[go: up one dir, main page]

WO2019154111A1 - 信息发送/接收方法和装置 - Google Patents

信息发送/接收方法和装置 Download PDF

Info

Publication number
WO2019154111A1
WO2019154111A1 PCT/CN2019/073108 CN2019073108W WO2019154111A1 WO 2019154111 A1 WO2019154111 A1 WO 2019154111A1 CN 2019073108 W CN2019073108 W CN 2019073108W WO 2019154111 A1 WO2019154111 A1 WO 2019154111A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
division duplex
time division
duplex sector
sector scan
Prior art date
Application number
PCT/CN2019/073108
Other languages
English (en)
French (fr)
Inventor
韩霄
贾辰龙
辛岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19750932.6A priority Critical patent/EP3742659B1/en
Priority to BR112020016166-7A priority patent/BR112020016166A2/pt
Priority to EP23173813.9A priority patent/EP4247090A3/en
Priority to ES19750932T priority patent/ES2955178T3/es
Priority to JP2020542747A priority patent/JP7230040B2/ja
Priority to CA3090556A priority patent/CA3090556C/en
Priority to KR1020207025386A priority patent/KR102434782B1/ko
Publication of WO2019154111A1 publication Critical patent/WO2019154111A1/zh
Priority to US16/987,720 priority patent/US11456847B2/en
Priority to US17/815,383 priority patent/US20230008045A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to an information transmitting/receiving method and apparatus in the field of communications.
  • an access point/site needs to communicate with multiple access points/sites simultaneously, in order to efficiently communicate the one access point/site with multiple access points/sites connected to it.
  • the size of the frame sent by the one access point/site varies with the number of access points/sites connected to it.
  • the embodiment of the present application provides an information receiving/transmitting method, by which an accurate communication parameter can be obtained.
  • an embodiment of the present application provides a method for receiving information, including:
  • Determining an information receiving time receiving information at the determined information receiving time.
  • the determining the information receiving time comprises: determining, according to the time division duplex sector scan, the frame count value, the frame total value, the time division duplex sector scan frame count value, any two of the time division duplex sector scan frames The duration and the time division duplex sector scan confirm the duration of the frame to determine the information reception time.
  • the determining information receiving time includes:
  • the Information receiving time preset offset value - (the duration occupied by the transmitted frame + the total frame interval in a period of time), wherein the preset offset value is a preset value;
  • the duration occupied by the frame is the partial length of time and/or the total length of time occupied by one or more frames that have been transmitted for a period of time;
  • the total frame interval is a frame that has been transmitted for a period of time. Or part of the length of time and/or total length of time occupied by the interval between multiple frames.
  • the information is a time division duplex sector scan feedback frame
  • the determining time of the time division duplex sector scan feedback frame is specifically:
  • Time-division duplex sector scan feedback frame reception time response feedback offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value +1 - time division double Work sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the response feedback offset value is a value in a Responder Feedback Offset subfield in one or more time division duplex sector scan frames, the one or more time division duplex sector scan frames having the same TX Sector ID, One or more time division duplex sector scan frames are transmitted in one TDD slot;
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a time division duplex sector scan acknowledgement frame
  • the determining time of the time division duplex sector scan acknowledgement frame is specifically:
  • Time division duplex sector scan confirmation frame reception time transmission confirmation offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value +1 - time division double Work sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the one or more time division duplex sectors scanning values in an InitiatorAckOffset subfield in the frame, the one or more time division duplex sector scan frames having the same TX Sector ID, One or more time division duplex sector scan frames are transmitted in one TDD slot;
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a sending notification frame
  • the determining is to send a notification frame receiving time, specifically:
  • Receive time of sending notification frame Transmitter sending offset value – [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex sector scan Confirm frame count value) * Duration of time division duplex sector scan frame + frame total value * Short beam shaping frame interval]
  • the sending end sends the offset value, which is the value of the Initiator Transmit Offset subfield when the End of Training subfield value is 1 in the duplex sector scan confirmation frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a response notification frame
  • the determining response time of the notification notification frame is specifically:
  • Response time of response notification frame response side transmission offset value - [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex sector scan Confirm frame count value) * Duration of time division duplex sector scan frame + frame total value * Short beam shaping frame interval]
  • the response end sends the offset value, which is the value of the Responder Transmit Offset subfield when the End of Training subfield value is 1 in the duplex sector scan confirmation frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • an embodiment of the present application provides a method for sending information, including:
  • Determining the information transmission time transmitting the information at the determined information transmission time.
  • the determining the information receiving time comprises: determining, according to the time division duplex sector scan, the frame count value, the frame total value, the time division duplex sector scan frame count value, any two of the time division duplex sector scan frames The duration and time division duplex sector scan confirms the duration of the frame to determine the information transmission time.
  • the determining information sending time includes:
  • the Information transmission time preset offset value - (the duration of the frame that has been sent for a period of time + the total frame interval), wherein the preset offset value is a preset value;
  • the duration occupied by the frame is the partial length of time and/or the total length of time occupied by one or more frames that have been transmitted for a period of time;
  • the total frame interval is a frame that has been transmitted for a period of time. Or part of the length of time and/or total length of time occupied by the interval between multiple frames.
  • the information is a time division duplex sector scan feedback frame
  • the sending time of the time division duplex sector scan feedback frame is determined by:
  • Time-division duplex sector scan feedback frame transmission time response feedback offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value + 1 - time division double Work sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the response feedback offset value is a value in a Responder Feedback Offset subfield in one or more time division duplex sector scan frames, the one or more time division duplex sector scan frames having the same TX Sector ID, One or more time division duplex sector scan frames are transmitted in one TDD slot;
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a time division duplex sector scan acknowledgement frame
  • the determining a time division duplex sector scan acknowledgement frame transmission time is specifically:
  • Time division duplex sector scan confirmation frame transmission time transmission confirmation offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value + 1 - time division double Work sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the one or more time division duplex sectors scanning values in an InitiatorAckOffset subfield in the frame, the one or more time division duplex sector scan frames having the same TX Sector ID, One or more time division duplex sector scan frames are transmitted in one TDD slot;
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a sending notification frame
  • the sending time of the sending the notification frame is determined by:
  • Sending time of sending notification frame transmitting end transmitting offset value - [Time division duplex sector scanning confirmation frame count value * Time division duplex sector scanning confirmation frame duration + (frame total value +1 - time division duplex sector scanning Confirm frame count value) * Duration of time division duplex sector scan frame + frame total value * Short beam shaping frame interval]
  • the sending end sends the offset value, which is the value of the Initiator Transmit Offset subfield when the End of Training subfield value is 1 in the duplex sector scan confirmation frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a response notification frame
  • the determining response is a transmission time of the notification frame, specifically:
  • Response time of transmission of the notification frame response side transmission offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex sector scan Confirm frame count value) * Duration of time division duplex sector scan frame + frame total value * Short beam shaping frame interval]
  • the response end sends the offset value, which is the value of the Responder Transmit Offset subfield when the End of Training subfield value is 1 in the duplex sector scan confirmation frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • an information receiving apparatus including:
  • a processing module configured to determine a message receiving time
  • the transceiver module receives the information at the determined information receiving time.
  • the determining the information receiving time comprises: determining, according to the time division duplex sector scan, the frame count value, the frame total value, the time division duplex sector scan frame count value, any two of the time division duplex sector scan frames The duration and the time division duplex sector scan confirm the duration of the frame to determine the information reception time.
  • the information is a time division duplex sector scan feedback frame
  • the determining time of the time division duplex sector scan feedback frame is specifically:
  • Time-division duplex sector scan feedback frame reception time response feedback offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value +1 - time division double Work sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the response feedback offset value is a value in a Responder Feedback Offset subfield in one or more time division duplex sector scan frames, the one or more time division duplex sector scan frames having the same TX Sector ID, One or more time division duplex sector scan frames are transmitted in one TDD slot;
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a time division duplex sector scan confirmation frame
  • the determining time of the time division duplex sector scan confirmation frame is specifically:
  • Time division duplex sector scan confirmation frame reception time transmission confirmation offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value +1 - time division double Work sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the one or more time division duplex sectors scanning values in an InitiatorAckOffset subfield in the frame, the one or more time division duplex sector scan frames having the same TX Sector ID, One or more time division duplex sector scan frames are transmitted in one TDD slot;
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a sending notification frame
  • the determining is to send a notification frame receiving time, specifically:
  • Receive time of sending notification frame Transmitter sending offset value – [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex sector scan Confirm frame count value) * Duration of time division duplex sector scan frame + frame total value * Short beam shaping frame interval]
  • the sending end sends the offset value, which is the value of the Initiator Transmit Offset subfield when the End of Training subfield value is 1 in the duplex sector scan confirmation frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a response notification frame
  • the determining response is a notification frame receiving time, specifically:
  • Response time of response notification frame response side transmission offset value - [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex sector scan Confirm frame count value) * Duration of time division duplex sector scan frame + frame total value * Short beam shaping frame interval]
  • the response end sends the offset value, which is the value of the Responder Transmit Offset subfield when the End of Training subfield value is 1 in the duplex sector scan confirmation frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • an information sending apparatus including:
  • a processing module configured to determine a message receiving time
  • the transceiver module transmits the information at the determined information transmission time.
  • the determining the information receiving time comprises: determining, according to the time division duplex sector scan, the frame count value, the frame total value, the time division duplex sector scan frame count value, any two of the time division duplex sector scan frames The duration and time division duplex sector scan confirms the duration of the frame to determine the information transmission time.
  • the information is a time division duplex sector scan feedback frame
  • the sending time of the time division duplex sector scan feedback frame is determined by:
  • Time-division duplex sector scan feedback frame transmission time response feedback offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value + 1 - time division double Work sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the response feedback offset value is a value in a Responder Feedback Offset subfield in one or more time division duplex sector scan frames, the one or more time division duplex sector scan frames having the same TX Sector ID, One or more time division duplex sector scan frames are transmitted in one TDD slot;
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a time division duplex sector scan acknowledgement frame
  • the determining a time division duplex sector scan acknowledgement frame transmission time is specifically:
  • Time division duplex sector scan confirmation frame transmission time transmission confirmation offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value + 1 - time division double Work sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the one or more time division duplex sectors scanning values in an InitiatorAckOffset subfield in the frame, the one or more time division duplex sector scan frames having the same TX Sector ID, One or more time division duplex sector scan frames are transmitted in one TDD slot;
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a sending notification frame
  • the sending time of the sending the notification frame is determined by:
  • Sending time of sending notification frame transmitting end transmitting offset value - [Time division duplex sector scanning confirmation frame count value * Time division duplex sector scanning confirmation frame duration + (frame total value +1 - time division duplex sector scanning Confirm frame count value) * Duration of time division duplex sector scan frame + frame total value * Short beam shaping frame interval]
  • the sending end sends the offset value, which is the value of the Initiator Transmit Offset subfield when the End of Training subfield value is 1 in the duplex sector scan confirmation frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • the information is a response notification frame
  • the determining is a response time of the notification frame, specifically:
  • Response time of transmission of the notification frame response side transmission offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex sector scan Confirm frame count value) * Duration of time division duplex sector scan frame + frame total value * Short beam shaping frame interval]
  • the response end sends the offset value, which is the value of the Responder Transmit Offset subfield when the End of Training subfield value is 1 in the duplex sector scan confirmation frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of time division duplex sector scan confirmation frames that have been sent by the sender before receiving the current time division duplex sector scan frame, the one or more time points
  • the duplex sector scan confirms that the frame is sent in a TDD slot;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan confirmation frame
  • the frame total value is a total value of frames transmitted in a TDD Slot, and the frame includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the time division duplex sector scan frame;
  • the short beamforming frame interval is a frame transmitted within a TDD Slot, wherein the interval between adjacent frames includes a time division duplex sector scan frame and a time division duplex sector scan confirmation frame.
  • an embodiment of the present application provides an information receiving device, where the information receiving device includes: a transceiver and a processor; and optionally, a memory.
  • the processor is configured to control a receiver to receive a signal or control a transmitter to send a signal, and execute the instruction to implement the method in any one of the first aspect or the first aspect;
  • the memory is configured to store the instruction; Transceiver for transmitting/receiving signals.
  • an embodiment of the present application provides an information sending device, where the information sending device includes: a transceiver and a processor; and optionally, a memory.
  • the processor is configured to control the receiver to receive a signal or control the transmitter to send a signal, and execute the instruction to implement the method in any one of the possible embodiments of the second aspect or the second aspect;
  • the memory is configured to store the instruction; Transceiver for transmitting/receiving signals.
  • the embodiment of the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • the embodiment of the present application provides a computer readable medium for storing a computer program, where the computer program includes instructions for performing the method in any of the possible implementations of the second aspect or the second aspect.
  • an embodiment of the present application provides a computer program, the computer program comprising instructions for performing the method of the first aspect or any possible implementation of the first aspect.
  • the embodiment of the present application provides a computer program, where the computer program includes instructions for performing the method in any of the possible implementations of the second aspect or the second aspect.
  • an embodiment of the present application provides an information receiving chip, where the information receiving chip includes a processor and a transceiver interface.
  • the transceiver interface and the processor communicate with each other through an internal connection path.
  • the processor performs the method in any of the possible embodiments of the first aspect to control the receiving interface to receive a signal to control the sending interface to send a signal.
  • the embodiment of the present application provides an information sending chip, where the information sending chip includes a processor and a transceiver interface.
  • the transceiver interface and the processor are in communication with each other through an internal connection path.
  • the processor performs the method in any of the possible embodiments of the second aspect to control the receiving interface to receive a signal to control the sending interface to send a signal.
  • FIG. 1 is a schematic diagram of an application scenario of a network architecture according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a time application scenario in the embodiment of the present application.
  • FIG. 3 is a flowchart of a method in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of setting a ResponderFeedbackOffset in a second possible implementation manner of the embodiment of the present application.
  • FIG. 6 is a schematic diagram of setting a ResponderFeedbackOffset in a third possible implementation manner in the embodiment of the present application.
  • FIG. 7 is an information receiving/transmitting apparatus provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of a possible product form of an information receiving apparatus/sending apparatus according to an embodiment of the present application.
  • FIG. 9 shows the TDD SSW frame format (TDD individual BF).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the embodiments of the present application can also be applied to various communication systems based on non-orthogonal multiple access technologies, such as sparse code multiple access (SCMA) systems, and of course, SCMA is also in the field of communications.
  • SCMA sparse code multiple access
  • the technical solution of the embodiment of the present application can be applied to a multi-carrier transmission system using a non-orthogonal multiple access technology, for example, using orthogonal frequency division techniques for orthogonal frequency division. (orthogonal frequency division multiplexing, OFDM), filter bank multi-carrier (FBMC), generalized frequency division multiplexing (GFDM), filtered orthogonal frequency division multiplexing (filtered-OFDM) , F-OFDM) system, etc.
  • OFDM orthogonal frequency division multiplexing
  • FBMC filter bank multi-carrier
  • GFDM generalized frequency division multiplexing
  • filtered-OFDM filtered orthogonal frequency division multiplexing
  • F-OFDM F-OFDM
  • embodiments of the present application may be applied to an LTE system and a subsequent evolved system such as 5G, or other wireless communication systems using various radio access technologies, such as using code division multiple access, frequency division multiple access, and multiple time divisions.
  • a system of access technologies such as address, orthogonal frequency division multiple access, and single carrier frequency division multiple access, especially suitable for scenarios requiring channel information feedback and/or applying secondary precoding techniques, such as a wireless network using Massive MIMO technology, Wireless networks using distributed antenna technology, etc.
  • a mesh distribution network system includes multiple access points and multiple sites, and one access point or site communicates with other multiple access points or multiple sites.
  • FIG. 1 is a schematic diagram of an application scenario of a network architecture according to an embodiment of the present application.
  • device A communicates with at least one device B.
  • time division duplex sector Sweep frame transmitted by device A (Time Division Duplex Sector Sweep frame)
  • the duration of the TDD SSWgroup frame is a change value, which is no longer a fixed value; and in the actual communication process, the device A transmits the TDD SSWgroup frame in the same TDD Slot for beamforming training, and also transmits the time division double
  • the Time Division Duplex Sector Sweep Ack frame (TDD SSW Ack frame) is performed on the Time Division Duplex Sector Sweep Feedback Frame (TDD SSW Feedback frame) fed back by the device B.
  • device A transmits a TDD SSW group frame and a TDD SSW Ack frame in a Time Division Duplex Slot (TDD Slot), wherein a TDD SSW group frame in a TDD Slot is used for the beam in FIG. Shape shaping training, Figure 2 TDD SSW Ack frame in a TDD Slot is used to confirm the TDD SSW Feedback frame previously reported by Device B (the TDD SSW Feedback frame of Device B previous feedback is not shown in Figure 2).
  • TDD SSW Ack frame in a TDD Slot is used to confirm the TDD SSW Feedback frame previously reported by Device B (the TDD SSW Feedback frame of Device B previous feedback is not shown in Figure 2).
  • the transmission/reception time of the TDD SSW Feedback frame calculated by the prior art the transmission/reception time of the Initiator Announce frame, and the transmission/reception time of the Responder Announce frame are inaccurate, which may result in the communication system being unable to perform normal communication.
  • the embodiment of the present application provides two solutions:
  • the TDD SSW group frame and the TDD SSW Ack frame are not allowed to be transmitted in the same TDD Slot.
  • the above-mentioned time parameters can be calculated by using the prior art.
  • the durations of the TDD SSW frame, the TDD SSW Feedback frame, and the TDD SSW Ack frame in the prior art are equal.
  • the duration of the TDD SSW group frame is different from the duration of the TDD SSW Feedback frame and the TDD SSW Ack frame.
  • FIG. 2 is a schematic diagram of a time application scenario in the embodiment of the present application.
  • FIG. 2 only illustrates the communication flow between the device A and one device B.
  • the communication flow between the device A and the other device B is similar, and will not be described below.
  • the device A transmits a TDD SSWgroup frame and/or a TDD SSW Ack frame in a TDD Slot, wherein the TDD SSW group frame is used for the device A and at least one device B (such as at least one device as shown in FIG. 1).
  • B) Perform beamforming training, TDD SSW Ack frame is used for device A to confirm the TDD SSW Feedback frame previously reported by a certain device B (such as one device B shown in FIG. 1) (previous feedback of a certain device B)
  • the TDD SSW Feedback frame is not shown in Figure 2).
  • the device B feeds back the TDD SSW Feedback frame to the device A, and the TDD SSW Feedback frame is used by the device B to feed back the TDD SSWgroup frame received by the device B.
  • the device A transmits a TDD SSW Ack frame to the device B, and the TDD SSW Ack frame is used by the device A to confirm the TDD SSW Feedback frame received by the device A.
  • the device A sends an Initiator Announce frame to the device B, and the Initiator Announce frame is used to exchange some management information, such as allocation scheduling information of the time slot and/or beam scanning result information.
  • the device B sends a Responder Announce frame to the device A, and the Responder Announce frame is used to exchange some management information, such as allocation scheduling information of the time slot and/or beam scanning result information.
  • the embodiment of the present application provides an information receiving/transmitting method and device, which enable device A/device B to receive/transmit the above four frames at an accurate time point (TDD SSW Feedback frame, TDD SSW Ack frame, Initiator Announce frame, and Responder). Announce frame).
  • an information receiving method includes:
  • the information receiving device determines an information receiving time.
  • the S101 information receiving apparatus determines the information receiving time, including: determining any two of the frame count value, the frame total value, and the time division duplex sector scan frame count value according to the time division duplex sector scan.
  • the duration of the time division duplex sector scan frame and the duration of the time division duplex sector scan confirmation frame determine the information reception time.
  • the time division duplex sector scan confirms the frame count value, represented by AckCountIndex; the frame total value is represented by CountIndex; the time division duplex sector scan frame count value is represented by SswCountIndex; the time division duplex sector scan frame
  • the duration is represented by TXTIME (TDD SSWgroup); the time division duplex sector scan confirms the duration of the frame, which is represented by TXTIME (TDD Ack).
  • short beam shaping frame intervals are represented by SBIFS.
  • the number of time division duplex sector scan confirmation frames + the number of time division duplex sector scan frames the total number of frames.
  • Time division duplex sector scan confirmation frame count value used to count the number of time division duplex sector scan confirmation frames, can start from 0 or start from 1; time division duplex sector scan frame count value, used for statistics The number of time division duplex sector scan frames may start from 0 or start from 1; thus, the frame total value is used to count the total number of frames, starting from 0 or starting from 1.
  • time division duplex sector scan confirmation frame count value / time division duplex sector scan frame count value, starting from 0 or starting from 1
  • S101 includes: device A confirms any two of the frame count value, the frame total value, the time division duplex sector scan frame count value, and the time division duplex sector according to the time division duplex sector scan.
  • the duration of the scan frame and the duration of the time division duplex sector scan confirmation frame determine the reception time of the TDD SSW Feedback frame.
  • the method for determining the receiving time of the TDD SSW Feedback frame by the device A includes, but is not limited to, the following three modes:
  • TDD SSW Feedback frame response feedback offset value - [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex Sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • the response feedback offset value is a value in a Responder Feedback Offset subfield in one or more TDD SSWgroup frames, the one or more TDD SSWgroup frames having the same TX Sector ID, the one or more TDD SSWgroup frames being Send in a TDD slot;
  • the response feedback offset value is represented by ResponderFeedbackOffset
  • the value of the ResponderFeedbackOffset is a duration, and the duration is set to the time from when the device A sends the first TDD SSWgroup frame/TDD SSWACK frame to the start time of the device B to feed back the TDD SSW Feedback frame. , plus the duration of a TDD SSWgroup frame; and the value of the ResponderFeedbackOffset field in each TDD SSW frame is the same, that is, the value of the ResponderFeedbackOffset field in each subsequent TDD SSW frame is set to "send the first one from device A.
  • the duration of the start time of the TDD SSW Feedback frame is fed back to the device B, and the duration of the TDD SSWgroup frame is added.
  • the duration of the TDD SSW group frame is the duration of the PHY layer PPDU corresponding to the TDD SSW group frame.
  • the duration of the MAC layer frame in the embodiment of the present application is the duration of the PHY layer PPDU corresponding to the MAC layer frame.
  • the time division duplex sector scan confirms the frame count value, which is the number of TDD SSW Ack frames that device A has sent before receiving the current TDD SSWgroup frame, and the one or more TDD SSW Ack frames are in one Transmitted in TDD slot; time division duplex sector scan confirms that the frame count value is ⁇ 0 and is an integer;
  • the duration of the time division duplex sector scan confirmation frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Ack frame;
  • the frame total value is the total value of the frame transmitted by the device A in a TDD Slot, and the frame includes a TDD SSWgroup frame and a TDD SSW Ack frame; the frame total value is ⁇ 0 and is an integer;
  • the duration of the time division duplex sector scan frame is the duration of the PHY layer PPDU corresponding to the TDD SSW group frame;
  • the short beam shaping frame interval is that device A transmits a frame in a TDD Slot, wherein the interval between adjacent frames includes a TDD SSWgroup frame and a TDD SSW Ack frame.
  • ResponderFeedbackOffset which is a value in a Responder Feedback Offset subfield in one or more TDD SSWgroup frames, the one or more TDD SSWgroup frames having the same TX Sector ID, the one or more TDD SSWgroup frames in one TDD slot send;
  • AckCountIndex is the number of TDD SSW Ack frames that device A has sent before receiving the current TDD SSWgroup frame, and the one or more TDD SSW Ack frames are sent in one TDD slot;
  • AckCountIndex ⁇ 0 and Is an integer;
  • TXTIME (TDD Ack), which is the duration of the PHY layer PPDU corresponding to the TDD SSW Ack frame
  • CountIndex which is the total value of the frame sent by device A in a TDD Slot, the frame includes TDD SSWgroup frame and TDD SSW Ack frame; CountIndex ⁇ 0 and is an integer;
  • TXTIME (TDD SSWgroup), which is the duration of the PHY layer PPDU corresponding to the TDD SSW group frame;
  • SBIFS is a device A that transmits frames within a TDD Slot, where the spacing between adjacent frames includes a TDD SSWgroup frame and a TDD SSW Ack frame.
  • TDD SSW Feedback frame response feedback offset value - [(frame total value - time division duplex sector scan frame count value) * time division duplex sector scan confirmation frame duration + (time division duplex fan Area scan frame count value +1) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • each parameter in Equation 1-1-2 are the same as the meaning and value range of the corresponding parameter in Equation 1-1-1, except that the time division duplex sector scan frame count value Is the count value of the time division duplex sector scan frame transmitted by device A in a TDD Slot, and the time division duplex sector scan frame count value ⁇ 0.
  • Reception time of TDD SSW Feedback frame response feedback offset value - [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (time division duplex sector scan frame count value +1)* Duration of time division duplex sector scan frame + (time division duplex sector scan confirmation frame count value + time division duplex sector scan frame count value) * short beam shaping frame interval] (Equation 1-1- 3)
  • Equation 1-1-3 The meanings and ranges of the parameters in Equation 1-1-3 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-1. The difference is that the time-division duplex sector scan frame count value is The count value of the time division duplex sector scan frame transmitted by device A in a TDD Slot, and the time division duplex sector scan frame count value ⁇ 0.
  • AckCountIndex ⁇ 0 and is an integer the device A determines the TDD SSW Feedback frame receiving time, including but not limited to the following three ways, it should be understood that in the following three ways, in the formula The meaning of each parameter is the same as described above, except that CountIndex ⁇ 1 and is an integer, AckCountIndex ⁇ 0 and is an integer.
  • the method for receiving time of the TDD SSW Feedback frame includes:
  • TDD SSW Feedback frame response feedback offset value - [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (frame total value - time division duplex sector Scan confirmation frame count value) * Duration of time division duplex sector scan frame + (frame total value -1) * Short beam shaping frame interval]
  • Equation 1-1-4 The meanings and ranges of the parameters in Equation 1-1-4 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-1.
  • TDD SSW Feedback frame ResponderFeedbackOffset - [AckCountIndex * TXTIME (TDD Ack) + (CountIndex - AckCountIndex) * TXTIME (TDD SSWgroup) + (CountIndex - 1) * SBIFS].
  • Equation 1-1-5 The meanings and ranges of the parameters in Equation 1-1-5 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-2.
  • reception time of TDD SSW Feedback frame ResponderFeedbackOffset - [(CountIndex - SswCountIndex) * TXTIME (TDD Ack) + SswCountIndex * TXTIME (TDD SSWgroup) + (CountIndex - 1) * SBIFS].
  • Equation 1-1-6 The meanings and ranges of the parameters in Equation 1-1-6 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-3.
  • TDD SSW Feedback frame ResponderFeedbackOffset - [AckCountIndex * TXTIME (TDD Ack) + (SswCountIndex) * TXTIME (TDD SSWgroup) + (SswCountIndex + AckCountIndex - 1) * SBIFS].
  • AckCountIndex ⁇ 0 and is an integer the CountIndex may be numbered from 0 (ie, CountIndex ⁇ 0 and is an integer), and the CountIndex may also be numbered from 1 to be CountIndex ⁇ 1 and an integer), and at the same time, the AckCountIndex may be 0 starts numbering (ie, AckCountIndex ⁇ 0 and is an integer), and AckCountIndex can also be numbered from 1 (ie, AckCountIndex ⁇ 1 and is an integer).
  • Equation 1-1-4 is a variant from Equation 1-1-1
  • Equation 1-1-5 is from Equation 1-1-2
  • Equation 1-1-6 is a variant from Equation 1-1-3. It is to be noted that, if the range of the values of the CountIndex and the AckCountIndex are different, the embodiment of the present application includes other modifications. It is obvious that other corresponding modifications are within the scope of the protection of the embodiments of the present application, and specific modifications are not described herein.
  • S101 includes: the device B confirms any two of the frame count value, the frame total value, and the time division duplex sector scan frame count value according to the time division duplex sector scan, and the time division duplex sector.
  • the duration of the scan frame and the duration of the time division duplex sector scan confirmation frame determine the reception time of the TDD SSW Ack frame.
  • the method for determining the receiving time of the TDD SSW Ack frame by the device B includes, but is not limited to, the following three modes:
  • TDD SSW Ack frame transmission confirmation offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex Sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • each parameter in Equation 1-2-1 are the same as the meaning and value range of the corresponding parameter in Equation 1-1-1.
  • the transmission confirmation offset value is one or A value in an InitiatorAckOffset subfield in a plurality of TDD SSWgroup frames, the one or more TDD SSWgroup frames having the same TX Sector ID, the one or more TDD SSWgroup frames being transmitted in one TDD slot.
  • an acknowledgment offset value is sent, represented by InitiatorAckOffset.
  • TDD SSW Ack frame InitiatorAckOffset - [AckCountIndex * TXTIME (TDD Ack) + (CountIndex + 1 - AckCountIndex) * TXTIME (TDD SSWgroup) + CountIndex * SBIFS]
  • TDD SSW Ack frame transmission confirmation offset value - [(frame total value - time division duplex sector scan frame count value) * time division duplex sector scan confirmation frame duration + (time division duplex fan Area scan frame count value +1) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval] (Equation 1-2-2)
  • each parameter in Equation 1-2-2 are the same as the meaning and value range of the corresponding parameter in Equation 1-1-2.
  • the transmission confirmation offset value is one or A value in an InitiatorAckOffset subfield in a plurality of TDD SSWgroup frames, the one or more TDD SSWgroup frames having the same TX Sector ID, the one or more TDD SSWgroup frames being transmitted in one TDD slot.
  • TDD SSW Ack frame InitiatorAckOffset - [(CountIndex - SswCountIndex) * TXTIME (TDD Ack) + (SswCountIndex + 1) * TXTIME (TDD SSWgroup) + CountIndex * SBIFS]
  • TDD SSW Ack frame transmission confirmation offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (time division duplex sector scan frame count value +1) * Duration of time division duplex sector scan frame + (time division duplex sector scan confirmation frame count value + time division duplex sector scan frame count value) * short beam shaping frame interval] (Equation 1-2- 3)
  • each parameter in Equation 1-2-3 are the same as the meaning and value range of the corresponding parameter in Equation 1-1-3.
  • the transmission confirmation offset value is one or A value in an InitiatorAckOffset subfield in a plurality of TDD SSWgroup frames, the one or more TDD SSWgroup frames having the same TX Sector ID, the one or more TDD SSWgroup frames being transmitted in one TDD slot.
  • TDD SSW Ack frame InitiatorAckOffset - [AckCountIndex * TXTIME (TDD Ack) + (SswCountIndex + 1) * TXTIME (TDD SSWgroup) + (SswCountIndex + AckCountIndex) * SBIFS]
  • AckCountIndex ⁇ 0 and is an integer the CountIndex may be numbered from 0 (ie, CountIndex ⁇ 0 and is an integer), and the CountIndex may also be numbered from 1 (ie, CountIndex ⁇ 1 and an integer), and at the same time, the AckCountIndex may be 0 starts numbering (ie, AckCountIndex ⁇ 0 and is an integer), and AckCountIndex can also be numbered from 1 (ie, AckCountIndex ⁇ 1 and is an integer).
  • the device B determines the formula of the receiving time of the TDD SSW Ack frame, and includes other variants. It is obvious that other corresponding deformations are within the scope of protection of the embodiment of the present application. I won't go into details here.
  • S101 includes: the device B confirms any two of the frame count value, the frame total value, and the time division duplex sector scan frame count value according to the time division duplex sector scan, and the time division duplex sector.
  • the duration of the scan frame and the duration of the time division duplex sector scan confirmation frame determine the reception time of the Initiator Announce frame.
  • the method for determining the receiving time of the Initiator Announce frame by the device B includes, but is not limited to, the following three modes:
  • Initiator Announce frame reception time sender transmission offset value – [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex Sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • Equation 1-3-1 The meanings and ranges of the parameters in Equation 1-3-1 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-1. The difference is that the sender sends the offset value.
  • the sender sends an offset value, which is represented by InitiatorTransmitOffset.
  • Initiator Announce frame reception time InitiatorTransmitOffset - [AckCountIndex * TXTIME (TDD Ack) + (CountIndex + 1 - AckCountIdex) * TXTIME (TDD SSWgroup) + CountIndex * SBIFS)]
  • Equation 1-3-2 The meanings and ranges of the parameters in Equation 1-3-2 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-2. The difference is that the sender sends the offset value.
  • Initiator Announce frame reception time InitiatorTransmitOffset - [(CountIndex - SswCountIndex) * TXTIME (TDD Ack) + (SswCountIndex + 1) * TXTIME (TDD SSWgroup) + CountIndex * SBIFS)]
  • Initiator Announce frame reception time sender transmission offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (time division duplex sector scan frame count value +1)* Duration of time division duplex sector scan frame + (time division duplex sector scan confirmation frame count value + time division duplex sector scan frame count value) * short beam shaping frame interval] (Equation 1-3- 3)
  • Equation 1-3-3 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-3. The difference is that the sender sends the offset value.
  • Initiator Announce frame reception time InitiatorTransmitOffset - [AckCountIndex * TXTIME (TDD Ack) + (SswCountIndex + 1) * TXTIME (TDD SSWgroup) + (SswCountIndex + AckCountIndex) * SBIFS]
  • AckCountIndex ⁇ 0 and is an integer the CountIndex may be numbered from 0 (ie, CountIndex ⁇ 0 and is an integer), and the CountIndex may also be numbered from 1 (ie, CountIndex ⁇ 1 and an integer), and at the same time, the AckCountIndex may be 0 starts numbering (ie, AckCountIndex ⁇ 0 and is an integer), and AckCountIndex can also be numbered from 1 (ie, AckCountIndex ⁇ 1 and is an integer).
  • the device B determines the formula of the receiving time of the Initiator Announce frame, and includes other variants. It is obvious that other corresponding variants are within the scope of protection of the embodiment of the present application. No longer.
  • S101 includes: device A confirms any two of the frame count value, the frame total value, the time division duplex sector scan frame count value, and the time division duplex sector according to the time division duplex sector scan.
  • the duration of the scan frame and the duration of the time division duplex sector scan confirmation frame determine the reception time of the Responder Announce frame.
  • the method for determining the receiving time of the Responder Announce frame by the device A includes, but is not limited to, the following three methods:
  • Responder Announce frame reception time response end transmission offset value - [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (frame total value +1 - time division duplex Sector scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • each parameter in Equation 1-4-1 are the same as the meaning and value range of the corresponding parameter in Equation 1-1-1. The difference is that the response end sends the offset value.
  • the responder sends an offset value, denoted by ResponderTransmitOffset.
  • Responder Announce frame reception time ResponderTransmitOffset - [AckCountIndex * TXTIME (TDD Ack) + (CountIndex + 1 - AckCountIdex) * TXTIME (TDD SSWgroup) + CountIndex * SBIFS]
  • Responder Announce frame reception time response end transmission offset value - [(frame total value - time division duplex sector scan frame count value) * time division duplex sector scan confirmation frame duration + (time division duplex fan Area scan frame count value +1) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • each parameter in Equation 1-4-2 are the same as the meaning and value range of the corresponding parameter in Equation 1-1-2. The difference is that the response end sends the offset value.
  • Responder Announce frame reception time ResponderTransmitOffset - [(CountIndex - SswCountIndex) * TXTIME (TDD Ack) + (SswCountIndex + 1) * TXTIME (TDD SSWgroup) + CountIndex * SBIFS]
  • Responder Announce frame reception time response end transmission offset value - [time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (time division duplex sector scan frame count value +1)* Duration of time division duplex sector scan frame + (time division duplex sector scan confirmation frame count value + time division duplex sector scan frame count value) * short beam shaping frame interval] (Equation 1-4- 3)
  • each parameter in Equation 1-4-3 are the same as the meaning and value range of the corresponding parameter in Equation 1-1-3. The difference is that the response end sends the offset value.
  • Responder Announce frame reception time ResponderTransmitOffset - [AckCountIndex * TXTIME (TDD Ack) + (SswCountIndex + 1) * TXTIME (TDD SSWgroup) + (SswCountIndex + AckCountIndex) * SBIFS]
  • AckCountIndex ⁇ 0 and is an integer the CountIndex may be numbered from 0 (ie, CountIndex ⁇ 0 and is an integer), and the CountIndex may also be numbered from 1 (ie, CountIndex ⁇ 1 and an integer), and at the same time, the AckCountIndex may be 0 starts numbering (ie, AckCountIndex ⁇ 0 and is an integer), and AckCountIndex can also be numbered from 1 (ie, AckCountIndex ⁇ 1 and is an integer).
  • the device A determines the formula of the receiving time of the Responder Announce frame, and includes other variants. It is obvious that other corresponding variants are within the scope of protection of the embodiment of the present application, and the specific variant is here. No longer.
  • the S101 information receiving apparatus determines the information receiving time, including: determining any two of the frame count value, the frame total value, and the time division duplex sector scan frame count value according to the time division duplex sector scan.
  • the duration of the time division duplex sector scan feedback frame, the duration of the time division duplex sector scan frame, and the duration of the time division duplex sector scan acknowledgement frame determine the information reception time.
  • S101 includes: device A confirms any two of the frame count value, the frame total value, the time division duplex sector scan frame count value, and the time division duplex sector according to the time division duplex sector scan.
  • the duration of the scan feedback frame, the duration of the time division duplex sector scan frame, and the duration of the time division duplex sector scan confirmation frame determine the reception time of the TDD SSW Feedback frame.
  • the method for determining the receiving time of the TDD SSW Feedback frame by the device A includes, but is not limited to, the following three modes:
  • Reception time of TDD SSW Feedback frame response feedback offset value - [time duration of time division duplex sector scan feedback frame + time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration + (frame total value - time division duplex sector scan confirmation frame count value) * duration of time division duplex sector scan frame + frame total value * short beam shaping frame interval] (Equation 2-1-1)
  • Equation 2-1-1 The meanings and ranges of the parameters in Equation 2-1-1 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-1. The differences include:
  • the value of the ResponderFeedbackOffset is a duration, and the duration is set after the first TDD SSWgroup frame/TDD SSWACK frame is sent from the device A, and the TDD SSW is fed back to the device B.
  • the duration of the TDD SSW Feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame; and the value of the ResponderFeedbackOffset field in each TDD SSW frame is the same, that is, the value of the ResponderFeedbackOffset field in each subsequent TDD SSW frame Both are set to "the length of time from the start of the first TDD SSWgroup frame/TDD SSWACK frame from device A to the start time of device T feedback STD feedback frame, plus the duration of a TDD SSW Feedback frame".
  • the duration of the time division duplex sector scan feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame.
  • Equation 2-1-2 The meanings and ranges of the parameters in Equation 2-1-2 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-2. The differences include:
  • the value of the ResponderFeedbackOffset is a duration, after the first TDD SSWgroup frame/TDD SSWACK frame is sent from the device A, and the TDD SSW Feedback frame is fed back to the device B.
  • the duration of the TDD SSW Feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame;
  • the duration of the time division duplex sector scan feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame.
  • TDD SSW Feedback frame ResponderFeedbackOffset–[TXTIME(TDD Feedback)+(CountIndex-SswCountIndex)*TXTIME(TDD Ack)+SswCountIndex*TXTIME(TDD SSWgroup)+Count Index*SBIFS]
  • Reception time of TDD SSW Feedback frame response feedback offset value - [time duration of time division duplex sector scan feedback frame + time division duplex sector scan confirmation frame count value * time division duplex sector scan confirmation frame duration +Time division duplex sector scan frame count value* Time division duplex sector scan frame duration + (time division duplex sector scan confirmation frame count value + time division duplex sector scan frame count value) * short beam shaping frame interval ] (Formula 2-1-3)
  • Equation 2-1-3 The meanings and ranges of the parameters in Equation 2-1-3 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-3. The differences include:
  • the value of the ResponderFeedbackOffset is a duration, after the first TDD SSWgroup frame/TDD SSWACK frame is sent from the device A, and the TDD SSW Feedback frame is fed back to the device B.
  • the duration of the TDD SSW Feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame;
  • the duration of the time division duplex sector scan feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame.
  • TDD SSW Feedback frame ResponderFeedbackOffset–[TXTIME(TDD Feedback)+AckCountIndex*TXTIME(TDD Ack)+SswCountIndex*TXTIME(TDD SSWgroup)+(SswCountIndex+AckCountIndex)*SBIFS]
  • AckCountIndex ⁇ 0 and is an integer the CountIndex may be numbered from 0 (ie, CountIndex ⁇ 0 and is an integer), and the CountIndex may also be numbered from 1 (ie, CountIndex ⁇ 1 and an integer), and at the same time, the AckCountIndex may be 0 starts numbering (ie, AckCountIndex ⁇ 0 and is an integer), and AckCountIndex can also be numbered from 1 (ie, AckCountIndex ⁇ 1 and is an integer).
  • CountIndex and AckCountIndex have different values.
  • the 2-1-1, Equation 2-1-2, and Equation 2-1-3 have corresponding deformations. Obviously, the corresponding deformation is within the scope of protection of the embodiment of the present application. Deformation, no more details here.
  • the setting of the InitiatorAckOffset/InitiatorTransmitOffset/ResponderTransmitOffset is different from the setting of the InitiatorAckOffset/InitiatorTransmitOffset/ResponderTransmitOffset in the first possible implementation, and in the second possible implementation, the ResponderFeedbackOffset The setting is the same as the setting of the ResponderFeedbackOffset in the first possible implementation (ie, the difference between FIG. 5 and FIG. 4), then the device B determines the reception time of the TDD SSW Ack frame, and the device B determines the reception of the Initiator Announce frame.
  • the time and the formula A for determining the receiving time of the Responder Announce frame by the device A are referred to the formula 2-1-1, the formula 2-1-2, and the formula 2-1-3, and are not described herein again.
  • the S101 information receiving apparatus determines the information receiving time, including: determining any two of the frame count value, the frame total value, and the time division duplex sector scan frame count value according to the time division duplex sector scan.
  • the duration of the time division duplex sector scan frame and the duration of the time division duplex sector scan confirmation frame determine the information reception time.
  • S101 includes: device A confirms any two of the frame count value, the frame total value, the time division duplex sector scan frame count value, and the time division duplex sector according to the time division duplex sector scan.
  • the duration of the scan frame and the duration of the time division duplex sector scan confirmation frame determine the reception time of the TDD SSW Feedback frame.
  • the method for determining the receiving time of the TDD SSW Feedback frame by the device A includes, but is not limited to, the following three modes:
  • TDD SSW Feedback frame response feedback offset value - [Time division duplex sector scan confirmation frame count value * Time division duplex sector scan confirmation frame duration + (frame total value - time division duplex sector Scan confirmation frame count value) * Time division duplex sector scan frame duration + frame total value * Short beam shaping frame interval]
  • Equation 3-1-1 The meanings and ranges of the parameters in Equation 3-1-1 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-1. The differences include:
  • the value of the ResponderFeedbackOffset is a duration, and the duration is set after the first TDD SSWgroup frame/TDD SSWACK frame is sent from the device A, and the TDD SSW is fed back to the device B.
  • the duration of the start time of the Feedback frame; and the value of the ResponderFeedbackOffset field in each TDD SSW frame is the same, that is, the value of the ResponderFeedbackOffset field in each subsequent TDD SSW frame is set to "Send a TDD SSWgroup frame from Device A. /TDD After the SSWACK frame, the duration to which the device B feeds back the start time of the TDD SSW Feedback frame.
  • the duration of the time division duplex sector scan feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame.
  • Equation 3-1-2 The meanings and ranges of the parameters in Equation 3-1-2 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-2. The differences include:
  • the value of the ResponderFeedbackOffset is a duration, after the first TDD SSWgroup frame/TDD SSWACK frame is sent from the device A, and the TDD SSW Feedback frame is fed back to the device B.
  • the duration of the time-division duplex sector scan feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame;
  • TDD SSW Feedback frame ResponderFeedbackOffset - [(CountIndex - SswCountIndex) * TXTIME (TDD Ack) + SswCountIndex * TXTIME (TDD SSWgroup) + Count Index * SBIFS].
  • Equation 3-1-3 The meanings and ranges of the parameters in Equation 3-1-3 are the same as the meanings and ranges of the corresponding parameters in Equation 1-1-3. The differences include:
  • the value of the ResponderFeedbackOffset is a duration, after the first TDD SSWgroup frame/TDD SSWACK frame is sent from the device A, and the TDD SSW Feedback frame is fed back to the device B.
  • the duration of the time-division duplex sector scan feedback frame is the duration of the PHY layer PPDU corresponding to the TDD SSW Feedback frame;
  • TDD SSW Feedback frame ResponderFeedbackOffset - [AckCountIndex * TXTIME (TDD Ack) + (SswCountIndex) * TXTIME (TDD SSWgroup) + (SswCountIndex + AckCountIndex) * SBIFS].
  • AckCountIndex ⁇ 0 and is an integer the CountIndex may be numbered from 0 (ie, CountIndex ⁇ 0 and is an integer), and the CountIndex may also be numbered from 1 (ie, CountIndex ⁇ 1 and an integer), and at the same time, the AckCountIndex may be 0 starts numbering (ie, AckCountIndex ⁇ 0 and is an integer), and AckCountIndex can also be numbered from 1 (ie, AckCountIndex ⁇ 1 and is an integer).
  • CountIndex and AckCountIndex have different values. Equation 3-1-1, Equation 3-1-2, and Equation 3-1-3 have corresponding deformations. Obviously, the corresponding deformation is within the scope of protection of the embodiment of the present application. The deformation is not repeated here.
  • the setting of the InitiatorAckOffset/InitiatorTransmitOffset/ResponderTransmitOffset is different from the setting of the InitiatorAckOffset/InitiatorTransmitOffset/ResponderTransmitOffset in the second possible implementation, and in a third possible implementation, the ResponderFeedbackOffset The setting is the same as the setting of the ResponderFeedbackOffset in the second possible implementation (ie, the difference between FIG. 6 and FIG. 5), then the device B determines the reception time of the TDD SSW Ack frame, and the device B determines the reception of the Initiator Announce frame.
  • the time and the formula A for determining the receiving time of the Responder Announce frame by the device A are referred to the formula 3-1-1, the formula 3-1-2, and the formula 3-1-3, and are not described herein again.
  • the information receiving apparatus receives the information at the determined information receiving time.
  • the information receiving device receives the information at the determined information receiving time.
  • the device A receives the TDD SSW Feedback frame at the receiving time of the TDD SSW Feedback frame determined at S101; for example, the TDD SSW determined by the device B at S101.
  • the reception time of the ACK frame is received by the TDD SSW ACK frame; other frames are similar.
  • an information sending method includes:
  • the information transmitting device determines the information sending time.
  • S201 and S101 correspond to each other, for example, a method for determining the transmission time of the TDD SSW Feedback frame by the device B, that is, a method for determining the reception time of the TDD SSW Feedback frame for the device A; and a method for determining the transmission time of the TDD SSW Ack frame by the device A, that is, A method for determining the reception time of the TDD SSW Ack frame for the device B; a method for determining the transmission time of the Initiator Announce frame by the device A, that is, a method for determining the reception time of the Initiator Announce frame for the device B; and the device A determines the reception time of the Responder Announce frame The method of determining the transmission time of the Responder Announce frame for the device B.
  • S101 can be referred to here to describe S201; the specific content is not described here.
  • the information sending apparatus sends the information at the determined information sending time.
  • device B transmits a TDD SSW Feedback frame at the transmission time of the TDD SSW Feedback frame determined in S201; for example, device A transmits a TDD SSW ACK frame at the transmission time of the TDD SSW ACK frame determined in S201; other frames are similar .
  • the information transmitting apparatus can transmit information at an accurate information transmitting time, and the information receiving apparatus can receive information at an accurate information receiving time, and the system communication can be normally performed.
  • the embodiment of the present application further provides an information receiving apparatus and an information sending apparatus.
  • FIG. 7 is an information receiving/transmitting apparatus provided by an embodiment of the present application. It should be understood that the information receiving apparatus described in the embodiment of the present application has any function of the information receiving apparatus in the above method, and the information transmitting apparatus described in the embodiment of the present application has any function of the information transmitting apparatus in the above method.
  • an information receiving apparatus includes:
  • the processing module 101 is configured to determine an information receiving time.
  • the information includes: TDD SSW Feedback frame, TDD SSW Ack frame, Initiator Announce frame, and Responder Announce frame.
  • the information receiving device is the device A in FIG. 2;
  • the information receiving device is the device B in FIG. 2;
  • the information receiving device is the device B in FIG. 2;
  • the information receiving device is the device A in FIG.
  • the transceiver module 102 is configured to receive information at the determined information receiving time.
  • the receiving module 102 of the device A receives the TDD SSW Feedback frame
  • the receiving module 102 of the device B receives the TDD SSW Ack frame
  • the receiving module 102 of the device B receives the Initiator Announce frame
  • the receiving module 102 of the device A receives the Responder Announce frame at the receiving time of the Responder Announce frame determined by the processing module 101 of the receiving device A.
  • an information sending apparatus includes:
  • the processing module 101 is configured to determine an information sending time.
  • the information includes: TDD SSW Feedback frame, TDD SSW Ack frame, Initiator Announce frame, and Responder Announce frame.
  • the information transmitting device is the device B in FIG. 2;
  • the information transmitting device is the device A in FIG. 2;
  • the information transmitting device is the device A in FIG. 2;
  • the information transmitting device is the device B in FIG.
  • the transceiver module 102 is configured to send information at the determined information sending time.
  • the transmitting module 102 of the device B transmits a TDD SSW Feedback frame
  • the transmitting module 102 of the device A transmits a TDD SSW Ack frame
  • the transmitting module 102 of the device A transmits an Initiator Announce frame
  • the transmitting module 102 of the device B transmits a Responder Announce frame at the transmission time of the Responder Announce frame determined by the processing module 101 of the transmitting device B.
  • the information transmitting apparatus can transmit information at an accurate information transmitting time, and the information receiving apparatus can receive information at an accurate information receiving time, and the system communication can be normally performed.
  • the information receiving device/sending device provided by the embodiment of the present application may be implemented in various product forms.
  • the information receiving device/sending device may be configured as a general processing system; for example, the information receiving device/sending The apparatus may be implemented by a general bus architecture; for example, the information receiving apparatus/transmitting apparatus may be implemented by an ASIC (Application Specific Integrated Circuit) or the like.
  • ASIC Application Specific Integrated Circuit
  • FIG. 8 is a structural diagram showing a possible product form of the information receiving apparatus/transmitting apparatus according to the embodiment of the present application.
  • the information receiving device/sending device may be an information receiving device/transmitting device, the information receiving device/transmitting device comprising a processor 902 and a transceiver 904/transceiving interface 904; optionally, the The information receiving device/sending device may further include a storage medium 903.
  • the information receiving device/sending device may be an information receiving device/transmitting board, and the information receiving device/transmitting board includes a processor 902 and a transceiver 904/transceiving interface 904; optionally The information receiving device/sending board may further include a storage medium 903.
  • the information receiving device/sending device is also implemented by a general-purpose processor, that is, a commonly known chip.
  • the general purpose processor includes a processor 902 and a transceiving interface 904; optionally, the general purpose processor may also include a storage medium 903.
  • the information receiving device/transmitting device can also be implemented by using one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, Gate logic, discrete hardware components, any other suitable circuitry, or any combination of circuitry capable of performing the various functions described throughout the application.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines
  • Gate logic discrete hardware components
  • discrete hardware components any other suitable circuitry, or any combination of circuitry capable of performing the various functions described throughout the application.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 9 shows the TDD SSW frame format (TDD individual BF), which can also be called TDD SSW frame format for TDD SU BF.
  • the initiator can indicate that TDD beamforming training is to be ended after the remaining TDD SSW frame is transmitted with the corresponding responder.
  • TDD individual BF since the initiator performs TDD beamforming training with a single user, it is only necessary to use a bit to indicate End of Training in the TDD BF Control field in the TDD SSW frame, as shown in FIG. Show.
  • the TDD SSW frame transmitted by the initiator in the same TDD SSW slot will be received by multiple users at the same time. Therefore, it is necessary to indicate to each responder whether to terminate the training.
  • two solutions we propose two solutions:
  • Solution 1 Introduce an indicator field for each responder to indicate whether or not to terminate training with the responder. For details on the modification of the TDD SSW frame structure, refer to FIG. 1. For each responder, an indication field is introduced in its Responder Info subfield. For example, the indication field may be 1 bit, or multiple bits.
  • Solution 2 Unlike solution 1, for each responder, a bit is not introduced to indicate End of Training, but the setting of the Responder ID is used to achieve the indication. Specifically, we assign two Responder IDs to each responder, which is convenient for us to call RID1 and RID2. If the initiator does not want to end training, the value of the Responder ID subfield in the TDD SSW frame uses RID1. If the initiator wants to end training, the value of the Responder ID subfield in the TDD SSW frame uses RID2. In this way, the responder can know whether to end the training by merely identifying the contents of the Responder ID subfield.
  • the receiving end when the receiving end does not receive the TDD SSW frame, the receiving end needs to perform receiving scanning on all of its receiving sectors, and stays on each receiving sector for a period of time to increase the probability of receiving the TDD SSW frame.
  • the amount of time to stay is set by SectorDwellTime.
  • the value of SectorDwellTime is set to [2 ⁇ TXTIME(TDD SSWIndividual)+SBIFS], where TDD SSWIndividual is the time of TDD SSW in TDD individual BF.
  • TDD group BF because the number of responders increases, the TDD SSW time will also become longer. Therefore, if the previous setting of SectorDwellTime is used, the probability of receiving the TDD SSW frame at the receiving end may be reduced.
  • Solution 1 The value of SectorDwellTime is set to [3or more ⁇ TXTIME(TDD SSWIndividual)+SBIFS], where TDD SSWIndividual is the time of TDD SSW in TDD individual BF.
  • Solution 2 Start to set the SectorDwellTime to [2 ⁇ TXTIME(TDD SSWIndividual)+SBIFS], and then if the TDD SSW frame has not been received, then the SectorDwellTime will be gradually expanded (either linear or non-linear) and expanded to a certain extent. After the degree is stopped, or after expanding to a certain extent, it begins to shrink.
  • the term "and/or” herein is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist simultaneously. There are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application may be in essence or part of the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请实施例涉及通信领域,特别涉及通信领域中的信息发送/接收方法和装置。所述信息接收方法,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间;在所述确定的信息接收时间,接收信息。通过本申请实施例提供的信息接收/发送方法,信息发送装置能在准确的信息发送时间发送信息,信息接收装置能在准确的信息接收时间接收信息,系统通信能正常进行。

Description

信息发送/接收方法和装置
本申请要求于2018年2月8日提交中国国家知识产权局、申请号为201810129057.X、申请名称为“信息发送/接收方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,特别涉及通信领域中的信息发送/接收方法和装置。
背景技术
在很多通信场景下,一个接入点/站点需要同时与多个接入点/站点连接通信,为使所述一个接入点/站点和与其连接的多个接入点/站点进行高效地通信,所述一个接入点/站点发送的帧的大小,会随着与其连接的多个接入点/站点的数量而变化。
现有技术中,一个接入点/站点与多个接入点/站点通信时,很多通信参数的计算,都是默认所述一个接入点/站点发送的帧的大小固定不变,没有将接入点/站点发送的帧的大小会发生变化这个因素考虑进去;如此导致,用现有技术计算得到的通信参数不准确,该不准确的通信参数,将影响通信系统无法进行正常通信。
发明内容
本申请实施例提供一种信息接收/发送方法,通过该方法,能获得准确的通信参数。
第一方面,本申请实施例提供一种信息接收方法,包括:
确定信息接收时间;在所述确定的信息接收时间,接收信息。
进一步地,所述确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
进一步地,所述确定信息接收时间,包括:
信息接收时间=预设偏移值-(一段时间内已发送的帧所占用的时长+总的帧间隔),其中,预设偏移值为一预设值;所述一段时间内已发送的帧所占用的时长为在一段时间内已发送的一种帧或者多种帧所占用的部分时间长度和/或总时间长度;所述总的帧间隔为在一段时间内已发送的一种帧或者多种帧间的间隔所占用的部分时间长度和/或总时间长度。
第一方面的第一个实施例中,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的接收时间,具体为:
时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第一方面的第二个实施例中,所述信息为时分双工扇区扫描确认帧,所述确定时分双工扇区扫描确认帧的接收时间,具体为:
时分双工扇区扫描确认帧的接收时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
发送确认偏移值,所述一个或者多个时分双工扇区扫描帧具中的InitiatorAckOffset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第一方面的第三个实施例中,所述信息为发送通知帧,所述确定发送通知帧的接收时间,具体为:
发送通知帧的接收时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
发送端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Initiator Transmit Offset subfield的值;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第一方面的第四个实施例中,所述信息为响应通知帧,所述确定响应通知帧的接收时间,具体为:
响应通知帧的接收时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,响应端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Responder Transmit Offset subfield的值;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第二方面,本申请实施例提供一种信息发送方法,包括:
确定信息发送时间;在所述确定的信息发送时间,发送信息。
进一步地,所述确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息发送时间。
进一步地,所述确定信息发送时间,包括:
信息发送时间=预设偏移值-(一段时间内已发送的帧所占用的时长+总的帧间隔),其中,预设偏移值为一预设值;所述一段时间内已发送的帧所占用的时长为在一段时间内已发送的一种帧或者多种帧所占用的部分时间长度和/或总时间长度;所述总的帧间隔为在一段时间内已发送的一种帧或者多种帧间的间隔所占用的部分时间长度和/或 总时间长度。
第二方面的第一个实施例中,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的发送时间,具体为:
时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第二方面的第二个实施例中,所述信息为时分双工扇区扫描确认帧,所述确定时分双工扇区扫描确认帧的发送时间,具体为:
时分双工扇区扫描确认帧的发送时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
发送确认偏移值,所述一个或者多个时分双工扇区扫描帧具中的InitiatorAckOffset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第二方面的第三个实施例中,所述信息为发送通知帧,所述确定发送通知帧的发送时间,具体为:
发送通知帧的发送时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
发送端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Initiator Transmit Offset subfield的值;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第二方面的第四个实施例中,所述信息为响应通知帧,所述确定响应通知帧的发送时间,具体为:
响应通知帧的发送时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,响应端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Responder Transmit Offset subfield的值;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第三方面,本申请实施例提供一种信息接收装置,包括:
处理模块,用于确定信息接收时间;
收发模块,在所述确定的信息接收时间,接收信息。
进一步地,所述确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧 总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
第三方面的第一个实施例中,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的接收时间,具体为:
时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第三方面的第二个实施例中,所述信息为时分双工扇区扫描确认帧,所述确定时分双工扇区扫描确认帧的接收时间,具体为:
时分双工扇区扫描确认帧的接收时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
发送确认偏移值,所述一个或者多个时分双工扇区扫描帧具中的InitiatorAckOffset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包 括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第三方面的第三个实施例中,所述信息为发送通知帧,所述确定发送通知帧的接收时间,具体为:
发送通知帧的接收时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
发送端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Initiator Transmit Offset subfield的值;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第三方面的第四个实施例中,所述信息为响应通知帧,所述确定响应通知帧的接收时间,具体为:
响应通知帧的接收时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,响应端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Responder Transmit Offset subfield的值;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第四方面,本申请实施例提供一种信息发送装置,包括:
处理模块,用于确定信息接收时间;
收发模块,在所述确定的信息发送时间,发送信息。
进一步地,所述确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息发送时间。
第四方面的第一个实施例中,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的发送时间,具体为:
时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第四方面的第二个实施例中,所述信息为时分双工扇区扫描确认帧,所述确定时分双工扇区扫描确认帧的发送时间,具体为:
时分双工扇区扫描确认帧的发送时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
发送确认偏移值,所述一个或者多个时分双工扇区扫描帧具中的InitiatorAckOffset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第四方面的第三个实施例中,所述信息为发送通知帧,所述确定发送通知帧的发送时间,具体为:
发送通知帧的发送时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,
发送端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Initiator Transmit Offset subfield的值;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第四方面的第四个实施例中,所述信息为响应通知帧,所述确定响应通知帧的发送时间,具体为:
响应通知帧的发送时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
其中,响应端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Responder Transmit Offset subfield的值;
时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
帧总计数值,是在一个TDD Slot内发送的帧的总计数值,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧。
第五方面,本申请实施例提供一种信息接收设备,该信息接收设备包括:收发器和处理器;可选地,还可以包括存储器。其中,处理器,用于控制接收器接收信号或控制发送 器发送信号,并且执行指令以实现第一方面或第一方面的任一种可能的实施例中的方法;存储器,用于存储指令;收发器,用于发送/接收信号。
第六方面,本申请实施例提供一种信息发送设备,该信息发送设备包括:收发器和处理器;可选地,还可以包括存储器。其中,处理器,用于控制接收器接收信号或控制发送器发送信号,并且执行指令以实现第二方面或第二方面的任一种可能的实施例中的方法;存储器,用于存储指令;收发器,用于发送/接收信号。
第七方面,本申请实施例提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,本申请实施例提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第九方面,本申请实施例提供一种计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十方面,本申请实施例提供一种计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十一方面,本申请实施例提供一种信息接收芯片,该信息接收芯片包括处理器、收发接口。其中,该收发接口、和该处理器通过内部连接通路互相通信,该处理器执行第一方面的任一种可能的实施例中的方法,以控制接收接口接收信号,以控制发送接口发送信号。
第十二方面,本申请实施例提供一种信息发送芯片,该信息发送芯片包括处理器、收发接口。其中,该收发接口、和该处理器通过内部连接通路互相通信,该处理器执行第二方面的任一种可能的实施例中的方法,以控制接收接口接收信号,以控制发送接口发送信号。
附图说明
图1是本申请实施例的网络架构应用场景示意图;
图2是本申请实施例的时间应用场景示意图;
图3是本申请实施例的方法流程图;
图4是本申请实施例在第一种可能的实施方式中ResponderFeedbackOffset的设置示意图;
图5是本申请实施例在第二种可能的实施方式中ResponderFeedbackOffset的设置示意图;
图6是本申请实施例在第三种可能的实施方式中ResponderFeedbackOffset的设置示意图;
图7是本申请实施例提供的一种信息接收/发送装置;
图8是本申请实施例所述的信息接收装置/发送装置可能的产品形态的结构图;
图9为TDD SSW frame format(TDD individual BF)。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例的技术方案进行描述。
应理解,本申请实施例可以应用于各种通信系统,例如:全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
还应理解,本申请实施例还可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(sparse code multiple access,SCMA)系统,当然SCMA在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(orthogonal frequency division multiplexing,OFDM)、滤波器组多载波(filter bank multi-carrier,FBMC)、通用频分复用(generalized frequency division multiplexing,GFDM)、滤波正交频分复用(filtered-OFDM,F-OFDM)系统等。
还应理解,本申请实施例可以应用于LTE系统以及后续的演进系统如5G等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用Massive MIMO技术的无线网络、应用分布式天线技术的无线网络等。
还应理解,本申请实施例还可以应用于mesh分布式网络系统。mesh分发网络系统包括多个接入点和多个站点,一个接入点或站点与其他多个接入点或多个站点进行通信。
图1是本申请实施例的网络架构应用场景示意图。如图1所示,装置A与至少一个装置B通信,为了提高装置A与至少一个装置B进行波束赋形训练的效率,装置A发送的时分双工扇区扫描帧(Time Division Duplex Sector Sweep frame,TDD SSWgroup frame)的时长是一个变化值,不再是一个固定值;且在实际的通信过程中,装置A在同一个TDD Slot内发送TDD SSWgroup frame进行波束赋形训练,还会发送时分双工扇区扫描确认帧(Time Division Duplex Sector Sweep Ack frame,TDD SSW Ack frame),以对装置B反馈的时分双工扇区扫描反馈帧(Time Division Duplex Sector Sweep Feedback frame,TDD SSW Feedback frame)进行确认。如图2所示,装置A在一个时分双工时隙(Time Division Duplex Slot,TDD Slot)内发送TDD SSWgroup frame和TDD SSW Ack frame,其中,图2一个TDD Slot内的TDD SSWgroup frame用于波束赋形训练,图2一个TDD Slot内的TDD SSW Ack frame用于对装置B先前反馈的TDD SSW Feedback frame进行确认(装置B先前反馈的TDD SSW Feedback frame未在图2中示出)。装置A发送的TDD SSWgroup frame的时长变化且TDD SSWgroup frame和TDD SSW Ack frame在同一个TDD Slot内传输时,用现有技术计算得到的TDD SSW Feedback frame的发送/接收时间、TDD SSW Ack frame的发送/接收时间、发送通知帧(Initiator Announce frame)的发送/接收时间和响应通知帧(Responder Announce frame)的发送/接收时间都不准确,如此将导 致通信系统无法进行正常通信。
为解决上述技术问题,本申请实施例提供两种解决方案:
一、不允许TDD SSWgroup frame和TDD SSW Ack frame在同一个TDD Slot内传输,这种情况下,可以用现有技术计算上述时间参数。
二、采用以下本申请实施例提供的技术方案。
现有技术中的TDD SSW frame、TDD SSW Feedback frame、TDD SSW Ack frame的时长相等。本申请实施例中,TDD SSWgroup frame的时长,与TDD SSW Feedback frame和TDD SSW Ack frame的时长不等。
图2是本申请实施例的时间应用场景示意图。图2只示意出装置A与一个装置B之间的通信流程,装置A与其他装置B之间的通信流程与此类似,以下不再赘述。
如图2所示,装置A在一个TDD Slot内传输TDD SSWgroup frame和/或TDD SSW Ack frame,其中,TDD SSWgroup frame用于装置A与至少一个装置B(如图1中所示的至少一个装置B)进行波束赋形训练,TDD SSW Ack frame用于装置A对某一个装置B(如图1中所示的某一个装置B)先前反馈的TDD SSW Feedback frame进行确认(某一个装置B先前反馈的TDD SSW Feedback frame未在图2中示出)。
如图2所示,在某一时间,装置B向装置A反馈TDD SSW Feedback frame,所述TDD SSW Feedback frame用于装置B对装置B接收到的TDD SSWgroup frame进行反馈。
如图2所示,在某一时间,装置A向装置B发送TDD SSW Ack frame,所述TDD SSW Ack frame用于装置A对装置A接收到的TDD SSW Feedback frame进行确认。如图2所示,在某一时间,装置A向装置B发送Initiator Announce frame,所述Initiator Announce frame用于交互一些管理信息,如时隙的分配调度信息和/或波束扫描结果信息等。
如图2所示,在某一时间,装置B向装置A发送Responder Announce frame,所述Responder Announce frame用于交互一些管理信息,如时隙的分配调度信息和/或波束扫描结果信息等。
本申请实施例提供一种信息接收/发送方法及装置,可使得装置A/装置B在准确的时间点接收/发送上述四种帧(TDD SSW Feedback frame、TDD SSW Ack frame、Initiator Announce frame和Responder Announce frame)。
图3是本申请实施例的方法流程图。如图3所示,一种信息接收方法包括:
S101、信息接收装置确定信息接收时间。
在第一种可能的实施方式中,S101信息接收装置确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
在Wifi标准中,时分双工扇区扫描确认帧计数值,用AckCountIndex表示;帧总计数值,用CountIndex表示;时分双工扇区扫描帧计数值,用SswCountIndex表示;时分双工扇区扫描帧的时长,用TXTIME(TDD SSWgroup)表示;时分双工扇区扫描确认帧的时长,用TXTIME(TDD Ack)表示。
同样地,在Wifi标准中,短波束赋形帧间隔,用SBIFS表示。
本申请实施例中,时分双工扇区扫描确认帧的个数+时分双工扇区扫描帧的个数= 帧的总个数。时分双工扇区扫描确认帧计数值,用于统计时分双工扇区扫描确认帧的个数,可以从0开始,也可以从1开始;时分双工扇区扫描帧计数值,用于统计时分双工扇区扫描帧的个数,可以从0开始,也可以从1开始;由此,帧总计数值,用于统计帧的总个数,可以从0开始,也可以从1开始。但不论,时分双工扇区扫描确认帧计数值/时分双工扇区扫描帧计数值,从0开始还是从1开始,时分双工扇区扫描确认帧计数值、时分双工扇区扫描帧计数值和帧总计数值,三者之间的关系,都满足时分双工扇区扫描确认帧的个数+时分双工扇区扫描帧的个数=帧的总个数。
进一步地,如图2所示,S101包括:装置A根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定TDD SSW Feedback frame的接收时间。所述装置A确定TDD SSW Feedback frame的接收时间的方法,具体地,包括但不限于以下三种方式:
(1)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
                                                      (公式1-1-1)
其中,
响应反馈偏移值,是一个或者多个TDD SSWgroup frame中的Responder Feedback Offset subfield中的值,所述一个或者多个TDD SSWgroup frame具有相同的TX Sector ID,所述一个或者多个TDD SSWgroup frame在一个TDD slot中发送;
在Wifi标准中,响应反馈偏移值,用ResponderFeedbackOffset表示;
如图4所示,ResponderFeedbackOffset的值为一个时长,所述时长的设置为从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长,再加一个TDD SSWgroup frame的时长;且,每个TDD SSW frame中ResponderFeedbackOffset字段的值相同,即后续的每个TDD SSW frame中ResponderFeedbackOffset字段的值都被设置为“从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长,再加一个TDD SSWgroup frame的时长”。
所述TDD SSWgroup frame的时长,为TDD SSWgroup frame对应的PHY层PPDU的时长。本申请实施例所述的各种帧为MAC层帧,本申请实施例所述的MAC层帧的时长,均为该MAC层帧对应的PHY层PPDU的时长;
时分双工扇区扫描确认帧计数值,是装置B在收到当前TDD SSWgroup frame之前,装置A已经发送过的TDD SSW Ack frame的个数,所述一个或者多个TDD SSW Ack frame是在一个TDD slot中发送;时分双工扇区扫描确认帧计数值≥0且为整数;
时分双工扇区扫描确认帧的时长,是TDD SSW Ack frame对应的PHY层PPDU的时长;
帧总计数值,是装置A在一个TDD Slot内发送的帧的总计数值,该帧包括TDD SSWgroup frame和TDD SSW Ack frame;帧总计数值≥0且为整数;
时分双工扇区扫描帧的时长,是TDD SSWgroup frame对应的PHY层PPDU的时长;
短波束赋形帧间隔,是装置A在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括TDD SSWgroup frame和TDD SSW Ack frame。
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[AckCountIndex*TXTIME(TDD Ack)+(CountIndex+1-AckCountIndex)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS],其中,
ResponderFeedbackOffset,是一个或者多个TDD SSWgroup frame中的Responder Feedback Offset subfield中的值,所述一个或者多个TDD SSWgroup frame具有相同的TX Sector ID,所述一个或者多个TDD SSWgroup frame在一个TDD slot中发送;
AckCountIndex,是装置B在收到当前TDD SSWgroup frame之前,装置A已经发送过的TDD SSW Ack frame的个数,所述一个或者多个TDD SSW Ack frame是在一个TDD slot中发送;AckCountIndex≥0且为整数;
TXTIME(TDD Ack),是TDD SSW Ack frame对应的PHY层PPDU的时长;
CountIndex,是装置A在一个TDD Slot内发送的帧的总计数值,该帧包括TDD SSWgroup frame和TDD SSW Ack frame;CountIndex≥0且为整数;
TXTIME(TDD SSWgroup),是TDD SSWgroup frame对应的PHY层PPDU的时长;
SBIFS,是装置A在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括TDD SSWgroup frame和TDD SSW Ack frame。
(2)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
                                                      (公式1-1-2)
其中,公式1-1-2中的各个参数的含义及取值范围与公式1-1-1中相应参数的含义及取值范围相同,不同之处在于,时分双工扇区扫描帧计数值是装置A在一个TDD Slot内发送的时分双工扇区扫描帧的计数值,时分双工扇区扫描帧计数值≥0。
上述公式,可以表示为如下:
TDD SSW Feedback帧的接收时间=ResponderFeedbackOffset–[(CountIndex-SswCountIndex)*TXTIME(TDD Ack)+(SswCountIndex+1)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS)]
(3)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔]                (公式1-1-3)
其中,公式1-1-3中的各个参数的含义及取值范围与公式1-1-1相应参数的含义及取值范围相同,不同之处在于,时分双工扇区扫描帧计数值是装置A在一个TDD Slot内发送的时分双工扇区扫描帧的计数值,时分双工扇区扫描帧计数值≥0。
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[AckCountIndex*TXTIME(TDD Ack)+(SswCountIndex+1)*TXTIME(TDD SSWgroup)+(SswCountIndex+ AckCountIndex)*SBIFS]
以上3种方式中,CountIndex≥0且为整数,AckCountIndex≥0且为整数。若CountIndex≥1且为整数,AckCountIndex≥0且为整数,则装置A确定TDD SSW Feedback frame接收时间的方法,包括但不限于以下3种方式,应理解的是,以下3种方式中,公式中各个参数的含义与上文记载相同,不同之处在于,CountIndex≥1且为整数,AckCountIndex≥0且为整数。
即,当CountIndex≥1且为整数,AckCountIndex≥0且为整数时,TDD SSW Feedback frame接收时间的方法,包括:
(4)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+(帧总计数值-1)*短波束赋形帧间隔]
                                            (公式1-1-4)
其中,公式1-1-4中的各个参数的含义及取值范围与公式1-1-1中相应参数的含义及取值范围相同。
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[AckCountIndex*TXTIME(TDD Ack)+(CountIndex-AckCountIndex)*TXTIME(TDD SSWgroup)+(CountIndex-1)*SBIFS]。
(5)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(帧总计数值-1)*短波束赋形帧间隔]
                                             (公式1-1-5)
其中,公式1-1-5中的各个参数的含义及取值范围与公式1-1-2中相应参数的含义及取值范围相同。
上述公式,可以表示为如下:TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[(CountIndex-SswCountIndex)*TXTIME(TDD Ack)+SswCountIndex*TXTIME(TDD SSWgroup)+(CountIndex-1)*SBIFS]。
(6)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值-1)*短波束赋形帧间隔]                      (公式1-1-6)
其中,公式1-1-6中的各个参数的含义及取值范围与公式1-1-3中相应参数的含义及取值范围相同。
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[AckCountIndex*TXTIME(TDD Ack)+(SswCountIndex)*TXTIME(TDD SSWgroup)+(SswCountIndex+AckCountIndex-1)*SBIFS]。
以上公式1-1-4至公式1-1-6中,CountIndex≥1且为整数,AckCountIndex≥0且为整数。应当理解的是,本申请实施例中,CountIndex可以从0开始编号(即CountIndex≥ 0且为整数),CountIndex也可以从1开始编号即CountIndex≥1且为整数),与此同时,AckCountIndex可以从0开始编号(即AckCountIndex≥0且为整数),AckCountIndex也可以从1开始编号(即AckCountIndex≥1且为整数)。CountIndex和AckCountIndex取值范围不一样,公式会有相应的变形,例如,公式1-1-4为从公式1-1-1的变形,公式1-1-5为从公式1-1-2的变形,公式1-1-6为从公式1-1-3的变形。显然,若CountIndex和AckCountIndex取值范围不一样,本申请实施例还包括其他变形,显然其他相应变形在本申请实施例保护的范围以内,具体的变形,此处不再赘述。
进一步地,如图2所示,S101包括:装置B根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定TDD SSW Ack frame的接收时间。所述装置B确定TDD SSW Ack frame的接收时间的方法,具体地,包括但不限于以下三种方式:
(1)TDD SSW Ack frame的接收时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
                                                         (公式1-2-1)
其中,公式1-2-1中的各个参数的含义及取值范围与公式1-1-1中相应参数的含义及取值范围相同,不同之处在于,发送确认偏移值,是一个或者多个TDD SSWgroup frame中的InitiatorAckOffset subfield中的值,所述一个或者多个TDD SSWgroup frame具有相同的TX Sector ID,所述一个或者多个TDD SSWgroup frame在一个TDD slot中发送。
在Wifi标准中,发送确认偏移值,用InitiatorAckOffset表示。
上述公式,可以表示为如下:
TDD SSW Ack frame的接收时间=InitiatorAckOffset–[AckCountIndex*TXTIME(TDD Ack)+(CountIndex+1-AckCountIndex)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS]
(2)TDD SSW Ack frame的接收时间=发送确认偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]  (公式1-2-2)
其中,公式1-2-2中的各个参数的含义及取值范围与公式1-1-2中相应参数的含义及取值范围相同,不同之处在于,发送确认偏移值,是一个或者多个TDD SSWgroup frame中的InitiatorAckOffset subfield中的值,所述一个或者多个TDD SSWgroup frame具有相同的TX Sector ID,所述一个或者多个TDD SSWgroup frame在一个TDD slot中发送。
上述公式,可以表示为如下:
TDD SSW Ack frame的接收时间=InitiatorAckOffset–[(CountIndex-SswCountIndex)*TXTIME(TDD Ack)+(SswCountIndex+1)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS]
(3)TDD SSW Ack frame的接收时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔]     (公式1-2-3)
其中,公式1-2-3中的各个参数的含义及取值范围与公式1-1-3中相应参数的含义及 取值范围相同,不同之处在于,发送确认偏移值,是一个或者多个TDD SSWgroup frame中的InitiatorAckOffset subfield中的值,所述一个或者多个TDD SSWgroup frame具有相同的TX Sector ID,所述一个或者多个TDD SSWgroup frame在一个TDD slot中发送。
上述公式,可以表示为如下:
TDD SSW Ack frame的接收时间=InitiatorAckOffset–[AckCountIndex*TXTIME(TDD Ack)+(SswCountIndex+1)*TXTIME(TDD SSWgroup)+(SswCountIndex+AckCountIndex)*SBIFS]
以上3种方式中,CountIndex≥0且为整数,AckCountIndex≥0且为整数。应当理解的是,本申请实施例中,CountIndex可以从0开始编号(即CountIndex≥0且为整数),CountIndex也可以从1开始编号即CountIndex≥1且为整数),与此同时,AckCountIndex可以从0开始编号(即AckCountIndex≥0且为整数),AckCountIndex也可以从1开始编号(即AckCountIndex≥1且为整数)。类似地,若CountIndex和AckCountIndex取值范围不一样,装置B确定TDD SSW Ack frame的接收时间的公式,还包括其他变形,显然其他相应变形在本申请实施例保护的范围以内,具体的变形,此处不再赘述。
进一步地,如图2所示,S101包括:装置B根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定Initiator Announce frame的接收时间。所述装置B确定Initiator Announce frame的接收时间的方法,具体地,包括但不限于以下三种方式:
(1)Initiator Announce frame的接收时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
                                                         (公式1-3-1)
其中,公式1-3-1中的各个参数的含义及取值范围与公式1-1-1中相应参数的含义及取值范围相同,不同之处在于,发送端发送偏移值,是当TDD SSW ACK frame中End of Training subfield值为1时Initiator Transmit Offset subfield的值。
在Wifi标准中,发送端发送偏移值,用InitiatorTransmitOffset表示
上述公式,可以表示为如下:
Initiator Announce frame的接收时间=InitiatorTransmitOffset–[AckCountIndex*TXTIME(TDD Ack)+(CountIndex+1-AckCountIdex)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS)]
(2)Initiator Announce frame的接收时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
                                                          (公式1-3-2)
其中,公式1-3-2中的各个参数的含义及取值范围与公式1-1-2中相应参数的含义及取值范围相同,不同之处在于,发送端发送偏移值,是当TDD SSW ACK frame中End of Training subfield值为1时Initiator Transmit Offset subfield的值。
上述公式,可以表示为如下:
Initiator Announce frame的接收时间=InitiatorTransmitOffset–[(CountIndex- SswCountIndex)*TXTIME(TDD Ack)+(SswCountIndex+1)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS)]
(3)Initiator Announce frame的接收时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔]                                  (公式1-3-3)
其中,公式1-3-3中的各个参数的含义及取值范围与公式1-1-3中相应参数的含义及取值范围相同,不同之处在于,发送端发送偏移值,是当TDD SSW ACK frame中End of Training subfield值为1时Initiator Transmit Offset subfield的值。
上述公式,可以表示为如下:
Initiator Announce frame的接收时间=InitiatorTransmitOffset–[AckCountIndex*TXTIME(TDD Ack)+(SswCountIndex+1)*TXTIME(TDD SSWgroup)+(SswCountIndex+AckCountIndex)*SBIFS]
以上3种方式中,CountIndex≥0且为整数,AckCountIndex≥0且为整数。应当理解的是,本申请实施例中,CountIndex可以从0开始编号(即CountIndex≥0且为整数),CountIndex也可以从1开始编号即CountIndex≥1且为整数),与此同时,AckCountIndex可以从0开始编号(即AckCountIndex≥0且为整数),AckCountIndex也可以从1开始编号(即AckCountIndex≥1且为整数)。类似地,若CountIndex和AckCountIndex取值范围不一样,装置B确定Initiator Announce frame的接收时间的公式,还包括其他变形,显然其他相应变形在本申请实施例保护的范围以内,具体的变形,此处不再赘述。
进一步地,如图2所示,S101包括:装置A根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定Responder Announce frame的接收时间。所述装置A确定Responder Announce frame的接收时间的方法,具体地,包括但不限于以下三种方式:
(1)Responder Announce frame的接收时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
                                                           (公式1-4-1)
其中,公式1-4-1中的各个参数的含义及取值范围与公式1-1-1中相应参数的含义及取值范围相同,不同之处在于,响应端发送偏移值,是当TDD SSW ACK frame中End of Training subfield值为1时Responder Transmit Offset subfield的值。
在Wifi标准中,响应端发送偏移值,用ResponderTransmitOffset表示。
上述公式,可以表示为如下:
Responder Announce frame的接收时间=ResponderTransmitOffset–[AckCountIndex*TXTIME(TDD Ack)+(CountIndex+1-AckCountIdex)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS]
(2)Responder Announce frame的接收时间=响应端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
                                                         (公式1-4-2)
其中,公式1-4-2中的各个参数的含义及取值范围与公式1-1-2中相应参数的含义及取值范围相同,不同之处在于,响应端发送偏移值,是当TDD SSW ACK frame中End of Training subfield值为1时Responder Transmit Offset subfield的值。
上述公式,可以表示为如下:
Responder Announce frame的接收时间=ResponderTransmitOffset–[(CountIndex-SswCountIndex)*TXTIME(TDD Ack)+(SswCountIndex+1)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS]
(3)Responder Announce frame的接收时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔]                                     (公式1-4-3)
其中,公式1-4-3中的各个参数的含义及取值范围与公式1-1-3中相应参数的含义及取值范围相同,不同之处在于,响应端发送偏移值,是当TDD SSW ACK frame中End of Training subfield值为1时Responder Transmit Offset subfield的值。
上述公式,可以表示为如下
Responder Announce frame的接收时间=ResponderTransmitOffset–[AckCountIndex*TXTIME(TDD Ack)+(SswCountIndex+1)*TXTIME(TDD SSWgroup)+(SswCountIndex+AckCountIndex)*SBIFS]
以上3种方式中,CountIndex≥0且为整数,AckCountIndex≥0且为整数。应当理解的是,本申请实施例中,CountIndex可以从0开始编号(即CountIndex≥0且为整数),CountIndex也可以从1开始编号即CountIndex≥1且为整数),与此同时,AckCountIndex可以从0开始编号(即AckCountIndex≥0且为整数),AckCountIndex也可以从1开始编号(即AckCountIndex≥1且为整数)。类似地,若CountIndex和AckCountIndex取值范围不一样,装置A确定Responder Announce frame的接收时间的公式,还包括其他变形,显然其他相应变形在本申请实施例保护的范围以内,具体的变形,此处不再赘述。
在第二种可能的实施方式中,S101信息接收装置确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描反馈帧的时长、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
进一步地,如图2所示,S101包括:装置A根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描反馈帧的时长、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定TDD SSW Feedback frame的接收时间。所述装置A确定TDD SSW Feedback frame的接收时间的方法,具体地,包括但不限于以下三种方式:
(1)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的时长+时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]                           (公式2-1-1)
其中,公式2-1-1中的各个参数的含义及取值范围与公式1-1-1中相应参数的含义及取值范围相同,不同之处包括:
a、响应反馈偏移值,如图5所示,ResponderFeedbackOffset的值为一个时长,所述时长的设置为从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长,再加一个TDD SSW Feedback frame的时长。所述TDD SSW Feedback frame的时长,为TDD SSW Feedback frame对应的PHY层PPDU的时长;;且,每个TDD SSW frame中ResponderFeedbackOffset字段的值相同,即后续的每个TDD SSW frame中ResponderFeedbackOffset字段的值都被设置为“从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长,再加一个TDD SSW Feedback frame的时长”。
b、时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长。
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[TXTIME(TDD Feedback)+AckCountIndex*TXTIME(TDD Ack)+(CountIndex-AckCountIdex)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS]
(2)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的时长+(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]                             (公式2-1-2)
其中,公式2-1-2中的各个参数的含义及取值范围与公式1-1-2中相应参数的含义及取值范围相同,不同之处包括:
a、响应反馈偏移值,如图5所示,ResponderFeedbackOffset的值为一个时长,所述时长为从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长,再加一个TDD SSW Feedback frame的时长。所述TDD SSW Feedback frame的时长,为TDD SSW Feedback frame对应的PHY层PPDU的时长;
b、时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长。
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[TXTIME(TDD Feedback)+(CountIndex-SswCountIndex)*TXTIME(TDD Ack)+SswCountIndex*TXTIME(TDD SSWgroup)+Count Index*SBIFS]
(3)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的时长+时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔]        (公式2-1-3)
其中,公式2-1-3中的各个参数的含义及取值范围与公式1-1-3中相应参数的含义及取值范围相同,不同之处包括:
a、响应反馈偏移值,如图5所示,ResponderFeedbackOffset的值为一个时长,所述时长为从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长,再加一个TDD SSW Feedback frame的时长。所述TDD SSW Feedback frame的时长,为TDD SSW Feedback frame对应的PHY层PPDU的时长;
b、时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长。
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[TXTIME(TDD Feedback)+AckCountIndex*TXTIME(TDD Ack)+SswCountIndex*TXTIME(TDD SSWgroup)+(SswCountIndex+AckCountIndex)*SBIFS]
以上3种方式中,CountIndex≥0且为整数,AckCountIndex≥0且为整数。应当理解的是,本申请实施例中,CountIndex可以从0开始编号(即CountIndex≥0且为整数),CountIndex也可以从1开始编号即CountIndex≥1且为整数),与此同时,AckCountIndex可以从0开始编号(即AckCountIndex≥0且为整数),AckCountIndex也可以从1开始编号(即AckCountIndex≥1且为整数)。CountIndex和AckCountIndex取值范围不一样,2-1-1、公式2-1-2和公式2-1-3会有相应的变形,显然,相应变形在本申请实施例保护的范围以内,具体的变形,此处不再赘述。
若,在第二种可能的实施方式中InitiatorAckOffset/InitiatorTransmitOffset/ResponderTransmitOffset的设置与在第一种可能的实施方式中InitiatorAckOffset/InitiatorTransmitOffset/ResponderTransmitOffset的设置的区别,与,在第二种可能的实施方式中ResponderFeedbackOffset的设置与在第一种可能的实施方式中ResponderFeedbackOffset的设置的区别(即图5与图4的区别)相同,则,装置B确定TDD SSW Ack frame的接收时间、装置B确定Initiator Announce frame的接收时间、及装置A确定Responder Announce frame的接收时间的公式变形参考公式2-1-1、公式2-1-2和公式2-1-3,此处不再赘述。
在第三种可能的实施方式中,S101信息接收装置确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
进一步地,如图2所示,S101包括:装置A根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定TDD SSW Feedback frame的接收时间。所述装置A确定TDD SSW Feedback frame的接收时间的方法,具体地,包括但不限于以下三种方式:
(1)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]
                                                 (公式3-1-1)
其中,公式3-1-1中的各个参数的含义及取值范围与公式1-1-1中相应参数的含义及取值范围相同,不同之处包括:
a、响应反馈偏移值,如图6所示,ResponderFeedbackOffset的值为一个时长,所述时长的设置为从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长;且,每个TDD SSW frame中ResponderFeedbackOffset字段的值相同,即后续的每个TDD SSW frame中ResponderFeedbackOffset字段的值都被设置为“从装置A发送完一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长”。
b、时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长。
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[AckCountIndex*TXTIME(TDD Ack)+(CountIndex-AckCountIdex)*TXTIME(TDD SSWgroup)+CountIndex*SBIFS]
(2)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔]   (公式3-1-2)
其中,公式3-1-2中的各个参数的含义及取值范围与公式1-1-2中相应参数的含义及取值范围相同,不同之处包括:
a、响应反馈偏移值,如图6所示,ResponderFeedbackOffset的值为一个时长,所述时长为从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长;
b、时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长;
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[(CountIndex-SswCountIndex)*TXTIME(TDD Ack)+SswCountIndex*TXTIME(TDD SSWgroup)+Count Index*SBIFS]。
(3)TDD SSW Feedback frame的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔]                  (公式3-1-3)
其中,公式3-1-3中的各个参数的含义及取值范围与公式1-1-3中相应参数的含义及取值范围相同,不同之处包括:
a、响应反馈偏移值,如图6所示,ResponderFeedbackOffset的值为一个时长,所述时长为从装置A发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到装置B反馈TDD SSW Feedback frame的起始时间的时长;
b、时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长;
上述公式,可以表示为如下:
TDD SSW Feedback frame的接收时间=ResponderFeedbackOffset–[AckCountIndex *TXTIME(TDD Ack)+(SswCountIndex)*TXTIME(TDD SSWgroup)+(SswCountIndex+AckCountIndex)*SBIFS]。
以上3种方式中,CountIndex≥0且为整数,AckCountIndex≥0且为整数。应当理解的是,本申请实施例中,CountIndex可以从0开始编号(即CountIndex≥0且为整数),CountIndex也可以从1开始编号即CountIndex≥1且为整数),与此同时,AckCountIndex可以从0开始编号(即AckCountIndex≥0且为整数),AckCountIndex也可以从1开始编号(即AckCountIndex≥1且为整数)。CountIndex和AckCountIndex取值范围不一样,公式3-1-1、公式3-1-2和公式3-1-3会有相应的变形,显然,相应变形在本申请实施例保护的范围以内,具体的变形,此处不再赘述。
若,在第三种可能的实施方式中InitiatorAckOffset/InitiatorTransmitOffset/ResponderTransmitOffset的设置与在第二种可能的实施方式中InitiatorAckOffset/InitiatorTransmitOffset/ResponderTransmitOffset的设置的区别,与,在第三种可能的实施方式中ResponderFeedbackOffset的设置与在第二种可能的实施方式中ResponderFeedbackOffset的设置的区别(即图6与图5的区别)相同,则,装置B确定TDD SSW Ack frame的接收时间、装置B确定Initiator Announce frame的接收时间、及装置A确定Responder Announce frame的接收时间的公式变形参考公式3-1-1、公式3-1-2和公式3-1-3,此处不再赘述。
S102、信息接收装置在所述确定的信息接收时间,接收信息。
S102中,信息接收装置在所述确定的信息接收时间,接收信息,例如,装置A在S101确定的TDD SSW Feedback frame的接收时间,接收TDD SSW Feedback frame;例如,装置B在S101确定的TDD SSW ACK帧的接收时间,接收TDD SSW ACK帧;其他帧类似。
与上述信息接收方法相适应地,本申请实施例还提供一种信息发送方法。如图3所示,一种信息发送方法包括:
S201、信息发送装置确定信息发送时间。
S201与S101互相对应,例如,装置B确定TDD SSW Feedback frame的发送时间的方法,即为装置A确定TDD SSW Feedback frame的接收时间的方法;装置A确定TDD SSW Ack frame的发送时间的方法,即为装置B确定TDD SSW Ack frame的接收时间的方法,;装置A确定Initiator Announce frame的发送时间的方法,即为装置B确定Initiator Announce frame的接收时间的方法;装置A确定Responder Announce frame的接收时间的方法,即为装置B确定Responder Announce frame的发送时间的方法。
S101的全部内容,都可以引用到此,来说明S201;具体内容,此处不再赘述。
S202、信息发送装置在所述确定的信息发送时间,发送信息。
S202中,例如,装置B在S201确定的TDD SSW Feedback frame的发送时间,发送TDD SSW Feedback frame;例如,装置A在S201确定的TDD SSW ACK帧的发送时间,发送TDD SSW ACK帧;其他帧类似。
通过本申请实施例提供的信息接收/发送方法,信息发送装置能在准确的信息发送时间发送信息,信息接收装置能在准确的信息接收时间接收信息,系统通信能正常进行。
本申请实施例还提供一种信息接收装置和一种信息发送装置。
图7是本申请实施例提供的一种信息接收/发送装置。应理解,本申请实施例中所述 的信息接收装置具有上述方法中信息接收装置的任意功能,本申请实施例中所述的信息发送装置具有上述方法中信息发送装置的任意功能。
如图7所示,一种信息接收装置,包括:
处理模块101,用于确定信息接收时间。
其中,所述信息包括:TDD SSW Feedback frame、TDD SSW Ack frame、Initiator Announce frame和Responder Announce frame。
当所述信息为TDD SSW Feedback frame时,信息接收装置为图2中的装置A;
当所述信息为TDD SSW Ack frame时,信息接收装置为图2中的装置B;
当所述信息为Initiator Announce frame时,信息接收装置为图2中的装置B;
当所述信息为Responder Announce frame时,信息接收装置为图2中的装置A。
收发模块102,用于在所述确定的信息接收时间,接收信息。
其中:
如图2所示,在接收装置A的处理模块101确定的TDD SSW Feedback frame的接收时间,装置A的接收模块102接收TDD SSW Feedback frame;
如图2所示,在接收装置B的处理模块101确定的TDD SSW Ack frame的接收时间,装置B的接收模块102接收TDD SSW Ack frame;
如图2所示,在接收装置B的处理模块101确定的Initiator Announce frame的接收时间,装置B的接收模块102接收Initiator Announce frame;
如图2所示,在接收装置A的处理模块101确定的Responder Announce frame的接收时间,装置A的接收模块102接收Responder Announce frame。
如图7所示,一种信息发送装置,包括:
处理模块101,用于确定信息发送时间。
其中,所述信息包括:TDD SSW Feedback frame、TDD SSW Ack frame、Initiator Announce frame和Responder Announce frame。
当所述信息为TDD SSW Feedback frame时,信息发送装置为图2中的装置B;
当所述信息为TDD SSW Ack frame时,信息发送装置为图2中的装置A;
当所述信息为Initiator Announce frame时,信息发送装置为图2中的装置A;
当所述信息为Responder Announce frame时,信息发送装置为图2中的装置B。
收发模块102,用于在所述确定的信息发送时间,发送信息。
其中:
如图2所示,在发送装置B的处理模块101确定的TDD SSW Feedback frame的发送时间,装置B的发送模块102发送TDD SSW Feedback frame;
如图2所示,在发送装置A的处理模块101确定的TDD SSW Ack frame的发送时间,装置A的发送模块102发送TDD SSW Ack frame;
如图2所示,在发送装置A的处理模块101确定的Initiator Announce frame的发送时间,装置A的发送模块102发送Initiator Announce frame;
如图2所示,在发送装置B的处理模块101确定的Responder Announce frame的发送时间,装置B的发送模块102发送Responder Announce frame。
通过本申请实施例提供的信息接收装置/发送装置,信息发送装置能在准确的信息发 送时间发送信息,信息接收装置能在准确的信息接收时间接收信息,系统通信能正常进行。
上述的本申请实施例提供的信息接收装置/发送装置,可以有多种产品形态来实现,例如,所述信息接收装置/发送装置可配置成通用处理系统;例如,所述信息接收装置/发送装置可以由一般性的总线体系结构来实现;例如,所述信息接收装置/发送装置可以由ASIC(专用集成电路)来实现等等。以下提供本申请实施例信息接收装置/发送装置可能的几种产品形态,应当理解的是,以下仅为举例,不限制本申请实施例可能的产品形态仅限于此。
图8是本申请实施例所述的信息接收装置/发送装置可能的产品形态的结构图。
作为一种可能的产品形态,信息接收装置/发送装置可以为信息接收装置/发送设备,所述信息接收装置/发送设备包括处理器902和收发器904/收发接口904;可选地,所述信息接收装置/发送设备还可以包括存储介质903。
作为另一种可能的产品形态,信息接收装置/发送装置可以为信息接收装置/发送单板,所述信息接收装置/发送单板包括处理器902和收发器904/收发接口904;可选地,所述信息接收装置/发送单板还可以包括存储介质903。
作为另一种可能的产品形态,信息接收装置/发送装置也由通用处理器来实现,即俗称的芯片来实现。该通用处理器包括:处理器902和收发接口904;可选地,该通用处理器还可以包括存储介质903。
作为另一种可能的产品形态,信息接收装置/发送装置也可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图9为TDD SSW frame format(TDD individual BF),也可以称之为TDD SSW frame format for TDD SU BF
如图9所示,通过设置End of Training subfield的值为1,initiator可以指示在与相应responder传输完剩余TDD SSW frame后将要结束TDD beamforming training。在现有技术中(TDD individual BF),由于initiator是与单个用户进行TDD beamforming training,所以只需要在TDD SSW frame中的TDD BF Control field中使用一个bit对End of Training 进行指示,如图4所示。然而,对于我们提出的TDD group BF情况,initiator在同一个TDD SSW slot中传输的TDD SSW frame会同时被多个用户(responder)接收,因此需要对每个responder分别进行指示是否结束training。为了解决这一问题,我们提出两中解决方案:
解决方案一:针对每一个responder引入一个指示字段来指示是否与该responder结束training。具体对于TDD SSW frame结构的修改可参考图1。对每一个responder,在其Responder Info subfield中都引入一个指示字段,例如,该指示字段可以是1个bit位,或者多个bit位。
解决方案二:与解决方案一不同,针对每个responder并不引入一个bit来指示End of Training,而是通过对Responder ID的设置来达到指示的作用。具体来说,对每个responder我们分配两个Responder ID,为表述方便我们称为RID1和RID2。若initiator不想结束training,TDD SSW frame中的Responder ID subfield的值使用RID1。若initiator想结束training,TDD SSW frame中的Responder ID subfield的值使用RID2。通过这种方法responder可以仅通过识别Responder ID subfield的内容就可以知道是否结束training。
另,当接收端没有收到TDD SSW frame时,接收端需要在他所有的接收扇区上进行接收扫描,并且在每一个接收扇区上停留一段时间以增大收到TDD SSW frame的几率,停留的时间大小通过SectorDwellTime来进行设置。在现有技术中(TDD individual BF),SectorDwellTime的值设为[2×TXTIME(TDD SSWIndividual)+SBIFS],其中TDD SSWIndividual是TDD individual BF中TDD SSW的时间。在我们提出的TDD group BF中,因为responder个数的增加,TDD SSW时间也会变长,因此如果沿用之前SectorDwellTime的设置方式可能会降低接收端收到TDD SSW frame的几率。为解决这一问题,我们提出了两种解决方案:
解决方案一:讲SectorDwellTime的值设置为[3or more×TXTIME(TDD SSWIndividual)+SBIFS],其中TDD SSWIndividual是TDD individual BF中TDD SSW的时间。
解决方案二:起始仍然将SectorDwellTime设置为[2×TXTIME(TDD SSWIndividual)+SBIFS],然后如果一直没有接收到TDD SSW帧,那么将SectorDwellTime逐渐扩大(可以是线性或者是非线性),扩大到一定程度后停止,或者扩大到一定程度后开始缩小。应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系, 例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (46)

  1. 一种信息接收方法,其特征在于,包括:
    确定信息接收时间;
    在所述确定的信息接收时间,接收信息。
  2. 根据权1所述的方法,其特征在于,所述确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
  3. 根据权2所述的方法,其特征在于,所述确定信息接收时间,包括:
    信息接收时间=预设偏移值-(一段时间内已发送的帧所占用的时长+总的帧间隔),其中,预设偏移值为一预设值;所述一段时间内已发送的帧所占用的时长为在一段时间内已发送的一种帧或者多种帧所占用的部分时间长度和/或总时间长度;所述总的帧间隔为在一段时间内已发送的一种帧或者多种帧间的间隔所占用的部分时间长度和/或总时间长度。
  4. 根据权3所述的方法,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的接收时间,具体为:
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是,发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区 扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  5. 根据权3所述的方法,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的接收时间,具体为:
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值-1)*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(帧总计数值-1)*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值-1)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值,是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥1且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  6. 根据权1所述的方法,其特征在于,所述确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描反馈帧的时长、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
  7. 根据权6所述的方法,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述 确定时分双工扇区扫描反馈帧的接收时间,具体为:
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的时长+时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的时长+(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的时长+时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,为一个时长,所述时长的设置为从发送端发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到接收端反馈TDD SSW Feedback frame的起始时间的时长;且,每个TDD SSW frame中ResponderFeedbackOffset字段的值相同;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值,是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    CountIndex≥0且为整数,AckCountIndex≥0且为整数。
  8. 根据权1所述的方法,其特征在于,所述确定信息接收时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
  9. 根据权8所述的方法,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的接收时间,具体为:
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值) *时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,为一个时长,所述时长的设置为从发送端发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到接收端反馈TDD SSW Feedback frame的起始时间的时长;且,每个TDD SSW frame中ResponderFeedbackOffset字段的值相同;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值,是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    CountIndex≥0且为整数,AckCountIndex≥0且为整数。
  10. 根据权3所述的方法,其特征在于,所述信息为时分双工扇区扫描确认帧,所述确定时分双工扇区扫描确认帧的接收时间,具体为:
    时分双工扇区扫描确认帧的接收时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描确认帧的接收时间=发送确认偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描确认帧的接收时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    发送确认偏移值,是所述一个或者多个时分双工扇区扫描帧中的Initiator Ack Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;帧
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  11. 根据权3所述的方法,其特征在于,所述信息为发送通知帧,所述确定发送通知帧的接收时间,具体为:
    发送通知帧的接收时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    发送通知帧的接收时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    发送通知帧的接收时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];
    其中,
    发送端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Initiator Transmit Offset subfield的值;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区 扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  12. 根据权3所述的方法,其特征在于,所述信息为响应通知帧,所述确定响应通知帧的接收时间,具体为:
    响应通知帧的接收时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    响应通知帧的接收时间=响应端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    响应通知帧的接收时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,响应端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Responder Transmit Offset subfield的值;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,该帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  13. 一种信息发送方法,其特征在于,包括:
    确定信息发送时间;
    在所述确定的信息发送时间,发送信息。
  14. 根据权13所述的方法,其特征在于,所述确定信息发送时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息发送时间。
  15. 根据权14所述的方法,其特征在于,所述确定信息发送时间,包括:
    信息发送时间=预设偏移值-(一段时间内已发送的帧所占用的时长+总的帧间隔),其中,预设偏移值为一预设值;所述一段时间内已发送的帧所占用的时长为在一段时间内已发送的一种帧或者多种帧所占用的部分时间长度和/或总时间长度;所述总的帧间隔为在一段时间内已发送的一种帧或者多种帧间的间隔所占用的部分时间长度和/或总时间长度。
  16. 根据权15所述的方法,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的发送时间,具体为:
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值,是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  17. 根据权15所述的方法,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的发送时间,具体为:
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值-1)*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(帧总计数值-1)*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值-1)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥1且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  18. 根据权13所述的方法,其特征在于,所述确定信息发送时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描反馈帧的时长、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息发送时间。
  19. 根据权18所述的方法,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的发送时间,具体为:
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的时长+时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的时长+(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描反馈帧的 时长+时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,为一个时长,所述时长的设置为从发送端发送完第一个TDD SSWgroup frame/TDD SSWACK帧后,到接收端反馈TDD SSW Feedback frame的起始时间的时长;且,每个TDD SSW frame中ResponderFeedbackOffset字段的值相同;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值,是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    CountIndex≥0且为整数,AckCountIndex≥0且为整数。
  20. 根据权13所述的方法,其特征在于,所述确定信息发送时间,包括:根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息发送时间。
  21. 根据权20所述的方法,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的发送时间,具体为:
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,为一个时长,所述时长的设置为从发送端发送完第一个TDD  SSWgroup frame/TDD SSWACK帧后,到接收端反馈TDD SSW Feedback frame的起始时间的时长;且,每个TDD SSW frame中ResponderFeedbackOffset字段的值相同;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值,是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    时分双工扇区扫描反馈帧的时长,是TDD SSW Feedback frame对应的PHY层PPDU的时长;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    CountIndex≥0且为整数,AckCountIndex≥0且为整数。
  22. 根据权15所述的方法,其特征在于,所述信息为时分双工扇区扫描确认帧,所述确定时分双工扇区扫描确认帧的发送时间,具体为:
    时分双工扇区扫描确认帧的发送时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描确认帧的发送时间=发送确认偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描确认帧的发送时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    发送确认偏移值,所述一个或者多个时分双工扇区扫描帧具中的InitiatorAckOffset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU 的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  23. 根据权15所述的方法,其特征在于,所述信息为发送通知帧,所述确定发送通知帧的发送时间,具体为:
    发送通知帧的发送时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    发送通知帧的发送时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    发送通知帧的发送时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];
    其中,
    发送端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Initiator Transmit Offset subfield的值;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;帧
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  24. 根据权15所述的方法,其特征在于,所述信息为响应通知帧,所述确定响应通知帧的发送时间,具体为:
    响应通知帧的发送时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    响应通知帧的发送时间=响应端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    响应通知帧的发送时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,响应端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Responder Transmit Offset subfield的值;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  25. 一种信息接收装置,其特征在于,包括:
    处理模块,用于确定信息接收时间;
    收发模块,用于在所述确定的信息接收时间,接收信息。
  26. 根据权25所述的信息接收装置,其特征在于,所述处理模块,具体用于根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息接收时间。
  27. 根据权26所述的信息接收装置,其特征在于,所述确定信息接收时间,包括:
    信息接收时间=预设偏移值-(一段时间内已发送的帧所占用的时长+总的帧间隔),其中,预设偏移值为一预设值;所述一段时间内已发送的帧所占用的时长为在一段时间内已发送的一种帧或者多种帧所占用的部分时间长度和/或总时间长度;所述总的帧间隔为在一段时间内已发送的一种帧或者多种帧间的间隔所占用的部分时间长度和/或总时间长度。
  28. 根据权27所述的信息接收装置,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的接收时间,具体为:
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值,是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;帧
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  29. 根据权27所述的信息接收装置,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的接收时间,具体为:
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值-1)*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(帧总计数值-1)*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的接收时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值-1)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述 一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥1且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  30. 根据权27所述的信息接收装置,其特征在于,所述信息为时分双工扇区扫描确认帧,所述确定时分双工扇区扫描确认帧的接收时间,具体为:
    时分双工扇区扫描确认帧的接收时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描确认帧的接收时间=发送确认偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描确认帧的接收时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    发送确认偏移值,所述一个或者多个时分双工扇区扫描帧具中的InitiatorAckOffset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  31. 根据权27所述的信息接收装置,其特征在于,所述信息为发送通知帧,所述确定发送通知帧的接收时间,具体为:
    发送通知帧的接收时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    发送通知帧的接收时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    发送通知帧的接收时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];
    其中,
    发送端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Initiator Transmit Offset subfield的值;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  32. 根据权27所述的信息接收装置,其特征在于,所述信息为响应通知帧,所述确定响应通知帧的接收时间,具体为:
    响应通知帧的接收时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    响应通知帧的接收时间=响应端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    响应通知帧的接收时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,响应端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Responder Transmit Offset subfield的值;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  33. 一种信息发送装置,其特征在于,包括:
    处理模块,用于确定信息发送时间;
    收发模块,用于在所述确定的信息发送时间,发送信息。
  34. 根据权32所述的信息发送装置,其特征在于,所述处理模块,具体用于根据时分双工扇区扫描确认帧计数值、帧总计数值、时分双工扇区扫描帧计数值中的任意两个、时分双工扇区扫描帧的时长和时分双工扇区扫描确认帧的时长确定信息发送时间。
  35. 根据权33所述的信息发送装置,其特征在于,所述确定信息发送时间,包括:
    信息发送时间=预设偏移值-(一段时间内已发送的帧所占用的时长+总的帧间隔),其中,预设偏移值为一预设值;所述一段时间内已发送的帧所占用的时长为在一段时间内已发送的一种帧或者多种帧所占用的部分时间长度和/或总时间长度;所述总的帧间隔为在一段时间内已发送的一种帧或者多种帧间的间隔所占用的部分时间长度和/或总时间长度。
  36. 根据权34所述的信息发送装置,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的发送时间,具体为:
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值,是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  37. 根据权34所述的信息发送装置,其特征在于,所述信息为时分双工扇区扫描反馈帧,所述确定时分双工扇区扫描反馈帧的发送时间,具体为:
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值-1)*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(帧总计数值-1)*短波束赋形帧间隔];或,
    时分双工扇区扫描反馈帧的发送时间=响应反馈偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+时分双工扇区扫描帧计数值*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值-1)*短波束赋形帧间隔];
    其中,
    响应反馈偏移值,是一个或者多个时分双工扇区扫描帧中的Responder Feedback Offset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认 帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥1且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  38. 根据权34所述的信息发送装置,其特征在于,所述信息为时分双工扇区扫描确认帧,所述确定时分双工扇区扫描确认帧的发送时间,具体为:
    时分双工扇区扫描确认帧的发送时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描确认帧的发送时间=发送确认偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    时分双工扇区扫描确认帧的发送时间=发送确认偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间隔];
    其中,
    发送确认偏移值,所述一个或者多个时分双工扇区扫描帧具中的InitiatorAckOffset subfield中的值,所述一个或者多个时分双工扇区扫描帧具有相同的TX Sector ID,所述一个或者多个时分双工扇区扫描帧在一个TDD slot中发送;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  39. 根据权34所述的信息发送装置,其特征在于,所述信息为发送通知帧,所述确定发送通知帧的发送时间,具体为:
    发送通知帧的发送时间=发送端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    发送通知帧的发送时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    发送通知帧的发送时间=发送端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];
    其中,
    发送端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Initiator Transmit Offset subfield的值;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  40. 根据权34所述的信息发送装置,其特征在于,所述信息为响应通知帧,所述确定响应通知帧的发送时间,具体为:
    响应通知帧的发送时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(帧总计数值+1-时分双工扇区扫描确认帧计数值)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    响应通知帧的发送时间=响应端发送偏移值–[(帧总计数值-时分双工扇区扫描帧计数值)*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+帧总计数值*短波束赋形帧间隔];或,
    响应通知帧的发送时间=响应端发送偏移值–[时分双工扇区扫描确认帧计数值*时分双工扇区扫描确认帧的时长+(时分双工扇区扫描帧计数值+1)*时分双工扇区扫描帧的时长+(时分双工扇区扫描确认帧计数值+时分双工扇区扫描帧计数值)*短波束赋形帧间 隔];
    其中,响应端发送偏移值,是当时分双工扇区扫描确认帧中End of Training subfield值为1时Responder Transmit Offset subfield的值;
    时分双工扇区扫描确认帧计数值,是在收到当前时分双工扇区扫描帧之前,发送端已经发送过的时分双工扇区扫描确认帧的个数,所述一个或者多个时分双工扇区扫描确认帧是在一个TDD slot中发送;
    时分双工扇区扫描帧计数值是发送端在一个TDD Slot内发送的时分双工扇区扫描帧的计数值;
    时分双工扇区扫描确认帧的时长,是时分双工扇区扫描确认帧对应的PHY层PPDU的时长;
    帧总计数值,是在一个TDD Slot内发送的帧的总计数值,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    时分双工扇区扫描帧的时长,是时分双工扇区扫描帧对应的PHY层PPDU的时长;
    短波束赋形帧间隔,是在一个TDD Slot内发送帧,其中相邻帧之间的间隔,所述帧包括时分双工扇区扫描帧和时分双工扇区扫描确认帧;
    所述帧总计数值≥0且为整数,所述时分双工扇区扫描确认帧计数值≥0且为整数。
  41. 一种接收设备,其特征在于,所述接收设备包括处理器,收发器和存储器,所述存储器用于存储指令,所述处理器用于执行存储器中的指令以执行权利要求1至12中任一项所述的方法。
  42. 一种发送设备,其特征在于,所述发送设备包括处理器,收发器和存储器,所述存储器用于存储指令,所述处理器用于执行存储器中的指令以执行权利要求12至24中任一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机可以执行权利要求1至24中任一项所述的方法。
  44. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行所述权利要求1至24中任一项所述的方法的指令。
  45. 一种芯片,其特征在于,所述芯片包括处理器和收发接口,所述收发接口和所述处理器通过内部连接通路互相通信,所述处理器用于控制所述芯片执行权利要求1至24中任一项所述的方法。
  46. 一种装置,用于实现权利要求1至24中任一项所述的方法。
PCT/CN2019/073108 2018-02-08 2019-01-25 信息发送/接收方法和装置 WO2019154111A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP19750932.6A EP3742659B1 (en) 2018-02-08 2019-01-25 Information transmitting/receiving methods and devices
BR112020016166-7A BR112020016166A2 (pt) 2018-02-08 2019-01-25 Método e aparelho de envio/recebimento de informações
EP23173813.9A EP4247090A3 (en) 2018-02-08 2019-01-25 Information transmitting/receiving methods and devices
ES19750932T ES2955178T3 (es) 2018-02-08 2019-01-25 Métodos y dispositivos de transmisión/recepción de información
JP2020542747A JP7230040B2 (ja) 2018-02-08 2019-01-25 情報送信/受信方法および装置
CA3090556A CA3090556C (en) 2018-02-08 2019-01-25 Information sending/receiving method and apparatus
KR1020207025386A KR102434782B1 (ko) 2018-02-08 2019-01-25 정보 송신/수신 방법 및 디바이스
US16/987,720 US11456847B2 (en) 2018-02-08 2020-08-07 Information sending/receiving method and apparatus
US17/815,383 US20230008045A1 (en) 2018-02-08 2022-07-27 Information Sending/Receiving Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810129057.X 2018-02-08
CN201810129057.XA CN110138537B (zh) 2018-02-08 2018-02-08 信息发送/接收方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/987,720 Continuation US11456847B2 (en) 2018-02-08 2020-08-07 Information sending/receiving method and apparatus

Publications (1)

Publication Number Publication Date
WO2019154111A1 true WO2019154111A1 (zh) 2019-08-15

Family

ID=67549214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073108 WO2019154111A1 (zh) 2018-02-08 2019-01-25 信息发送/接收方法和装置

Country Status (9)

Country Link
US (2) US11456847B2 (zh)
EP (2) EP4247090A3 (zh)
JP (1) JP7230040B2 (zh)
KR (1) KR102434782B1 (zh)
CN (2) CN114070544A (zh)
BR (1) BR112020016166A2 (zh)
CA (1) CA3090556C (zh)
ES (1) ES2955178T3 (zh)
WO (1) WO2019154111A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371533B (zh) * 2020-03-09 2022-02-22 腾讯科技(深圳)有限公司 数据传输方法、装置、存储介质及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744697B2 (en) * 2000-04-26 2004-06-01 Juniper Networks, Inc. Cable modem clock synchronization using software parsing with hardware assist
CN1972232A (zh) * 2006-10-20 2007-05-30 北京四达时代软件技术有限公司 一种通过网络信道传送信息的方法
CN101090572A (zh) * 2006-06-13 2007-12-19 三星电子株式会社 在移动通信系统中发送/接收时间信息的装置和方法
CN103312474A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 定时参考信息发送、接收、确定方法、设备及系统
CN104767582A (zh) * 2014-01-07 2015-07-08 艾默生网络能源有限公司 一种以太网的同步方法、装置及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591080A (ja) * 1991-09-30 1993-04-09 Fujitsu Ltd 通信制御装置
US7173916B2 (en) * 2001-01-19 2007-02-06 Raze Technologies, Inc. Wireless access system using multiple modulation formats in TDD frames and method of operation
CN1266856C (zh) * 2002-08-09 2006-07-26 华为技术有限公司 无线通信系统中基于时分双工的信号发射和接收方法
CN101635926A (zh) * 2002-09-20 2010-01-27 美商内数位科技公司 以时隙及天线区段重用改进标识效能的方法及系统
US6944142B2 (en) * 2003-05-13 2005-09-13 Interdigital Technology Corporation Method for soft and softer handover in time division duplex code division multiple access (TDD-CDMA) networks
CN1929337A (zh) * 2005-09-05 2007-03-14 华为技术有限公司 无线收发设备间实现信息传递的方法及系统
CN101087168B (zh) * 2006-06-06 2011-03-16 中兴通讯股份有限公司 时分多址蜂窝通讯系统中基站扇区朝向的检查方法
ES2561530T3 (es) * 2011-08-12 2016-02-26 Nokia Solutions And Networks Oy Recepción discontinua para agregación de portadoras
US9999046B2 (en) * 2015-09-11 2018-06-12 Intel Corporation Sector level sweep for millimeter-wave multiple output communications
US10743194B2 (en) 2015-10-23 2020-08-11 Huawei Technologies Co., Ltd. Method and apparatus for performing association beamforming training in a wireless network
JP2017169127A (ja) * 2016-03-17 2017-09-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信システム、通信システムの制御方法、基地局装置、および無線端末装置
WO2019014041A1 (en) * 2017-07-10 2019-01-17 Intel Corporation APPARATUS, SYSTEM AND METHOD FOR LEARNING ASYMMETRICAL BEAM FORMATION
US10728733B2 (en) * 2018-01-12 2020-07-28 Sony Corporation Multi-band millimeter wave discovery in WLAN distribution networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744697B2 (en) * 2000-04-26 2004-06-01 Juniper Networks, Inc. Cable modem clock synchronization using software parsing with hardware assist
CN101090572A (zh) * 2006-06-13 2007-12-19 三星电子株式会社 在移动通信系统中发送/接收时间信息的装置和方法
CN1972232A (zh) * 2006-10-20 2007-05-30 北京四达时代软件技术有限公司 一种通过网络信道传送信息的方法
CN103312474A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 定时参考信息发送、接收、确定方法、设备及系统
CN104767582A (zh) * 2014-01-07 2015-07-08 艾默生网络能源有限公司 一种以太网的同步方法、装置及系统

Also Published As

Publication number Publication date
EP3742659B1 (en) 2023-07-19
US20230008045A1 (en) 2023-01-12
ES2955178T3 (es) 2023-11-29
EP3742659A1 (en) 2020-11-25
EP4247090A3 (en) 2023-12-27
EP4247090A2 (en) 2023-09-20
CN110138537A (zh) 2019-08-16
CA3090556A1 (en) 2019-08-15
JP7230040B2 (ja) 2023-02-28
KR102434782B1 (ko) 2022-08-22
US20200366455A1 (en) 2020-11-19
KR20200116974A (ko) 2020-10-13
EP3742659A4 (en) 2021-03-17
CN110138537B (zh) 2021-10-15
CN114070544A (zh) 2022-02-18
BR112020016166A2 (pt) 2020-12-08
US11456847B2 (en) 2022-09-27
CA3090556C (en) 2023-10-10
JP2021513273A (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
US11533776B2 (en) Information transmission method, base station, user equipment, and system
US10440732B2 (en) Method and device for transmitting data
US11006410B2 (en) Method and apparatus for transmitting uplink information
JP6599479B2 (ja) 端末、基地局、およびスケジューリング要求送信方法
US20160021681A1 (en) Method for sending and receiving random access preamble, and corresponding device
US20200204658A1 (en) Information transmission method, apparatus, and system
WO2021068209A1 (zh) 数据发送与接收的方法、装置、终端及存储介质
US20150358946A1 (en) Signal transmission method and user equipment
CN113163441A (zh) 通信方法、终端设备和网络设备
US20180145736A1 (en) Method for Transmitting Channel State Information and Transmission Device
US20180070375A1 (en) Method and Device for Transmitting Channel State Information Reference Signal
EP2501195A1 (en) Wireless base station and mobile communication method
WO2019154111A1 (zh) 信息发送/接收方法和装置
CN111418250A (zh) 数据传输方法及相关装置
CN115066851B (zh) 时域资源确定方法及装置
CN112087249B (zh) 波束训练的方法、装置和计算机可读介质
CN111769900B (zh) 一种信道状态信息参考信号的调度方法及装置
EP2986070B1 (en) Signal transmission method and user equipment
CN113709867A (zh) 数据传输方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3090556

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020542747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750932

Country of ref document: EP

Effective date: 20200819

ENP Entry into the national phase

Ref document number: 20207025386

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016166

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020016166

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200807