn 1.30 ) O 26.0 + x , La 9.33 + x (Ge 4.70 B 1.30 ) O 26.0 + z, and the like. The composite oxide represented by the general formula (1) can be produced, for example, according to the method described in International Publication WO2016 / 111110.
固体電解質層11の厚みは、固体電解質接合体10の電気抵抗を効果的に低下させる観点から、10nm以上1000μm以下であることが好ましく、50nm以上700μm以下であることが更に好ましく、100nm以上500μm以下であることが一層好ましい。この固体電解質層11の厚みは、例えば触針式段差計や電子顕微鏡を用いて測定することができる。
The thickness of the solid electrolyte layer 11 is preferably 10 nm or more and 1000 μm or less, more preferably 50 nm or more and 700 μm or less, and more preferably 100 nm or more and 500 μm or less from the viewpoint of effectively reducing the electric resistance of the solid electrolyte assembly 10. It is more preferable that The thickness of the solid electrolyte layer 11 can be measured using, for example, a stylus type step meter or an electron microscope.
混合伝導電極層12は、酸化物イオン伝導性及び電子伝導性を有する材料から構成されている。特に混合伝導電極層12は、触媒作用を有する材料から構成されていることが好ましい。ここでいう触媒作用とは、酸素分子(O2)を酸化物イオン(O2-)に還元させる作用や、酸化物イオン(O2-)を酸素分子(O2)に酸化させる作用のことである。そのような材料としては、例えばLaCoO3やLaMnO3などの原子の一部を他原子で置換した、(La,Sr)MnO3、(La,Sr)CoO3、(La,Sr)(Co,Fe)O3などが挙げられる。
The mixed conductive electrode layer 12 is made of a material having oxide ion conductivity and electronic conductivity. In particular, the mixed conductive electrode layer 12 is preferably made of a material having a catalytic action. The catalytic action here means an action of reducing oxygen molecules (O 2 ) to oxide ions (O 2− ) and an action of oxidizing oxide ions (O 2− ) to oxygen molecules (O 2 ). It is. Examples of such materials include (La, Sr) MnO 3 , (La, Sr) CoO 3 , (La, Sr) (Co, Sc) in which a part of atoms such as LaCoO 3 and LaMnO 3 is substituted with other atoms. Fe) O 3 and the like.
固体電解質接合体10においては、混合伝導電極層12を構成する材料と、上述した固体電解質層11を構成する材料とが、いずれも、固体電解質層11と混合伝導電極層12との積層方向に沿って一軸配向していることで、両層11,12間の界面における電気抵抗を低減させている。この利点を一層顕著なものとする観点から、両層11,12間の界面において、配向方向に対して直交する面の格子整合を図ることが有利である。例えば、各層11,12を構成する材料のc軸が前記積層方向に沿って配向している場合には、c軸に対して直交する面の格子整合が図られていることが好ましい。この場合、混合伝導電極層12のa軸若しくはb軸の格子定数又は各面間隔のいずれかが固体電解質層11のそれと整合すればよい。更に、固体電解質層11と混合伝導電極層12との整合が図られていない場合であっても、固体電解質接合体10を加熱することで、固体電解質層11の配向方向に対して直交する格子定数又は面間隔に応じて、混合伝導電極層12の格子定数又は面間隔を整合させることができ、それによって一軸配向した結晶を成長させることができる。この観点から、固体電解質層11を構成する材料のc軸に垂直な面の格子定数をaとし、混合伝導電極層12の(010)における面間隔をdとしたとき、aは9.28Å以上9.84Å以下であることが好ましい。また、dは4.54Å以上5.04Å以下であることが好ましく、4.60Å以上4.97Å以下であることが更に好ましく、4.64Å以上4.92Å以下であることが一層好ましい。
In the solid electrolyte assembly 10, the material constituting the mixed conductive electrode layer 12 and the material constituting the solid electrolyte layer 11 described above are both in the stacking direction of the solid electrolyte layer 11 and the mixed conductive electrode layer 12. By being uniaxially oriented along, the electric resistance at the interface between both layers 11 and 12 is reduced. From the viewpoint of making this advantage even more prominent, it is advantageous to achieve lattice matching in a plane orthogonal to the orientation direction at the interface between the two layers 11 and 12. For example, when the c-axis of the material constituting each of the layers 11 and 12 is oriented along the stacking direction, it is preferable that lattice matching is performed on a plane orthogonal to the c-axis. In this case, either the a-axis or b-axis lattice constant of the mixed conductive electrode layer 12 or the spacing between the planes may be matched with that of the solid electrolyte layer 11. Furthermore, even when the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are not matched, the lattice orthogonal to the orientation direction of the solid electrolyte layer 11 can be obtained by heating the solid electrolyte assembly 10. Depending on the constant or face spacing, the lattice constant or face spacing of the mixed conducting electrode layer 12 can be matched, thereby allowing uniaxially oriented crystals to grow. From this point of view, when the lattice constant of the surface perpendicular to the c-axis of the material constituting the solid electrolyte layer 11 is a and the interplanar spacing at (010) of the mixed conductive electrode layer 12 is d, a is 9.28 mm or more. It is preferable that it is 9.84 mm or less. Further, d is preferably 4.54 to 5.04, more preferably 4.60 to 4.97, and still more preferably 4.64 to 4.92.
固体電解質層11と混合伝導電極層12の格子定数及び面間隔dは、固体電解質層11に混合伝導電極層12を接合した後、搖動させながらX線回折測定を行うことで得られた回折ピークから算出した。そのときのX線回折測定条件は、Cu-Kα線を用い、回折角(2θ/θ)10°~140°、あおり角(χ搖動)は-5°~45°、面内回転(φ搖動)は0~360°とした。
The lattice constant and interplanar spacing d of the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are diffraction peaks obtained by performing X-ray diffraction measurement while the mixed conductive electrode layer 12 is joined to the solid electrolyte layer 11 and then swung. Calculated from The X-ray diffraction measurement conditions at this time are Cu-Kα rays, diffraction angle (2θ / θ) of 10 ° to 140 °, tilt angle (χ swing) of -5 ° to 45 °, in-plane rotation (φ swing) ) Was set to 0 to 360 °.
更に、試料に含まれる元素の種類や組成比が判明している場合には、ICSD (無機結晶構造データベース)などの、標準物質の回折データに基づき、格子定数aや面間隔dを算出することもできる。例えば、固体電解質層11の結晶形が六方晶であり格子定数aが9.60Åの場合、固体電解質層11の(110)面の面間隔は4.80Åである。混合伝導電極層12の(010)の面間隔がd=4.70Åの場合、c軸に対して直交する面の格子不整合が2.2%と低いため、固体電解質層11上に混合伝導電極層12が局所的にエピタキシャル成長すると考えられる。
Furthermore, when the type and composition ratio of the elements contained in the sample are known, the lattice constant a and the spacing d are calculated based on the diffraction data of the standard material such as ICSD® (inorganic crystal structure database). You can also. For example, when the crystal form of the solid electrolyte layer 11 is a hexagonal crystal and the lattice constant a is 9.60 Å, the (110) plane spacing of the solid electrolyte layer 11 is 4.80 Å. When the (010) plane spacing of the mixed conductive electrode layer 12 is d = 4.70 mm, the lattice mismatch of the plane orthogonal to the c-axis is as low as 2.2%. The electrode layer 12 is considered to be locally epitaxially grown.
固体電解質層11と混合伝導電極層12との界面において、配向方向に対して直交する面の格子整合を図る観点から、混合伝導電極層12を構成する材料はペロブスカイト型酸化物であることが好ましい。特に、固体電解質層11を構成する材料が上述した一般式(1)で表されるものである場合に、混合伝導電極層12を構成する材料がペロブスカイト型酸化物であると、格子整合を首尾よく図ることができる。この場合、ペロブスカイト型酸化物の空間群がR-3cであると、格子の整合を一層首尾よく図ることができるので好ましい。
From the viewpoint of achieving lattice matching of the plane orthogonal to the orientation direction at the interface between the solid electrolyte layer 11 and the mixed conductive electrode layer 12, the material constituting the mixed conductive electrode layer 12 is preferably a perovskite oxide. . In particular, when the material constituting the solid electrolyte layer 11 is represented by the general formula (1) described above, the lattice matching is successfully achieved when the material constituting the mixed conductive electrode layer 12 is a perovskite oxide. I can plan well. In this case, it is preferable that the space group of the perovskite oxide is R-3c because lattice matching can be achieved more successfully.
特に、混合伝導電極層12を構成する材料として、一般式(2):ABO3で表されるものを用いることが、酸化物イオン伝導性の更に一層の向上の観点から好ましい。式中、Aは、例えばLa、Sr、Ba、Caから選択される1種又は2種以上の金属元素を用いることが好ましく、特に好ましい金属元素はLa及びSrのうちの少なくとも1種である。Bは、例えば、Co、Ni、Mn、Cr、Ti、Fe、Cuから選択される1種又は2種以上の金属元素を用いることが好ましく、特に好ましい金属元素はCo及びNiのうちの少なくとも1種である。とりわけ一般式(2)で表される材料は、La、Sr、Co及びNiを含む複合酸化物であることが好ましい。
In particular, it is preferable to use a material represented by the general formula (2): ABO 3 as a material constituting the mixed conductive electrode layer 12 from the viewpoint of further improving the oxide ion conductivity. In the formula, A is preferably one or more metal elements selected from, for example, La, Sr, Ba, and Ca, and a particularly preferable metal element is at least one of La and Sr. B preferably uses, for example, one or more metal elements selected from Co, Ni, Mn, Cr, Ti, Fe, and Cu, and a particularly preferable metal element is at least one of Co and Ni. It is a seed. In particular, the material represented by the general formula (2) is preferably a composite oxide containing La, Sr, Co, and Ni.
一般式(2)で表される複合酸化物のうち、特に好ましいものは、La0.6Sr0.4Co0.9Ni0.1O3-δで表されるものである。
Among the complex oxides represented by the general formula (2), a particularly preferable one is represented by La 0.6 Sr 0.4 Co 0.9 Ni 0.1 O 3-δ .
一般式(2)で表される複合酸化物からなる混合伝導電極層12は、例えば種々の薄膜形成法を用いて固体電解質層11の一面に形成することができる。薄膜形成法としては、物理気相蒸着法や化学気相蒸着法などが挙げられ、これらのうち物理気相蒸着法を用いると混合伝導電極層12を一層首尾よく形成することができる。物理気相蒸着法のうち、特にPLD(Pulsed Laser Deposition)法を用いることが好ましい。
The mixed conductive electrode layer 12 made of the complex oxide represented by the general formula (2) can be formed on one surface of the solid electrolyte layer 11 by using various thin film forming methods, for example. Examples of the thin film forming method include physical vapor deposition and chemical vapor deposition. Among these, the mixed conductive electrode layer 12 can be formed more successfully by using physical vapor deposition. Among physical vapor deposition methods, it is particularly preferable to use a PLD (Pulsed Laser Deposition) method.
混合伝導電極層12は、所定の厚みを有すれば固体電解質層11との間での電気抵抗を効果的に低下させ得ることが本発明者の検討の結果判明した。詳細には、固体電解質層11に接合している混合伝導電極層12の積層方向に沿う厚みは80nm以上であることが好ましく、100nm以上であることが更に好ましく、100nm以上1000nm以下であることが一層好ましい。混合伝導電極層12の厚みは触針式段差計や電子顕微鏡によって測定することができる。
As a result of the inventor's examination, the mixed conductive electrode layer 12 can effectively reduce the electric resistance between the mixed conductive electrode layer 12 and the solid electrolyte layer 11 if it has a predetermined thickness. Specifically, the thickness along the stacking direction of the mixed conductive electrode layer 12 bonded to the solid electrolyte layer 11 is preferably 80 nm or more, more preferably 100 nm or more, and 100 nm or more and 1000 nm or less. Even more preferred. The thickness of the mixed conductive electrode layer 12 can be measured with a stylus profilometer or an electron microscope.
固体電解質層11を挟んで混合伝導電極層12と反対側に形成される金属電極13は、形成が容易であり、且つ触媒活性が高い等の利点があることから、白金族の元素を含んで構成されることが好ましい。白金族の元素としては、例えば白金、ルテニウム、ロジウム、パラジウム、オスミウム及びイリジウム等が挙げられる。これらの元素は一種を単独で、又は二種以上を組み合わせて用いることができる。また、金属電極13として、白金族の元素を含むサーメットを用いることもできる。
The metal electrode 13 formed on the opposite side of the mixed conductive electrode layer 12 with the solid electrolyte layer 11 interposed therebetween is advantageous in that it is easy to form and has high catalytic activity. Preferably, it is configured. Examples of the platinum group element include platinum, ruthenium, rhodium, palladium, osmium, and iridium. These elements can be used individually by 1 type or in combination of 2 or more types. Further, a cermet containing a platinum group element can be used as the metal electrode 13.
図1に示す実施形態の固体電解質接合体10及びデバイス20は、例えば以下に述べる方法で好適に製造することができる。まず、公知の方法で固体電解質層11を製造する。製造には、例えば先に述べた特開2013-51101号公報や国際公開WO2016/111110に記載の方法を採用することができる。
The solid electrolyte joined body 10 and the device 20 of the embodiment shown in FIG. 1 can be suitably manufactured by, for example, the method described below. First, the solid electrolyte layer 11 is manufactured by a known method. For the production, for example, the methods described in JP2013-51101A and International Publication WO2016 / 111110 described above can be employed.
次いで固体電解質層11における2つの面のうちの一方に、混合伝導電極層12を形成する。混合伝導電極層12の形成には、例えば先に述べたPLD法を用いることができる。具体的には、固体電解質層11を構成する材料と、混合伝導電極層12を構成する材料とを、いずれも、該固体電解質層11と混合伝導電極層12との積層方向に沿って一軸配向させるために、先に述べたPLD法を用い、固体電解質層11の一面に混合伝導電極層12を形成するときに、該固体電解質層11を所定温度に加熱すればよい。加熱温度は、例えば600℃以上700℃以下に設定することが、一層首尾よく一軸配向させられる点から好ましい。
このようにして混合伝導電極層12を形成したら、固体電解質層11における混合伝導電極層12の形成面と反対側の面に金属電極13を形成する。金属電極13の形成には、例えば白金族の金属の粒子を含むペーストを用いる。該ペーストを固体電解質層11の表面に塗布して塗膜を形成し、該塗膜を焼成することで多孔質体からなる電極が形成される。焼成条件は、温度600℃以上、時間30分以上120分以下とすることができる。雰囲気は、大気等の酸素含有雰囲気とすることができる。 Next, the mixedconductive electrode layer 12 is formed on one of the two surfaces of the solid electrolyte layer 11. For example, the PLD method described above can be used to form the mixed conductive electrode layer 12. Specifically, the material constituting the solid electrolyte layer 11 and the material constituting the mixed conductive electrode layer 12 are uniaxially oriented along the stacking direction of the solid electrolyte layer 11 and the mixed conductive electrode layer 12. Therefore, when the mixed conductive electrode layer 12 is formed on one surface of the solid electrolyte layer 11 using the PLD method described above, the solid electrolyte layer 11 may be heated to a predetermined temperature. The heating temperature is preferably set to, for example, 600 ° C. or more and 700 ° C. or less from the viewpoint that the uniaxial orientation can be achieved more successfully.
When the mixedconductive electrode layer 12 is formed in this way, the metal electrode 13 is formed on the surface of the solid electrolyte layer 11 opposite to the surface on which the mixed conductive electrode layer 12 is formed. For example, a paste containing platinum group metal particles is used to form the metal electrode 13. The paste is applied to the surface of the solid electrolyte layer 11 to form a coating film, and the coating film is baked to form an electrode made of a porous body. Firing conditions can be a temperature of 600 ° C. or more and a time of 30 minutes or more and 120 minutes or less. The atmosphere can be an oxygen-containing atmosphere such as air.
このようにして混合伝導電極層12を形成したら、固体電解質層11における混合伝導電極層12の形成面と反対側の面に金属電極13を形成する。金属電極13の形成には、例えば白金族の金属の粒子を含むペーストを用いる。該ペーストを固体電解質層11の表面に塗布して塗膜を形成し、該塗膜を焼成することで多孔質体からなる電極が形成される。焼成条件は、温度600℃以上、時間30分以上120分以下とすることができる。雰囲気は、大気等の酸素含有雰囲気とすることができる。 Next, the mixed
When the mixed
以上の方法で目的とする固体電解質接合体10及びデバイス20が得られる。このようにして得られたデバイス20は、その高い酸化物イオン伝導性を利用して例えば酸素透過素子、酸素センサ又は固体電解質型燃料電池などとして好適に用いられる。デバイス20をどのような用途に用いる場合にも、混合伝導電極層12をカソードとして、すなわち酸素ガスの還元反応が起こる極として用いることが有利である。例えばデバイス20を酸素透過素子として使用する場合には、金属電極13を直流電源のアノードに接続するとともに、混合伝導電極層12を直流電源のカソードに接続して、混合伝導電極層12と金属電極13との間に所定の直流電圧を印加する。それによって、混合伝導電極層12側において酸素が電子を受け取り酸化物イオンが生成する。生成した酸化物イオンは固体電解質層11中を移動して金属電極13に達する。金属電極13に達した酸化物イオンは電子を放出して酸素ガスとなる。このような反応によって、固体電解質層11は、混合伝導電極層12側の雰囲気中に含まれる酸素ガスを、固体電解質層11を通じて電極13側に透過させることが可能になっている。なお、必要に応じ、混合伝導電極層12の表面及び金属電極13の表面の少なくとも一方に、白金等の導電性材料からなる集電層を形成してもよい。
The target solid electrolyte joined body 10 and the device 20 are obtained by the above method. The device 20 thus obtained is suitably used as, for example, an oxygen permeable element, an oxygen sensor, or a solid oxide fuel cell using the high oxide ion conductivity. Whatever the application of the device 20, it is advantageous to use the mixed conductive electrode layer 12 as a cathode, that is, as an electrode where an oxygen gas reduction reaction takes place. For example, when the device 20 is used as an oxygen permeable element, the metal electrode 13 is connected to the anode of the direct current power source, and the mixed conductive electrode layer 12 is connected to the cathode of the direct current power source. A predetermined DC voltage is applied between Thereby, oxygen receives electrons on the mixed conductive electrode layer 12 side and oxide ions are generated. The generated oxide ions move through the solid electrolyte layer 11 and reach the metal electrode 13. The oxide ions reaching the metal electrode 13 emit electrons and become oxygen gas. By such a reaction, the solid electrolyte layer 11 can transmit the oxygen gas contained in the atmosphere on the mixed conductive electrode layer 12 side to the electrode 13 side through the solid electrolyte layer 11. If necessary, a current collecting layer made of a conductive material such as platinum may be formed on at least one of the surface of the mixed conductive electrode layer 12 and the surface of the metal electrode 13.
印加する電圧は、酸素ガスの透過量を高める観点から、0.1V以上4.0V以下に設定することが好ましい。両極間に電圧を印加するときには、固体電解質層11の酸化物イオン伝導性が十分に高くなっていることが好ましい。例えば酸化物イオン伝導性が、伝導率で表して1.0×10-3S/cm以上になっていることが好ましい。このため、固体電解質層11を、又はデバイス20の全体を所定温度に保持することが好ましい。この保持温度は、固体電解質層11の材質にもよるが、一般に300℃以上600℃以下の範囲に設定することが好ましい。この条件下でデバイス20を使用することで、混合伝導電極層12側の雰囲気中に含まれる酸素ガスを、固体電解質層11を通じて金属電極13側に透過させることができる。
The applied voltage is preferably set to 0.1 V or more and 4.0 V or less from the viewpoint of increasing the permeation amount of oxygen gas. When applying a voltage between both electrodes, it is preferable that the oxide ion conductivity of the solid electrolyte layer 11 is sufficiently high. For example, the oxide ion conductivity is preferably 1.0 × 10 −3 S / cm or more in terms of conductivity. For this reason, it is preferable to hold the solid electrolyte layer 11 or the entire device 20 at a predetermined temperature. Although this holding temperature depends on the material of the solid electrolyte layer 11, it is generally preferable to set it within a range of 300 ° C. or more and 600 ° C. or less. By using the device 20 under these conditions, oxygen gas contained in the atmosphere on the mixed conductive electrode layer 12 side can be transmitted through the solid electrolyte layer 11 to the metal electrode 13 side.
デバイス20を限界電流式酸素センサとして使用する場合には、混合伝導電極層12側で生成した酸化物イオンが、固体電解質層11を経由して金属電極13側に移動することに起因して電流が生じる。電流値は混合伝導電極層12側の酸素ガス濃度に依存するので、電流値を測定することで、混合伝導電極層12側の酸素ガス濃度を測定することができる。
When the device 20 is used as a limiting current type oxygen sensor, the oxide ions generated on the mixed conductive electrode layer 12 side move to the metal electrode 13 side via the solid electrolyte layer 11, resulting in a current. Occurs. Since the current value depends on the oxygen gas concentration on the mixed conduction electrode layer 12 side, the oxygen gas concentration on the mixed conduction electrode layer 12 side can be measured by measuring the current value.
以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態においては、固体電解質層11の一面にのみ混合伝導電極層12を配したが、これに代えて、後述する実施例に記載されているとおり、固体電解質層11について混合伝導電極層12と対向する面に、別途の混合伝導電極層12を配してもよい。固体電解質層11について混合伝導電極層12と対向する面にこうした混合伝導電極層12を配する場合には、各混合伝導電極層12は同一のものであってもよく、あるいは異なるものであってもよい。この場合、固体電解質層11を構成する材料と、一方の混合伝導電極層12を構成する材料と、他方の混合伝導電極層12を構成する材料とが、いずれも、それらの積層方向に沿って一軸配向していることが好ましい。
As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, in the above-described embodiment, the mixed conductive electrode layer 12 is disposed only on one surface of the solid electrolyte layer 11, but instead of this, as described in Examples described later, the mixed conductive electrode layer 11 is included in the solid electrolyte layer 11. A separate mixed conductive electrode layer 12 may be disposed on the surface facing the substrate 12. When the mixed conductive electrode layer 12 is disposed on the surface of the solid electrolyte layer 11 facing the mixed conductive electrode layer 12, the mixed conductive electrode layers 12 may be the same or different. Also good. In this case, the material constituting the solid electrolyte layer 11, the material constituting one mixed conductive electrode layer 12, and the material constituting the other mixed conductive electrode layer 12 are all along the stacking direction thereof. Uniaxial orientation is preferred.
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.
〔実施例1〕
本実施例では、以下の(1)-(4)の工程に従い図1に示す構造の固体電解質接合体10及びデバイス20を製造した。
(1)固体電解質層11の製造
La2O3の粉体とSiO2の粉体とをモル比で1:1となるように配合し、エタノールを加えてボールミルで混合した。この混合物を乾燥させ、乳鉢で粉砕し、白金るつぼを使用して大気雰囲気下に1650℃で3時間にわたり焼成した。この焼成物にエタノールを加え、ボールミルで粉砕して焼成粉を得た。この焼成粉を、20mmφの成形器に入れて一方向から加圧して一軸成形した。更に700MPaで1分間冷間等方圧加圧(CIP)を行ってペレットを成形した。このペレット状成形体を、大気中、1600℃で3時間にわたり加熱してペレット状焼結体を得た。この焼結体を粉末X線回折測定及び化学分析に付したところ、La2SiO5の構造であることが確認された。 [Example 1]
In this example, the solid electrolyte joinedbody 10 and the device 20 having the structure shown in FIG. 1 were manufactured according to the following steps (1) to (4).
(1) Production ofSolid Electrolyte Layer 11 La 2 O 3 powder and SiO 2 powder were blended at a molar ratio of 1: 1, ethanol was added, and the mixture was mixed by a ball mill. The mixture was dried, ground in a mortar and fired at 1650 ° C. for 3 hours in an atmospheric atmosphere using a platinum crucible. Ethanol was added to the fired product and pulverized with a ball mill to obtain a fired powder. The fired powder was put into a 20 mmφ molding machine and pressed from one direction to be uniaxially molded. Further, cold isostatic pressing (CIP) was performed at 700 MPa for 1 minute to form pellets. This pellet-shaped molded body was heated in the atmosphere at 1600 ° C. for 3 hours to obtain a pellet-shaped sintered body. When this sintered body was subjected to powder X-ray diffraction measurement and chemical analysis, it was confirmed to have a La 2 SiO 5 structure.
本実施例では、以下の(1)-(4)の工程に従い図1に示す構造の固体電解質接合体10及びデバイス20を製造した。
(1)固体電解質層11の製造
La2O3の粉体とSiO2の粉体とをモル比で1:1となるように配合し、エタノールを加えてボールミルで混合した。この混合物を乾燥させ、乳鉢で粉砕し、白金るつぼを使用して大気雰囲気下に1650℃で3時間にわたり焼成した。この焼成物にエタノールを加え、ボールミルで粉砕して焼成粉を得た。この焼成粉を、20mmφの成形器に入れて一方向から加圧して一軸成形した。更に700MPaで1分間冷間等方圧加圧(CIP)を行ってペレットを成形した。このペレット状成形体を、大気中、1600℃で3時間にわたり加熱してペレット状焼結体を得た。この焼結体を粉末X線回折測定及び化学分析に付したところ、La2SiO5の構造であることが確認された。 [Example 1]
In this example, the solid electrolyte joined
(1) Production of
得られたペレット800mgと、B2O3粉末140mgとを、蓋付き匣鉢内に入れて、電気炉を用い、大気中にて1550℃(炉内雰囲気温度)で50時間にわたり加熱した。この加熱によって、匣鉢内にB2O3蒸気を発生させるとともにB2O3蒸気とペレットとを反応させた後、更に1600℃の大気中でアニールをすることで、目的とする固体電解質層11を得た。この固体電解質層11は、La9.33+x[Si6.00-yBy]O26.0+zにおいて、x=0.57、y=0.96、z=0.37であり、LaとBのモル比は10.03であった(以下、この化合物を「LSBO」と略称する。)。500℃における酸化物イオン伝導率は4.22×10-2S/cmであった。固体電解質層11の厚みは350μmであった。偏光顕微鏡観察から、この固体電解質層11は多結晶体から構成されていることが確認された。
800 mg of the obtained pellets and 140 mg of B 2 O 3 powder were placed in a jar with a lid, and heated at 1550 ° C. (furnace atmosphere temperature) in the air for 50 hours using an electric furnace. By this heating, B 2 O 3 vapor is generated in the mortar and the B 2 O 3 vapor and the pellet are reacted, and then annealed in the atmosphere at 1600 ° C., so that the intended solid electrolyte layer is obtained. 11 was obtained. This solid electrolyte layer 11 has La = 0.33 + x [Si 6.00-y B y ] O 26.0 + z , where x = 0.57, y = 0.96, z = 0.37, and the molar ratio of La and B Was 10.03 (hereinafter, this compound is abbreviated as “LSBO”). The oxide ion conductivity at 500 ° C. was 4.22 × 10 −2 S / cm. The thickness of the solid electrolyte layer 11 was 350 μm. From observation with a polarizing microscope, it was confirmed that the solid electrolyte layer 11 was composed of a polycrystal.
(2)混合伝導電極層12の製造
(1)で製造した固体電解質層11の一面に混合伝導電極層12を以下の手順で形成した。
固体電解質層11とターゲットとなるLa0.6Sr0.4Co0.9Ni0.1O3-δ(以下、この物質を「LSCNO」と略称する。)をPLD装置のチャンバー内へセットし、チャンバー内を真空引きしながら、600℃であらかじめ加熱を行った。その後、チャンバー内に酸素を導入し、5.5×10-4 torrとなるように雰囲気を制御した後、KrFエキシマレーザを用い、レーザアブションによって発生した蒸発粒子を固体電解質層11に堆積させることにより混合伝導電極層12を成膜した。このようにして得られた混合伝導電極層12は、固体電解質層11との界面のTEM断面観察により、多結晶体から構成されていることが確認された。また、固体電解質層11の(110)面と混合伝導電極層12の(010)面の間隔が一致しており、固体電解質層11を構成する材料のc軸と、混合伝導電極層12を構成する材料のc軸とが、いずれも積層方向に沿って配向していることが確認された。また、搖動しながらX線回折測定を行った結果、混合伝導電極層12は、空間群がR-3cであるペロブスカイト型酸化物であることが確認された。更に、回折パターンから得た格子定数を基に算出した、固体電解質層11の(110)面の面間隔は、4.80Åであり、混合伝導電極層12の(010)面の面間隔は、4.68Åであった。格子不整合は2.45%であった。 (2) Manufacture of MixedConductive Electrode Layer 12 The mixed conductive electrode layer 12 was formed on one surface of the solid electrolyte layer 11 manufactured in (1) by the following procedure.
Setsolid electrolyte layer 11 and target La 0.6 Sr 0.4 Co 0.9 Ni 0.1 O 3-δ (hereinafter, this substance is abbreviated as “LSCNO”) into the chamber of the PLD apparatus. Then, heating was performed in advance at 600 ° C. while evacuating the chamber. Thereafter, oxygen is introduced into the chamber and the atmosphere is controlled so as to be 5.5 × 10 −4 torr, and then evaporated particles generated by laser ablation are deposited on the solid electrolyte layer 11 using a KrF excimer laser. Thus, a mixed conductive electrode layer 12 was formed. The mixed conductive electrode layer 12 thus obtained was confirmed to be composed of a polycrystalline body by TEM cross-sectional observation of the interface with the solid electrolyte layer 11. The distance between the (110) plane of the solid electrolyte layer 11 and the (010) plane of the mixed conductive electrode layer 12 is the same, and the c axis of the material constituting the solid electrolyte layer 11 and the mixed conductive electrode layer 12 are configured. It was confirmed that the c-axis of the material to be oriented was aligned along the stacking direction. Further, as a result of X-ray diffraction measurement while shaking, it was confirmed that the mixed conductive electrode layer 12 was a perovskite oxide having a space group of R-3c. Furthermore, the plane spacing of the (110) plane of the solid electrolyte layer 11 calculated based on the lattice constant obtained from the diffraction pattern is 4.80 mm, and the plane spacing of the (010) plane of the mixed conductive electrode layer 12 is It was 4.68 cm. The lattice mismatch was 2.45%.
(1)で製造した固体電解質層11の一面に混合伝導電極層12を以下の手順で形成した。
固体電解質層11とターゲットとなるLa0.6Sr0.4Co0.9Ni0.1O3-δ(以下、この物質を「LSCNO」と略称する。)をPLD装置のチャンバー内へセットし、チャンバー内を真空引きしながら、600℃であらかじめ加熱を行った。その後、チャンバー内に酸素を導入し、5.5×10-4 torrとなるように雰囲気を制御した後、KrFエキシマレーザを用い、レーザアブションによって発生した蒸発粒子を固体電解質層11に堆積させることにより混合伝導電極層12を成膜した。このようにして得られた混合伝導電極層12は、固体電解質層11との界面のTEM断面観察により、多結晶体から構成されていることが確認された。また、固体電解質層11の(110)面と混合伝導電極層12の(010)面の間隔が一致しており、固体電解質層11を構成する材料のc軸と、混合伝導電極層12を構成する材料のc軸とが、いずれも積層方向に沿って配向していることが確認された。また、搖動しながらX線回折測定を行った結果、混合伝導電極層12は、空間群がR-3cであるペロブスカイト型酸化物であることが確認された。更に、回折パターンから得た格子定数を基に算出した、固体電解質層11の(110)面の面間隔は、4.80Åであり、混合伝導電極層12の(010)面の面間隔は、4.68Åであった。格子不整合は2.45%であった。 (2) Manufacture of Mixed
Set
(3)金属電極13の製造
(1)で製造した固体電解質層11のうち、混合伝導電極層12を形成した面と反対側の面に金属電極13を形成した。金属電極13の形成には、白金のターゲットを用いたスパッタリング法を用いた。スパッタリングによって固体電解質層11の混合伝導電極層12を形成した面と反対側の面に形成された白金の膜を600℃で1時間アニールすることによって金属電極13を得た。金属電極13の厚みは100nmであった。 (3) Manufacture of themetal electrode 13 The metal electrode 13 was formed in the surface on the opposite side to the surface in which the mixed conductive electrode layer 12 was formed among the solid electrolyte layers 11 manufactured by (1). The metal electrode 13 was formed by sputtering using a platinum target. A metal film 13 was obtained by annealing a platinum film formed on the surface of the solid electrolyte layer 11 opposite to the surface on which the mixed conductive electrode layer 12 was formed by sputtering at 600 ° C. for 1 hour. The thickness of the metal electrode 13 was 100 nm.
(1)で製造した固体電解質層11のうち、混合伝導電極層12を形成した面と反対側の面に金属電極13を形成した。金属電極13の形成には、白金のターゲットを用いたスパッタリング法を用いた。スパッタリングによって固体電解質層11の混合伝導電極層12を形成した面と反対側の面に形成された白金の膜を600℃で1時間アニールすることによって金属電極13を得た。金属電極13の厚みは100nmであった。 (3) Manufacture of the
(4)集電層の製造
混合伝導電極層12及び金属電極13の表面に、白金ペーストを塗布して塗膜を形成した。これらの塗膜を大気中で、600℃で1時間焼成して、集電層を得た。 (4) Manufacture of current collection layer A platinum paste was applied to the surfaces of the mixedconductive electrode layer 12 and the metal electrode 13 to form a coating film. These coating films were baked at 600 ° C. for 1 hour in the air to obtain a current collecting layer.
混合伝導電極層12及び金属電極13の表面に、白金ペーストを塗布して塗膜を形成した。これらの塗膜を大気中で、600℃で1時間焼成して、集電層を得た。 (4) Manufacture of current collection layer A platinum paste was applied to the surfaces of the mixed
〔実施例2〕
実施例1の(3)の工程に代えて、同実施例の(2)の工程を行い、固体電解質層11の各面に混合伝導電極層12が配されたデバイス20を得た。 [Example 2]
Instead of the step (3) of Example 1, the step (2) of the same example was performed to obtain adevice 20 in which the mixed conductive electrode layer 12 was disposed on each surface of the solid electrolyte layer 11.
実施例1の(3)の工程に代えて、同実施例の(2)の工程を行い、固体電解質層11の各面に混合伝導電極層12が配されたデバイス20を得た。 [Example 2]
Instead of the step (3) of Example 1, the step (2) of the same example was performed to obtain a
〔比較例1〕
実施例1の(2)の工程において、混合伝導電極層12を室温で成膜した。これ以外は実施例1と同様にして、固体電解質接合体10及びデバイス20を得た。この固体電解質接合体10においては、混合伝導電極層12が一軸配向していないことが、X線回折測定によって確認された。 [Comparative Example 1]
In the step (2) of Example 1, the mixedconductive electrode layer 12 was formed at room temperature. Except this, it carried out similarly to Example 1, and obtained the solid electrolyte conjugate | zygote 10 and the device 20. FIG. In this solid electrolyte assembly 10, it was confirmed by X-ray diffraction measurement that the mixed conductive electrode layer 12 was not uniaxially oriented.
実施例1の(2)の工程において、混合伝導電極層12を室温で成膜した。これ以外は実施例1と同様にして、固体電解質接合体10及びデバイス20を得た。この固体電解質接合体10においては、混合伝導電極層12が一軸配向していないことが、X線回折測定によって確認された。 [Comparative Example 1]
In the step (2) of Example 1, the mixed
〔比較例2〕
本比較例においては、実施例1の(1)の工程で得られた固体電解質層11の各面に、LSCNOを含むペーストを塗布して塗膜を形成し、この塗膜を700℃で1時間焼成することで、厚みがいずれも300nm以上である混合伝導電極層12を形成した。 [Comparative Example 2]
In this comparative example, a paste containing LSCNO was applied to each surface of thesolid electrolyte layer 11 obtained in the step (1) of Example 1 to form a coating film. By baking for a period of time, the mixed conductive electrode layer 12 having a thickness of 300 nm or more was formed.
本比較例においては、実施例1の(1)の工程で得られた固体電解質層11の各面に、LSCNOを含むペーストを塗布して塗膜を形成し、この塗膜を700℃で1時間焼成することで、厚みがいずれも300nm以上である混合伝導電極層12を形成した。 [Comparative Example 2]
In this comparative example, a paste containing LSCNO was applied to each surface of the
〔比較例3〕
本比較例においては、実施例1の(1)の工程を行う固体電解質層11を形成した。次いで、同実施例の(3)の工程を行い、この固体電解質層11において実施例1の混合伝導電極層12の代わりに白金からなる金属電極13を形成した。またその反対側の面にも、白金からなる金属電極13を形成した。金属電極13の厚みは100nm以上であった。 [Comparative Example 3]
In this comparative example, thesolid electrolyte layer 11 that performs the process (1) of Example 1 was formed. Next, the step (3) of the same example was performed, and a metal electrode 13 made of platinum was formed in the solid electrolyte layer 11 instead of the mixed conductive electrode layer 12 of the first example. A metal electrode 13 made of platinum was also formed on the opposite surface. The thickness of the metal electrode 13 was 100 nm or more.
本比較例においては、実施例1の(1)の工程を行う固体電解質層11を形成した。次いで、同実施例の(3)の工程を行い、この固体電解質層11において実施例1の混合伝導電極層12の代わりに白金からなる金属電極13を形成した。またその反対側の面にも、白金からなる金属電極13を形成した。金属電極13の厚みは100nm以上であった。 [Comparative Example 3]
In this comparative example, the
〔評価〕
実施例及び比較例で得られたデバイスについて、酸素透過速度を以下の方法で測定した。また固体電解質層11及び混合伝導電極層12の結晶の配向の有無をX線回折測定によって確認した。それらの結果を以下の表1に示す。 [Evaluation]
About the device obtained by the Example and the comparative example, the oxygen transmission rate was measured with the following method. The presence or absence of crystal orientation of thesolid electrolyte layer 11 and the mixed conductive electrode layer 12 was confirmed by X-ray diffraction measurement. The results are shown in Table 1 below.
実施例及び比較例で得られたデバイスについて、酸素透過速度を以下の方法で測定した。また固体電解質層11及び混合伝導電極層12の結晶の配向の有無をX線回折測定によって確認した。それらの結果を以下の表1に示す。 [Evaluation]
About the device obtained by the Example and the comparative example, the oxygen transmission rate was measured with the following method. The presence or absence of crystal orientation of the
〔酸素透過速度の測定〕
測定は600℃で行った。デバイスの混合伝導電極層12側に空気を、金属電極13側にN2ガスをそれぞれ200ml/minで供給し、混合伝導電極層12と金属電極13との間に1.0Vの直流電圧を印加した。金属電極13側に酸素濃度計を取り付け、電圧印加前後での金属電極13側の雰囲気中の酸素濃度の変化を測定し、酸素透過速度(ml・cm-2・min-1)を算出した。また式〔酸素濃度計で計測した酸素透過量〕/〔電流密度から計測した酸素透過量〕×100により、酸素透過効率を算出した。 (Measurement of oxygen transmission rate)
The measurement was performed at 600 ° C. Air is supplied to the mixedconductive electrode layer 12 side of the device and N 2 gas is supplied to the metal electrode 13 side at 200 ml / min, respectively, and a DC voltage of 1.0 V is applied between the mixed conductive electrode layer 12 and the metal electrode 13. did. An oxygen concentration meter was attached to the metal electrode 13 side, a change in oxygen concentration in the atmosphere on the metal electrode 13 side before and after voltage application was measured, and an oxygen transmission rate (ml · cm −2 · min −1 ) was calculated. Further, the oxygen transmission efficiency was calculated by the formula [oxygen transmission amount measured with an oxygen concentration meter] / [oxygen transmission amount measured from current density] × 100.
測定は600℃で行った。デバイスの混合伝導電極層12側に空気を、金属電極13側にN2ガスをそれぞれ200ml/minで供給し、混合伝導電極層12と金属電極13との間に1.0Vの直流電圧を印加した。金属電極13側に酸素濃度計を取り付け、電圧印加前後での金属電極13側の雰囲気中の酸素濃度の変化を測定し、酸素透過速度(ml・cm-2・min-1)を算出した。また式〔酸素濃度計で計測した酸素透過量〕/〔電流密度から計測した酸素透過量〕×100により、酸素透過効率を算出した。 (Measurement of oxygen transmission rate)
The measurement was performed at 600 ° C. Air is supplied to the mixed
表1に示す結果から明らかなとおり、各実施例で得られた固体電解質接合体及びそれを備えたデバイスは、酸素透過速度が大きく、しかも酸素透過効率も高いものであることが判る。
As is clear from the results shown in Table 1, it can be seen that the solid electrolyte assembly obtained in each Example and the device including the same have a high oxygen transmission rate and a high oxygen transmission efficiency.
本発明によれば、酸素の透過速度が大きい固体電解質接合体が提供される。この固体電解質接合体を用いることで、デバイスの低温作動化や酸素供給量の増加を図ることができる。
According to the present invention, a solid electrolyte assembly having a high oxygen transmission rate is provided. By using this solid electrolyte assembly, the device can be operated at a low temperature and the oxygen supply amount can be increased.
Claims (13)
- 酸化物イオン伝導性を有する多結晶の固体電解質と、該固体電解質に接して積層され且つ酸化物イオン伝導性及び電子伝導性を有する混合伝導電極層とが接合されてなり、
前記固体電解質を構成する材料と、前記混合伝導電極層を構成する材料とが、いずれも、該固体電解質と該混合伝導電極層との積層方向に沿って一軸配向している、固体電解質接合体。 A polycrystalline solid electrolyte having oxide ion conductivity and a mixed conductive electrode layer laminated in contact with the solid electrolyte and having oxide ion conductivity and electron conductivity are joined together,
The solid electrolyte assembly in which the material constituting the solid electrolyte and the material constituting the mixed conductive electrode layer are uniaxially oriented along the stacking direction of the solid electrolyte and the mixed conductive electrode layer . - 前記混合伝導電極層が多結晶である請求項1に記載の固体電解質接合体。 The solid electrolyte assembly according to claim 1, wherein the mixed conductive electrode layer is polycrystalline.
- 前記固体電解質を構成する材料のc軸と、前記混合伝導電極層を構成する材料のc軸とが、いずれも前記積層方向に沿って配向している請求項1又は2に記載の固体電解質接合体。 3. The solid electrolyte bonding according to claim 1, wherein a c-axis of a material constituting the solid electrolyte and a c-axis of a material constituting the mixed conductive electrode layer are both oriented along the laminating direction. body.
- 前記固体電解質がアパタイト型複合酸化物である請求項1ないし3のいずれか一項に記載の固体電解質接合体。 The solid electrolyte assembly according to any one of claims 1 to 3, wherein the solid electrolyte is an apatite complex oxide.
- 前記固体電解質が、一般式:A9.33+x[T6.00-yMy]O26.0+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si若しくはGe又はその両方を含む元素である。式中のMは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)で表され、式中のxは-1.00以上1.00以下の数であり、式中のyは0.40以上3.00以下の数であり、式中のzは-3.00以上2.00以下の数であり、Mのモル数に対するAのモル数の比率が3.00以上26.0以下である複合酸化物を含む請求項1ないし4のいずれか一項に記載の固体電解質接合体。 Wherein the solid electrolyte has the general formula: A 9.33 + x [T 6.00 -y M y] O 26.0 + z (A in the formula, La, Ce, Pr, Nd , Sm, Eu, Gd, Tb, Dy, Be, One or two or more elements selected from the group consisting of Mg, Ca, Sr and Ba, wherein T is an element containing Si or Ge or both, wherein M is B, 1 or 2 or more elements selected from the group consisting of Ge, Zn, Sn, W and Mo.), and x in the formula is a number from −1.00 to 1.00, Y in the formula is a number from 0.40 to 3.00, z in the formula is a number from −3.00 to 2.00, and the ratio of the number of moles of A to the number of moles of M is 3 The solid electrolyte joined body according to any one of claims 1 to 4, comprising a composite oxide of 0.000 or more and 26.0 or less.
- 前記混合伝導電極層の(010)の面間隔が4.54Å以上5.04Å以下である請求項1ないし5のいずれか一項に記載の固体電解質接合体。 The solid electrolyte joined body according to any one of claims 1 to 5, wherein a (010) plane interval of the mixed conductive electrode layer is 4.54 mm or more and 5.04 mm or less.
- 前記混合伝導電極層がペロブスカイト型酸化物である請求項1ないし6のいずれか一項に記載の固体電解質接合体。 The solid electrolyte assembly according to any one of claims 1 to 6, wherein the mixed conductive electrode layer is a perovskite oxide.
- 前記ペロブスカイト型酸化物の空間群がR-3cである請求項7に記載の固体電解質接合体。 The solid electrolyte joined body according to claim 7, wherein the space group of the perovskite oxide is R-3c.
- 前記混合伝導電極層は、La、Sr、Co及びNiを含む複合酸化物である請求項1ないし8のいずれか一項に記載の固体電解質接合体。 The solid electrolyte joined body according to any one of claims 1 to 8, wherein the mixed conductive electrode layer is a composite oxide containing La, Sr, Co, and Ni.
- 前記固体電解質に接合している前記混合伝導電極層の前記積層方向に沿う厚みが100nm以上である請求項1ないし9のいずれか一項に記載の固体電解質接合体。 The solid electrolyte assembly according to any one of claims 1 to 9, wherein a thickness of the mixed conductive electrode layer bonded to the solid electrolyte along the stacking direction is 100 nm or more.
- 前記固体電解質接合体において、前記混合伝導電極層が配置されている面と反対側の面に金属電極が配置されている請求項1ないし10のいずれか一項に記載の固体電解質接合体。 The solid electrolyte assembly according to any one of claims 1 to 10, wherein a metal electrode is disposed on a surface opposite to the surface on which the mixed conductive electrode layer is disposed in the solid electrolyte assembly.
- 前記固体電解質接合体において前記混合伝導電極層が配置されている面と反対側の面に、前記混合伝導電極層と同一の又は異なる混合伝導電極層が配置されている請求項1ないし10のいずれか一項に記載の固体電解質接合体。 The mixed conductive electrode layer which is the same as or different from the mixed conductive electrode layer is disposed on a surface of the solid electrolyte assembly opposite to the surface on which the mixed conductive electrode layer is disposed. The solid electrolyte joined body according to claim 1.
- 酸素透過素子、酸素センサ又は固体電解質型燃料電池として用いられる請求項1ないし12のいずれか一項に記載の固体電解質接合体。 The solid electrolyte assembly according to any one of claims 1 to 12, which is used as an oxygen permeable element, an oxygen sensor, or a solid electrolyte fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020500546A JP7300440B2 (en) | 2018-02-14 | 2019-02-14 | Solid electrolyte junction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-024558 | 2018-02-14 | ||
JP2018024558 | 2018-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019160019A1 true WO2019160019A1 (en) | 2019-08-22 |
Family
ID=67619429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005290 WO2019160019A1 (en) | 2018-02-14 | 2019-02-14 | Solid electrolyte assembly |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7300440B2 (en) |
WO (1) | WO2019160019A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016111110A1 (en) * | 2015-01-07 | 2016-07-14 | 三井金属鉱業株式会社 | Oriented apatite-type oxide ion conductor and method for manufacturing same |
-
2019
- 2019-02-14 WO PCT/JP2019/005290 patent/WO2019160019A1/en active Application Filing
- 2019-02-14 JP JP2020500546A patent/JP7300440B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016111110A1 (en) * | 2015-01-07 | 2016-07-14 | 三井金属鉱業株式会社 | Oriented apatite-type oxide ion conductor and method for manufacturing same |
Non-Patent Citations (4)
Title |
---|
CHEN, YAN ET AL.: "Segregated chemistry and structure on (001) and (100) surfaces of (La^SrJ) 2CO04 override the crystal anisotropy in oxygen exchange kinetics", CHEM. MATER., vol. 27, no. 15, 11 August 2015 (2015-08-11), pages 5436 - 5450, XP055634935, ISSN: 0897-4756 * |
CRUMLIN, ETHAN J. ET AL.: "Oxygen electrocatalysis on epitaxial La0.6Sr0.4CoO3-delta perovskite thin films for solid oxide fuel cells", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 159, no. 7, 2012, pages F219 - F225, XP055634933, ISSN: 0013-4651 * |
DEVELOS-BAGARINAO, KATHERINE ET AL.: "Effect of La0.6 Sr0. 4Co0.2Fe0. 803-delta microstructure on oxygen surface exchange kinetics", SOLID STATE IONICS, vol. 288, 2016, pages 6 - 9, XP029529099, ISSN: 0167-2738, doi:10.1016/j.ssi.2016.01.008 * |
TORO, ROBERTA G. ET AL.: "In-situ growth and characterization of highly textured La0.9Sr0.1MnO3 films on LaA103(100) substrates", CHEM. VAP. DEPOSITION, vol. 16, 2010, pages 143 - 150, XP001554881, ISSN: 1521-3862, doi:10.1002/cvde.200906778 * |
Also Published As
Publication number | Publication date |
---|---|
JP7300440B2 (en) | 2023-06-29 |
JPWO2019160019A1 (en) | 2021-02-25 |
TW201937509A (en) | 2019-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI700262B (en) | Substrate/orientational apatite type composite oxide film composite and manufacturing method thereof | |
CN111919113B (en) | Solid electrolyte assembly having intermediate layer | |
JP7617982B2 (en) | Solid electrolyte and solid electrolyte joint | |
JP2013543835A (en) | Mixed metal oxide | |
Filonova et al. | Assessment of prospective cathodes based on (1-x) Ca 3 Co 4 O 9+ δ-x BaCe 0.5 Zr 0.3 Y 0.1 Yb 0.1 O 3-δ composites for protonic ceramic electrochemical cells | |
JP5914846B2 (en) | Oxide membrane and proton conducting device | |
Turky et al. | Tunable investigation optical, electrical and magnetic behaviors of Gd3+ substituted lanthanum strontium manganite La0. 5-x Sr0. 5GdxMnO3 nanopowders facilely synthesized through citrate precursor technique | |
JP7291031B2 (en) | Solid electrolyte junction | |
JP7265538B2 (en) | Solid electrolyte junction | |
JP7123078B2 (en) | Oxygen permeable element and sputtering target material | |
Liu et al. | Preparation and characterization of La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ thin film on the porous cathode for SOFC | |
WO2019160019A1 (en) | Solid electrolyte assembly | |
JP7291057B2 (en) | Oxygen sensor element for exhaust gas | |
Kim et al. | Ln (Sr, Ca) 3 (Fe, Co) 3O10 intergrowth oxide cathodes for solid oxide fuel cells | |
JP2021021711A (en) | Solid electrolyte conjugate and electrochemical element | |
TWI873690B (en) | Solid electrolyte and solid electrolyte junction | |
WO2022209399A1 (en) | Multilayer body | |
TWI874313B (en) | Solid electrolyte junction with intermediate layer | |
Sase et al. | Promotion of oxygen surface reaction at the hetero-interface of (La, Sr) CoO3/(La, Sr) 2CoO4 | |
Januschewsky et al. | Structural and Chemical Investigations of (La, Sr) CoO3-δ Thin Film Electrodes Exhibiting Very Fast Oxygen Reduction Kinetics | |
JP2021103673A (en) | Oxide ion conductor | |
Lovett et al. | High ionic conductivity in fluorite d-bismuth oxide-based vertically aligned nanocomposite thin films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19753813 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020500546 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19753813 Country of ref document: EP Kind code of ref document: A1 |