WO2019138616A1 - Hoisting machine - Google Patents
Hoisting machine Download PDFInfo
- Publication number
- WO2019138616A1 WO2019138616A1 PCT/JP2018/037170 JP2018037170W WO2019138616A1 WO 2019138616 A1 WO2019138616 A1 WO 2019138616A1 JP 2018037170 W JP2018037170 W JP 2018037170W WO 2019138616 A1 WO2019138616 A1 WO 2019138616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- trolley
- rope
- winding
- control unit
- initial
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/22—Control systems or devices for electric drives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C17/00—Overhead travelling cranes comprising one or more substantially horizontal girders the ends of which are directly supported by wheels or rollers running on tracks carried by spaced supports
Definitions
- the present invention relates to a hoist.
- a load fluctuation suppressing control technology in which a suspended load suspended on a rope is regarded as a pendulum and the transport speed is controlled based on the swing of the pendulum.
- Patent Document 1 discloses a technique for automatically arranging a trolley immediately above a suspended load.
- Patent Document 1 describes a technique for moving a trolley just above a suspended load by calculating the horizontal deviation of the suspended load and the trolley from the laser length meter disposed on the trolley and the rope length.
- Patent Document 2 describes a technique for tensioning a rope after disposing a beam tip just above a suspended load in order to suppress initial deflection due to beam deflection at the time of ground cutting.
- the trolley can be disposed right above the suspended load, which makes it possible to reduce the initial runout.
- a laser length meter is required, and the system of the hoist becomes complicated.
- An object of the present invention is to reduce load fluctuation at ground breaking in a hoist.
- a winding machine includes a trolley conveyed by self-propelled means, a winding motor mounted on the trolley, a winding drum attached to the winding motor, and a rope attached to the winding drum.
- FIG. 7 is a diagram showing a flowchart of an initial shake reduction function. It is a figure which shows the example which makes a deflection
- Load fluctuation suppression control is roughly divided into feedforward control and feedback control.
- Feed forward control is a method of suppressing a load fluctuation by determining a conveyance speed command based on a load fluctuation model.
- the feedback control is a method of suppressing a load fluctuation by detecting or estimating the load fluctuation in real time and feeding it back to determine a conveyance speed command.
- feedforward control and feedback control are performed collectively.
- Feed-forward control can be realized only by soft operation, where the response is controlled so that the transport speed is controlled so as to suppress load fluctuation before load fluctuation occurs, by controlling based on the load fluctuation model and compared to feedback control. And the implementation cost is low. On the other hand, feed forward control can not cope with a phenomenon not represented by a load fluctuation model such as an initial runout that occurs when a load is separated from a floor surface (hereinafter referred to as ground breaking) or an error of the load fluctuation model.
- a load fluctuation model such as an initial runout that occurs when a load is separated from a floor surface (hereinafter referred to as ground breaking) or an error of the load fluctuation model.
- the feedback control has a feature of being able to cope with an initial runout or the like as compared with the feedforward control by detecting the load runout and controlling it in a coping manner.
- feedback control does not work until a load swing occurs, and the response is slow because it requires a sensor or an estimator for detecting load swing, resulting in high implementation cost.
- two-degree-of-freedom control it is possible to realize the response speed of feedforward control and the response to the phenomenon not represented by the load fluctuation model of feedback control or the error of the load fluctuation model.
- the two-degree-of-freedom control requires a sensor or an estimator for detecting a load fluctuation, and the implementation cost is high. From this, for example, if the initial runout can be suppressed in advance, it is possible to realize effective load control with only feedforward control at low mounting cost.
- the hoisting machine 10 is composed of a trolley 11, a rope 13 and hooks 131.
- the trolley 11 moves in the x direction in the drawing along the beam 15 by the rotation of the traverse wheel 1111 and winds the rope 13 by rotating the winding drum 1122 to move the load 30 in the z direction in the drawing.
- the hanging load 30 on the floor surface 40 is suspended by the sling rope 20 from the rope 13 and the trolley 11 via the hooks 131.
- the rope 13 and the hooks 131, the hooking rope 20 and the hanging load 30 constitute a pendulum having a fulcrum on the winding drum 1122.
- the fulcrum and the suspension load core 301 have a deviation in the x direction in the drawing.
- the pendulum has an initial deflection angle ⁇ 0 around the y axis in the drawing.
- the pendulum by the initial deflection angle theta 0 becomes movable state, FIG. 1 (b)
- a load runout ie, an initial runout, occurs around the y axis in the figure.
- the initial runout is, for example, when the pendulum which the rope 13 and the hanging load 30 constitute is deviated in the horizontal position (the xy plane in the figure) of the supporting point and the hanging load core 301 at the time of ground cutting. It happens to That is, the initial shake due to the horizontal deviation of the pendulum at the time of ground breaking does not occur if the fulcrum 11 in the trolley 11 is positioned directly above the suspension load core 301 in the suspended load 30.
- the operator manipulates the position of the trolley 11 while visually observing the hanging load 30, the trolley 11 and the rope 13, and the trolley 11 is disposed right above the hanging load 30.
- the load fluctuation at the ground cutting is automatically reduced in the hoist.
- the first embodiment relates mainly to a hoist that conveys a load that can be lifted by a rope, and in particular, relates to a hoist that reduces a load fluctuation at the time of ground breaking by tensioning the rope before the ground breaking and conveying the trolley. In addition, it is applicable also to the crane which conveys the load similarly.
- the suspended load 30 to be transported is suspended from the hook 131 by the hooking rope 20.
- the hook 131 is suspended by the rope 13 to the winding drum 1122.
- the hanging load 30 may be configured to be hung directly on the hook 131 without the aid of the sling rope 20.
- the winding drum 1122 is connected to the winding motor 112 and the winding encoder 1121 by a winding shaft 1123 and disposed in the trolley 11.
- the rope 13 can be wound up or down by the rotation of the winding motor 112, and the suspended load 30 can be transported in the z direction in the drawing. This z-direction transport is referred to as winding.
- the traverse wheel 1111 is connected to the traverse motor 111 via a traverse shaft 1112 and disposed in the trolley 11.
- the rotation of the traverse motor 111 causes the traverse wheel 1111 to rotate on the beam 15 so as to generate a driving force.
- the trolley 11 and the suspended load 30 can be transported in the x direction in the figure along the beam. This transport in the x direction is referred to as traversing.
- the transport operation unit 141 is provided on the operation terminal 14, and receives an operation of transport operation which is an instruction of traversing and / or winding, or both by the operator.
- the input transport operation signal is sent to the control unit 12 via the communication unit 142.
- the control unit 12 generates a transport command based on the input transport operation signal or a transport signal by an initial shake reduction function to be described later, and drives the traverse motor 111 and / or the hoist motor 112. Thereby, the hanging load 30 is traversed and wound up.
- the hanging load 30 and the sling rope 20 are to be transported, and are not components of the hoisting machine 10. Moreover, the jig
- the communication unit 142 of the operation terminal 14 may be wired communication or wireless communication.
- the beam 15 is connected to the traveling beam 18 via the traveling device 16.
- the traveling device 16 moves the beam 15 along the traveling beam 18 in the y direction in the drawing as the traveling motor 161 rotates.
- the trolley 11 connected to the beam 15 and the suspended load 30 (see FIG. 2) suspended by the hooks 131 are transported in the y direction in the drawing. This conveyance in the y direction is referred to as traveling.
- the conveyance operation signal input to the conveyance operation unit 141 (see FIG. 2) provided in the operation terminal 14 has a traveling command signal in addition to the traverse and winding. At least a traveling instruction signal among the input conveyance operation signals is transmitted to the traveling control unit 17 via the communication unit 142 (see FIG. 2).
- the traveling control unit 17 generates a conveyance command at least for traveling based on the conveyance operation signal or a conveyance signal by an initial shake reduction function described later, and drives the traveling motor 161.
- the load 30 (see FIG. 2) is thereby traveled in addition to traversing and winding.
- the transport command for traversing and winding is generated in the control unit 12 and the transport command for traveling is generated in the travel control unit 17, the present invention is not limited to this configuration.
- control unit 12 For example, the control unit 12 generates a conveyance speed command for traversing, traveling, and winding, and at least of the generated conveyance commands, the control unit 12 transmits a command for traveling to the traveling control unit 17, and the traveling control unit 17
- the traveling motor 161 may be driven based on the received conveyance command.
- the conveyance operation signal may be transmitted to at least the control unit 12, and may not be transmitted to the traveling control unit 17.
- the initial shake reduction function will be described with reference to FIG. 4, based on the initial shake reduction function start operation on the operation terminal 14 or the like by the operator, the initial shake reduction function is started from the start flow S101, and transitions to the winding operation non-permission flow S102.
- the initial shake reduction function is performed by the control unit 12 (see FIGS. 2 and 3).
- the rope tensioning flow S103 applies a torque to the hoisting motor 112, thereby tensioning the rope 13 without cutting the suspended load 30, and transits to the weir detection flow S104.
- the applied torque can be estimated, for example, from the mass of the hook 131 or the like.
- a torque capable of winding up the hook 131 may be applied as a predetermined applied torque without cutting off the load 30.
- the rope 30 is not cut off the ground. Can be tense.
- the eyelid detection flow S104 detects or calculates a state amount ⁇ that is correlated with the pendulum initial shake angle ⁇ 0 (see FIG. 1), and transitions to an end determination flow S105.
- the state quantity ⁇ ⁇ will be described later.
- End determination flow S105 using a state quantity ⁇ the detected transition to the initial deflection angle theta 0 is operated permission flow S108 winding when it is determined that sufficiently small, when it is necessary to reduce the initial deflection angle theta 0 If it is determined, the flow proceeds to the trolley conveyance direction determination flow S106.
- Trolley conveying direction determination flow S106 the initial deflection determines the change of the initial deflection angle theta 0 in the transport of the last trolley 11 in reducing function by the state quantity [psi, reducing the current trolley conveying direction initial deflection angle theta 0 It sets to the direction which becomes, and it changes to trolley conveyance flow S107.
- the initial deflection angle ⁇ 0 when it is determined that the initial deflection angle ⁇ 0 has become smaller according to the state amount ⁇ in the previous transport of the trolley 11, the initial deflection angle ⁇ 0 becomes larger in the same direction as the previous one. If it is determined that the determination is made, the determination can be made by setting in the opposite direction or the like. In the first flow of trolley conveyance direction determination flow S106 after the initial shake reduction function is started, conveyance may be performed in a predetermined direction.
- the trolley conveyance flow S107 generates the conveyance signal and outputs it to the traverse motor 111, the traveling motor 161, or both, thereby automatically traversing the trolley, traveling or both in the set trolley movement direction. Go and transition to rope tension flow S103.
- the winding operation permission flow S108 enables the operator to perform the winding operation and enables the operator to perform the ground removal operation, and the process transitions to an end flow S109.
- An end flow S109 ends the initial shake reduction function.
- the operator may be notified by displaying on the hoist that the initial shake reduction function has ended and the ground removing operation has become possible.
- the loop to be repeated may be transitioned for each event, or may be transitioned for each time, or the like.
- each event there is an example in which the transport distance by which the trolley 11 is transported each time the loop is repeated is set.
- the processing time taken for one loop is predetermined.
- the application torque may or may not be applied to the winding motor 112. That is, the rope 13 may be in a tension state or in a relaxation state.
- the rope 13 is always tensioned by the trolley 11 being conveyed while the rope 13 is wound up.
- the termination determination flow S105 determines whether or not the initial swing angle ⁇ 0 has become sufficiently small for traveling and traveling respectively, and traverses and traveling If it is determined that the initial deflection angle ⁇ 0 has become sufficiently small in both, the process transitions to the winding operation permission flow S108.
- the trolley 11 can be disposed vertically above the suspended load 30 even in a hoisting machine capable of traversing and traveling by alternately performing trolley conveyance and end determination of traversing and traveling.
- the loop is similarly repeated in the traveling direction,
- the trolley 11 can be disposed vertically above the load 30. It goes without saying that the traveling direction may be performed first, and then the transverse direction may be performed.
- the traveling state amount ⁇ independently of traveling
- traveling and traveling can be performed simultaneously, and the trolley 11 can be disposed above the suspended load 30 in a short time.
- the state quantity ⁇ ⁇ ⁇ used for the determination does not have to be one state quantity, and a plurality of state quantities may be used.
- FIG. 5 is an example in which the initial deflection angle ⁇ 0 is a state quantity ⁇ .
- the deflection angle display 50 is composed of a display plate 501 and a weight 502, and is fixed to the hook 131.
- the weight 502 is attached to be suspended vertically downward.
- the initial deflection angle ⁇ 0 is displayed as the angle formed by the display plate 501 and the weight 502. Further, if the above-mentioned angle is observed by an encoder or the like, the initial deflection angle ⁇ 0 can be observed.
- the eyelid detection flow S104 detects the initial shake angle ⁇ 0 as the state quantity ⁇ .
- End determination flow S105 the initial deflection angle theta 0 good like determines if the initial shake reducing function and end smaller than the predetermined value. Accordingly, the trolley transfer flow S107, automatically transports the trolley in the direction in which the initial deflection angle theta 0 detected by ⁇ detection flow S104 decreases.
- the initial deflection angle ⁇ 0 can be detected independently in each of the transverse and traveling directions.
- the trolley 11 is conveyed in the lateral direction based on the initial deflection angle in the lateral direction, and the trolley 11 is driven in the traveling direction based on the initial deflection angle in the traveling direction. Thereby, traveling and traveling can be performed simultaneously in the initial shake reduction function.
- the deflection angle display 50 does not have to have the configuration shown in FIG. 5, but may have another configuration such as a gyro or an acceleration sensor as long as the deflection angle can be detected.
- FIG. 6 is a schematic view showing the relationship between the initial deflection angle ⁇ 0 and the rope length.
- L is a distance from the pendulum fulcrum to the lower part of the hook 131 and indicates a rope length detectable by the winding encoder 1121.
- the hook height R is the distance from the lower part of the hook 131 to the hanging load core 301 and can not be detected.
- the height H of the center of gravity is the projection distance between the pendulum fulcrum and the suspension load core 301 in the z direction in the drawing and can not be detected.
- the relationship between the rope length L, the hook height R, and the center-of-gravity height H is (Equation 1) and FIG. 7.
- FIG. 7 is a diagram showing the relationship between the initial deflection angle ⁇ 0 and the rope length L.
- the absolute value of the rope length L when the initial deflection angle ⁇ 0 is 0 degree is not known.
- the trolley 11 is horizontally conveyed, because the center of gravity height H constant value, as an initial deflection angle theta 0 is close to 0 degrees rope length L is small. Further, as the initial deflection angle ⁇ 0 approaches 0 °, the rate of change of the rope length L with respect to ⁇ 0 also decreases.
- the state quantity ⁇ detection flow S104 detects the rope length L as the state quantity ⁇ using the winding encoder 1121.
- the end determination flow S105 when the trolley 11 is transported such that the amount of change in the rope length L when transporting the trolley 11 becomes smaller than a predetermined value or the rope length L becomes smaller, the rope length L becomes longer and the initial stage and detecting an increase in the deflection angle theta 0, the initial deflection reduction function ends can be determined in such.
- the trolley conveyance flow S107 the trolley is automatically conveyed in the direction in which the rope length L detected in the weir detection flow S104 becomes smaller.
- the rope length L can be taken as the state quantity ⁇ .
- FIG. 8 is a schematic view showing the relationship between the initial deflection angle ⁇ 0 and the rope tension.
- f is the gravity applied to the hook 131
- T is the tension applied to the rope 13 to wind up the hook 131.
- the rope tension T is the torque applied to the hoist motor 112 to tension the rope 13.
- Equation 2 the relationship between the hook gravity f, the rope tension T, and the initial deflection angle ⁇ 0 is expressed by Equation 2 and FIG.
- FIG. 9 is a view showing the relationship between the initial deflection angle ⁇ 0 and the rope tension T.
- the hook gravity f is a constant value
- the rate of change of T also decreases.
- the state quantity ⁇ detection flow S104 detects the rope tension T as the state quantity ⁇ ⁇ using the torque applied to the hoist motor 112 when the rope 13 is tensioned.
- the end determination flow S105 when the trolley 11 is transported such that the amount of change in the rope tension T when transporting the trolley 11 becomes smaller than a predetermined value, or when the rope tension T becomes smaller, the rope tension T becomes large.
- the end of the initial shake reduction function can be determined by detecting an increase in the initial shake angle ⁇ 0 or the like. Thereby, in the trolley conveyance flow S107, the trolley is automatically conveyed in the direction in which the rope tension T detected in the wrinkle detection flow S104 becomes smaller.
- FIG. 10 is a schematic view showing the relationship between the initial deflection angle ⁇ 0 and the trolley external force.
- F is an external force applied to the trolley 11 which is generated by winding up the hook 131 and tensioning the rope 13.
- the relationship between the hook gravity f, the rope tension T, and the trolley external force F is expressed by Equation 3 and FIG.
- FIG. 11 is a view showing the relationship between the initial deflection angle ⁇ 0 and the trolley external force F. As shown in FIG. 11, since the hook gravity f is a constant value, the trolley external force F becomes closer to 0 as the initial deflection angle ⁇ 0 approaches 0 degrees.
- FIG. 12 is a block diagram showing an example of means for detecting the trolley external force F.
- u0 is a driving force command for transporting the trolley 11 calculated by the control unit 12.
- the trolley 11 is conveyed by the driving force u1 by the driving force command u0 and the trolley external force F based on the trolley dynamic characteristic.
- u2 is a physical quantity based on the transport of the trolley 11, and includes displacement, speed, acceleration and the like. If the observed or estimated transport physical quantity u2 is calculated based on the inverse model of the trolley dynamic characteristic, the estimated driving force u1 *, which is an estimated value of the driving force u1, can be estimated. By using the estimated driving force u1 * and the driving force command u0, an estimated trolley external force F * which is an estimated value of the trolley external force can be obtained.
- the state quantity ⁇ detection flow S104 detects the trolley external force F or the estimated trolley external force F * in a state in which the rope 13 is tensioned as the state quantity ⁇ .
- End determination flow S105 the * trolley external force F or estimated trolley external force F is smaller than a predetermined value, or trolley external force F or estimated upon transporting the trolley 11 so that * trolley external force F or estimated trolley external force F is reduced
- the end of the initial shake reduction function can be determined by, for example, detecting the increase in the initial shake angle ⁇ 0 by reversing the direction (sign) of the external force F * .
- the trolley conveyance flow S107 the trolley is automatically conveyed in the direction in which the trolley external force F or the estimated trolley external force F * detected in the wrinkle detection flow S104 decreases.
- the trolley external force F can be independently estimated independently in the traveling and the traveling.
- traverse and traveling can be performed simultaneously in the initial shake reduction function.
- the winding machine according to the first embodiment automatically performs traveling and traveling in the initial shake reduction function by automatically generating a conveyance command.
- Example 2 transverse in the initial shake reducing function, the running was carried out by an operator operation, to assist the operator operation by a display unit for displaying the state quantity ⁇ representing the initial deflection angle theta 0 in this case the operator.
- the wrinkle detection flow S104 displays the detected wrinkles to the operator, and the end determination flow S105, the trolley conveyance direction determination flow S106, and the trolley conveyance flow S107 are performed by the operator's operation.
- the eyelid detection flow S104 displays the detected state quantity ⁇ to the operator.
- the state quantity ⁇ may be displayed anywhere as long as it is a component of the winding machine 10 such as the trolley 11 or the operation terminal 14. Also, the state quantity ⁇ does not have to be displayed numerically, and may be displayed mechanically as a bar graph or a swing angle indicator of FIG. 5.
- termination determination flow S105 the operator, on the basis of the display, it is judged that the initial deflection angle theta 0 is less than the desired angle, shifts the winding operation permission flow S108 by operating the operation terminal 14.
- the end determination based on the state quantity ⁇ is automatically performed, and when the automatic determination determines the end of the initial shake reduction function, sound is notified to the operator by display of light or the like to perform the operation of the operator. You may help.
- the operation is not limited to an explicit initial shake reduction function end operation such as pushing up a button pressed at the start of the initial shake reduction function, for example, and may be, for example, a winding operation for ground cutting.
- trolley conveying direction determination flow S106 the operator by the display based on the state quantity [psi, determines the direction in which initial deflection angle theta 0 becomes smaller. At this time, the trolley conveyance direction may be automatically determined based on the state quantity ⁇ , and the trolley conveyance direction may be displayed to the operator to aid the determination.
- trolley conveyance flow S107 the operator operates the operation terminal 14 to convey the trolley 11 in the trolley conveyance direction. At this time, if the trolley conveyance by the operator's operation is different from the trolley conveyance direction automatically determined in the trolley conveyance direction determination flow S106, the operator is notified of the display by sound or light to assist the operator in the conveyance operation. You may
- the initial shake reduction function may combine the function of reducing the initial shake angle ⁇ 0 by the operator operation of the second embodiment and the function of the automatic conveyance of the first embodiment. Thereby, each operator can selectively use the initial shake reduction function. Moreover, after reducing the initial deflection angle theta 0 roughened by the initial shake reducing function by the operator, it is possible to operate such reduced accurately initial deflection angle theta 0 in function of the automatic transport.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Control And Safety Of Cranes (AREA)
- Carriers, Traveling Bodies, And Overhead Traveling Cranes (AREA)
Abstract
According to the present invention, a trolley is transported by tensioning a rope, before lifting a suspended load suspended via a hook off from a floor surface.
Description
本発明は、巻上げ機に関する。
The present invention relates to a hoist.
巻上げ機においては、安全で高効率な吊荷搬送のために、搬送時の荷振れ低減が求められている。この荷振れ低減のための技術として、ロープに吊られた吊荷を振子とみなし、この振子の振れに基づいて搬送速度を制御する荷振れ抑制制御技術が知られている。
In the hoisting machine, reduction of load fluctuation at the time of transportation is required for safe and highly efficient suspension transportation. As a technique for reducing the load fluctuation, a load fluctuation suppressing control technology is known in which a suspended load suspended on a rope is regarded as a pendulum and the transport speed is controlled based on the swing of the pendulum.
自動でトロリを吊荷の真上に配置する技術として、例えば、特許文献1がある。特許文献1には、トロリ上に配置したレーザ測長計とロープ長とから、吊荷とトロリの水平方向偏差を演算して、トロリを吊荷の真上に移動する技術が記載されている。
For example, Patent Document 1 discloses a technique for automatically arranging a trolley immediately above a suspended load. Patent Document 1 describes a technique for moving a trolley just above a suspended load by calculating the horizontal deviation of the suspended load and the trolley from the laser length meter disposed on the trolley and the rope length.
また、初期振れを低減する技術として、特許文献2がある。特許文献2には、地切り時のビーム撓みによる初期振れを抑制するために、ビーム先端を吊荷の真上に配置した後、ロープを緊張させる技術が記載されている。
Moreover, there exists patent document 2 as a technique which reduces initial stage shake. Patent Document 2 describes a technique for tensioning a rope after disposing a beam tip just above a suspended load in order to suppress initial deflection due to beam deflection at the time of ground cutting.
特許文献1に記載された技術によれば、吊荷の真上にトロリを配置でき、これにより初期振れの低減が可能となる。しかしながら、新たなセンサとしてレーザ測長計が必要となり、巻上げ機のシステムが複雑になる。
According to the technique described in Patent Document 1, the trolley can be disposed right above the suspended load, which makes it possible to reduce the initial runout. However, as a new sensor, a laser length meter is required, and the system of the hoist becomes complicated.
特許文献2に記載された技術によれば、地切り時のビーム撓みによる初期振れの低減が可能となる。しかしながら、吊荷と振子の支点であるビーム先端との水平方向の位置偏差による初期振れは抑制できない。
本発明の目的は、巻上げ機おいて、地切り時の荷振れを低減することにある。 According to the technology described in Patent Document 2, it is possible to reduce the initial runout due to the beam deflection at the time of ground cutting. However, initial deflection due to the positional deviation in the horizontal direction between the suspended load and the beam tip which is the fulcrum of the pendulum can not be suppressed.
An object of the present invention is to reduce load fluctuation at ground breaking in a hoist.
本発明の目的は、巻上げ機おいて、地切り時の荷振れを低減することにある。 According to the technology described in Patent Document 2, it is possible to reduce the initial runout due to the beam deflection at the time of ground cutting. However, initial deflection due to the positional deviation in the horizontal direction between the suspended load and the beam tip which is the fulcrum of the pendulum can not be suppressed.
An object of the present invention is to reduce load fluctuation at ground breaking in a hoist.
本発明の一態様の巻上げ機は、自走手段により搬送されるトロリと、前記トロリに搭載された巻上げモータと、前記巻上げモータに取り付けられた巻上げドラムと、前記巻上げドラムに取り付けられたロープと、前記ロープに取り付けられたフックと、前記ロープの巻上げと前記トロリの搬送を制御する制御部とを有し、前記制御部は、前記フックを介して吊り下げられた吊荷が床面から離れる地切り前に、前記ロープを緊張させて前記トロリを搬送することを特徴とする。
A winding machine according to one aspect of the present invention includes a trolley conveyed by self-propelled means, a winding motor mounted on the trolley, a winding drum attached to the winding motor, and a rope attached to the winding drum. A hook attached to the rope, and a control unit that controls the winding of the rope and the transport of the trolley, and the control unit causes the hanging load suspended via the hook to be separated from the floor surface Before ground cutting, the rope is tensioned to transport the trolley.
本発明の一態様によれば、巻上げ機において、地切り時の荷振れを低減することができる。
According to one aspect of the present invention, it is possible to reduce load fluctuation at the time of ground cutting in a hoist.
荷振れ抑制制御は、大きくフィードフォワード制御とフィードバック制御に分けられる。フィードフォワード制御は、荷振れのモデルに基づいて搬送速度指令を決定することで荷振れを抑制する方法である。フィードバック制御は、荷振れをリアルタイムで検出もしくは推定してフィードバックして搬送速度指令を決定することで、荷振れを抑制する方法である。また、2自由度荷振れ抑制制御では、フィードフォワード制御とフィードバック制御を併せて行う。
Load fluctuation suppression control is roughly divided into feedforward control and feedback control. Feed forward control is a method of suppressing a load fluctuation by determining a conveyance speed command based on a load fluctuation model. The feedback control is a method of suppressing a load fluctuation by detecting or estimating the load fluctuation in real time and feeding it back to determine a conveyance speed command. Moreover, in 2 degrees of freedom load rundown control, feedforward control and feedback control are performed collectively.
フィードフォワード制御は、荷振れモデルに基づいて制御することで、フィードバック制御と比べ、荷振れが発生する前から荷振れを抑制するよう搬送速度が制御されて応答が速い、ソフト演算のみで実現可能で実装コストが低いという特徴を有する。一方、フィードフォワード制御は、吊荷が床面から離れた(以後、地切りと称する)時に発生する初期振れといった荷振れモデルで表現しない現象や荷振れモデルのもつ誤差への対応ができない。
Feed-forward control can be realized only by soft operation, where the response is controlled so that the transport speed is controlled so as to suppress load fluctuation before load fluctuation occurs, by controlling based on the load fluctuation model and compared to feedback control. And the implementation cost is low. On the other hand, feed forward control can not cope with a phenomenon not represented by a load fluctuation model such as an initial runout that occurs when a load is separated from a floor surface (hereinafter referred to as ground breaking) or an error of the load fluctuation model.
フィードバック制御は、発生した荷振れを検出して対処的に制御することで、フィードフォワード制御と比べ、初期振れなどへ対応できるという特徴を有する。一方、フィードバック制御は、荷振れが起きるまで制御が働かず応答が遅い、荷振れを検出するためのセンサや推定器が必要となり実装コストが高い。
The feedback control has a feature of being able to cope with an initial runout or the like as compared with the feedforward control by detecting the load runout and controlling it in a coping manner. On the other hand, feedback control does not work until a load swing occurs, and the response is slow because it requires a sensor or an estimator for detecting load swing, resulting in high implementation cost.
2自由度制御では、フィードフォワード制御の応答の速さと、フィードバック制御の荷振れモデルで表現しない現象や荷振れモデルのもつ誤差への対応が実現可能である。しかし、2自由度制御では、荷振れを検出するセンサや推定器が必要のため実装コストは高い。
このことから、例えば、初期振れを事前に抑制することができれば、低い実装コストでフィードフォワード制御のみによる効果的な荷振れ抑制が実現できる。 In two-degree-of-freedom control, it is possible to realize the response speed of feedforward control and the response to the phenomenon not represented by the load fluctuation model of feedback control or the error of the load fluctuation model. However, the two-degree-of-freedom control requires a sensor or an estimator for detecting a load fluctuation, and the implementation cost is high.
From this, for example, if the initial runout can be suppressed in advance, it is possible to realize effective load control with only feedforward control at low mounting cost.
このことから、例えば、初期振れを事前に抑制することができれば、低い実装コストでフィードフォワード制御のみによる効果的な荷振れ抑制が実現できる。 In two-degree-of-freedom control, it is possible to realize the response speed of feedforward control and the response to the phenomenon not represented by the load fluctuation model of feedback control or the error of the load fluctuation model. However, the two-degree-of-freedom control requires a sensor or an estimator for detecting a load fluctuation, and the implementation cost is high.
From this, for example, if the initial runout can be suppressed in advance, it is possible to realize effective load control with only feedforward control at low mounting cost.
ここで、図1(a)、(b)を参照して、初期振れについて説明する。
図1に示すように、巻上げ機10は、トロリ11とロープ13、フック131から構成される。トロリ11は、横行輪1111が回転することでビーム15に沿って図中x方向に移動し、巻上げドラム1122を回転することでロープ13を巻上げて吊荷30を図中z方向に移動させる。 Here, the initial shake will be described with reference to FIGS. 1 (a) and 1 (b).
As shown in FIG. 1, the hoistingmachine 10 is composed of a trolley 11, a rope 13 and hooks 131. The trolley 11 moves in the x direction in the drawing along the beam 15 by the rotation of the traverse wheel 1111 and winds the rope 13 by rotating the winding drum 1122 to move the load 30 in the z direction in the drawing.
図1に示すように、巻上げ機10は、トロリ11とロープ13、フック131から構成される。トロリ11は、横行輪1111が回転することでビーム15に沿って図中x方向に移動し、巻上げドラム1122を回転することでロープ13を巻上げて吊荷30を図中z方向に移動させる。 Here, the initial shake will be described with reference to FIGS. 1 (a) and 1 (b).
As shown in FIG. 1, the hoisting
床面40上の吊荷30は、玉掛けロープ20によってフック131を介してロープ13、トロリ11に吊り下げられる。前述の構成において、ロープ13およびフック131、玉掛けロープ20と吊荷30は、巻上げドラム1122上に支点をもつ振子を構成する。
The hanging load 30 on the floor surface 40 is suspended by the sling rope 20 from the rope 13 and the trolley 11 via the hooks 131. In the above-described configuration, the rope 13 and the hooks 131, the hooking rope 20 and the hanging load 30 constitute a pendulum having a fulcrum on the winding drum 1122.
図1(a)では、前記支点と吊荷重心301が図中x方向に偏差をもつ。これにより、前記振子は図中y軸周りに初期振れ角θ0が存在している。この状態で巻上げドラム1122を回転させてロープ13を巻上げることで地切りして床面40から離れると、前記振子は運動可能な状態となり前記初期振れ角θ0により、図1(b)のように図中y軸周りに荷振れ、すなわち初期振れを生じる。
In FIG. 1A, the fulcrum and the suspension load core 301 have a deviation in the x direction in the drawing. As a result, the pendulum has an initial deflection angle θ 0 around the y axis in the drawing. Away from the floor 40 and the ground cut by winding the rope 13 to hoist drum 1122 in this state is rotated, the pendulum by the initial deflection angle theta 0 becomes movable state, FIG. 1 (b) As a result, a load runout, ie, an initial runout, occurs around the y axis in the figure.
この様に、初期振れは、例えば、ロープ13と吊荷30の構成する前記振子が、地切り時に、前記支点と吊荷重心301の水平面(図中xy平面)内の位置に偏差がある場合に起こる。
すなわち、この地切り時の振子の水平面内偏差による初期振れは、トロリ11を、トロリ11内の前記支点が吊荷30内の吊荷重心301の真上に配置すれば生じない。 In this way, the initial runout is, for example, when the pendulum which therope 13 and the hanging load 30 constitute is deviated in the horizontal position (the xy plane in the figure) of the supporting point and the hanging load core 301 at the time of ground cutting. It happens to
That is, the initial shake due to the horizontal deviation of the pendulum at the time of ground breaking does not occur if thefulcrum 11 in the trolley 11 is positioned directly above the suspension load core 301 in the suspended load 30.
すなわち、この地切り時の振子の水平面内偏差による初期振れは、トロリ11を、トロリ11内の前記支点が吊荷30内の吊荷重心301の真上に配置すれば生じない。 In this way, the initial runout is, for example, when the pendulum which the
That is, the initial shake due to the horizontal deviation of the pendulum at the time of ground breaking does not occur if the
また、前述の通り、前記初期振れをなくすためには、前記振子の支点と吊荷重心301を同一鉛直線上(図中z軸方向)に配置する必要があるが、巻上げドラム1122と吊荷30を同一鉛直線上に配置できれば、初期振れは低減できる。
Further, as described above, in order to eliminate the initial runout, it is necessary to arrange the fulcrum of the pendulum and the suspending load core 301 on the same vertical line (z-axis direction in the figure). Can be arranged on the same vertical line, initial runout can be reduced.
従来、この初期振れを低減するために、オペレータが吊荷30、トロリ11及びロープ13を目視しながらトロリ11の位置を操作して、トロリ11を吊荷30の真上に配置していた。
Conventionally, in order to reduce this initial runout, the operator manipulates the position of the trolley 11 while visually observing the hanging load 30, the trolley 11 and the rope 13, and the trolley 11 is disposed right above the hanging load 30.
実施例では、巻上げ機おいて地切り時の荷振れを自動的に低減する。
以下、実施例について図面を用いて説明する。 In the embodiment, the load fluctuation at the ground cutting is automatically reduced in the hoist.
Hereinafter, examples will be described using the drawings.
以下、実施例について図面を用いて説明する。 In the embodiment, the load fluctuation at the ground cutting is automatically reduced in the hoist.
Hereinafter, examples will be described using the drawings.
実施例1は、主にロープで吊上げ可能な吊荷を搬送する巻上げ機に関し、特に地切り前にロープを緊張させてトロリを搬送することで地切り時の荷振れを低減する巻上げ機に関する。他にも、同様に吊荷を搬送するクレーンについても適用可能である。
The first embodiment relates mainly to a hoist that conveys a load that can be lifted by a rope, and in particular, relates to a hoist that reduces a load fluctuation at the time of ground breaking by tensioning the rope before the ground breaking and conveying the trolley. In addition, it is applicable also to the crane which conveys the load similarly.
図2を参照して、実施例1における巻上げ機10の構成について説明する。
図2に示すように、搬送対象である吊荷30は、玉掛けロープ20によってフック131に吊り下げられる。フック131は、ロープ13によって巻上げドラム1122に吊り下げられる。ここで、吊荷30は玉掛けロープ20を介せず、フック131に直接吊り下げられる構成でもよい。 The configuration of thewinding machine 10 according to the first embodiment will be described with reference to FIG.
As shown in FIG. 2, the suspendedload 30 to be transported is suspended from the hook 131 by the hooking rope 20. The hook 131 is suspended by the rope 13 to the winding drum 1122. Here, the hanging load 30 may be configured to be hung directly on the hook 131 without the aid of the sling rope 20.
図2に示すように、搬送対象である吊荷30は、玉掛けロープ20によってフック131に吊り下げられる。フック131は、ロープ13によって巻上げドラム1122に吊り下げられる。ここで、吊荷30は玉掛けロープ20を介せず、フック131に直接吊り下げられる構成でもよい。 The configuration of the
As shown in FIG. 2, the suspended
巻上げドラム1122は、巻上げシャフト1123によって巻上げモータ112および巻上げエンコーダ1121と連結され、トロリ11に配置される。これにより、巻上げモータ112が回転することで、ロープ13は巻上げもしくは巻下げられ、吊荷30は図中z方向に搬送できる。このz方向の搬送を、巻上げと称する。
The winding drum 1122 is connected to the winding motor 112 and the winding encoder 1121 by a winding shaft 1123 and disposed in the trolley 11. Thus, the rope 13 can be wound up or down by the rotation of the winding motor 112, and the suspended load 30 can be transported in the z direction in the drawing. This z-direction transport is referred to as winding.
横行輪1111は、横行シャフト1112を介して横行モータ111と連結され、トロリ11に配置される。また、横行モータ111の回転により、横行輪1111は、ビーム15上を回転し、駆動力を発生できるよう配置される。これにより、横行モータ111が回転することで、トロリ11および吊荷30はビームに沿って図中x方向に搬送できる。
このx方向の搬送を、横行と称する。 Thetraverse wheel 1111 is connected to the traverse motor 111 via a traverse shaft 1112 and disposed in the trolley 11. In addition, the rotation of the traverse motor 111 causes the traverse wheel 1111 to rotate on the beam 15 so as to generate a driving force. As a result, by rotating the traverse motor 111, the trolley 11 and the suspended load 30 can be transported in the x direction in the figure along the beam.
This transport in the x direction is referred to as traversing.
このx方向の搬送を、横行と称する。 The
This transport in the x direction is referred to as traversing.
搬送操作部141は、操作端末14に備えられ、オペレータによって横行もしくは巻上げ、またはその両方の指令である搬送操作信号を入力される。入力された搬送操作信号は、通信部142を介して制御部12に送られる。
The transport operation unit 141 is provided on the operation terminal 14, and receives an operation of transport operation which is an instruction of traversing and / or winding, or both by the operator. The input transport operation signal is sent to the control unit 12 via the communication unit 142.
制御部12は、入力された搬送操作信号もしくは、後述の初期振れ低減機能による搬送信号に基づいて搬送指令を生成し、横行モータ111もしくは巻上げモータ112、またはその両方を駆動する。これにより、吊荷30は横行し、巻上げられる。
The control unit 12 generates a transport command based on the input transport operation signal or a transport signal by an initial shake reduction function to be described later, and drives the traverse motor 111 and / or the hoist motor 112. Thereby, the hanging load 30 is traversed and wound up.
なお、吊荷30および玉掛けロープ20は、搬送対象であり、巻上げ機10の構成要素ではない。また、吊荷30の吊下げに用いる治具は、玉掛けロープ20に限るものではなく、また無くてもよい。
また、操作端末14の有する通信部142は、有線通信であっても無線通信であってもよい。 The hangingload 30 and the sling rope 20 are to be transported, and are not components of the hoisting machine 10. Moreover, the jig | tool used for suspension of the hanging load 30 is not restricted to the sling rope 20, and may not be.
Thecommunication unit 142 of the operation terminal 14 may be wired communication or wireless communication.
また、操作端末14の有する通信部142は、有線通信であっても無線通信であってもよい。 The hanging
The
図3を参照して、巻上げ機10の別の構成について説明する。
図3に示すように、ビーム15は走行装置16を介して走行ビーム18と接続されている。走行装置16は、走行モータ161が回転することで、ビーム15を走行ビーム18に沿って図中y方向に移動させる。これにより、ビーム15に接続されたトロリ11およびフック131に吊り下げられた吊荷30(図2参照)は、図中y方向に搬送される。このy方向の搬送を、走行と称する。 Another configuration of the hoist 10 will be described with reference to FIG.
As shown in FIG. 3, thebeam 15 is connected to the traveling beam 18 via the traveling device 16. The traveling device 16 moves the beam 15 along the traveling beam 18 in the y direction in the drawing as the traveling motor 161 rotates. As a result, the trolley 11 connected to the beam 15 and the suspended load 30 (see FIG. 2) suspended by the hooks 131 are transported in the y direction in the drawing. This conveyance in the y direction is referred to as traveling.
図3に示すように、ビーム15は走行装置16を介して走行ビーム18と接続されている。走行装置16は、走行モータ161が回転することで、ビーム15を走行ビーム18に沿って図中y方向に移動させる。これにより、ビーム15に接続されたトロリ11およびフック131に吊り下げられた吊荷30(図2参照)は、図中y方向に搬送される。このy方向の搬送を、走行と称する。 Another configuration of the hoist 10 will be described with reference to FIG.
As shown in FIG. 3, the
操作端末14に備えられた搬送操作部141(図2参照)に入力される搬送操作信号は、横行及び巻上げに加えて走行の指令信号を有する。入力された搬送操作信号のうち少なくとも走行指令信号は、通信部142(図2参照)を介して走行制御部17に送信される。
The conveyance operation signal input to the conveyance operation unit 141 (see FIG. 2) provided in the operation terminal 14 has a traveling command signal in addition to the traverse and winding. At least a traveling instruction signal among the input conveyance operation signals is transmitted to the traveling control unit 17 via the communication unit 142 (see FIG. 2).
走行制御部17は、搬送操作信号もしくは後述の初期振れ低減機能による搬送信号に基づいて少なくとも走行に掛る搬送指令を生成し、走行モータ161を駆動する。これにより、吊荷30(図2参照)は横行及び巻上げに加えて走行される。
The traveling control unit 17 generates a conveyance command at least for traveling based on the conveyance operation signal or a conveyance signal by an initial shake reduction function described later, and drives the traveling motor 161. The load 30 (see FIG. 2) is thereby traveled in addition to traversing and winding.
なお、ここでは、制御部12において横行、巻上げの前記搬送指令を生成し、走行制御部17において走行の搬送指令を生成するよう説明したが、この構成に限るものではない。
Here, although it has been described that the transport command for traversing and winding is generated in the control unit 12 and the transport command for traveling is generated in the travel control unit 17, the present invention is not limited to this configuration.
例えば、制御部12において横行、走行、巻上げの搬送速度指令を生成し、生成した前記搬送指令のうち少なくとも走行にかかる指令を制御部12から走行制御部17に送信して、走行制御部17は受信した搬送指令に基づいて走行モータ161を駆動してもよい。
この場合、前記搬送操作信号は、少なくとも制御部12に送信されればよく、走行制御部17に送信される必要はない。 For example, thecontrol unit 12 generates a conveyance speed command for traversing, traveling, and winding, and at least of the generated conveyance commands, the control unit 12 transmits a command for traveling to the traveling control unit 17, and the traveling control unit 17 The traveling motor 161 may be driven based on the received conveyance command.
In this case, the conveyance operation signal may be transmitted to at least thecontrol unit 12, and may not be transmitted to the traveling control unit 17.
この場合、前記搬送操作信号は、少なくとも制御部12に送信されればよく、走行制御部17に送信される必要はない。 For example, the
In this case, the conveyance operation signal may be transmitted to at least the
図4を参照して、初期振れ低減機能について説明する。
図4において、オペレータによる操作端末14などでの初期振れ低減機能開始操作に基づき、初期振れ低減機能は開始フローS101から開始され、巻上げ操作不許可フローS102に遷移する。ここで、初期振れ低減機能は、制御部12(図2、図3参照)により行われる。 The initial shake reduction function will be described with reference to FIG.
In FIG. 4, based on the initial shake reduction function start operation on theoperation terminal 14 or the like by the operator, the initial shake reduction function is started from the start flow S101, and transitions to the winding operation non-permission flow S102. Here, the initial shake reduction function is performed by the control unit 12 (see FIGS. 2 and 3).
図4において、オペレータによる操作端末14などでの初期振れ低減機能開始操作に基づき、初期振れ低減機能は開始フローS101から開始され、巻上げ操作不許可フローS102に遷移する。ここで、初期振れ低減機能は、制御部12(図2、図3参照)により行われる。 The initial shake reduction function will be described with reference to FIG.
In FIG. 4, based on the initial shake reduction function start operation on the
巻上げ操作不許可フローS102では、オペレータによる操作のうち少なくとも巻上げ操作を不能することで、初期振れ低減機能が動作している間の巻上げ操作を無効化してロープ緊張フローS103に遷移する。
In the winding operation non-permission flow S102, at least the winding operation among the operations by the operator is disabled, so that the winding operation is disabled while the initial shake reduction function is in operation, and the process shifts to the rope tensioning flow S103.
ロープ緊張フローS103は、巻上げモータ112にトルクを印加することで、吊荷30を地切りすることなくロープ13を緊張させ、ψ検出フローS104に遷移する。
印加トルクは、例えば、フック131の質量などから推定できる。吊荷30を地切りさせることなく、フック131を巻上げ可能なトルクを所定の印加トルクとして印加すればよい。 The rope tensioning flow S103 applies a torque to the hoistingmotor 112, thereby tensioning the rope 13 without cutting the suspended load 30, and transits to the weir detection flow S104.
The applied torque can be estimated, for example, from the mass of thehook 131 or the like. A torque capable of winding up the hook 131 may be applied as a predetermined applied torque without cutting off the load 30.
印加トルクは、例えば、フック131の質量などから推定できる。吊荷30を地切りさせることなく、フック131を巻上げ可能なトルクを所定の印加トルクとして印加すればよい。 The rope tensioning flow S103 applies a torque to the hoisting
The applied torque can be estimated, for example, from the mass of the
また、例えば、前記印加トルクを徐々に増加させ、巻上げエンコーダ1121でロープ20の巻上げが検知された時点の印加トルクを所定の印加トルクとして印加することでも、吊荷30を地切りすることなくロープを緊張できる。
Also, for example, by gradually increasing the application torque and applying the application torque at the time when the winding of the rope 20 is detected by the winding encoder 1121 as a predetermined application torque, the rope 30 is not cut off the ground. Can be tense.
また、例えば、巻上げモータ112でロープ13を巻上げている間に、巻上げモータ112に印加される電流を観測することで、吊荷30が巻上げ負荷となったことを検出して巻上げを停止するなどの方法でもロープを緊張できる。
Also, for example, by observing the current applied to the hoisting motor 112 while hoisting the rope 13 with the hoisting motor 112, it is detected that the hoisting load 30 has become the hoisting load, and the hoisting is stopped, etc. You can tension the rope in any way.
ψ検出フローS104は、振子初期振れ角θ0(図1参照)と相関のある状態量ψを検出もしくは算出して、終了判定フローS105に遷移する。ここで、状態量ψについては後述する。
The eyelid detection flow S104 detects or calculates a state amount 相関 that is correlated with the pendulum initial shake angle θ 0 (see FIG. 1), and transitions to an end determination flow S105. Here, the state quantity 後 述 will be described later.
終了判定フローS105は、検出した状態量ψを用いて前記初期振れ角θ0が十分小さいと判定した場合は巻上げ操作許可フローS108に遷移し、前記初期振れ角θ0を小さくする必要があると判定した場合は、トロリ搬送方向判定フローS106に遷移する。
End determination flow S105, using a state quantity ψ the detected transition to the initial deflection angle theta 0 is operated permission flow S108 winding when it is determined that sufficiently small, when it is necessary to reduce the initial deflection angle theta 0 If it is determined, the flow proceeds to the trolley conveyance direction determination flow S106.
ここで、状態量ψの各例での終了判定の方法は後述する。トロリ搬送方向判定フローS106は、初期振れ低減機能における前回のトロリ11の搬送での前記初期振れ角θ0の変化を状態量ψによって判定し、今回のトロリ搬送方向を初期振れ角θ0が小さくなる方向に設定して、トロリ搬送フローS107に遷移する。
Here, the method of the end determination in each case of the state quantity 後 述 will be described later. Trolley conveying direction determination flow S106, the initial deflection determines the change of the initial deflection angle theta 0 in the transport of the last trolley 11 in reducing function by the state quantity [psi, reducing the current trolley conveying direction initial deflection angle theta 0 It sets to the direction which becomes, and it changes to trolley conveyance flow S107.
ここで、今回のトロリ移動方向は、前回のトロリ11の搬送で状態量ψにより前記初期振れ角θ0が小さくなったと判定した場合は前回と同じ方向に、前記初期振れ角θ0が大きくなったと判定した場合は逆方向に設定するなどで判定可能である。なお、初期振れ低減機能が開始されて第1回目のトロリ搬送方向判定フローS106では、所定の方向に搬送するなどでよい。
Here, when it is determined that the initial deflection angle θ 0 has become smaller according to the state amount で in the previous transport of the trolley 11, the initial deflection angle θ 0 becomes larger in the same direction as the previous one. If it is determined that the determination is made, the determination can be made by setting in the opposite direction or the like. In the first flow of trolley conveyance direction determination flow S106 after the initial shake reduction function is started, conveyance may be performed in a predetermined direction.
トロリ搬送フローS107は、前記搬送信号を生成して横行モータ111、走行モータ161、もしくはその両方に出力することで、設定された今回のトロリ移動方向にトロリを自動で横行、走行もしくはその両方を行って、ロープ緊張フローS103へ遷移する。
The trolley conveyance flow S107 generates the conveyance signal and outputs it to the traverse motor 111, the traveling motor 161, or both, thereby automatically traversing the trolley, traveling or both in the set trolley movement direction. Go and transition to rope tension flow S103.
これにより、終了判定フローS105で初期振れ角θ0が十分小さいと判定されるまで、ロープ緊張とトロリ搬送を繰り返す。巻上げ操作許可フローS108は、オペレータによる巻上げ操作を有効化して、オペレータによる地切り操作を可能として、終了フローS109に遷移する。終了フローS109は、初期振れ低減機能を終了する。
ここで、初期振れ低減機能が終了して地切り操作が可能となったことを巻上げ機に表示することで、オペレータに通知してもよい。 Thus, until the initial deflection angle theta 0 is determined to be sufficiently small at the end determination flow S105, and repeats the rope tension and trolley conveyor. The winding operation permission flow S108 enables the operator to perform the winding operation and enables the operator to perform the ground removal operation, and the process transitions to an end flow S109. An end flow S109 ends the initial shake reduction function.
Here, the operator may be notified by displaying on the hoist that the initial shake reduction function has ended and the ground removing operation has become possible.
ここで、初期振れ低減機能が終了して地切り操作が可能となったことを巻上げ機に表示することで、オペレータに通知してもよい。 Thus, until the initial deflection angle theta 0 is determined to be sufficiently small at the end determination flow S105, and repeats the rope tension and trolley conveyor. The winding operation permission flow S108 enables the operator to perform the winding operation and enables the operator to perform the ground removal operation, and the process transitions to an end flow S109. An end flow S109 ends the initial shake reduction function.
Here, the operator may be notified by displaying on the hoist that the initial shake reduction function has ended and the ground removing operation has become possible.
また、前記繰り返すループはイベント毎に遷移してもよく、時間毎に遷移するなどでもよい。イベント毎としては、ループを繰り返す度にトロリ11が搬送される搬送距離が既定されている例などがある。時間毎としては、1回のループに掛る処理時間が既定されている例などがある。
Further, the loop to be repeated may be transitioned for each event, or may be transitioned for each time, or the like. As each event, there is an example in which the transport distance by which the trolley 11 is transported each time the loop is repeated is set. For each time, there is an example in which the processing time taken for one loop is predetermined.
また、ロープ緊張フローS103およびψ検出フローS104以外のフローでは、巻上げモータ112には前記印加トルクが印加されていても印加されていなくともよい。すなわち、ロープ13は緊張状態であっても緩和状態であってもよい。
Further, in the flow other than the rope tensioning flow S103 and the heel detection flow S104, the application torque may or may not be applied to the winding motor 112. That is, the rope 13 may be in a tension state or in a relaxation state.
例えば、トロリ搬送フローS107において巻上げモータ112に前記トルクが印加された場合、ロープ13が巻き上げられながらトロリ11は搬送されることで、ロープ13は常に緊張する。
For example, when the torque is applied to the winding motor 112 in the trolley conveyance flow S107, the rope 13 is always tensioned by the trolley 11 being conveyed while the rope 13 is wound up.
また、例えば、トロリ搬送フローS107において巻上げモータ112に前記トルクが印加されない場合、トロリ11の搬送によってロープ13が緩和され、ロープ緊張フローS103でロープ13が緊張され、トロリ11の搬送に合わせてロープ13は緊張と緩和を繰り返す。
Also, for example, when the torque is not applied to the hoist motor 112 in the trolley conveyance flow S107, the rope 13 is relaxed by the conveyance of the trolley 11, the rope 13 is tensioned in the rope tensioning flow S103, and the rope is adjusted according to the conveyance of the trolley 11. 13 repeat tension and relaxation.
また、横行および走行可能な巻上げ機(図3参照)においては、終了判定フローS105は、横行と走行それぞれに対して、初期振れ角θ0が十分小さくなったかどうかを判定し、横行と走行の両方において初期振れ角θ0が十分小さくなったと判定した場合に巻上げ操作許可フローS108に遷移する。
Further, in the winding machine capable of traversing and traveling (see FIG. 3), the termination determination flow S105 determines whether or not the initial swing angle θ 0 has become sufficiently small for traveling and traveling respectively, and traverses and traveling If it is determined that the initial deflection angle θ 0 has become sufficiently small in both, the process transitions to the winding operation permission flow S108.
例えば、図4においてループが繰り返される際、交互に横行と走行のトロリ搬送と終了判定を行うことで、横行および走行可能な巻上げ機においても、吊荷30の鉛直上方にトロリ11を配置できる。
For example, when the loop is repeated in FIG. 4, the trolley 11 can be disposed vertically above the suspended load 30 even in a hoisting machine capable of traversing and traveling by alternately performing trolley conveyance and end determination of traversing and traveling.
また、別の例として、はじめに横行方向に対して終了判定フローS105が初期振れ角θ0は十分小さくなったと判定するまでループを繰り返した後、走行方向に対して同様にループを繰り返すなどでも、吊荷30の鉛直上方にトロリ11を配置できる。尚、はじめに走行方向を行い、次に横行方向を行ってもよいことは言うまでもない。
As another example, after the loop is repeated until the end determination flow S105 first determines that the initial shake angle θ 0 has become sufficiently small in the lateral direction, the loop is similarly repeated in the traveling direction, The trolley 11 can be disposed vertically above the load 30. It goes without saying that the traveling direction may be performed first, and then the transverse direction may be performed.
横行、走行の状態量ψがそれぞれ独立に検出可能である場合などは、横行、走行を同時に行うことができ、短時間で吊荷30の上方にトロリ11を配置する事ができる。また、判定に用いる状態量ψは、ひとつの状態量である必要はなく、複数の状態量を用いてもよい。
In the case where it is possible to independently detect the traveling state amount 横 independently of traveling, traveling and traveling can be performed simultaneously, and the trolley 11 can be disposed above the suspended load 30 in a short time. Further, the state quantity 用 い る used for the determination does not have to be one state quantity, and a plurality of state quantities may be used.
次に、状態量ψの例について、図を用いて説明する。
Next, an example of the state quantity ψ will be described with reference to the drawings.
図5は、初期振れ角θ0を状態量ψとする一例である。
図5(a)に示すように、振れ角表示器50は、表示版501と錘502とから構成され、フック131に固定される。錘502は、鉛直下向きに懸垂するよう取り付けられている。これにより、図5(b)の通り、初期振れ角θ0が、表示版501と錘502の成す角として表示される。また、エンコーダなどで前記成す角を観測すれば初期振れ角θ0が観測できる。 FIG. 5 is an example in which the initial deflection angle θ 0 is a state quantity ψ.
As shown in FIG. 5A, thedeflection angle display 50 is composed of a display plate 501 and a weight 502, and is fixed to the hook 131. The weight 502 is attached to be suspended vertically downward. Thus, as shown in FIG. 5B, the initial deflection angle θ 0 is displayed as the angle formed by the display plate 501 and the weight 502. Further, if the above-mentioned angle is observed by an encoder or the like, the initial deflection angle θ 0 can be observed.
図5(a)に示すように、振れ角表示器50は、表示版501と錘502とから構成され、フック131に固定される。錘502は、鉛直下向きに懸垂するよう取り付けられている。これにより、図5(b)の通り、初期振れ角θ0が、表示版501と錘502の成す角として表示される。また、エンコーダなどで前記成す角を観測すれば初期振れ角θ0が観測できる。 FIG. 5 is an example in which the initial deflection angle θ 0 is a state quantity ψ.
As shown in FIG. 5A, the
つまり、ψ検出フローS104は、初期振れ角θ0を状態量ψとして検出する。終了判定フローS105は、初期振れ角θ0が所定の値より小さければ初期振れ低減機能終了と判定するなどでよい。
これにより、トロリ搬送フローS107では、ψ検出フローS104で検出された初期振れ角θ0が小さくなる方向にトロリを自動で搬送する。 That is, the eyelid detection flow S104 detects the initial shake angle θ 0 as the state quantity ψ. End determination flow S105, the initial deflection angle theta 0 good like determines if the initial shake reducing function and end smaller than the predetermined value.
Accordingly, the trolley transfer flow S107, automatically transports the trolley in the direction in which the initial deflection angle theta 0 detected by ψ detection flow S104 decreases.
これにより、トロリ搬送フローS107では、ψ検出フローS104で検出された初期振れ角θ0が小さくなる方向にトロリを自動で搬送する。 That is, the eyelid detection flow S104 detects the initial shake angle θ 0 as the state quantity ψ. End determination flow S105, the initial deflection angle theta 0 good like determines if the initial shake reducing function and end smaller than the predetermined value.
Accordingly, the trolley transfer flow S107, automatically transports the trolley in the direction in which the initial deflection angle theta 0 detected by ψ detection flow S104 decreases.
ここで、振れ角表示器50を横行方向、走行方向別々に配置すれば、横行、走行それぞれで独立に初期振れ角θ0を検出可能である。横行方向の初期振れ角に基づいてトロリ11を横行方向に搬送し、走行方向の初期振れ角に基づいてトロリ11を走行方向する。これにより、初期振れ低減機能において横行と走行を同時に行える。
Here, if the deflection angle display 50 is disposed separately in the transverse direction and in the traveling direction, the initial deflection angle θ 0 can be detected independently in each of the transverse and traveling directions. The trolley 11 is conveyed in the lateral direction based on the initial deflection angle in the lateral direction, and the trolley 11 is driven in the traveling direction based on the initial deflection angle in the traveling direction. Thereby, traveling and traveling can be performed simultaneously in the initial shake reduction function.
また、振れ角表示器50は図5に示す構成でなくともよく、振れ角が検出可能であれば、ジャイロや加速度センサなど別の構成であってもよい。
Further, the deflection angle display 50 does not have to have the configuration shown in FIG. 5, but may have another configuration such as a gyro or an acceleration sensor as long as the deflection angle can be detected.
図6は、初期振れ角θ0とロープ長との関係を示す模式図である。
図6に示すように、Lは前記振子支点からフック131の下部までの距離であり、巻上げエンコーダ1121で検出可能なロープ長を示す。フック高さRは、フック131の下部から吊荷重心301までの距離であり検出できない。また、重心高さHは前記振子支点と吊荷重心301との図中z方向の投射距離であり検出できない。ここで、前記ロープ長L、フック高さR、重心高さHの関係は(数1)および図7となる。 FIG. 6 is a schematic view showing the relationship between the initial deflection angle θ 0 and the rope length.
As shown in FIG. 6, L is a distance from the pendulum fulcrum to the lower part of thehook 131 and indicates a rope length detectable by the winding encoder 1121. The hook height R is the distance from the lower part of the hook 131 to the hanging load core 301 and can not be detected. Further, the height H of the center of gravity is the projection distance between the pendulum fulcrum and the suspension load core 301 in the z direction in the drawing and can not be detected. Here, the relationship between the rope length L, the hook height R, and the center-of-gravity height H is (Equation 1) and FIG. 7.
図6に示すように、Lは前記振子支点からフック131の下部までの距離であり、巻上げエンコーダ1121で検出可能なロープ長を示す。フック高さRは、フック131の下部から吊荷重心301までの距離であり検出できない。また、重心高さHは前記振子支点と吊荷重心301との図中z方向の投射距離であり検出できない。ここで、前記ロープ長L、フック高さR、重心高さHの関係は(数1)および図7となる。 FIG. 6 is a schematic view showing the relationship between the initial deflection angle θ 0 and the rope length.
As shown in FIG. 6, L is a distance from the pendulum fulcrum to the lower part of the
図7は初期振れ角θ0とロープ長Lとの関係を示す図である。
図7に示すように、フック高さR、重心高さHは検出できないため、初期振れ角θ0が0度の際のロープ長Lの絶対値は分からない。しかし、トロリ11が水平搬送する場合、重心高さHは一定値のため、初期振れ角θ0が0度に近いほどロープ長Lは小さくなる。
また、初期振れ角θ0が0度に近づくほどθ0に対するロープ長Lの変化率も小さくなる。 FIG. 7 is a diagram showing the relationship between the initial deflection angle θ 0 and the rope length L.
As shown in FIG. 7, since the hook height R and the gravity center height H can not be detected, the absolute value of the rope length L when the initial deflection angle θ 0 is 0 degree is not known. However, if thetrolley 11 is horizontally conveyed, because the center of gravity height H constant value, as an initial deflection angle theta 0 is close to 0 degrees rope length L is small.
Further, as the initial deflection angle θ 0 approaches 0 °, the rate of change of the rope length L with respect to θ 0 also decreases.
図7に示すように、フック高さR、重心高さHは検出できないため、初期振れ角θ0が0度の際のロープ長Lの絶対値は分からない。しかし、トロリ11が水平搬送する場合、重心高さHは一定値のため、初期振れ角θ0が0度に近いほどロープ長Lは小さくなる。
また、初期振れ角θ0が0度に近づくほどθ0に対するロープ長Lの変化率も小さくなる。 FIG. 7 is a diagram showing the relationship between the initial deflection angle θ 0 and the rope length L.
As shown in FIG. 7, since the hook height R and the gravity center height H can not be detected, the absolute value of the rope length L when the initial deflection angle θ 0 is 0 degree is not known. However, if the
Further, as the initial deflection angle θ 0 approaches 0 °, the rate of change of the rope length L with respect to θ 0 also decreases.
つまり、状態量ψ検出フローS104は、巻上げエンコーダ1121を用いてロープ長Lを状態量ψとして検出する。終了判定フローS105は、トロリ11を搬送した際のロープ長Lの変化量が所定の値より小さくなる、あるいは、ロープ長Lが小さくなるようトロリ11を搬送した際にロープ長Lが長くなり初期振れ角θ0の増加を検出した、などで初期振れ低減機能終了を判定できる。
これにより、トロリ搬送フローS107では、ψ検出フローS104で検出されたロープ長Lが小さくなる方向にトロリを自動で搬送する。 That is, the state quantity ψ detection flow S104 detects the rope length L as the state quantity て using the windingencoder 1121. In the end determination flow S105, when the trolley 11 is transported such that the amount of change in the rope length L when transporting the trolley 11 becomes smaller than a predetermined value or the rope length L becomes smaller, the rope length L becomes longer and the initial stage and detecting an increase in the deflection angle theta 0, the initial deflection reduction function ends can be determined in such.
Thereby, in the trolley conveyance flow S107, the trolley is automatically conveyed in the direction in which the rope length L detected in the weir detection flow S104 becomes smaller.
これにより、トロリ搬送フローS107では、ψ検出フローS104で検出されたロープ長Lが小さくなる方向にトロリを自動で搬送する。 That is, the state quantity ψ detection flow S104 detects the rope length L as the state quantity て using the winding
Thereby, in the trolley conveyance flow S107, the trolley is automatically conveyed in the direction in which the rope length L detected in the weir detection flow S104 becomes smaller.
ここで、クレーンなどで前記振子支点を搬送した際に鉛直方向の変位が発生する巻上げ機においては、前記振子支点の搬送による重心高さHの変化分を推定して補償することで、同様にロープ長Lを状態量ψとできる。
Here, in the case of a hoist where displacement in the vertical direction occurs when the pendulum fulcrum is transported by a crane or the like, the variation of the gravity center height H due to the transport of the pendulum fulcrum is estimated and compensated similarly. The rope length L can be taken as the state quantity ψ.
図8は、初期振れ角θ0とロープ張力との関係を示す模式図である。
図8に示すように、fはフック131に掛る重力であり、Tはフック131を巻上げるためにロープ13に掛る張力である。ロープ張力Tは、ロープ13を緊張するために巻上げモータ112に印加したトルクである。ここで、フック重力f、ロープ張力Tと初期振れ角θ0との関係は(数2)および図9となる。 FIG. 8 is a schematic view showing the relationship between the initial deflection angle θ 0 and the rope tension.
As shown in FIG. 8, f is the gravity applied to thehook 131, and T is the tension applied to the rope 13 to wind up the hook 131. The rope tension T is the torque applied to the hoist motor 112 to tension the rope 13. Here, the relationship between the hook gravity f, the rope tension T, and the initial deflection angle θ 0 is expressed by Equation 2 and FIG.
図8に示すように、fはフック131に掛る重力であり、Tはフック131を巻上げるためにロープ13に掛る張力である。ロープ張力Tは、ロープ13を緊張するために巻上げモータ112に印加したトルクである。ここで、フック重力f、ロープ張力Tと初期振れ角θ0との関係は(数2)および図9となる。 FIG. 8 is a schematic view showing the relationship between the initial deflection angle θ 0 and the rope tension.
As shown in FIG. 8, f is the gravity applied to the
図9は初期振れ角θ0とロープ張力Tとの関係を示す図である。
図9に示すように、フック重力fは一定値のため、初期振れ角θ0が0度に近いほどロープ張力Tは小さくなり、初期振れ角θ0が0度に近づくほどθ0に対するロープ張力Tの変化率も小さくなる。 FIG. 9 is a view showing the relationship between the initial deflection angle θ 0 and the rope tension T.
As shown in FIG. 9, since the hook gravity f is a constant value, as an initial deflection angle theta 0 is close to 0 degrees rope tension T decreases, the rope tension on the more theta 0 initial deflection angle theta 0 approaches 0 degrees The rate of change of T also decreases.
図9に示すように、フック重力fは一定値のため、初期振れ角θ0が0度に近いほどロープ張力Tは小さくなり、初期振れ角θ0が0度に近づくほどθ0に対するロープ張力Tの変化率も小さくなる。 FIG. 9 is a view showing the relationship between the initial deflection angle θ 0 and the rope tension T.
As shown in FIG. 9, since the hook gravity f is a constant value, as an initial deflection angle theta 0 is close to 0 degrees rope tension T decreases, the rope tension on the more theta 0 initial deflection angle theta 0 approaches 0 degrees The rate of change of T also decreases.
つまり、状態量ψ検出フローS104は、ロープ13を緊張させた際の巻上げモータ112に印加されたトルクを用いてロープ張力Tを状態量ψとして検出する。終了判定フローS105は、トロリ11を搬送した際のロープ張力Tの変化量が所定の値より小さくなる、あるいへ、ロープ張力Tが小さくなるようトロリ11を搬送した際にロープ張力Tが大きくなり初期振れ角θ0の増加を検出した、などで初期振れ低減機能終了を判定できる。
これにより、トロリ搬送フローS107では、ψ検出フローS104で検出されたロープ張力Tが小さくなる方向にトロリを自動で搬送する。 That is, the state quantity ψ detection flow S104 detects the rope tension T as the state quantity 用 い using the torque applied to the hoistmotor 112 when the rope 13 is tensioned. In the end determination flow S105, when the trolley 11 is transported such that the amount of change in the rope tension T when transporting the trolley 11 becomes smaller than a predetermined value, or when the rope tension T becomes smaller, the rope tension T becomes large. The end of the initial shake reduction function can be determined by detecting an increase in the initial shake angle θ 0 or the like.
Thereby, in the trolley conveyance flow S107, the trolley is automatically conveyed in the direction in which the rope tension T detected in the wrinkle detection flow S104 becomes smaller.
これにより、トロリ搬送フローS107では、ψ検出フローS104で検出されたロープ張力Tが小さくなる方向にトロリを自動で搬送する。 That is, the state quantity ψ detection flow S104 detects the rope tension T as the state quantity 用 い using the torque applied to the hoist
Thereby, in the trolley conveyance flow S107, the trolley is automatically conveyed in the direction in which the rope tension T detected in the wrinkle detection flow S104 becomes smaller.
図10は、初期振れ角θ0とトロリ外力との関係を示す模式図である。
図10に示すように、Fは、フック131を巻上げてロープ13を緊張させること生じるトロリ11に掛る外力である。ここで、前記フック重力fと前記ロープ張力T、トロリ外力Fとの関係は、数3および図11となる。 FIG. 10 is a schematic view showing the relationship between the initial deflection angle θ0 and the trolley external force.
As shown in FIG. 10, F is an external force applied to thetrolley 11 which is generated by winding up the hook 131 and tensioning the rope 13. Here, the relationship between the hook gravity f, the rope tension T, and the trolley external force F is expressed by Equation 3 and FIG.
図10に示すように、Fは、フック131を巻上げてロープ13を緊張させること生じるトロリ11に掛る外力である。ここで、前記フック重力fと前記ロープ張力T、トロリ外力Fとの関係は、数3および図11となる。 FIG. 10 is a schematic view showing the relationship between the initial deflection angle θ0 and the trolley external force.
As shown in FIG. 10, F is an external force applied to the
図11は初期振れ角θ0とトロリ外力Fとの関係を示す図である。
図11に示すように、フック重力fは一定値のため、初期振れ角θ0が0度に近いほどトロリ外力Fは0に近くなる。 FIG. 11 is a view showing the relationship between the initial deflection angle θ 0 and the trolley external force F.
As shown in FIG. 11, since the hook gravity f is a constant value, the trolley external force F becomes closer to 0 as the initial deflection angle θ0 approaches 0 degrees.
図11に示すように、フック重力fは一定値のため、初期振れ角θ0が0度に近いほどトロリ外力Fは0に近くなる。 FIG. 11 is a view showing the relationship between the initial deflection angle θ 0 and the trolley external force F.
As shown in FIG. 11, since the hook gravity f is a constant value, the trolley external force F becomes closer to 0 as the initial deflection angle θ0 approaches 0 degrees.
図12はトロリ外力Fを検出する手段の一例を示すブロック線図である。
図12において、u0は制御部12で演算されたトロリ11を搬送するための駆動力指令である。トロリ11は、駆動力指令u0とトロリ外力Fとによる駆動力u1により、トロリ動特性に基づいて搬送される。 FIG. 12 is a block diagram showing an example of means for detecting the trolley external force F. As shown in FIG.
In FIG. 12, u0 is a driving force command for transporting thetrolley 11 calculated by the control unit 12. The trolley 11 is conveyed by the driving force u1 by the driving force command u0 and the trolley external force F based on the trolley dynamic characteristic.
図12において、u0は制御部12で演算されたトロリ11を搬送するための駆動力指令である。トロリ11は、駆動力指令u0とトロリ外力Fとによる駆動力u1により、トロリ動特性に基づいて搬送される。 FIG. 12 is a block diagram showing an example of means for detecting the trolley external force F. As shown in FIG.
In FIG. 12, u0 is a driving force command for transporting the
u2はトロリ11の搬送に基づく物理量であり、変位、速度、加速度などである。観測もしくは推定された搬送物理量u2に対してトロリ動特性の逆モデルに基づいて演算すると、駆動力u1の推定値である推定駆動力u1*が推定できる。この推定駆動力u1*と駆動力指令u0を用いることで、トロリ外力の推定値である推定トロリ外力F*が求まる。
u2 is a physical quantity based on the transport of the trolley 11, and includes displacement, speed, acceleration and the like. If the observed or estimated transport physical quantity u2 is calculated based on the inverse model of the trolley dynamic characteristic, the estimated driving force u1 *, which is an estimated value of the driving force u1, can be estimated. By using the estimated driving force u1 * and the driving force command u0, an estimated trolley external force F * which is an estimated value of the trolley external force can be obtained.
つまり、状態量ψ検出フローS104は、ロープ13を緊張させた状態のトロリ外力Fもしくは推定トロリ外力F*を状態量ψとして検出する。終了判定フローS105は、トロリ外力Fもしくは推定トロリ外力F*が所定の値より小さくなる、あるいは、トロリ外力Fもしくは推定トロリ外力F*が小さくなるようトロリ11を搬送した際にトロリ外力Fもしくは推定トロリ外力F*の方向(符号)が反転して初期振れ角θ0の増加を検出した、などで初期振れ低減機能終了を判定できる。
これにより、トロリ搬送フローS107では、ψ検出フローS104で検出されたトロリ外力Fまたは推定トロリ外力F*が小さくなる方向にトロリを自動で搬送する。 That is, the state quantity ψ detection flow S104 detects the trolley external force F or the estimated trolley external force F * in a state in which therope 13 is tensioned as the state quantity ψ. End determination flow S105, the * trolley external force F or estimated trolley external force F is smaller than a predetermined value, or trolley external force F or estimated upon transporting the trolley 11 so that * trolley external force F or estimated trolley external force F is reduced The end of the initial shake reduction function can be determined by, for example, detecting the increase in the initial shake angle θ 0 by reversing the direction (sign) of the external force F * .
Thus, in the trolley conveyance flow S107, the trolley is automatically conveyed in the direction in which the trolley external force F or the estimated trolley external force F * detected in the wrinkle detection flow S104 decreases.
これにより、トロリ搬送フローS107では、ψ検出フローS104で検出されたトロリ外力Fまたは推定トロリ外力F*が小さくなる方向にトロリを自動で搬送する。 That is, the state quantity ψ detection flow S104 detects the trolley external force F or the estimated trolley external force F * in a state in which the
Thus, in the trolley conveyance flow S107, the trolley is automatically conveyed in the direction in which the trolley external force F or the estimated trolley external force F * detected in the wrinkle detection flow S104 decreases.
ここで、図12に示すブロックを横行方向、走行方向それぞれで構成することにより、横行、走行それぞれで独立にトロリ外力Fが独立に推定可能となる。横行方向のトロリ外力に基づいてトロリ11を横行方向に搬送し、走行方向のトロリ外力に基づいてトロリ11を走行方向に搬送することで、初期振れ低減機能において横行と走行が同時に行える。
Here, by constructing the block shown in FIG. 12 in the transverse direction and in the traveling direction, the trolley external force F can be independently estimated independently in the traveling and the traveling. By transporting the trolley 11 in the lateral direction based on the trolley external force in the lateral direction, and transporting the trolley 11 in the traveling direction based on the trolley external force in the traveling direction, traverse and traveling can be performed simultaneously in the initial shake reduction function.
実施例1の巻上げ機は、搬送指令を自動生成することで、初期振れ低減機能における横行、走行を自動で行う。
The winding machine according to the first embodiment automatically performs traveling and traveling in the initial shake reduction function by automatically generating a conveyance command.
実施例2では、初期振れ低減機能における横行、走行をオペレータ操作により行い、この際オペレータに初期振れ角θ0を表す状態量ψを表示する表示部を有することでオペレータ操作を補助する。
In Example 2, transverse in the initial shake reducing function, the running was carried out by an operator operation, to assist the operator operation by a display unit for displaying the state quantity ψ representing the initial deflection angle theta 0 in this case the operator.
すなわち、図4において、ψ検出フローS104は検出したψをオペレータに表示し、終了判定フローS105、トロリ搬送方向判定フローS106、トロリ搬送フローS107はオペレータ操作により行う。
That is, in FIG. 4, the wrinkle detection flow S104 displays the detected wrinkles to the operator, and the end determination flow S105, the trolley conveyance direction determination flow S106, and the trolley conveyance flow S107 are performed by the operator's operation.
ψ検出フローS104は、検出した状態量ψをオペレータに表示する。状態量ψはトロリ11や操作端末14など、巻上げ機10の構成要素であればどこに表示されてもよい。
また、状態量ψは、数値的に表示される必要はなく、バーグラフや図5の振れ角表示器のように機構的に表示されてもよい。 The eyelid detection flow S104 displays the detected state quantity に to the operator. The state quantity ψ may be displayed anywhere as long as it is a component of the windingmachine 10 such as the trolley 11 or the operation terminal 14.
Also, the state quantity 必要 does not have to be displayed numerically, and may be displayed mechanically as a bar graph or a swing angle indicator of FIG. 5.
また、状態量ψは、数値的に表示される必要はなく、バーグラフや図5の振れ角表示器のように機構的に表示されてもよい。 The eyelid detection flow S104 displays the detected state quantity に to the operator. The state quantity ψ may be displayed anywhere as long as it is a component of the winding
Also, the state quantity 必要 does not have to be displayed numerically, and may be displayed mechanically as a bar graph or a swing angle indicator of FIG. 5.
終了判定フローS105では、オペレータは、前記表示に基づき、初期振れ角θ0が所望の角度より小さいことを判断して、操作端末14を操作することで巻上げ操作許可フローS108に遷移させる。
In termination determination flow S105, the operator, on the basis of the display, it is judged that the initial deflection angle theta 0 is less than the desired angle, shifts the winding operation permission flow S108 by operating the operation terminal 14.
この際、状態量ψに基づいた終了判定を自動でも行い、前記自動判定が初期振れ低減機能終了を判定した場合に、音は光などの表示でオペレータに通知することにより、オペレータによる前記操作の補助を行ってもよい。
At this time, the end determination based on the state quantity 自動 is automatically performed, and when the automatic determination determines the end of the initial shake reduction function, sound is notified to the operator by display of light or the like to perform the operation of the operator. You may help.
また、前記操作は、例えば初期振れ低減機能開始時に押下げたボタンを押上げるといった明示的な初期振れ低減機能終了操作に限らず、例えば地切りのための巻上げ操作であってもよい。
Further, the operation is not limited to an explicit initial shake reduction function end operation such as pushing up a button pressed at the start of the initial shake reduction function, for example, and may be, for example, a winding operation for ground cutting.
トロリ搬送方向判定フローS106では、オペレータは前記状態量ψに基づく表示により、初期振れ角θ0が小さくなる方向を判断する。この際、トロリ搬送方向を状態量ψに基づいて自動での判定も行い、トロリ搬送方向をオペレータに表示することで判断の補助としてもよい。
In trolley conveying direction determination flow S106, the operator by the display based on the state quantity [psi, determines the direction in which initial deflection angle theta 0 becomes smaller. At this time, the trolley conveyance direction may be automatically determined based on the state quantity 、, and the trolley conveyance direction may be displayed to the operator to aid the determination.
トロリ搬送フローS107では、オペレータは操作端末14を操作することでトロリ搬送方向にトロリ11を搬送する。この際、オペレータ操作によるトロリの搬送が、トロリ搬送方向判定フローS106で自動判定されたトロリ搬送方向と違った場合、音や光などの表示でオペレータに通知することで、オペレータによる搬送操作を補助してもよい。
In trolley conveyance flow S107, the operator operates the operation terminal 14 to convey the trolley 11 in the trolley conveyance direction. At this time, if the trolley conveyance by the operator's operation is different from the trolley conveyance direction automatically determined in the trolley conveyance direction determination flow S106, the operator is notified of the display by sound or light to assist the operator in the conveyance operation. You may
また、初期振れ低減機能は、実施例2のオペレータ操作による初期振れ角θ0を低減する機能と実施例1の自動搬送による機能とを併せもってもよい。これにより、オペレータ毎が選択的に初期振れ低減機能を使い分けることができる。また、オペレータによる初期振れ低減機能により粗く初期振れ角θ0を低減した後に、前記自動搬送の機能で精度よく初期振れ角θ0を低減するといった運用が可能となる。
Further, the initial shake reduction function may combine the function of reducing the initial shake angle θ 0 by the operator operation of the second embodiment and the function of the automatic conveyance of the first embodiment. Thereby, each operator can selectively use the initial shake reduction function. Moreover, after reducing the initial deflection angle theta 0 roughened by the initial shake reducing function by the operator, it is possible to operate such reduced accurately initial deflection angle theta 0 in function of the automatic transport.
10 巻上げ機
11 トロリ
111 横行モータ
1111 横行輪
1112 横行シャフト
112 巻上げモータ
1121 巻上げエンコーダ
1122 巻上げドラム
1123 巻上げシャフト
12 制御部
13 ロープ
131 フック
14 操作端末
141 搬送操作部
142 通信部
15 ビーム
16 走行装置
161 走行モータ
17 走行制御部
18 走行ビーム
20 玉掛けロープ
30 吊荷
301 吊荷重心
40 床面
50 振れ角表示器
501 表示版
502 錘 DESCRIPTION OFREFERENCE NUMERALS 10 winding machine 11 trolley 111 transverse motor 1111 traverse wheel 1112 transverse shaft 112 winding motor 1121 winding encoder 1122 winding drum 1123 winding shaft 12 control unit 13 rope 131 hook 14 operation terminal 141 conveyance operation unit 142 communication unit 15 beam 16 traveling device 161 traveling Motor 17 travel control unit 18 travel beam 20 hook rope 30 hanging load 301 hanging load core 40 floor surface 50 swing angle indicator 501 display plate 502 weight
11 トロリ
111 横行モータ
1111 横行輪
1112 横行シャフト
112 巻上げモータ
1121 巻上げエンコーダ
1122 巻上げドラム
1123 巻上げシャフト
12 制御部
13 ロープ
131 フック
14 操作端末
141 搬送操作部
142 通信部
15 ビーム
16 走行装置
161 走行モータ
17 走行制御部
18 走行ビーム
20 玉掛けロープ
30 吊荷
301 吊荷重心
40 床面
50 振れ角表示器
501 表示版
502 錘 DESCRIPTION OF
Claims (10)
- 自走手段により搬送されるトロリと、
前記トロリに搭載された巻上げモータと、
前記巻上げモータに取り付けられた巻上げドラムと、
前記巻上げドラムに取り付けられたロープと、
前記ロープに取り付けられたフックと、
前記ロープの巻上げと前記トロリの搬送を制御する制御部とを有し、
前記制御部は、
前記フックを介して吊り下げられた吊荷が床面から離れる地切り前に、前記ロープを緊張させて前記トロリを搬送することを特徴とする巻上げ機。 Trolleys transported by self-propelled means,
A winding motor mounted on the trolley;
A winding drum attached to the winding motor;
A rope attached to the winding drum;
A hook attached to the rope,
A control unit configured to control the winding of the rope and the transport of the trolley;
The control unit
A hoisting machine characterized in that the rope is tensioned to convey the trolley before ground cutting where a hanging load suspended via the hooks is separated from the floor surface. - 前記制御部は、
前記吊荷の鉛直上方に前記トロリが配置されるように、前記地切り前に前記ロープを緊張させて前記トロリを搬送することを特徴とする請求項1に記載の巻上げ機。 The control unit
The winding machine according to claim 1, wherein the rope is tensioned before the ground cutting so that the trolley is transported so that the trolley is disposed vertically above the hanging load. - 前記制御部は、
所定の状態量を検出し、
検出した前記状態量に基づいて、前記巻上げモータによる前記ロープの巻上げ操作と前記トロリの搬送操作のいずれかの操作を有効にすることを特徴とする請求項1に記載の巻上げ機。 The control unit
Detect a predetermined amount of state,
The hoisting machine according to claim 1, wherein one of the operation of winding the rope by the hoisting motor and the operation of transporting the trolley is made effective based on the detected state quantity. - 前記制御部は、
前記状態量に基づいて前記トロリの搬送操作を有効にした場合には、前記ロープの巻上げ操作を無効にして前記トロリを所定の方向に搬送することを特徴とする請求項3に記載の巻上げ機。 The control unit
The winding machine according to claim 3, wherein, when the transporting operation of the trolley is enabled based on the state quantity, the winding operation of the rope is invalidated and the trolley is transported in a predetermined direction. . - 前記制御部は、
前記地切り時に発生する前記吊荷の初期振れの初期振れ角を前記状態量として検出し、 前記初期振れ角が小さくなる方向に前記トロリを搬送することを特徴とする請求項3に記載の巻上げ機。 The control unit
The winding according to claim 3, wherein the initial swing angle of the initial swing of the hanging load generated at the time of ground breaking is detected as the state quantity, and the trolley is conveyed in the direction in which the initial swing angle becomes smaller. Machine. - 前記制御部は、
前記ロープの長さを前記状態量として検出し、前記ロープの長さが小さくなる方向に前記トロリを搬送することを特徴とする請求項3に記載の巻上げ機。 The control unit
The winding machine according to claim 3, wherein the length of the rope is detected as the state quantity, and the trolley is conveyed in a direction in which the length of the rope is reduced. - 前記制御部は、
前記ロープに掛る張力を前記状態量として検出し、前記張力が小さくなる方向に前記トロリを搬送することを特徴とする請求項3に記載の巻上げ機。 The control unit
The hoist according to claim 3, wherein the tension applied to the rope is detected as the state quantity, and the trolley is conveyed in the direction in which the tension decreases. - 前記制御部は、
前記ロープを緊張させることにより前記トロリに掛る外力を前記状態量として検出し、前記外力が小さくなる方向に前記トロリを搬送することを特徴とする請求項3に記載の巻上げ機。 The control unit
The hoist according to claim 3, wherein the tension applied to the rope is detected as the state quantity by tensioning the rope, and the trolley is transported in a direction in which the external force is reduced. - 前記制御部は、
搬送指令を自動生成して、前記トロリの搬送を自動で行うことを特徴とする請求項1に記載の巻上げ機。 The control unit
The winding machine according to claim 1, wherein the conveyance command is automatically generated to automatically convey the trolley. - オペレータが操作する操作端末を更に有し、
前記制御部は、
前記操作端末からの操作信号に応答して、前記トロリの搬送を行うことを特徴とする請求項1に記載の巻上げ機。 It further has an operation terminal operated by the operator,
The control unit
The hoist according to claim 1, wherein the trolley is transported in response to an operation signal from the operation terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880079612.0A CN111465572B (en) | 2018-01-10 | 2018-10-04 | Hoisting machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018002029A JP7117852B2 (en) | 2018-01-10 | 2018-01-10 | hoisting machine |
JP2018-002029 | 2018-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019138616A1 true WO2019138616A1 (en) | 2019-07-18 |
Family
ID=67219594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/037170 WO2019138616A1 (en) | 2018-01-10 | 2018-10-04 | Hoisting machine |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7117852B2 (en) |
CN (1) | CN111465572B (en) |
WO (1) | WO2019138616A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7403270B2 (en) * | 2019-10-09 | 2023-12-22 | 株式会社日立産機システム | Hoisting machine, hoisting machine system, suspended load mass estimation device, and suspended load mass estimation method |
CN112938756B (en) * | 2021-01-29 | 2022-07-05 | 华中科技大学 | A kind of active control method and system for space oscillation of lifting object system of crane ship |
JP7509712B2 (en) * | 2021-03-29 | 2024-07-02 | 株式会社日立産機システム | Crane and crane control method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4942659U (en) * | 1972-07-18 | 1974-04-15 | ||
JPH04223992A (en) * | 1990-12-25 | 1992-08-13 | Kobe Steel Ltd | Rope swinging angle detecting device of crane |
JPH05246686A (en) * | 1992-03-04 | 1993-09-24 | Kobe Steel Ltd | Turning type crane |
JPH07125981A (en) * | 1993-11-08 | 1995-05-16 | Hitachi Kiden Kogyo Ltd | Automatic operation method of inverter-controlled scrap crane with lifting electromagnet |
JP2010149943A (en) * | 2008-12-24 | 2010-07-08 | Hitachi Industrial Equipment Systems Co Ltd | Hoist |
US20140224755A1 (en) * | 2011-09-20 | 2014-08-14 | Konecranes Plc | Crane control |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20095324L (en) * | 2009-03-27 | 2010-09-28 | Sime Oy | Method for controlling a suspended load |
CN204625010U (en) * | 2015-04-29 | 2015-09-09 | 廖章威 | The anti-swing system of a kind of industrial crane |
-
2018
- 2018-01-10 JP JP2018002029A patent/JP7117852B2/en active Active
- 2018-10-04 WO PCT/JP2018/037170 patent/WO2019138616A1/en active Application Filing
- 2018-10-04 CN CN201880079612.0A patent/CN111465572B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4942659U (en) * | 1972-07-18 | 1974-04-15 | ||
JPH04223992A (en) * | 1990-12-25 | 1992-08-13 | Kobe Steel Ltd | Rope swinging angle detecting device of crane |
JPH05246686A (en) * | 1992-03-04 | 1993-09-24 | Kobe Steel Ltd | Turning type crane |
JPH07125981A (en) * | 1993-11-08 | 1995-05-16 | Hitachi Kiden Kogyo Ltd | Automatic operation method of inverter-controlled scrap crane with lifting electromagnet |
JP2010149943A (en) * | 2008-12-24 | 2010-07-08 | Hitachi Industrial Equipment Systems Co Ltd | Hoist |
US20140224755A1 (en) * | 2011-09-20 | 2014-08-14 | Konecranes Plc | Crane control |
Also Published As
Publication number | Publication date |
---|---|
JP2019119583A (en) | 2019-07-22 |
CN111465572A (en) | 2020-07-28 |
CN111465572B (en) | 2022-08-16 |
JP7117852B2 (en) | 2022-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5293977B2 (en) | Crane steady rest control method and steady rest control apparatus | |
RU2574047C2 (en) | Control over lifting crane | |
WO2019138616A1 (en) | Hoisting machine | |
JP2006501115A (en) | Cargo positioning method and equipment | |
JP2017206358A (en) | Control method and control device for suspension crane | |
CN112399959A (en) | Crane and control method thereof | |
WO2018211739A1 (en) | Hoisting machine | |
WO2010109075A1 (en) | Method for controlling a suspended load | |
JPH07300294A (en) | Bracing control method for crane | |
CN111542484B (en) | Crane system | |
JP4220852B2 (en) | Transfer crane | |
JPH0489795A (en) | Anti-swinging method for hoisting load | |
JP2569446B2 (en) | Control method of steadying operation of suspended load | |
CN113382945A (en) | Hang from ground controlling means and travelling crane | |
JP2010149943A (en) | Hoist | |
US20230373761A1 (en) | Crane, crane characteristic change determination device, and crane characteristic change determination system | |
JP3132757B2 (en) | Crane control method | |
JP6449744B2 (en) | Crane control device and crane control method | |
JP4481031B2 (en) | Trolley crane and its steadying method | |
JP2004090126A (en) | Tumbling preventing method and device for mobile robot | |
JP2001278579A (en) | Method and device for controlling swing of hoisted load | |
JPH07267576A (en) | Control device for hung object swing stopping operation | |
JP2561192B2 (en) | Suspended load stop control method and device | |
JP2021102503A (en) | Control device of suspension-type crane and inverter device | |
JPH07291576A (en) | Apparatus for controllably stopping sway of hung load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18899658 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18899658 Country of ref document: EP Kind code of ref document: A1 |