[go: up one dir, main page]

WO2019146428A1 - Method for producing solder electrode and use of same - Google Patents

Method for producing solder electrode and use of same Download PDF

Info

Publication number
WO2019146428A1
WO2019146428A1 PCT/JP2019/000638 JP2019000638W WO2019146428A1 WO 2019146428 A1 WO2019146428 A1 WO 2019146428A1 JP 2019000638 W JP2019000638 W JP 2019000638W WO 2019146428 A1 WO2019146428 A1 WO 2019146428A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
opening
resist
electrode
forming
Prior art date
Application number
PCT/JP2019/000638
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 公一
大喜多 健三
平井 剛
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2019146428A1 publication Critical patent/WO2019146428A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a method of manufacturing a solder electrode, a method of manufacturing a laminate, a laminate, and an electronic component.
  • the injection molding method is one of the methods for forming a solder electrode (solder bump).
  • the solder paste method, the plating method, etc. have been used as a method of forming a solder electrode on board
  • the IMS method is known to have the advantage of not having these limitations.
  • the IMS method is a method characterized in that the solder is poured into the opening of the resist while a nozzle capable of injection molding molten solder is in close contact with the resist.
  • microbumps In order to form the microbumps by the IMS method, it is necessary to inject and fill the molten solder into the narrow and deep resist openings, but it is difficult to completely fill the narrow and deep openings with the molten solder.
  • a plurality of microbumps need to be formed, in which case a resist having a plurality of openings is to be formed, but it is difficult to make the size and shape of the plurality of openings uniform. For this reason, depending on the size and shape of the opening, there is an opening that can completely fill the molten solder, and there is also an opening that can not completely fill the molten solder.
  • micro bumps by the IMS method it is not possible to completely fill the resist opening with molten solder, and it may not be possible to form micro bumps suitable for the purpose. There is a problem called.
  • the purpose is to provide a manufacturing method.
  • a method of manufacturing a solder electrode comprising:
  • a method of manufacturing a laminate comprising:
  • a method of manufacturing a laminate comprising:
  • the solder opening such as a micro bump suitable for the purpose is manufactured by filling the resist opening with the molten solder well. be able to.
  • FIG. 1 is a schematic cross-sectional view showing one specific example of the method for producing a solder electrode of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the method of manufacturing the solder electrode performed in Comparative Example 1.
  • FIG. 3 is a schematic cross-sectional view showing the method of manufacturing a solder electrode performed in Example 1.
  • a lift-off resist having an opening in a region corresponding to the opening of the solder resist is formed on the solder resist;
  • the method of forming a metal film on the inner wall of the opening of the solder resist and the point of removing the lift-off resist in the step (5) are different from the method of manufacturing a solder electrode by the conventional IMS method or the like.
  • basically the same operation as the method of manufacturing a solder electrode by the conventional IMS method may be performed.
  • FIG. 1 is a schematic cross-sectional view showing one specific example of the method for producing a solder electrode of the present invention using the IMS method.
  • Step (1) the coating 3 of the photosensitive resin composition is formed on the substrate 1 having the electrode pad 2.
  • Substrate 1 is, for example, a semiconductor substrate, a glass substrate, a silicon substrate, and a substrate formed by providing various metal films and the like on the surfaces of a semiconductor plate, a glass plate, and a silicon plate.
  • the substrate 1 has a large number of electrode pads 2.
  • the electrode pad 2 corresponds to an electrode when forming an electrical connection structure between the substrate 1 and another substrate to be described later, and as the electrode pad 2, for example, a metal film for a lead-out electrode of the substrate 1 , Metal foil as a seed layer used for plating, and copper pillars in copper pillar solder bumps.
  • the coating film 3 is formed by applying a photosensitive resin composition to the substrate 1 or the like.
  • the photosensitive resin composition may be a photosensitive resin composition conventionally used to form a resist in the IMS method.
  • the photosensitive resin composition usually contains a crosslinking agent such as a polyfunctional acrylate, and the coating film 3 formed from the photosensitive resin composition is crosslinked in step 2 described later.
  • this description is description in the case of using a negative photosensitive resin composition, the manufacturing method of the solder electrode of this invention can also be performed using a positive photosensitive resin composition.
  • the thickness of the coating film 3 is usually 0.001 to 200 ⁇ m, preferably 0.01 to 150 ⁇ m, and more preferably 0.1 to 100 ⁇ m.
  • Step (2) In the step (2), as shown in FIG. 1 (2), the coating film 3 is selectively exposed and then developed to form a solder resist 4 having an opening 4a in a region corresponding to the electrode pad 2 Do. That is, the coating film 3 is partially exposed to light so that the opening 4 a is formed on the electrode pad 2, and then development is performed to form the opening 4 a in the region corresponding to the electrode pad 2.
  • a solder resist means a resist that controls a portion where a solder is to be formed.
  • the opening 4 a is a hole penetrating the solder resist 4. Exposure and development can be carried out according to conventional methods.
  • the maximum width of the opening 4a is not particularly limited, but is preferably 300 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the lower limit of the maximum width of the opening 4 a is usually about 1 ⁇ m.
  • the ratio of the depth of the opening 4a to the maximum width of the opening 4a is not particularly limited, but is preferably 0.1 or more, and more preferably 1 or more.
  • Step (3) In the step (3), as shown in FIG. 1 (3), a lift-off resist 6 having an opening in a region corresponding to the opening 4a is formed on the solder resist 4.
  • step (4) described below is performed by sputtering, for example, without performing step (3), that is, when a metal film is formed by sputtering on the structure shown in FIG.
  • the metal film 5 is formed not only on the inner wall of the opening 4a of the resist 4 but also on the upper surface of the solder resist 4 and the surface of the electrode pad 2 surrounded by the opening 4a of the solder resist 4 as shown in FIG. Is formed. Since the IMS method has a merit that unnecessary substances do not adhere to the resist surface, if the metal film is formed on the upper surface of the solder resist before performing the IMS method in the step (6), the IMS method is selected. It also reduces the benefits of implementing it.
  • the metal film 5 has the upper surface of the lift-off resist 6 and the inner wall of the opening and the solder resist 4. It is formed on the surface of the electrode pad 2 surrounded by the inner wall of the opening 4 a and the opening 4 a of the solder resist 4, but is not substantially formed on the upper surface of the solder resist 4.
  • the phrase "having an opening in the region corresponding to the opening of the solder resist” means that, as described above, when a metal film is formed by sputtering or the like, the metal film is not substantially formed on the upper surface of the solder resist. It means that it has an opening.
  • the metal film 5 is the inner wall of the opening 4a of the solder resist 4 and the solder resist It is formed only on the surface of the electrode pad 2 surrounded by the opening 4 a and not formed on the top surface of the solder resist 4.
  • the lift-off resist means a resist which controls a portion where a metal film is to be formed and which is removed after the formation of the metal film.
  • the lift-off resist can be formed basically by the same formation method as the solder resist. For example, a photosensitive resin composition for lift-off resist formation is applied onto the solder resist by spin coating or the like and heated to form a coating film, and then a coating film is formed as in the formation of the solder resist. Is selectively exposed and developed to obtain a lift-off resist having an opening in a region corresponding to the opening of the solder resist.
  • the photosensitive resin composition for lift-off resist formation may be the same as the photosensitive resin composition for solder resist formation.
  • the shape of the lift-off resist is not particularly limited as long as it has an opening in a region corresponding to the opening of the solder resist.
  • the thickness of the lift-off resist is not particularly limited as long as the above-mentioned function can be secured, and is usually 0.1 to 10 ⁇ m.
  • the lift-off resist may have a uniform width from the top to the bottom, but from the viewpoint of easy removal of the lift-off resist, the width becomes narrow from the top to the bottom as shown in FIG. It is preferable to have a reverse taper shape.
  • Lift-off resists having a reverse taper shape are disclosed, for example, in Japanese Patent Application Laid-Open Nos. 2003-287905, 2008-242247, 06-010137, 05-165218, and 08-069111. It can be formed according to the method described in the publication.
  • the metal film 5 is formed on the inner wall of the opening 4 a of the solder resist 4.
  • the thickness of the metal film 5 is usually 0.01 to 10 ⁇ m, preferably 0.05 to 1 ⁇ m.
  • the thickness of the metal film 5 may be uniform or nonuniform.
  • the method for forming the metal film 5 on the inner wall of the opening 4a is not particularly limited, and may be sputtering, vacuum evaporation, ion plating, electron beam evaporation, chemical vapor deposition, etc. Sputtering is preferred from the viewpoint of simplicity and the like.
  • the formation of the metal film by sputtering or the like can be performed according to the conventional operation procedure conventionally performed.
  • the metal film 5 may be formed on the entire surface of the inner wall of the opening 4a or may be formed on a part thereof. As an embodiment in which the metal film 5 is formed on a part of the inner wall of the opening 4a, an embodiment in which the metal film 5 is formed only on a part near the electrode pad 2 on the inner wall of the opening 4a The aspect etc. which form the metal film 5 are mentioned.
  • a metal film which can form an intermetallic compound with the electrode pad 2 or the solder electrode 9 is preferable. For example, when the electrode pad 2 is copper, a metal film containing nickel is preferable.
  • Step (5) In the step (5), as shown in (5) of FIG. 1, the lift-off resist 6 is removed.
  • the method for removing the lift-off resist include a method in which the substrate is immersed in a stripping solution at 20 to 100 ° C. for 1 to 30 minutes.
  • the peeling solution include those described in JP-A Nos. 2003-287905, 2008-242247, 06-010137, 05-165218, and 08-069111. A peeling solution is mentioned.
  • Step (6) In the step (6), as shown in FIG. 1 (6), the inside of the opening 4a of the solder resist 4 is filled with molten solder by an injection molding method.
  • FIG. 1 (6) shows a state in which molten solder 8 is filled in the opening 4 a of the solder resist 4 from the IMS head 7.
  • step (6) As shown in FIG. 1 (7), the solder electrode 9 is formed inside the opening 4a of the solder resist 4.
  • the metal film is formed on the inner wall of the opening of the solder resist, and then the inside of the opening of the solder resist is filled with molten solder.
  • Molten solder can be well filled in the opening, and a solder electrode such as a purposeful micro bump can be manufactured which conforms to the shape of the opening. The reason why such an effect is obtained is presumed as follows.
  • Molten solder has relatively high surface tension, while the inner wall surface of the opening of the solder resist has low surface tension. Therefore, when the molten solder is filled in the opening of the solder resist, the opening of the molten solder and the solder resist is The inner wall and the inner wall repel each other, so that the molten solder can not be filled without gaps in the inside of the opening, and as a result, as shown in FIG. 1 (7a), the solder electrode 9a does not conform to the shape of the opening. It is not possible to produce a solder electrode which is obtained and suitable for the purpose.
  • the inner wall of the resist opening is a metal film with high surface tension. Because it is covered, when the molten solder is filled in the opening of the solder resist, the molten solder and the inner wall surface of the opening of the solder resist do not repel each other, and the molten solder is filled without gaps in the inside of the opening. As a result, as shown in FIG. 1 (7), it is considered that a solder electrode 9 conforming to the shape of the opening can be obtained, and a solder electrode suitable for the purpose can be manufactured.
  • a plating film by electrolytic plating can be formed on the metal pad in the opening.
  • the plating film include a copper plating film.
  • the plating film can constitute, for example, a copper post portion in a copper post solder bump.
  • the method for producing a first laminate of the present invention is A step (1) of forming a coating film of a photosensitive resin composition on a first substrate having an electrode pad; Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film; Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3); Forming a metal film on the inner wall of the opening of the solder resist (4); Removing the lift-off resist (5); Filling the molten solder in the opening by injection molding to produce a solder electrode (6); and a second substrate having an electrode pad of the first substrate and an electrode pad via the solder electrode Forming an electrical connection structure with the electrode pad (8); Have.
  • the second method for producing a laminate of the present invention is A step (1) of forming a coating film of a photosensitive resin composition on a first substrate having an electrode pad; Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film; Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3); Forming a metal film on the inner wall of the opening of the solder resist (4); Removing the lift-off resist (5); Filling the molten solder into the opening by an injection molding method to produce a solder electrode (6); Removing the solder resist (7); and forming an electrical connection structure between the electrode pad of the first substrate and the electrode pad of the second substrate having the electrode pad through the solder electrode (8) ); Have.
  • Steps (1) to (6) in the method of manufacturing the first and second laminates are substantially the same as steps (1) to (6) in the method of manufacturing the solder electrode, respectively. That is, the first method of manufacturing a laminate is a method of performing the step (8) after the steps (1) to (6) in the method of manufacturing the solder electrode, and the method of manufacturing the second laminate is In the method of manufacturing the solder electrode, the steps (7) and (8) are performed after the steps (1) to (6).
  • the substrate in the method of manufacturing the solder electrode corresponds to the first substrate.
  • the electrode pad of the first substrate and the electrode pad of the second substrate having the electrode pad are electrically connected via the solder electrode.
  • the step (8) of forming a dynamic connection structure In the step (8), the second substrate having an electrode pad is placed on the solder electrode 9 in the state shown in FIG. 1 (7) so that the electrode pad of the second substrate contacts the solder electrode 9, heating and By press bonding, an electrical connection structure in which the electrode pad 2 of the first substrate 1 and the electrode pad of the second substrate are connected via the solder electrode 9 is formed.
  • a laminate having an electrical connection structure is manufactured.
  • the heating temperature is usually 100 to 300 ° C.
  • the pressure at the time of pressure bonding is usually 0.1 to 10 MPa.
  • the step (7) of removing the solder resist, and an electrode pad of the first substrate through the solder electrode; A step (8) of forming an electrical connection structure with the electrode pad of the second substrate having the electrode pad is performed.
  • the solder resist 4 is removed from the structure shown in FIG. 1 (6).
  • the second substrate having the electrode pad is covered from above the solder electrode 9 so that the electrode pad of the second substrate is in contact with the solder electrode 9, and heated and / or crimped.
  • An electrical connection structure is formed in which the electrode pad 2 of the first substrate 1 and the electrode pad of the second substrate are connected via the solder electrode 9.
  • a laminate having an electrical connection structure is manufactured.
  • the heating temperature and the pressure at the time of pressure bonding are the same as in the second method for producing a laminate.
  • the laminated body obtained by the method for manufacturing the second laminated body is , A first substrate, a solder electrode, and a second substrate.
  • the treatment with the flux composition can be performed after the step (7).
  • the method of manufacturing a laminate of the present invention includes the method of manufacturing the solder electrode described above, the method has the same effect as the method of manufacturing the solder electrode described above. That is, the method for producing a laminate of the present invention can produce a laminate having an electrical connection structure including a solder electrode adapted to the shape of the opening of the solder resist.
  • the laminate produced by the method of producing a laminate of the present invention may or may not have a solder resist between the first substrate and the second substrate. If the laminate comprises a solder resist, that solder resist is used as an underfill.
  • the laminate produced by the method for producing a laminate of the present invention can be used for various electronic components such as semiconductor devices, display devices, and power devices.
  • the reaction product was dropped into a large amount of cyclohexane and solidified.
  • the coagulated product was washed with water, and the coagulated product was redissolved in tetrahydrofuran of the same mass as the coagulated product, and then the obtained solution was dropped into a large amount of cyclohexane to coagulate again.
  • the obtained coagulated product was vacuum dried at 40 ° C. for 48 hours to obtain an alkali-soluble resin.
  • the weight average molecular weight of the alkali soluble resin was 10,000.
  • Photosensitive Resin Composition 1 100 parts of the alkali-soluble resin synthesized in Synthesis Example 1 and 50 parts of a polyester acrylate (trade name "ALONIX M-8060" manufactured by Toagosei Co., Ltd.) 4 parts of diphenyl (2,4,6-trimethyl benzoyl) phosphine oxide (trade name "LUCIRIN TPO", manufactured by BASF Corp.), 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name) Using 19 parts of “IRGACURE 651” (manufactured by BASF Corp.) and 80 parts of propylene glycol monomethyl ether acetate, they were mixed and stirred to obtain a uniform solution. This solution was filtered through a capsule filter with a pore size of 10 ⁇ m to prepare Photosensitive resin composition 1.
  • a polyester acrylate trade name "ALONIX M-8060” manufactured by Toagosei Co., Ltd.
  • Comparative Example 1 An outline of a series of operations performed in Comparative Example 1 is shown in FIG.
  • the photosensitive resin composition 1 prepared in Preparation Example 1 is applied by spin coating on a substrate having a plurality of copper electrode pads 20 on a silicon substrate 10 using a spin coater, and heated at 120 ° C. with a hot plate. The mixture was heated for 5 minutes to form a coating of 55 ⁇ m in thickness. Next, using an aligner (manufactured by Suss, model “MA-200”), light with a wavelength of 420 nm was exposed at an irradiation intensity of 300 mJ / cm 2 through a pattern mask. After exposure, the coated film was brought into contact with a 2.38 mass% aqueous tetramethylammonium hydroxide solution for 240 seconds, and the coated film was washed with running water and developed.
  • an aligner manufactured by Suss, model “MA-200”
  • the substrate was heated at 200 ° C. for 10 minutes in a convection oven under a nitrogen flow to form a resist holding substrate holding the solder resist 30 having an opening at a portion corresponding to the electrode pad (FIG. 2A).
  • the openings of each opening were circular with a diameter of 20 ⁇ m, and the depth of each opening was 50 ⁇ m.
  • the maximum width of the opening was 20 ⁇ m.
  • the ratio of the depth to the depth of the resist opening was 2.5.
  • the resist holding substrate was immersed in a 1% by mass sulfuric acid aqueous solution at 23 ° C. for 1 minute, washed with water and dried. Melt obtained by melting SAC 305 (lead-free solder, product name of Senju Metal Industries, Ltd.) at 250 ° C. using IMS head 40 inside the opening of solder resist 30 of the resist holding substrate after drying The solder 50 was filled for 10 minutes while heating to 250 ° C. (FIG. 2 (b)). When the resist holding substrate after molten solder filling was observed with an optical microscope, a portion not filled with molten solder was observed inside of all the openings.
  • Example 1 An outline of a series of operations performed in Example 1 is shown in FIG. A resist holding substrate was formed in the same manner as in Comparative Example 1.
  • the photosensitive resin composition 2 prepared in Preparation Example 2 was applied on the solder resist 30 of the resist holding substrate by a spin coating method, and heated at 90 ° C. for 90 seconds on a hot plate to form a coating film. Then, using an aligner (manufactured by Suss, model “MA-200”), light with a wavelength of 420 nm was exposed at an irradiation intensity of 200 mJ / cm 2 through a pattern mask. After exposure, the coated film is heated at 100 ° C.
  • an aligner manufactured by Suss, model “MA-200”
  • an inverse tapered liftoff resist 70 (thickness: 2 .mu.m) formed of the photosensitive resin composition 2 and having an opening in the region corresponding to the opening of the solder resist 30 A substrate having the same was manufactured (FIG. 3 (a)).
  • a sputtering process (apparatus name “high rate sputtering system SH-550-C12”, manufactured by Nippon Vacuum Technology Co., Ltd.) was performed on the substrate to form a copper film 80 having a thickness of 0.2 ⁇ m (FIG. 3 (FIG. b).
  • the resist formed of the photosensitive resin composition 2 is removed with N-methyl-2-pyrrolidone, and a copper film is formed on the inner wall of the opening of the solder resist 30 and the electrode pad 20 surrounded by the opening.
  • a resist holding substrate provided with a solder resist 30 having an opening having 80 was formed.
  • the resist holding substrate was immersed in a 1% by mass sulfuric acid aqueous solution at 23 ° C. for 1 minute, washed with water and dried. Melt obtained by melting SAC 305 (lead-free solder, product name of Senju Metal Industries, Ltd.) at 250 ° C. using IMS head 40 inside the opening of solder resist 30 of the resist holding substrate after drying The solder 51 was filled for 10 minutes while heating to 250 ° C. (FIG. 3 (c)). When the resist holding substrate after molten solder filling was observed with an optical microscope, it was confirmed that the molten solder was filled without gaps in the inside of all the openings. It has been found that this makes it possible to produce a solder electrode suitable for the shape of the opening.
  • Substrate 2 Electrode pad 3: Coating film 4, 30: Solder resist 4a: Opening 5: Metal film 6, 70: Lift-off resist 7, 40: IMS head 8, 50, 51: Molten solder 9, 9a: Solder Electrode 10: Silicon substrate 20: Electrode pad 80: Copper film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

The present invention is a method for producing a solder electrode, which is characterized by comprising: a step (1) for forming a coating film of a photosensitive resin composition on a substrate that has an electrode pad; a step (2) for forming a solder resist which has an opening in a region that corresponds to the electrode pad by selectively exposing the coating film to light and subsequently developing the coating film; a step (3) for forming a lift-off resist on the solder resist, said lift-off resist having an opening in a region that corresponds to the opening of the solder resist; a step (4) for forming a metal film on the inner wall of the opening of the solder resist; a step (5) for removing the lift-off resist; and a step (6) for filling the inside of the opening of the solder resist with a molten solder by an injection molding method. According to a method for producing a solder electrode of the present invention, a solder electrode such as a micro bump that is suited to a specific purpose is able to be produced by desirably filling a resist opening with a molten solder when the micro bump is formed by an IMS method.

Description

はんだ電極の製造方法およびその用途Method of manufacturing solder electrode and use thereof
 本発明は、はんだ電極の製造方法、積層体の製造方法、積層体、および電子部品に関する。 The present invention relates to a method of manufacturing a solder electrode, a method of manufacturing a laminate, a laminate, and an electronic component.
 射出成形法(IMS法)は、はんだ電極(はんだバンプ)を形成するための方法の一つである。これまで、ウェハなどの基板上にはんだ電極を形成する方法としては、ソルダーペースト法、めっき法などが用いられてきた。しかしながら、これらの方法では、はんだバンプの高さ制御が難しい上、はんだ組成を自由に選択できないなどの制約があった。これに対しIMS法ではこれらの制約がないという利点が知られている。 The injection molding method (IMS method) is one of the methods for forming a solder electrode (solder bump). Until now, the solder paste method, the plating method, etc. have been used as a method of forming a solder electrode on board | substrates, such as a wafer. However, in these methods, it is difficult to control the height of the solder bumps, and there is a restriction that the solder composition can not be freely selected. On the other hand, the IMS method is known to have the advantage of not having these limitations.
 IMS法は、特許文献1~4に示されるように、溶融したはんだを射出成形できるノズルをレジストに密着させながら、レジストの開口部にはんだを流し込むことを特徴とする方法である。 As shown in Patent Documents 1 to 4, the IMS method is a method characterized in that the solder is poured into the opening of the resist while a nozzle capable of injection molding molten solder is in close contact with the resist.
特開平06-055260号公報Japanese Patent Application Laid-Open No. 06-055260 特開2007-294954号公報Unexamined-Japanese-Patent No. 2007-294954 特開2007-294959号公報JP 2007-294959 A 特表2013-520011号公報Japanese Patent Application Publication No. 2013-520011
 IMS法でマイクロバンプを形成するためには、狭くて深いレジスト開口部に溶融はんだを射出して充填する必要があるが、狭くて深い開口部に溶融はんだを完全に充填することは難しい。また、マイクロバンプは複数形成する必要があり、その場合、複数の開口部を有するレジストを形成することになるが、この複数の開口部のサイズや形状を均一にすることは難しい。このため、開口部のサイズや形状によって、溶融はんだを完全に充填することができる開口部もあれば、溶融はんだを完全に充填することができない開口部もあるという状況になりやすい。 In order to form the microbumps by the IMS method, it is necessary to inject and fill the molten solder into the narrow and deep resist openings, but it is difficult to completely fill the narrow and deep openings with the molten solder. In addition, a plurality of microbumps need to be formed, in which case a resist having a plurality of openings is to be formed, but it is difficult to make the size and shape of the plurality of openings uniform. For this reason, depending on the size and shape of the opening, there is an opening that can completely fill the molten solder, and there is also an opening that can not completely fill the molten solder.
 以上のような理由により、IMS法でマイクロバンプを形成する際には、レジスト開口部に溶融はんだを完全に充填することができず、目的に適ったマイクロバンプを形成することができない場合があるという課題がある。 For the above reasons, when forming micro bumps by the IMS method, it is not possible to completely fill the resist opening with molten solder, and it may not be possible to form micro bumps suitable for the purpose. There is a problem called.
 本発明の目的は、IMS法によりマイクロバンプを形成する際に、良好にレジスト開口部に溶融はんだを充填することにより、目的に適ったマイクロバンプ等のはんだ電極を製造することができるはんだ電極の製造方法を提供することを目的とする。 It is an object of the present invention to provide a solder electrode such as a micro bump suitable for a purpose by filling a molten solder in a resist opening well when forming a micro bump by the IMS method. The purpose is to provide a manufacturing method.
 前記目的を達成する本発明は、例えば下記[1]~[7]に関する。
[1] 電極パッドを有する基板上に感光性樹脂組成物の塗膜を形成する工程(1);
 前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領域に開口部を有するはんだレジストを形成する工程(2);
 前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
 前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
前記リフトオフレジストを除去する工程(5);および
 前記はんだレジストの開口部の内部に射出成形法により溶融はんだを充填する工程(6);
を有することを特徴とするはんだ電極の製造方法。
The present invention for achieving the above object relates to, for example, the following [1] to [7].
[1] Step (1) of forming a coating film of a photosensitive resin composition on a substrate having an electrode pad;
Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
Forming a metal film on the inner wall of the opening of the solder resist (4);
Removing the lift-off resist (5); and filling the molten solder into the opening of the solder resist by injection molding (6).
A method of manufacturing a solder electrode, comprising:
[2] 前記工程(4)において、前記金属膜は、スパッタリング法により形成される前記[1]に記載のはんだ電極の製造方法。
[3] 前記はんだレジストが、ネガ型である前記[1]または[2]に記載のはんだ電極の製造方法。
[2] The method for producing a solder electrode according to [1], wherein the metal film is formed by a sputtering method in the step (4).
[3] The method for producing a solder electrode according to the above [1] or [2], wherein the solder resist is negative.
[4] 電極パッドを有する第1基板上に感光性樹脂組成物の塗膜を形成する工程(1);
 前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領
域に開口部を有するはんだレジストを形成する工程(2);
 前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
 前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
前記リフトオフレジストを除去する工程(5);
 前記開口部に射出成形法により溶融はんだを充填して、はんだ電極を製造する工程(6);および
 前記はんだ電極を介して、前記第1基板の電極パッドと、電極パッドを有する第2基板の電極パッドとの電気的接続構造を形成する工程(8);
 を有することを特徴とする積層体の製造方法。
[4] Step (1) of forming a coating film of a photosensitive resin composition on a first substrate having an electrode pad;
Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
Forming a metal film on the inner wall of the opening of the solder resist (4);
Removing the lift-off resist (5);
Filling the molten solder in the opening by injection molding to produce a solder electrode (6); and a second substrate having an electrode pad of the first substrate and an electrode pad via the solder electrode Forming an electrical connection structure with the electrode pad (8);
A method of manufacturing a laminate, comprising:
[5] 電極パッドを有する第1基板上に感光性樹脂組成物の塗膜を形成する工程(1);
 前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領域に開口部を有するはんだレジストを形成する工程(2);
 前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
 前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
 前記リフトオフレジストを除去する工程(5);
 前記開口部に射出成形法により溶融はんだを充填して、はんだ電極を製造する工程(6);
 前記はんだレジストを除去する工程(7); および
 前記はんだ電極を介して、前記第1基板の電極パッドと、電極パッドを有する第2基板の電極パッドとの電気的接続構造を形成する工程(8);
 を有することを特徴とする積層体の製造方法。
[5] Step (1) of forming a coating film of a photosensitive resin composition on a first substrate having an electrode pad;
Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
Forming a metal film on the inner wall of the opening of the solder resist (4);
Removing the lift-off resist (5);
Filling the molten solder into the opening by an injection molding method to produce a solder electrode (6);
Removing the solder resist (7); and forming an electrical connection structure between the electrode pad of the first substrate and the electrode pad of the second substrate having the electrode pad through the solder electrode (8) );
A method of manufacturing a laminate, comprising:
[6] 前記[4]又は[5]に記載の積層体の製造方法によって製造した積層体。
[7] 前記[6]に記載の積層体を有する電子部品。
[6] A laminate produced by the method of producing a laminate according to the above [4] or [5].
[7] An electronic component having the laminate according to the above [6].
 本発明のはんだ電極の製造方法によれば、IMS法によりマイクロバンプを形成する際に、良好にレジスト開口部に溶融はんだを充填することにより、目的に適ったマイクロバンプ等のはんだ電極を製造することができる。 According to the method of manufacturing a solder electrode of the present invention, when the micro bump is formed by the IMS method, the solder opening such as a micro bump suitable for the purpose is manufactured by filling the resist opening with the molten solder well. be able to.
図1は、本発明のはんだ電極の製造方法の一具体例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing one specific example of the method for producing a solder electrode of the present invention. 図2は、比較例1で行ったはんだ電極の製造方法を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the method of manufacturing the solder electrode performed in Comparative Example 1. 図3は、実施例1で行ったはんだ電極の製造方法を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing the method of manufacturing a solder electrode performed in Example 1.
<はんだ電極の製造方法>
 本発明のはんだ電極の製造方法は、電極パッドを有する基板上に感光性樹脂組成物の塗膜を形成する工程(1);
 前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領域に開口部を有するはんだレジストを形成する工程(2);
 前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
 前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
 前記リフトオフレジストを除去する工程(5);および
 前記開口部に射出成形法により溶融はんだを充填する工程(6);
を有することを特徴とする。
<Method of manufacturing solder electrode>
In the method of producing a solder electrode according to the present invention, a step (1) of forming a coating film of a photosensitive resin composition on a substrate having an electrode pad;
Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
Forming a metal film on the inner wall of the opening of the solder resist (4);
Removing the lift-off resist (5); and filling the opening with a molten solder by injection molding (6).
It is characterized by having.
 本発明のはんだ電極の製造方法は、前記工程(3)において、はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する点、前記工程(4)において、はんだレジストの開口部の内壁に金属膜を形成する点、および前記工程(5)において、リフトオフレジストを除去する点が、従来のIMS法などによるはんだ電極の製造方法と相違する。本発明のはんだ電極の製造方法においては、これらの点以外については、従来のIMS法などによるはんだ電極の製造方法と基本的に同様の操作であって差し支えない。 In the method of manufacturing a solder electrode according to the present invention, in the step (3), a lift-off resist having an opening in a region corresponding to the opening of the solder resist is formed on the solder resist; The method of forming a metal film on the inner wall of the opening of the solder resist and the point of removing the lift-off resist in the step (5) are different from the method of manufacturing a solder electrode by the conventional IMS method or the like. In the method of manufacturing a solder electrode according to the present invention, except for these points, basically the same operation as the method of manufacturing a solder electrode by the conventional IMS method may be performed.
 以下、本発明のはんだ電極の製造方法を、図1を参照しながら説明する。図1は、IMS法を用いた本発明のはんだ電極の製造方法の一具体例を示す概略断面図である。
(工程(1))
 工程(1)では、図1(1)に示すように、電極パッド2を有する基板1上に感光性樹脂組成物の塗膜3を形成する。
Hereinafter, the manufacturing method of the solder electrode of this invention is demonstrated, referring FIG. FIG. 1 is a schematic cross-sectional view showing one specific example of the method for producing a solder electrode of the present invention using the IMS method.
(Step (1))
In the step (1), as shown in FIG. 1 (1), the coating 3 of the photosensitive resin composition is formed on the substrate 1 having the electrode pad 2.
 基板1は、たとえば半導体基板、ガラス基板、シリコン基板、並びに半導体板、ガラス板およびシリコン板の表面に各種金属膜などを設けて形成される基板などである。基板1は多数の電極パッド2を有している。
 電極パッド2は、後述する基板1ともう一つの基板との電気的接続構造を形成するときの電極に対応するものであり、電極パッド2としては、例えば、基板1の取り出し電極用の金属膜、メッキに用いるシード層としての金属箔、および銅柱はんだバンプにおける銅柱が挙げられる。
Substrate 1 is, for example, a semiconductor substrate, a glass substrate, a silicon substrate, and a substrate formed by providing various metal films and the like on the surfaces of a semiconductor plate, a glass plate, and a silicon plate. The substrate 1 has a large number of electrode pads 2.
The electrode pad 2 corresponds to an electrode when forming an electrical connection structure between the substrate 1 and another substrate to be described later, and as the electrode pad 2, for example, a metal film for a lead-out electrode of the substrate 1 , Metal foil as a seed layer used for plating, and copper pillars in copper pillar solder bumps.
 塗膜3は、感光性樹脂組成物を基板1に塗布等することにより形成される。前記感光性樹脂組成物は、IMS法においてレジストの形成に従来使用される感光性樹脂組成物であって差し支えない。感光性樹脂組成物は、通常、多官能アクリレート等の架橋剤を含んでおり、感光性樹脂組成物から形成された塗膜3は、後述の工程2において架橋される。なお、本説明は、ネガ型の感光性樹脂組成物を用いた場合の説明であるが、本発明のはんだ電極の製造方法はポジ型の感光性樹脂組成物を用いて行うこともできる。 The coating film 3 is formed by applying a photosensitive resin composition to the substrate 1 or the like. The photosensitive resin composition may be a photosensitive resin composition conventionally used to form a resist in the IMS method. The photosensitive resin composition usually contains a crosslinking agent such as a polyfunctional acrylate, and the coating film 3 formed from the photosensitive resin composition is crosslinked in step 2 described later. In addition, although this description is description in the case of using a negative photosensitive resin composition, the manufacturing method of the solder electrode of this invention can also be performed using a positive photosensitive resin composition.
 感光性樹脂組成物の塗布方法としては、特に限定されず、例えば、スプレー法、ロールコート法、スピンコート法、スリットダイ塗布法、バー塗布法、インクジェット法を挙げることができる。塗膜3の膜厚は、通常0.001~200μm、好ましくは0.01~150μm、より好ましくは0.1~100μmである。 It does not specifically limit as a coating method of the photosensitive resin composition, For example, a spray method, a roll coat method, a spin coat method, a slit die coating method, the bar coating method, and the inkjet method can be mentioned. The thickness of the coating film 3 is usually 0.001 to 200 μm, preferably 0.01 to 150 μm, and more preferably 0.1 to 100 μm.
(工程(2))
 工程(2)では、図1(2)に示すように、塗膜3を選択的に露光し、さらに現像することにより、電極パッド2に対応する領域に開口部4aを有するはんだレジスト4を形成する。つまり、電極パッド2上に開口部4aが形成されるように塗膜3に対して部分的に露光を行い、その後現像を行って、電極パッド2に対応する領域に開口部4aを形成する。本発明において、はんだレジストとは、はんだが形成される部位を制御するレジストを意味する。開口部4aは、はんだレジスト4を貫通する孔である。露光および現像に関しては、従来法に則して行うことができる。
(Step (2))
In the step (2), as shown in FIG. 1 (2), the coating film 3 is selectively exposed and then developed to form a solder resist 4 having an opening 4a in a region corresponding to the electrode pad 2 Do. That is, the coating film 3 is partially exposed to light so that the opening 4 a is formed on the electrode pad 2, and then development is performed to form the opening 4 a in the region corresponding to the electrode pad 2. In the present invention, a solder resist means a resist that controls a portion where a solder is to be formed. The opening 4 a is a hole penetrating the solder resist 4. Exposure and development can be carried out according to conventional methods.
 開口部4aの最大幅は、特に制限がないが、300μm以下であることが好ましく、100μm以下であることがより好ましい。開口部4aの最大幅の下限値は通常1μm程度である。
 開口部4aの深さの開口部4aの最大幅に対する比率は、特に制限がないが、0.1以上であることが好ましく、1以上であることがより好ましい。
The maximum width of the opening 4a is not particularly limited, but is preferably 300 μm or less, and more preferably 100 μm or less. The lower limit of the maximum width of the opening 4 a is usually about 1 μm.
The ratio of the depth of the opening 4a to the maximum width of the opening 4a is not particularly limited, but is preferably 0.1 or more, and more preferably 1 or more.
(工程(3))
 工程(3)では、図1(3)に示すように、はんだレジスト4上に、開口部4aに対応する領域に開口部を有するリフトオフレジスト6を形成する。
(Step (3))
In the step (3), as shown in FIG. 1 (3), a lift-off resist 6 having an opening in a region corresponding to the opening 4a is formed on the solder resist 4.
 工程(3)を行わないで後述の工程(4)を例えばスパッタリング法によって行った場合、すなわち図1(2)に示した構造体にスパッタリング法により金属膜を形成した場合には、通常、はんだレジスト4の開口部4aの内壁だけでなく、図1(4a)に示すように、はんだレジスト4の上面や、はんだレジスト4の開口部4aに囲まれた電極パッド2の表面にも金属膜5が形成される。IMS法はレジスト表面に不必要な物が付着しないというメリットを有する方法であるので、工程(6)においてIMS法を行う前にはんだレジストの上面に金属膜が形成されていると、IMS法を実施するメリットが減ることにもなる。 When step (4) described below is performed by sputtering, for example, without performing step (3), that is, when a metal film is formed by sputtering on the structure shown in FIG. The metal film 5 is formed not only on the inner wall of the opening 4a of the resist 4 but also on the upper surface of the solder resist 4 and the surface of the electrode pad 2 surrounded by the opening 4a of the solder resist 4 as shown in FIG. Is formed. Since the IMS method has a merit that unnecessary substances do not adhere to the resist surface, if the metal film is formed on the upper surface of the solder resist before performing the IMS method in the step (6), the IMS method is selected. It also reduces the benefits of implementing it.
 工程(3)を実施した後に後述の工程(4)を実施すると、図1(4)に示すように、金属膜5は、リフトオフレジスト6の上面および開口部の内壁、並びに、はんだレジスト4の開口部4aの内壁およびはんだレジスト4の開口部4aに囲まれた電極パッド2の表面に形成されるが、はんだレジスト4の上面には実質的に形成されない。「はんだレジストの開口部に対応する領域に開口部を有する」とは、前述のように、スパッタリング法等により金属膜を形成したときに、金属膜がはんだレジストの上面に実質的に形成されないような開口部を有することを意味する。 When the step (4) described later is performed after the step (3) is performed, as shown in FIG. 1 (4), the metal film 5 has the upper surface of the lift-off resist 6 and the inner wall of the opening and the solder resist 4. It is formed on the surface of the electrode pad 2 surrounded by the inner wall of the opening 4 a and the opening 4 a of the solder resist 4, but is not substantially formed on the upper surface of the solder resist 4. The phrase "having an opening in the region corresponding to the opening of the solder resist" means that, as described above, when a metal film is formed by sputtering or the like, the metal film is not substantially formed on the upper surface of the solder resist. It means that it has an opening.
 さらに、工程(4)の後、リフトオフレジスト6を除去する工程(5)を行うと、図1(5)に示すように、金属膜5が、はんだレジスト4の開口部4aの内壁およびはんだレジスト4の開口部4aに囲まれた電極パッド2の表面のみに形成され、はんだレジスト4の上面に形成されていない状態が得られる。その後、工程(6)を行えば、IMS法が有する、レジスト表面に不必要な物が付着しないというメリットを活かすことができる。 Further, when the step (5) of removing the lift-off resist 6 is performed after the step (4), as shown in FIG. 1 (5), the metal film 5 is the inner wall of the opening 4a of the solder resist 4 and the solder resist It is formed only on the surface of the electrode pad 2 surrounded by the opening 4 a and not formed on the top surface of the solder resist 4. After that, if step (6) is performed, it is possible to make use of the merit of the IMS method that unnecessary substances do not adhere to the resist surface.
 本発明において、リフトオフレジストとは、金属膜が形成される部位を制御し、金属膜の形成後に除去されるレジストを意味する。
 リフトオフレジストは、基本的には前記はんだレジストと同様の形成方法により形成することができる。例えば、前記はんだレジストの上に、リフトオフレジスト形成用の感光性樹脂組成物をスピンコート法等により塗布し、加熱して、塗膜を形成し、次いで、はんだレジストの形成時と同様に塗膜を選択的に露光し、現像することにより、はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを得ることができる。リフトオフレジスト形成用の感光性樹脂組成物は、はんだレジスト形成用の感光性樹脂組成物と同様であってよい。
In the present invention, the lift-off resist means a resist which controls a portion where a metal film is to be formed and which is removed after the formation of the metal film.
The lift-off resist can be formed basically by the same formation method as the solder resist. For example, a photosensitive resin composition for lift-off resist formation is applied onto the solder resist by spin coating or the like and heated to form a coating film, and then a coating film is formed as in the formation of the solder resist. Is selectively exposed and developed to obtain a lift-off resist having an opening in a region corresponding to the opening of the solder resist. The photosensitive resin composition for lift-off resist formation may be the same as the photosensitive resin composition for solder resist formation.
 リフトオフレジストは、はんだレジストの開口部に対応する領域に開口部を有していれば、その形状には特に制限はない。リフトオフレジストの厚みは、上記機能を確保できれば特に制限はなく、通常0.1~10μmである。 The shape of the lift-off resist is not particularly limited as long as it has an opening in a region corresponding to the opening of the solder resist. The thickness of the lift-off resist is not particularly limited as long as the above-mentioned function can be secured, and is usually 0.1 to 10 μm.
 リフトオフレジストは、上面から底面にかけて均一な幅を有していてもよいが、リフトオフレジストの除去が容易になるという観点から、図1(3)に示すように、上面から底面にかけて幅が狭くなる逆テーパー形状を有することが好ましい。逆テーパー形状を有するリフトオフレジストレジストは、例えば、特開2003-287905号公報、特開2008-242247号公報、特開平06-019137号公報、特開平05-165218号公報および特開平08-069111号公報に記載の方法に準じて形成することができる。 The lift-off resist may have a uniform width from the top to the bottom, but from the viewpoint of easy removal of the lift-off resist, the width becomes narrow from the top to the bottom as shown in FIG. It is preferable to have a reverse taper shape. Lift-off resists having a reverse taper shape are disclosed, for example, in Japanese Patent Application Laid-Open Nos. 2003-287905, 2008-242247, 06-010137, 05-165218, and 08-069111. It can be formed according to the method described in the publication.
(工程(4))
 工程(4)では、図1(4)に示すように、はんだレジスト4の開口部4aの内壁に金属膜5を形成する。
 金属膜5の厚みは、通常0.01~10μm、好ましくは0.05~1μmである。金属膜5の厚みは均一であっても、不均一であってもよい。
 開口部4aの内壁に金属膜5を形成する方法としては、特に制限はなく、スパッタリング法、真空蒸着法、イオンプレーティング法、電子ビーム蒸着法、化学蒸着法等を挙げることができ、操作の簡便性等の観点からスパッタリング法が好ましい。スパッタリング法等による金属膜の形成は、従来行われる通常の操作手順に従い行うことができる。
 金属膜5は、開口部4aの内壁の全面に形成しても、一部に形成してもよい。金属膜5を開口部4aの内壁の一部に形成する態様としては、開口部4aの内壁において電極パッド2に近い箇所のみに金属膜5を形成する態様、および電極パッド2から遠い箇所のみに金属膜5を形成する態様等が挙げられる。
 金属膜5としては、電極パッド2やはんだ電極9と金属間化合物を形成できる金属膜が好ましく、例えば、電極パッド2が銅の場合には、ニッケルを含む金属膜が好ましい。
(Step (4))
In the step (4), as shown in FIG. 1 (4), the metal film 5 is formed on the inner wall of the opening 4 a of the solder resist 4.
The thickness of the metal film 5 is usually 0.01 to 10 μm, preferably 0.05 to 1 μm. The thickness of the metal film 5 may be uniform or nonuniform.
The method for forming the metal film 5 on the inner wall of the opening 4a is not particularly limited, and may be sputtering, vacuum evaporation, ion plating, electron beam evaporation, chemical vapor deposition, etc. Sputtering is preferred from the viewpoint of simplicity and the like. The formation of the metal film by sputtering or the like can be performed according to the conventional operation procedure conventionally performed.
The metal film 5 may be formed on the entire surface of the inner wall of the opening 4a or may be formed on a part thereof. As an embodiment in which the metal film 5 is formed on a part of the inner wall of the opening 4a, an embodiment in which the metal film 5 is formed only on a part near the electrode pad 2 on the inner wall of the opening 4a The aspect etc. which form the metal film 5 are mentioned.
As the metal film 5, a metal film which can form an intermetallic compound with the electrode pad 2 or the solder electrode 9 is preferable. For example, when the electrode pad 2 is copper, a metal film containing nickel is preferable.
(工程(5))
 工程(5)では、図1の(5)に示すように、リフトオフレジスト6を除去する。
 リフトオフレジストの除去方法としては、例えば、20~100℃の剥離液に基板を1~30分浸漬する方法が挙げられる。前記剥離液としては、例えば、特開2003-287905号公報、特開2008-242247号公報、特開平06-019137号公報、特開平05-165218号公報および特開平08-069111号公報に記載の剥離液が挙げられる。
(Step (5))
In the step (5), as shown in (5) of FIG. 1, the lift-off resist 6 is removed.
Examples of the method for removing the lift-off resist include a method in which the substrate is immersed in a stripping solution at 20 to 100 ° C. for 1 to 30 minutes. Examples of the peeling solution include those described in JP-A Nos. 2003-287905, 2008-242247, 06-010137, 05-165218, and 08-069111. A peeling solution is mentioned.
(工程(6))
 工程(6)では、図1(6)に示すように、はんだレジスト4の開口部4aの内部に射出成形法により溶融はんだを充填する。図1(6)は、IMSヘッド7から溶融はんだ8をはんだレジスト4の開口部4aの内部に充填している状態を示す。
 工程(6)の実施により、図1(7)に示すように、はんだレジスト4の開口部4aの内部にはんだ電極9が形成される。
(Step (6))
In the step (6), as shown in FIG. 1 (6), the inside of the opening 4a of the solder resist 4 is filled with molten solder by an injection molding method. FIG. 1 (6) shows a state in which molten solder 8 is filled in the opening 4 a of the solder resist 4 from the IMS head 7.
By performing step (6), as shown in FIG. 1 (7), the solder electrode 9 is formed inside the opening 4a of the solder resist 4.
 本発明のはんだ電極の製造方法においては、はんだレジストの開口部の内壁に金属膜を形成した後に、はんだレジストの開口部の内部に溶融はんだを充填することから、狭くて深い開口部であっても溶融はんだを良好に開口部に充填することができ、開口部の形状に適合した、目的に適ったマイクロバンプ等のはんだ電極を製造することができる。このような効果が得られる理由は、次のように推測される。 In the method of manufacturing a solder electrode according to the present invention, the metal film is formed on the inner wall of the opening of the solder resist, and then the inside of the opening of the solder resist is filled with molten solder. Molten solder can be well filled in the opening, and a solder electrode such as a purposeful micro bump can be manufactured which conforms to the shape of the opening. The reason why such an effect is obtained is presumed as follows.
 溶融はんだは表面張力が相対的に大きいのに対し、はんだレジストの開口部の内壁面は表面張力が低いので、溶融はんだをはんだレジストの開口部に充填すると、溶融はんだとはんだレジストの開口部の内壁面とが互いにはじきあって、溶融はんだを開口部の内部に隙間なく充填することができず、その結果、図1(7a)に示すように、開口部の形状に適合しないはんだ電極9aが得られ、目的に適ったはんだ電極を製造することができない。これに対し、はんだレジストの開口部の内壁に金属膜を形成した後に、はんだレジストの開口部の内部に溶融はんだを充填する本発明においては、表面張力の高い金属膜でレジスト開口部の内壁が被われているので、溶融はんだをはんだレジストの開口部に充填したとき、溶融はんだとはんだレジストの開口部の内壁面とが互いにはじきあうことがなく、溶融はんだを開口部の内部に隙間なく充填することができ、その結果、図1(7)に示すように、開口部の形状に適合したはんだ電極9が得られ、目的に適ったはんだ電極を製造することができると考えられる。
(その他工程)
 本発明のはんだ電極の製造方法においては、工程(2)のはんだレジストを形成した後であって、工程(3)のリフトオフレジストを形成する前、または工程(3)のリフトオフレジストを形成した後であって、工程(4)の金属膜を形成する前に、電解メッキ法によるメッキ膜を開口部内の金属パッド上に形成することができる。
 前記メッキ膜としては、銅メッキ膜が挙げられる。
 前記メッキ膜は、例えば、銅柱はんだバンプにおける銅柱部分を構成することができる。
Molten solder has relatively high surface tension, while the inner wall surface of the opening of the solder resist has low surface tension. Therefore, when the molten solder is filled in the opening of the solder resist, the opening of the molten solder and the solder resist is The inner wall and the inner wall repel each other, so that the molten solder can not be filled without gaps in the inside of the opening, and as a result, as shown in FIG. 1 (7a), the solder electrode 9a does not conform to the shape of the opening. It is not possible to produce a solder electrode which is obtained and suitable for the purpose. On the other hand, in the present invention in which the molten solder is filled in the opening of the solder resist after the metal film is formed on the inner wall of the opening of the solder resist, the inner wall of the resist opening is a metal film with high surface tension. Because it is covered, when the molten solder is filled in the opening of the solder resist, the molten solder and the inner wall surface of the opening of the solder resist do not repel each other, and the molten solder is filled without gaps in the inside of the opening. As a result, as shown in FIG. 1 (7), it is considered that a solder electrode 9 conforming to the shape of the opening can be obtained, and a solder electrode suitable for the purpose can be manufactured.
(Other process)
In the method of manufacturing a solder electrode according to the present invention, after forming the solder resist of step (2), before forming the lift-off resist of step (3), or after forming the lift-off resist of step (3) Before forming the metal film of the step (4), a plating film by electrolytic plating can be formed on the metal pad in the opening.
Examples of the plating film include a copper plating film.
The plating film can constitute, for example, a copper post portion in a copper post solder bump.
<積層体の製造方法>
 本発明の第1の積層体の製造方法は、
 電極パッドを有する第1基板上に感光性樹脂組成物の塗膜を形成する工程(1);
 前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領域に開口部を有するはんだレジストを形成する工程(2);
 前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
 前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
 前記リフトオフレジストを除去する工程(5);
 前記開口部に射出成形法により溶融はんだを充填して、はんだ電極を製造する工程(6);および
 前記はんだ電極を介して、前記第1基板の電極パッドと、電極パッドを有する第2基板の電極パッドとの電気的接続構造を形成する工程(8);
 を有する。
<Method of manufacturing laminate>
The method for producing a first laminate of the present invention is
A step (1) of forming a coating film of a photosensitive resin composition on a first substrate having an electrode pad;
Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
Forming a metal film on the inner wall of the opening of the solder resist (4);
Removing the lift-off resist (5);
Filling the molten solder in the opening by injection molding to produce a solder electrode (6); and a second substrate having an electrode pad of the first substrate and an electrode pad via the solder electrode Forming an electrical connection structure with the electrode pad (8);
Have.
 本発明の第2の積層体の製造方法は、
電極パッドを有する第1基板上に感光性樹脂組成物の塗膜を形成する工程(1);
 前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領域に開口部を有するはんだレジストを形成する工程(2);
 前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
 前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
 前記リフトオフレジストを除去する工程(5);
 前記開口部に射出成形法により溶融はんだを充填して、はんだ電極を製造する工程(6);
 前記はんだレジストを除去する工程(7); および
 前記はんだ電極を介して、前記第1基板の電極パッドと、電極パッドを有する第2基板の電極パッドとの電気的接続構造を形成する工程(8);
 を有する。
The second method for producing a laminate of the present invention is
A step (1) of forming a coating film of a photosensitive resin composition on a first substrate having an electrode pad;
Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
Forming a metal film on the inner wall of the opening of the solder resist (4);
Removing the lift-off resist (5);
Filling the molten solder into the opening by an injection molding method to produce a solder electrode (6);
Removing the solder resist (7); and forming an electrical connection structure between the electrode pad of the first substrate and the electrode pad of the second substrate having the electrode pad through the solder electrode (8) );
Have.
 第1および第2の積層体の製造方法における工程(1)~(6)は、前記はんだ電極の製造方法における工程(1)~(6)とそれぞれ実質的に同じである。つまり、第1の積層体の製造方法は、前記はんだ電極の製造方法における工程(1)~(6)の後に工程(8)を行う方法であり、第2の積層体の製造方法は、前記はんだ電極の製造方法における工程(1)~(6)の後に工程(7)および(8)を行う方法である。 Steps (1) to (6) in the method of manufacturing the first and second laminates are substantially the same as steps (1) to (6) in the method of manufacturing the solder electrode, respectively. That is, the first method of manufacturing a laminate is a method of performing the step (8) after the steps (1) to (6) in the method of manufacturing the solder electrode, and the method of manufacturing the second laminate is In the method of manufacturing the solder electrode, the steps (7) and (8) are performed after the steps (1) to (6).
 第1および第2の積層体の製造方法においては、前記はんだ電極の製造方法における基板が第1基板に該当する。
 第1の積層体の製造方法は、前記工程(1)~(6)の後に、前記はんだ電極を介して、前記第1基板の電極パッドと電極パッドを有する第2基板の電極パッドとの電気的接続構造を形成する工程(8)を行う。工程(8)では、図1(7)に示す状態のはんだ電極9の上から、電極パッドを有する第2基板を、第2基板の電極パッドがはんだ電極9に接触するように被せ、加熱および/または圧着することにより、はんだ電極9を介して、第1基板1の電極パッド2と第2基板の電極パッドとが接続した電気的接続構造を形成する。これにより電気的接続構造を備えた積層体が製造される。
In the first and second laminate manufacturing methods, the substrate in the method of manufacturing the solder electrode corresponds to the first substrate.
According to the first method for manufacturing a laminate, after the steps (1) to (6), the electrode pad of the first substrate and the electrode pad of the second substrate having the electrode pad are electrically connected via the solder electrode. Performing the step (8) of forming a dynamic connection structure. In the step (8), the second substrate having an electrode pad is placed on the solder electrode 9 in the state shown in FIG. 1 (7) so that the electrode pad of the second substrate contacts the solder electrode 9, heating and By press bonding, an electrical connection structure in which the electrode pad 2 of the first substrate 1 and the electrode pad of the second substrate are connected via the solder electrode 9 is formed. Thus, a laminate having an electrical connection structure is manufactured.
 前記加熱の温度は、通常、100~300℃であり、前記圧着時の力は、通常、0.1~10MPaである。
 図1(7)に示す状態では、第1基板1上にはんだレジスト4が載置されているので、第1の積層体の製造方法によって得られる積層体は、第1基板と、はんだ電極と、第2基板と、第1基板および第2基板に挟まれたはんだレジストとを有する。
The heating temperature is usually 100 to 300 ° C., and the pressure at the time of pressure bonding is usually 0.1 to 10 MPa.
In the state shown in FIG. 1 (7), since the solder resist 4 is placed on the first substrate 1, the laminate obtained by the method of manufacturing the first laminate includes the first substrate, the solder electrode, and the like. , A second substrate, and a solder resist sandwiched between the first substrate and the second substrate.
 第2の積層体の製造方法は、前記工程(1)~(6)の後に、前記はんだレジストを除去する工程(7)、および前記はんだ電極を介して、前記第1基板の電極パッドと、電極パッドを有する第2基板の電極パッドとの電気的接続構造を形成する工程(8)を行う。工程(7)では、図1(6)に示す構造体からはんだレジスト4を除去する。その後、工程(8)において、はんだ電極9の上から、電極パッドを有する第2基板を、第2基板の電極パッドがはんだ電極9に接触するように被せ、加熱および/または圧着することにより、はんだ電極9を介して、第1基板1の電極パッド2と第2基板の電極パッドとが接続した電気的接続構造を形成する。これにより電気的接続構造を備えた積層体が製造される。 In the second method for manufacturing a laminate, after the steps (1) to (6), the step (7) of removing the solder resist, and an electrode pad of the first substrate through the solder electrode; A step (8) of forming an electrical connection structure with the electrode pad of the second substrate having the electrode pad is performed. In the step (7), the solder resist 4 is removed from the structure shown in FIG. 1 (6). Thereafter, in the step (8), the second substrate having the electrode pad is covered from above the solder electrode 9 so that the electrode pad of the second substrate is in contact with the solder electrode 9, and heated and / or crimped. An electrical connection structure is formed in which the electrode pad 2 of the first substrate 1 and the electrode pad of the second substrate are connected via the solder electrode 9. Thus, a laminate having an electrical connection structure is manufactured.
 前記加熱の温度および圧着時の力については、第2の積層体の製造方法と同様である。
 第2の積層体の製造方法においては、図1(7)に示す構造体からはんだレジスト4を除去した後に工程(8)を行うので、第2の積層体の製造方法によって得られる積層体は、第1基板と、はんだ電極と、第2基板とを有する。
 本発明の第2の積層体の製造方法においては、工程(7)の後、電極パッド2およびはんだ電極9の金属間化合物の形成を促進するために、得られた積層体に対し、例えば、フラックス組成物による処理を行うことができる。
The heating temperature and the pressure at the time of pressure bonding are the same as in the second method for producing a laminate.
In the second method for manufacturing a laminated body, since the step (8) is performed after removing the solder resist 4 from the structure shown in FIG. 1 (7), the laminated body obtained by the method for manufacturing the second laminated body is , A first substrate, a solder electrode, and a second substrate.
In the second method for producing a laminate of the present invention, after the step (7), in order to promote the formation of the intermetallic compound of the electrode pad 2 and the solder electrode 9, for example, The treatment with the flux composition can be performed.
 本発明の積層体の製造方法は、前述のはんだ電極の製造方法を含んでいるので、前述のはんだ電極の製造方法と同様の効果を有する。すなわち、本発明の積層体の製造方法は、はんだレジストの開口部の形状に適合し、目的に適ったはんだ電極を含む電気的接続構造を備えた積層体を製造することができる。 Since the method of manufacturing a laminate of the present invention includes the method of manufacturing the solder electrode described above, the method has the same effect as the method of manufacturing the solder electrode described above. That is, the method for producing a laminate of the present invention can produce a laminate having an electrical connection structure including a solder electrode adapted to the shape of the opening of the solder resist.
 上述のとおり、本発明の積層体の製造方法により製造される積層体は、第1基板と第2基板との間にはんだレジストを備えていても備えていなくてもよい。積層体がはんだレジストを備えている場合には、そのはんだレジストはアンダーフィルとして使用される。 As described above, the laminate produced by the method of producing a laminate of the present invention may or may not have a solder resist between the first substrate and the second substrate. If the laminate comprises a solder resist, that solder resist is used as an underfill.
 本発明の積層体の製造方法により製造された積層体は、半導体素子、表示素子、及びパワーデバイス等のさまざまな電子部品に利用することができる。 The laminate produced by the method for producing a laminate of the present invention can be used for various electronic components such as semiconductor devices, display devices, and power devices.
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれら実施例に限定されない。以下の実施例等の記載において、「部」は「質量部」の意味で用いる。
<物性の測定方法>
(アルカリ可溶性樹脂の重量平均分子量(Mw)の測定方法)
 下記条件下でゲルパーミエーションクロマトグラフィー法にてアルカリ可溶性樹脂の重量平均分子量(Mw)を測定した。
・カラム:東ソー社製カラムのTSK-MおよびTSK2500を直列に接続
・溶媒:テトラヒドロフラン
・温度:40℃
・検出方法:屈折率法
・標準物質:ポリスチレン
・GPC装置:東ソー製、装置名「HLC-8220-GPC」
Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited to these examples. In the description of the following examples etc., "part" is used in the meaning of "mass part."
<Method of measuring physical properties>
(Method of measuring weight average molecular weight (Mw) of alkali soluble resin)
The weight average molecular weight (Mw) of the alkali-soluble resin was measured by gel permeation chromatography under the following conditions.
· Column: TSK-M and TSK 2500 of Tosoh columns connected in series · Solvent: tetrahydrofuran · Temperature: 40 ° C
・ Detection method: Refractive index method ・ Standard substance: Polystyrene ・ GPC device: Tosoh Corporation, device name “HLC-8220-GPC”
<レジスト形成用組成物の準備>
[合成例]アルカリ可溶性樹脂の合成
 窒素置換したドライアイス/メタノール還流器の付いたフラスコ中に、重合開始剤として2,2'-アゾビスイソブチロニトリル5.0g、および重合溶媒としてジエチレングリコールエチルメチルエーテル90gを仕込み、攪拌した。得られた溶液に、メタクリル酸10g、p-イソプロペニルフェノール15g、トリシクロ〔5.2.1.02,6〕デカニルメタクリレート25g、イソボルニルアクリレート20g、およびn-ブチルアクリレート30gを加え、攪拌を開始し、80℃まで昇温した。その後、80℃で6時間加熱した。
Preparation of Composition for Forming Resist
Synthesis Example Synthesis of Alkali-Soluble Resin In a flask with a nitrogen-substituted dry ice / methanol reflux, 5.0 g of 2,2'-azobisisobutyronitrile as a polymerization initiator and diethylene glycol ethyl as a polymerization solvent 90 g of methyl ether was charged and stirred. To the resulting solution is added 10 g of methacrylic acid, 15 g of p-isopropenyl phenol, 25 g of tricyclo [5.2.1.0 2,6 ] decanyl methacrylate, 20 g of isobornyl acrylate, and 30 g of n-butyl acrylate, Stirring was started, and the temperature was raised to 80 ° C. Then, it heated at 80 degreeC for 6 hours.
 加熱終了後、反応生成物を多量のシクロヘキサン中に滴下して凝固させた。この凝固物を水洗し、該凝固物を凝固物と同質量のテトラヒドロフランに再溶解した後、得られた溶液を多量のシクロヘキサン中に滴下して再度凝固させた。この再溶解および凝固作業を計3回行った後、得られた凝固物を40℃で48時間真空乾燥し、アルカリ可溶性樹脂を得た。アルカリ可溶性樹脂の重量平均分子量は10,000であった。 After heating, the reaction product was dropped into a large amount of cyclohexane and solidified. The coagulated product was washed with water, and the coagulated product was redissolved in tetrahydrofuran of the same mass as the coagulated product, and then the obtained solution was dropped into a large amount of cyclohexane to coagulate again. After performing the re-dissolution and coagulation operations a total of three times, the obtained coagulated product was vacuum dried at 40 ° C. for 48 hours to obtain an alkali-soluble resin. The weight average molecular weight of the alkali soluble resin was 10,000.
[調製例1]感光性樹脂組成物1の調製
 前記合成例1で合成したアルカリ可溶性樹脂を100部、ポリエステルアクリレート(商品名「アロニックスM-8060」、東亞合成(株)製)を50部、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド(商品名「LUCIRIN TPO」、BASF(株)製)を4部、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「IRGACURE 651」、BASF(株)製)を19部、プロピレングリコールモノメチルエーテルアセテートを80部用い、これらを混合、攪拌して均一な溶液を得た。この溶液を、孔径10μmのカプセルフィルターでろ過して、感光性樹脂組成物1を調製した。
Preparation Example 1 Preparation of Photosensitive Resin Composition 1 100 parts of the alkali-soluble resin synthesized in Synthesis Example 1 and 50 parts of a polyester acrylate (trade name "ALONIX M-8060" manufactured by Toagosei Co., Ltd.) 4 parts of diphenyl (2,4,6-trimethyl benzoyl) phosphine oxide (trade name "LUCIRIN TPO", manufactured by BASF Corp.), 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name) Using 19 parts of “IRGACURE 651” (manufactured by BASF Corp.) and 80 parts of propylene glycol monomethyl ether acetate, they were mixed and stirred to obtain a uniform solution. This solution was filtered through a capsule filter with a pore size of 10 μm to prepare Photosensitive resin composition 1.
[調製例2]感光性樹脂組成物2の調製
 m-クレゾール:p-クレゾール=50:50(モル比)の混合フェノール類をホルマリンと重縮合して得られたノボラック樹脂(重量平均分子量:7,000)85部、テトラメトキシメチルグリコールウリル15部、4,4'-〔1-{4[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル}エチリデン〕ビスフェノール5部、2,2'-,4,4'-テトラヒドロキシベンゾフェノン2部、1-(4,7-ジブトキシ-1-ナフタレニル)テトラヒドロチオフェニウムトリフルオロメタンスルホナート1部、フッ素系界面活性剤(商品名「フタージェント251」、ネオス社製)0.2部、メチル-3-メトキシプロピオネート160部を攪拌して均一な溶液を得た。この溶液を、孔径10μmのカプセルフィルターでろ過して、感光性樹脂組成物2を調製した。
Preparation Example 2 Preparation of Photosensitive Resin Composition 2 Novolak resin obtained by polycondensation of mixed phenols of m-cresol: p-cresol = 50: 50 (molar ratio) with formalin (weight average molecular weight: 7 85 parts, tetramethoxymethyl glycoluril 15 parts, 4,4 '-[1- {4 [1- (4-hydroxyphenyl) -1-methylethyl] phenyl} ethylidene] bisphenol 5 parts, 2,2 2 parts of '-, 4,4'-tetrahydroxybenzophenone, 1 part of 1- (4,7-dibutoxy-1-naphthalenyl) tetrahydrothiophenium trifluoromethanesulfonate, fluorosurfactant (trade name: FUTERgent 251 0.2 parts of Neos Co., Ltd. and 160 parts of methyl 3-methoxypropionate were stirred to obtain a uniform solution. This solution was filtered through a capsule filter with a pore size of 10 μm to prepare a photosensitive resin composition 2.
<はんだ電極の製造>
[比較例1]
比較例1で行った一連の操作の概略を図2に示す。
<Manufacture of solder electrode>
Comparative Example 1
An outline of a series of operations performed in Comparative Example 1 is shown in FIG.
 シリコン基板10上に複数の銅製の電極パッド20を有する基板上にスピンコーターを用いて、調製例1で調製した感光性樹脂組成物1をスピンコート法にて塗布し、ホットプレートで120℃にて5分間加熱し、厚さ55μmの塗膜を形成した。次いでアライナー(Suss社製、型式「MA-200」)を用い、パターンマスクを介して波長420nmの光を照射強度300mJ/cm2にて露光した。露光後、塗膜を2.38質量%テトラメチルアンモニウムハイドロオキサイド水溶液に240秒間接触させ、塗膜を流水で洗浄し、現像した。次いで、窒素フロー下、対流式オーブンで200℃にて10分間加熱し、電極パッドに対応する部分に開口部を有するはんだレジスト30を保持したレジスト保持基板を形成した(図2(a))。電子顕微鏡で観察したところ、各開口部の開口は直径20μmの円形であり、各開口部の深さは50μmであった。また、開口部の最大幅は20μmであった。レジストの開口部の大幅に対する深さの比率は2.5であった。 The photosensitive resin composition 1 prepared in Preparation Example 1 is applied by spin coating on a substrate having a plurality of copper electrode pads 20 on a silicon substrate 10 using a spin coater, and heated at 120 ° C. with a hot plate. The mixture was heated for 5 minutes to form a coating of 55 μm in thickness. Next, using an aligner (manufactured by Suss, model “MA-200”), light with a wavelength of 420 nm was exposed at an irradiation intensity of 300 mJ / cm 2 through a pattern mask. After exposure, the coated film was brought into contact with a 2.38 mass% aqueous tetramethylammonium hydroxide solution for 240 seconds, and the coated film was washed with running water and developed. Then, the substrate was heated at 200 ° C. for 10 minutes in a convection oven under a nitrogen flow to form a resist holding substrate holding the solder resist 30 having an opening at a portion corresponding to the electrode pad (FIG. 2A). When observed with an electron microscope, the openings of each opening were circular with a diameter of 20 μm, and the depth of each opening was 50 μm. In addition, the maximum width of the opening was 20 μm. The ratio of the depth to the depth of the resist opening was 2.5.
 前記レジスト保持基板を、1質量%硫酸水溶液に23℃で1分間浸漬し、水洗、乾燥した。乾燥後のレジスト保持基板のはんだレジスト30の開口部の内部に、IMSヘッド40を用いて、SAC305(鉛フリー半田、千住金属工業(株)製品名)を250℃で溶融して得られた溶融はんだ50を250℃に加熱しながら10分間かけて充填した(図2(b))。溶融はんだ充填後のレジスト保持基板を光学顕微鏡で観察したところ、すべての開口部の内部において、溶融はんだが充填されていない箇所がみられた。 The resist holding substrate was immersed in a 1% by mass sulfuric acid aqueous solution at 23 ° C. for 1 minute, washed with water and dried. Melt obtained by melting SAC 305 (lead-free solder, product name of Senju Metal Industries, Ltd.) at 250 ° C. using IMS head 40 inside the opening of solder resist 30 of the resist holding substrate after drying The solder 50 was filled for 10 minutes while heating to 250 ° C. (FIG. 2 (b)). When the resist holding substrate after molten solder filling was observed with an optical microscope, a portion not filled with molten solder was observed inside of all the openings.
[実施例1]
 実施例1で行った一連の操作の概略を図3に示す。
 比較例1と同様の手法にてレジスト保持基板を形成した。前記レジスト保持基板のはんだレジスト30上に調製例2で調製した感光性樹脂組成物2をスピンコート法にて塗布し、ホットプレートで90℃にて90秒加熱し、塗膜を形成した。次いでアライナー(Suss社製、型式「MA-200」)を用い、パターンマスクを介して波長420nmの光を照射強度200mJ/cm2にて露光した。露光後、塗膜をホットプレートで100℃にて120秒加熱し、2.38質量%テトラメチルアンモニウムハイドロオキサイド水溶液に30秒間接触させ、塗膜を流水で洗浄し、現像し、感光性樹脂組成物1で形成したはんだレジスト30上に、感光性樹脂組成物2で形成した、はんだレジスト30の開口部に対応する領域に開口部を有する逆テーパー形状のリフトオフレジスト70(厚さは2μm)を有する基板を製造した(図3(a))。
Example 1
An outline of a series of operations performed in Example 1 is shown in FIG.
A resist holding substrate was formed in the same manner as in Comparative Example 1. The photosensitive resin composition 2 prepared in Preparation Example 2 was applied on the solder resist 30 of the resist holding substrate by a spin coating method, and heated at 90 ° C. for 90 seconds on a hot plate to form a coating film. Then, using an aligner (manufactured by Suss, model “MA-200”), light with a wavelength of 420 nm was exposed at an irradiation intensity of 200 mJ / cm 2 through a pattern mask. After exposure, the coated film is heated at 100 ° C. for 120 seconds on a hot plate, brought into contact with a 2.38 mass% aqueous solution of tetramethyl ammonium hydroxide for 30 seconds, washed with running water, and developed to form a photosensitive resin composition. On the solder resist 30 formed of the object 1, an inverse tapered liftoff resist 70 (thickness: 2 .mu.m) formed of the photosensitive resin composition 2 and having an opening in the region corresponding to the opening of the solder resist 30 A substrate having the same was manufactured (FIG. 3 (a)).
 前記基板に、スパッタリング装置(装置名「ハイレートスパッタ装置 SH-550-C12」、日本真空技術株式会社製)にてスパッタ処理を行い、膜厚0.2μmの銅膜80を形成した(図3(b))。 A sputtering process (apparatus name “high rate sputtering system SH-550-C12”, manufactured by Nippon Vacuum Technology Co., Ltd.) was performed on the substrate to form a copper film 80 having a thickness of 0.2 μm (FIG. 3 (FIG. b).
 次いで、N-メチル-2-ピロリドンにて、感光性樹脂組成物2で形成したレジストを除去し、はんだレジスト30の開口部の内壁、および前記開口部で囲まれた電極パッド20上に銅膜80を有する開口部を有するはんだレジスト30を備えたレジスト保持基板を形成した。 Next, the resist formed of the photosensitive resin composition 2 is removed with N-methyl-2-pyrrolidone, and a copper film is formed on the inner wall of the opening of the solder resist 30 and the electrode pad 20 surrounded by the opening. A resist holding substrate provided with a solder resist 30 having an opening having 80 was formed.
 前記レジスト保持基板を、1質量%硫酸水溶液に23℃で1分間浸漬し、水洗、乾燥した。乾燥後のレジスト保持基板のはんだレジスト30の開口部の内部に、IMSヘッド40を用いて、SAC305(鉛フリー半田、千住金属工業(株)製品名)を250℃で溶融して得られた溶融はんだ51を250℃に加熱しながら10分間かけて充填した(図3(c))。溶融はんだ充填後のレジスト保持基板を光学顕微鏡で観察したところ、すべての開口部の内部において、溶融はんだが隙間なく充填されていることを確認した。これにより、開口部の形状に適合した、目的に適ったはんだ電極の製造が可能であることがわかった。 The resist holding substrate was immersed in a 1% by mass sulfuric acid aqueous solution at 23 ° C. for 1 minute, washed with water and dried. Melt obtained by melting SAC 305 (lead-free solder, product name of Senju Metal Industries, Ltd.) at 250 ° C. using IMS head 40 inside the opening of solder resist 30 of the resist holding substrate after drying The solder 51 was filled for 10 minutes while heating to 250 ° C. (FIG. 3 (c)). When the resist holding substrate after molten solder filling was observed with an optical microscope, it was confirmed that the molten solder was filled without gaps in the inside of all the openings. It has been found that this makes it possible to produce a solder electrode suitable for the shape of the opening.
1:基板
2:電極パッド
3:塗膜
4、30:はんだレジスト
4a:開口部
5:金属膜
6、70:リフトオフレジスト
7、40:IMSヘッド
8、50、51:溶融はんだ
9、9a:はんだ電極
10:シリコン基板
20:電極パッド
80:銅膜
1: Substrate 2: Electrode pad 3: Coating film 4, 30: Solder resist 4a: Opening 5: Metal film 6, 70: Lift-off resist 7, 40: IMS head 8, 50, 51: Molten solder 9, 9a: Solder Electrode 10: Silicon substrate 20: Electrode pad 80: Copper film

Claims (7)

  1.  電極パッドを有する基板上に感光性樹脂組成物の塗膜を形成する工程(1);
     前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領域に開口部を有するはんだレジストを形成する工程(2);
     前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
     前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
     前記リフトオフレジストを除去する工程(5);および
     前記はんだレジストの開口部の内部に射出成形法により溶融はんだを充填する工程(6);
    を有することを特徴とするはんだ電極の製造方法。
    Step (1) of forming a coating film of a photosensitive resin composition on a substrate having an electrode pad;
    Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
    Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
    Forming a metal film on the inner wall of the opening of the solder resist (4);
    Removing the lift-off resist (5); and filling the molten solder into the opening of the solder resist by injection molding (6).
    A method of manufacturing a solder electrode, comprising:
  2.  前記工程(4)において、前記金属膜は、スパッタリング法により形成される請求項1に記載のはんだ電極の製造方法。 The method for manufacturing a solder electrode according to claim 1, wherein the metal film is formed by a sputtering method in the step (4).
  3.  前記はんだレジストが、ネガ型である請求項1または2に記載のはんだ電極の製造方法。 The method for manufacturing a solder electrode according to claim 1, wherein the solder resist is negative.
  4.  電極パッドを有する第1基板上に感光性樹脂組成物の塗膜を形成する工程(1);
     前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領域に開口部を有するはんだレジストを形成する工程(2);
     前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
     前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
     前記リフトオフレジストを除去する工程(5);
     前記開口部に射出成形法により溶融はんだを充填して、はんだ電極を製造する工程(6);および
     前記はんだ電極を介して、前記第1基板の電極パッドと、電極パッドを有する第2基板の電極パッドとの電気的接続構造を形成する工程(8);
     を有することを特徴とする積層体の製造方法。
    A step (1) of forming a coating film of a photosensitive resin composition on a first substrate having an electrode pad;
    Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
    Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
    Forming a metal film on the inner wall of the opening of the solder resist (4);
    Removing the lift-off resist (5);
    Filling the molten solder in the opening by injection molding to produce a solder electrode (6); and a second substrate having an electrode pad of the first substrate and an electrode pad via the solder electrode Forming an electrical connection structure with the electrode pad (8);
    A method of manufacturing a laminate, comprising:
  5.  電極パッドを有する第1基板上に感光性樹脂組成物の塗膜を形成する工程(1);
     前記塗膜を選択的に露光し、さらに現像することにより、前記電極パッドに対応する領域に開口部を有するはんだレジストを形成する工程(2);
     前記はんだレジスト上に、該はんだレジストの開口部に対応する領域に開口部を有するリフトオフレジストを形成する工程(3);
     前記はんだレジストの開口部の内壁に金属膜を形成する工程(4);
     前記リフトオフレジストを除去する工程(5);
     前記開口部に射出成形法により溶融はんだを充填して、はんだ電極を製造する工程(6);
     前記はんだレジストを除去する工程(7); および
     前記はんだ電極を介して、前記第1基板の電極パッドと、電極パッドを有する第2基板の電極パッドとの電気的接続構造を形成する工程(8);
     を有することを特徴とする積層体の製造方法。
    A step (1) of forming a coating film of a photosensitive resin composition on a first substrate having an electrode pad;
    Forming a solder resist having an opening in a region corresponding to the electrode pad by selectively exposing the coating film and further developing the film;
    Forming a lift-off resist having an opening in a region corresponding to the opening of the solder resist on the solder resist (3);
    Forming a metal film on the inner wall of the opening of the solder resist (4);
    Removing the lift-off resist (5);
    Filling the molten solder into the opening by an injection molding method to produce a solder electrode (6);
    Removing the solder resist (7); and forming an electrical connection structure between the electrode pad of the first substrate and the electrode pad of the second substrate having the electrode pad through the solder electrode (8) );
    A method of manufacturing a laminate, comprising:
  6.  請求項4又は5に記載の積層体の製造方法によって製造した積層体。 The laminated body manufactured by the manufacturing method of the laminated body of Claim 4 or 5.
  7.  請求項6に記載の積層体を有する電子部品。 The electronic component which has a laminated body of Claim 6.
PCT/JP2019/000638 2018-01-23 2019-01-11 Method for producing solder electrode and use of same WO2019146428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018008720 2018-01-23
JP2018-008720 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019146428A1 true WO2019146428A1 (en) 2019-08-01

Family

ID=67395396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000638 WO2019146428A1 (en) 2018-01-23 2019-01-11 Method for producing solder electrode and use of same

Country Status (2)

Country Link
TW (1) TW201933501A (en)
WO (1) WO2019146428A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187254A (en) * 2012-03-06 2013-09-19 Tamura Seisakusho Co Ltd Formation method of solder bump
JP2016208001A (en) * 2015-04-16 2016-12-08 Jsr株式会社 Method for producing soldered electrode and use of the same
US9859241B1 (en) * 2016-09-01 2018-01-02 International Business Machines Corporation Method of forming a solder bump structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187254A (en) * 2012-03-06 2013-09-19 Tamura Seisakusho Co Ltd Formation method of solder bump
JP2016208001A (en) * 2015-04-16 2016-12-08 Jsr株式会社 Method for producing soldered electrode and use of the same
US9859241B1 (en) * 2016-09-01 2018-01-02 International Business Machines Corporation Method of forming a solder bump structure

Also Published As

Publication number Publication date
TW201933501A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP4535066B2 (en) Positive radiation sensitive resin composition
TW201742216A (en) Method of manufacturing semiconductor device, method of manufacturing flip-chip semiconductor device, semiconductor device and flip-chip semiconductor device
TWI294903B (en) Chemically amplified type positive-working radiation sensitive resin composition
US20090288855A1 (en) Positive-type radiation-sensitive resin composition for producing a metal-plating formed material, transcription film and production method of a metal-plating formed material
US20180174989A1 (en) Method for producing soldered electrode and use thereof
JP2006330368A (en) Positive radiation sensitive resin composition, transfer film and method for producing plated formed product
WO2019146428A1 (en) Method for producing solder electrode and use of same
US11249398B2 (en) Method for producing plated shaped structure and photosensitive resin composition for production of plated shaped structures
JP4715671B2 (en) Positive-type radiation-sensitive resin composition for plating model production, transfer film, and method for producing plating model
JP7416052B2 (en) Photosensitive resin composition, method for producing a resist pattern film, method for producing a plated object, and method for producing a tin-silver plated object
JPH07329441A (en) Intaglio and printing method using the same
TWI681474B (en) Solder electrode manufacturing method, solder electrode, laminated body manufacturing method, laminated body, electronic component, and photosensitive resin composition for injection molding solder
WO2016167036A1 (en) Method for producing soldered electrode and use thereof
WO2018154974A1 (en) Method for manufacturing solder electrode, method for manufacturing laminate, laminate, and electronic component
JP2006330366A (en) Positive radiation sensitive resin composition, transfer film and method for producing plated formed product
JP2002341537A (en) Negative radiation-sensitive resin composition for manufacture of plated molded article and method for manufacturing plated molded article
TWI660659B (en) Manufacturing method of solder electrode, manufacturing method of laminated body, laminated body and electronic component
TWI458773B (en) Resin composition and coating method thereof
JP2023044782A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2005322825A (en) Manufacturing method of wiring board
JP2010161314A (en) Dot pattern forming method, and method of manufacturing conductive shaped article using the same
KR20210047885A (en) Photosensitive resin composition, method of forming resist pattern, method of manufacturing plated article, and semiconductor device
JP2016212145A (en) Method for forming resist pattern and method for manufacturing plated molded object
JP2018161780A (en) Production method for structure and production method for liquid discharge head
JP2017228614A (en) Manufacturing method of electronic parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP