WO2019138788A1 - Deployable structure and deployable method therefor - Google Patents
Deployable structure and deployable method therefor Download PDFInfo
- Publication number
- WO2019138788A1 WO2019138788A1 PCT/JP2018/046315 JP2018046315W WO2019138788A1 WO 2019138788 A1 WO2019138788 A1 WO 2019138788A1 JP 2018046315 W JP2018046315 W JP 2018046315W WO 2019138788 A1 WO2019138788 A1 WO 2019138788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- distorted
- deployment
- alloy
- shape
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 17
- 229910045601 alloy Inorganic materials 0.000 abstract description 35
- 239000000956 alloy Substances 0.000 abstract description 35
- 239000000463 material Substances 0.000 abstract description 8
- 239000003733 fiber-reinforced composite Substances 0.000 abstract description 3
- 238000000137 annealing Methods 0.000 description 10
- 235000015842 Hesperis Nutrition 0.000 description 9
- 235000012633 Iberis amara Nutrition 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 229910000734 martensite Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000005489 elastic deformation Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 229910017518 Cu Zn Inorganic materials 0.000 description 4
- 229910017752 Cu-Zn Inorganic materials 0.000 description 4
- 229910017943 Cu—Zn Inorganic materials 0.000 description 4
- 229910003310 Ni-Al Inorganic materials 0.000 description 4
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 4
- 229910001000 nickel titanium Inorganic materials 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003446 memory effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
Definitions
- the present invention relates to an unfolding structure and an unfolding method thereof.
- the deployment structure is generally configured to expand the deployment portion. However, when the deployment portion expands, the area and volume after deployment expand more than before deployment, and the accommodation after deployment decreases.
- a rocket nozzle having a larger aperture ratio at the nozzle end is preferable.
- Patent Document 1 discloses a nozzle adopting a configuration in which the nozzle is geometrically complicated and folded to fold the entire nozzle. As a result, the aperture ratio is large, and a compact nozzle shape can be realized at the time of accommodation.
- crease marks remain in the rocket nozzle, the fire from the rocket engine during launch or navigation may cause melting due to local heating. In addition, crease marks cause a decrease in buckling strength.
- An object of the present invention is to provide an unfolded structure which can be made into a compact shape before being deployed or after being unfolded and which has no crease marks. Also provided is a method of housing and deploying the deployment structure.
- the present invention has the following configurations (1) to (7).
- a developed structure that includes a superelastic alloy and is capable of containing a developed portion within the elastic deformation range of the superelastic alloy.
- the unfolding structure according to (1) wherein the unfolding structure is a rocket nozzle.
- the rocket nozzle includes a first portion on the front end side and a second portion on the rear end side, the first portion is made of a fiber reinforced composite material or a heat-resistant alloy, and is the expansion portion
- the expanded structure according to (2), wherein the second portion is made of the superelastic alloy.
- the diameter of the virtual circle circumscribing the rear end after distortion is stored so as to be smaller than the diameter of the circumscribed circle on the front end side before distortion, and the distortion state is corrected by the distortion fixing member
- the expansion method according to (6), wherein the expanded structure in the distorted state is expanded to an original shape by removing the distorted shape fixing member.
- ADVANTAGE OF THE INVENTION According to this invention, it can be made into a compact shape at the time of accommodation after expansion
- FIG. 5 is a diagram showing changes in atomic position in superelasticity and shape memory. It is a figure which shows the stress-strain curve at the time of 10.8ks annealing and water cooling of Ti-4.5Al-3V-2Fe-2Mo alloy at 1073K.
- FIG. 6 shows the shape and dimensions of a 1 ⁇ 4 model of a rocket nozzle.
- FIG. 1 is a schematic cross-sectional view showing a rocket motor 1 equipped with a nozzle according to the present embodiment.
- the nozzle 10 of the rocket motor 1 according to the present embodiment includes a portion of the fixed nozzle 11 and a portion of the distortable nozzle 12, and the distortable nozzle 12 is a portion on the rear end side of the fixed nozzle 11 (a lower portion of FIG. Is attached and fixed.
- the distortable nozzle 12 has a frusto-conical shape, and the inner diameter of the rear end portion of the fixed nozzle 11 and the tip end portion (upper part in FIG. 1) of the distortable nozzle 12 is the same.
- the fixed nozzle 11 is made of, for example, a fiber-reinforced composite material or a heat-resistant alloy as in a normal nozzle.
- the distortable nozzle 12 is made of a superelastic alloy.
- the superelastic alloy which comprises the distortable nozzle 12 (deployment part) is demonstrated.
- the nozzle which can be made into a normal metal and which can be distorted, it is possible to make it distorted like the after-mentioned by making the thickness thin enough.
- it is difficult to maintain the properties such as strength and heat resistance required for a rocket nozzle, for example, by using only a thin metal.
- it must be thick enough to give the nozzle the necessary strength for ordinary metals, but it is difficult to distort with such thick metals, and plastic deformation occurs even if it can be distorted. , It is difficult to restore the original state by its own elastic force.
- the superelastic alloy can be restored to its original state by its own elastic force by being deformed within the elastic deformation range.
- the term "superelasticity” refers to a phenomenon in which deformation caused by applying stress to an alloy exhibiting thermoelastic martensitic transformation undergoes shape recovery without heating after unloading.
- FIG. 4 the change in atomic position in the slip deformation is shown at the top as a reference, and the change in atomic position in superelasticity is shown in the middle, and the change in atom position in the shape memory effect is shown at the bottom.
- Superelasticity changes to a shape memory effect when the temperature goes below the transformation temperature.
- the superelastic alloy placed just above the transformation temperature is in the matrix state under no stress.
- stress-induced martensitic transformation occurs, martensite variants in the direction of stress relaxation are preferentially generated and grown, and the shape of the entire material changes.
- unloading if the parent phase is originally at a stable temperature, reverse transformation proceeds only by unloading and the shape is recovered. Thus, the property of superelasticity is expressed.
- the superelastic alloy can be used without particular limitation, but for example, a Ni-Ti alloy, a Cu-Zn alloy, a Ni-Al alloy, etc. can be used.
- the Ni-Ti-based alloy include Ni-Ti-based alloys of 49 to 52 atomic percent Ni.
- a Cu—Zn-based alloy for example, a Cu—Zn alloy of 38.5 to 41.5 wt% Zn is exemplified.
- As the Ni-Al based alloy for example, a Ni-Al alloy of 36 to 38 atomic% Al is exemplified.
- these materials need to be thin sheet materials.
- the superelastic alloy in addition to the Ni-Ti alloy, Cu-Zn alloy, Ni-Al alloy, etc. described above, heating to a near ⁇ -Ti alloy for about 1 to 3 hours at about 600 to 1000 ° C. Then, it may be immersed in water and subjected to heat treatment such as rapid cooling to normal temperature to use a thin plate material having developed a superelastic property. More preferably, an alloy obtained by annealing / water cooling a Ti-4.5Al-3V-2Fe-2Mo alloy (SP-700 manufactured by JFE Steel) can be used as the superelastic alloy.
- SP-700 manufactured by JFE Steel can be used as the superelastic alloy.
- FIG. 5 is a diagram showing a stress-strain curve when Ti-4.5Al-3V-2Fe-2Mo alloy is subjected to 10.8 ks annealing / water cooling at 1073K.
- the stress-strain curve of FIG. 5 after applying a strain of 3% at room temperature, the residual strain remains at about 1%, indicating a superelasticity having an elastic recovery strain of about 2%.
- Such superelastic superelastic alloys can be used to construct the deployed structures of the present invention.
- the developed structure of the present invention can also use a superelastic alloy with better characteristics.
- the annealing temperature is preferably 1063 K or more.
- the annealing temperature is preferably 1083 K or less. From these, the preferable range of the annealing temperature was 1063 K to 1083 K.
- FIG. 2 is a view showing the shape of a rocket nozzle according to an embodiment of the present invention.
- the mesh is arranged on the surface of the nozzle so that the state of deformation can be expressed.
- FIG. 2A is a view showing the rocket nozzle before elastic deformation.
- FIGS. 2B to 2E show the rocket nozzle 12 and show the process of distortion.
- FIG. 2B shows that a part (left end area and right end area) is deformed inward by applying a force from the outside to part of the outer surface of the rocket nozzle 12 (left end area and right end area).
- the opposite side (back side) of the paper also has to be deformed by applying a force from the outside to a part of the outer surface of the rocket nozzle 12.
- FIG. 2C in addition to the external force of the outer surface of the rocket nozzle 12 (left end region and right end region) being applied from the outside, force is also applied to the central region between the left end region and the right end region, It shows a state in which the amount of deformation is larger than that in FIG. 2B.
- the reverse side (back side) of the paper also has to be deformed by applying a force from the outside to a part of the outer surface of the rocket nozzle 12.
- the deformation amount is larger than that in FIG. 2C, and the deformation ratio is large in the left end region, the center region, and the right end region.
- FIG. 2F shows a state in which distortion is completed because the deformation amount is larger than in FIGS. 2D and 2E, and the dent ratio in the left end region, the center region, and the right end region is increased.
- the diameter of an imaginary circle circumscribing the plurality of apexes on the upper side (the rear end side of the nozzle) in FIG. 2F is smaller than the diameter of the circle on the lower side (the tip side of the nozzle) in FIG.
- the nozzle 12 of FIG. 2F can expand
- the expansion method for storing or expanding the expansion structure of the present embodiment is (A) distorting the unfolded structure within an elastic deformation range; (B) fixing the unfolded structure in a distorted state by a distorted state fixing member; Is a deployment method comprising
- the unfolded structure in the distorted state can be developed into the original shape.
- FIG. 3 As shown in FIG. 3, only the tip of the truncated cone shaped nozzle 12 (deployed portion) is fixed to the substrate, and the nozzle 12 is distorted using a jig 20.
- the nozzle 12 is fixed such that its front end side is fixed to the substrate with its front end side down, and its rear end side is on top.
- the shape of the jig 20 body may be a cylindrical shape whose diameter is larger than the rear end of the nozzle 12.
- each pillar has two holes for inserting the rod-like members 21 from the outside. ing.
- the nozzle 12 can be most easily folded by providing a hole in each of the six columnar parts, the number of places where the holes are provided is not limited thereto.
- the rod-like member 21 is inserted into the hole of each columnar portion from the outside. Then, each end of the rod-like member 21 at each portion is brought into contact with the vicinity of the rear end of the nozzle 12, and each portion of the nozzle 12 in contact with the tip of the rod-like member 21 is distorted uniformly. Push the bar-like member of the inside slightly little by little.
- the outer surface of the nozzle 12 can be uniformly pushed inward and distorted from directions at equal intervals in the circumferential direction perpendicular to the axis of the nozzle.
- the nozzle has a star-like shape which is pressed from six directions.
- FIG. 6 is a diagram showing the shape and dimensions of a rocket nozzle model.
- the rocket nozzle model is assumed to be applied to a real machine, and its 1 ⁇ 4 scale has a truncated cone shape with a lower ⁇ (small diameter) of 120 mm, an upper ⁇ (large diameter) of 168 mm, and a height of 66.5 mm.
- the rolling direction is indicated by an RD (rolling direction)
- the rolling perpendicular direction is indicated by an arrow of a TD (transverse direction).
- plate thickness while it is necessary to have a thickness that withstands circumferential stress and axial buckling due to the internal pressure of the nozzle, strain during storage increases in proportion to the plate thickness, so it is necessary to make it as thin as possible .
- the elastic recovery strain is large, the strain at the time of storage can be increased.
- the above-mentioned Ti-4.5Al-3V-2Fe-2Mo alloy which has been subjected to 10.8ks annealing and water cooling at 1073 K, has an elastic recovery strain of about 2%, assuming that it is used, the above-mentioned folded shape
- the plate thickness was calculated in consideration of the distortion at the time of storage and the nozzle internal pressure, the required minimum safety factor was secured, and it was 60 ⁇ m. This corresponds to 0.25 mm in a real machine.
- the knotting cord is wound around the rear end of the nozzle 12 from the gap of the columnar part of the jig 20 one round or several rounds if necessary to connect the both ends.
- This knotted cord is an example of the distorted shape fixing member of the present invention. Thereby, the distorted state of the nozzle 12 is fixed.
- a knotted string a plastic tie wrap, a metal wire, etc. can be used as a knotted string.
- the elastic force of the nozzle 12 itself immediately deploys to the original perfect truncated cone shape, for example, by removing the distorted shape fixing member (in the case of a knotted string, simply cutting). be able to.
- the time required for the above-described rocket nozzle scale model deployment was less than one second. From this, it is understood that even a rocket nozzle of actual dimensions deploys within 1 second. This is a sufficiently fast time to deploy and eject the nozzle in space.
- the deployable structure of the present invention is not limited to the rocket nozzle.
- the present invention can be applied to a deployment structure such as an antenna for space deployment, which is devised to be distorted, housed small on the ground, transported to space, and deployed there based on its own elasticity.
- the expansion method of the present invention is not limited to the method of storing using the jig 20 as described above, and for example, the expanded structure may be distorted using a mold.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
Abstract
Provided is a deployable structure which can be compact in form while being stored before or after deployment and which does not retain fold lines. The nozzle 10 of a rocket motor 1 is constituted by a fixed nozzle 11 and a distortable nozzle 12, and the distortable nozzle 12 is attached and affixed to the rear end (lower side in Fig. 1) of the fixed nozzle 11. The distortable nozzle 12 has a truncated cone shape, and the rear end of the fixed nozzle 11 and the leading end (upper side in Fig. 1) of the distortable nozzle 12 have substantially the same diameter. The fixed nozzle 11 is composed of a material similar to that used in regular nozzles, such as a fiber-reinforced composite material. The distortable nozzle 12 is composed of a superelastic alloy.
Description
本発明は、展開構造体及びその展開方法に関する。
The present invention relates to an unfolding structure and an unfolding method thereof.
展開構造体は、一般的に展開部分が拡張するように構成されている。しかし、展開部分が拡張すると、展開後の面積や容積が展開前よりも拡大し、展開後の収容性が低下する。
The deployment structure is generally configured to expand the deployment portion. However, when the deployment portion expands, the area and volume after deployment expand more than before deployment, and the accommodation after deployment decreases.
例えば、ロケット用ノズルの場合、開口比が大きいほど航行能力が高くなることから、ノズル端部の開口比が大きいロケット用ノズルが好ましい。
For example, in the case of a rocket nozzle, the larger the aperture ratio, the higher the navigation capability. Therefore, a rocket nozzle having a larger aperture ratio at the nozzle end is preferable.
特許文献1には、ノズルに幾何学的で複雑な折り目を付けてノズル全体を折り畳む構成を採用したノズルが開示されている。これにより、開口比が大きく、収容時にコンパクトなノズル形状を実現することを可能としている。
Patent Document 1 discloses a nozzle adopting a configuration in which the nozzle is geometrically complicated and folded to fold the entire nozzle. As a result, the aperture ratio is large, and a compact nozzle shape can be realized at the time of accommodation.
しかしながら、例えば上記特許文献1の折り畳み式のノズルでは、折り畳む際に多数の折り目がつくことになり、畳んだ状態からこれを展開した後にも折った部分に折り目痕が残ってしまう。
However, for example, in the foldable nozzle of Patent Document 1 described above, many folds will be formed when folded, and even after the folded state from the folded state, fold marks will remain in the folded portion.
ロケット用ノズルに少しでも折り目痕が残存していると、打ち上げや航行時のロケットエンジンからの火炎によって、局所加熱による溶融の原因になる場合がある。また、折り目痕が座屈強度低下の原因になる。
If any crease marks remain in the rocket nozzle, the fire from the rocket engine during launch or navigation may cause melting due to local heating. In addition, crease marks cause a decrease in buckling strength.
本発明は、展開前や展開後の収容時にコンパクトな形状とすることができ、折り目痕が残存しない展開構造体を提供することを目的とする。また、その展開構造体を収容及び展開させる方法も提供する。
An object of the present invention is to provide an unfolded structure which can be made into a compact shape before being deployed or after being unfolded and which has no crease marks. Also provided is a method of housing and deploying the deployment structure.
本発明は、以下の(1)~(7)の構成を備える。
(1)超弾性合金を含み、前記超弾性合金の弾性変形範囲内で展開部を収納可能とする展開構造体。
(2)前記展開構造体がロケット用ノズルである、(1)記載の展開構造体。
(3)前記ロケット用ノズルは、先端側の第1の部分と後端側の第2の部分を含み、前記第1の部分は繊維強化複合材あるいは耐熱合金から構成され、前記展開部である前記第2の部分は前記超弾性合金から構成される、(2)記載の展開構造体。
(4)収納時に歪曲後の後端部に外接する仮想の円の直径が、歪曲前の前記先端側の外接円の直径よりも小さくなるように歪曲され、当該歪曲状態が歪曲形状固定部材により固定される、(2)又は(3)に記載の展開構造体。
(5)前記歪曲形状固定部材が前記後端部に巻回される結節紐である、(4)記載の展開構造体。
(6)上記(1)~(5)のいずれかの展開構造体を収納又は展開させる展開方法であって、
前記展開構造体を弾性変形範囲で歪曲させる工程と、
前記歪曲した状態の前記展開構造体を、歪曲状態固定部材により固定する工程と、
を備える展開方法。
(7)前記歪曲形状固定部材を取り外すことにより、前記歪曲した状態の前記展開構造体を元の形状に展開させる、(6)記載の展開方法。 The present invention has the following configurations (1) to (7).
(1) A developed structure that includes a superelastic alloy and is capable of containing a developed portion within the elastic deformation range of the superelastic alloy.
(2) The unfolding structure according to (1), wherein the unfolding structure is a rocket nozzle.
(3) The rocket nozzle includes a first portion on the front end side and a second portion on the rear end side, the first portion is made of a fiber reinforced composite material or a heat-resistant alloy, and is the expansion portion The expanded structure according to (2), wherein the second portion is made of the superelastic alloy.
(4) The diameter of the virtual circle circumscribing the rear end after distortion is stored so as to be smaller than the diameter of the circumscribed circle on the front end side before distortion, and the distortion state is corrected by the distortion fixing member The expanded structure according to (2) or (3), which is fixed.
(5) The unfolded structure according to (4), wherein the distorted shape fixing member is a knotted cord wound around the rear end.
(6) An expanding method for storing or expanding the expanded structure according to any one of the above (1) to (5),
Distorting the unfolded structure within an elastic deformation range;
Fixing the unfolded structure in the distorted state by a distorted state fixing member;
Deployment method.
(7) The expansion method according to (6), wherein the expanded structure in the distorted state is expanded to an original shape by removing the distorted shape fixing member.
(1)超弾性合金を含み、前記超弾性合金の弾性変形範囲内で展開部を収納可能とする展開構造体。
(2)前記展開構造体がロケット用ノズルである、(1)記載の展開構造体。
(3)前記ロケット用ノズルは、先端側の第1の部分と後端側の第2の部分を含み、前記第1の部分は繊維強化複合材あるいは耐熱合金から構成され、前記展開部である前記第2の部分は前記超弾性合金から構成される、(2)記載の展開構造体。
(4)収納時に歪曲後の後端部に外接する仮想の円の直径が、歪曲前の前記先端側の外接円の直径よりも小さくなるように歪曲され、当該歪曲状態が歪曲形状固定部材により固定される、(2)又は(3)に記載の展開構造体。
(5)前記歪曲形状固定部材が前記後端部に巻回される結節紐である、(4)記載の展開構造体。
(6)上記(1)~(5)のいずれかの展開構造体を収納又は展開させる展開方法であって、
前記展開構造体を弾性変形範囲で歪曲させる工程と、
前記歪曲した状態の前記展開構造体を、歪曲状態固定部材により固定する工程と、
を備える展開方法。
(7)前記歪曲形状固定部材を取り外すことにより、前記歪曲した状態の前記展開構造体を元の形状に展開させる、(6)記載の展開方法。 The present invention has the following configurations (1) to (7).
(1) A developed structure that includes a superelastic alloy and is capable of containing a developed portion within the elastic deformation range of the superelastic alloy.
(2) The unfolding structure according to (1), wherein the unfolding structure is a rocket nozzle.
(3) The rocket nozzle includes a first portion on the front end side and a second portion on the rear end side, the first portion is made of a fiber reinforced composite material or a heat-resistant alloy, and is the expansion portion The expanded structure according to (2), wherein the second portion is made of the superelastic alloy.
(4) The diameter of the virtual circle circumscribing the rear end after distortion is stored so as to be smaller than the diameter of the circumscribed circle on the front end side before distortion, and the distortion state is corrected by the distortion fixing member The expanded structure according to (2) or (3), which is fixed.
(5) The unfolded structure according to (4), wherein the distorted shape fixing member is a knotted cord wound around the rear end.
(6) An expanding method for storing or expanding the expanded structure according to any one of the above (1) to (5),
Distorting the unfolded structure within an elastic deformation range;
Fixing the unfolded structure in the distorted state by a distorted state fixing member;
Deployment method.
(7) The expansion method according to (6), wherein the expanded structure in the distorted state is expanded to an original shape by removing the distorted shape fixing member.
本発明によれば、展開前や展開後の収容時にコンパクトな形状とすることができ、折り目痕が残存しない展開構造体を提供することができる。また、その展開構造体を収容又は展開させる方法も提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, it can be made into a compact shape at the time of accommodation after expansion | deployment or after expansion | deployment, and the expansion | deployment structure which a crease mark does not remain can be provided. It is also possible to provide a method for containing or deploying the deployment structure.
以下に図面を参照して、本発明の実施の一形態であるロケット用ノズルについて説明する。なお、本発明は、以下の実施形態の記載によって限定されるものではない。
A rocket nozzle according to an embodiment of the present invention will be described below with reference to the drawings. Note that the present invention is not limited by the description of the following embodiments.
図1は、本実施形態に係るノズルを装着したロケットモータ1を示す概略断面図である。本実施形態に係るロケットモータ1のノズル10は、固定ノズル11の部分と歪曲可能ノズル12の部分からなり、歪曲可能ノズル12は固定ノズル11の後端側の部分(図1の下側の部分)に装着されて固定される。歪曲可能ノズル12は円錐台形状であり、固定ノズル11の後端部と歪曲可能ノズル12の先端側の部分(図1の上側の部分)の内径は同一とする。固定ノズル11は、通常のノズルと同様に例えば繊維強化複合材あるいは耐熱合金などによって構成される。歪曲可能ノズル12は、超弾性合金によって構成される。
FIG. 1 is a schematic cross-sectional view showing a rocket motor 1 equipped with a nozzle according to the present embodiment. The nozzle 10 of the rocket motor 1 according to the present embodiment includes a portion of the fixed nozzle 11 and a portion of the distortable nozzle 12, and the distortable nozzle 12 is a portion on the rear end side of the fixed nozzle 11 (a lower portion of FIG. Is attached and fixed. The distortable nozzle 12 has a frusto-conical shape, and the inner diameter of the rear end portion of the fixed nozzle 11 and the tip end portion (upper part in FIG. 1) of the distortable nozzle 12 is the same. The fixed nozzle 11 is made of, for example, a fiber-reinforced composite material or a heat-resistant alloy as in a normal nozzle. The distortable nozzle 12 is made of a superelastic alloy.
ここで、歪曲可能ノズル12(展開部)を構成する超弾性合金について説明する。通常の金属で歪曲可能のノズルを作製しようとした場合、その厚さを十分に薄くすることによって後述のように歪曲させることが考えられる。しかしながら、ただ単に薄いだけの金属では、例えばロケット用ノズルとして必要とされる強度や耐熱性などの特性を保つことは困難である。一方、通常の金属でノズルとして必要な強度を持たせるには十分な厚みにしなければならないが、そのように厚い金属では歪曲させることは難しく、また歪曲させることができたとしても塑性変形を起こし、自身の弾性力で元の状態に復元することは難しい。
Here, the superelastic alloy which comprises the distortable nozzle 12 (deployment part) is demonstrated. When it is going to produce the nozzle which can be made into a normal metal and which can be distorted, it is possible to make it distorted like the after-mentioned by making the thickness thin enough. However, it is difficult to maintain the properties such as strength and heat resistance required for a rocket nozzle, for example, by using only a thin metal. On the other hand, it must be thick enough to give the nozzle the necessary strength for ordinary metals, but it is difficult to distort with such thick metals, and plastic deformation occurs even if it can be distorted. , It is difficult to restore the original state by its own elastic force.
超弾性合金は、弾性変形範囲内で変形させることによって、自身の弾性力で元の状態に復元することが可能である。超弾性合金を展開部分に含有することにより、展開前や展開後の収容時にコンパクトな形状とすることができ、折り目痕が残存しない展開構造体を実現可能となる。ここで、超弾性とは、熱弾性マルテンサイト変態を示す合金に応力を負荷することにより生じた変形が、除荷した後に加熱を伴わず形状回復する現象を示す。図4では、参考として最上段にすべり変形における原子位置の変化が示されており、中段に超弾性における原子位置の変化、最下段に形状記憶効果における原子位置の変化が示されている。超弾性は、温度が変態温度以下となると形状記憶効果に変化する。変態温度直上におかれた超弾性合金は無応力下では母相状態である。ここに応力を負荷すると、応力誘起マルテンサイト変態が起こり、応力を緩和する方向のマルテンサイトバリアントが優先的に生成・成長し、材料全体の形状が変化する。次に除荷を行うと、本来母相が安定な温度であれば、除荷のみによって逆変態が進行し、形状が回復する。このようにして、超弾性の性質が発現されるものである。
The superelastic alloy can be restored to its original state by its own elastic force by being deformed within the elastic deformation range. By containing the superelastic alloy in the developed portion, it is possible to make it into a compact shape before being deployed or after being accommodated, and it is possible to realize a deployed structure in which no crease marks remain. Here, the term "superelasticity" refers to a phenomenon in which deformation caused by applying stress to an alloy exhibiting thermoelastic martensitic transformation undergoes shape recovery without heating after unloading. In FIG. 4, the change in atomic position in the slip deformation is shown at the top as a reference, and the change in atomic position in superelasticity is shown in the middle, and the change in atom position in the shape memory effect is shown at the bottom. Superelasticity changes to a shape memory effect when the temperature goes below the transformation temperature. The superelastic alloy placed just above the transformation temperature is in the matrix state under no stress. When stress is applied here, stress-induced martensitic transformation occurs, martensite variants in the direction of stress relaxation are preferentially generated and grown, and the shape of the entire material changes. Next, when unloading is performed, if the parent phase is originally at a stable temperature, reverse transformation proceeds only by unloading and the shape is recovered. Thus, the property of superelasticity is expressed.
超弾性合金としては、特に制限なく用いることができるが、例えば、Ni-Ti系合金、Cu-Zn系合金、Ni-Al系合金などを用いることができる。Ni-Ti系合金としては例えば49~52原子%NiのNi-Ti系合金などが例示される。Cu-Zn系合金としては、例えば38.5~41.5重量%ZnのCu-Zn合金などが例示される。Ni-Al系合金としては例えば36~38原子%AlのNi-Al合金などが例示される。ただしこれらの材料は薄板材である必要がある。
The superelastic alloy can be used without particular limitation, but for example, a Ni-Ti alloy, a Cu-Zn alloy, a Ni-Al alloy, etc. can be used. Examples of the Ni-Ti-based alloy include Ni-Ti-based alloys of 49 to 52 atomic percent Ni. As the Cu—Zn-based alloy, for example, a Cu—Zn alloy of 38.5 to 41.5 wt% Zn is exemplified. As the Ni-Al based alloy, for example, a Ni-Al alloy of 36 to 38 atomic% Al is exemplified. However, these materials need to be thin sheet materials.
超弾性合金としては、前項のNi-Ti系合金、Cu-Zn系合金、Ni-Al系合金などのほかに、near β-Ti合金に、1~3時間程度にわたり約600~1000℃で加熱した後、水に浸して常温まで急冷するなどの熱処理を施して超弾性特性を発現させた薄板材を用いてもよい。
より好ましくは、超弾性合金として、Ti-4.5Al-3V-2Fe-2Mo合金(JFEスチール製SP-700)を焼鈍・水冷した合金を用いることができる。図5は、Ti-4.5Al-3V-2Fe-2Mo合金を1073Kで10.8ks焼鈍・水冷した際の応力-ひずみ曲線を示す図である。図5の応力-ひずみ曲線では、室温にて3%のひずみを与えた後、残留したひずみが1%程度に留まり、弾性回復ひずみが2%程度の超弾性を示している。そのような超弾性を有する超弾性合金を使用して、本発明の展開構造体を構成することができる。なお、当然に、本発明の展開構造体は、それより特性の良好な超弾性合金を使用することもできる。
室温にて超弾性を得るには、前述の超弾性合金に対して、温度1063K~1083Kで600ks以上の焼鈍を施し、冷却は水冷(293K)により急速に行うことが好ましい。マルテンサイト変態温度はα相の体積率に依存し、焼鈍温度が1063Kよりも低い場合はα相の体積率増加のためにマルテンサイト変態温度が室温に対して低くなりすぎ、応力を加えた際に応力誘起マルテンサイト変態に先駆けてすべり変形が生じることで超弾性が得られなくなるからである。そのため、焼鈍温度は1063K以上であることが好ましい。一方で、焼鈍温度が1083Kよりも高い場合は、α相の体積率減少のためにマルテンサイト変態温度が室温に対して高くなり過ぎ、形状記憶効果を示すようになって超弾性が得られなくなる。そのため、焼鈍温度は1083K以下であることが好ましい。これらより、好適な焼鈍温度の範囲は、1063K~1083Kとなった。 As the superelastic alloy, in addition to the Ni-Ti alloy, Cu-Zn alloy, Ni-Al alloy, etc. described above, heating to a near β-Ti alloy for about 1 to 3 hours at about 600 to 1000 ° C. Then, it may be immersed in water and subjected to heat treatment such as rapid cooling to normal temperature to use a thin plate material having developed a superelastic property.
More preferably, an alloy obtained by annealing / water cooling a Ti-4.5Al-3V-2Fe-2Mo alloy (SP-700 manufactured by JFE Steel) can be used as the superelastic alloy. FIG. 5 is a diagram showing a stress-strain curve when Ti-4.5Al-3V-2Fe-2Mo alloy is subjected to 10.8 ks annealing / water cooling at 1073K. In the stress-strain curve of FIG. 5, after applying a strain of 3% at room temperature, the residual strain remains at about 1%, indicating a superelasticity having an elastic recovery strain of about 2%. Such superelastic superelastic alloys can be used to construct the deployed structures of the present invention. Of course, the developed structure of the present invention can also use a superelastic alloy with better characteristics.
In order to obtain superelasticity at room temperature, it is preferable to perform annealing for 600 ks or more at a temperature of 1063 K to 1083 K with respect to the above-mentioned super elastic alloy, and to rapidly cool by water cooling (293 K). The martensitic transformation temperature depends on the volume fraction of the α phase, and when the annealing temperature is lower than 1063 K, the martensitic transformation temperature becomes too low relative to room temperature due to the increase of the volume fraction of the α phase, and stress is applied It is because super-elasticity can not be obtained because slip deformation occurs prior to stress-induced martensitic transformation. Therefore, the annealing temperature is preferably 1063 K or more. On the other hand, when the annealing temperature is higher than 1083 K, the martensitic transformation temperature becomes too high with respect to room temperature due to the decrease of the volume fraction of α phase, and the shape memory effect is exhibited and superelasticity can not be obtained. . Therefore, the annealing temperature is preferably 1083 K or less. From these, the preferable range of the annealing temperature was 1063 K to 1083 K.
より好ましくは、超弾性合金として、Ti-4.5Al-3V-2Fe-2Mo合金(JFEスチール製SP-700)を焼鈍・水冷した合金を用いることができる。図5は、Ti-4.5Al-3V-2Fe-2Mo合金を1073Kで10.8ks焼鈍・水冷した際の応力-ひずみ曲線を示す図である。図5の応力-ひずみ曲線では、室温にて3%のひずみを与えた後、残留したひずみが1%程度に留まり、弾性回復ひずみが2%程度の超弾性を示している。そのような超弾性を有する超弾性合金を使用して、本発明の展開構造体を構成することができる。なお、当然に、本発明の展開構造体は、それより特性の良好な超弾性合金を使用することもできる。
室温にて超弾性を得るには、前述の超弾性合金に対して、温度1063K~1083Kで600ks以上の焼鈍を施し、冷却は水冷(293K)により急速に行うことが好ましい。マルテンサイト変態温度はα相の体積率に依存し、焼鈍温度が1063Kよりも低い場合はα相の体積率増加のためにマルテンサイト変態温度が室温に対して低くなりすぎ、応力を加えた際に応力誘起マルテンサイト変態に先駆けてすべり変形が生じることで超弾性が得られなくなるからである。そのため、焼鈍温度は1063K以上であることが好ましい。一方で、焼鈍温度が1083Kよりも高い場合は、α相の体積率減少のためにマルテンサイト変態温度が室温に対して高くなり過ぎ、形状記憶効果を示すようになって超弾性が得られなくなる。そのため、焼鈍温度は1083K以下であることが好ましい。これらより、好適な焼鈍温度の範囲は、1063K~1083Kとなった。 As the superelastic alloy, in addition to the Ni-Ti alloy, Cu-Zn alloy, Ni-Al alloy, etc. described above, heating to a near β-Ti alloy for about 1 to 3 hours at about 600 to 1000 ° C. Then, it may be immersed in water and subjected to heat treatment such as rapid cooling to normal temperature to use a thin plate material having developed a superelastic property.
More preferably, an alloy obtained by annealing / water cooling a Ti-4.5Al-3V-2Fe-2Mo alloy (SP-700 manufactured by JFE Steel) can be used as the superelastic alloy. FIG. 5 is a diagram showing a stress-strain curve when Ti-4.5Al-3V-2Fe-2Mo alloy is subjected to 10.8 ks annealing / water cooling at 1073K. In the stress-strain curve of FIG. 5, after applying a strain of 3% at room temperature, the residual strain remains at about 1%, indicating a superelasticity having an elastic recovery strain of about 2%. Such superelastic superelastic alloys can be used to construct the deployed structures of the present invention. Of course, the developed structure of the present invention can also use a superelastic alloy with better characteristics.
In order to obtain superelasticity at room temperature, it is preferable to perform annealing for 600 ks or more at a temperature of 1063 K to 1083 K with respect to the above-mentioned super elastic alloy, and to rapidly cool by water cooling (293 K). The martensitic transformation temperature depends on the volume fraction of the α phase, and when the annealing temperature is lower than 1063 K, the martensitic transformation temperature becomes too low relative to room temperature due to the increase of the volume fraction of the α phase, and stress is applied It is because super-elasticity can not be obtained because slip deformation occurs prior to stress-induced martensitic transformation. Therefore, the annealing temperature is preferably 1063 K or more. On the other hand, when the annealing temperature is higher than 1083 K, the martensitic transformation temperature becomes too high with respect to room temperature due to the decrease of the volume fraction of α phase, and the shape memory effect is exhibited and superelasticity can not be obtained. . Therefore, the annealing temperature is preferably 1083 K or less. From these, the preferable range of the annealing temperature was 1063 K to 1083 K.
図2は、本発明の実施の一形態に係るロケット用ノズルの形状を示す図である。図2においては、ノズルの表面にメッシュを配置することにより、変形の状態を表現できるようにしている。図2Aは、弾性変形前のロケット用ノズルを示す図である。
FIG. 2 is a view showing the shape of a rocket nozzle according to an embodiment of the present invention. In FIG. 2, the mesh is arranged on the surface of the nozzle so that the state of deformation can be expressed. FIG. 2A is a view showing the rocket nozzle before elastic deformation.
図2B~図2Eは、ロケット用ノズル12を示す図であって、歪曲させる過程を示す図である。図2Bでは、ロケット用ノズル12の外面の一部(左端領域および右端領域)が外側から力を加えられることによって、一部分(左端領域および右端領域)が内側へ変形した状態を示している。なお、図2Bでは示していないが、紙面の逆側(裏側)もロケット用ノズル12の外面の一部に外側から力を加えて、変形させなければならない。
FIGS. 2B to 2E show the rocket nozzle 12 and show the process of distortion. FIG. 2B shows that a part (left end area and right end area) is deformed inward by applying a force from the outside to part of the outer surface of the rocket nozzle 12 (left end area and right end area). Although not shown in FIG. 2B, the opposite side (back side) of the paper also has to be deformed by applying a force from the outside to a part of the outer surface of the rocket nozzle 12.
図2Cでは、ロケット用ノズル12の外面の一部(左端領域および右端領域)が外側から力を加えられることに加え、左端領域および右端領域の間の中央領域にも力が加えられることによって、図2Bよりも変形量が大きくなっている状態を示している。なお、図2Cでは示していないが、紙面の逆側(裏側)もロケット用ノズル12の外面の一部に外側から力を加えて、変形させなければならない。
In FIG. 2C, in addition to the external force of the outer surface of the rocket nozzle 12 (left end region and right end region) being applied from the outside, force is also applied to the central region between the left end region and the right end region, It shows a state in which the amount of deformation is larger than that in FIG. 2B. Although not shown in FIG. 2C, the reverse side (back side) of the paper also has to be deformed by applying a force from the outside to a part of the outer surface of the rocket nozzle 12.
図2D、図2Eでは、図2Cよりもさらに変形量が大きく、左端領域、中央領域および右端領域の凹み割合が大きい変形状態となっている。
In FIG. 2D and FIG. 2E, the deformation amount is larger than that in FIG. 2C, and the deformation ratio is large in the left end region, the center region, and the right end region.
図2Fでは、図2D、図2Eよりもさらに変形量が大きく、左端領域、中央領域および右端領域の凹み割合が大きくなって、歪曲が完了した状態を示している。図2Fにおける上部側(ノズルの後端側)の複数の頂点に外接する仮想の円の直径は、図2Fにおける下部側(ノズルの先端側)の円の直径よりも小さくなっている。これにより展開構造体であるロケット用ノズルは、展開時に拡張したノズル後端側がコンパクトに収納される。
FIG. 2F shows a state in which distortion is completed because the deformation amount is larger than in FIGS. 2D and 2E, and the dent ratio in the left end region, the center region, and the right end region is increased. The diameter of an imaginary circle circumscribing the plurality of apexes on the upper side (the rear end side of the nozzle) in FIG. 2F is smaller than the diameter of the circle on the lower side (the tip side of the nozzle) in FIG. As a result, the rear end side of the expanded nozzle at the time of deployment is compactly stored in the rocket nozzle which is the deployment structure.
また、図2Fのノズル12は、外側から加えられた力を解除することによって、図2Aの状態のロケット用ノズルの形状に展開することができ、折り目痕が残存しない展開構造体となる。
Moreover, the nozzle 12 of FIG. 2F can expand | deploy to the shape of the nozzle for rockets of the state of FIG. 2A by releasing the force applied from the outer side, and it becomes an expansion | deployment structure in which a crease mark does not remain.
本実施形態の展開構造体を収納又は展開させる展開方法は、
(a)展開構造体を弾性変形範囲で歪曲させる工程と、
(b)歪曲した状態の展開構造体を、歪曲状態固定部材により固定する工程と、
を備える展開方法である。 The expansion method for storing or expanding the expansion structure of the present embodiment is
(A) distorting the unfolded structure within an elastic deformation range;
(B) fixing the unfolded structure in a distorted state by a distorted state fixing member;
Is a deployment method comprising
(a)展開構造体を弾性変形範囲で歪曲させる工程と、
(b)歪曲した状態の展開構造体を、歪曲状態固定部材により固定する工程と、
を備える展開方法である。 The expansion method for storing or expanding the expansion structure of the present embodiment is
(A) distorting the unfolded structure within an elastic deformation range;
(B) fixing the unfolded structure in a distorted state by a distorted state fixing member;
Is a deployment method comprising
また、歪曲形状固定部材を取り外すことにより、歪曲した状態の展開構造体を元の形状に展開させるができる。
Also, by removing the distorted shape fixing member, the unfolded structure in the distorted state can be developed into the original shape.
以下、展開構造体を収納させる方法の一例を、図3を用いて示す。図3に示すように、円錐台形状のノズル12(展開部)の先端部のみを基板に固定し、治具20を使ってノズル12を歪曲させる。ノズル12はその先端側を下にして先端側を基板に固定し、後端側が上になるように配置されている。治具20本体の形状は、その直径がノズル12の後端部よりも大きい円筒形であってもよい。治具20の周方向の角度的に互いに等間隔の6箇所には、軸と平行に柱状部があり、各柱状部には外側から棒状部材21を挿入するための穴が2つずつ設けられている。6カ所の柱状部のそれぞれに穴を設けると最も容易にノズル12を折り畳むことができるが、穴を設ける場所の数はそれには限られない。
Hereinafter, an example of a method of storing the expanded structure will be described with reference to FIG. As shown in FIG. 3, only the tip of the truncated cone shaped nozzle 12 (deployed portion) is fixed to the substrate, and the nozzle 12 is distorted using a jig 20. The nozzle 12 is fixed such that its front end side is fixed to the substrate with its front end side down, and its rear end side is on top. The shape of the jig 20 body may be a cylindrical shape whose diameter is larger than the rear end of the nozzle 12. At six angularly equidistant angular positions in the circumferential direction of the jig 20, there are pillars parallel to the axis, and each pillar has two holes for inserting the rod-like members 21 from the outside. ing. Although the nozzle 12 can be most easily folded by providing a hole in each of the six columnar parts, the number of places where the holes are provided is not limited thereto.
次に、各柱状部の穴に外側から棒状部材21を挿入する。そして、各箇所の棒状部材21の先端部をノズル12の後端部近傍に当接させ、さらにノズル12の棒状部材21の先端が当接されている各部が均等に歪曲するように、各箇所の棒状部材を少しずつ内側に押しこんでゆく。このような治具20と棒状部材21とを使うことによって、ノズルの軸に垂直な周方向に等間隔の各方向からノズル12の外面を均等に内側へ押し込んで歪曲させることができる。 ノズルの折り畳み形状については、本実施形態では、6方向から押し込んだ星形形状とした。これは、折り畳みには周方向の座屈を利用しているが、本実施形態の寸法を考慮すると、周方向波数6~8程度の形状が最も座屈荷重が小さく、折り畳みに要する荷重も小さくて済むことが一つの理由である。また座屈後収納を進めていくと、波数が少ない物では押し込まれていない部分を収納するためにより大きく押し込む必要があり、一方で波数が多い場合には押し込まれている部分の周方向曲率が小さくなり歪が大きくなるため、中間の適当な波数を選ぶ必要がある。さらに実作業を想定すると、力を釣り合わせるために全体を同時に均等に押して行く必要のある奇数波数よりは、対向する箇所を順次押して行けばよい偶数波数の方が好ましい。これらを総合して検討し、本モデルでは六芒星形状の折り畳みを採用した。しかし、折り畳んだ時の形状が十分に小さく、かつ展開後に歪が残留しない形状であれば、特に折り畳み形状を制限するものではない。
実際にロケットノズルのスケールモデルを作成して、折り畳み及び展開が問題なく行えることを確認した。図6は、ロケットノズルのモデルの形状及び寸法を示す図である。ロケットノズルモデルの作成にあたっては、実機への適用を想定し、その1/4スケールとして、下部φ(小径)120mm、上部φ(大径)168mm、高さ66.5mmの円錐台形状とした。図において、圧延方向をRD(rolling direction)、圧延直角方向をTD(transverse direction)の矢印で表わしている。また板厚に関しては、ノズル内圧による周方向応力及び軸方向座屈に耐える厚みを必要とする一方で、収納時の歪は板厚に比例して増加するため、可能な限り薄くする必要がある。ここで、弾性回復ひずみが大きければ、収納時の歪を大きくすることができる。前述の1073Kで10.8ks焼鈍・水冷したTi-4.5Al-3V-2Fe-2Mo合金は、弾性回復ひずみが2%程度であるが、これを使用した場合を想定して、前述の折り畳み形状による収納時の歪とノズル内圧とを考慮した板厚を求めると、必要最低限の安全率を確保して、60μmとなった。なお、これは、実機においては0.25mmに相当する。 Next, the rod-like member 21 is inserted into the hole of each columnar portion from the outside. Then, each end of the rod-like member 21 at each portion is brought into contact with the vicinity of the rear end of the nozzle 12, and each portion of the nozzle 12 in contact with the tip of the rod-like member 21 is distorted uniformly. Push the bar-like member of the inside slightly little by little. By using the jig 20 and the rod-like member 21 as described above, the outer surface of the nozzle 12 can be uniformly pushed inward and distorted from directions at equal intervals in the circumferential direction perpendicular to the axis of the nozzle. In the present embodiment, the nozzle has a star-like shape which is pressed from six directions. Although this uses buckling in the circumferential direction for folding, considering the dimensions of this embodiment, the shape with a circumferential wave number of about 6 to 8 has the smallest buckling load, and the load required for folding is also small. One reason is that it is In addition, when the storage is advanced after buckling, it is necessary to further push in a part with a small wave number to store the part which is not pushed in, while the circumferential curvature of the pushed part is large when the wave number is large It is necessary to select an appropriate wave number in the middle because the smaller the distortion and the larger the distortion. Further, assuming an actual operation, it is preferable to use an even wave number that can be pushed sequentially from the opposite place, rather than an odd wave number that requires the whole to be pushed equally at the same time in order to balance the forces. These were comprehensively examined, and the six-star shape fold was adopted in this model. However, the shape is not particularly limited as long as the shape when folded is sufficiently small and the distortion does not remain after expansion.
We actually created a scale model of the rocket nozzle and confirmed that it could be folded and unfolded without problems. FIG. 6 is a diagram showing the shape and dimensions of a rocket nozzle model. The rocket nozzle model is assumed to be applied to a real machine, and its 1⁄4 scale has a truncated cone shape with a lower φ (small diameter) of 120 mm, an upper φ (large diameter) of 168 mm, and a height of 66.5 mm. In the drawing, the rolling direction is indicated by an RD (rolling direction), and the rolling perpendicular direction is indicated by an arrow of a TD (transverse direction). With regard to plate thickness, while it is necessary to have a thickness that withstands circumferential stress and axial buckling due to the internal pressure of the nozzle, strain during storage increases in proportion to the plate thickness, so it is necessary to make it as thin as possible . Here, if the elastic recovery strain is large, the strain at the time of storage can be increased. Although the above-mentioned Ti-4.5Al-3V-2Fe-2Mo alloy, which has been subjected to 10.8ks annealing and water cooling at 1073 K, has an elastic recovery strain of about 2%, assuming that it is used, the above-mentioned folded shape When the plate thickness was calculated in consideration of the distortion at the time of storage and the nozzle internal pressure, the required minimum safety factor was secured, and it was 60 μm. This corresponds to 0.25 mm in a real machine.
実際にロケットノズルのスケールモデルを作成して、折り畳み及び展開が問題なく行えることを確認した。図6は、ロケットノズルのモデルの形状及び寸法を示す図である。ロケットノズルモデルの作成にあたっては、実機への適用を想定し、その1/4スケールとして、下部φ(小径)120mm、上部φ(大径)168mm、高さ66.5mmの円錐台形状とした。図において、圧延方向をRD(rolling direction)、圧延直角方向をTD(transverse direction)の矢印で表わしている。また板厚に関しては、ノズル内圧による周方向応力及び軸方向座屈に耐える厚みを必要とする一方で、収納時の歪は板厚に比例して増加するため、可能な限り薄くする必要がある。ここで、弾性回復ひずみが大きければ、収納時の歪を大きくすることができる。前述の1073Kで10.8ks焼鈍・水冷したTi-4.5Al-3V-2Fe-2Mo合金は、弾性回復ひずみが2%程度であるが、これを使用した場合を想定して、前述の折り畳み形状による収納時の歪とノズル内圧とを考慮した板厚を求めると、必要最低限の安全率を確保して、60μmとなった。なお、これは、実機においては0.25mmに相当する。 Next, the rod-
We actually created a scale model of the rocket nozzle and confirmed that it could be folded and unfolded without problems. FIG. 6 is a diagram showing the shape and dimensions of a rocket nozzle model. The rocket nozzle model is assumed to be applied to a real machine, and its 1⁄4 scale has a truncated cone shape with a lower φ (small diameter) of 120 mm, an upper φ (large diameter) of 168 mm, and a height of 66.5 mm. In the drawing, the rolling direction is indicated by an RD (rolling direction), and the rolling perpendicular direction is indicated by an arrow of a TD (transverse direction). With regard to plate thickness, while it is necessary to have a thickness that withstands circumferential stress and axial buckling due to the internal pressure of the nozzle, strain during storage increases in proportion to the plate thickness, so it is necessary to make it as thin as possible . Here, if the elastic recovery strain is large, the strain at the time of storage can be increased. Although the above-mentioned Ti-4.5Al-3V-2Fe-2Mo alloy, which has been subjected to 10.8ks annealing and water cooling at 1073 K, has an elastic recovery strain of about 2%, assuming that it is used, the above-mentioned folded shape When the plate thickness was calculated in consideration of the distortion at the time of storage and the nozzle internal pressure, the required minimum safety factor was secured, and it was 60 μm. This corresponds to 0.25 mm in a real machine.
十分に歪曲されたら、治具20の柱状部の隙間から結節紐をノズル12の後端部近傍の周囲に1周又は必要に応じて数周巻回して両端を接続する。この結節紐は、本発明の歪曲形状固定部材の一例である。これにより、ノズル12の歪曲された状態が固定される。なお、結節紐としは、プラスチック製のタイラップや金属製のワイヤなどを使用することができる。
If it is sufficiently distorted, the knotting cord is wound around the rear end of the nozzle 12 from the gap of the columnar part of the jig 20 one round or several rounds if necessary to connect the both ends. This knotted cord is an example of the distorted shape fixing member of the present invention. Thereby, the distorted state of the nozzle 12 is fixed. In addition, as a knotted string, a plastic tie wrap, a metal wire, etc. can be used.
また、ノズルを展開する場合には、例えば歪曲形状固定部材を取り外すことによって(結節紐の場合は切断するだけで)、ノズル12自身の弾性力によって直ちに元の完全な円錐台の形状に展開することができる。前述のロケットノズルのスケールモデルの展開に要する時間は1秒未満であった。これより、実際の寸法のロケットノズルにおいても、1秒以内に展開することが理解される。これは、宇宙空間でノズルを展開し、噴射するまでの時間としては十分に高速である。
Also, when the nozzle is deployed, the elastic force of the nozzle 12 itself immediately deploys to the original perfect truncated cone shape, for example, by removing the distorted shape fixing member (in the case of a knotted string, simply cutting). be able to. The time required for the above-described rocket nozzle scale model deployment was less than one second. From this, it is understood that even a rocket nozzle of actual dimensions deploys within 1 second. This is a sufficiently fast time to deploy and eject the nozzle in space.
なお、本発明の展開構造体は、ロケット用ノズルに限定されるものではない。例えば、歪曲のさせ方を工夫して地上で小さく収容した上で宇宙に運搬し、そこで自身の弾性力に基づいて展開させる宇宙空間展開用のアンテナなどの展開構造体にも適用できる。
The deployable structure of the present invention is not limited to the rocket nozzle. For example, the present invention can be applied to a deployment structure such as an antenna for space deployment, which is devised to be distorted, housed small on the ground, transported to space, and deployed there based on its own elasticity.
また、本発明の展開方法は、上述のように治具20を用いて収納する方法に限定されるものではなく、例えば金型を用いて展開構造体を歪曲させてもよい。
Further, the expansion method of the present invention is not limited to the method of storing using the jig 20 as described above, and for example, the expanded structure may be distorted using a mold.
1 ロケットモータ
10 ノズル
11 固定ノズル
12 歪曲可能ノズル
20 治具
21 棒状部材 Reference Signs List 1rocket motor 10 nozzle 11 fixed nozzle 12 distortable nozzle 20 jig 21 rod member
10 ノズル
11 固定ノズル
12 歪曲可能ノズル
20 治具
21 棒状部材 Reference Signs List 1
Claims (7)
- 超弾性合金を含み、前記超弾性合金の弾性変形範囲内で展開部を収納可能とする展開構造体。 An unfolded structure comprising a super-elastic alloy, wherein the unfolded portion can be accommodated within the elastic deformation range of the super-elastic alloy.
- 前記展開構造体がロケット用ノズルである、請求項1に記載の展開構造体。 The deployment structure of claim 1, wherein the deployment structure is a rocket nozzle.
- 前記ロケット用ノズルは、先端側の第1の部分と後端側の第2の部分を含み、前記第1の部分は繊維強化複合材から構成され、前記展開部である前記第2の部分は前記超弾性合金から構成される、請求項2に記載の展開構造体。 The rocket nozzle includes a first portion on the front end side and a second portion on the rear end side, the first portion is made of a fiber reinforced composite material, and the second portion which is the expanded portion is The deployed structure according to claim 2, wherein the deployed structure is composed of the superelastic alloy.
- 収納時に歪曲後の後端部に内接する仮想の円の直径が、歪曲前の前記先端側の円の直径よりも小さくなるように歪曲され、当該歪曲状態が歪曲形状固定部材により固定される、請求項2又は3に記載の展開構造体。 The diameter of an imaginary circle inscribed in the rear end after distortion is distorted so as to be smaller than the diameter of the circle on the front end before distortion, and the distorted state is fixed by the distortion fixing member. The expanded structure according to claim 2 or 3.
- 前記歪曲形状固定部材が前記後端部に巻回される結節紐である、請求項4に記載の展開構造体。 The deployment structure according to claim 4, wherein the distorted shape fixing member is a knotted cord wound around the rear end.
- 請求項1~5のいずれか一項記載の展開構造体を収納又は展開させる展開方法であって、
前記展開構造体を弾性変形範囲で歪曲させる工程と、
前記歪曲した状態の前記展開構造体を、歪曲状態固定部材により固定する工程と、
を備える展開方法。 A deployment method for storing or deploying the deployment structure according to any one of claims 1 to 5, comprising:
Distorting the unfolded structure within an elastic deformation range;
Fixing the unfolded structure in the distorted state by a distorted state fixing member;
Deployment method. - 前記歪曲形状固定部材を取り外すことにより、前記歪曲した状態の前記展開構造体を元の形状に展開させる、請求項6に記載の展開方法。 The expansion method according to claim 6, wherein the expanded structure in the distorted state is expanded to an original shape by removing the distorted shape fixing member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019564357A JP7132634B2 (en) | 2018-01-11 | 2018-12-17 | Expansion structure and its expansion method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-002848 | 2018-01-11 | ||
JP2018002848 | 2018-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019138788A1 true WO2019138788A1 (en) | 2019-07-18 |
Family
ID=67219555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/046315 WO2019138788A1 (en) | 2018-01-11 | 2018-12-17 | Deployable structure and deployable method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7132634B2 (en) |
WO (1) | WO2019138788A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277135A (en) * | 1985-08-21 | 1987-04-09 | サイオコール コーポレイション | Nozzle outlet structure for rocket engine and its production |
JPH08509899A (en) * | 1994-04-01 | 1996-10-22 | プログラフト メディカル,インコーポレイテッド | Self-expandable stents and stent-grafts and methods of use thereof |
JP2003531673A (en) * | 2000-05-03 | 2003-10-28 | アドバンスド、カーディオバスキュラー、システムズ、インコーポレーテッド | Intravascular stent |
JP2006521865A (en) * | 2003-04-02 | 2006-09-28 | ボストン サイエンティフィック リミテッド | Embolization instrument |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6505795B1 (en) | 2000-09-05 | 2003-01-14 | Hughes Electronics Corporation | Application of carbon fiber mesh for space and airborne platform applications |
US9093209B2 (en) | 2012-02-03 | 2015-07-28 | Ion Beam Applications S.A. | Magnet structure for an isochronous superconducting compact cyclotron |
-
2018
- 2018-12-17 WO PCT/JP2018/046315 patent/WO2019138788A1/en active Application Filing
- 2018-12-17 JP JP2019564357A patent/JP7132634B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277135A (en) * | 1985-08-21 | 1987-04-09 | サイオコール コーポレイション | Nozzle outlet structure for rocket engine and its production |
JPH08509899A (en) * | 1994-04-01 | 1996-10-22 | プログラフト メディカル,インコーポレイテッド | Self-expandable stents and stent-grafts and methods of use thereof |
JP2003531673A (en) * | 2000-05-03 | 2003-10-28 | アドバンスド、カーディオバスキュラー、システムズ、インコーポレーテッド | Intravascular stent |
JP2006521865A (en) * | 2003-04-02 | 2006-09-28 | ボストン サイエンティフィック リミテッド | Embolization instrument |
Also Published As
Publication number | Publication date |
---|---|
JP7132634B2 (en) | 2022-09-07 |
JPWO2019138788A1 (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8757553B2 (en) | Active tie-rod system for holding and smoothly releasing space appendages | |
US8058595B2 (en) | Collapsible shape memory alloy (SMA) nose cones for air vehicles, method of manufacture and use | |
JP4351656B2 (en) | Stent | |
EP0812580B1 (en) | A stent | |
JP2020011085A5 (en) | ||
US20050096668A1 (en) | Retrieval device made of precursor alloy cable | |
JP2013507229A5 (en) | ||
EP2408397B1 (en) | Hybrid stent and method of making such a stent | |
US8487227B2 (en) | Speed-adaptive deployable boat-tailing cone for munitions for range extension | |
JP2001517536A (en) | Flexible metal wire stent | |
US3450372A (en) | Self-projectable element for a space vehicle | |
EP2841231B1 (en) | Method for forming a stent an stent obtained by such method | |
WO2019138788A1 (en) | Deployable structure and deployable method therefor | |
US10723488B2 (en) | Device for retaining and releasing appendages | |
JP2013521049A (en) | Stent with multiple crown restraints and method for terminating a spiral wound stent | |
Caltagirone et al. | Shape memory alloy-enabled expandable space habitat—Case studies for second CASMART student design challenge | |
US8157859B2 (en) | Stent made of nitinol having improved axial bending stiffness and associated production method | |
US20120018496A1 (en) | Method and Apparatus for Forming a Wave Form Used to Make Wound Stents | |
JP2012192917A (en) | Retractable planar structure, and satellite comprising the structure | |
JP4877809B2 (en) | Deployable antenna | |
JP2005119541A (en) | Inflatable tube | |
JPWO2019138788A5 (en) | ||
JP5784112B2 (en) | Method and apparatus for stent manufacturing and assembly | |
JPS6124305A (en) | Antenna expanding mechanism | |
JP6223814B2 (en) | Metal porous body having shape memory characteristics and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18900346 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019564357 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18900346 Country of ref document: EP Kind code of ref document: A1 |