[go: up one dir, main page]

WO2019150779A1 - Determination device, determination method, and determination program - Google Patents

Determination device, determination method, and determination program Download PDF

Info

Publication number
WO2019150779A1
WO2019150779A1 PCT/JP2018/045861 JP2018045861W WO2019150779A1 WO 2019150779 A1 WO2019150779 A1 WO 2019150779A1 JP 2018045861 W JP2018045861 W JP 2018045861W WO 2019150779 A1 WO2019150779 A1 WO 2019150779A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
determination
power generation
unit
generation unit
Prior art date
Application number
PCT/JP2018/045861
Other languages
French (fr)
Japanese (ja)
Inventor
下口剛史
後藤勲
谷村晃太郎
近藤麻由
池上洋行
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019568912A priority Critical patent/JP7163931B2/en
Priority to DE112018006999.0T priority patent/DE112018006999T5/en
Publication of WO2019150779A1 publication Critical patent/WO2019150779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge

Definitions

  • the present invention relates to a determination device, a determination method, and a determination program.
  • This application claims priority based on Japanese Patent Application No. 2018-16736 filed on Feb. 1, 2018, the entire disclosure of which is incorporated herein.
  • Patent Document 1 JP 2012-205078 A discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter.
  • the management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
  • the determination device of the present disclosure is a determination device used in a solar power generation system including a power generation unit including a solar battery panel, and acquires an acquisition unit that acquires data based on a measurement result of an output of the power generation unit. Based on the data acquired by the acquisition unit, a generation unit that generates one or a plurality of data with coarser temporal granularity of the data, the data acquired by the acquisition unit, and the generation unit A determination unit for determining an abnormality related to the power generation unit from a plurality of pieces of data having different lengths among a plurality of pieces of data of different lengths among the one or more pieces of data that are different in length. .
  • the determination method of the present disclosure is a determination method used in the determination device, and the step of acquiring data based on the measurement result of the output of the power generation unit including the solar battery panel, and based on the acquired data, The step of generating one or a plurality of data with coarse time granularity of the data is different from the acquired data and the generated one or more data over a plurality of periods having different lengths Determining an abnormality related to the power generation unit from a plurality of data of granularity using different criteria.
  • the determination program of the present disclosure is a determination program used in a determination device, and includes an acquisition unit that acquires data based on a measurement result of an output of a power generation unit including a solar battery panel, and the acquisition unit. Based on the acquired data, a generating unit that generates one or a plurality of data with coarser temporal granularity of the data, the data acquired by the acquiring unit, and the 1 generated by the generating unit Alternatively, a program for functioning as a determination unit that determines a malfunction related to the power generation unit from a plurality of data having a different granularity among a plurality of data using a different standard from a plurality of data having different granularities. It is.
  • One embodiment of the present disclosure can be realized not only as a determination device including such a characteristic processing unit, but also as a semiconductor integrated circuit that realizes part or all of the determination device.
  • one aspect of the present disclosure can be realized not only as a monitoring system including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one aspect of the present disclosure can be realized not only as a monitoring system including such a characteristic processing unit, but also as a method using such characteristic processing as a step. Further, the present invention can be realized as a semiconductor integrated circuit that realizes part or all of the monitoring system.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination apparatus in the monitoring system according to the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of data every 10 minutes determined to be abnormal.
  • FIG. 10 is a diagram illustrating an example of daily data determined to be abnormal.
  • FIG. 11 is a flowchart that defines an operation procedure when the determination device according to the embodiment of the present invention performs abnormality determination regarding the power generation unit.
  • the present disclosure has been made in order to solve the above-described problems, and an object thereof is to provide a determination device, a determination method, and a determination program that can improve abnormality determination of a solar power generation system.
  • a determination device is a determination device used in a solar power generation system including a power generation unit including a solar battery panel, and acquires data based on a measurement result of an output of the power generation unit.
  • An acquisition unit that generates, based on the data acquired by the acquisition unit, a generation unit that generates one or a plurality of data with coarser temporal granularity of the data, the data acquired by the acquisition unit, and Among the one or a plurality of data generated by the generation unit, an abnormality relating to the power generation unit is determined using a plurality of pieces of data having different granularities and a plurality of pieces of data having different granularities using different criteria.
  • a determination unit is a determination device used in a solar power generation system including a power generation unit including a solar battery panel, and acquires data based on a measurement result of an output of the power generation unit.
  • abnormality in the measured value over a relatively short period and an abnormality in the measured value over a relatively long period.
  • abnormalities in a plurality of types of periods can be determined and various abnormality determinations can be made. For example, there is no change in measured values in a short period, and changes can be made by checking measurement results over a long period. An abnormality that can be confirmed can be detected. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period. Therefore, the abnormality determination of the solar power generation system can be improved.
  • the determination unit determines an abnormality related to the power generation unit using three or more of the criteria.
  • the type of the abnormality determined using each of the criteria is different.
  • the determination device further includes a notification unit that notifies the abnormality determined by the determination unit, and the notification contents of the abnormality determined using the respective criteria are different.
  • the determination method is a determination method used in the determination device, the step of acquiring data based on the measurement result of the output of the power generation unit including the solar battery panel, and the acquired Based on the data, generating one or more data in which the time granularity of the data is coarse, and a plurality of the data acquired and the generated one or more data over a period of different length Determining an abnormality related to the power generation unit from a plurality of data having different granularities using different criteria.
  • the determination program according to the embodiment of the present invention is a determination program used in the determination device, and the computer acquires an acquisition unit that acquires data based on the measurement result of the output of the power generation unit including the solar battery panel.
  • a generation unit that generates one or a plurality of data in which the temporal granularity of the data is coarse based on the data acquired by the acquisition unit, the data acquired by the acquisition unit, and the generation unit Among the one or more generated data, as a determination unit that determines a malfunction related to the power generation unit from a plurality of data over a period of different lengths and a plurality of data having different granularities using different criteria, respectively. It is a program to make it function.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6.
  • the cubicle 6 includes a copper bar 73.
  • FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8.
  • the PCS 8 includes a copper bar 7 and a power conversion unit 9.
  • FIG. 2 four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71.
  • the current collection box 71 has a copper bar 72.
  • FIG. 3 four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
  • FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
  • solar cell unit 74 includes four power generation units 78 and a junction box 76.
  • the power generation unit 78 has a solar cell panel.
  • the connection box 76 has a copper bar 77.
  • FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
  • the power generation unit 78 is a string in which four solar cell panels 79A, 79B, 79C, and 79D are connected in series.
  • each of the solar cell panels 79A, 79B, 79C, and 79D is also referred to as a solar cell panel 79.
  • FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels 79 may be provided.
  • output lines and aggregated lines that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
  • the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77.
  • Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77.
  • the copper bar 77 is provided, for example, inside the connection box 76.
  • the power generation unit 78 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
  • aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72.
  • the copper bar 72 is provided, for example, inside the current collection box 71.
  • the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
  • each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7.
  • the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
  • the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
  • the aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
  • FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
  • the solar power generation system 401 includes a monitoring system 301.
  • the monitoring system 301 includes a determination device 101, a plurality of monitoring devices 111, and a collection device 151.
  • FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided.
  • the monitoring system 301 includes one collection device 151, but may include a plurality of collection devices 151.
  • sensor information in the monitoring device 111 which is a slave is transmitted to the collection device 151 regularly or irregularly.
  • the monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
  • the monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
  • the collecting device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
  • the monitoring device 111 and the collection device 151 perform transmission and reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
  • PLC Power Line Communication
  • each monitoring device 111 transmits monitoring information indicating the measurement result of the current and voltage of the corresponding output line.
  • the collection device 151 collects the measurement results of each monitoring device 111.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention.
  • the output line 1, the aggregation line 5 and the copper bar 77 are shown in more detail.
  • output line 1 includes a plus side output line 1p and a minus side output line 1n.
  • Aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n.
  • the copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
  • the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
  • the plus side output line 1p has a first end connected to the corresponding power generation unit 78 and a second end connected to the plus side copper bar 77p.
  • the negative side output line 1n has a first end connected to the corresponding power generation unit 78 and a second end connected to the negative side copper bar 77n.
  • the plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71.
  • the minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
  • the monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
  • the monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
  • the monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively.
  • each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
  • Each monitoring device 111 transmits monitoring information indicating a measurement result regarding the corresponding power generation unit 78 via a power line connected to itself and the collecting device 151.
  • the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregation lines 2 and 5.
  • the detection processing unit 11 is set, for example, so as to create monitoring information indicating the measurement results of the current and voltage of the corresponding output line 1 every predetermined time.
  • the current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 measures the current flowing through the corresponding negative output line 1n every 6 seconds using the power received from the power supply circuit (not shown) of the monitoring device 111, and sends a signal indicating the measurement result to the detection processing unit 11. Output. The current sensor 16 may measure a current flowing through the plus side output line 1p.
  • the voltage sensor 17 measures the voltage of the output line 1. More specifically, the voltage sensor 17 measures the voltage between the plus-side copper bar 77p and the minus-side copper bar 77n every 6 seconds, and outputs a signal indicating the measurement result to the detection processing unit 11.
  • the detection processing unit 11 includes the measurement results indicated by the signals received from the current sensor 16 and the voltage sensor 17, the ID of the corresponding current sensor 16 (hereinafter also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter referred to as voltage).
  • the monitoring information including the sensor ID and the ID of the own monitoring device 111 (hereinafter also referred to as the monitoring device ID) is created.
  • the detection processing unit 11 creates a monitoring information packet in which the transmission source ID is its own monitoring device ID, the transmission destination ID is the ID of the collection device 151, and the data portion is monitoring information. Then, the detection processing unit 11 outputs the created monitoring information packet to the communication unit 14.
  • the detection processing unit 11 may include a sequence number in the monitoring information packet.
  • the communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151.
  • the collection device 151 can send and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, for example, and receives monitoring information packets from the plurality of monitoring devices 111.
  • the collection device 151 has a counter and a storage unit. When receiving the monitoring information packet from the monitoring device 111, the collecting device 151 acquires the monitoring information from the received monitoring information packet and acquires the count value in the counter as the reception time. Then, after including the reception time in the monitoring information, the collection device 151 stores the monitoring information in a storage unit (not shown).
  • FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
  • the determination apparatus 101 includes a determination unit 81, a generation unit 82, a communication processing unit (notification unit) 84, a storage unit 85, and an acquisition unit 86.
  • the ID of the monitoring apparatus 111 to be managed that is, the monitoring apparatus ID is registered.
  • the correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID is registered.
  • the determination device 101 is, for example, a server, periodically acquires monitoring information from the collection device 151, and processes the acquired monitoring information. Note that the determination apparatus 101 may be configured to be incorporated in the collection apparatus 151, for example.
  • the communication processing unit 84 in the determination apparatus 101 transmits / receives information to / from other apparatuses such as the collection apparatus 151 via the network.
  • the communication processing unit 84 performs monitoring information collection processing at a designated daily processing timing, for example, at 0:00 every day. Note that if the determination device 101 is built in the collection device 151, monitoring information can be easily collected at shorter intervals.
  • the communication processing unit 84 refers to each monitoring device ID registered in the storage unit 85, corresponds to each monitored monitoring device ID, and has a 24-hour daily processing timing.
  • a monitoring information request for requesting monitoring information including a reception time that belongs to the daily processing timing (hereinafter also referred to as a processing date) from before is transmitted to the collection device 151.
  • the collection device 151 When the collection device 151 receives the monitoring information request from the determination device 101, the collection device 151 transmits one or more pieces of monitoring information satisfying the content of the monitoring information request to the determination device 101 in accordance with the received monitoring information request.
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the monitoring system according to the embodiment of the present invention.
  • communication processing unit 84 when receiving one or a plurality of pieces of monitoring information from collection device 151 as a response to the monitoring information request, stores the received pieces of monitoring information in storage unit 85 and notifies the completion of processing. Is output to the acquisition unit 86.
  • the acquisition unit 86 acquires measurement data based on the measurement result of the output of the power generation unit 78.
  • the acquisition unit 86 when the acquisition unit 86 receives a processing completion notification from the communication processing unit 84, the acquisition unit 86 refers to the correspondence relationship R1 registered in the storage unit 85, and includes a plurality of information in a certain minute included in the monitoring information.
  • the current value and the plurality of voltage values are acquired from the storage unit 85, the generated power is calculated by multiplying the acquired current value and voltage value for each current sensor ID, and output to the generation unit 82 as measurement data.
  • the generation unit 82 is data obtained by coarsening the temporal granularity of the measurement data, that is, data based on the measurement data in a certain period, and compared with the measurement data. Data with a larger time interval between element values such as generated power is generated.
  • the generation unit 82 calculates, for example, each generated power for one minute acquired by the acquisition unit 86 as measurement data, that is, an average value M of the generated power for ten times, and stores it in the storage unit 85. It outputs to the determination part 81.
  • the acquisition unit 86 and the generation unit 82 perform the same process on each generated power in the next one minute stored in the storage unit 85. And the acquisition part 86 and the production
  • the generation unit 82 may delete the measurement data for one day corresponding to each generated average value M from the storage unit 85.
  • the acquisition unit 86 refers to the correspondence relationship R1, acquires the minute data for each current sensor ID generated by the generation unit 82 from the storage unit 85 as measurement data, and outputs the measurement data to the generation unit 82.
  • the generation unit 82 selects, for example, the average value M at 10-minute intervals from the 1-minute data received from the acquisition unit 86 for one day, and arranges the selected average values M in time series for 10 minutes. Each data is generated and stored in the storage unit 85 and output to the determination unit 81.
  • the generation unit 82 may delete the 1-minute data corresponding to the generated 10-minute data from the storage unit 85.
  • the acquisition unit 86 refers to the correspondence relationship R1, selects 10-minute data for each current sensor ID generated by the generation unit 82 for one year, and stores the selected 10-minute data for each storage unit 85. As measurement data and output to the generation unit 82.
  • the generation unit 82 selects, for example, one year of data indicating the maximum value of the generated power in one day from each 10 minute data received from the acquisition unit 86, and sets the selected maximum value to the hour.
  • the daily data arranged in the series is generated and stored in the storage unit 85 and is output to the determination unit 81.
  • the generation unit 82 may delete, for example, every 10 minutes of data before the first day of the year corresponding to the generated daily data period from the storage unit 85.
  • the generation unit 82 is not limited to a configuration for newly generating daily data based on 10-minute data for one year, for example, and may be configured to update the generated daily data.
  • the acquisition unit 86 acquires data every 10 minutes on the processing date from the storage unit 85 and outputs it to the generation unit 82.
  • the acquisition unit 86 acquires the daily data generated or updated by the generation unit 82 from the storage unit 85 and outputs the acquired data to the generation unit 82.
  • the generation unit 82 deletes the maximum value of the first day in the daily data received from the acquisition unit 86, and selects the maximum value of the generated power indicated by the 10-minute data of the processing date received from the acquisition unit 86. Then, by adding the selected maximum value to the daily data, the daily data is updated, and the updated daily data is stored in the storage unit 85.
  • each of measurement data, 1-minute data, 10-minute data, and 1-day data is also referred to as determination data.
  • the determination part 81 determines the abnormality regarding the electric power generation part 78 using the different reference
  • the determination unit 81 uses determination data with different granularities for each criterion. For example, the determination unit 81 determines an abnormality related to the power generation unit 78 using three or more criteria. For example, the type of abnormality determined using each criterion is different.
  • the average value M calculated based on the measurement data is Compared to the average value M, the value drops rapidly.
  • the determination unit 81 determines such a rapid decrease in the average value M in a short period as abnormal using the first reference.
  • the first standard is, for example, whether or not the average value M has decreased by a predetermined value or more compared to the previous average value M.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the average value M decreases by a predetermined value or more using the first reference, compared to the previously calculated average value M, and is abnormal. (Hereinafter also referred to as first abnormality information) is output to the communication processing unit 84.
  • FIG. 9 is a diagram illustrating an example of data every 10 minutes determined to be abnormal.
  • the horizontal axis indicates time, and the vertical axis indicates generated power.
  • graph D1 shows the generated power of power generation unit 78 on a day that was sunny all day
  • graph D2 shows the generated power of power generation unit 78 on a day when it was cloudy in the morning
  • Graph D3 shows the generated power of the power generation unit 78 on the day when the afternoon was cloudy.
  • Determining unit 81 uses the second criterion to determine such a decrease in generated power in a certain time period of the day as abnormal.
  • the second criterion is, for example, that the data every 10 minutes is classified into a cluster in which the graph D2 is classified or a cluster in which the graph D3 is classified using the result of clustering of the data every 10 minutes by machine learning, for example, k-means. Whether or not.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the data is classified into the cluster into which the graph D2 is classified or the cluster into which the graph D3 is classified using the second criterion. Then, information indicating abnormality (hereinafter also referred to as second abnormality information) is output to the communication processing unit 84.
  • second abnormality information information indicating abnormality
  • the result of clustering for example, it is possible to detect a decrease in generated power in a certain time zone, and therefore, it can be used to estimate the cause of an abnormality.
  • the generated power of the power generation unit 78 on a day that was sunny all day was the graph D2 or the graph D3 shown in FIG. 9, the decrease in the generated power in the morning or the afternoon might be due to the influence of the shade, etc. It is done.
  • FIG. 10 is a diagram illustrating an example of daily data determined to be abnormal.
  • the horizontal axis indicates time, and the vertical axis indicates generated power.
  • a graph Y1 shows ideal generated power generated by the power generation unit 78 in one year, and a graph Y2 shows generated power of the power generation unit 78 in one year.
  • the generated power of power generation unit 78 is, for example, aged deterioration of solar cell panel 79, higher resistance of wiring solder in solar cell panel 79, or moisture intrusion into solar cell panel 79. Etc., it may decrease gradually.
  • the determination unit 81 determines that the state in which the generated power gradually decreases as described above is abnormal using the third reference.
  • the third criterion is, for example, whether or not the generated power has decreased by a threshold TH1 or more that is set based on the past generated power of the power generation unit 78 in the predetermined period K1.
  • the threshold value TH1 may be set based on the amount of reduction in the generated power of the other power generation unit 78 in the predetermined period K1.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the generated power is lower than the threshold value TH1 in a predetermined period K1, for example, one year, and information indicating that it is abnormal (hereinafter, third abnormality information). Is also output to the communication processing unit 84.
  • the communication processing unit 84 notifies the abnormality determined by the determination unit 81. For example, the notification content of the abnormality to be determined using each criterion is different.
  • the communication processing unit 84 converts the first abnormality information, the second abnormality information, and the third abnormality information received from the determination unit 81 into a format such as e-mail, etc. To the device.
  • Each abnormality information shows a different level, for example, when the degree of abnormality is distinguished by the level.
  • the acquisition unit 86 is not limited to the configuration in which the generated power is calculated as measurement data based on the plurality of current values and the plurality of voltage values included in the monitoring information, and the plurality of current values included in the monitoring information is measured data.
  • the structure acquired as follows may be sufficient.
  • the generation unit 82 calculates each current value for 1 minute acquired by the acquisition unit 86, that is, the average value M of the current values for 10 times.
  • the acquisition unit 86 is not limited to the configuration in which the generated power is calculated as measurement data based on the plurality of current values and the plurality of voltage values included in the monitoring information, and the plurality of voltage values included in the monitoring information are measured data.
  • the structure acquired as follows may be sufficient.
  • the generation unit 82 calculates each voltage value for 1 minute acquired by the acquisition unit 86, that is, an average value M of 10 voltage values.
  • the period for judging abnormality using the first standard, the second standard, and the third standard is not limited to 1 minute, 1 day, and 1 year, but may be 10 minutes, 1 hour, 1 week, etc. Good.
  • Each device in the monitoring system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • Each of the programs of the plurality of apparatuses can be installed from the outside.
  • the programs of the plurality of apparatuses are distributed while being stored in a recording medium.
  • FIG. 11 is a flowchart that defines an operation procedure when the determination apparatus according to the embodiment of the present invention performs abnormality determination related to the power generation unit.
  • determination device 101 receives monitoring information including a measurement result of an output of power generation unit 78 including a solar battery panel (step S101).
  • the determination apparatus 101 accumulates the received monitoring information (step S102).
  • the determination apparatus 101 acquires measurement data based on the measurement result included in the accumulated monitoring information (step S103).
  • the determination apparatus 101 generates and accumulates data every minute in which the time granularity of the measurement data is coarsened (step S104).
  • the determination apparatus 101 determines an abnormality related to the power generation unit 78 using the first reference from the acquired measurement data (step S105).
  • the determination device 101 determines that the power generation unit 78 is abnormal (YES in step 105)
  • the determination device 101 transmits the first abnormality information to the server (step S106).
  • the determination apparatus 101 generates and accumulates 10-minute data in which the temporal granularity of the 1-minute data is coarse based on the generated 1-minute data (step S107).
  • the determination apparatus 101 determines that the power generation unit 78 is normal (NO in step S105)
  • the determination apparatus 101 makes the time granularity of the minute data based on the generated minute data every 10 minutes. Data is generated and stored (step S107).
  • the determination apparatus 101 determines an abnormality related to the power generation unit 78 using the second reference from the data every 10 minutes (step S108).
  • step S108 when the determination device 101 determines that the power generation unit 78 is abnormal (YES in step S108), the determination device 101 transmits the second abnormality information to the server (step S109).
  • the determination apparatus 101 generates and accumulates the daily data in which the temporal granularity of the 10 minute data is coarse based on the generated 10 minute data (step S110).
  • the determination device 101 determines that the power generation unit 78 is normal (NO in step S108)
  • the determination device 101 generates and accumulates daily data with coarse temporal granularity of data every 10 minutes (step S110). .
  • the determination device 101 determines an abnormality related to the power generation unit 78 using the third reference from the daily data (step S111).
  • step S111 when determining device 101 determines that power generation unit 78 is abnormal (YES in step S111), it transmits third abnormality information to the server (step S112).
  • the determination apparatus 101 waits until new monitoring information is received (step S101).
  • step S111 when determining that the power generation unit 78 is normal (NO in step S111), the determination apparatus 101 waits until new monitoring information is received (step S101).
  • the determination apparatus is configured to determine an abnormality related to the power generation unit 78 using three or more criteria, the present invention is not limited to this.
  • the determination apparatus 101 may be configured to determine an abnormality related to the power generation unit 78 using two criteria.
  • the type of abnormality and the notification content determined using the first standard and the type of abnormality and the notification content determined using the second standard
  • the present invention is not limited to this.
  • the type of abnormality and notification content determined using the first standard may be the same as the type of abnormality and notification content determined using the second standard.
  • the acquisition unit 86 acquires measurement data based on the measurement result of the output of the power generation unit 78. Based on the measurement data acquired by the acquisition unit 86, the generation unit 82 generates one or a plurality of determination data in which the temporal granularity of the measurement data is coarse.
  • the determination unit 81 includes a plurality of pieces of data having different granularities and a plurality of pieces of data having different lengths among the measurement data acquired by the acquisition unit 86 and the one or more determination data generated by the generation unit 82.
  • the abnormality relating to the power generation unit 78 is determined using different criteria.
  • Such a configuration makes it possible to determine abnormalities in measured values over a relatively short period and abnormalities in measured values over a relatively long period.
  • abnormalities in a plurality of types of periods can be determined and various abnormality determinations can be made. For example, there is no change in measured values in a short period, and changes can be made by checking measurement results over a long period. An abnormality that can be confirmed can be detected. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period.
  • the determination apparatus can improve the abnormality determination of the solar power generation system.
  • the determination unit 81 determines an abnormality related to the power generation unit 78 using three or more criteria.
  • the type of abnormality determined using each criterion is different.
  • the communication processing unit 84 notifies the abnormality determined by the determination unit 81. And the notification content of the abnormality determined using each reference
  • the determination method first, measurement data data based on the measurement result of the output of the power generation unit 78 including the solar cell panel 79 is acquired. Next, based on the acquired measurement data, one or more determination data in which the temporal granularity of the measurement data is coarse is generated. Next, among the acquired measurement data and the generated one or more determination data, an abnormality related to the power generation unit 78 using a plurality of data over a period having different lengths and a plurality of data having different granularities, respectively. Determine.
  • the abnormality determination of the solar power generation system can be improved.
  • a determination device used in a solar power generation system including a power generation unit including a solar battery panel, An acquisition unit for acquiring data based on the measurement result of the output of the power generation unit; Based on the data acquired by the acquisition unit, a generation unit that generates one or a plurality of data with coarser temporal granularity of the data; Of the data acquired by the acquisition unit and the one or more data generated by the generation unit, a plurality of data over a period of different lengths and a plurality of data having different granularities, respectively, and different criteria.
  • a determination unit for determining an abnormality related to the power generation unit using The power generation unit is a string in which a plurality of solar cell panels are connected in series, The output of the said electric power generation part is a determination apparatus which is the generated electric power of the said electric power generation part, an electric current, or a voltage.

Landscapes

  • Photovoltaic Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Provided are a determination device, a determination method, and a determination program with which it is possible to improve determination of abnormality in a solar power generation system. Provided is a determination device used for a solar power generation system provided with a power generation unit including a solar panel. The determination device is provided with: an acquisition unit which acquires data based on the result of measuring an output of the power generation unit; a generation unit which, on the basis of the data acquired by means of the acquisition unit, generates one or a plurality of pieces of data in which the temporal granularity of the acquired data has been made coarser; and a determination unit which determines, using respectively different standards, abnormality regarding the power generation unit from a plurality of pieces of data, among the data acquired by the acquisition unit and the one or a plurality of pieces of data generated by the generation unit, that span periods of different lengths and have different granularities.

Description

判定装置、判定方法および判定プログラムDetermination device, determination method, and determination program
 本発明は、判定装置、判定方法および判定プログラムに関する。
 この出願は、2018年2月1日に出願された日本出願特願2018-16736号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present invention relates to a determination device, a determination method, and a determination program.
This application claims priority based on Japanese Patent Application No. 2018-16736 filed on Feb. 1, 2018, the entire disclosure of which is incorporated herein.
 特開2012-205078号公報(特許文献1)には、以下のような太陽光発電用監視システムが開示されている。すなわち、太陽光発電用監視システムは、複数の太陽電池パネルからの出力を集約して電力変換装置に送り込む太陽光発電システムについて、前記太陽電池パネルの発電状況を監視する太陽光発電用監視システムであって、前記複数の太陽電池パネルからの出力電路が集約された場所に設けられ、各太陽電池パネルの発電量を計測する計測装置と、前記計測装置に接続され、前記計測装置による発電量の計測データを送信する機能を有する下位側通信装置と、前記下位側通信装置から送信される前記計測データを受信する機能を有する上位側通信装置と、前記上位側通信装置を介して前記太陽電池パネルごとの前記計測データを収集する機能を有する管理装置とを備える。前記管理装置は、前記各太陽電池パネルについての、同一時点における発電量の差に基づいて異常の有無を判定するか、または前記各太陽電池パネルについての、所定期間の発電量の最大値又は積算値に基づいて異常の有無を判定する。 JP 2012-205078 A (Patent Document 1) discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter. A measuring device for measuring the power generation amount of each solar cell panel provided in a place where the output electric circuits from the plurality of solar cell panels are aggregated, and connected to the measurement device, A lower communication device having a function of transmitting measurement data, an upper communication device having a function of receiving the measurement data transmitted from the lower communication device, and the solar cell panel via the upper communication device And a management device having a function of collecting the measurement data for each. The management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
特開2012-205078号公報JP 2012-205078 A
 (1)本開示の判定装置は、太陽電池パネルを含む発電部を備える太陽光発電システムに用いられる判定装置であって、前記発電部の出力の計測結果に基づくデータを取得する取得部と、前記取得部によって取得された前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成する生成部と、前記取得部によって取得された前記データおよび前記生成部によって生成された前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定する判定部とを備える。 (1) The determination device of the present disclosure is a determination device used in a solar power generation system including a power generation unit including a solar battery panel, and acquires an acquisition unit that acquires data based on a measurement result of an output of the power generation unit. Based on the data acquired by the acquisition unit, a generation unit that generates one or a plurality of data with coarser temporal granularity of the data, the data acquired by the acquisition unit, and the generation unit A determination unit for determining an abnormality related to the power generation unit from a plurality of pieces of data having different lengths among a plurality of pieces of data of different lengths among the one or more pieces of data that are different in length. .
 (5)本開示の判定方法は、判定装置において用いられる判定方法であって、太陽電池パネルを含む発電部の出力の計測結果に基づくデータを取得するステップと、取得した前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成するステップと、取得した前記データおよび生成した前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定するステップとを含む。 (5) The determination method of the present disclosure is a determination method used in the determination device, and the step of acquiring data based on the measurement result of the output of the power generation unit including the solar battery panel, and based on the acquired data, The step of generating one or a plurality of data with coarse time granularity of the data is different from the acquired data and the generated one or more data over a plurality of periods having different lengths Determining an abnormality related to the power generation unit from a plurality of data of granularity using different criteria.
 (6)本開示の判定プログラムは、判定装置において用いられる判定プログラムであって、コンピュータを、太陽電池パネルを含む発電部の出力の計測結果に基づくデータを取得する取得部と、前記取得部によって取得された前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成する生成部と、前記取得部によって取得された前記データおよび前記生成部によって生成された前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定する判定部、として機能させるためのプログラムである。 (6) The determination program of the present disclosure is a determination program used in a determination device, and includes an acquisition unit that acquires data based on a measurement result of an output of a power generation unit including a solar battery panel, and the acquisition unit. Based on the acquired data, a generating unit that generates one or a plurality of data with coarser temporal granularity of the data, the data acquired by the acquiring unit, and the 1 generated by the generating unit Alternatively, a program for functioning as a determination unit that determines a malfunction related to the power generation unit from a plurality of data having a different granularity among a plurality of data using a different standard from a plurality of data having different granularities. It is.
 本開示の一態様は、このような特徴的な処理部を備える判定装置として実現され得るだけでなく、判定装置の一部または全部を実現する半導体集積回路として実現され得る。 One embodiment of the present disclosure can be realized not only as a determination device including such a characteristic processing unit, but also as a semiconductor integrated circuit that realizes part or all of the determination device.
 また、本開示の一態様は、このような特徴的な処理部を備える監視システムとして実現され得るだけでなく、かかる特徴的な処理をコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、このような特徴的な処理部を備える監視システムとして実現され得るだけでなく、かかる特徴的な処理をステップとする方法として実現され得る。また、本発明は、監視システムの一部または全部を実現する半導体集積回路として実現され得る。 Also, one aspect of the present disclosure can be realized not only as a monitoring system including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one aspect of the present disclosure can be realized not only as a monitoring system including such a characteristic processing unit, but also as a method using such characteristic processing as a step. Further, the present invention can be realized as a semiconductor integrated circuit that realizes part or all of the monitoring system.
図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る監視システムの構成を示す図である。FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る監視システムにおける監視装置の構成を示す図である。FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る監視システムにおける判定装置の構成を示す図である。FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る監視システムにおける判定装置が保持する監視情報の一例を示す図である。FIG. 8 is a diagram showing an example of monitoring information held by the determination apparatus in the monitoring system according to the embodiment of the present invention. 図9は、異常と判定される10分毎データの一例を示す図である。FIG. 9 is a diagram illustrating an example of data every 10 minutes determined to be abnormal. 図10は、異常と判定される1日毎データの一例を示す図である。FIG. 10 is a diagram illustrating an example of daily data determined to be abnormal. 図11は、本発明の実施の形態に係る判定装置が発電部に関する異常判定を行う際の動作手順を定めたフローチャートである。FIG. 11 is a flowchart that defines an operation procedure when the determination device according to the embodiment of the present invention performs abnormality determination regarding the power generation unit.
 近年、太陽光発電システムを監視して異常を判別するための技術が開発されている。 In recent years, techniques for monitoring solar power generation systems and determining abnormalities have been developed.
 [本開示が解決しようとする課題]
 このような特許文献1に記載の技術を超えて、太陽光発電システムの異常判定を向上させることが可能な技術が望まれる。
[Problems to be solved by the present disclosure]
A technique capable of improving the abnormality determination of the solar power generation system beyond the technique described in Patent Document 1 is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、太陽光発電システムの異常判定を向上させることが可能な判定装置、判定方法および判定プログラムを提供することである。 The present disclosure has been made in order to solve the above-described problems, and an object thereof is to provide a determination device, a determination method, and a determination program that can improve abnormality determination of a solar power generation system.
 [本開示の効果]
 本開示によれば、太陽光発電システムの異常判定を向上させることができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to improve abnormality determination of the solar power generation system.
 [本願発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.
 (1)本発明の実施の形態に係る判定装置は、太陽電池パネルを含む発電部を備える太陽光発電システムに用いられる判定装置であって、前記発電部の出力の計測結果に基づくデータを取得する取得部と、前記取得部によって取得された前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成する生成部と、前記取得部によって取得された前記データおよび前記生成部によって生成された前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定する判定部とを備える。 (1) A determination device according to an embodiment of the present invention is a determination device used in a solar power generation system including a power generation unit including a solar battery panel, and acquires data based on a measurement result of an output of the power generation unit. An acquisition unit that generates, based on the data acquired by the acquisition unit, a generation unit that generates one or a plurality of data with coarser temporal granularity of the data, the data acquired by the acquisition unit, and Among the one or a plurality of data generated by the generation unit, an abnormality relating to the power generation unit is determined using a plurality of pieces of data having different granularities and a plurality of pieces of data having different granularities using different criteria. A determination unit.
 このような構成により、比較的短期間にわたる計測値の異常および比較的長期間にわたる計測値の異常を判定することができる。これにより、複数種類の期間での異常が判定され、多様な異常判定を行うことが可能になることにより、たとえば、短期間では計測値の変化がなく長期間にわたる計測結果を確認することにより変化が確認できるような異常を検知することできる。さらに、長期間わたる計測結果では、データの粒度が粗くなることにより捉えることができない短期間での計測値の変化も、短期間にわたる計測結果を確認することにより検知することができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, it is possible to determine an abnormality in the measured value over a relatively short period and an abnormality in the measured value over a relatively long period. As a result, abnormalities in a plurality of types of periods can be determined and various abnormality determinations can be made. For example, there is no change in measured values in a short period, and changes can be made by checking measurement results over a long period. An abnormality that can be confirmed can be detected. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period. Therefore, the abnormality determination of the solar power generation system can be improved.
 (2)好ましくは、前記判定部は、3つ以上の前記基準を用いて前記発電部に関する異常を判定する。 (2) Preferably, the determination unit determines an abnormality related to the power generation unit using three or more of the criteria.
 このような構成により、さらに長期間にわたる計測値の異常を判定することができ、より多様な異常判定を行うことができる。 With such a configuration, it is possible to determine the abnormality of the measured value over a longer period of time, and to perform more various abnormality determinations.
 (3)好ましくは、各前記基準を用いて判定される前記異常の種類が異なる。 (3) Preferably, the type of the abnormality determined using each of the criteria is different.
 このような構成により、ダイオード解放故障および経年劣化等、太陽光発電におけるより多様な異常を判定することができる。 With such a configuration, it is possible to determine more various abnormalities in solar power generation such as diode release failure and aging degradation.
 (4)好ましくは、前記判定装置は、さらに、前記判定部によって判定された前記異常を通知する通知部を備え、各前記基準を用いて判定される前記異常の通知内容が異なる。 (4) Preferably, the determination device further includes a notification unit that notifies the abnormality determined by the determination unit, and the notification contents of the abnormality determined using the respective criteria are different.
 このような構成により、いずれの基準を用いて判断された異常であるかを通知内容によって判断することができるため、たとえば、緊急度または重要度に応じた保守対応を行うことができる。 With such a configuration, it is possible to determine according to the notification contents which criterion is used to determine the abnormality, and for example, it is possible to perform maintenance corresponding to the degree of urgency or importance.
 (5)本発明の実施の形態に係る判定方法は、判定装置において用いられる判定方法であって、太陽電池パネルを含む発電部の出力の計測結果に基づくデータを取得するステップと、取得した前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成するステップと、取得した前記データおよび生成した前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定するステップとを含む。 (5) The determination method according to the embodiment of the present invention is a determination method used in the determination device, the step of acquiring data based on the measurement result of the output of the power generation unit including the solar battery panel, and the acquired Based on the data, generating one or more data in which the time granularity of the data is coarse, and a plurality of the data acquired and the generated one or more data over a period of different length Determining an abnormality related to the power generation unit from a plurality of data having different granularities using different criteria.
 このような構成により、比較的短期間にわたる計測値の異常および比較的長期間にわたる計測値の異常を判定することができる。これにより、複数種類の期間での異常が判定され、多様な異常判定を行うことができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, it is possible to determine an abnormality in the measured value over a relatively short period and an abnormality in the measured value over a relatively long period. Thereby, abnormality in a plurality of types of periods is determined, and various abnormality determinations can be performed. Therefore, the abnormality determination of the solar power generation system can be improved.
 (6)本発明の実施の形態に係る判定プログラムは、判定装置において用いられる判定プログラムであって、コンピュータを、太陽電池パネルを含む発電部の出力の計測結果に基づくデータを取得する取得部と、前記取得部によって取得された前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成する生成部と、前記取得部によって取得された前記データおよび前記生成部によって生成された前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定する判定部、として機能させるためのプログラムである。 (6) The determination program according to the embodiment of the present invention is a determination program used in the determination device, and the computer acquires an acquisition unit that acquires data based on the measurement result of the output of the power generation unit including the solar battery panel. A generation unit that generates one or a plurality of data in which the temporal granularity of the data is coarse based on the data acquired by the acquisition unit, the data acquired by the acquisition unit, and the generation unit Among the one or more generated data, as a determination unit that determines a malfunction related to the power generation unit from a plurality of data over a period of different lengths and a plurality of data having different granularities using different criteria, respectively. It is a program to make it function.
 このような構成により、比較的短期間にわたる計測値の異常および比較的長期間にわたる計測値の異常を判定することができる。これにより、複数種類の期間での異常が判定され、多様な異常判定を行うことができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, it is possible to determine an abnormality in the measured value over a relatively short period and an abnormality in the measured value over a relatively long period. Thereby, abnormality in a plurality of types of periods is determined, and various abnormality determinations can be performed. Therefore, the abnormality determination of the solar power generation system can be improved.
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. Moreover, you may combine arbitrarily at least one part of embodiment described below.
 [太陽光発電システムの構成]
 図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。
[Configuration of solar power generation system]
FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
 図1を参照して、太陽光発電システム401は、4つのPCS(Power Conditioning Subsystem)ユニット80と、キュービクル6とを備える。キュービクル6は、銅バー73を含む。 Referring to FIG. 1, solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6. The cubicle 6 includes a copper bar 73.
 図1では、4つのPCSユニット80を代表的に示しているが、さらに多数または少数のPCSユニット80が設けられてもよい。 FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。 FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
 図2を参照して、PCSユニット80は、4つの集電ユニット60と、PCS(電力変換装置)8とを備える。PCS8は、銅バー7と、電力変換部9とを含む。 2, the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8. The PCS 8 includes a copper bar 7 and a power conversion unit 9.
 図2では、4つの集電ユニット60を代表的に示しているが、さらに多数または少数の集電ユニット60が設けられてもよい。 In FIG. 2, four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。 FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
 図3を参照して、集電ユニット60は、4つの太陽電池ユニット74と、集電箱71とを含む。集電箱71は、銅バー72を有する。 Referring to FIG. 3, the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71. The current collection box 71 has a copper bar 72.
 図3では、4つの太陽電池ユニット74を代表的に示しているが、さらに多数または少数の太陽電池ユニット74が設けられてもよい。 In FIG. 3, four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。 FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
 図4を参照して、太陽電池ユニット74は、4つの発電部78と、接続箱76とを含む。発電部78は、太陽電池パネルを有する。接続箱76は、銅バー77を有する。 Referring to FIG. 4, solar cell unit 74 includes four power generation units 78 and a junction box 76. The power generation unit 78 has a solar cell panel. The connection box 76 has a copper bar 77.
 図4では、4つの発電部78を代表的に示しているが、さらに多数または少数の発電部78が設けられてもよい。 FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
 発電部78は、この例では4つの太陽電池パネル79A,79B,79C,79Dが直列接続されたストリングである。以下、太陽電池パネル79A,79B,79C,79Dの各々を、太陽電池パネル79とも称する。 In this example, the power generation unit 78 is a string in which four solar cell panels 79A, 79B, 79C, and 79D are connected in series. Hereinafter, each of the solar cell panels 79A, 79B, 79C, and 79D is also referred to as a solar cell panel 79.
 図4では、4つの太陽電池パネル79を代表的に示しているが、さらに多数または少数の太陽電池パネル79が設けられてもよい。 FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels 79 may be provided.
 太陽光発電システム401では、複数の発電部78からの出力ラインおよび集約ラインすなわち電力線がそれぞれキュービクル6に電気的に接続される。 In the solar power generation system 401, output lines and aggregated lines, that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
 より詳細には、発電部78の出力ライン1は、発電部78に接続された第1端と、銅バー77に接続された第2端とを有する。各出力ライン1は、銅バー77を介して集約ライン5に集約される。銅バー77は、たとえば接続箱76の内部に設けられている。 More specifically, the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77. Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77. The copper bar 77 is provided, for example, inside the connection box 76.
 発電部78は、太陽光を受けると、受けた太陽光のエネルギーを直流電力に変換し、変換した直流電力を出力ライン1へ出力する。 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
 図3および図4を参照して、集約ライン5は、対応の太陽電池ユニット74における銅バー77に接続された第1端と、銅バー72に接続された第2端とを有する。各集約ライン5は、銅バー72を介して集約ライン2に集約される。銅バー72は、たとえば集電箱71の内部に設けられている。 3 and 4, aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72. The copper bar 72 is provided, for example, inside the current collection box 71.
 図1~図4を参照して、太陽光発電システム401では、上述のように複数の発電部78からの各出力ライン1が集約ライン5に集約され、各集約ライン5が集約ライン2に集約され、各集約ライン2が集約ライン4に集約され、各集約ライン4がキュービクル6に電気的に接続される。 With reference to FIGS. 1 to 4, in the photovoltaic power generation system 401, as described above, the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
 より詳細には、各集約ライン2は、対応の集電ユニット60における銅バー72に接続された第1端と、銅バー7に接続された第2端とを有する。PCS8において、内部ライン3は、銅バー7に接続された第1端と、電力変換部9に接続された第2端とを有する。 More specifically, each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7. In the PCS 8, the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
 PCS8において、電力変換部9は、たとえば、各発電部78において発電された直流電力を出力ライン1、銅バー77、集約ライン5、銅バー72、集約ライン2、銅バー7および内部ライン3経由で受けると、受けた直流電力を交流電力に変換して集約ライン4へ出力する。 In the PCS 8, the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
 集約ライン4は、電力変換部9に接続された第1端と、銅バー73に接続された第2端とを有する。 The aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
 キュービクル6において、各PCS8における電力変換部9から各集約ライン4へ出力された交流電力は、銅バー73を介して系統へ出力される。 In the cubicle 6, AC power output from the power conversion unit 9 in each PCS 8 to each aggregation line 4 is output to the system via the copper bar 73.
 [監視システム301の構成]
 図5は、本発明の実施の形態に係る監視システムの構成を示す図である。
[Configuration of Monitoring System 301]
FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
 図5を参照して、太陽光発電システム401は、監視システム301を備える。監視システム301は、判定装置101と、複数の監視装置111と、収集装置151とを含む。 Referring to FIG. 5, the solar power generation system 401 includes a monitoring system 301. The monitoring system 301 includes a determination device 101, a plurality of monitoring devices 111, and a collection device 151.
 図5では、1つの集電ユニット60に対応して設けられた4つの監視装置111を代表的に示しているが、さらに多数または少数の監視装置111が設けられてもよい。また、監視システム301は、1つの収集装置151を備えているが、複数の収集装置151を備えてもよい。 FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided. In addition, the monitoring system 301 includes one collection device 151, but may include a plurality of collection devices 151.
 監視システム301では、子機である監視装置111におけるセンサの情報が、収集装置151へ定期的または不定期に伝送される。 In the monitoring system 301, sensor information in the monitoring device 111 which is a slave is transmitted to the collection device 151 regularly or irregularly.
 監視装置111は、たとえば集電ユニット60に設けられている。より詳細には、監視装置111は、4つの太陽電池ユニット74にそれぞれ対応して4つ設けられている。各監視装置111は、たとえば、対応の出力ライン1および集約ライン5に電気的に接続されている。 The monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
 監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電流をセンサにより計測する。また、監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電圧をセンサにより計測する。 The monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
 収集装置151は、たとえばPCS8の近傍に設けられている。より詳細には、収集装置151は、PCS8に対応して設けられ、信号線46を介して銅バー7に電気的に接続されている。 The collecting device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
 監視装置111および収集装置151は、集約ライン2,5を介して電力線通信(PLC:Power Line Communication)を行うことにより情報の送受信を行う。 The monitoring device 111 and the collection device 151 perform transmission and reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
 より詳細には、各監視装置111は、対応の出力ラインの電流および電圧の計測結果を示す監視情報を送信する。収集装置151は、各監視装置111の計測結果を収集する。 More specifically, each monitoring device 111 transmits monitoring information indicating the measurement result of the current and voltage of the corresponding output line. The collection device 151 collects the measurement results of each monitoring device 111.
 [監視装置111の構成]
 図6は、本発明の実施の形態に係る監視システムにおける監視装置の構成を示す図である。図6では、出力ライン1、集約ライン5および銅バー77がより詳細に示されている。
[Configuration of Monitoring Device 111]
FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention. In FIG. 6, the output line 1, the aggregation line 5 and the copper bar 77 are shown in more detail.
 図6を参照して、出力ライン1は、プラス側出力ライン1pと、マイナス側出力ライン1nとを含む。集約ライン5は、プラス側集約ライン5pと、マイナス側集約ライン5nとを含む。銅バー77は、プラス側銅バー77pと、マイナス側銅バー77nとを含む。 Referring to FIG. 6, output line 1 includes a plus side output line 1p and a minus side output line 1n. Aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n. The copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
 図示しないが、図3に示す集電箱71における銅バー72は、プラス側集約ライン5pおよびマイナス側集約ライン5nにそれぞれ対応して、プラス側銅バー72pおよびマイナス側銅バー72nを含む。 Although not shown, the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
 プラス側出力ライン1pは、対応の発電部78に接続された第1端と、プラス側銅バー77pに接続された第2端とを有する。マイナス側出力ライン1nは、対応の発電部78に接続された第1端と、マイナス側銅バー77nに接続された第2端とを有する。 The plus side output line 1p has a first end connected to the corresponding power generation unit 78 and a second end connected to the plus side copper bar 77p. The negative side output line 1n has a first end connected to the corresponding power generation unit 78 and a second end connected to the negative side copper bar 77n.
 プラス側集約ライン5pは、プラス側銅バー77pに接続された第1端と、集電箱71におけるプラス側銅バー72pに接続された第2端とを有する。マイナス側集約ライン5nは、マイナス側銅バー77nに接続された第1端と、集電箱71におけるマイナス側銅バー72nに接続された第2端とを有する。 The plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71. The minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
 監視装置111は、検出処理部11と、4つの電流センサ16と、電圧センサ17と、通信部14とを備える。なお、監視装置111は、出力ライン1の数に応じて、さらに多数または少数の電流センサ16を備えてもよい。 The monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
 監視装置111は、たとえば、発電部78の近傍に設けられている。具体的には、監視装置111は、たとえば、計測対象の出力ライン1が接続された銅バー77が設けられた接続箱76の内部に設けられている。なお、監視装置111は、接続箱76の外部に設けられてもよい。 The monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
 監視装置111は、たとえば、プラス側集約ライン5pおよびマイナス側集約ライン5nとそれぞれプラス側電源線26pおよびマイナス側電源線26nを介して電気的に接続されている。以下、プラス側電源線26pおよびマイナス側電源線26nの各々を、電源線26とも称する。 The monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively. Hereinafter, each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
 各監視装置111は、対応の発電部78に関する計測結果を示す監視情報を、自己および収集装置151に接続される電力線を介して送信する。 Each monitoring device 111 transmits monitoring information indicating a measurement result regarding the corresponding power generation unit 78 via a power line connected to itself and the collecting device 151.
 詳細には、監視装置111における通信部14は、集約ラインを介した電力線通信を、複数の監視装置111の計測結果を収集する収集装置151と行うことが可能である。より詳細には、通信部14は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、通信部14は、電源線26および集約ライン2,5を介して収集装置151と電力線通信を行う。 Specifically, the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregation lines 2 and 5.
 検出処理部11は、たとえば、対応の出力ライン1の電流および電圧の計測結果を示す監視情報を所定時間ごとに作成するように設定されている。 The detection processing unit 11 is set, for example, so as to create monitoring information indicating the measurement results of the current and voltage of the corresponding output line 1 every predetermined time.
 電流センサ16は、出力ライン1の電流を計測する。より詳細には、電流センサ16は、たとえば、ホール素子タイプの電流プローブである。電流センサ16は、監視装置111の図示しない電源回路から受けた電力を用いて、対応のマイナス側出力ライン1nを通して流れる電流を6秒ごとに計測し、計測結果を示す信号を検出処理部11へ出力する。なお、電流センサ16は、プラス側出力ライン1pを通して流れる電流を計測してもよい。 The current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 measures the current flowing through the corresponding negative output line 1n every 6 seconds using the power received from the power supply circuit (not shown) of the monitoring device 111, and sends a signal indicating the measurement result to the detection processing unit 11. Output. The current sensor 16 may measure a current flowing through the plus side output line 1p.
 電圧センサ17は、出力ライン1の電圧を計測する。より詳細には、電圧センサ17は、プラス側銅バー77pおよびマイナス側銅バー77n間の電圧を6秒ごとに計測し、計測結果を示す信号を検出処理部11へ出力する。 The voltage sensor 17 measures the voltage of the output line 1. More specifically, the voltage sensor 17 measures the voltage between the plus-side copper bar 77p and the minus-side copper bar 77n every 6 seconds, and outputs a signal indicating the measurement result to the detection processing unit 11.
 検出処理部11は、電流センサ16および電圧センサ17からそれぞれ受けた信号の示す計測結果、対応の電流センサ16のID(以下、電流センサIDとも称する。)、電圧センサ17のID(以下、電圧センサIDとも称する。)、および自己の監視装置111のID(以下、監視装置IDとも称する。)を含む監視情報を作成する。 The detection processing unit 11 includes the measurement results indicated by the signals received from the current sensor 16 and the voltage sensor 17, the ID of the corresponding current sensor 16 (hereinafter also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter referred to as voltage). The monitoring information including the sensor ID and the ID of the own monitoring device 111 (hereinafter also referred to as the monitoring device ID) is created.
 検出処理部11は、送信元IDが自己の監視装置IDであり、送信先IDが収集装置151のIDであり、データ部分が監視情報である監視情報パケットを作成する。そして、検出処理部11は、作成した監視情報パケットを通信部14へ出力する。なお、検出処理部11は、監視情報パケットにシーケンス番号を含めてもよい。 The detection processing unit 11 creates a monitoring information packet in which the transmission source ID is its own monitoring device ID, the transmission destination ID is the ID of the collection device 151, and the data portion is monitoring information. Then, the detection processing unit 11 outputs the created monitoring information packet to the communication unit 14. The detection processing unit 11 may include a sequence number in the monitoring information packet.
 通信部14は、検出処理部11から受ける監視情報パケットを収集装置151へ送信する。 The communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151.
 再び図5を参照して、収集装置151は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、収集装置151は、たとえば、信号線46および集約ライン2,5を介して監視装置111と電力線通信を行い、監視情報パケットを複数の監視装置111から受信する。 Referring to FIG. 5 again, the collection device 151 can send and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, for example, and receives monitoring information packets from the plurality of monitoring devices 111.
 収集装置151は、カウンタおよび記憶部を有しており、監視装置111から監視情報パケットを受信すると、受信した監視情報パケットから監視情報を取得するとともに、カウンタにおけるカウント値を受信時刻として取得する。そして、収集装置151は、受信時刻を監視情報に含めた後、図示しない記憶部に当該監視情報を保存する。 The collection device 151 has a counter and a storage unit. When receiving the monitoring information packet from the monitoring device 111, the collecting device 151 acquires the monitoring information from the received monitoring information packet and acquires the count value in the counter as the reception time. Then, after including the reception time in the monitoring information, the collection device 151 stores the monitoring information in a storage unit (not shown).
 [判定装置の構成および動作]
 図7は、本発明の実施の形態に係る監視システムにおける判定装置の構成を示す図である。
[Configuration and operation of judgment device]
FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
 図7を参照して、判定装置101は、判定部81と、生成部82と、通信処理部(通知部)84と、記憶部85と、取得部86とを備える。 Referring to FIG. 7, the determination apparatus 101 includes a determination unit 81, a generation unit 82, a communication processing unit (notification unit) 84, a storage unit 85, and an acquisition unit 86.
 判定装置101における記憶部85には、たとえば、管理対象の監視装置111のIDすなわち監視装置IDが登録されている。また、記憶部85には、監視装置IDと当該監視装置IDを有する監視装置111に含まれる各センサのIDすなわち電流センサIDおよび電圧センサIDとの対応関係R1が登録されている。 In the storage unit 85 of the determination apparatus 101, for example, the ID of the monitoring apparatus 111 to be managed, that is, the monitoring apparatus ID is registered. In the storage unit 85, the correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID is registered.
 判定装置101は、たとえばサーバであり、監視情報を収集装置151から定期的に取得し、取得した監視情報を処理する。なお、判定装置101は、たとえば収集装置151に内蔵される構成であってもよい。 The determination device 101 is, for example, a server, periodically acquires monitoring information from the collection device 151, and processes the acquired monitoring information. Note that the determination apparatus 101 may be configured to be incorporated in the collection apparatus 151, for example.
 より詳細には、判定装置101における通信処理部84は、ネットワークを介して、収集装置151等の他の装置と情報の送受信を行う。 More specifically, the communication processing unit 84 in the determination apparatus 101 transmits / receives information to / from other apparatuses such as the collection apparatus 151 via the network.
 通信処理部84は、指定された日毎処理タイミング、たとえば毎日の午前0時において監視情報収集処理を行う。なお、判定装置101を収集装置151に内蔵する構成にすれば、より短い間隔で監視情報を容易に収集することができる。 The communication processing unit 84 performs monitoring information collection processing at a designated daily processing timing, for example, at 0:00 every day. Note that if the determination device 101 is built in the collection device 151, monitoring information can be easily collected at shorter intervals.
 より詳細には、通信処理部84は、日毎処理タイミングが到来すると、記憶部85に登録されている各監視装置IDを参照し、参照した各監視装置IDに対応し、日毎処理タイミングの24時間前から当該日毎処理タイミングまで(以下、処理日とも称する。)に属する受信時刻を含む監視情報を要求するための監視情報要求を収集装置151へ送信する。 More specifically, when the daily processing timing arrives, the communication processing unit 84 refers to each monitoring device ID registered in the storage unit 85, corresponds to each monitored monitoring device ID, and has a 24-hour daily processing timing. A monitoring information request for requesting monitoring information including a reception time that belongs to the daily processing timing (hereinafter also referred to as a processing date) from before is transmitted to the collection device 151.
 収集装置151は、判定装置101から監視情報要求を受信すると、受信した監視情報要求に従って、監視情報要求の内容を満足する1または複数の監視情報を判定装置101へ送信する。 When the collection device 151 receives the monitoring information request from the determination device 101, the collection device 151 transmits one or more pieces of monitoring information satisfying the content of the monitoring information request to the determination device 101 in accordance with the received monitoring information request.
 図8は、本発明の実施の形態に係る監視システムにおける判定装置が保持する監視情報の一例を示す図である。 FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the monitoring system according to the embodiment of the present invention.
 図8を参照して、通信処理部84は、監視情報要求の応答として収集装置151から1または複数の監視情報を受信すると、受信した各監視情報を記憶部85に保存するとともに、処理完了通知を取得部86へ出力する。 Referring to FIG. 8, when receiving one or a plurality of pieces of monitoring information from collection device 151 as a response to the monitoring information request, communication processing unit 84 stores the received pieces of monitoring information in storage unit 85 and notifies the completion of processing. Is output to the acquisition unit 86.
 取得部86は、発電部78の出力の計測結果に基づく計測データを取得する。 The acquisition unit 86 acquires measurement data based on the measurement result of the output of the power generation unit 78.
 より詳細には、たとえば、取得部86は、通信処理部84から処理完了通知を受けると、記憶部85に登録されている対応関係R1を参照し、監視情報に含まれるある1分間における複数の電流値および複数の電圧値を記憶部85から取得し、電流センサIDごとに、取得した電流値および電圧値を乗じて発電電力を算出し、計測データとして生成部82へ出力する。 More specifically, for example, when the acquisition unit 86 receives a processing completion notification from the communication processing unit 84, the acquisition unit 86 refers to the correspondence relationship R1 registered in the storage unit 85, and includes a plurality of information in a certain minute included in the monitoring information. The current value and the plurality of voltage values are acquired from the storage unit 85, the generated power is calculated by multiplying the acquired current value and voltage value for each current sensor ID, and output to the generation unit 82 as measurement data.
 生成部82は、取得部86によって取得された計測データに基づいて、当該計測データの時間的な粒度を粗くしたデータ、すなわち、ある期間における計測データに基づくデータであって当該計測データと比べて発電電力等の要素値間の時間の間隔を大きくしたデータを生成する。 Based on the measurement data acquired by the acquisition unit 86, the generation unit 82 is data obtained by coarsening the temporal granularity of the measurement data, that is, data based on the measurement data in a certain period, and compared with the measurement data. Data with a larger time interval between element values such as generated power is generated.
 より詳細には、生成部82は、たとえば、取得部86が計測データとして取得した1分間の各発電電力、すなわち10回分の発電電力の平均値Mを算出し、記憶部85に保存するとともに、判定部81へ出力する。 More specifically, the generation unit 82 calculates, for example, each generated power for one minute acquired by the acquisition unit 86 as measurement data, that is, an average value M of the generated power for ten times, and stores it in the storage unit 85. It outputs to the determination part 81.
 取得部86および生成部82は、記憶部85に保存されている次の1分間における各発電電力に対して同様の処理を行う。そして、取得部86および生成部82は、1日分の発電電力に対して当該処理を繰り返すことにより、電流センサIDごとの、1日分の平均値M(以下、1分毎データとも称する。)を生成する。 The acquisition unit 86 and the generation unit 82 perform the same process on each generated power in the next one minute stored in the storage unit 85. And the acquisition part 86 and the production | generation part 82 repeat the said process with respect to the generated electric power for 1 day, and are the average value M for 1 day for every current sensor ID (henceforth also called 1 minute data). ) Is generated.
 なお、生成部82は、生成した各平均値Mに対応する1日分の計測データを記憶部85から削除してもよい。 The generation unit 82 may delete the measurement data for one day corresponding to each generated average value M from the storage unit 85.
 また、取得部86は、たとえば、対応関係R1を参照し、生成部82によって生成された電流センサIDごとの1分毎データを記憶部85から計測データとして取得し、生成部82へ出力する。 Further, for example, the acquisition unit 86 refers to the correspondence relationship R1, acquires the minute data for each current sensor ID generated by the generation unit 82 from the storage unit 85 as measurement data, and outputs the measurement data to the generation unit 82.
 そして、生成部82は、たとえば、取得部86から受けた1分毎データから、10分間隔の平均値Mをたとえば1日分選択し、選択した各平均値Mを時系列に並べた10分毎データを生成して記憶部85に保存するとともに、判定部81へ出力する。 Then, the generation unit 82 selects, for example, the average value M at 10-minute intervals from the 1-minute data received from the acquisition unit 86 for one day, and arranges the selected average values M in time series for 10 minutes. Each data is generated and stored in the storage unit 85 and output to the determination unit 81.
 なお、生成部82は、生成した10分毎データに対応する1分毎データを記憶部85から削除してもよい。 Note that the generation unit 82 may delete the 1-minute data corresponding to the generated 10-minute data from the storage unit 85.
 また、取得部86は、たとえば、対応関係R1を参照し、生成部82によって生成された電流センサIDごとの10分毎データを1年分選択し、選択した各10分毎データを記憶部85から計測データとして取得し、生成部82へ出力する。 In addition, for example, the acquisition unit 86 refers to the correspondence relationship R1, selects 10-minute data for each current sensor ID generated by the generation unit 82 for one year, and stores the selected 10-minute data for each storage unit 85. As measurement data and output to the generation unit 82.
 そして、生成部82は、たとえば、取得部86から受けた各10分毎データから、1日のうちで発電電力が最大値を示すデータをたとえば1年分選択し、選択した各最大値を時系列に並べた1日毎データを生成して記憶部85に保存するとともに、判定部81へ出力する。 Then, for example, the generation unit 82 selects, for example, one year of data indicating the maximum value of the generated power in one day from each 10 minute data received from the acquisition unit 86, and sets the selected maximum value to the hour. The daily data arranged in the series is generated and stored in the storage unit 85 and is output to the determination unit 81.
 なお、生成部82は、たとえば、生成した1日毎データの期間に対応する1年のうちの最初の日以前の10分毎データを記憶部85から削除してもよい。 The generation unit 82 may delete, for example, every 10 minutes of data before the first day of the year corresponding to the generated daily data period from the storage unit 85.
 また、生成部82は、たとえば、1年分の10分毎データに基づいて1日毎データを新たに生成する構成に限らず、生成済の1日毎データを更新する構成であってもよい。 Further, the generation unit 82 is not limited to a configuration for newly generating daily data based on 10-minute data for one year, for example, and may be configured to update the generated daily data.
 より詳細には、取得部86は、処理日の10分毎データを記憶部85から取得して生成部82へ出力する。また、取得部86は、たとえば、生成部82により生成または更新された1日毎データを記憶部85から取得して生成部82へ出力する。 More specifically, the acquisition unit 86 acquires data every 10 minutes on the processing date from the storage unit 85 and outputs it to the generation unit 82. For example, the acquisition unit 86 acquires the daily data generated or updated by the generation unit 82 from the storage unit 85 and outputs the acquired data to the generation unit 82.
 生成部82は、取得部86から受けた1日毎データにおける最初の日の最大値を削除し、取得部86から受けた処理日の10分毎データの示す発電電力のうちの最大値を選択し、選択した最大値を当該1日毎データに追加することにより当該1日毎データを更新し、更新後の1日毎データを記憶部85に保存する。 The generation unit 82 deletes the maximum value of the first day in the daily data received from the acquisition unit 86, and selects the maximum value of the generated power indicated by the 10-minute data of the processing date received from the acquisition unit 86. Then, by adding the selected maximum value to the daily data, the daily data is updated, and the updated daily data is stored in the storage unit 85.
 以下、計測データ、1分毎データ、10分毎データおよび1日毎データの各々を、判定データとも称する。 Hereinafter, each of measurement data, 1-minute data, 10-minute data, and 1-day data is also referred to as determination data.
 判定部81は、長さの異なる期間にわたる判定データからそれぞれ異なる基準を用いて発電部78に関する異常を判定する。判定部81は、各基準において異なる粒度の判定データを用いる。たとえば、判定部81は、3つ以上の基準を用いて発電部78に関する異常を判定する。たとえば、各基準を用いて判定される異常の種類は異なる。 The determination part 81 determines the abnormality regarding the electric power generation part 78 using the different reference | standard from the determination data over the period from which length differs. The determination unit 81 uses determination data with different granularities for each criterion. For example, the determination unit 81 determines an abnormality related to the power generation unit 78 using three or more criteria. For example, the type of abnormality determined using each criterion is different.
 具体的には、たとえば、太陽電池パネル79を接続する配線が断線したり、太陽電池パネル79の発熱により内部配線が断線したりする場合、計測データに基づいて算出された平均値Mは、直前の平均値Mと比べて急激に低下する。 Specifically, for example, when the wiring connecting the solar cell panel 79 is disconnected or the internal wiring is disconnected due to heat generation of the solar cell panel 79, the average value M calculated based on the measurement data is Compared to the average value M, the value drops rapidly.
 判定部81は、第1の基準を用いて、このような短期間における平均値Mの急激な低下を異常と判定する。 The determination unit 81 determines such a rapid decrease in the average value M in a short period as abnormal using the first reference.
 第1の基準は、たとえば、平均値Mが直前の平均値Mと比べて所定値以上低下したか否かである。 The first standard is, for example, whether or not the average value M has decreased by a predetermined value or more compared to the previous average value M.
 判定部81は、第1の基準を用いて、平均値Mが前回算出した平均値Mと比べて所定値以上低下した場合、対応の発電部78が異常であると判定し、異常である旨の情報(以下、第1異常情報とも称する。)を通信処理部84へ出力する。 The determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the average value M decreases by a predetermined value or more using the first reference, compared to the previously calculated average value M, and is abnormal. (Hereinafter also referred to as first abnormality information) is output to the communication processing unit 84.
 図9は、異常と判定される10分毎データの一例を示す図である。図9において、横軸は時間を示し、縦軸は発電電力を示す。 FIG. 9 is a diagram illustrating an example of data every 10 minutes determined to be abnormal. In FIG. 9, the horizontal axis indicates time, and the vertical axis indicates generated power.
 図9を参照して、グラフD1は、終日晴天であった1日の発電部78の発電電力を示し、グラフD2は、午前中が曇天であった1日の発電部78の発電電力を示し、グラフD3は、午後が曇天であった1日の発電部78の発電電力を示す。このように、天気等の影響により発電部78が十分に発電できない時間帯がある場合、発電部78の発電電力は、グラフD2およびD3に示すように晴天時の発電電力と比べて低下する。 Referring to FIG. 9, graph D1 shows the generated power of power generation unit 78 on a day that was sunny all day, and graph D2 shows the generated power of power generation unit 78 on a day when it was cloudy in the morning. Graph D3 shows the generated power of the power generation unit 78 on the day when the afternoon was cloudy. As described above, when there is a time zone in which the power generation unit 78 cannot sufficiently generate power due to the influence of the weather or the like, the generated power of the power generation unit 78 is lower than the generated power in clear weather as shown in the graphs D2 and D3.
 判定部81は、第2の基準を用いて、このような1日のある時間帯における発電電力の低下を異常と判定する。 判定 Determining unit 81 uses the second criterion to determine such a decrease in generated power in a certain time period of the day as abnormal.
 第2の基準は、たとえば、機械学習たとえばk-meansによる10分毎データのクラスタリングの結果を用いた、グラフD2が分類されたクラスタまたはグラフD3が分類されたクラスタに10分毎データが分類されるか否かである。 The second criterion is, for example, that the data every 10 minutes is classified into a cluster in which the graph D2 is classified or a cluster in which the graph D3 is classified using the result of clustering of the data every 10 minutes by machine learning, for example, k-means. Whether or not.
 判定部81は、第2の基準を用いて、グラフD2が分類されたクラスタまたはグラフD3が分類されたクラスタに10分毎データが分類された場合、対応の発電部78が異常であると判定し、異常である旨の情報(以下、第2異常情報とも称する。)を通信処理部84へ出力する。 The determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the data is classified into the cluster into which the graph D2 is classified or the cluster into which the graph D3 is classified using the second criterion. Then, information indicating abnormality (hereinafter also referred to as second abnormality information) is output to the communication processing unit 84.
 このように、クラスタリングの結果を用いることにより、たとえば、ある時間帯における発電電力の低下を検知することができるため、異常の原因の推定に活用することができる。たとえば、終日晴天であった1日の発電部78の発電電力が図9に示すグラフD2またはグラフD3であった場合、それぞれ、午前または午後の発電電力の低下は、日影の影響等が考えられる。 In this way, by using the result of clustering, for example, it is possible to detect a decrease in generated power in a certain time zone, and therefore, it can be used to estimate the cause of an abnormality. For example, when the generated power of the power generation unit 78 on a day that was sunny all day was the graph D2 or the graph D3 shown in FIG. 9, the decrease in the generated power in the morning or the afternoon might be due to the influence of the shade, etc. It is done.
 図10は、異常と判定される1日毎データの一例を示す図である。図10において、横軸は時間を示し、縦軸は発電電力を示す。グラフY1は、発電部78が1年間で発電する理想的な発電電力を示し、グラフY2は、ある1年間における発電部78の発電電力を示す。 FIG. 10 is a diagram illustrating an example of daily data determined to be abnormal. In FIG. 10, the horizontal axis indicates time, and the vertical axis indicates generated power. A graph Y1 shows ideal generated power generated by the power generation unit 78 in one year, and a graph Y2 shows generated power of the power generation unit 78 in one year.
 図10を参照して、発電部78の発電電力は、たとえば、太陽電池パネル79の経年劣化、太陽電池パネル79における配線の半田の高抵抗化、または太陽電池パネル79の内部への水分の侵入等により、徐々に低下する場合がある。 Referring to FIG. 10, the generated power of power generation unit 78 is, for example, aged deterioration of solar cell panel 79, higher resistance of wiring solder in solar cell panel 79, or moisture intrusion into solar cell panel 79. Etc., it may decrease gradually.
 判定部81は、第3の基準を用いて、このように発電電力が徐々に低下する状態を異常と判定する。 The determination unit 81 determines that the state in which the generated power gradually decreases as described above is abnormal using the third reference.
 第3の基準は、たとえば、発電電力が、所定期間K1において、自己の発電部78の過去の発電電力に基づいて設定された閾値TH1以上低下しているか否かである。なお、閾値TH1は、所定期間K1における他の発電部78の発電電力の低下量に基づいて設定されてもよい。 The third criterion is, for example, whether or not the generated power has decreased by a threshold TH1 or more that is set based on the past generated power of the power generation unit 78 in the predetermined period K1. The threshold value TH1 may be set based on the amount of reduction in the generated power of the other power generation unit 78 in the predetermined period K1.
 判定部81は、発電電力が所定期間K1たとえば1年間で閾値TH1以上低下している場合、対応の発電部78を異常であると判定し、異常である旨の情報(以下、第3異常情報とも称する。)を通信処理部84へ出力する。 The determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the generated power is lower than the threshold value TH1 in a predetermined period K1, for example, one year, and information indicating that it is abnormal (hereinafter, third abnormality information). Is also output to the communication processing unit 84.
 通信処理部84は、判定部81によって判定された異常を通知する。たとえば、各基準を用いて判定させる異常の通知内容は異なる。 The communication processing unit 84 notifies the abnormality determined by the determination unit 81. For example, the notification content of the abnormality to be determined using each criterion is different.
 より詳細には、通信処理部84は、判定部81から受けた第1異常情報、第2異常情報および第3異常情報を、たとえば、e-mail等の形式にしてネットワーク経由でサーバ等の外部の装置へ送信する。各異常情報は、たとえば、異常の度合いがレベルにより区別される場合、異なるレベルを示す。 More specifically, the communication processing unit 84 converts the first abnormality information, the second abnormality information, and the third abnormality information received from the determination unit 81 into a format such as e-mail, etc. To the device. Each abnormality information shows a different level, for example, when the degree of abnormality is distinguished by the level.
 なお、取得部86は、監視情報に含まれる複数の電流値および複数の電圧値に基づいて、発電電力を計測データとして算出する構成に限らず、監視情報に含まれる複数の電流値を計測データとして取得する構成であってもよい。 The acquisition unit 86 is not limited to the configuration in which the generated power is calculated as measurement data based on the plurality of current values and the plurality of voltage values included in the monitoring information, and the plurality of current values included in the monitoring information is measured data. The structure acquired as follows may be sufficient.
 この場合、たとえば、生成部82は、取得部86が取得した1分間の各電流値、すなわち10回分の電流値の平均値Mを算出する。 In this case, for example, the generation unit 82 calculates each current value for 1 minute acquired by the acquisition unit 86, that is, the average value M of the current values for 10 times.
 また、取得部86は、監視情報に含まれる複数の電流値および複数の電圧値に基づいて、発電電力を計測データとして算出する構成に限らず、監視情報に含まれる複数の電圧値を計測データとして取得する構成であってもよい。 Further, the acquisition unit 86 is not limited to the configuration in which the generated power is calculated as measurement data based on the plurality of current values and the plurality of voltage values included in the monitoring information, and the plurality of voltage values included in the monitoring information are measured data. The structure acquired as follows may be sufficient.
 この場合、たとえば、生成部82は、取得部86が取得した1分間の各電圧値、すなわち10回分の電圧値の平均値Mを算出する。 In this case, for example, the generation unit 82 calculates each voltage value for 1 minute acquired by the acquisition unit 86, that is, an average value M of 10 voltage values.
 また、第1基準、第2基準および第3基準を用いて異常を判定する期間は、それぞれ、1分、1日および1年に限らず、10分、1時間および1週間等であってもよい。 Moreover, the period for judging abnormality using the first standard, the second standard, and the third standard is not limited to 1 minute, 1 day, and 1 year, but may be 10 minutes, 1 hour, 1 week, etc. Good.
 [動作の流れ]
 監視システム301における各装置は、コンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートの各ステップの一部または全部を含むプログラムを図示しないメモリからそれぞれ読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
[Flow of operation]
Each device in the monitoring system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown). Each of the programs of the plurality of apparatuses can be installed from the outside. The programs of the plurality of apparatuses are distributed while being stored in a recording medium.
 図11は、本発明の実施の形態に係る判定装置が発電部に関する異常判定を行う際の動作手順を定めたフローチャートである。 FIG. 11 is a flowchart that defines an operation procedure when the determination apparatus according to the embodiment of the present invention performs abnormality determination related to the power generation unit.
 図11を参照して、まず、判定装置101は、太陽電池パネルを含む発電部78の出力の計測結果を含む監視情報を受信する(ステップS101)。 Referring to FIG. 11, first, determination device 101 receives monitoring information including a measurement result of an output of power generation unit 78 including a solar battery panel (step S101).
 次に、判定装置101は、受信した監視情報を蓄積する(ステップS102)。 Next, the determination apparatus 101 accumulates the received monitoring information (step S102).
 次に、判定装置101は、蓄積した監視情報に含まれる計測結果に基づく計測データを取得する(ステップS103)。 Next, the determination apparatus 101 acquires measurement data based on the measurement result included in the accumulated monitoring information (step S103).
 次に、判定装置101は、取得した計測データに基づいて、計測データの時間的な粒度を粗くした1分毎データを生成して蓄積する(ステップS104)。 Next, based on the acquired measurement data, the determination apparatus 101 generates and accumulates data every minute in which the time granularity of the measurement data is coarsened (step S104).
 次に、判定装置101は、取得した計測データから第1の基準を用いて発電部78に関する異常を判定する(ステップS105)。 Next, the determination apparatus 101 determines an abnormality related to the power generation unit 78 using the first reference from the acquired measurement data (step S105).
 判定装置101は、発電部78が異常であると判定した場合(ステップ105でYES)、第1異常情報をサーバへ送信する(ステップS106)。 If the determination device 101 determines that the power generation unit 78 is abnormal (YES in step 105), the determination device 101 transmits the first abnormality information to the server (step S106).
 次に、判定装置101は、生成した1分毎データに基づいて、1分毎データの時間的な粒度を粗くした10分毎データを生成して蓄積する(ステップS107)。 Next, the determination apparatus 101 generates and accumulates 10-minute data in which the temporal granularity of the 1-minute data is coarse based on the generated 1-minute data (step S107).
 一方、判定装置101は、発電部78が正常であると判定した場合(ステップS105でNO)、生成した1分毎データに基づいて、1分毎データの時間的な粒度を粗くした10分毎データを生成して蓄積する(ステップS107)。 On the other hand, if the determination apparatus 101 determines that the power generation unit 78 is normal (NO in step S105), the determination apparatus 101 makes the time granularity of the minute data based on the generated minute data every 10 minutes. Data is generated and stored (step S107).
 次に、判定装置101は、10分毎データから第2の基準を用いて発電部78に関する異常を判定する(ステップS108)。 Next, the determination apparatus 101 determines an abnormality related to the power generation unit 78 using the second reference from the data every 10 minutes (step S108).
 次に、判定装置101は、発電部78が異常であると判定した場合(ステップS108でYES)、第2異常情報をサーバへ送信する(ステップS109)。 Next, when the determination device 101 determines that the power generation unit 78 is abnormal (YES in step S108), the determination device 101 transmits the second abnormality information to the server (step S109).
 次に、判定装置101は、生成した10分毎データに基づいて、10分毎データの時間的な粒度を粗くした1日毎データを生成して蓄積する(ステップS110)。 Next, the determination apparatus 101 generates and accumulates the daily data in which the temporal granularity of the 10 minute data is coarse based on the generated 10 minute data (step S110).
 一方、判定装置101は、発電部78が正常であると判定した場合(ステップS108でNO)、10分毎データの時間的な粒度を粗くした1日毎データを生成して蓄積する(ステップS110)。 On the other hand, if the determination device 101 determines that the power generation unit 78 is normal (NO in step S108), the determination device 101 generates and accumulates daily data with coarse temporal granularity of data every 10 minutes (step S110). .
 次に、判定装置101は、1日毎データから第3の基準を用いて発電部78に関する異常を判定する(ステップS111)。 Next, the determination device 101 determines an abnormality related to the power generation unit 78 using the third reference from the daily data (step S111).
 次に、判定装置101は、発電部78が異常であると判定した場合(ステップS111でYES)、第3異常情報をサーバへ送信する(ステップS112)。 Next, when determining device 101 determines that power generation unit 78 is abnormal (YES in step S111), it transmits third abnormality information to the server (step S112).
 次に、判定装置101は、新たな監視情報を受信するまで待機する(ステップS101)。 Next, the determination apparatus 101 waits until new monitoring information is received (step S101).
 一方、判定装置101は、発電部78が正常である判定した場合(ステップS111でNO)、新たな監視情報を受信するまで待機する(ステップS101)。 On the other hand, when determining that the power generation unit 78 is normal (NO in step S111), the determination apparatus 101 waits until new monitoring information is received (step S101).
 なお、本発明の実施の形態に係る判定装置では、3つ以上の基準を用いて発電部78に関する異常を判定する構成であるしたが、これに限定するものではない。判定装置101は、2つの基準を用いて発電部78に関する異常を判定する構成であってもよい。 In addition, although the determination apparatus according to the embodiment of the present invention is configured to determine an abnormality related to the power generation unit 78 using three or more criteria, the present invention is not limited to this. The determination apparatus 101 may be configured to determine an abnormality related to the power generation unit 78 using two criteria.
 また、本発明の実施の形態に係る判定装置では、第1の基準を用いて判定される異常の種類および通知内容と、第2の基準を用いて判定される異常の種類および通知内容とは、それぞれ異なる構成であるとしたが、これに限定するものではない。第1の基準を用いて判定される異常の種類および通知内容と、第2の基準を用いて判定される異常の種類および通知内容とは、それぞれ同一であってもよい。 Further, in the determination device according to the embodiment of the present invention, the type of abnormality and the notification content determined using the first standard, and the type of abnormality and the notification content determined using the second standard However, the present invention is not limited to this. The type of abnormality and notification content determined using the first standard may be the same as the type of abnormality and notification content determined using the second standard.
 ところで、特許文献1に記載の技術を超えて、太陽光発電システムの異常判定を向上させることが可能な技術が望まれる。 By the way, beyond the technique described in Patent Document 1, a technique capable of improving the abnormality determination of the photovoltaic power generation system is desired.
 本発明の実施の形態に係る判定装置では、取得部86は、発電部78の出力の計測結果に基づく計測データを取得する。生成部82は、取得部86によって取得された計測データに基づいて、計測データの時間的な粒度を粗くした1または複数の判定データを生成する。判定部81は、取得部86によって取得された計測データおよび生成部82によって生成された1または複数の判定データのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて発電部78に関する異常を判定する。 In the determination device according to the embodiment of the present invention, the acquisition unit 86 acquires measurement data based on the measurement result of the output of the power generation unit 78. Based on the measurement data acquired by the acquisition unit 86, the generation unit 82 generates one or a plurality of determination data in which the temporal granularity of the measurement data is coarse. The determination unit 81 includes a plurality of pieces of data having different granularities and a plurality of pieces of data having different lengths among the measurement data acquired by the acquisition unit 86 and the one or more determination data generated by the generation unit 82. The abnormality relating to the power generation unit 78 is determined using different criteria.
 このような構成により、比較的短期間にわたる計測値の異常および比較的長期間にわたる計測値の異常を判定することが可能になる。これにより、複数種類の期間での異常が判定され、多様な異常判定を行うことが可能になることにより、たとえば、短期間では計測値の変化がなく長期間にわたる計測結果を確認することにより変化が確認できるような異常を検知することできる。さらに、長期間わたる計測結果では、データの粒度が粗くなることにより捉えることができない短期間での計測値の変化も、短期間にわたる計測結果を確認することにより検知することができる。 Such a configuration makes it possible to determine abnormalities in measured values over a relatively short period and abnormalities in measured values over a relatively long period. As a result, abnormalities in a plurality of types of periods can be determined and various abnormality determinations can be made. For example, there is no change in measured values in a short period, and changes can be made by checking measurement results over a long period. An abnormality that can be confirmed can be detected. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period.
 したがって、本発明の実施の形態に係る判定装置では、太陽光発電システムの異常判定を向上させることができる。 Therefore, the determination apparatus according to the embodiment of the present invention can improve the abnormality determination of the solar power generation system.
 また、本発明の実施の形態に係る判定装置では、判定部81は、3つ以上の基準を用いて発電部78に関する異常を判定する。 Moreover, in the determination apparatus according to the embodiment of the present invention, the determination unit 81 determines an abnormality related to the power generation unit 78 using three or more criteria.
 このような構成により、さらに長期間にわたる計測値の異常を判定することができ、より多様な異常判定を行うことができる。 With such a configuration, it is possible to determine the abnormality of the measured value over a longer period of time, and to perform more various abnormality determinations.
 また、本発明の実施の形態に係る判定装置では、各基準を用いて判定される異常の種類が異なる。 Also, in the determination device according to the embodiment of the present invention, the type of abnormality determined using each criterion is different.
 このような構成により、ダイオード解放故障および経年劣化等、太陽光発電におけるより多様な異常を判定することができる。 With such a configuration, it is possible to determine more various abnormalities in solar power generation such as diode release failure and aging degradation.
 また、本発明の実施の形態に係る判定装置では、通信処理部84は、判定部81によって判定された異常を通知する。そして、各基準を用いて判定される異常の通知内容が異なる。 Further, in the determination device according to the embodiment of the present invention, the communication processing unit 84 notifies the abnormality determined by the determination unit 81. And the notification content of the abnormality determined using each reference | standard differs.
 このような構成により、いずれの基準を用いて判断された異常であるかを通知内容によって判断することができるため、たとえば、緊急度または重要度に応じた保守対応を行うことができる。 With such a configuration, it is possible to determine according to the notification contents which criterion is used to determine the abnormality, and for example, it is possible to perform maintenance corresponding to the degree of urgency or importance.
 また、本発明の実施の形態に係る判定方法では、まず、太陽電池パネル79を含む発電部78の出力の計測結果に基づく計測データデータを取得する。次に、取得した計測データに基づいて、計測データの時間的な粒度を粗くした1または複数の判定データを生成する。次に、取得した計測データおよび生成した1または複数の判定データのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて発電部78に関する異常を判定する。 In the determination method according to the embodiment of the present invention, first, measurement data data based on the measurement result of the output of the power generation unit 78 including the solar cell panel 79 is acquired. Next, based on the acquired measurement data, one or more determination data in which the temporal granularity of the measurement data is coarse is generated. Next, among the acquired measurement data and the generated one or more determination data, an abnormality related to the power generation unit 78 using a plurality of data over a period having different lengths and a plurality of data having different granularities, respectively. Determine.
 このような構成により、比較的短期間にわたる計測値の異常および比較的長期間にわたる計測値の異常を判定することができる。これにより、複数種類の期間での異常が判定され、多様な異常判定を行うことができる。 With such a configuration, it is possible to determine an abnormality in the measured value over a relatively short period and an abnormality in the measured value over a relatively long period. Thereby, abnormality in a plurality of types of periods is determined, and various abnormality determinations can be performed.
 したがって、本発明の実施の形態に係る判定方法では、太陽光発電システムの異常判定を向上させることができる。 Therefore, in the determination method according to the embodiment of the present invention, the abnormality determination of the solar power generation system can be improved.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the above embodiment is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 太陽電池パネルを含む発電部を備える太陽光発電システムに用いられる判定装置であって、
 前記発電部の出力の計測結果に基づくデータを取得する取得部と、
 前記取得部によって取得された前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成する生成部と、
 前記取得部によって取得された前記データおよび前記生成部によって生成された前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定する判定部とを備え、
 前記発電部は、複数の太陽電池パネルが直列接続されたストリングであり、
 前記発電部の出力は、前記発電部の発電電力、電流または電圧である、判定装置。
The above description includes the following features.
[Appendix 1]
A determination device used in a solar power generation system including a power generation unit including a solar battery panel,
An acquisition unit for acquiring data based on the measurement result of the output of the power generation unit;
Based on the data acquired by the acquisition unit, a generation unit that generates one or a plurality of data with coarser temporal granularity of the data;
Of the data acquired by the acquisition unit and the one or more data generated by the generation unit, a plurality of data over a period of different lengths and a plurality of data having different granularities, respectively, and different criteria. A determination unit for determining an abnormality related to the power generation unit using,
The power generation unit is a string in which a plurality of solar cell panels are connected in series,
The output of the said electric power generation part is a determination apparatus which is the generated electric power of the said electric power generation part, an electric current, or a voltage.
 1 出力ライン
 2,4,5 集約ライン
 3 内部ライン
 6 キュービクル
 7 銅バー
 8 PCS
 9 電力変換部
 11 検出処理部
 14 通信部
 16 電流センサ
 17 電圧センサ
 26 電源線
 46 信号線
 60 集電ユニット
 71 集電箱
 72,73,77 銅バー
 74 太陽電池ユニット
 76 接続箱
 78 発電部
 79 太陽電池パネル
 80 PCSユニット
 81 判定部
 82 生成部
 84 通信処理部(通知部)
 85 記憶部
 86 取得部
 101 判定装置
 111 監視装置
 151 収集装置
 301 監視システム
 401 太陽光発電システム
1 Output line 2, 4, 5 Aggregation line 3 Internal line 6 Cubicle 7 Copper bar 8 PCS
DESCRIPTION OF SYMBOLS 9 Power conversion part 11 Detection processing part 14 Communication part 16 Current sensor 17 Voltage sensor 26 Power supply line 46 Signal line 60 Current collection unit 71 Current collection box 72,73,77 Copper bar 74 Solar cell unit 76 Connection box 78 Power generation part 79 Solar Battery panel 80 PCS unit 81 determination unit 82 generation unit 84 communication processing unit (notification unit)
85 Storage Unit 86 Acquisition Unit 101 Determination Device 111 Monitoring Device 151 Collection Device 301 Monitoring System 401 Solar Power Generation System

Claims (6)

  1.  太陽電池パネルを含む発電部を備える太陽光発電システムに用いられる判定装置であって、
     前記発電部の出力の計測結果に基づくデータを取得する取得部と、
     前記取得部によって取得された前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成する生成部と、
     前記取得部によって取得された前記データおよび前記生成部によって生成された前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定する判定部とを備える、判定装置。
    A determination device used in a solar power generation system including a power generation unit including a solar battery panel,
    An acquisition unit for acquiring data based on the measurement result of the output of the power generation unit;
    Based on the data acquired by the acquisition unit, a generation unit that generates one or a plurality of data with coarser temporal granularity of the data;
    Of the data acquired by the acquisition unit and the one or more data generated by the generation unit, a plurality of data over a period of different lengths and a plurality of data having different granularities, respectively, and different criteria. A determination apparatus comprising: a determination unit that determines abnormality related to the power generation unit.
  2.  前記判定部は、3つ以上の前記基準を用いて前記発電部に関する異常を判定する、請求項1に記載の判定装置。 The determination device according to claim 1, wherein the determination unit determines an abnormality related to the power generation unit using three or more of the criteria.
  3.  各前記基準を用いて判定される前記異常の種類が異なる、請求項1または請求項2に記載の判定装置。 3. The determination apparatus according to claim 1, wherein the types of abnormality determined using each of the criteria are different.
  4.  前記判定装置は、さらに、
     前記判定部によって判定された前記異常を通知する通知部を備え、
     各前記基準を用いて判定される前記異常の通知内容が異なる、請求項1から請求項3のいずれか1項に記載の判定装置。
    The determination device further includes:
    A notification unit for notifying the abnormality determined by the determination unit;
    The determination apparatus according to any one of claims 1 to 3, wherein notification contents of the abnormality determined using each of the criteria are different.
  5.  判定装置において用いられる判定方法であって、
     太陽電池パネルを含む発電部の出力の計測結果に基づくデータを取得するステップと、
     取得した前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成するステップと、
     取得した前記データおよび生成した前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定するステップとを含む、判定方法。
    A determination method used in a determination apparatus,
    Obtaining data based on the measurement result of the output of the power generation unit including the solar battery panel;
    Generating one or more data based on the acquired data, the data having a coarser temporal granularity;
    Of the acquired data and the generated one or more data, a plurality of data over different periods and a plurality of data having different granularities are used to determine an abnormality related to the power generation unit using different criteria. A determination method including steps.
  6.  判定装置において用いられる判定プログラムであって、
     コンピュータを、
     太陽電池パネルを含む発電部の出力の計測結果に基づくデータを取得する取得部と、
     前記取得部によって取得された前記データに基づいて、前記データの時間的な粒度を粗くした1または複数のデータを生成する生成部と、
     前記取得部によって取得された前記データおよび前記生成部によって生成された前記1または複数のデータのうち、長さの異なる期間にわたる複数のデータであって異なる粒度の複数のデータから、それぞれ異なる基準を用いて前記発電部に関する異常を判定する判定部、
    として機能させるための、判定プログラム。
     
     
    A determination program used in the determination apparatus,
    Computer
    An acquisition unit for acquiring data based on the measurement result of the output of the power generation unit including the solar cell panel;
    Based on the data acquired by the acquisition unit, a generation unit that generates one or a plurality of data with coarser temporal granularity of the data;
    Of the data acquired by the acquisition unit and the one or more data generated by the generation unit, a plurality of data over a period of different lengths and a plurality of data having different granularities, respectively, and different criteria. A determination unit for determining an abnormality related to the power generation unit,
    Judgment program to function as

PCT/JP2018/045861 2018-02-01 2018-12-13 Determination device, determination method, and determination program WO2019150779A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019568912A JP7163931B2 (en) 2018-02-01 2018-12-13 Determination device, determination method and determination program
DE112018006999.0T DE112018006999T5 (en) 2018-02-01 2018-12-13 Determination device, determination method and determination program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018016736 2018-02-01
JP2018-016736 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019150779A1 true WO2019150779A1 (en) 2019-08-08

Family

ID=67478033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045861 WO2019150779A1 (en) 2018-02-01 2018-12-13 Determination device, determination method, and determination program

Country Status (3)

Country Link
JP (1) JP7163931B2 (en)
DE (1) DE112018006999T5 (en)
WO (1) WO2019150779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095387A1 (en) * 2021-11-29 2023-06-01 住友電気工業株式会社 Determination device and determination method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172597A (en) * 2012-02-22 2013-09-02 Sekisui Chem Co Ltd Production of electricity management system of photovoltaic power generation device
JP2015079833A (en) * 2013-10-16 2015-04-23 株式会社スカイテクノロジー State estimation apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5746098B2 (en) 2012-06-11 2015-07-08 トヨタ自動車株式会社 Deterioration diagnosis device for power generation system using natural energy
JP6608619B2 (en) 2015-05-26 2019-11-20 東京電力ホールディングス株式会社 Method and apparatus for diagnosing power generation status of solar power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172597A (en) * 2012-02-22 2013-09-02 Sekisui Chem Co Ltd Production of electricity management system of photovoltaic power generation device
JP2015079833A (en) * 2013-10-16 2015-04-23 株式会社スカイテクノロジー State estimation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095387A1 (en) * 2021-11-29 2023-06-01 住友電気工業株式会社 Determination device and determination method

Also Published As

Publication number Publication date
DE112018006999T5 (en) 2020-10-15
JPWO2019150779A1 (en) 2021-01-28
JP7163931B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US8204709B2 (en) System and method for monitoring photovoltaic power generation systems
CN102291052B (en) Solar photovoltaic system as well as energy collecting and optimizing method and fault detecting method thereof
JP7188399B2 (en) Determination device, photovoltaic power generation system, determination method and determination program
US20120316802A1 (en) System and method for monitoring photovoltaic power generation systems
JP6756188B2 (en) Power generation status judgment device, power generation status judgment method and judgment program
WO2019150779A1 (en) Determination device, determination method, and determination program
KR102419330B1 (en) Apparatus and method for diagnosing error of the solar module
CN104767485A (en) Convergence detecting method and system for convergence box and solar power station
WO2019150816A1 (en) Monitoring system, analysis device, and determination method
JP7226338B2 (en) Monitoring device and judgment method
WO2019187525A1 (en) Determination device, solar power system and determination method
JP2014161171A (en) Method for diagnosing soundness of photovoltaic power generation device, and information processing device
CN110571924A (en) Photovoltaic power generation remote monitoring system and method
JP7207401B2 (en) Determination device, weather information processing device, determination method, and weather information processing method
WO2018066693A1 (en) Assessing device and monitoring device
CN109507468A (en) A kind of header box branch current detection method and system based on linked character
JP7173128B2 (en) GENERATING UNIT RELOCATION EQUIPMENT AND OPERATION PROCESSING METHOD
JP7157393B2 (en) Determination device, photovoltaic power generation system, determination method and determination program
CN202197235U (en) Solar photovoltaic system
CN106018931A (en) Voltage qualification rate monitoring method and system
JP2023009777A (en) Determination device and determination method
JP2024174289A (en) Determination device, determination method, and determination program
JP2019200075A (en) Monitoring device, determination device, monitoring method and determination method
JP2023009783A (en) Determination device and determination method
WO2023095387A1 (en) Determination device and determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568912

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18903251

Country of ref document: EP

Kind code of ref document: A1