[go: up one dir, main page]

WO2019135386A1 - Deuterated phospholipid and method for producing same - Google Patents

Deuterated phospholipid and method for producing same Download PDF

Info

Publication number
WO2019135386A1
WO2019135386A1 PCT/JP2018/048187 JP2018048187W WO2019135386A1 WO 2019135386 A1 WO2019135386 A1 WO 2019135386A1 JP 2018048187 W JP2018048187 W JP 2018048187W WO 2019135386 A1 WO2019135386 A1 WO 2019135386A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
glycerol
disease
fatty acid
deuterated
Prior art date
Application number
PCT/JP2018/048187
Other languages
French (fr)
Japanese (ja)
Inventor
直道 馬場
三澤 嘉久
忠広 対馬
Original Assignee
備前化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 備前化成株式会社 filed Critical 備前化成株式会社
Priority to JP2019563973A priority Critical patent/JP7279941B2/en
Publication of WO2019135386A1 publication Critical patent/WO2019135386A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • A61K31/685Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to deuterated phospholipids, a process for their preparation and their use.
  • glycerophospholipids A large number of molecular species with different structures exist in the phospholipid group indispensable as cell membrane components or biological signal transduction substances.
  • the basic structure of glycerophospholipids is that the same or different fatty acids such as fatty acids such as palmitic acid, stearic acid, icosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid are bound to two hydroxyl groups of the glycerol skeleton, and the third hydroxyl group is bound Polar groups such as phosphocholine, phosphoserine, phosphoethanolamine, etc. are bound. Therefore, a huge number of kinds of phospholipid molecular species exist in living tissues, depending on the number of combinations thereof.
  • This phospholipid was found to be detected with extremely high selectivity by detection in the product ion mode of electrospray ionization mass spectrometry (ESI-MS). Even in the coexistence of all kinds of phospholipids present in living tissues, deuterated phospholipids and metabolites in the acyl moiety thereof can be detected very specifically and sensitively. This method revealed the metabolic process in the blood of phospholipid peroxide synthesized from linoleic acid. (Non-patent document 2) The fatty acids bound in phospholipids have different functions.
  • arachidonic acid is essential for the growth and reproduction of infants
  • EPA is known to contribute to blood homeostasis controlling heart disease and the like
  • DHA is known to be deeply involved in brain function homeostasis.
  • omega-3 fatty acids are usually bound to triglycerides and phospholipids in the living body, and are cut out by metabolic enzymes as necessary to play their role.
  • phospholipase A2 when inflammation occurs, phospholipase A2 is expressed at that site, and EPA, DPA and DHA bound to the surrounding cell membrane are released from phospholipids, and these are metabolized by lipoxygenase (LOX) and cyclooxygenase (COX), and resolvin A metabolite called SPM (specialized proresolving mediator) represented by protectin and mercerin is produced and involved in suppression of inflammation.
  • SPM specialized proresolving mediator
  • important phospholipids to which such metabolites are bound have also been discovered.
  • omega-3 fatty acids bound in phospholipids may produce phospholipid-type metabolites by the direct action of the above-mentioned enzymes, and the details are not known.
  • soybean lipoxygenase acts on omega-3 fatty acids bound in phospholipids to introduce a hydroperoxy group.
  • Non-patent document 1 neutrophils activated by inflammation, natural killer cells, various active oxygen produced by macrophages, such as hydrogen peroxide and ozone, attack bacteria at the site of inflammation, but they are extremely highly reactive. These reactive oxygen species nonenzymatically oxidize omega 3 fatty acids bound in surrounding omega 3 fatty acids and phospholipids to produce other phospholipids that have undergone structural change and exhibit some biological function There is a possibility, but such a mechanism is hardly clear.
  • the deuterated phospholipids provided by the present invention can be an important tool in elucidating these unknown mechanisms.
  • Omega-3 fatty acids taken in by the diet are present in the blood as triglycerides and phospholipids, and are transferred to each tissue as needed.
  • DHA is lysophospholipid-bound in the liver and translocates into the brain through the brain barrier with blood flow.
  • DPA that has been transferred into the brain is once converted to C24 (5n-3) and then turned to 6n-3 by the desaturase, which again becomes DHA with a decrease of 2 carbons.
  • Arachidonic acid bound in phospholipids undergoes various complex oxidation reactions in the metabolic process, and as a result, phospholipids in which various fatty acids that have undergone oxidative degradation are bound have been identified.
  • the functions of phospholipids have not yet been fully elucidated, and new tools for their analysis are desired.
  • the synthetic deuterated phospholipids provided by the present invention can be applied to the solution of problems in such fields.
  • antiphospholipid antibody syndrome has clinical problems that are said to be difficult to standardize its detection due to the diversity of antiphospholipid antibodies, and the present invention can facilitate such detection. It also provides diagnostic agents.
  • Each R A is independently selected from hydrogen, deuterium or tritium) Or a salt thereof.
  • Step 1) Trideuterio methyl group introduction reagent
  • Step 3) protecting 1-hydroxy group and 3-hydroxy group of glycerol
  • Step 4) protecting the 2-hydroxy group of glycerol
  • Step 5) Deprotecting 1-hydroxy group and 3-hydroxy group of glycerol
  • Step 6) Step of introducing fatty acid of R 1 -OH structure into 1-hydroxy group of glycerol
  • step 7) Introduction of choline containing phosphate group and deuterated methyl group of step 2 into 3-hydroxy group of glycerol
  • Step 8) Deprotecting 2-hydroxy group of glycerol, Step 9) Deuteration including at least one of the steps of introducing a fatty acid of the structure of R 2 —OH into 2-hydroxy group of glycerol, optionally further introduced in the following step 10) step 7
  • a production method comprising the steps of: converting choline containing a methyl group into aminoethanol; and introducing a deuterated methyl group into aminoethanol.
  • compositions comprising the compound according to item 1 or 2 or a salt thereof.
  • (Item 5) 5.
  • (Item 6) 5.
  • (Item 7) 7.
  • (Item 8) 7.
  • the composition according to item 6, wherein the disease or condition is selected from the group consisting of obesity, hyperlipidemia, non-insulin dependent diabetes and osteoarthritis of the knee. (Item 9) 7.
  • composition according to item 6, wherein the disease or condition is selected from the group consisting of cancer, inflammation, arteriosclerosis, Alzheimer's disease, sepsis and antiphospholipid antibody syndrome.
  • a method for producing palmitoyl glycerol palmitoylated with unsaturated fatty acid which is selected from the group consisting of (i) Formula (A), Formula (B), and Formula (C)
  • R 1 to R 11 are independently H or an alkyl group having 1 to 12 carbon atoms), and (Ii) unsaturated fatty acids, Performing a lipase-enzyme reaction using a substrate as a substrate.
  • R 1 to R 11 each independently represent H or an alkyl group having 1 to 12 carbon atoms, H or an alkyl group having 1 to 11 carbon atoms, H or an alkyl group having 1 to 10 carbon atoms, H or 1 carbon atom
  • -9 alkyl group H or alkyl group having 1 to 8 carbon atoms, H or alkyl group having 1 to 7 carbon atoms, H or alkyl group having 1 to 6 carbon atoms, H or alkyl group having 1 to 5 carbon atoms, H or an alkyl group having 1 to 4 carbon atoms, or H or an alkyl group having 1 to 3 carbon atoms
  • Item 11 11.
  • the present invention can contribute to the functional study of phospholipids.
  • the present invention can provide new diagnostic agents for diseases associated with phospholipids.
  • unsaturated fatty acid refers to a fatty acid with one or more unsaturated carbon bonds.
  • An unsaturated carbon bond is an unsaturated bond between carbons in a carbon molecular chain, that is, a carbon double bond or a triple bond.
  • Naturally occurring unsaturated fatty acids have one or more double bonds, and by replacing saturated fatty acids in fatty acids, they change the properties of fats such as melting point and fluidity.
  • ⁇ 3 fatty acid refers to an unsaturated fatty acid in which a double bond is present from the third carbon at the methyl terminal ( ⁇ 3 position), and typically, ⁇ -linolenic acid, stearidone Acids, eicosatetraenoic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPAn-3), docosahexaenoic acid (DHA), tetracosapentaenoic acid, and tetracosahexaenoic acid. It is not limited.
  • modified omega-3 fatty acid refers to a substance modified with omega-3 fatty acid and includes an oxide of omega-3 fatty acid (eg, oxidized metabolite), typically 13- Hydroxy- ⁇ -linolenic acid, 13-hydroxystearidonic acid, 15-hydroxyeicosatetraenoic acid, 15-hydroxyEPA, 17-hydroxyDPAn-3, 17-hydroxy DHA, 19-hydroxytetracosapentaenoic acid, and And 19-hydroxytetracosahexaenoic acid, but is not limited thereto.
  • omega-3 fatty acid eg, oxidized metabolite
  • 13- Hydroxy- ⁇ -linolenic acid typically 13- Hydroxy- ⁇ -linolenic acid, 13-hydroxystearidonic acid, 15-hydroxyeicosatetraenoic acid, 15-hydroxyEPA, 17-hydroxyDPAn-3, 17-hydroxy DHA, 19-hydroxytetracosapentaenoic acid, and And 19-hydroxytetrac
  • docosahexaenoic acid is used interchangeably with “DHA” and includes both free fatty acid forms and forms esterified to ethanol, glycerin, phospholipids.
  • eicosapentaenoic acid is used interchangeably with “EPA” and includes both the free fatty acid form and the form esterified to ethanol, glycerin, phospholipids Do.
  • docosapentaenoic acid is used interchangeably with “DPA” and includes both the free fatty acid form and the esterified form of ethanol, glycerin.
  • DPA not specified as either “n-3” or “n-6” is “n-3 DPA” (ie, all-cis-7, 10, 13, 16, 19-docosa) Mean pentaenoic acid).
  • N-3 DPA is " ⁇ -3 Used interchangeably with DPA.
  • n-6 DPA as used herein is used interchangeably with “all-cis-4,7,10,13,16-docosapentaenoic acid” or “ ⁇ 6 DPA” and is free It includes both fatty acid forms and forms esterified to ethanol and glycerin.
  • stearidonic acid is used interchangeably with “SDA” and includes both the free fatty acid form and the esterified form of ethanol, glycerin.
  • alpha-linolenic acid is used interchangeably with "ALA” and encompasses both the free fatty acid form and the esterified form of ethanol, glycerin.
  • eicosatetraenoic acid is used interchangeably with "ETA” and encompasses both the free fatty acid form and the esterified form of ethanol, glycerin.
  • hydrogen refers to 1 H of the isotopes of hydrogen atoms, also denoted as H.
  • the hydrogen atoms contained in naturally occurring compounds include isotopes such as deuterium and tritium in a certain proportion, but when using hydrogen or H in the present specification, all strictly contained in the compounds does not mean that the hydrogen atoms are 1 H, it does not exclude that the isotopes of hydrogen, such as deuterium and tritium are included in the normal degree included.
  • deuterium refers to the 2 H of the isotopes of hydrogen atoms, also denoted D or d.
  • tritium refers to the 3 H of the isotopes of hydrogen atoms, also denoted as T or t.
  • hydrogen species as used herein, is used to described without distinguishing isotopes of hydrogen atom (1 H, 2 H and 3 H), hydrogen atom 1 H, 2 H And indicate that it is any of 3 H.
  • phospholipid refers to an amphiphilic substance having a hydrophobic group composed of a long chain alkyl group in the molecule and a hydrophilic group containing a phosphate group.
  • phosphatidyl choline or "lecithin”, as used herein, is a compound used interchangeably and also denoted as PC and of glycerol (propane-1,2,3-triol, also referred to as glycerol)
  • An acyl group is attached to the sn-1 position and the sn-2 position, and choline is attached to the phosphate linked to the sn-3 position.
  • lysophosphatidylcholine is a compound also referred to as lyso-PC, wherein an acyl group is attached to either the sn-1 position or the sn-2 position of glycerol, It refers to one in which choline is linked to the phosphate linked to the 3-position.
  • sn- is an abbreviation for Stereospecifically Numbered and is used when the carbon atom of a glycerol derivative is designated by stereospecific numbering.
  • glycerol derivative is a racemate, rac- is attached, and when the stereochemistry is unknown, X- is attached.
  • the position of the acyl group is used as it is, as in 1-acyl-phosphatidylcholine, 2-acyl-phosphatidylcholine.
  • sn when there is no information on sn, it is the case where it is described without distinction or used as a generic term (upper-level concept).
  • acyl (group) is used in the usual sense in the art to refer to a group formed by removing a hydroxyl group from an organic acid (carboxylic acid; fatty acid).
  • organic acid carboxylic acid; fatty acid.
  • formyl group HCO-, acetyl group CH 3 CO-, malonyl group -COCH 2 CO-, benzoyl group C 6 H 5 CO-, cinnamoyl group C 6 H 5 CH CHCO- and the like, ketone derivatives And so on.
  • acyl group contained in phosphatidylinositol phosphate and lysophosphatidylinositol phosphates is also referred to as a fatty acid group because it forms a fatty acid in a preferred embodiment.
  • a fatty acid can be represented by its carbon number and the number of double bonds, for example, arachidonic acid can be represented as (20: 4).
  • arachidonic acid can be represented as (20: 4).
  • fatty acids and acyl groups based thereon are used, but it is understood that fatty acids having any chain length and any double bond can be used without limitation thereto.
  • carbon number one or more, typically from 1 to 30, usually from 4 to 30, may be mentioned, and one, two, three, four, five, six, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. 18, 18, 19, 20, 21, 22, 23. , 24, 26, 27, 28, 29, 30, etc., but is not limited thereto.
  • the number of double bonds may be 0, 1, 2, 3, 4, 5, 6, 7, etc. According to the number of carbon atoms, any permissible number can be adopted.
  • the position of the double bond is typically omega-3, omega-6, omega-9, etc.
  • omega-1, omega-4, omega-5, omega-7, etc. are also confirmed. Any of these available can be used.
  • the fatty acid may contain triple bonds, and the number thereof is 0, 1, 2, 3, 4, 5, 6, 6, 7 or any other acceptable number of carbon atoms. A number can be adopted.
  • the term "diagnosis” identifies various parameters associated with a disease, disorder, condition (eg, a disease caused by a lipid mediator, disorder, condition etc.) in a subject, etc. To determine the current or future state of a disease, disorder, or condition.
  • the condition in the body can be examined, and such information can be used to formulate a treatment, treatment or prophylaxis to be administered for a disease, disorder, condition or subject in a subject.
  • various parameters, such as a method can be selected.
  • diagnosis refers to diagnosing the current state, but broadly includes “early diagnosis”, “predictive diagnosis”, “pre-diagnosis” and the like.
  • the diagnostic method of the present invention is industrially useful in principle because it can be used from the body and can be performed with the hands of medical workers such as doctors removed.
  • "predictive diagnosis, prior diagnosis or diagnosis” may be referred to as "support”.
  • the techniques of the present invention are applicable to such diagnostic techniques.
  • the techniques of the present invention can be used to identify the presence of deuterated phospholipids and be applied to such a variety of diagnostics.
  • prognosis is meant to predict the possibility of death or progression due to a disorder such as cancer, a disease due to lipid mediators, a disorder or the like.
  • Prognostic factors are variables relating to the natural course of the disease, which affect the recurrence rate etc. of the patient once having developed the disease.
  • Clinical indicators associated with aggravated prognosis include, for example, any cellular indicator used in the present invention.
  • Prognostic factors are often used to classify patients into subgroups with different disease states. The ability to identify the presence of deuterated phospholipids using the techniques of the present invention may be useful as a technique for providing a prognostic factor since it can be linked to a specific disease state.
  • diagnostic agent broadly refers to any agent capable of diagnosing a condition of interest (eg, cancer, a disease or disorder associated with a lipid mediator, etc.).
  • cancer refers to any cancer that can be treated or prevented with a vaccine or drug, such as hepatocellular carcinoma, esophageal squamous cell carcinoma, breast cancer, pancreatic cancer, Squamous cell or adenocarcinoma of the head and neck, colorectal cancer, renal cancer, brain cancer (tumor), prostate cancer, small cell and non small cell lung cancer, bladder cancer, bone or joint cancer, Uterine cancer, cervical cancer, multiple myeloma, hematopoietic malignancy, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma, skin cancer, melanoma, squamous cell cancer, leukemia, lung cancer, ovarian cancer, gastric cancer, Kaposi Sarcoma, laryngeal cancer, endocrine cancer, thyroid cancer, parathyroid cancer, pituitary cancer, adrenal cancer, cholangiocellular carcinoma, endometriosis, esophenoma, hepat
  • lipid metabolism disorder is a disorder caused by an abnormality in lipid or fatty acid metabolism.
  • Lipid metabolism disorders include, but are not limited to, for example, obesity, hyperlipidemia, non-insulin dependent diabetes.
  • inflammation refers to any detectable inflammation, and includes activation of blood cells associated with inflammation such as macrophages (chemotaxis of inflammatory cells, active oxygen production, phagocytosis, enzyme secretion reaction, etc.) May accompany.
  • macrophages chemotaxis of inflammatory cells, active oxygen production, phagocytosis, enzyme secretion reaction, etc.
  • Exemplary inflammations include, for example, arthritis, tendinitis, bursitis, psoriasis, cystic fibrosis, Sjögren's syndrome, giant cell arteritis, progressive systemic sclerosis (scleroderma), spondylitis, multiple Myositis, dermatomyositis, pemphigus, pemphigus, Hashimoto's thyroiditis, cholangitis, inflammatory bowel disease (IBD such as Crohn's disease, ulcerative colitis), colitis, inflammatory skin disease, pneumonia, asbestosis, Silicosis, bronchiectasis, talcum lung, pneumoconiosis, sarcoidosis, delayed hypersensitivity reaction (eg, poison ivy dermatitis), airway inflammation, adult respiratory distress syndrome (ARDS), encephalitis, immediate hypersensitivity reaction, asthma, hay fever, allergy , Acute anaphylaxis, reperfusion injury, rheumatoid arthritis
  • the term "marker” refers to or is at risk for a condition (eg, functional, transformed, diseased, impaired, or proliferative capacity, level of differentiation, etc).
  • detection, diagnosis, preliminary detection, prediction or prior diagnosis for a certain condition eg, disease such as disease state, health condition, cell or tissue differentiation disorder, etc.
  • cancer marker is also referred to as a tumor marker, and is a substance found in biological substances or organisms effective for cancer diagnosis and follow-up after treatment, detection of recurrence and metastasis.
  • cancer diagnosis and the like can be performed.
  • the substance in the blood corresponds to a cancer marker.
  • Each R A is independently selected from hydrogen, deuterium or tritium) Or a salt thereof.
  • fatty acids containing the above R include, for example, the following moieties, but are not limited thereto: 1) Saturated fatty acid: a saturated fatty acid having a carbon chain of C8 to C36. 2) Unsaturated fatty acid: fatty acid containing carbon at C8 to C36 and containing 1 to 8 double bonds. 3) Hydroxyl-binding type fatty acid: fatty acid having hydroxyl group bonded. The number of hydroxyl groups to be added is 1 to 3 per fatty acid. 4) Epoxy type fatty acid: fatty acid obtained by epoxidizing the double bond of unsaturated fatty acid of 2). Epoxy group is 1-2 per fatty acid.
  • Oxo type fatty acid those having a carbonyl group or an aldehyde group in the fatty acid in addition to the carbonyl group of the carboxyl group of the fatty acid are also called oxo type fatty acids.
  • the carbonyl group is 1 to 3 per fatty acid.
  • Hydroperoxy-type fatty acid whereas a fatty acid having a hydroperoxy group bonded.
  • the hydroperoxy group is 1 to 3 per fatty acid.
  • DCC and DMAP are used in chloroform as fatty acid binding reagents to the hydroxyl group of sn-2, but generally, many other reagents such as 1-hydroxybenzotriazole and diphenyl phosphate azide can be used. .
  • R is a linear saturated or unsaturated hydrocarbon group. In one embodiment, R is a linear saturated hydrocarbon group. In one embodiment, R is a linear unsaturated hydrocarbon group. In one embodiment, the hydrocarbon group contains 0, 1, 2, 3, 4, 5, 6, 7 or 8 double bonds. In one embodiment, the hydrocarbon group comprises a double bond in at least one of the positions selected from omega 1, omega 3, omega 4, omega 5, omega 6, omega 7 or omega 9.
  • R 1 is a lauryl group, myristoyl group, palmitoyl group, stearyl group, 9,12-octadecanedienoyl group, 9,12,15-octadecanetrienoyl group, 5,8,11,14- Eicosatetraenoyl group, 4, 7, 10, 13, 16-docosapentaenoyl group, 7, 10, 13, 16, 19-docosapentaenoyl group, 4, 7, 10, 13, 16, 19- It is selected from the group consisting of docosahexaenoyl groups.
  • R 1 is an acyl group comprising a linear or branched saturated hydrocarbon group containing 8 to 36 carbon atoms selected, for example a lauryl group, a myristoyl group, a palmitoyl group, Stearyl group and the like.
  • R 2 represents a lauryl group, myristoyl group, palmitoyl group, stearyl group, 9,12-octadecanedienoyl group, 9,12,15-octadecanetrienoyl group, 5,8,11,14- Eicosatetraenoyl group, 4, 7, 10, 13, 16-docosapentaenoyl group, 7, 10, 13, 16, 19-docosapentaenoyl group, 4, 7, 10, 13, 16, 19- It is selected from the group consisting of a docosahexaenoyl group and
  • all R A on the same carbon atom are the same hydrogen species selected from hydrogen, deuterium or tritium. In one embodiment, only R A present in one of three methyl groups attached to the N of the R A is deuterium or tritium, all R A present on the other methyl group It is hydrogen. In one embodiment, only R A present in one of three methyl groups attached to the N of the R A is hydrogen, all R A present on the other methyl group are deuterium or tritium It is hydrogen. In one embodiment, all of R A present on three methyl groups attached to the N of the R A is deuterium or tritium. In one embodiment, two R A on carbon directly attached to the phosphate group are deuterium or tritium. In one embodiment, two R A on carbon directly attached to the phosphate group are deuterium or tritium. In one embodiment, two R A on carbon R A two bound of the carbon directly bonded to N is deuterium or tritium.
  • the compound of the present invention is a compound in which hydrogen in a naturally occurring compound is replaced with deuterium or tritium. In one embodiment, the compound of the present invention is a compound in which hydrogen in a compound known to be present in food is replaced by deuterium or tritium. In one embodiment, the compound of the present invention is a compound in which hydrogen in a compound present in a mammal is replaced with deuterium or tritium. In one embodiment, the compound of the present invention is a compound in which hydrogen in a compound known to exist in human is replaced by deuterium or tritium.
  • the invention provides a method of producing a compound of the invention.
  • Step 1 Preparation of trideuteriomethyl group introducing reagent
  • reaction of p-toluenesulfonyl chloride with tetradeuteriomethanol gives trideuteriomethyl p-toluenesulfonate.
  • This reaction can be allowed to proceed, for example, by slowly adding 35% aqueous sodium hydroxide solution to the mixture at -5 to 0 ° C.
  • bonds with the dejuteio methyl group or the mono-deuterio methyl group is also available.
  • p-toluenesulfonyl chloride instead of p-toluenesulfonyl chloride, another reagent such as 2,4,6-triisopropylbenzene sulfonyl chloride, or various aryl and alkyl sulfonic acid halogenation can also be suitably used.
  • the deuterated choline is obtained by reacting N, N-dimethylethanolamine with the trideuteriomethyl p-toluenesulfonate obtained above.
  • N N-dimethylaminoethanol
  • its deuterium substitution can be used.
  • the deuterium-substituted choline obtained in this manner for example,
  • Glycerol and benzaldehyde are reacted under acidic conditions to protect glycerol 1- and 3-hydroxy groups.
  • a compound that provides another suitable protecting group that protects the 1- and 3-hydroxy groups of glycerol may be used if necessary.
  • a benzyl group can be introduced as -OR '.
  • -OR ' is any suitable substituent and is preferably selected so as not to be removed under the conditions for removing the protecting groups of 1- and 3-hydroxy groups of glycerol.
  • -OR ' may be selected a substituent that readily causes elimination.
  • -OR ' can be benzyl, methoxy, ethoxy, isopropyloxy and the like.
  • the protecting groups of the 1- and 3-hydroxy groups of glycerol are removed.
  • it when protected with benzaldehyde, it can be deprotected by hydrolysis under acidic conditions.
  • As the reaction conditions at this time it is preferable to use conditions in which -OR 'is not removed.
  • a fatty acid is introduced into the 1-hydroxy group of glycerol.
  • R ′ is selected to have a substituent that becomes a substrate and recognized by the lipase such as benzyl group, methoxy group, ethoxy group, isopropyloxy group, etc. Temperature, solvent, concentration etc) are properly controlled.
  • a lipase a product with high optical purity can be obtained.
  • the reaction is carried out by a chemical esterification method, the product can be obtained as a racemate.
  • any lipase using a lipid such as triglyceride as a substrate can be used as the lipase of the present invention.
  • the lipase used in the present invention is preferably a lipase (lipolytic enzyme) that selectively hydrolyzes the 1- and / or 3-position of triglyceride.
  • the lipase may be a natural enzyme or a recombinant enzyme.
  • the "lipase" used in the present invention may be in the form of a solution or in an immobilized form.
  • microorganism-derived lipases include, for example, Lipase OF (trade name, manufactured by Meito Sangyo Co., Ltd.), Alcaligenes sp.
  • the lipase used in the present invention is a microorganism-derived lipase that selectively hydrolyzes positions 1 and 3 of triglyceride.
  • immobilized lipase for example, immobilized lipase derived from Thermomyces lanuginosa, Lipozyme TLIM (trade name, manufactured by Novozyme Co., Ltd.) can be used, but it is not limited thereto.
  • a particularly preferred lipase according to the invention is the lipase AmanoPS.
  • the lipase enzyme protein preferably has general stability such as physical and biochemical, and more preferably chemically stable to an organic solvent. Those skilled in the art can obtain desired stereoselectivity by appropriately selecting and adding a solvent, an acylating agent, a temperature, a concentration and the like.
  • the preferred solvent for the lipase reaction is dichloromethane.
  • the preferred temperature during the lipase reaction is -20 ° C to 50 ° C, more preferably -10 ° C to 30 ° C, still more preferably -5 ° C to 20 ° C, most preferably -2 ° C to 10 ° C, eg 10 ° C It is.
  • the preferred reaction time of the lipase reaction is 0.5 hours to 24 hours, more preferably 1 hour to 10 hours, still more preferably 2 hours to 7 hours, most preferably 3 hours to 6 hours, eg 6 hours .
  • acylating agent not only palmitic acid vinyl ester but also palmitic acid isopropenyl ester, palmitic acid trifluoroethyl ester, palmitic acid anhydride, 2-O-benzyl glyceride or vinyl ester of other saturated fatty acid is used It is possible.
  • the enantiomeric excess achieved by the present invention is 80% or more, 85% or more, 90% or more, 92% or more, 94% or more, 96% or more, 98% or more, 99% or more, or 99.5 or more. % Or more.
  • the type of lipase, the type of substrate, the type of acylating agent, and the type of solvent indicate whether the product has high or low stereoselectivity in a lipase-catalyzed acylation reaction, that is, high optical purity. It is influenced by many factors such as enzyme concentration, concentration of acylating agent, concentration of substrate, temperature and the like. Also, some theoretical and empirical conditions for obtaining high stereoselectivity are known. On the other hand, the lower the temperature, for example, the higher the stereoselectivity, but the lower the reaction temperature, the lower the reaction yield.
  • the enzyme reaction of lipase may be carried out in an organic solvent (chloroform, n-hexane, isopropyl ether, etc.).
  • organic solvent chloroform, n-hexane, isopropyl ether, etc.
  • optically active phospholipids products with high optical purity
  • the protecting group used is 2-O-benzyl. It is not limited to glycerol.
  • the first requirement of the protecting groups used is that the substituent attached to position 2 of the glycerol backbone needs to be removable by hydrogenolysis.
  • the method of the present invention can be practiced using a compound of the structural formula B or C of the following chemical formula.
  • the hydrolytic deprotection does not cleave the palmitoyl group esterified by the lipase.
  • R 1 ⁇ R 2 the carbon to which they are attached, C *, is an asymmetric center, and the racemic form of the structural formula D is obtained.
  • C * the carbon to which they are attached
  • any one of R 1 to R 11 is independently substituted with methyl group, ethyl group, propyl group, and / or isopropyl group, etc.
  • the method for producing palmitoyl glycerol using a lipase according to the present invention includes, for example, a step of subjecting a compound having any of the structural formulas A, B or C described above and a fatty acid as a substrate to a lipase enzymatic reaction.
  • R 1 to R 11 are each independently H, an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 5 carbon atoms, 1 to 5 carbon atoms It is an alkyl group of 4 or an alkyl group having 1 to 3 carbon atoms.
  • R 1 R 2 .
  • a phosphoric acid group and choline are introduced into the 3-hydroxy group of glycerol by reacting with phosphoryl chloride and the p-toluenesulfonate of deuterated choline synthesized in step 2 (compound 5).
  • the reaction is carried out, for example, by slowly adding dry triethylamine and the product of step 6 to a solution of phosphoryl chloride while stirring under a nitrogen atmosphere at 0-5 ° C., followed by adding dry pyridine and choline deuterated.
  • the reaction can be carried out by adding p-toluenesulfonate and reacting at room temperature.
  • step 7 the product of step 7 (compound 10) is dissolved in a mixed solvent of methanol and water, and treated with palladium hydroxide on carbon and hydrogen gas Can proceed with
  • a second fatty acid is introduced into the 2-hydroxy group of glycerol by reacting deuterated lysophosphatidylcholine with a fatty acid.
  • the deuterated lysophosphatidylcholine prepared in step 8 (compound 11) and the fatty acid R 2 -COOH to be introduced are dissolved in dry chloroform containing no ethanol, to which dicyclohexylcarbodiimide (DCC) and dimethylamino are added. It can be advanced by adding pyridine (DMAP) and a very small amount of butylated hydroxytoluene and stirring under a nitrogen atmosphere.
  • DCC dicyclohexylcarbodiimide
  • DMAP pyridine
  • reaction is not limited to these reagents, and one of ordinary skill in the art would appreciate other known reagents such as 1-hydroxybenzotriazole and diphenyl phosphate azide. It can be selected appropriately.
  • R 2 can be a C 8 -C 36 saturated or unsaturated hydrocarbon group, wherein the hydrocarbon group contains 0-8 double bonds and is a hydroxyl group (—OH ), 0 to 2 epoxy groups, 0 to 2 carbonyl groups, and 0 to 3 hydroperoxy groups (—OOH).
  • R 2 can be a C 8 -C 36 saturated hydrocarbon group.
  • R 2 can be a C 8 -C 36 unsaturated hydrocarbon group containing 1 to 8 double bonds.
  • R 2 may be a C 8 to C 36 saturated hydrocarbon group containing 1 to 3 hydroxyl groups (—OH).
  • R 2 is a hydrocarbon group containing a hydroxyl group
  • a fatty acid whose hydroxyl group is protected as an ester or a silyl ether is reacted with deuterated lysophosphatidylcholine, followed by deprotection of the hydroxyl group to obtain a hydroxyl group.
  • R 2 can be introduced.
  • R 2 may be a C 8 to C 36 saturated hydrocarbon group containing 1 to 2 epoxy groups.
  • R 2 may be a C 8 -C 36 saturated hydrocarbon group containing 1 to 2 carbonyl groups.
  • R 2 may be a C 8 to C 36 saturated hydrocarbon group containing 1 to 3 hydroperoxy groups (—OOH).
  • R 2 is a hydrocarbon group containing a hydroperoxy group
  • a fatty acid having this hydroperoxy group protected as a peracetal is reacted with deuterated lysophosphatidylcholine, followed by deprotection of the hydroperoxy group.
  • R 2 containing a hydroperoxy group can be introduced.
  • R 2 contains two or more of double bond, hydroxyl group (-OH), epoxy group, carbonyl group, and hydroperoxy group (-OOH), only hydroxyl group and / or hydroperoxy group is protected; The desired R 2 can be introduced without protecting the functional group.
  • choline can be optionally converted to deuterium-substituted choline by the following steps 10 and 11.
  • steps 10 and 11 for these steps, for example, H.U. Gally, W. Niederberger, and J.J. Seeling, Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry, * 1975 *, 14, 3674-3652, G.I. S. Harbison and R. G. Grifin, Improved method for the synthesis of phosphatidylcholines. Journal of Lipid Research, * 1984 *, 25, 1141-1144. , And K. M. Patel, J.A. D. Morrisett, and J.J. T.
  • (14) is a non-deuterated phospholipid from (12), which is reacted with 2-aminoethanol to obtain (13), which is then reacted with deuterated methyl iodide for synthesis. Yes (deuterated later).
  • step 10 choline is replaced with 2-aminoethanol by reacting the product of step 9 (compound 12) with 2-aminoethanol in the presence of phospholipase D.
  • 2-aminoethanol its deuterium substitution may be used if necessary, and as such deuterium substitution, for example, 2,2-dijuterio-2-aminoethanol, 1,1-dijuterio -2-aminoethanol and 1,1,2,2-tetradeuterio-2-aminoethanol etc. can be used, and when these deuterium substitutes are used more weight as final product A compound containing hydrogen is obtained.
  • Step 11 introduces a deuterated methyl group into the product of step 10 (compound 13).
  • This reaction may proceed, for example, by mixing the product of step 10 with methyl deuteroiodide (CD 2 I) under basic conditions such as potassium hydroxide.
  • the following synthetic methods can be used other than the above synthetic route.
  • e.g. Xia and YZ. Hui Synthesis of a small library of mixed-acid phospholipids from D-Mannitol as a homochiral starting material. Chem. Pharm. Bull. , 1999, 47, 1659-1663. It is possible to use a method of converting to optically active phosphatidylcholine (PC) without changing the configuration of optically active mannitol with reference to the etc., in which deuterated N, N-dimethylethanolamine (compound 4) is introduced. Compound 12 can be obtained.
  • PC optically active phosphatidylcholine
  • compound 4 deuterated N, N-dimethylethanolamine
  • R. Rosseto et al. A new approach to the synthesis of lysophospholipids: preparation of lysophosphate acid and lysophosphate phosphate from p-nitrophenyl glycerate.
  • a method for converting p-nitrophenyl glycerate to phosphatidyl choline can be used, and it is possible to use p-nitrophenyl glycerate having an optically active glyceride skeleton.
  • Compound 12 can be obtained by introducing the above-mentioned deuterated choline.
  • the compound 12 can also be synthesized by reacting choline tosylate (compound 5) with optically active glycidol to synthesize a lysophospholipid and binding an unsaturated fatty acid thereto (step 9).
  • the invention provides a composition comprising a phospholipid of the invention.
  • Deuterated phospholipids exhibit similar physicochemical properties as the corresponding non-deuterated phospholipids and are considered to exhibit similar absorption, distribution, metabolism or excretion in vivo.
  • deuterated phospholipids differ in mass from the corresponding non-deuterated phospholipids, deuterated phospholipids or their metabolites can be easily distinguished by mass spectrometric analysis Can. Therefore, it can be usefully used to trace the structural change of phospholipids, particularly, associated with metabolism.
  • the composition of the invention is used to detect or measure absorption, metabolism, distribution or excretion of phospholipids.
  • a composition of the invention is administered to a subject.
  • the subject may be a mammal, such as, but not limited to, humans, mice, rats, dogs, monkeys, rabbits and the like. Any suitable mode of administration may be used, for example oral administration, injection and the like.
  • a composition of the invention is contacted with a sample in vitro.
  • the sample is a biological sample, such as, but not limited to, tissue, blood, urine, saliva, tears, and the like.
  • the composition of the present invention may be used for food quality assessment. Since phospholipids containing fatty acids such as EPA, DHA and DPA are abundant in marine products and their processed foods, and these phospholipids can be enzymatically and chemically changed due to the deterioration of the food, the composition of the present invention It can be used to analyze this change. For example, it may be possible to measure the deterioration of the food by adding the composition of the present invention to the food beforehand and tracking the change thereafter.
  • the composition of the present invention may be used for the measurement of phospholipid metabolism disorders. For example, by adding it to tissues, blood, serum or plasma collected from patients and healthy people and detecting the chemical changes that occur there (eg, measuring the type and amount of isotope labeled compounds produced) Thus, it is possible to determine whether or not the phospholipid metabolism of the patient is abnormal as compared to a healthy person.
  • the composition of the present invention may be used for the diagnosis of a disease.
  • the disease may be any disease associated with phospholipids, including, for example, diseases causing abnormalities in lipid metabolism such as obesity, hyperlipidemia, non-insulin dependent diabetes mellitus, and osteoarthritis of the knee May be, but not limited to, cancer, inflammation, arteriosclerosis, Alzheimer's disease, sepsis, antiphospholipid antibody syndrome (age-related macular degeneration, systemic lupus erythematosus, etc.), etc.
  • composition of the present invention for example, adding the composition of the present invention to a tissue, blood, serum or plasma collected from a living body and detecting the chemical change that occurs there (for example, measuring the type and amount of isotope labeled compounds produced To make it possible to diagnose the pathological condition and the degree of progression.
  • Alzheimer's Disease Although pathological methods are taken exclusively for the diagnosis of Alzheimer's disease, many problems still remain in diagnostic methods using biomarkers.
  • peripheral blood has been shown to be important in the study of the pathological mechanisms involved in Alzheimer's disease, which is related to the metabolic injury of phospholipids and sphingolipids and the acyls that bind them Chain length and degree of unsaturation play a crucial role in Alzheimer's disease, which was once caused by phospholipases in the brain. Excess degradation of the plasma membrane, which leads to the destruction of the cell membrane, and the disappearance of unsaturated fatty acids such as DHA and arachidonic acid, which are present in high concentrations in neural tissue, by oxidative stress causes damage to the cell membrane.
  • unsaturated fatty acids such as DHA and arachidonic acid
  • phosphatidylcholine (PC16: 0/20: 5, PC16: 0/22: 6) which binds palmitic acid to sn-1 position from plasma of Alzheimer's disease patients with dementia and binds EPA or DHA to sn-2 position.
  • PC18: 0/22: 6 three molecular species of phosphatidylcholine that bind stearic acid at the sn-1 position and sn-1 position and DHA at the sn-2 position are reduced . Based on these results, the authors say that specific phosphatidylcholine is involved in the pathology of Alzheimer's disease.
  • phospholipase A2 is deeply involved in the type and quantitative change of phospholipids corresponding to the pathology of Alzheimer's disease.
  • this enzyme acts on phospholipids, lysophospholipids and fatty acids are produced. It is also consistent with the fact that DHA levels are reduced in the blood and brain of patients with Alzheimer's disease (Javier Orazaran, et al., A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer's disease , Journal of Alzheimer's disease, 45, 2015, 1157-1173).
  • Alzheimer's disease is reported to be possible.
  • the types of biological phospholipids, fatty acids and lysophospholipids are extremely diverse, and it is not easy to conduct their analysis simultaneously with high reliability using the lipidomics method.
  • the product ion is input as m / z 187 (inputting m / z 187 does not detect any phospholipid other than the deuterated phospholipid).
  • m / z 187 inputting m / z 187 does not detect any phospholipid other than the deuterated phospholipid.
  • EPA, DPA or DHA bound to deuterated phospholipids synthesized in the present invention play an important role in the living body, they are extremely easily oxidized due to oxidative stress, inflammation and the like. Moreover, the composition of the oxidation product is not simple and contains various molecular species.
  • phosphatidylcholine D3 which is an omega-3 fatty acid and which is deeply involved in anti-inflammatory properties
  • phosphatidylcholine D3 which binds EPA, DHA or DPA
  • phosphatidylcholine D3 which an inflammatory arachidonic acid which is an omega 6 fatty acid binds each lysophosphatidylcholine D3 by the action of phospholipase A2.
  • the ratio of PCD3 / Lyso-PCD3 in each enzyme reaction is expected to be different depending on the presence / absence and type of pathological condition.
  • phospholipase A2 activated with inflammation underlying the pathological condition liberates arachidonic acid bound to membrane phospholipids, and this produces various inflammatory substances through the arachidonic acid cascade. Therefore, the isotopically-labeled compound of the present invention is considered to be available as an indicator of the inflammatory condition attributable to Alzheimer's disease in the brain, and hence for the diagnosis of Alzheimer's disease and the diagnosis of the disease condition of Alzheimer's disease It is predicted to be possible. Based on the above understanding, diagnosis of Alzheimer's disease is possible by utilizing the present invention.
  • the isotopically labeled phospholipid of the present invention is mixed with a body fluid to be diagnosed (eg, a body fluid such as blood, saliva, urine or cerebrospinal fluid) to determine the type and amount of labeled phospholipid in the reaction mixture
  • a body fluid to be diagnosed eg, a body fluid such as blood, saliva, urine or cerebrospinal fluid
  • phosphatidylcholine D3 that binds EPA, DHA, DPA or AA (arachidonic acid) as an isotope-labeled phospholipid is administered to a body fluid, incubated for a fixed time, and then a lipid sample containing phospholipid D3 is extracted. It is possible to diagnose Alzheimer's disease by analyzing by and measuring the PCD3 / Lyso-PCD3 ratio.
  • the method is also applicable to saliva and the like.
  • Alzheimer's disease diagnosis for osteoarthritis of the knee also EPA, DHA, DPA or AA
  • the diagnosis is made possible by the ratio of the amount of phosphatidyl choline D3 binding to each lysophosphatidyl choline D3 produced therefrom. The reason is described below.
  • a healthy individual has a higher expression level of phospholipase A2 enzyme or a higher enzyme activity than osteoarthritic knee patients.
  • phosphatidylcholine D3 which is an omega-3 fatty acid and which is deeply involved in anti-inflammatory properties
  • phosphatidylcholine D3 which binds EPA, DHA or DPA
  • phosphatidylcholine D3 which an inflammatory arachidonic acid which is an omega 6 fatty acid binds each lysophosphatidylcholine D3 by the action of phospholipase A2.
  • the ratio of PCD3 / Lyso-PCD3 in each enzyme reaction is expected to be different depending on the presence or type of the pathological condition.
  • phospholipase A2 activated with inflammation underlying the pathological condition liberates arachidonic acid bound to membrane phospholipids, and this produces various inflammatory substances through the arachidonic acid cascade.
  • the isotopically-labeled compound of the present invention is considered to be usable as an indicator of the inflammatory condition of various tissues, and therefore, a diagnosis of osteoarthritis of the knee and a diagnosis of a disease condition of the knee osteoarthritis It is expected to be available to Based on the above understanding, it is possible to diagnose osteoarthritis of the knee by utilizing the present invention.
  • the isotopically labeled phospholipid of the present invention is mixed with a body fluid to be diagnosed (eg, a body fluid such as blood, saliva, urine or cerebrospinal fluid) to determine the type and amount of labeled phospholipid in the reaction mixture It is possible to make a diagnosis of osteoarthritis of the knee.
  • a body fluid to be diagnosed eg, a body fluid such as blood, saliva, urine or cerebrospinal fluid
  • phosphatidylcholine D3 that binds EPA, DHA, DPA or AA (arachidonic acid) as an isotope-labeled phospholipid is administered to a body fluid, incubated for a fixed time, and then a lipid sample containing phospholipid D3 is extracted. It is possible to diagnose osteoarthritis of the knee by analyzing by and measuring PCD3 / Lyso-PCD3 ratio.
  • each PCD3 / Lyso-PCD3 ratio in other cases as well.
  • diagnosis by each PCD3 / Lyso-PCD3 ratio in other cases as well.
  • a representative phosphatidylcholine which accounts for the majority of biological phospholipids, is optically active because the carbon at position 2 of the glycerol backbone is an asymmetric center. Because this asymmetric center has a very high enantiomeric excess, it is not easy to chemically construct a glycerol backbone with such asymmetric centers. Under such circumstances, there has been taken a method of partially decomposing optically active glycerophospholipids present in the natural world while maintaining an asymmetric center, and reconstituting them into a target phospholipid. However, in this method, it is almost impossible to introduce deuterium into the choline portion of the fragment structure containing the asymmetric center.
  • optically active natural products such as mannitol
  • optically active glycerol intermediate is synthesized by attaching palmitoyl group to glycerol skeleton stereoselectively using enzyme-derived enzyme lipase, and deuterium synthesized in advance is synthesized to this.
  • acylating agent not only palmitic acid vinyl ester but also palmitic acid isopropenyl ester, palmitic acid trifluoroethyl ester or palmitic acid anhydride, or vinyl esters of other saturated fatty acids can be used.
  • the enantiomeric excess achieved by the present invention is 80% or more, 85% or more, 90% or more, 92% or more, 94% or more, 96% or more, 98% or more, 99% or more, or 99.5 or more. % Or more.
  • the novel deuterium-substituted phospholipid binding EPA, DPA or DHA synthesized in the present application exhibits extremely excellent effects as compared with known substances, and in the future, not only basic research on phospholipid metabolism but also diagnosis Application to medicine is expected.
  • the above synthetic scheme shows a synthetic pathway of deuterated phosphatidyl choline to which DPA is bound, but it can be similarly synthesized in the case of EPA and DHA.
  • Previously reported methods for synthesizing phospholipid peroxides (Naomichi Baba, Kenji Yoneda, Shoichi Tahara, Junkichi Iwasa, Takao Kaneko, Mitsuyoshi Matsuo, J.A. Chem. Soc. Chem. Commun. Appropriate modifications can be made with reference to, for example, J. Chem.
  • Step 1 Synthesis of sulfonic acid (2) : 35% aqueous caustic soda solution (5.3 g) in a mixture of commercially available p-toluenesulfonyl chloride (8.03 g, 42.0 mmol) and tetradeuteriomethanol (8.88 g, 24.6 mmol) at -5 to 0 ° C It dripped slowly. After completion of the reaction, the reaction solution was transferred to a separatory funnel using diethyl ether (100 mL). This was washed twice with saturated aqueous sodium bicarbonate solution and then dried over anhydrous sodium sulfate. After distilling off the ether under reduced pressure, the residue was distilled under reduced pressure to obtain 7.00 g of a product (yield 88.1%).
  • Step 2 Synthesis of N-trideuteriomethyl-N, N-dimethylaminoethanol p-toluenesulfonate (3) : Trideuteriomethyl p-toluenesulfonate (7.0 g, 0.037 mol) and N, N-dimethylaminoethanol (3.30 g, 0.037 mol) are added to a mortar, and stirring with a spatula immediately causes an exothermic reaction to solidify. did. After 20 minutes, the solid was crushed, suspended in excess dry acetone and filtered quickly. The crystals on the filter were washed twice with dry acetone, quickly placed in a desiccator and dried under vacuum with phosphorus pentoxide to give 6.90 g of product (yield 67.0%).
  • Step 3 Protection of # 1.3 of Glycerol : Glycerol (370.8 g, 4.03 mol) and benzaldehyde (316.6 g, 2.99 mol) were reacted under acidic conditions to give 173.1 g (33.2%) of a compound of (6).
  • Step 4 Protection of the Second Place of Glycerol :
  • the compound of (6) (48.4 g, 0.27 mol) and benzyl chloride (427.3 g, 3.37 mol) are reacted with powdered KOH (96.5 g, 1.6 mol) to give a compound of (7) 54.5 g (71.0%) were obtained.
  • Step 5 Deprotection of 1, 3 position of glycerol :
  • the compound of (7) (12.6 g, 0.047 mol) was hydrolyzed in an acidic solution to give 2.83 g (33.3%) of the compound of (8).
  • Step 6 Synthesis of 2-O-benzyl-1-O-palmitoyl glycerol (9) : The dichloromethane (5.2 mL) of 2-O-benzyl glycerol (8) (0.494 g, 2.5 mmol) and vinyl palmitate (1.41 g, 5.0 mmol) was cooled to 10 ° C. under stirring, Lipase PS -IM-Amano (100 mg) (Amano Enzyme Co., Ltd., Aichi Prefecture) was added, stirred and reacted for 6 hours. The enzyme was removed by filtration, the filtrate was concentrated under reduced pressure, and the residue was purified through a silica gel column to give 0.90 g of a product (yield 82.6%).
  • Step 7 Synthesis of 2-O-benzyl-1-O-palmitoylphosphatidylcholine D3 (10): In a reaction flask equipped with a side tube, phosphoryl chloride (0.19 mL, 2.0 mmol) and a stirrer were placed, and the dropping funnel and thermometer were attached and cooled to 0-5 ° C. in a nitrogen atmosphere. Dry chloroform (0.38 mL, 2.5 mmol) and 2-O-benzyl-1-O-palmitoyl glycerol (9) (0.74 g, 1.7 mmol) in dry chloroform so that the temperature does not rise above this temperature while stirring The (19 mL) solution was slowly added dropwise.
  • Step 8 Synthesis of Lyso-PCD 3 (11) : 2-O-benzyl-1-O-palmitoylphosphatidylcholine D3 (10) (2.62 g, 44.5 mmol) is dissolved in a mixed solvent of methanol (30 mL) and water (3 mL), and carbon-supported palladium hydroxide (1. 50 g) was added and stirred for 3 days with a balloon containing hydrogen gas. After completion of the reaction, the solution was filtered using filter paper and the filtrate was concentrated. As a result of performing azeotropic distillation with isopropanol in order to remove the remaining water, 1.89 g of powdery lyso-PCD3 (11) was obtained (yield: 85.2%).
  • Step 9 Synthesis of 2-O-docosapentaenoyl-1-O-palmitoyl-glycerophosphocholine D3 (13) : Lyso-PCD 3 (11) (0.30 g, 0.60 mmol) and docosahexaenoic acid (0.5 g, 1.50 mmol) were dissolved in dry chloroform (5.0 mL) containing no ethanol, and dicyclohexyl carbodiimide (0. 2) was dissolved therein. 44 g (2.0 mmol), dimethylaminopyridine (26 mg, 0.2 mmol) and a very small amount of butylated hydroxytoluene as an antioxidant were added and stirred for 2 days under a nitrogen atmosphere. After completion of the reaction, it was concentrated, and the residue was purified by silica gel column to obtain 0.36 g of product (yield: 74.0%).
  • the present invention can be widely used in the pharmaceutical and food fields such as samples for research on diseases involving phospholipids, diagnostic agents, and reagents for evaluating the quality and deterioration of foods containing phospholipids.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Wood Science & Technology (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Child & Adolescent Psychology (AREA)
  • Vascular Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Psychiatry (AREA)

Abstract

The present invention provides a novel deuterated phospholipid and a method for producing same. The synthetic deuterated phospholipid according to the present invention can be used to address problems in the field. Antiphospholipid antibody syndrome has a clinical problem regarding the difficulty in establishing a detection standard thereof, due to the diversity in antiphospholipid antibodies. The present invention also provides a diagnostic agent which can facilitate such detection. The present invention is also applicable to measurement of degradation of food by tracking changes in the phospholipid of the present invention added to food.

Description

重水素化リン脂質およびその製造方法Deuterated phospholipid and method for producing the same
 本発明は、重水素化リン脂質、その製造方法およびその利用に関する。 The present invention relates to deuterated phospholipids, a process for their preparation and their use.
 細胞膜構成成分あるいは生体情報伝達物質として不可欠なリン脂質群には構造の異なる多数の分子種が存在する。グリセロリン脂質の基本構造はグリセロール骨格の2個の水酸基にそれぞれ同じまたは異なる脂肪酸、例えばパルミチン酸、ステアリン酸、イコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸等の脂肪酸が結合し、3番目の水酸基にはホスホコリン、ホスホセリン、ホスホエタノールアミン等の極性基が結合する。そのため、それらの組み合わせの数から膨大な種類のリン脂質分子種が生体組織に存在する。またそれらの分子種はそれぞれ異なる生体機能を示す。個々のリン脂質と病態との関連性も古くから研究され、近年では液体クロマトグラフィーと質量分析技術を組み合わせたリピドミクス手法を用いて解析が行われている。 A large number of molecular species with different structures exist in the phospholipid group indispensable as cell membrane components or biological signal transduction substances. The basic structure of glycerophospholipids is that the same or different fatty acids such as fatty acids such as palmitic acid, stearic acid, icosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid are bound to two hydroxyl groups of the glycerol skeleton, and the third hydroxyl group is bound Polar groups such as phosphocholine, phosphoserine, phosphoethanolamine, etc. are bound. Therefore, a huge number of kinds of phospholipid molecular species exist in living tissues, depending on the number of combinations thereof. In addition, their molecular species exhibit different biological functions. The association between individual phospholipids and pathological conditions has also been studied for a long time, and in recent years analysis has been performed using a lipidomics method combining liquid chromatography and mass spectrometry techniques.
 しかし、このような分析技術を用いてもリン脂質の機能研究が困難な場合がある。例えば、ある特定のリン脂質分子種が代謝を受けて化学変換する過程を分子レベルで追跡することは極めて難しい。この問題を解決する手段として、コリンの極性基の窒素原子に結合する3個のメチル基の一つを安定同位体である重水素で置換したホスファチジルコリンが馬場等によって合成された(冨永等、非特許文献H.Tominaga,T.Ishihara,A.K.M.Azad Shah,R.Shimizu,A.N.Onyango,H.Ito,T.Suzuki,Y.Kondo,H.Koaze,K.Takahashi,Naomichi Baba,American Journal of Analytical Chemistry,2013,4,16-26)。 However, there are cases where functional studies of phospholipids are difficult even using such analytical techniques. For example, it is extremely difficult to trace at the molecular level the process of metabolism and chemical conversion of a specific phospholipid molecular species. As a means to solve this problem, phosphatidylcholine in which one of three methyl groups bonded to the nitrogen atom of the polar group of choline is substituted with deuterium, which is a stable isotope, was synthesized by Baba et al. Patent documents H. Tominaga, T. Ishihara, A. K. M. Azad Shah, R. Shimizu, A. N. Onyango, H. Ito, T. Suzuki, Y. Kondo, H. Koaze, K. Takahashi, Naomichi Baba, American Journal of Analytical Chemistry, 2013, 4, 16, 26).
 このリン脂質は、エレクトロスプレーイオン化質量分析(ESI-MS)のプロダクトイオンモードで検出する事によって極めて高い選択性で検出される事が明らかにされた。生体組織に存在するあらゆる種類のリン脂質が共存していても重水素置換されたリン脂質及びそのアシル部分における代謝物類が極めて特異的かつ鋭敏に検出され得る。この方法により、リノール酸から合成されたリン脂質過酸化物の血液内における代謝過程が明らかにされた。(非特許文献2)
 リン脂質中で結合している脂肪酸は異なる機能を持つ。例えばアラキドン酸は幼児の成長や生殖機能に必須であり、EPAは心疾患病等を制御する血液の恒常性に寄与し、DHAは脳機能の恒常性に深く関わる事が知られている。そしてこれらのオメガ3脂肪酸は、生体内では通常、トリグリセリドやリン脂質に結合しており、必要に応じて代謝酵素によって切り出され、それらの役割を果たす。例えば炎症が起こるとその部位においてホスホリパーゼA2が発現し、周辺の細胞膜に結合するEPA、DPAやDHAがリン脂質から遊離し、これらがリポキシゲナーゼ(LOX)やシクロオキシゲナーゼ(COX)によって代謝を受けて、レゾルビン、プロテクチンやマーセリンを代表とするSPM(specialized proresolving mediator)と呼ばれる代謝物が生産され、炎症の抑制に携わる。また、このような代謝物が結合した重要なリン脂質も発見されている。しかし、リン脂質中で結合しているオメガ3脂肪酸が上記の酵素の直接的作用によりリン脂質型代謝物が生成する可能性があり、詳細は判っていない。なお、大豆リポキシゲナーゼはリン脂質中で結合しているオメガ3脂肪酸に作用し、ヒドロペルオキシ基を導入する事が公知である。(非特許文献1)
 また、炎症によって活性化される好中球、ナチュラルキラー細胞、マクロファージが生産する種々の活性酸素、例えば過酸化水素やオゾンは炎症部位の細菌等を攻撃するが、化学的に極めて反応性が高いこれらの活性酸素は周辺に存在するオメガ3脂肪酸やリン脂質中で結合しているオメガ3脂肪酸を非酵素的に酸化し、構造変化を受けた別のリン脂質が生産され、何らかの生体機能を示す可能性があるが、このような機構はほとんど明らかになっていない。本発明が提供する重水素化リン脂質は、これらの未知の機構を解明する上で重要なツールとなり得る。
This phospholipid was found to be detected with extremely high selectivity by detection in the product ion mode of electrospray ionization mass spectrometry (ESI-MS). Even in the coexistence of all kinds of phospholipids present in living tissues, deuterated phospholipids and metabolites in the acyl moiety thereof can be detected very specifically and sensitively. This method revealed the metabolic process in the blood of phospholipid peroxide synthesized from linoleic acid. (Non-patent document 2)
The fatty acids bound in phospholipids have different functions. For example, arachidonic acid is essential for the growth and reproduction of infants, EPA is known to contribute to blood homeostasis controlling heart disease and the like, and DHA is known to be deeply involved in brain function homeostasis. These omega-3 fatty acids are usually bound to triglycerides and phospholipids in the living body, and are cut out by metabolic enzymes as necessary to play their role. For example, when inflammation occurs, phospholipase A2 is expressed at that site, and EPA, DPA and DHA bound to the surrounding cell membrane are released from phospholipids, and these are metabolized by lipoxygenase (LOX) and cyclooxygenase (COX), and resolvin A metabolite called SPM (specialized proresolving mediator) represented by protectin and mercerin is produced and involved in suppression of inflammation. In addition, important phospholipids to which such metabolites are bound have also been discovered. However, omega-3 fatty acids bound in phospholipids may produce phospholipid-type metabolites by the direct action of the above-mentioned enzymes, and the details are not known. It is known that soybean lipoxygenase acts on omega-3 fatty acids bound in phospholipids to introduce a hydroperoxy group. (Non-patent document 1)
In addition, neutrophils activated by inflammation, natural killer cells, various active oxygen produced by macrophages, such as hydrogen peroxide and ozone, attack bacteria at the site of inflammation, but they are extremely highly reactive. These reactive oxygen species nonenzymatically oxidize omega 3 fatty acids bound in surrounding omega 3 fatty acids and phospholipids to produce other phospholipids that have undergone structural change and exhibit some biological function There is a possibility, but such a mechanism is hardly clear. The deuterated phospholipids provided by the present invention can be an important tool in elucidating these unknown mechanisms.
 食事によって取り込まれたオメガ3脂肪酸はトリグリセリドやリン脂質として血液中に存在し、必要に応じて各組織に移行する。例えば、DHAは肝臓でリゾリン脂質結合型となり、血液の流れとともに脳関門を通り脳内に移行する事が最近明らかにされた。また脳内に移行したDPAは一旦C24(5n-3)に変換された後、不飽和化酵素により6n-3になり、それが再び炭素2個分の減少を伴い、DHAになる事も知られているが、その機構は明らかではない。リン脂質中で結合しているアラキドン酸は代謝過程において種々の複雑な酸化反応を受け、その結果、酸化的分解を受けた各種脂肪酸が結合したリン脂質が同定されている。そして興味深い事に、これらの分子種は炎症性であったり、或いは抗炎症作用を示す事が報告されている。(非特許文献3)
 しかし、この研究ではアラキドン酸が結合したリン脂質から生成する各種リン脂質酸化代謝物の混合物が用いられている。従ってどの分子種が炎症作用を示し、あるいは抗炎症作用を示すかは明らかではない。また、本研究はアラキドン酸に限られているので、EPA、DPA、DHAが結合したリン脂質の各酸化生成物がどのような作用を示すのかは明らかでない。
Omega-3 fatty acids taken in by the diet are present in the blood as triglycerides and phospholipids, and are transferred to each tissue as needed. For example, it has recently been revealed that DHA is lysophospholipid-bound in the liver and translocates into the brain through the brain barrier with blood flow. It is also known that DPA that has been transferred into the brain is once converted to C24 (5n-3) and then turned to 6n-3 by the desaturase, which again becomes DHA with a decrease of 2 carbons. Although the mechanism is unclear. Arachidonic acid bound in phospholipids undergoes various complex oxidation reactions in the metabolic process, and as a result, phospholipids in which various fatty acids that have undergone oxidative degradation are bound have been identified. And, interestingly, these molecular species are reported to be inflammatory or show anti-inflammatory activity. (Non-patent document 3)
However, in this study, a mixture of various phospholipid oxidized metabolites generated from phospholipids bound with arachidonic acid is used. Therefore, it is not clear which molecular species show an inflammatory action or an anti-inflammatory action. In addition, since this study is limited to arachidonic acid, it is unclear what function the respective oxidation products of EPA, DPA, and DHA bound phospholipids exhibit.
 上記のようにリン脂質の機能はまだ十分に明らかにされておらず、その解析のための新規なツールが望まれている。本発明が提供する合成重水素化リン脂質は、このような分野における問題解決に応用できる。また、抗リン脂質抗体症候群には、抗リン脂質抗体の多様性から、その検出の標準化が困難と言われている臨床上の問題点があり、本発明は、このような検出を容易にし得る診断薬も提供する。 As described above, the functions of phospholipids have not yet been fully elucidated, and new tools for their analysis are desired. The synthetic deuterated phospholipids provided by the present invention can be applied to the solution of problems in such fields. Furthermore, antiphospholipid antibody syndrome has clinical problems that are said to be difficult to standardize its detection due to the diversity of antiphospholipid antibodies, and the present invention can facilitate such detection. It also provides diagnostic agents.
 したがって、本発明は以下を提供する。
(項目1)
 以下の式I
Accordingly, the present invention provides the following.
(Item 1)
The following formula I
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、
およびRは、それぞれ独立に-Hまたは-C(=O)Rであり、
Rは、直鎖または分岐状の飽和または不飽和炭化水素基であり、
ここで、該炭化水素基は8~36個の炭素原子を含み、
該炭化水素基は0~8個の二重結合を含み、
該炭化水素基上の炭素のうち少なくとも1つは、=O、-OHおよび-OOHからなる群から選択される置換基で置換されていてもよく、
該炭化水素基上の隣接する2つの炭素の組のうち少なくとも1つは、Oで置換されることでエポキシ基
(In the formula,
R 1 and R 2 are each independently —H or —C (= O) R,
R is a linear or branched saturated or unsaturated hydrocarbon group,
Wherein the hydrocarbon group contains 8 to 36 carbon atoms,
The hydrocarbon group contains 0-8 double bonds,
At least one of carbons on the hydrocarbon group may be substituted with a substituent selected from the group consisting of = O, -OH and -OOH,
At least one of two adjacent sets of carbons on the hydrocarbon group is substituted with O to be an epoxy group
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
を形成していてもよく、
各Rは、それぞれ独立に水素、重水素または三重水素から選択される)
の構造を有する化合物またはその塩。
(項目2)
 同じ炭素原子上の全てのRが、水素、重水素または三重水素から選択される同じ水素原子である、項目1に記載の化合物またはその塩。
(項目3)
 項目1に記載の化合物またはその塩の製造方法であって、
工程1)トリジュウテリオメチル基導入試薬
May form a
Each R A is independently selected from hydrogen, deuterium or tritium)
Or a salt thereof.
(Item 2)
The compound or a salt thereof according to item 1, wherein all R A on the same carbon atom is the same hydrogen atom selected from hydrogen, deuterium or tritium.
(Item 3)
A method for producing a compound according to item 1 or a salt thereof, comprising
Step 1) Trideuterio methyl group introduction reagent
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
を調製する工程、
工程2)以下の構造
Preparing the
Process 2) The following structure
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
から選択される重水素化メチル基を含むコリンを合成する工程、
工程3)グリセロールの1-ヒドロキシ基および3-ヒドロキシ基を保護する工程、
工程4)グリセロールの2-ヒドロキシ基を保護する工程、
工程5)グリセロールの1-ヒドロキシ基および3-ヒドロキシ基を脱保護する工程、
工程6)グリセロールの1-ヒドロキシ基にR-OHの構造の脂肪酸を導入する工程、工程7)グリセロールの3-ヒドロキシ基にリン酸基および工程2の重水素化メチル基を含むコリンを導入する工程、
工程8)グリセロールの2-ヒドロキシ基を脱保護する工程、
工程9)グリセロールの2-ヒドロキシ基にR-OHの構造の脂肪酸を導入する工程
のうちの少なくとも1つを含み、任意選択でさらに以下の工程
工程10)工程7で導入された重水素化メチル基を含むコリンをアミノエタノールに変換する工程、および
工程11)アミノエタノールに重水素化メチル基を導入する工程
を含む、製造方法。
(項目4)
 項目1または2に記載の化合物またはその塩を含む組成物。
(項目5)
 リン脂質代謝異常の測定のための、項目4に記載の組成物。
(項目6)
 疾患または状態の診断のための、項目4に記載の組成物。
(項目7)
 前記疾患または状態が、脂質代謝に異常を生じる疾患である、項目6に記載の組成物。
(項目8)
 前記疾患または状態が、肥満、高脂血症、インスリン非依存性糖尿病、および、変形性膝関節症からなる群から選択される、項目6に記載の組成物。
(項目9)
 前記疾患または状態が、がん、炎症、動脈硬化、アルツハイマー病、敗血症、および、抗リン脂質抗体症候群からなる群から選択される、項目6に記載の組成物。
(項目10)
 不飽和脂肪酸でパルミトイル化されたパルミトイルグリセロールの製造方法であって、(i)式(A)、式(B)、および、式(C)からなる群から選択される化合物
Synthesizing a choline containing a deuterated methyl group selected from
Step 3) protecting 1-hydroxy group and 3-hydroxy group of glycerol,
Step 4) protecting the 2-hydroxy group of glycerol,
Step 5) Deprotecting 1-hydroxy group and 3-hydroxy group of glycerol,
Step 6) Step of introducing fatty acid of R 1 -OH structure into 1-hydroxy group of glycerol, step 7) Introduction of choline containing phosphate group and deuterated methyl group of step 2 into 3-hydroxy group of glycerol The process to
Step 8) Deprotecting 2-hydroxy group of glycerol,
Step 9) Deuteration including at least one of the steps of introducing a fatty acid of the structure of R 2 —OH into 2-hydroxy group of glycerol, optionally further introduced in the following step 10) step 7 A production method comprising the steps of: converting choline containing a methyl group into aminoethanol; and introducing a deuterated methyl group into aminoethanol.
(Item 4)
A composition comprising the compound according to item 1 or 2 or a salt thereof.
(Item 5)
5. A composition according to item 4 for the measurement of phospholipid metabolism disorders.
(Item 6)
5. A composition according to item 4 for the diagnosis of a disease or condition.
(Item 7)
7. The composition according to item 6, wherein the disease or condition is a disease causing an abnormality in lipid metabolism.
(Item 8)
7. The composition according to item 6, wherein the disease or condition is selected from the group consisting of obesity, hyperlipidemia, non-insulin dependent diabetes and osteoarthritis of the knee.
(Item 9)
7. The composition according to item 6, wherein the disease or condition is selected from the group consisting of cancer, inflammation, arteriosclerosis, Alzheimer's disease, sepsis and antiphospholipid antibody syndrome.
(Item 10)
A method for producing palmitoyl glycerol palmitoylated with unsaturated fatty acid, which is selected from the group consisting of (i) Formula (A), Formula (B), and Formula (C)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、R~R11は独立に、Hまたは炭素数1~12のアルキル基である)、ならびに、
(ii)不飽和脂肪酸、
を基質としたリパーゼ酵素反応を行う工程を包含する、方法。
(なお、R~R11は独立に、Hまたは炭素数1~12のアルキル基、Hまたは炭素数1~11のアルキル基、Hまたは炭素数1~10のアルキル基、Hまたは炭素数1~9のアルキル基、Hまたは炭素数1~8のアルキル基、Hまたは炭素数1~7のアルキル基、Hまたは炭素数1~6のアルキル基、Hまたは炭素数1~5のアルキル基、Hまたは炭素数1~4のアルキル基、あるいは、Hまたは炭素数1~3のアルキル基である)
(項目11)
 項目10に記載の方法であって、前記不飽和脂肪酸が、8~36個の炭素原子を含み、かつ、1~8個の二重結合を含む、方法。
(項目12)
 項目10に記載の方法であって、前記不飽和脂肪酸上の炭素のうち少なくとも1つは、=O、-OHおよび-OOHからなる群から選択される置換基で置換されていてもよく、該炭化水素基上の隣接する2つの炭素の組のうち少なくとも1つは、Oで置換されることでエポキシ基
(Wherein, R 1 to R 11 are independently H or an alkyl group having 1 to 12 carbon atoms), and
(Ii) unsaturated fatty acids,
Performing a lipase-enzyme reaction using a substrate as a substrate.
(Wherein R 1 to R 11 each independently represent H or an alkyl group having 1 to 12 carbon atoms, H or an alkyl group having 1 to 11 carbon atoms, H or an alkyl group having 1 to 10 carbon atoms, H or 1 carbon atom) -9 alkyl group, H or alkyl group having 1 to 8 carbon atoms, H or alkyl group having 1 to 7 carbon atoms, H or alkyl group having 1 to 6 carbon atoms, H or alkyl group having 1 to 5 carbon atoms, H or an alkyl group having 1 to 4 carbon atoms, or H or an alkyl group having 1 to 3 carbon atoms)
(Item 11)
11. The method according to item 10, wherein said unsaturated fatty acid contains 8 to 36 carbon atoms and contains 1 to 8 double bonds.
(Item 12)
11. The method according to item 10, wherein at least one of carbons on the unsaturated fatty acid may be substituted with a substituent selected from the group consisting of = O, -OH and -OOH, At least one of two adjacent sets of carbons on a hydrocarbon group is substituted with O to be an epoxy group
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
を形成していてもよい、方法。
(項目13)
 項目10に記載の方法であって、前記リパーゼ酵素反応が-20℃~50℃の温度で0.5時間~24時間行われる、方法。
(項目14)
 さらにアシル化剤を用いる、項目10に記載の方法。
(項目15)
 さらに溶媒を用いる、項目10に記載の方法。
May form a way.
(Item 13)
11. The method according to item 10, wherein the lipase enzyme reaction is performed at a temperature of −20 ° C. to 50 ° C. for 0.5 hour to 24 hours.
(Item 14)
The method according to item 10, further using an acylating agent.
(Item 15)
The method according to item 10, further using a solvent.
 本発明において、上記の1つまたは複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。本発明のさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present invention, it is contemplated that the one or more features described above may be provided in further combination in addition to the explicitly stated combination. Additional embodiments and advantages of the present invention will be recognized by those skilled in the art upon reading and understanding the following detailed description, as appropriate.
 本発明は、リン脂質の機能研究に貢献し得る。また、本発明は、リン脂質に関連した疾患のための新たな診断薬を提供し得る。 The present invention can contribute to the functional study of phospholipids. In addition, the present invention can provide new diagnostic agents for diseases associated with phospholipids.
 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。また、本明細書において「wt%」は、「質量パーセント濃度」と互換可能に使用される。「%」は、特に明記されない場合、「wt%」または「w/w%」または「質量パーセント濃度」を意味する。 Hereinafter, the present invention will be described. Throughout the specification, it is to be understood that the singular form also includes the concepts of the plural, unless specifically stated otherwise. In addition, it is to be understood that the terms used in the present specification are used in the meanings commonly used in the art unless otherwise stated. Thus, unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control. Also, in the present specification, "wt%" is used interchangeably with "mass percent concentration". "%" Means "wt%" or "w / w%" or "weight percent concentration" unless otherwise stated.
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値」の「範囲内」と明記した場合、その範囲には2つの値自体も含む。 In the present specification, "or" is used when "at least one or more" of the items listed in the text can be adopted. The same applies to "or". In the present specification, when “within the range” of “two values” is specified, the range also includes the two values themselves.
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 References cited herein, such as scientific literature, patents, patent applications, etc., are incorporated herein by reference in their entirety to the same extent as specifically described.
 (定義)
 以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。
(Definition)
Hereinafter, definitions of terms and / or basic technical contents specifically used in the present specification will be appropriately described.
 本明細書において使用される用語「不飽和脂肪酸」とは、1つ以上の不飽和の炭素結合を持つ脂肪酸をいう。不飽和炭素結合とは炭素分子鎖における炭素同士の不飽和結合、すなわち炭素二重結合または三重結合のことである。天然に見られる不飽和脂肪酸は1つ以上の二重結合を有しており、脂肪酸中の飽和脂肪酸と置き換わることで、融点や流動性など脂肪の特性に変化を与えている。 The term "unsaturated fatty acid" as used herein refers to a fatty acid with one or more unsaturated carbon bonds. An unsaturated carbon bond is an unsaturated bond between carbons in a carbon molecular chain, that is, a carbon double bond or a triple bond. Naturally occurring unsaturated fatty acids have one or more double bonds, and by replacing saturated fatty acids in fatty acids, they change the properties of fats such as melting point and fluidity.
 本明細書において使用される用語「ω3脂肪酸」とは、メチル末端から3番目の炭素(ω3位)から二重結合が存在する不飽和脂肪酸をいい、代表的には、α-リノレン酸、ステアリドン酸、エイコサテトラエン酸、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPAn-3)、ドコサヘキサエン酸(DHA)、テトラコサペンタエン酸、および、テトラコサヘキサエン酸が挙げられるがこれらに限定されない。本明細書において使用される用語「ω3脂肪酸の修飾物」とは、ω3脂肪酸を修飾した物質であり、ω3脂肪酸の酸化物(例えば、酸化代謝物)を包含し、代表的には、13-ヒドロキシ-α-リノレン酸、13-ヒドロキシステアリドン酸、15-ヒドロキシエイコサテトラエン酸、15-ヒドロキシEPA、17-ヒドロキシDPAn-3、17-ヒドロキシDHA、19-ヒドロキシテトラコサペンタエン酸、および、19-ヒドロキシテトラコサヘキサエン酸が挙げられるがこれらに限定されない。 As used herein, the term "ω3 fatty acid" refers to an unsaturated fatty acid in which a double bond is present from the third carbon at the methyl terminal (ω3 position), and typically, α-linolenic acid, stearidone Acids, eicosatetraenoic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPAn-3), docosahexaenoic acid (DHA), tetracosapentaenoic acid, and tetracosahexaenoic acid. It is not limited. As used herein, the term "modified omega-3 fatty acid" refers to a substance modified with omega-3 fatty acid and includes an oxide of omega-3 fatty acid (eg, oxidized metabolite), typically 13- Hydroxy-α-linolenic acid, 13-hydroxystearidonic acid, 15-hydroxyeicosatetraenoic acid, 15-hydroxyEPA, 17-hydroxyDPAn-3, 17-hydroxy DHA, 19-hydroxytetracosapentaenoic acid, and And 19-hydroxytetracosahexaenoic acid, but is not limited thereto.
 本明細書において使用される用語「ドコサヘキサエン酸」とは、「DHA」と互換可能に使用され、そして、遊離脂肪酸の形態と、エタノール、グリセリン、リン脂質にエステル結合した形態のいずれも包含する。 As used herein, the term "docosahexaenoic acid" is used interchangeably with "DHA" and includes both free fatty acid forms and forms esterified to ethanol, glycerin, phospholipids.
 本明細書において使用される用語「エイコサペンタエン酸」とは、「EPA」と互換可能に使用され、そして、遊離脂肪酸の形態と、エタノール、グリセリン、リン脂質にエステル結合した形態とのいずれも包含する。 As used herein, the term "eicosapentaenoic acid" is used interchangeably with "EPA" and includes both the free fatty acid form and the form esterified to ethanol, glycerin, phospholipids Do.
 本明細書において使用される用語「ドコサペンタエン酸」とは、「DPA」と互換可能に使用され、そして、遊離脂肪酸の形態と、エタノール、グリセリンにエステル結合した形態のいずれも包含する。また、「n-3」あるいは「n-6」のいずれかであると特定しない「DPA」は、「n-3 DPA」(すなわち、all-cis-7,10,13,16,19-ドコサペンタエン酸である)を意味する。「n-3 DPA」は「ω-3
 DPA」と互換可能に使用される。
As used herein, the term "docosapentaenoic acid" is used interchangeably with "DPA" and includes both the free fatty acid form and the esterified form of ethanol, glycerin. In addition, “DPA” not specified as either “n-3” or “n-6” is “n-3 DPA” (ie, all-cis-7, 10, 13, 16, 19-docosa) Mean pentaenoic acid). "N-3 DPA" is "ω-3
Used interchangeably with DPA.
 本明細書において使用される用語「n-6 DPA」は「all-cis-4,7,10,13,16-ドコサペンタエン酸」または「ω6 DPA」と互換可能に使用され、そして、遊離脂肪酸の形態と、エタノール、グリセリンにエステル結合した形態のいずれも包含する。 The term "n-6 DPA" as used herein is used interchangeably with "all-cis-4,7,10,13,16-docosapentaenoic acid" or "ω6 DPA" and is free It includes both fatty acid forms and forms esterified to ethanol and glycerin.
 本明細書において使用される用語「ステアリドン酸」とは、「SDA」と互換可能に使用され、そして、遊離脂肪酸の形態と、エタノール、グリセリンにエステル結合した形態のいずれも包含する。 As used herein, the term "stearidonic acid" is used interchangeably with "SDA" and includes both the free fatty acid form and the esterified form of ethanol, glycerin.
 本明細書において使用される用語「α-リノレン酸」とは、「ALA」と互換可能に使用され、そして、遊離脂肪酸の形態と、エタノール、グリセリンにエステル結合した形態のいずれも包含する。 As used herein, the term "alpha-linolenic acid" is used interchangeably with "ALA" and encompasses both the free fatty acid form and the esterified form of ethanol, glycerin.
 本明細書において使用される用語「エイコサテトラエン酸」とは、「ETA」と互換可能に使用され、そして、遊離脂肪酸の形態と、エタノール、グリセリンにエステル結合した形態のいずれも包含する。 As used herein, the term "eicosatetraenoic acid" is used interchangeably with "ETA" and encompasses both the free fatty acid form and the esterified form of ethanol, glycerin.
 本明細書において使用される用語「水素」とは、水素原子の同位体のうちのHのものを指し、Hとも表記される。天然に存在する化合物に含まれる水素原子には、ある程度の割合で重水素および三重水素などの同位体が含まれるが、本明細書において水素またはHを使用する場合、厳密に化合物に含まれる全ての水素原子がHであることを意味するのではなく、通常含まれる程度において重水素および三重水素などの水素の同位体が含まれることを排除しない。 The term "hydrogen" as used herein refers to 1 H of the isotopes of hydrogen atoms, also denoted as H. The hydrogen atoms contained in naturally occurring compounds include isotopes such as deuterium and tritium in a certain proportion, but when using hydrogen or H in the present specification, all strictly contained in the compounds does not mean that the hydrogen atoms are 1 H, it does not exclude that the isotopes of hydrogen, such as deuterium and tritium are included in the normal degree included.
 本明細書において使用される用語「重水素」とは、水素原子の同位体のうちのHのものを指し、Dまたはdとも表記される。 The term "deuterium" as used herein refers to the 2 H of the isotopes of hydrogen atoms, also denoted D or d.
 本明細書において使用される用語「三重水素」とは、水素原子の同位体のうちのHのものを指し、Tまたはtとも表記される。 The term "tritium" as used herein refers to the 3 H of the isotopes of hydrogen atoms, also denoted as T or t.
 本明細書において使用される用語「水素種」とは、水素原子の同位体(H、HおよびH)を区別することなく記載する場合に使用され、水素原子がH、HおよびHのうちのいずれかであることを示す。 The term "hydrogen species" as used herein, is used to described without distinguishing isotopes of hydrogen atom (1 H, 2 H and 3 H), hydrogen atom 1 H, 2 H And indicate that it is any of 3 H.
 本明細書において使用される用語「リン脂質」とは、分子内に長鎖アルキル基から構成される疎水性基とリン酸基を含む親水性基とを有する両親媒性物質を指す。リン脂質の例として、ホスファチジルコリン(=レシチン)、ホスファチジルグリセロール、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジン酸、スフィンゴリン脂質、ジホスファチジル系リン脂質、パルミトイルオレオイルホスファチジルコリン、リゾホスファチジルコリン、リゾホスファチジルエタノールアミン、ジミリストイルホスファチジルコリン(DMPC)、ジミリストイルホスファチジルグリセロール(DMPG)、ジパルミトイルホスファチジルコリン(DPPC)、ジパルミトイルホスファチジルグリセロール(DPPG)、ジオレオイルホスファチジルコリン(DOPC)、ジステアロイルホスファチジルコリン(DSPC)、ジステアロイルホスファチジルグリセロール(DSPG)、ジオレイルホスファチジルエタノールアミン(DOPE)、パルミトイルステアロイルホスファチジルコリン(PSPC)、パルミトイルステアロイルホスファチジルグリセロール(PSPG)、ジリノレオイルホスファチジルコリン、などが挙げられるがこれらに限定されない。 The term "phospholipid" as used herein refers to an amphiphilic substance having a hydrophobic group composed of a long chain alkyl group in the molecule and a hydrophilic group containing a phosphate group. Examples of phospholipids include phosphatidyl choline (= lecithin), phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, phosphatidic acid, sphingophospholipid, diphosphatidyl phospholipid, palmitoyl oleoyl phosphatidyl choline, lysophosphatidyl choline, lysophosphatidyl ethanolamine , Dimyristoyl phosphatidyl choline (DMPC), dimyristoyl phosphatidyl glycerol (DMPG), dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl glycerol (DPPG), dioleoylphosphatidyl choline (DOPC), distearoyl phosphatidyl choline (DSPC), distearoyl phosphatidyl glyc Seroru (DSPG), dioleylphosphatidylethanolamine (DOPE), palmitoylstearoyl distearoylphosphatidylcholine (PSPC), palmitoylstearoyl distearoyl phosphatidylglycerol (PSPG), dilinoleoyl phosphatidylcholine, and the like without limitation.
 本明細書において使用される用語「ホスファチジルコリン」または「レシチン」とは、交換可能に用いられ、PCとも表記される化合物であり、グリセリン(プロパン-1,2,3-トリオール、グリセロールとも称する)のsn-1位およびsn-2位にアシル基が結合し、sn-3位に結合したリン酸にコリンが結合しているものをいう。 The terms "phosphatidyl choline" or "lecithin", as used herein, is a compound used interchangeably and also denoted as PC and of glycerol (propane-1,2,3-triol, also referred to as glycerol) An acyl group is attached to the sn-1 position and the sn-2 position, and choline is attached to the phosphate linked to the sn-3 position.
 本明細書において使用される用語「リゾホスファチジルコリン」とは、リゾ-PCとも表記される化合物であり、グリセリンのsn-1位またはsn-2位のいずれか一方にアシル基が結合し、sn-3位に結合したリン酸にコリンが結合しているものをいう。 As used herein, the term "lysophosphatidylcholine" is a compound also referred to as lyso-PC, wherein an acyl group is attached to either the sn-1 position or the sn-2 position of glycerol, It refers to one in which choline is linked to the phosphate linked to the 3-position.
 本明細書において使用される用語「sn-」は、Stereospecifically Numberedの略で、グリセリン誘導体の炭素原子を立体特異的番号付けで表記したときに用いる。グリセリン誘導体がラセミ体のときはrac-をつけ、立体化学が不明のときはX-をつける。リン脂質は、そのアシル基の結合位置の相違により、sn-1-リン脂質あるいはsn-2-リン脂質の2種類が存在する。実際の表示については、アシル基の位置をそのまま使用し、1-アシル-ホスファチジルコリン、2-アシル-ホスファチジルコリンのように使用する。本明細書においてsnに関する情報がない場合は、特に区別しないで説明するか総称(上位概念)として用いる場合である。 The term "sn-" as used herein is an abbreviation for Stereospecifically Numbered and is used when the carbon atom of a glycerol derivative is designated by stereospecific numbering. When the glycerol derivative is a racemate, rac- is attached, and when the stereochemistry is unknown, X- is attached. There are two types of phospholipids, sn-1-phospholipid and sn-2-phospholipid, depending on the difference in the bonding position of the acyl group. For the actual designation, the position of the acyl group is used as it is, as in 1-acyl-phosphatidylcholine, 2-acyl-phosphatidylcholine. In the present specification, when there is no information on sn, it is the case where it is described without distinction or used as a generic term (upper-level concept).
 本明細書において使用される用語「アシル(基)」とは、当該分野において通常の意味で使用され、有機酸(カルボン酸;脂肪酸)からヒドロキシル基が除去されてつくられる基をいう。広義には、ホルミル基HCO-,アセチル基CHCO-,マロニル基-COCHCO-,ベンゾイル基CCO-,シンナモイル基CCH=CHCO-などが含まれ、ケトン誘導体なども挙げられる。ホスファチジルイノシトールリン酸およびリゾホスファチジルイノシトールリン酸類に含まれるアシル基は、好ましい実施形態では、脂肪酸を形成することから脂肪酸基とも称される。本明細書では、脂肪酸は、その炭素数と二重結合の数で表すことができ、例えば、アラキドン酸は(20:4)と表され得る。二重結合の位置をさらに特定する場合は、cisやtransの表示、またはEまたはZの表示について、すべての位置を特定するか、またはオメガ(ω)3系、オメガ6系等の系統で表示することができる。 As used herein, the term "acyl (group)" is used in the usual sense in the art to refer to a group formed by removing a hydroxyl group from an organic acid (carboxylic acid; fatty acid). Broadly, formyl group HCO-, acetyl group CH 3 CO-, malonyl group -COCH 2 CO-, benzoyl group C 6 H 5 CO-, cinnamoyl group C 6 H 5 CH = CHCO- and the like, ketone derivatives And so on. The acyl group contained in phosphatidylinositol phosphate and lysophosphatidylinositol phosphates is also referred to as a fatty acid group because it forms a fatty acid in a preferred embodiment. As used herein, a fatty acid can be represented by its carbon number and the number of double bonds, for example, arachidonic acid can be represented as (20: 4). When specifying the position of the double bond further, specify all positions for the indication of cis or trans, or the indication of E or Z, or indicate in a system such as omega (ω) 3 system or omega 6 system can do.
 本明細書では一般に以下の脂肪酸およびそれに基づくアシル基が使用されるが、これらに限定されず、任意の鎖長、任意の二重結合を有する脂肪酸を使用することができることが理解される。例えば、炭素数について言えば、1以上、代表的には1~30、通常は4~30の範囲のものが挙げられ、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個等を挙げることができるが、これらに限定されない。また二重結合の個数は0個、1個、2個、3個、4個、5個、6個、7個等炭素数に応じて許容し得る任意の数を採用することができる。二重結合の位置は、オメガ3系、オメガ6系、オメガ9系等が代表的であり、このほか、オメガ1系、オメガ4系、オメガ5系や、オメガ7系なども確認されており、これらの任意の入手可能なものを利用することができる。脂肪酸には三重結合が含まれていてもよく、その個数は0個、1個、2個、3個、4個、5個、6個、7個等炭素数に応じて許容し得る任意の数を採用することができる。 In the present specification, generally, the following fatty acids and acyl groups based thereon are used, but it is understood that fatty acids having any chain length and any double bond can be used without limitation thereto. For example, in terms of carbon number, one or more, typically from 1 to 30, usually from 4 to 30, may be mentioned, and one, two, three, four, five, six, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. 18, 18, 19, 20, 21, 22, 23. , 24, 26, 27, 28, 29, 30, etc., but is not limited thereto. Further, the number of double bonds may be 0, 1, 2, 3, 4, 5, 6, 7, etc. According to the number of carbon atoms, any permissible number can be adopted. The position of the double bond is typically omega-3, omega-6, omega-9, etc. In addition to this, omega-1, omega-4, omega-5, omega-7, etc. are also confirmed. Any of these available can be used. The fatty acid may contain triple bonds, and the number thereof is 0, 1, 2, 3, 4, 5, 6, 6, 7 or any other acceptable number of carbon atoms. A number can be adopted.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 本明細書において使用される用語「診断」とは、被験体における疾患、障害、状態(例えば、脂質メディエーターに起因する疾患、障害、状態等)などに関連する種々のパラメータを同定し、そのような疾患、障害、状態の現状または未来を判定することをいう。本発明の方法、装置、システムを用いることによって、体内の状態を調べることができ、そのような情報を用いて、被験体における疾患、障害、状態、投与すべき処置または予防のための処方物または方法などの種々のパラメータを選定することができる。本明細書において、狭義には、「診断」は、現状を診断することをいうが、広義には「早期診断」、「予測診断」、「事前診断」等を含む。本発明の診断方法は、原則として、身体から出たものを利用することができ、医師などの医療従事者の手を離れて実施することができることから、産業上有用である。本明細書において、医師などの医療従事者の手を離れて実施することができることを明確にするために、特に「予測診断、事前診断もしくは診断」を「支援」すると称することがある。本発明の技術は、このような診断技術に応用可能である。本発明の技術を用いて重水素化リン脂質の存在を特定して、このような各種診断に応用することができる。 As used herein, the term "diagnosis" identifies various parameters associated with a disease, disorder, condition (eg, a disease caused by a lipid mediator, disorder, condition etc.) in a subject, etc. To determine the current or future state of a disease, disorder, or condition. By using the method, device and system of the present invention, the condition in the body can be examined, and such information can be used to formulate a treatment, treatment or prophylaxis to be administered for a disease, disorder, condition or subject in a subject. Or various parameters, such as a method, can be selected. In the present specification, in a narrow sense, "diagnosis" refers to diagnosing the current state, but broadly includes "early diagnosis", "predictive diagnosis", "pre-diagnosis" and the like. The diagnostic method of the present invention is industrially useful in principle because it can be used from the body and can be performed with the hands of medical workers such as doctors removed. In the present specification, in order to clarify that it can be carried out with the hands of medical workers such as doctors, "predictive diagnosis, prior diagnosis or diagnosis" may be referred to as "support". The techniques of the present invention are applicable to such diagnostic techniques. The techniques of the present invention can be used to identify the presence of deuterated phospholipids and be applied to such a variety of diagnostics.
 本明細書において使用される用語「予後」という用語は、がん等の障害、脂質メディエーターに起因する疾患、障害などに起因する死亡または進行が起こる可能性を予測することを意味する。予後因子とは疾患の自然経過に関する変数のことであり、これらは、いったん疾患を発症した患者の再発率等に影響を及ぼす。予後の悪化に関連した臨床的指標には、例えば、本発明で使用される任意の細胞指標が含まれる。予後因子は、しばしば、患者を異なった病態をもつサブグループに分類するために用いられる。本発明の技術を用いて重水素化リン脂質の存在を特定できると、特定の疾患状態と関連づけられ得ることから予後因子を提供する技術として有用であり得る。 The term "prognosis" as used herein is meant to predict the possibility of death or progression due to a disorder such as cancer, a disease due to lipid mediators, a disorder or the like. Prognostic factors are variables relating to the natural course of the disease, which affect the recurrence rate etc. of the patient once having developed the disease. Clinical indicators associated with aggravated prognosis include, for example, any cellular indicator used in the present invention. Prognostic factors are often used to classify patients into subgroups with different disease states. The ability to identify the presence of deuterated phospholipids using the techniques of the present invention may be useful as a technique for providing a prognostic factor since it can be linked to a specific disease state.
 本明細書において使用される用語「診断薬(剤)」とは、広義には、目的の状態(例えば、がん、脂質メディエーターに関連する疾患や障害など)を診断できるあらゆる薬剤をいう。 As used herein, the term "diagnostic agent (agent)" broadly refers to any agent capable of diagnosing a condition of interest (eg, cancer, a disease or disorder associated with a lipid mediator, etc.).
 本明細書において使用される用語「がん」とは、ワクチンまたは医薬で治療または予防可能な任意のがんをいい、例えば、肝細胞がん、食道扁平上皮がん、乳がん、膵がん、頭頸部の扁平細胞がんまたは腺がん、結腸直腸がん、腎がん、脳がん(腫瘍)、前立腺がん、小細胞および非小細胞肺がん、膀胱がん、骨または関節がん、子宮がん、子宮頸がん、多発性骨髄腫、造血器悪性腫瘍、リンパ腫、ホジキン病、非ホジキンリンパ腫、皮膚がん、メラノーマ、扁平細胞がん、白血病、肺がん、卵巣がん、胃がん、カポジ肉腫、喉頭がん、内分泌がん、甲状腺がん、副甲状腺がん、下垂体がん、副腎がん、胆管細胞がん、子宮内膜症、食道がん、肝がん、NSCLC、骨肉腫、膵がん、SCLC、軟部組織腫瘍、AML、およびCMLが含まれるが、これらに限定されない。 The term "cancer" as used herein refers to any cancer that can be treated or prevented with a vaccine or drug, such as hepatocellular carcinoma, esophageal squamous cell carcinoma, breast cancer, pancreatic cancer, Squamous cell or adenocarcinoma of the head and neck, colorectal cancer, renal cancer, brain cancer (tumor), prostate cancer, small cell and non small cell lung cancer, bladder cancer, bone or joint cancer, Uterine cancer, cervical cancer, multiple myeloma, hematopoietic malignancy, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma, skin cancer, melanoma, squamous cell cancer, leukemia, lung cancer, ovarian cancer, gastric cancer, Kaposi Sarcoma, laryngeal cancer, endocrine cancer, thyroid cancer, parathyroid cancer, pituitary cancer, adrenal cancer, cholangiocellular carcinoma, endometriosis, esophageal cancer, liver cancer, NSCLC, osteosarcoma Includes pancreatic cancer, SCLC, soft tissue tumor, AML, and CML That, but is not limited to these.
 本明細書において使用される用語「脂質代謝疾患」とは、脂質または脂肪酸の代謝の異常を原因の少なくとも一つとする疾患である。脂質代謝疾患としては、例えば、肥満、高脂血症、インスリン非依存性糖尿病が挙げられるがこれらに限定されない。 As used herein, the term "lipid metabolism disorder" is a disorder caused by an abnormality in lipid or fatty acid metabolism. Lipid metabolism disorders include, but are not limited to, for example, obesity, hyperlipidemia, non-insulin dependent diabetes.
 本明細書において「炎症」とは、検出可能な任意の炎症をいい、マクロファージ等炎症に関連する血液細胞の活性化(炎症細胞の走化性、活性酸素産生、貪食、酵素分泌反応など)を伴い得る。例示的な炎症として、例えば、関節炎、腱炎、滑液包炎、乾癬、嚢胞性線維症、シェーグレン症候群、巨細胞性動脈炎、進行性全身性硬化症(強皮症)、脊椎炎、多発性筋炎、皮膚筋炎、天疱瘡、類天疱瘡、橋本甲状腺炎、胆管炎、炎症性腸疾患(IBD、例えばクローン病、潰瘍性大腸炎)、大腸炎、炎症性皮膚疾患、肺炎、石綿肺、珪肺、気管支拡張症、滑石肺、塵肺、サルコイドーシス、遅延型過敏反応(例えば、ツタウルシ皮膚炎)、気道の炎症、成人呼吸窮迫症候群(ARDS)、脳炎、即時型過敏反応、喘息、花粉症、アレルギー、急性アナフィラキシー、再灌流傷害、関節リウマチ、糸球体腎炎、腎盂腎炎、蜂巣炎、膀胱炎、胆嚢炎、同種移植片拒絶反応、宿主対移植片拒絶、虫垂炎、動脈炎、眼瞼炎、細気管支炎、気管支炎、子宮頸管炎、胆管炎、絨毛羊膜炎、結膜炎、涙腺炎、皮膚筋炎、心内膜炎、子宮内膜炎、腸炎、全腸炎、上顆炎、精巣上体炎、筋膜炎、結合組織炎、胃炎、胃腸炎、歯肉炎、回腸炎、虹彩炎、喉頭炎、脊髄炎、心筋炎、腎炎、臍炎、卵巣炎、精巣炎、骨炎、中耳炎、膵炎、耳下腺炎、心膜炎、咽頭炎、胸膜炎、静脈炎、肺炎、直腸炎、前立腺炎、鼻炎、卵管炎、副鼻腔炎、口内炎、滑膜炎、睾丸炎、扁桃炎、尿道炎、膀胱炎、ブドウ膜炎、膣炎、血管炎、外陰炎、外陰膣炎、血管炎、骨髄炎、視神経炎、脊髄炎、および筋膜炎などの、急性または慢性の炎症を伴う疾患または障害が含まれるが、これらに限定されない。 In the present specification, “inflammation” refers to any detectable inflammation, and includes activation of blood cells associated with inflammation such as macrophages (chemotaxis of inflammatory cells, active oxygen production, phagocytosis, enzyme secretion reaction, etc.) May accompany. Exemplary inflammations include, for example, arthritis, tendinitis, bursitis, psoriasis, cystic fibrosis, Sjögren's syndrome, giant cell arteritis, progressive systemic sclerosis (scleroderma), spondylitis, multiple Myositis, dermatomyositis, pemphigus, pemphigus, Hashimoto's thyroiditis, cholangitis, inflammatory bowel disease (IBD such as Crohn's disease, ulcerative colitis), colitis, inflammatory skin disease, pneumonia, asbestosis, Silicosis, bronchiectasis, talcum lung, pneumoconiosis, sarcoidosis, delayed hypersensitivity reaction (eg, poison ivy dermatitis), airway inflammation, adult respiratory distress syndrome (ARDS), encephalitis, immediate hypersensitivity reaction, asthma, hay fever, allergy , Acute anaphylaxis, reperfusion injury, rheumatoid arthritis, glomerulonephritis, pyelonephritis, cellulitis, cystitis, cholecystitis, allograft rejection, host versus graft rejection, appendicitis, arteritis, blepharitis, bronchiolitis ,bronchitis Cervicalitis, cholangitis, chorioamnionitis, conjunctivitis, lacrimal glanditis, dermatomyositis, endocarditis, endometritis, enterocolitis, enterocolitis, epicondylitis, epididymitis, fasciitis, conjunctivitis , Gastritis, gastroenteritis, gingivitis, ileitis, iritis, laryngitis, myelitis, myocarditis, nephritis, umbilitis, ovarian disease, orchitis, otitis media, pancreatitis, parotiditis, pericarditis , Pharyngitis, pleuritis, phlebitis, pneumonia, proctitis, prostatitis, rhinitis, odontitis, sinusitis, stomatitis, synovitis, testicular inflammation, tonsillitis, urethritis, cystitis, uveitis, vagina Diseases or disorders associated with acute or chronic inflammation, including, but not limited to, inflammation, vasculitis, vulvovaginitis, vulvovaginitis, vasculitis, osteomyelitis, optic neuritis, myelitis, and fasciitis .
 本明細書において使用される用語「マーカー」とは、ある状態(例えば、機能性、形質転換状態、疾患状態、障害状態、あるいは増殖能、分化状態のレベル、有無等)にあるかまたはその危険性があるかどうかを追跡する指標となる物質をいう。本発明において、ある状態(例えば、疾患状態、健康状態、細胞または組織の分化障害などの疾患)についての検出、診断、予備的検出、予測または事前診断は、本発明が提供する検出方法の他、マーカーに特異的な薬剤、剤、因子または手段、あるいはそれらを含む組成物、キットまたはシステム等を用いて実現することができる。 As used herein, the term "marker" refers to or is at risk for a condition (eg, functional, transformed, diseased, impaired, or proliferative capacity, level of differentiation, etc). A substance that serves as an indicator to track whether there is a sex. In the present invention, detection, diagnosis, preliminary detection, prediction or prior diagnosis for a certain condition (eg, disease such as disease state, health condition, cell or tissue differentiation disorder, etc.) is not limited to the detection method provided by the present invention. , A marker-specific agent, agent, factor or means, or a composition, kit, system or the like containing them.
 本明細書において使用される用語「がんマーカー」とは、腫瘍マーカーとも称され、がんの診断や治療後の経過観察、再発や転移の発見に有効な生体物質または生体において見出される物質をいう。代表的には血中の物質を測定することで、がんの診断等を行うことができることができる。この場合その血中の物質ががんマーカーに該当する。 As used herein, the term "cancer marker" is also referred to as a tumor marker, and is a substance found in biological substances or organisms effective for cancer diagnosis and follow-up after treatment, detection of recurrence and metastasis. Say. Typically, by measuring substances in the blood, cancer diagnosis and the like can be performed. In this case, the substance in the blood corresponds to a cancer marker.
 (重水素化リン脂質)
 1つの局面において、本発明は、以下の式I
Figure JPOXMLDOC01-appb-I000014
(Deuterated phospholipid)
In one aspect, the present invention provides compounds of formula I
Figure JPOXMLDOC01-appb-I000014
(式中、
およびRは、それぞれ独立に-Hまたは-C(=O)Rであり、
Rは、直鎖または分岐状の飽和または不飽和炭化水素基であり、
ここで、該炭化水素基は8~36個の炭素原子を含み、
該炭化水素基は0~8個の二重結合を含み、
該炭化水素基上の炭素のうち少なくとも1つは、=O、-OHおよび-OOHからなる群から選択される置換基で置換されていてもよく、
該炭化水素基上の隣接する2つの炭素の組のうち少なくとも1つは、Oで置換されることでエポキシ基
(In the formula,
R 1 and R 2 are each independently —H or —C (= O) R,
R is a linear or branched saturated or unsaturated hydrocarbon group,
Wherein the hydrocarbon group contains 8 to 36 carbon atoms,
The hydrocarbon group contains 0-8 double bonds,
At least one of carbons on the hydrocarbon group may be substituted with a substituent selected from the group consisting of = O, -OH and -OOH,
At least one of two adjacent sets of carbons on the hydrocarbon group is substituted with O to be an epoxy group
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
形成していてもよく、
各Rは、それぞれ独立に水素、重水素または三重水素から選択される)
の構造を有する化合物またはその塩を提供する。
It may be formed,
Each R A is independently selected from hydrogen, deuterium or tritium)
Or a salt thereof.
 また、上記のRを含む脂肪酸は、例えば、以下の部分が挙げられるがこれらに限定されない:
1) 飽和脂肪酸・・・炭素鎖がC8~C36までの飽和脂肪酸。
2) 不飽和脂肪酸・・・炭素がC8~C36かつ、2重結合を1~8箇所含んだ脂肪酸。
3) 水酸基結合型脂肪酸・・・水酸基が結合した脂肪酸。付加する水酸基は脂肪酸あたり1~3個。
4) エポキシ型脂肪酸・・・2)の不飽和脂肪酸の2重結合をエポキシ化した脂肪酸。エポキシ基は脂肪酸あたり1~2個。
5) オキソ型脂肪酸・・・脂肪酸のカルボキシル基のカルボニル基の他に脂肪酸中にカルボニル基またはアルデヒド基を有するものもオキソ型脂肪酸と呼ばれる。カルボニル基は脂肪酸当たり1~3個。
6) ヒドロペルオキシ型脂肪酸・・・・ヒドロペルオキシ基が結合した脂肪酸。ヒドロペルオキシ基は脂肪酸あたり1~3個。
7) 上記2)~6)に示す官能基が脂肪酸に複合的に結合した脂肪酸
8) 水酸基やヒドロペルオキシ基とともにカルボニル基やエポキシ構造が結合する脂肪酸の場合、水酸基とヒドロペルオキシ基のみを保護すればよい。
In addition, fatty acids containing the above R include, for example, the following moieties, but are not limited thereto:
1) Saturated fatty acid: a saturated fatty acid having a carbon chain of C8 to C36.
2) Unsaturated fatty acid: fatty acid containing carbon at C8 to C36 and containing 1 to 8 double bonds.
3) Hydroxyl-binding type fatty acid: fatty acid having hydroxyl group bonded. The number of hydroxyl groups to be added is 1 to 3 per fatty acid.
4) Epoxy type fatty acid: fatty acid obtained by epoxidizing the double bond of unsaturated fatty acid of 2). Epoxy group is 1-2 per fatty acid.
5) Oxo type fatty acid: those having a carbonyl group or an aldehyde group in the fatty acid in addition to the carbonyl group of the carboxyl group of the fatty acid are also called oxo type fatty acids. The carbonyl group is 1 to 3 per fatty acid.
6) Hydroperoxy-type fatty acid ..... a fatty acid having a hydroperoxy group bonded. The hydroperoxy group is 1 to 3 per fatty acid.
7) Fatty acids in which the functional groups shown in the above 2) to 6) are complexly bonded to fatty acids 8) In the case of fatty acids in which a carbonyl group or an epoxy structure is bonded together with a hydroxyl group or a hydroperoxy group, only hydroxyl groups and hydroperoxy groups are protected Just do it.
 また、sn-2の水酸基への脂肪酸結合試薬として、クロロホルム中、DCCとDMAPを用いているが、一般的には1-ヒドロキシベンゾトリアゾールやジフェニルリン酸アジド等その他多くの試薬が使用可能である。 In addition, DCC and DMAP are used in chloroform as fatty acid binding reagents to the hydroxyl group of sn-2, but generally, many other reagents such as 1-hydroxybenzotriazole and diphenyl phosphate azide can be used. .
 1つの実施形態において、Rは、直鎖状の飽和または不飽和炭化水素基である。1つの実施形態において、Rは、直鎖状の飽和炭化水素基である。1つの実施形態において、Rは、直鎖状の不飽和炭化水素基である。1つの実施形態において、炭化水素基は0、1、2、3、4、5、6、7または8個の二重結合を含む。1つの実施形態において、炭化水素基は、オメガ1、オメガ3、オメガ4、オメガ5、オメガ6、オメガ7、またはオメガ9から選択される位置の少なくとも1つに二重結合を含む。1つの実施形態において、Rは、ラウリル基、ミリストイル基、パルミトイル基、ステアリル基、9,12-オクタデカンジエノイル基、9,12,15-オクタデカントリエノイル基、5,8,11,14-エイコサテトラエノイル基、4,7,10,13,16-ドコサペンタエノイル基、7,10,13,16,19-ドコサペンタエノイル基、4,7,10,13,16,19-ドコサヘキサエノイル基からなる群から選択される。1つの実施形態において、Rは、選択される8~36個の炭素原子を含む直鎖または分岐状の飽和炭化水素基を含むアシル基であり、例えば、ラウリル基、ミリストイル基、パルミトイル基、ステアリル基などである。1つの実施形態において、Rは、ラウリル基、ミリストイル基、パルミトイル基、ステアリル基、9,12-オクタデカンジエノイル基、9,12,15-オクタデカントリエノイル基、5,8,11,14-エイコサテトラエノイル基、4,7,10,13,16-ドコサペンタエノイル基、7,10,13,16,19-ドコサペンタエノイル基、4,7,10,13,16,19-ドコサヘキサエノイル基およびからなる群から選択される。 In one embodiment, R is a linear saturated or unsaturated hydrocarbon group. In one embodiment, R is a linear saturated hydrocarbon group. In one embodiment, R is a linear unsaturated hydrocarbon group. In one embodiment, the hydrocarbon group contains 0, 1, 2, 3, 4, 5, 6, 7 or 8 double bonds. In one embodiment, the hydrocarbon group comprises a double bond in at least one of the positions selected from omega 1, omega 3, omega 4, omega 5, omega 6, omega 7 or omega 9. In one embodiment, R 1 is a lauryl group, myristoyl group, palmitoyl group, stearyl group, 9,12-octadecanedienoyl group, 9,12,15-octadecanetrienoyl group, 5,8,11,14- Eicosatetraenoyl group, 4, 7, 10, 13, 16-docosapentaenoyl group, 7, 10, 13, 16, 19-docosapentaenoyl group, 4, 7, 10, 13, 16, 19- It is selected from the group consisting of docosahexaenoyl groups. In one embodiment, R 1 is an acyl group comprising a linear or branched saturated hydrocarbon group containing 8 to 36 carbon atoms selected, for example a lauryl group, a myristoyl group, a palmitoyl group, Stearyl group and the like. In one embodiment, R 2 represents a lauryl group, myristoyl group, palmitoyl group, stearyl group, 9,12-octadecanedienoyl group, 9,12,15-octadecanetrienoyl group, 5,8,11,14- Eicosatetraenoyl group, 4, 7, 10, 13, 16-docosapentaenoyl group, 7, 10, 13, 16, 19-docosapentaenoyl group, 4, 7, 10, 13, 16, 19- It is selected from the group consisting of a docosahexaenoyl group and
 1つの実施形態において、同じ炭素原子上の全てのRは、水素、重水素または三重水素から選択される同じ水素種である。1つの実施形態において、RのうちNに結合した3つのメチル基のうち1つに存在するRだけが重水素または三重水素であり、その他のメチル基上に存在する全てのRは水素である。1つの実施形態において、RのうちNに結合した3つのメチル基のうち1つに存在するRだけが水素であり、その他のメチル基上に存在する全てのRは重水素または三重水素である。1つの実施形態において、RのうちNに結合した3つのメチル基上に存在する全てのRが重水素または三重水素である。1つの実施形態において、リン酸基に直接結合した炭素上の2つのRは重水素または三重水素である。1つの実施形態において、リン酸基に直接結合した炭素上の2つのRは重水素または三重水素である。1つの実施形態において、Nに直接結合した炭素のうちRが2つ結合した炭素上の2つのRは重水素または三重水素である。 In one embodiment, all R A on the same carbon atom are the same hydrogen species selected from hydrogen, deuterium or tritium. In one embodiment, only R A present in one of three methyl groups attached to the N of the R A is deuterium or tritium, all R A present on the other methyl group It is hydrogen. In one embodiment, only R A present in one of three methyl groups attached to the N of the R A is hydrogen, all R A present on the other methyl group are deuterium or tritium It is hydrogen. In one embodiment, all of R A present on three methyl groups attached to the N of the R A is deuterium or tritium. In one embodiment, two R A on carbon directly attached to the phosphate group are deuterium or tritium. In one embodiment, two R A on carbon directly attached to the phosphate group are deuterium or tritium. In one embodiment, two R A on carbon R A two bound of the carbon directly bonded to N is deuterium or tritium.
 1つの実施形態において、本発明の化合物は、天然に存在する化合物中の水素を重水素または三重水素に置き換えた化合物である。1つの実施形態において、本発明の化合物は、食品中に存在することが公知である化合物中の水素を重水素または三重水素に置き換えた化合物である。1つの実施形態において、本発明の化合物は、哺乳動物中に存在する化合物中の水素を重水素または三重水素に置き換えた化合物である。1つの実施形態において、本発明の化合物は、ヒトに存在することが公知の化合物中の水素を重水素または三重水素に置き換えた化合物である。 In one embodiment, the compound of the present invention is a compound in which hydrogen in a naturally occurring compound is replaced with deuterium or tritium. In one embodiment, the compound of the present invention is a compound in which hydrogen in a compound known to be present in food is replaced by deuterium or tritium. In one embodiment, the compound of the present invention is a compound in which hydrogen in a compound present in a mammal is replaced with deuterium or tritium. In one embodiment, the compound of the present invention is a compound in which hydrogen in a compound known to exist in human is replaced by deuterium or tritium.
 (重水素化リン脂質の製造)
 一つの局面では、本発明は、本発明の化合物の製造方法を提供する。
(Production of deuterated phospholipids)
In one aspect, the invention provides a method of producing a compound of the invention.
 以下に本発明の化合物の製造方法における各工程について記載する。なお、以下の製造例では、重水素を用いて例示しているが、重水素の代わりに三重水素を用いても同様の反応を行うことができる。 Each step in the method for producing the compound of the present invention is described below. In the following production examples, although deuterium is used for illustration, the same reaction can be performed using tritium instead of deuterium.
 合成スキーム1 Synthetic scheme 1
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016

 (工程1:トリジュウテリオメチル基導入試薬の調製) (Step 1: Preparation of trideuteriomethyl group introducing reagent)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 p-トルエンスルホニルクロリドとテトラジュウテリオメタノールとを反応させてトリジュウテリオメチル p-トルエンスルホネートが得られる。この反応は、例えば、混合物に-5~0℃にて35%苛性ソーダ水溶液をゆっくりと滴下することで進行させることができる。なお、ジジュウテリオメチル基またはモノジュウテリオメチル基を結合するリン脂質も利用可能である。p-トルエンスルホニルクロリドの代わりに、2,4,6-トリイソプロピルベンゼンスルホニルクロリドなど別の試薬、あるいは、各種アリール及びアルキルスルホン酸ハロゲン化も適宜使用することができる。 The reaction of p-toluenesulfonyl chloride with tetradeuteriomethanol gives trideuteriomethyl p-toluenesulfonate. This reaction can be allowed to proceed, for example, by slowly adding 35% aqueous sodium hydroxide solution to the mixture at -5 to 0 ° C. In addition, the phospholipid which couple | bonds with the dejuteio methyl group or the mono-deuterio methyl group is also available. Instead of p-toluenesulfonyl chloride, another reagent such as 2,4,6-triisopropylbenzene sulfonyl chloride, or various aryl and alkyl sulfonic acid halogenation can also be suitably used.
 (工程2:重水素化メチル基を含むコリンの合成) (Step 2: Synthesis of Choline Containing Deuterated Methyl Group)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 N,N-ジメチルエタノールアミンと、上記で得られたトリジュウテリオメチルp-トルエンスルホネートとを反応させることで重水素が導入されたコリンが得られる。ここで、N,N-ジメチルアミノエタノールの代わりにその重水素置換体を使用することもできる。このようにして得られる重水素置換コリンとして、例えば、 The deuterated choline is obtained by reacting N, N-dimethylethanolamine with the trideuteriomethyl p-toluenesulfonate obtained above. Here, instead of N, N-dimethylaminoethanol, its deuterium substitution can be used. As the deuterium-substituted choline obtained in this manner, for example,
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
の構造のものが挙げられるが、これらに限定されない。化合物(5)の代わりにこれらのコリンの重水素置換体を使用することで、最終生成物としてこれらの重水素置換体を含む化合物が得られる。 There is a structure of, but not limited to. By using these deuterium-substituted cholines in place of compound (5), compounds containing these deuterium-substituted derivatives as final products can be obtained.
 ホスファチジン酸に3個のメチル基が重水素化されたコリンを、2,4,6-triisopropylbenzesulphonyl chlorideを縮合剤として、9個重水素化されたリン脂質(18)を得る事も可能である。 It is also possible to obtain 9-deuterated phospholipid (18) by using choline in which three methyl groups are deuterated to phosphatidic acid and using 2,4,6-triisopropylbenzenesulfonyl chloride as a condensing agent.
 (工程3:グリセロールの1-および3-ヒドロキシ基の保護) (Step 3: protection of 1- and 3-hydroxy groups of glycerol)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 グリセロールとベンズアルデヒドとを酸性条件下で反応させてグリセロールの1-および3-ヒドロキシ基を保護する。ベンズアルデヒドの代わりに、必要に応じてグリセロールの1-および3-ヒドロキシ基を保護する別の適当な保護基を与える化合物を使用してもよい。 Glycerol and benzaldehyde are reacted under acidic conditions to protect glycerol 1- and 3-hydroxy groups. Instead of benzaldehyde, a compound that provides another suitable protecting group that protects the 1- and 3-hydroxy groups of glycerol may be used if necessary.
 (工程4:グリセロールの2-ヒドロキシ基の保護) (Step 4: protection of 2-hydroxy group of glycerol)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 グリセロールの2-ヒドロキシ基に保護基を導入する。例えば、塩基性条件下でベンジルクロリドを添加することで、-OR’としてベンジル基を導入することができる。-OR’は、任意の好適な置換基であり、グリセロールの1-および3-ヒドロキシ基の保護基を除去する条件で除去されないように選択することが好ましい。一つの実施形態において、-OR’は、容易に脱離反応が起こるような置換基が選択され得る。一つの実施形態において、-OR’は、ベンジル基、メトキシ基、エトキシ基、イソプロピルオキシ基などであり得る。 Introduce a protecting group to the 2-hydroxy group of glycerol. For example, by adding benzyl chloride under basic conditions, a benzyl group can be introduced as -OR '. -OR 'is any suitable substituent and is preferably selected so as not to be removed under the conditions for removing the protecting groups of 1- and 3-hydroxy groups of glycerol. In one embodiment, -OR 'may be selected a substituent that readily causes elimination. In one embodiment, -OR 'can be benzyl, methoxy, ethoxy, isopropyloxy and the like.
 (工程5:グリセロールの1-および3-ヒドロキシ基の脱保護) (Step 5: Deprotection of 1- and 3-hydroxy groups of glycerol)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 グリセロールの1-および3-ヒドロキシ基の保護基を除去する。例えば、ベンズアルデヒドによって保護を行った場合、酸性条件下で加水分解することで脱保護することができる。このときの反応条件は、-OR’が除去されない条件を使用することが好ましい。 The protecting groups of the 1- and 3-hydroxy groups of glycerol are removed. For example, when protected with benzaldehyde, it can be deprotected by hydrolysis under acidic conditions. As the reaction conditions at this time, it is preferable to use conditions in which -OR 'is not removed.
 (工程6:グリセロールの1-ヒドロキシ基への脂肪酸の導入) (Step 6: Introduction of fatty acid to 1-hydroxy group of glycerol)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 グリセロールの1-ヒドロキシ基に脂肪酸を導入する。Rは、-C(=O)Rであり、Rは直鎖または分岐状の飽和または不飽和炭化水素基であり、ここで、該炭化水素基は8~36個の炭素原子を含み、該炭化水素基は0~8個の二重結合を含み、該炭化水素基上の炭素のうち少なくとも1つは、=O、-OHおよび-OOHからなる群から選択される置換基で置換されていてもよい。リパーゼによって酵素的に導入してもよいし、公知の化学的エステル化法によって導入してもよい。リパーゼによってこの反応を行う場合、R’は、例えば、ベンジル基、メトキシ基、エトキシ基、イソプロピルオキシ基などのリパーゼによって認識され基質となるような置換基が選択され、リパーゼの種類および反応条件(温度、溶媒、濃度など)が適当に制御される。リパーゼによってこの反応を行う場合、光学純度の高い生成物が取得され得る。化学的エステル化法によってこの反応を行う場合、生成物はラセミ体として取得され得る。 A fatty acid is introduced into the 1-hydroxy group of glycerol. R 1 is —C (= O) R and R is a linear or branched saturated or unsaturated hydrocarbon group, wherein the hydrocarbon group contains 8 to 36 carbon atoms, The hydrocarbon group contains 0 to 8 double bonds, and at least one of carbons on the hydrocarbon group is substituted with a substituent selected from the group consisting of = O, —OH and —OOH It may be It may be introduced enzymatically by a lipase, or may be introduced by a known chemical esterification method. When this reaction is carried out by a lipase, for example, R ′ is selected to have a substituent that becomes a substrate and recognized by the lipase such as benzyl group, methoxy group, ethoxy group, isopropyloxy group, etc. Temperature, solvent, concentration etc) are properly controlled. When the reaction is carried out by a lipase, a product with high optical purity can be obtained. When the reaction is carried out by a chemical esterification method, the product can be obtained as a racemate.
 本発明のリパーゼとしては、トリグリセリド等の脂質を基質とする任意のリパーゼが利用可能である。本発明で使用するリパーゼは、好ましくは、トリグリセリドの1位および/または3位を選択的に加水分解するリパーゼ(脂質分解酵素)である。リパーゼは、天然の酵素であっても、組換え酵素であってもよい。また、本発明において使用される「リパーゼ」は、溶液の形態であっても、固定化された形態であってもよい。微生物由来のリパーゼとしては、例えば、Candida cylindoracea由来のリパーゼOF(商品名、名糖産業(株)製)、Alcaligenes sp.由来のリパーゼQLM、リパーゼQLC、リパーゼPL(いずれも商品名、名糖産業(株)製)、Burkholderia cepacia由来のリパーゼPS(商品名、天野エンザイム(株)製)、Pseudomonas fluorescens由来のリパーゼAK(商品名、天野エンザイム(株)製)などが挙げられるがこれらに限定されない。好ましくは、本発明において使用するリパーゼは、トリグリセリドの1位及び3位を選択的に加水分解する微生物由来リパーゼである。本発明においては、固定化リパーゼ、例えば、Thermomyces lanuginosa由来の固定化リパーゼ、リポザイムTLIM(商品名、ノボザイム社製)を用いることができるがこれに限定されない。本発明において特に好ましいリパーゼは、リパーゼAmanoPSである。リパーゼ酵素タンパク質は、好ましくは、物理的・生化学的など一般的な安定性を有し、さらに好ましくは、化学的には有機溶剤に安定である事が望まれる。当業者は、溶媒・アシル化剤・温度・濃度などを適宜選択し添加することによって、所望の立体選択性を得ることができる。リパーゼ反応時の好ましい溶媒は、ジクロロメタンである。リパーゼ反応時の好ましい温度は、-20℃~50℃、より好ましくは-10℃~30℃、さらにより好ましくは-5℃~20℃、最も好ましくは-2℃~10℃、例えば、10℃である。リパーゼ反応の好ましい反応時間は、0.5時間~24時間、より好ましくは1時間~10時間、さらにより好ましくは2時間~7時間、最も好ましくは3時間~6時間、例えば、6時間である。アシル化剤としては、パルミチン酸ビニルエステルだけではなく、パルミチン酸イソプロペニルエステル、パルミチン酸トリフルオロエチルエステル、パルミチン酸無水物、2-O-ベンジルグリセリド、あるいは、その他の飽和脂肪酸のビニルエステルも利用可能である。本発明によって達成される鏡像異性体過剰率は、80%以上、85%以上、90%以上、92%以上、94%以上、96%以上、98%以上、99%以上、または、99.5%以上である。 Any lipase using a lipid such as triglyceride as a substrate can be used as the lipase of the present invention. The lipase used in the present invention is preferably a lipase (lipolytic enzyme) that selectively hydrolyzes the 1- and / or 3-position of triglyceride. The lipase may be a natural enzyme or a recombinant enzyme. Furthermore, the "lipase" used in the present invention may be in the form of a solution or in an immobilized form. Examples of microorganism-derived lipases include, for example, Lipase OF (trade name, manufactured by Meito Sangyo Co., Ltd.), Alcaligenes sp. -Derived lipase QLM, lipase QLC, lipase PL (all are trade names, manufactured by Meisho Sangyo Co., Ltd.), Lipase PS derived from Burkholderia cepacia (trade name, manufactured by Amano Enzyme Inc.), lipase AK derived from Pseudomonas fluorescens Examples include trade names, manufactured by Amano Enzyme Co., Ltd., and the like, but are not limited thereto. Preferably, the lipase used in the present invention is a microorganism-derived lipase that selectively hydrolyzes positions 1 and 3 of triglyceride. In the present invention, immobilized lipase, for example, immobilized lipase derived from Thermomyces lanuginosa, Lipozyme TLIM (trade name, manufactured by Novozyme Co., Ltd.) can be used, but it is not limited thereto. A particularly preferred lipase according to the invention is the lipase AmanoPS. The lipase enzyme protein preferably has general stability such as physical and biochemical, and more preferably chemically stable to an organic solvent. Those skilled in the art can obtain desired stereoselectivity by appropriately selecting and adding a solvent, an acylating agent, a temperature, a concentration and the like. The preferred solvent for the lipase reaction is dichloromethane. The preferred temperature during the lipase reaction is -20 ° C to 50 ° C, more preferably -10 ° C to 30 ° C, still more preferably -5 ° C to 20 ° C, most preferably -2 ° C to 10 ° C, eg 10 ° C It is. The preferred reaction time of the lipase reaction is 0.5 hours to 24 hours, more preferably 1 hour to 10 hours, still more preferably 2 hours to 7 hours, most preferably 3 hours to 6 hours, eg 6 hours . As the acylating agent, not only palmitic acid vinyl ester but also palmitic acid isopropenyl ester, palmitic acid trifluoroethyl ester, palmitic acid anhydride, 2-O-benzyl glyceride or vinyl ester of other saturated fatty acid is used It is possible. The enantiomeric excess achieved by the present invention is 80% or more, 85% or more, 90% or more, 92% or more, 94% or more, 96% or more, 98% or more, 99% or more, or 99.5 or more. % Or more.
 リパーゼを触媒とするアシル化反応における立体選択性が高いか低いかどうか、つまり高光学純度の生成物を与えるかどうかは、一般にリパーゼの種類、基質の種類、アシル化剤の種類、溶媒の種類、酵素濃度、アシル化剤の濃度、基質の濃度、温度など多数の要因の影響を受ける。また、高い立体選択性を得るための幾つかの理論的・経験的条件が知られている。その一方で、例えば温度は低い程、立体選択性は高いが、反応温度が低い場合、反応収率が低下するという問題がある。このような現状を踏まえ、本願では2-O-Benzylglycerolというエナンチオトッピックな基質の水酸基に立体選択的にパルミトイル基を結合させ、高光学純度の2-O-benzyl-1-palmitoylglycerol(9)を得るための条件検討を行った。その結果、2-O-ベンジルグリセロール(8)(0.494g,2.5mmol)及びビニルパルミテート(1.41g,5.0mmol)のジクロロメタン(5.2mL)溶液を10℃に冷却し、撹拌下、Lipase PS-IM-Amano(100mg)(天野エンザイム株式会社)を加えて、6時間撹拌する事により、光学純度(98%以上)の2-O-benzyl-1-palmitoylglycerol(9)が得られる事を始めて明らかにした。なお、こうして得られた高光学純度の2-O-benzyl-1-palmitoylglycerol(9)は様々な光学活性グリセロリン脂質合成の共通中間体として極めて重要な化合物である。更にこのような条件が確定すれば、その反応スケールを拡大する事は、当業者にとって極めて容易である。それに比べてキラルカラムの場合は高光学純度の2-O-benzyl-1-palmitoylglycerol(9)を得る事は可能であるが、高価な光学活性カラムによる基質処理量が非常に少なく、処理量を増やすためにカラムサイズを大きくするとコスト的に非常に高くなるばかりでなく、カラムから排出する不要な溶媒処理も必要となる。 In general, the type of lipase, the type of substrate, the type of acylating agent, and the type of solvent indicate whether the product has high or low stereoselectivity in a lipase-catalyzed acylation reaction, that is, high optical purity. It is influenced by many factors such as enzyme concentration, concentration of acylating agent, concentration of substrate, temperature and the like. Also, some theoretical and empirical conditions for obtaining high stereoselectivity are known. On the other hand, the lower the temperature, for example, the higher the stereoselectivity, but the lower the reaction temperature, the lower the reaction yield. Based on such current situation, in this application, palmitoyl group is stereoselectively bound to the hydroxyl group of enantiotopic substrate called 2-O-Benzylgcerol to obtain 2-O-benzyl-1-palmitoylglycerol (9) with high optical purity. We examined the conditions for this. As a result, a solution of 2-O-benzylglycerol (8) (0.494 g, 2.5 mmol) and vinyl palmitate (1.41 g, 5.0 mmol) in dichloromethane (5.2 mL) was cooled to 10 ° C. and stirred. Add Lipase PS-IM-Amano (100 mg) (Amano Enzyme Co., Ltd.) and stir for 6 hours to obtain 2-O-benzyl-1-palmitoylglycerol (9) with optical purity (98% or more). The first thing to be done was clarified. Incidentally, 2-O-benzyl-1-palmitoylglycerol (9) with high optical purity thus obtained is a very important compound as a common intermediate for the synthesis of various optically active glycerophospholipids. Furthermore, if such conditions are determined, it is extremely easy for those skilled in the art to expand the reaction scale. In contrast, in the case of chiral columns, it is possible to obtain 2-O-benzyl-1-palmitoylglycerol (9) with high optical purity, but the amount of substrate throughput by the expensive optically active column is very small and the throughput is increased As a result, increasing the column size not only makes the cost very high but also requires unnecessary solvent treatment to drain the column.
 リパーゼの酵素反応は、有機溶剤(クロロホルム、n-ヘキサン、イソプロピルエーテル等)中で実施してもよい。ジクロロメタン中で反応を行うと、比較的容易に光学活性なリン脂質(光学純度の高い生成物)が取得され得る。 The enzyme reaction of lipase may be carried out in an organic solvent (chloroform, n-hexane, isopropyl ether, etc.). When the reaction is carried out in dichloromethane, optically active phospholipids (products with high optical purity) can be obtained relatively easily.
 この反応について、例えば、以下の文献を適宜参照することで適切な改変が行われ得る。M.Murata et al.,Efficient lipase-catalyzed synthesis of chiral glycerol derivatives.Chem.Pharm.Bull.,1989,37,2670-2672、O.Ghisalva et al.,Enzymatic preparation of acylglycerols of high optical purity.Recl.Trav.Chim.Pay-Bas.1991,110,263-64、村田正和ら、有機溶媒中での酵素触媒不斉反応の設計と光学活性医薬品合成への応用.有機合成化学、1991,49,1127-1141、およびS.Hazarika,P.Goswami,and N.N.Dutta,Lipase catalyzed transesterification of 2-o-benzylglycerol with vinyl acetate: solvent effect. Chemical Engineering Journal,2003,94,1-10。 Appropriate modifications can be made to this reaction, for example, by referring to the following documents as appropriate. M. Murata et al. , Efficient lipase-catalysed synthesis of chiral glycerol derivatives. Chem. Pharm. Bull. , 1989, 37, 2670-2672, O.I. Ghisalva et al. , Enzymatic preparation of acylglycols of high optical purity. Recl. Trav. Chim. Pay-Bas. 1991, 110, 263-64, Murata, M. et al., Design of enzyme-catalyzed asymmetric reactions in organic solvents and their application to optically active pharmaceutical synthesis. Organic Synthetic Chemistry, 1991, 49, 1127-1141, and S.A. Hazarika, P .; Goswami, and N. N. Dutta, Lipase catalysed transformation of 2-o-benzylglycerol with vinyl acetate: solvent effect. Chemical Engineering Journal, 2003, 94, 1-10.
 (保護基)
 本発明において、保護基を使用し、リパーゼあるいはそれ以外の方法でグリセロールをパルミトイル化して高光学純度中間体であるパルミトイルグリセロールを合成する方法を行う場合、使用する保護基は、2-O-ベンジルグリセロールに限定されるものではない。
(Protecting group)
In the present invention, when a protecting group is used and lipase or palmitoylation of glycerol is carried out by a method other than that to synthesize palmitoyl glycerol which is a high optical purity intermediate, the protecting group used is 2-O-benzyl. It is not limited to glycerol.
 使用する保護基における最初の必要条件は、グリセロール骨格の2位に結合する置換基が、水素化分解で除去できる必要がある事である。本願では最も単純な例として、Benzyl基(以下の化学式の構造Aにおいて、R-R=H)。を使用しているが、以下の化学式の構造式BまたはCの化合物を用いても本発明の方法の実施が可能である。なお、この水素化分解脱保護により、リパーゼでエステル結合させたパルミトイル基は切断されない。 The first requirement of the protecting groups used is that the substituent attached to position 2 of the glycerol backbone needs to be removable by hydrogenolysis. In the present application, as the simplest example, a benzyl group (in the structure A of the following chemical formula, R 1 -R 7 = H). However, the method of the present invention can be practiced using a compound of the structural formula B or C of the following chemical formula. The hydrolytic deprotection does not cleave the palmitoyl group esterified by the lipase.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 構造式A、BまたはCのいずれかを有する化合物を使用する場合、好ましくは、R=Rである。R≠Rの場合、それらが結合する炭素、C★が不斉中心となり、構造式Dのラセミ型が得られる。ラセミ型が得られた場合、グリセロール骨格に残るOH基を利用して、これらのラセミ体を光学分割することも可能である。しかし、R、Rが結合する不斉中心と残る水酸基が遠く離れすぎているため、リパーゼによるOH基の光学分割では、高い立体選択性は期待できない。それゆえ、本発明において、好ましくは、R=Rである。 When using a compound having any of structural formulas A, B or C, preferably R 1 = R 2 . In the case of R 1 ≠ R 2 , the carbon to which they are attached, C *, is an asymmetric center, and the racemic form of the structural formula D is obtained. When a racemic form is obtained, it is also possible to optically resolve these racemates using the OH group remaining in the glycerol skeleton. However, since the asymmetric center to which R 1 and R 2 are bonded and the remaining hydroxyl group are too far apart, high stereoselectivity can not be expected in optical resolution of the OH group by lipase. Therefore, in the present invention, preferably, R 1 = R 2 .
 さらに、構造式A、BまたはCのいずれかの化合物を使用する場合、R~R11のいずれかが独立して、メチル基、エチル基、プロピル基、および/またはイソプロピル基他で置換されていて十分にリパーゼの基質となり、高い立体選択性を与え得る。 Furthermore, when using a compound of any of structural formulas A, B or C, any one of R 1 to R 11 is independently substituted with methyl group, ethyl group, propyl group, and / or isopropyl group, etc. Can be a substrate for lipases sufficiently and can give high stereoselectivity.
 本発明にしたがいリパーゼを用いてパルミトイルグリセロールをする方法は、例えば、上記の構造式A、BまたはCのいずれかを有する化合物および脂肪酸を基質としてリパーゼ酵素反応をする工程を包含する。上記の構造式A、BまたはCのいずれかを有する化合物において、R~R11は独立に、H、炭素数1~6のアルキル基、炭素数1~5のアルキル基、炭素数1~4のアルキル基、または、炭素数1~3のアルキル基である。ならびに/あるいは、記の構造式A、BまたはCのいずれかを有する化合物において、好ましくは、R=Rである。 The method for producing palmitoyl glycerol using a lipase according to the present invention includes, for example, a step of subjecting a compound having any of the structural formulas A, B or C described above and a fatty acid as a substrate to a lipase enzymatic reaction. In compounds having any of the above structural formulas A, B or C, R 1 to R 11 are each independently H, an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 5 carbon atoms, 1 to 5 carbon atoms It is an alkyl group of 4 or an alkyl group having 1 to 3 carbon atoms. And / or in a compound having any of the structural formulas A, B or C, preferably, R 1 = R 2 .
 (工程7:グリセロールの3-ヒドロキシ基へのリン酸基およびコリンの導入) (Step 7: Introduction of phosphate group and choline to 3-hydroxy group of glycerol)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 塩化ホスホリルおよび工程2で合成した重水素化コリンのp-トルエンスルホン酸塩(化合物5)と反応させることでグリセロールの3-ヒドロキシ基にリン酸基およびコリンを導入する。反応は、例えば、塩化ホスホリルに、0~5℃、窒素雰囲気で、撹拌しながら、乾燥トリエチルアミンおよび工程6の生成物の乾燥クロロホルム溶液をゆっくりと滴下し、その後、乾燥ピリジンおよび重水素化コリンのp-トルエンスルホン酸塩を添加して室温で反応させることで進行させることができる。 A phosphoric acid group and choline are introduced into the 3-hydroxy group of glycerol by reacting with phosphoryl chloride and the p-toluenesulfonate of deuterated choline synthesized in step 2 (compound 5). The reaction is carried out, for example, by slowly adding dry triethylamine and the product of step 6 to a solution of phosphoryl chloride while stirring under a nitrogen atmosphere at 0-5 ° C., followed by adding dry pyridine and choline deuterated. The reaction can be carried out by adding p-toluenesulfonate and reacting at room temperature.
 (工程8:グリセロールの2-ヒドロキシ基の脱保護) (Step 8: Deprotection of 2-hydroxy group of glycerol)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 グリセロールの2-ヒドロキシ基に導入した保護基を取り除く。この反応は、例えば、保護基R’としてベンジル基を導入した場合、工程7の生成物(化合物10)をメタノールと水の混合溶媒に溶解し、炭素担持水酸化パラジウムおよび水素ガスによって処理することで進行させることができる。 Remove the protecting group introduced into 2-hydroxy group of glycerol. In this reaction, for example, when a benzyl group is introduced as a protecting group R ′, the product of step 7 (compound 10) is dissolved in a mixed solvent of methanol and water, and treated with palladium hydroxide on carbon and hydrogen gas Can proceed with
 (工程9:グリセロールの2-ヒドロキシ基への脂肪酸の導入) (Step 9: Introduction of fatty acid to 2-hydroxy group of glycerol)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 重水素化リゾホスファチジルコリンと、脂肪酸とを反応させることでグリセロールの2-ヒドロキシ基に第二の脂肪酸を導入する。反応は、例えば、工程8(化合物11)で調製した重水素化リゾホスファチジルコリンと、導入する脂肪酸R-COOHを、エタノールを含まない乾燥クロロホルムに溶解し、これにジシクロヘキシルカルボジイミド(DCC)とジメチルアミノピリジン(DMAP)および極少量のブチル化ヒドロキシトルエンを加えて窒素雰囲気下で撹拌することで進行させることができる。上記の例においてDCCおよびDMAPが使用されているが、この反応において、これらの試薬に限定されず、当業者であれば、1-ヒドロキシベンゾトリアゾールおよびジフェニルリン酸アジドなどの他の公知の試薬も適宜選択することができる。 A second fatty acid is introduced into the 2-hydroxy group of glycerol by reacting deuterated lysophosphatidylcholine with a fatty acid. In the reaction, for example, the deuterated lysophosphatidylcholine prepared in step 8 (compound 11) and the fatty acid R 2 -COOH to be introduced are dissolved in dry chloroform containing no ethanol, to which dicyclohexylcarbodiimide (DCC) and dimethylamino are added. It can be advanced by adding pyridine (DMAP) and a very small amount of butylated hydroxytoluene and stirring under a nitrogen atmosphere. Although DCC and DMAP are used in the above examples, the reaction is not limited to these reagents, and one of ordinary skill in the art would appreciate other known reagents such as 1-hydroxybenzotriazole and diphenyl phosphate azide. It can be selected appropriately.
 一つの実施形態において、Rは、C~C36の飽和または不飽和炭化水素基であり得、ここで、該炭化水素基は、2重結合を0~8個含み、水酸基(-OH)を0~3個含み、エポキシ基を0~2個含み、カルボニル基を0~2個含み、ヒドロペルオキシ基(-OOH)を0~3個含む。一つの実施形態において、Rは、C~C36の飽和炭化水素基であり得る。一つの実施形態において、Rは、2重結合を1~8個含むC~C36の不飽和炭化水素基であり得る。一つの実施形態において、Rは、水酸基(-OH)を1~3個含むC~C36の飽和炭化水素基であり得る。Rが、水酸基を含む炭化水素基である場合、この水酸基をエステルまたはシリルエーテルとして保護した脂肪酸を、重水素化リゾホスファチジルコリンと反応させた後に、水酸基の脱保護を行うことで、水酸基を含むRを導入することができる。一つの実施形態において、Rは、エポキシ基を1~2個含むC~C36の飽和炭化水素基であり得る。一つの実施形態において、Rは、カルボニル基を1~2個含むC~C36の飽和炭化水素基であり得る。一つの実施形態において、Rは、ヒドロペルオキシ基(-OOH)を1~3個含むC~C36の飽和炭化水素基であり得る。Rが、ヒドロペルオキシ基を含む炭化水素基である場合、このヒドロペルオキシ基をパーアセタールとして保護した脂肪酸を、重水素化リゾホスファチジルコリンと反応させた後に、ヒドロペルオキシ基の脱保護を行うことで、ヒドロペルオキシ基を含むRを導入することができる。Rが、2重結合、水酸基(-OH)、エポキシ基、カルボニル基、およびヒドロペルオキシ基(-OOH)のうちの複数を含む場合、水酸基および/またはヒドロペルオキシ基のみを保護し、他の官能基を保護しなくても目的のRが導入され得る。 In one embodiment, R 2 can be a C 8 -C 36 saturated or unsaturated hydrocarbon group, wherein the hydrocarbon group contains 0-8 double bonds and is a hydroxyl group (—OH ), 0 to 2 epoxy groups, 0 to 2 carbonyl groups, and 0 to 3 hydroperoxy groups (—OOH). In one embodiment, R 2 can be a C 8 -C 36 saturated hydrocarbon group. In one embodiment, R 2 can be a C 8 -C 36 unsaturated hydrocarbon group containing 1 to 8 double bonds. In one embodiment, R 2 may be a C 8 to C 36 saturated hydrocarbon group containing 1 to 3 hydroxyl groups (—OH). When R 2 is a hydrocarbon group containing a hydroxyl group, a fatty acid whose hydroxyl group is protected as an ester or a silyl ether is reacted with deuterated lysophosphatidylcholine, followed by deprotection of the hydroxyl group to obtain a hydroxyl group. R 2 can be introduced. In one embodiment, R 2 may be a C 8 to C 36 saturated hydrocarbon group containing 1 to 2 epoxy groups. In one embodiment, R 2 may be a C 8 -C 36 saturated hydrocarbon group containing 1 to 2 carbonyl groups. In one embodiment, R 2 may be a C 8 to C 36 saturated hydrocarbon group containing 1 to 3 hydroperoxy groups (—OOH). When R 2 is a hydrocarbon group containing a hydroperoxy group, a fatty acid having this hydroperoxy group protected as a peracetal is reacted with deuterated lysophosphatidylcholine, followed by deprotection of the hydroperoxy group. , R 2 containing a hydroperoxy group can be introduced. When R 2 contains two or more of double bond, hydroxyl group (-OH), epoxy group, carbonyl group, and hydroperoxy group (-OOH), only hydroxyl group and / or hydroperoxy group is protected; The desired R 2 can be introduced without protecting the functional group.
 さらに、任意選択で以下の工程10および工程11によって、コリンを重水素置換コリンへと変換することもできる。これらの工程については、例えば、H-U.Gally,W.Niederberger,and J.Seeling,Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry,*1975*,14,3674-3652、G.S.Harbison and R.G.Grifin,Improved method for the synthesis of phosphatidylcholines.Journal of Lipid Research,*1984*,25,1141-1144.、およびK.M.Patel,J.D.Morrisett,and J.T.Sparrow,The conversion of phosphatidylethanolamine into phosphatidylcholine labeled in the choline group using methyl iodide, 18-crown-6 and potassium carbonate. Lipids,*1979*,14,596-597),S.Sunder et al.,Infrared and Raman spectra of specifically deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholines,Chemistry and Physics of Lipids,1981,28,137-148.などを参照のこと。 Furthermore, choline can be optionally converted to deuterium-substituted choline by the following steps 10 and 11. For these steps, for example, H.U. Gally, W. Niederberger, and J.J. Seeling, Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry, * 1975 *, 14, 3674-3652, G.I. S. Harbison and R. G. Grifin, Improved method for the synthesis of phosphatidylcholines. Journal of Lipid Research, * 1984 *, 25, 1141-1144. , And K. M. Patel, J.A. D. Morrisett, and J.J. T. Sparrow, the conversion of phosphatidyl erythritol into phosphatidyl choline labeled in the choline group using methyl iodide, 18-crown-6 and potassium carbonate. Lipids, * 1979 *, 14, 596- 597), S.I. Sunder et al. Infrared and Raman spectra of specifically desorbed 1,2-dipalmitoyl-sn-glycero-3-phosphocholines, Chemistry and Physics of Lipids, 1981, 28, 137-148. See etc.
 また(14)は重水素化されていないリン脂質である(12)から、2-アミノエタノールと反応させて(13)を得て、これに重水素化ヨウ化メチルと反応させることでも合成が可能である(後段での重水素化)。 In addition, (14) is a non-deuterated phospholipid from (12), which is reacted with 2-aminoethanol to obtain (13), which is then reacted with deuterated methyl iodide for synthesis. Yes (deuterated later).
 また2個の重水素が置換された2-アミノエタノールを(12)と反応させて(13)を得る。これに重水素化ヨウ化メチルと反応させ、11個重水素化されたリン脂質(14)を得ることが可能である。 Also, 2-deuterium substituted 2-aminoethanol is reacted with (12) to give (13). This can be reacted with deuterated methyl iodide to obtain an 11-deuterated phospholipid (14).
 (工程10:コリンのアミノエタノールへの変換) (Step 10: conversion of choline to aminoethanol)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
工程10は、工程9の生成物(化合物12)を、ホスホリパーゼDの存在下で2-アミノエタノールと反応させることで、コリンを2-アミノエタノールで置き換える。2-アミノエタノールは、必要に応じて、その重水素置換体を使用してもよく、このような重水素置換体として、例えば、2,2-ジジューテリオ-2-アミノエタノール、1,1-ジジューテリオ-2-アミノエタノールおよび1,1,2,2-テトラジューテリオ-2-アミノエタノールなどを使用することができ、これらの重水素置換体を使用した場合には最終生成物としてより多くの重水素を含む化合物が得られる。 In step 10, choline is replaced with 2-aminoethanol by reacting the product of step 9 (compound 12) with 2-aminoethanol in the presence of phospholipase D. As 2-aminoethanol, its deuterium substitution may be used if necessary, and as such deuterium substitution, for example, 2,2-dijuterio-2-aminoethanol, 1,1-dijuterio -2-aminoethanol and 1,1,2,2-tetradeuterio-2-aminoethanol etc. can be used, and when these deuterium substitutes are used more weight as final product A compound containing hydrogen is obtained.
 (工程11:アミノエタノールへの重水素化メチル基の導入) (Step 11: Introduction of deuterated methyl group to aminoethanol)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 工程11は、工程10の生成物(化合物13)に重水素化メチル基を導入する。この反応は、例えば、工程10の生成物を水酸化カリウムなどの塩基性条件下で重水素化ヨウ化メチル(CDI)と混合することで進行し得る。 Step 11 introduces a deuterated methyl group into the product of step 10 (compound 13). This reaction may proceed, for example, by mixing the product of step 10 with methyl deuteroiodide (CD 2 I) under basic conditions such as potassium hydroxide.
 一つの局面では、上記の合成経路以外でも以下のような合成法を使用することができる。
5) 別法;
 一つの実施形態では、例えば、J.Xia and Y-Z.Hui,Synthesis of a small library of mixed-acid phospholipids from D-Mannitol as a homochiral starting material.Chem.Pharm.Bull.,1999,47,1659-1663.などを参照して、光学活性マンニトールの立体配置を変えないでホスファチジルコリン(PC)に変換する方法を利用することができ、この方法において重水素化N,N-ジメチルエタノールアミン(化合物4)を導入することで化合物12が得られ得る。
In one aspect, the following synthetic methods can be used other than the above synthetic route.
5) Alternative;
In one embodiment, e.g. Xia and YZ. Hui, Synthesis of a small library of mixed-acid phospholipids from D-Mannitol as a homochiral starting material. Chem. Pharm. Bull. , 1999, 47, 1659-1663. It is possible to use a method of converting to optically active phosphatidylcholine (PC) without changing the configuration of optically active mannitol with reference to the etc., in which deuterated N, N-dimethylethanolamine (compound 4) is introduced. Compound 12 can be obtained.
 一つの実施形態では、例えば、R.Rosseto et al.,A new approach to the synthesis of lysophospholipids: preparation of lysophosphatidic acid and lysophosphatidylcholine from p-nitrophenyl glycerate.Tetrahedron Letters,2004,45, 7371-7373などを参照して、p-ニトロフェニルグリセレートからホスファチジルコリンに変換する方法を利用することができ、光学活性なグリセリド骨格を持ったp-ニトロフェニルグリセレートに上記の重水素化コリンを導入することで化合物12が得られ得る。 In one embodiment, for example, R. Rosseto et al. , A new approach to the synthesis of lysophospholipids: preparation of lysophosphate acid and lysophosphate phosphate from p-nitrophenyl glycerate. With reference to Tetrahedron Letters, 2004, 45, 7371-7373 etc., a method for converting p-nitrophenyl glycerate to phosphatidyl choline can be used, and it is possible to use p-nitrophenyl glycerate having an optically active glyceride skeleton. Compound 12 can be obtained by introducing the above-mentioned deuterated choline.
 一つの実施形態では、例えば、J.Lindberg et al.,Efficient synthesis of phospholipids from glycidyl phosphates.J.Org.Chem.,2002,67,194-199などを参照して、市販の光学活性グリシドールからホスファチジルコリンに変換する方法を利用することができ、光学活性なグリセリド骨格を持ったグリシドールに上記の重水素化コリンを導入することで化合物12が得られ得る。 In one embodiment, e.g. Lindberg et al. , Efficient synthesis of phospholipids from glycidyl phosphates. J. Org. Chem. A commercially available method for converting optically active glycidol to phosphatidyl choline can be used, as described in J. Chem., 2002, 67, 194-199 etc., and the above-mentioned deuterated choline is introduced into glycidol having an optically active glyceride skeleton. Compound 12 can be obtained.
 一つの実施形態では、例えば、P.D’Arrigo and S. Servi, Synthesis of Lysophospholipids.Journal of Organic Chemistry,*2002*,67,194-199.などを参照して、光学活性グリシドールにコリントシレート(化合物5)を作用させてリゾリン脂質を合成し、これに不飽和脂肪酸を結合させること(工程9)によって化合物12を合成することもできる。 In one embodiment, for example, P.I. D'Arrigo and S. Servi, Synthesis of Lysophospholipids. Journal of Organic Chemistry, * 2002 *, 67, 194-199. The compound 12 can also be synthesized by reacting choline tosylate (compound 5) with optically active glycidol to synthesize a lysophospholipid and binding an unsaturated fatty acid thereto (step 9).
 (重水素化リン脂質の使用)
 EPA、DPAおよびDHAなどの脂肪酸を含むリン脂質の生体機能における重要性について、多くの論文が発表されている。しかし、血液など生体組織では、化学構造が類似する様々なリン脂質分子種が混在し、それらの分布は組織間でも異なり、化学構造も代謝過程で刻々変化する。そのため、ある特定のリン脂質分子種の構造変化を、時間を追って追跡する事は極めて難しい。近年、質量分析計によるリピドミクス解析が行われているが、上記のような解析は十分に実施されていない。他方、本発明の重水素化リン脂質を使用すれば、リン脂質の特異的代謝に伴う構造変化が追跡可能となり得る。
(Use of deuterated phospholipids)
Many papers have been published on the importance of phospholipids containing fatty acids such as EPA, DPA and DHA in biological functions. However, in living tissues such as blood, various phospholipid molecular species having similar chemical structures are mixed, their distribution differs among the tissues, and the chemical structures change constantly in the metabolic process. Therefore, it is extremely difficult to track the structural change of a specific phospholipid molecule species over time. In recent years, lipidomics analysis by mass spectrometer has been conducted, but such analysis has not been sufficiently conducted. On the other hand, using the deuterated phospholipids of the present invention, structural changes associated with specific metabolism of phospholipids may be traceable.
 1つの局面において、本発明は、本発明のリン脂質を含む組成物を提供する。重水素化されたリン脂質は、重水素化されていない対応するリン脂質と同様の物理化学的性質を示し、生体内で同様の吸収、分布、代謝、または排出を示すと考えられる。しかし、重水素化されたリン脂質は、重水素化されていない対応するリン脂質と質量が異なるため、重水素化されたリン脂質またはその代謝物は質量分析計による解析によって容易に区別することができる。そのため、特に代謝に伴うリン脂質の構造変化の追跡に有用に利用され得る。 In one aspect, the invention provides a composition comprising a phospholipid of the invention. Deuterated phospholipids exhibit similar physicochemical properties as the corresponding non-deuterated phospholipids and are considered to exhibit similar absorption, distribution, metabolism or excretion in vivo. However, because deuterated phospholipids differ in mass from the corresponding non-deuterated phospholipids, deuterated phospholipids or their metabolites can be easily distinguished by mass spectrometric analysis Can. Therefore, it can be usefully used to trace the structural change of phospholipids, particularly, associated with metabolism.
 一つの実施形態において、本発明の組成物は、リン脂質の吸収、代謝、分布、または排出を検出または測定するために使用される。 In one embodiment, the composition of the invention is used to detect or measure absorption, metabolism, distribution or excretion of phospholipids.
 一つの実施形態において、本発明の組成物は、対象に投与される。一つの実施形態において、対象は、哺乳動物であり得、例えば、ヒト、マウス、ラット、イヌ、サル、ウサギなどであるが、これらに限定されない。いずれの適当な投与方法が使用されてもよいが、例えば、経口投与、注射などが使用される。 In one embodiment, a composition of the invention is administered to a subject. In one embodiment, the subject may be a mammal, such as, but not limited to, humans, mice, rats, dogs, monkeys, rabbits and the like. Any suitable mode of administration may be used, for example oral administration, injection and the like.
 一つの実施形態において、本発明の組成物は、インビトロで試料と接触させられる。一つの実施形態において、試料は、生体試料であり、例えば、組織、血液、尿、唾液、涙などであるがこれらに限定されない。 In one embodiment, a composition of the invention is contacted with a sample in vitro. In one embodiment, the sample is a biological sample, such as, but not limited to, tissue, blood, urine, saliva, tears, and the like.
 一つの実施形態において、本発明の組成物は、食品の品質評価のために使用され得る。EPA、DHAおよびDPAなどの脂肪酸を含むリン脂質は海産物やそれらの加工食品に多く含まれ、これらのリン脂質は食品の劣化によって酵素的・化学的に変化し得るので、本発明の組成物を使用してこの変化を分析することができる。例えば、本発明の組成物を、食品にあらかじめ添加し、その後の変化を追跡する事によって食品の劣化測定が可能であり得る。 In one embodiment, the composition of the present invention may be used for food quality assessment. Since phospholipids containing fatty acids such as EPA, DHA and DPA are abundant in marine products and their processed foods, and these phospholipids can be enzymatically and chemically changed due to the deterioration of the food, the composition of the present invention It can be used to analyze this change. For example, it may be possible to measure the deterioration of the food by adding the composition of the present invention to the food beforehand and tracking the change thereafter.
  (リン脂質代謝異常の測定)
 一つの実施形態において、本発明の組成物は、リン脂質代謝異常の測定のために使用され得る。例えば、患者と健常者より採取した組織、血液、血清または血漿に添加し、そこで起こる化学変化を検出する事(例えば、生成される同位体標識された化合物の種類と量を測定する事)により、健常者と比較して患者のリン脂質代謝が異常か否かを決定することが可能となる。
(Measurement of phospholipid metabolism disorder)
In one embodiment, the composition of the present invention may be used for the measurement of phospholipid metabolism disorders. For example, by adding it to tissues, blood, serum or plasma collected from patients and healthy people and detecting the chemical changes that occur there (eg, measuring the type and amount of isotope labeled compounds produced) Thus, it is possible to determine whether or not the phospholipid metabolism of the patient is abnormal as compared to a healthy person.
 (疾患または状態の診断のための使用)
 一つの実施形態において、本発明の組成物は、疾患の診断のために使用され得る。疾患は、リン脂質が関連する任意の疾患であり得、例えば、脂質代謝に異常を生じる疾患(例えば、肥満、高脂血症、インスリン非依存性糖尿病、および、変形性膝関節症が挙げられるがこれらに限定されない)、がん、炎症、動脈硬化、アルツハイマー病、敗血症、抗リン脂質抗体症候群(加齢性黄斑変性症、全身性エリテマトーデスなど)などであり得るが、これらに限定されない。例えば、本願発明の組成物を、生体より採取した組織、血液、血清または血漿に添加し、そこで起こる化学変化を検出する事(例えば、生成される同位体標識された化合物の種類と量を測定する事)により、病態や進行度などの診断が可能となり得る。
(Use for the diagnosis of a disease or condition)
In one embodiment, the composition of the present invention may be used for the diagnosis of a disease. The disease may be any disease associated with phospholipids, including, for example, diseases causing abnormalities in lipid metabolism such as obesity, hyperlipidemia, non-insulin dependent diabetes mellitus, and osteoarthritis of the knee May be, but not limited to, cancer, inflammation, arteriosclerosis, Alzheimer's disease, sepsis, antiphospholipid antibody syndrome (age-related macular degeneration, systemic lupus erythematosus, etc.), etc. For example, adding the composition of the present invention to a tissue, blood, serum or plasma collected from a living body and detecting the chemical change that occurs there (for example, measuring the type and amount of isotope labeled compounds produced To make it possible to diagnose the pathological condition and the degree of progression.
 (1)アルツハイマー病の診断
 アルツハイマー病の診断にはもっぱら病理学的手法が取られているが、バイオマーカーによる診断法には、まだ多くの問題が残されている。この点に関してGonzalez-Dominguezらが2016年に発表した論文(Current Alzheime
r Research,2016,13,641-653)は、血清中のリン脂質の化学変化がアルツハイマー病や軽度認知症の病態と密接に関係している事を述べており、下記のような重要な内容が指摘されている。
「アルツハイマー病研究における血液の使用は、これまで顧みられなかった。その理由は、血液をベースにした測定と脳におけるプロセスの間の関係が難しいと考えられていたからである。しかし、血清におけるメタボローム的代謝異常と脳試料との間には密接な関係がある事が形質転換したアルツハイマー病モデルを用いて最近証明された。更にアルツハイマー病は全身性疾患だという証拠が増加しつつある。この事はアルツハイマー病に関係する病理学的メカニズムの研究においては末梢血の利用が重要である事を証明している。アルツハイマー病はリン脂質とスフィンゴ脂質の代謝傷害と関係していて、それらに結合するアシル鎖の長さと不飽和度が決定的役割を担っている。アルツハイマー病は、かつてはホスホリパーゼ類による脳リン脂質の過剰分解と関係づけられていた。それは細胞膜の破壊につながる。また、神経組織に高濃度に存在するDHAやアラキドン酸のような不飽和脂肪酸の酸化ストレスによる消失は細胞膜の損傷を引き起こし、これがアルツハイマー病の病理に関わってくる。この合理性が飽和脂肪酸結合ホスファチジルコリンとホスファチジルエタノールアミンが増加し、同時にリノール酸、アラキドン酸やDHAなどの不飽和脂肪酸結合ホスファチジルコリンが有意に減少するという事実によって確証された。」このような背景より、以下に述べるように、本発明のリン脂質は、優れた診断薬を提供し得る。
(1) Diagnosis of Alzheimer's Disease Although pathological methods are taken exclusively for the diagnosis of Alzheimer's disease, many problems still remain in diagnostic methods using biomarkers. A paper published by Gonzalez-Dominguez et al. In 2016 in this respect (Current Alzheimer's)
r Research, 2016, 13, 641- 65) states that chemical changes in phospholipids in serum are closely related to the pathogenesis of Alzheimer's disease and mild dementia, and the following important contents Is pointed out.
"The use of blood in Alzheimer's research has never been looked at so far because the relationship between blood-based measurements and processes in the brain was thought to be difficult. A close link between metabolic abnormalities and brain samples has recently been demonstrated using a transformed Alzheimer's disease model, and there is growing evidence that Alzheimer's disease is a systemic disease. The use of peripheral blood has been shown to be important in the study of the pathological mechanisms involved in Alzheimer's disease, which is related to the metabolic injury of phospholipids and sphingolipids and the acyls that bind them Chain length and degree of unsaturation play a crucial role in Alzheimer's disease, which was once caused by phospholipases in the brain. Excess degradation of the plasma membrane, which leads to the destruction of the cell membrane, and the disappearance of unsaturated fatty acids such as DHA and arachidonic acid, which are present in high concentrations in neural tissue, by oxidative stress causes damage to the cell membrane. This is related to the pathology of Alzheimer's disease, and this rationality is due to the fact that saturated fatty acid bound phosphatidyl choline and phosphatidyl ethanolamine increase and simultaneously unsaturated fatty acid bound phosphatidyl choline such as linoleic acid, arachidonic acid and DHA decrease significantly. Confirmed. ”From such background, as described below, the phospholipids of the present invention can provide excellent diagnostic agents.
 血漿中のリン脂質の種類・量とアルツハイマー病との関連性についてはこれまで幾つかの報告がある。例えば認知症を伴うアルツハイマー病患者の血漿からsn-1位にパルミチン酸が結合し、sn-2位にEPAまたはDHAを結合するホスファチジルコリン(PC16:0/20:5, PC16:0/22:6)およびsn-1位にステアリン酸が結合し、sn-2位にDHAを結合するホスファチジルコリン(PC18:0/22:6)の3種類の分子種が減少するという結果が2013年に発表された。これらの結果からアルツハイマー病の病理に特定のホスファチジルコリンが関与していると著者らは述べている。(Luke Whiley et al, Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease,Neurobiology of Aging,35,2014,1~8)
 また、アルツハイマー病を含む多くの病態では、リン脂質を基質とする血漿中のホスホリパーゼA2活性が変化する事もよく知られている。(J.R Sundaram,E.S Chan,C.P Poore,T.K Pareek,W.F Cheong G Shui,N Tang C.M Low,M.R Wenk,and S Kesavapany.(2012)Cdk5/p25-Induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration.The Journal of Neuroscience,32,2012,1020~1034)
 従ってアルツハイマー病の病態に対応するリン脂質の種類および量的変化はホスホリパーゼA2が深く関与している。リン脂質に本酵素が作用するとリゾリン脂質と脂肪酸が生成する。また、アルツハイマー病患者の血液と脳ではDHA量が減少しているというという事実にも矛盾しない(Javier Orazaran,et al.,A blood-based,7-metabolite signature for the early diagnosis of Alzheimer’s disease,Journal of Alzheimer’s disease,45,2015,1157-1173)。
There have been several reports on the relationship between the type and amount of phospholipids in plasma and Alzheimer's disease. For example, phosphatidylcholine (PC16: 0/20: 5, PC16: 0/22: 6) which binds palmitic acid to sn-1 position from plasma of Alzheimer's disease patients with dementia and binds EPA or DHA to sn-2 position. In 2013, results were reported that three molecular species of phosphatidylcholine (PC18: 0/22: 6) that bind stearic acid at the sn-1 position and sn-1 position and DHA at the sn-2 position are reduced . Based on these results, the authors say that specific phosphatidylcholine is involved in the pathology of Alzheimer's disease. (Luke Whiley et al, Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease, Neurobiology of Aging, 35, 2014, 1-8)
In addition, in many disease states including Alzheimer's disease, it is also well known that phospholipase A2 activity in plasma using phospholipid as a substrate is changed. (J. Sundaram, E. S Chan, C. P Poore, T. K Pareek, W. F Cheong G Shui, N. Tang C. M Low, M. R Wenk, and S Kesavapany. (2012) Cdk5 / p25 -Induced cytosolic PLA 2-mediated lysophosphoridylcholine production regulation neuroinflammation and triggers neurodegeneration. The Journal of Neuroscience, 32, 2012, 1020-1034)
Therefore, phospholipase A2 is deeply involved in the type and quantitative change of phospholipids corresponding to the pathology of Alzheimer's disease. When this enzyme acts on phospholipids, lysophospholipids and fatty acids are produced. It is also consistent with the fact that DHA levels are reduced in the blood and brain of patients with Alzheimer's disease (Javier Orazaran, et al., A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer's disease , Journal of Alzheimer's disease, 45, 2015, 1157-1173).
 これらの事実に基づいて、アルツハイマー病の診断が可能と報告されている。しかし、生体リン脂質、脂肪酸やリゾリン脂質の種類は極めて多様であり、それらの分析を同時に高い信頼性で行う事は、リピドミクス手法を用いても容易ではない。 Based on these facts, diagnosis of Alzheimer's disease is reported to be possible. However, the types of biological phospholipids, fatty acids and lysophospholipids are extremely diverse, and it is not easy to conduct their analysis simultaneously with high reliability using the lipidomics method.
 本発明で合成した重水素化リン脂質をESI MASS分析する際に、プロダクトイオンをm/z187と入力する(m/z187と入力する事によって重水素化リン脂質以外のリン脂質は一切検出されない。)事によって、重水素化リン脂質とその構造変化を受けたものを全て同時に極めて高い選択性で検出する事ができる。 In the ESI MASS analysis of the deuterated phospholipid synthesized in the present invention, the product ion is input as m / z 187 (inputting m / z 187 does not detect any phospholipid other than the deuterated phospholipid). Thus, deuterated phospholipids and those that have undergone structural change can all be detected simultaneously with extremely high selectivity.
 従って、例えば重水素化リン脂質(PC16:0/20:5, PC16:0/22:6,PC18:0/22:6)を血液に添加し、一定時間インキュベートした後に回収される試料のESI MASSスペクトルから、残存する重水素化リン脂質および、それらから生成するリゾホスファチジルコリンの変動を同時分析する事によってアルツハイマー病の診断が可能である。 Thus, for example, ESI of a sample collected after adding deuterated phospholipids (PC16: 0/20: 5, PC16: 0/22: 6, PC18: 0/22: 6) to blood and incubating for a certain period of time From the MASS spectrum, it is possible to diagnose Alzheimer's disease by simultaneously analyzing the variations of residual deuterated phospholipids and lysophosphatidylcholine generated therefrom.
 例えば血液ではないが脳脊髄液中のリゾホスファチジルコリンとホスファチジルコリンの比率はアルツハイマー病と関係している事が報告されている。(C.J.J.Mulder et al.,Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in alzheimer’s disease, journal of Neural Transmission 110,2003,949-55)
 なお、上記のLuke Whiley et alに報告されている3種類分子種はいずれも、本発明で合成した重水素化ホスファチジルコリンの重水素をもとの水素原子に置き換えたものに他ならない。
For example, it has been reported that the ratio of lysophosphatidylcholine to phosphatidylcholine in cerebrospinal fluid but not in blood is related to Alzheimer's disease. (C. J. J. Mulder et al., Decreased lysophosphoryl choline / phosphoryl choline ratio in cerebrospinal fluid in alzheimer's disease, journal of Neural Transmission 110, 2003, 949-55)
The three kinds of molecular species reported in the above-mentioned Luke Whiley et al are none other than those in which deuterium of deuterated phosphatidyl choline synthesized in the present invention is replaced with the original hydrogen atom.
 また、不飽和脂肪酸やリン脂質に結合する不飽和脂肪酸は生体で酸化ストレスを受けてそれらの過酸化物類が生成し、これらは炎症を含む様々な病態と関係している事は古くから知られている。アルツハイマー病患者の組織においても多数報告されている(Elic Tonnies et al., Oxidative stress, synaptic dysfunction, and Alzheimer’s disease,Journal of Alzheimer’s Disease,57,2017,1105-1121)。 In addition, unsaturated fatty acids and unsaturated fatty acids that bind to phospholipids are oxidatively stressed in the living body to form peroxides thereof, and it has long been known that these are related to various pathological conditions including inflammation. It is done. A number of reports have also been made in the tissues of patients with Alzheimer's disease (Elic Tonnies et al., Oxidative stress, synaptic dysfunction, and Alzheimer's disease, Journal of Alzheimer's Disease, 57, 2017, 1105-1121).
 本発明で合成した重水素化リン脂質に結合するEPA、DPAまたはDHAは生体で重要な役割を担っている一方、酸化ストレスや炎症等が原因で極めて酸化されやすい。しかもその酸化生成物の組成は単純ではなく様々な分子種を含む。プロダクトイオンをm/z187と入力し、ESI MASSを測定する事によって、重水素化リン脂質のほとんど全ての酸化生成物分子種を同時に分析する事ができる(Hiroko Tominaga et al.,Molecular proves in tandem electrospray ionization mass spectrometry:application to tracing chemical changes of specific phospholipid molecular species,American Journal of Analytical Chemistry,4,2013,16~26)
 この分析によってアルツハイマー病などの病態とESI MASSにおけるリン脂質酸化物パターンとの相関性が確認できれば診断に応用できる。ただ、上記いずれの方法も、単独では特定の病気の選択的診断は難しい。
While EPA, DPA or DHA bound to deuterated phospholipids synthesized in the present invention play an important role in the living body, they are extremely easily oxidized due to oxidative stress, inflammation and the like. Moreover, the composition of the oxidation product is not simple and contains various molecular species. By inputting the product ion as m / z 187 and measuring ESI MASS, almost all oxidation product species of deuterated phospholipid can be analyzed at the same time (Hiroko Tominaga et al., Molecular proves in tandem electrospray ionization mass spectrometry: application to tracing chemical changes of specific phospholipid molecular species, American Journal of Analytical Chemistry, 4, 2013, 16 to 26)
This analysis can be applied to diagnosis if the correlation between the pathological condition such as Alzheimer's disease and the phospholipid oxide pattern in ESI MASS can be confirmed. However, either of the above methods alone is difficult to selectively diagnose a specific disease.
 このような場合に、m/z187を用いるESI MASS測定において、重水素化リン脂質そのものの量的変化、リゾホスファチジルコリンの生成、および過酸化物分子種のパターンの同時解析とアルツハイマー病を含む病態との関連性をより高い精度で診断に応用できる。 In such a case, in ESI MASS measurement using m / z 187, quantitative change of deuterated phospholipid itself, formation of lysophosphatidylcholine, and simultaneous analysis of the pattern of peroxide molecular species and pathological condition including Alzheimer's disease and Can be applied to diagnosis with higher accuracy.
 上記の従来技術に基づくと、健常人はアルツハイマー病患者よりもホスホリパーゼA2酵素の発現量が高く、あるいは酵素活性が上昇する。更にオメガ3脂肪酸であり抗炎症性に深く関わるEPA、DHAまたはDPAを結合するホスファチジルコリンD3およびオメガ6脂肪酸である炎症性アラキドン酸が結合するホスファチジルコリンD3はホスホリパーゼA2の作用により、それぞれのリゾホスファチジルコリンD3を生成する。そして、それぞれの酵素反応におけるPCD3/Lyso-PCD3の比率は病態の有無・種類によって異なることが予想される。なお、病態の根底にある炎症に伴い活性化されたホスホリパーゼA2は膜リン脂質に結合するアラキドン酸を遊離させ、これがアラキドン酸カスケードを通して各種炎症性物質を生成する事は古くから知られている。したがって、本発明の同位体標識された化合物は、脳におけるアルツハイマー病に起因する炎症状態の指標として利用可能であると考えられ、それゆえ、アルツハイマー病の診断およびアルツハイマー病の疾患状態の診断に利用可能であることが予測される。以上の理解に基づき、本発明を利用することによって、アルツハイマー病の診断が可能である。例えば、診断対象の体液(例えば、血液、唾液、尿または脳脊髄液などの体液)と同位体標識した本発明のリン脂質を混合し、反応混合物中の標識リン脂質の種類および量を決定することによって、アルツハイマー病の診断を行うことが可能である。例えば、同位体標識したリン脂質として、EPA、DHA、DPAまたはAA(アラキドン酸)を結合するホスファチジルコリンD3を体液に投与し、一定時間インキュベートした後にリン脂質D3を含む脂質試料を抽出し、ESI MASSによって分析し、PCD3/Lyso-PCD3比率を測定することによって、アルツハイマー病の診断をすることが可能である。 Based on the above-mentioned prior art, healthy individuals express phospholipase A2 enzyme at a higher expression level or have increased enzyme activity than Alzheimer's disease patients. Furthermore, phosphatidylcholine D3 which is an omega-3 fatty acid and which is deeply involved in anti-inflammatory properties, phosphatidylcholine D3 which binds EPA, DHA or DPA and phosphatidylcholine D3 which an inflammatory arachidonic acid which is an omega 6 fatty acid binds each lysophosphatidylcholine D3 by the action of phospholipase A2. Generate And, the ratio of PCD3 / Lyso-PCD3 in each enzyme reaction is expected to be different depending on the presence / absence and type of pathological condition. In addition, it is long known that phospholipase A2 activated with inflammation underlying the pathological condition liberates arachidonic acid bound to membrane phospholipids, and this produces various inflammatory substances through the arachidonic acid cascade. Therefore, the isotopically-labeled compound of the present invention is considered to be available as an indicator of the inflammatory condition attributable to Alzheimer's disease in the brain, and hence for the diagnosis of Alzheimer's disease and the diagnosis of the disease condition of Alzheimer's disease It is predicted to be possible. Based on the above understanding, diagnosis of Alzheimer's disease is possible by utilizing the present invention. For example, the isotopically labeled phospholipid of the present invention is mixed with a body fluid to be diagnosed (eg, a body fluid such as blood, saliva, urine or cerebrospinal fluid) to determine the type and amount of labeled phospholipid in the reaction mixture It is possible to make a diagnosis of Alzheimer's disease. For example, phosphatidylcholine D3 that binds EPA, DHA, DPA or AA (arachidonic acid) as an isotope-labeled phospholipid is administered to a body fluid, incubated for a fixed time, and then a lipid sample containing phospholipid D3 is extracted. It is possible to diagnose Alzheimer's disease by analyzing by and measuring the PCD3 / Lyso-PCD3 ratio.
 (2)変形性膝関節症
 変形性膝関節症の進行度と血漿中のリゾホスファチジルコリン/ホスファチジルコリン比が関係し、診断に使えるという研究が報告された。(Weidong Zhang et al.,Lysophosphatidylcholines to phosphatidylcholines ratio predicts advanced knee osteoarthritis,Rheumatology,55,2016,1566~1574)この方法の効率化・精度向上にも本特許で合成した重水素化リン脂質が応用しうると考えられる。
(2) Osteoarthritis of the knee The research has been reported that the degree of progression of knee osteoarthritis is related to the lysophosphatidylcholine / phosphatidylcholine ratio in plasma and can be used for diagnosis. (Weidong Zhang et al., Lysophosphotidylcholines to phosphatidylcholines ratio predicts advanced knee osteoarthritis, Rheumatology, 55, 2016, 1566-1574) The deuterated phospholipids synthesized in this patent may also be applied to the efficiency and accuracy improvement of this method it is conceivable that.
 また、本方法は血漿の他に唾液などにも応用可能である。(Arkasubhra Ghosh and Krishnatej Nishtala,Biofluid lipidome:a source for potential diagnostic biomarkers,Critical and Translational Medicine,6,2017,1~10)よって変形性膝関節症についてもアルツハイマー病診断と同じくEPA、DHA、DPAまたはAAを結合するホスファチジルコリンD3と、それらから生成する各リゾホスファチジルコリンD3の生成量比より診断を可能とする。その理由を、以下に述べる。 In addition to plasma, the method is also applicable to saliva and the like. (Arkasubhra Ghosh and Krishnatej Nishtala, Biofluid lipidome: a source for potential diagnostic biomarkers, Critical and Translational Medicine, 6, 2017, 1 to 10) Therefore, as with Alzheimer's disease diagnosis for osteoarthritis of the knee, also EPA, DHA, DPA or AA The diagnosis is made possible by the ratio of the amount of phosphatidyl choline D3 binding to each lysophosphatidyl choline D3 produced therefrom. The reason is described below.
 上記の従来技術に基づくと、健常人は変形性膝関節症患者よりもホスホリパーゼA2酵素の発現量が高く、あるいは酵素活性が上昇する。更にオメガ3脂肪酸であり抗炎症性に深く関わるEPA、DHAまたはDPAを結合するホスファチジルコリンD3およびオメガ6脂肪酸である炎症性アラキドン酸が結合するホスファチジルコリンD3はホスホリパーゼA2の作用により、それぞれのリゾホスファチジルコリンD3を生成する。そして、それぞれの酵素反応におけるPCD3/Lyso-PCD3の比率は病態の有無・種類によって異なると予想される。なお、病態の根底にある炎症に伴い活性化されたホスホリパーゼA2は膜リン脂質に結合するアラキドン酸を遊離させ、これがアラキドン酸カスケードを通して各種炎症性物質を生成する事は古くから知られている。したがって、本発明の同位体標識された化合物は、各種組織の炎症状態の指標として利用可能であると考えられ、それゆえ、変形性膝関節症の診断および変形性膝関節症の疾患状態の診断に利用可能であることが予測される。以上の理解に基づき、本発明を利用することによって、変形性膝関節症の診断が可能である。例えば、診断対象の体液(例えば、血液、唾液、尿または脳脊髄液などの体液)と同位体標識した本発明のリン脂質を混合し、反応混合物中の標識リン脂質の種類および量を決定することによって、変形性膝関節症の診断を行うことが可能である。例えば、同位体標識したリン脂質として、EPA、DHA、DPAまたはAA(アラキドン酸)を結合するホスファチジルコリンD3を体液に投与し、一定時間インキュベートした後にリン脂質D3を含む脂質試料を抽出し、ESI MASSによって分析し、PCD3/Lyso-PCD3比率を測定することによって、変形性膝関節症の診断をすることが可能である。 Based on the above-mentioned prior art, a healthy individual has a higher expression level of phospholipase A2 enzyme or a higher enzyme activity than osteoarthritic knee patients. Furthermore, phosphatidylcholine D3 which is an omega-3 fatty acid and which is deeply involved in anti-inflammatory properties, phosphatidylcholine D3 which binds EPA, DHA or DPA and phosphatidylcholine D3 which an inflammatory arachidonic acid which is an omega 6 fatty acid binds each lysophosphatidylcholine D3 by the action of phospholipase A2. Generate And, the ratio of PCD3 / Lyso-PCD3 in each enzyme reaction is expected to be different depending on the presence or type of the pathological condition. In addition, it is long known that phospholipase A2 activated with inflammation underlying the pathological condition liberates arachidonic acid bound to membrane phospholipids, and this produces various inflammatory substances through the arachidonic acid cascade. Therefore, the isotopically-labeled compound of the present invention is considered to be usable as an indicator of the inflammatory condition of various tissues, and therefore, a diagnosis of osteoarthritis of the knee and a diagnosis of a disease condition of the knee osteoarthritis It is expected to be available to Based on the above understanding, it is possible to diagnose osteoarthritis of the knee by utilizing the present invention. For example, the isotopically labeled phospholipid of the present invention is mixed with a body fluid to be diagnosed (eg, a body fluid such as blood, saliva, urine or cerebrospinal fluid) to determine the type and amount of labeled phospholipid in the reaction mixture It is possible to make a diagnosis of osteoarthritis of the knee. For example, phosphatidylcholine D3 that binds EPA, DHA, DPA or AA (arachidonic acid) as an isotope-labeled phospholipid is administered to a body fluid, incubated for a fixed time, and then a lipid sample containing phospholipid D3 is extracted. It is possible to diagnose osteoarthritis of the knee by analyzing by and measuring PCD3 / Lyso-PCD3 ratio.
 またそれ以外の症例についても同様に各PCD3/Lyso-PCD3比率による診断に応用する事ができる。例えば採取した各組織及び各体液の数値やその他バイオマーカーの値を組み合わせることで、種々の病態の診断に可能性がある。 The same can be applied to diagnosis by each PCD3 / Lyso-PCD3 ratio in other cases as well. For example, by combining the values of each collected tissue and each body fluid and the values of other biomarkers, it is possible to diagnose various pathological conditions.
 (本発明の特徴)
 生体リン脂質の大部分を占める代表的なホスファチジルコリンは、グリセロール骨格の2位の炭素が不斉中心となっているため、光学活性となっている。この不斉中心は非常に高い鏡像体過剰率を持っているため、そのような不斉中心を有するグリセロール骨格を化学的に構築するのは容易ではない。このような事情から、自然界に存在する光学活性グリセロリン脂質を、不斉中心を残しつつ、部分的に分解し、目的とするリン脂質に再構築するという方法が取られてきた。しかし、この方法では、不斉中心を含む断片構造のコリン部分に重水素を導入する事は殆ど不可能である。他にもマンニトール等の光学活性天然物を用いる方法があるが、何れも操作が煩雑である。本願ではこの問題を解決するため、微生物由来の酵素リパーゼ用いてパルミトイル基を立体選択的にグリセロール骨格に結合させる事によって光学活性なグリセロール中間体を合成し、これに予め合成しておいた重水素化コリンを結合し、脱保護の後、最後にEPA、DPAまたはDHAを結合するという方法を実施した。
(Features of the present invention)
A representative phosphatidylcholine, which accounts for the majority of biological phospholipids, is optically active because the carbon at position 2 of the glycerol backbone is an asymmetric center. Because this asymmetric center has a very high enantiomeric excess, it is not easy to chemically construct a glycerol backbone with such asymmetric centers. Under such circumstances, there has been taken a method of partially decomposing optically active glycerophospholipids present in the natural world while maintaining an asymmetric center, and reconstituting them into a target phospholipid. However, in this method, it is almost impossible to introduce deuterium into the choline portion of the fragment structure containing the asymmetric center. There are other methods using optically active natural products such as mannitol, but all of them are complicated in operation. In this application, in order to solve this problem, optically active glycerol intermediate is synthesized by attaching palmitoyl group to glycerol skeleton stereoselectively using enzyme-derived enzyme lipase, and deuterium synthesized in advance is synthesized to this. The method of binding the choline and, after deprotection, finally combining EPA, DPA or DHA was carried out.
 なお、過去の報告例から、リパーゼによるパルミトイル基の導入は必ずしも高い立体選択性を与えるとは限らないので、本願では、H.Hazarika等の文献(Chemical Engineering Journal,*2003*,94,1-10)を参考に、パルミチン酸ビニルエステルをアシル化剤として使用し、リパーゼPS(Amano)IMを触媒とし、ジクロロメタン中、10℃で反応を行う事によって非常に高い鏡像異性体過剰率を持つ中間体を合成する事ができた。アシル化剤としては、パルミチン酸ビニルエステルだけではなく、パルミチン酸イソプロペニルエステル、パルミチン酸トリフルオロエチルエステル、またはパルミチン酸無水物、あるいは、その他の飽和脂肪酸のビニルエステルも利用可能である。本発明によって達成される鏡像異性体過剰率は、80%以上、85%以上、90%以上、92%以上、94%以上、96%以上、98%以上、99%以上、または、99.5%以上である。 In addition, according to the past report example, since introduction | transduction of the palmitoyl group by lipase does not necessarily give high stereoselectivity, in this application, H. Palmitate acid vinyl ester is used as an acylating agent with reference to Hazarika et al. (Chemical Engineering Journal, * 2003 *, 94, 1-10), and lipase PS (Amano) IM is used as a catalyst in dichloromethane at 10 ° C. It was possible to synthesize an intermediate with a very high enantiomeric excess by carrying out the reaction in As the acylating agent, not only palmitic acid vinyl ester but also palmitic acid isopropenyl ester, palmitic acid trifluoroethyl ester or palmitic acid anhydride, or vinyl esters of other saturated fatty acids can be used. The enantiomeric excess achieved by the present invention is 80% or more, 85% or more, 90% or more, 92% or more, 94% or more, 96% or more, 98% or more, 99% or more, or 99.5 or more. % Or more.
 なお、本発明で目的とする重水素化リン脂質の内、特にDPAを結合するものについては、合成に必要な高純度DPAの入手が容易でなかった点が問題の一つであった。しかし、本発明では、EPAから高純度DPAを化学的に短経路で合成する新規方法を開発した事により、それが可能となった。 Among the deuterated phospholipids targeted by the present invention, particularly those that bind DPA, one of the problems was that the availability of high purity DPA necessary for the synthesis was not easy. However, in the present invention, this is made possible by the development of a novel method for chemically synthesizing high purity DPA from EPA by a short route.
 (本発明の効果)
 生体組織にはEPA、DPAおよび/またはDHAを含む様々な脂肪酸を結合する多数のリン脂質分子種が存在し、それぞれの役割を担っている。また、これら分子種の役割と代謝は生体の恒常性や病態と深く関わっているが、リン脂質分子種の多様性に加え、これらの病態との関連性は極めて複雑である。従って、健康に対して極めて重要な栄養素として近年注目されているEPA、DPAまたはDHAを結合する特定のリン脂質を、仮にそれらと同じ化学構造を持つ天然・合成標準物質(公知物質)が有ったとしても、複雑な生体リン脂質の中からそれらを選択的に検出する事は容易ではない。この問題に対して、現在、最も有力な方法はメタボローム解析であるが、この方法では質量分析に先立って生体試料中のリン脂質成分を高速液体クロマトグラフィーで分離しなければならない。他方、本願で合成したEPA、DPAまたはDHAを結合する重水素置換した合成リン脂質は、生体組織に加えられた場合、その中での化学変化を、液体クロマトグラフィーによる分離操作を必要とせず、質量分析法でプレカーサーイオン検出によって極めて特異的に追跡する事ができる。このような点から、本願で合成したEPA、DPAまたはDHAを結合する新規重水素置換リン脂質は公知物質と比較して極めて優れた効果を奏し、今後、リン脂質代謝に関する基礎研究のみならず診断薬への応用が期待される。
(Effect of the present invention)
In living tissues, there are many phospholipid molecular species that bind various fatty acids including EPA, DPA and / or DHA, and play a role in each. In addition, although the roles and metabolism of these molecular species are closely related to homeostasis and pathophysiology of the living body, in addition to the diversity of phospholipid molecular species, the association with these pathopathies is extremely complicated. Therefore, specific phospholipids that bind EPA, DPA or DHA, which have recently been attracting attention as nutrients extremely important to health, are temporarily contained in natural and synthetic standard substances (known substances) having the same chemical structure as them. Even then, it is not easy to selectively detect them from complex biological phospholipids. At present, the most powerful method to solve this problem is metabolomic analysis, but in this method, phospholipid components in a biological sample have to be separated by high performance liquid chromatography prior to mass analysis. On the other hand, deuterated synthetic phospholipids binding with EPA, DPA or DHA synthesized in the present application, when added to a living tissue, do not require chemical changes in the chemical changes therein, which require separation by liquid chromatography, It can be tracked very specifically by precursor ion detection in mass spectrometry. From this point of view, the novel deuterium-substituted phospholipid binding EPA, DPA or DHA synthesized in the present application exhibits extremely excellent effects as compared with known substances, and in the future, not only basic research on phospholipid metabolism but also diagnosis Application to medicine is expected.
 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 The present invention has been described above with the preferred embodiments shown for ease of understanding. EXAMPLES The present invention will be described below based on examples, but the above description and the following examples are provided for the purpose of illustration only and are not provided for the purpose of limiting the present invention. Accordingly, the scope of the present invention is not limited to the embodiments or examples specifically described herein, but only by the claims.
 以下に実施例を記載する。 Examples are described below.
 (実施例1)
2-O-ドコサペンタエノイル-1-O-パルミトイル-グリセロホスホコリンD3(13)の合成
 合成スキーム
Example 1
Synthesis of 2-O-docosapentaenoyl-1-O-palmitoyl-glycerophosphocholine D3 (13) Synthetic scheme
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
上記合成スキームは、DPAが結合した重水素化ホスファチジルコリンの合成経路を示すが、EPAやDHAの場合も同様に合成可能である。以前に報告されたリン脂質過酸化物の合成方法(Naomichi Baba,Kenji Yoneda,Shoichi
 Tahara,Junkichi Iwasa,Takao Kaneko,Mitsuyoshi Matsuo,J.Chem.Soc.,Chem.Commun.,1990,1281-1282)等を参照して適切な改変を行うことができる。
The above synthetic scheme shows a synthetic pathway of deuterated phosphatidyl choline to which DPA is bound, but it can be similarly synthesized in the case of EPA and DHA. Previously reported methods for synthesizing phospholipid peroxides (Naomichi Baba, Kenji Yoneda, Shoichi
Tahara, Junkichi Iwasa, Takao Kaneko, Mitsuyoshi Matsuo, J.A. Chem. Soc. Chem. Commun. Appropriate modifications can be made with reference to, for example, J. Chem.
 工程1:スルホン酸(2)の合成
市販のp-トルエンスルホニルクロリド(8.03g,42.0mmol)とテトラジュウテリオメタノール(8.88g,24.6mmol)の混合物に-5~0℃にて35%苛性ソーダ水溶液(5.3g)をゆっくりと滴下した。反応終了後、ジエチルエーテル(100mL)を用いて反応液を分液ロートに移した。これを飽和重曹水で2回洗浄した後、無水硫酸ナトリウムで乾燥した。エーテルを減圧溜去した後、残渣を減圧蒸留して7.00gの生成物を得た(収率88.1%)。
Step 1: Synthesis of sulfonic acid (2) :
35% aqueous caustic soda solution (5.3 g) in a mixture of commercially available p-toluenesulfonyl chloride (8.03 g, 42.0 mmol) and tetradeuteriomethanol (8.88 g, 24.6 mmol) at -5 to 0 ° C It dripped slowly. After completion of the reaction, the reaction solution was transferred to a separatory funnel using diethyl ether (100 mL). This was washed twice with saturated aqueous sodium bicarbonate solution and then dried over anhydrous sodium sulfate. After distilling off the ether under reduced pressure, the residue was distilled under reduced pressure to obtain 7.00 g of a product (yield 88.1%).
 工程2:N-トリジュウテリオメチル-N,N-ジメチルアミノエタノール p-トルエンスルホン酸塩(3)の合成
乳鉢にトリジュウテリオメチルp-トルエンスルホネート(7.0g,0.037mol)とN,N-ジメチルアミノエタノール(3.30g,0.037mol)を加え、スパチュラで撹拌するとただちに発熱反応が起こり、固化した。20分後にこの固形物を粉砕し過剰の乾燥アセトンに懸濁して素早く減圧ろ過した。ろ紙上の結晶を乾燥アセトンで2回洗浄し、素早くデシケーターに入れて五酸化リンとともに減圧乾燥して6.90gの生成物を得た(収率67.0%)。
Step 2: Synthesis of N-trideuteriomethyl-N, N-dimethylaminoethanol p-toluenesulfonate (3) :
Trideuteriomethyl p-toluenesulfonate (7.0 g, 0.037 mol) and N, N-dimethylaminoethanol (3.30 g, 0.037 mol) are added to a mortar, and stirring with a spatula immediately causes an exothermic reaction to solidify. did. After 20 minutes, the solid was crushed, suspended in excess dry acetone and filtered quickly. The crystals on the filter were washed twice with dry acetone, quickly placed in a desiccator and dried under vacuum with phosphorus pentoxide to give 6.90 g of product (yield 67.0%).
 工程3:グリセロールの1.3位の保護
グリセロール(370.8g、4.03mol)とベンズアルデヒド(316.6g、2.99mol)とを酸性条件下で反応させて、(6)の化合物を173.1g(33.2%)得た。
Step 3: Protection of # 1.3 of Glycerol :
Glycerol (370.8 g, 4.03 mol) and benzaldehyde (316.6 g, 2.99 mol) were reacted under acidic conditions to give 173.1 g (33.2%) of a compound of (6).
 工程4:グリセロールの2位の保護
(6)の化合物(48.4g,0.27mol)とベンジルクロリド(427.3g,3.37mol)とを粉末KOH(96.5g、1.6mol)とともに反応させて、(7)の化合物を54.5g(71.0%)得た。
Step 4: Protection of the Second Place of Glycerol :
The compound of (6) (48.4 g, 0.27 mol) and benzyl chloride (427.3 g, 3.37 mol) are reacted with powdered KOH (96.5 g, 1.6 mol) to give a compound of (7) 54.5 g (71.0%) were obtained.
 工程5:グリセロールの1、3位の脱保護
(7)の化合物(12.6g,0.047mol)を酸性溶液中で加水分解して、(8)の化合物を2.83g(33.3%)得た。
Step 5: Deprotection of 1, 3 position of glycerol :
The compound of (7) (12.6 g, 0.047 mol) was hydrolyzed in an acidic solution to give 2.83 g (33.3%) of the compound of (8).
 工程6:2-O-ベンジル-1-O-パルミトイルグリセロール(9)の合成
2-O-ベンジルグリセロール(8)(0.494g,2.5mmol)及びビニルパルミテート(1.41g,5.0mmol)のジクロロメタン(5.2mL)を10℃に冷却し、撹拌下、Lipase PS-IM-Amano(100mg)(天野エンザイム株式会社、愛知県)を加えて撹拌し6時間反応させた。その酵素をろ過除去した後、ろ液を減圧濃縮して、残渣をシリカゲルカラムで精製して0.90gの生成物を得た(収率82.6%)。
Step 6: Synthesis of 2-O-benzyl-1-O-palmitoyl glycerol (9) :
The dichloromethane (5.2 mL) of 2-O-benzyl glycerol (8) (0.494 g, 2.5 mmol) and vinyl palmitate (1.41 g, 5.0 mmol) was cooled to 10 ° C. under stirring, Lipase PS -IM-Amano (100 mg) (Amano Enzyme Co., Ltd., Aichi Prefecture) was added, stirred and reacted for 6 hours. The enzyme was removed by filtration, the filtrate was concentrated under reduced pressure, and the residue was purified through a silica gel column to give 0.90 g of a product (yield 82.6%).
 工程7:2-O-ベンジル-1-O-パルミトイルホスファチジルコリンD3(10)の合成:
 側管付き反応フラスコに塩化ホスホリル(0.19mL,2.0mmol)と撹拌子を入れ、滴下ロートと温度計を付し、窒素雰囲気にして0-5℃に冷却した。撹拌しつつこの温度以上にならないように、乾燥トリエチルアミン(0.38mL,2.5mmol)と2-O-ベンジル-1-O-パルミトイルグリセロール(9)(0.74g,1.7mmol)の乾燥クロロホルム(19mL)溶液をゆっくりと滴下した。滴下後、この温度で1時間撹拌し、更に室温で1時間撹拌した。この溶液に乾燥ピリジン(0.64mL,8.0mmol)およびN-トリジュウテリオメチル-N,N-ジメチルアミノエタノールp-トルエンスルホン酸(3)(0.66g,2.4mmol)を加え室温で48時間撹拌した。水(8.6mL)を加えて30分撹拌した後、分液ロートに移し、1N-塩酸とメタノールを適当量加えて振盪した後、目的物をクロロホルムで3回抽出した。この溶液を1N-塩酸で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮後、残渣をシリカゲルカラムで精製して0.57gの生成物を得た(収率55.8%)。
Step 7: Synthesis of 2-O-benzyl-1-O-palmitoylphosphatidylcholine D3 (10):
In a reaction flask equipped with a side tube, phosphoryl chloride (0.19 mL, 2.0 mmol) and a stirrer were placed, and the dropping funnel and thermometer were attached and cooled to 0-5 ° C. in a nitrogen atmosphere. Dry chloroform (0.38 mL, 2.5 mmol) and 2-O-benzyl-1-O-palmitoyl glycerol (9) (0.74 g, 1.7 mmol) in dry chloroform so that the temperature does not rise above this temperature while stirring The (19 mL) solution was slowly added dropwise. After dropping, the mixture was stirred at this temperature for 1 hour, and further stirred at room temperature for 1 hour. To this solution was added dry pyridine (0.64 mL, 8.0 mmol) and N-trideuteriomethyl-N, N-dimethylaminoethanol p-toluenesulfonic acid (3) (0.66 g, 2.4 mmol) at room temperature Stir for 48 hours. Water (8.6 mL) was added, and after stirring for 30 minutes, the mixture was transferred to a separatory funnel, and 1N hydrochloric acid and methanol were added and shaken, and then the desired substance was extracted three times with chloroform. The solution was washed with 1N hydrochloric acid and then dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column to obtain 0.57 g of product (yield 55.8%).
 工程8:リゾ-PCD3(11)の合成
 2-O-ベンジル-1-O-パルミトイルホスファチジルコリンD3(10)(2.62g,44.5mmol)をメタノール(30mL)と水(3mL)の混合溶媒に溶解し、炭素担持水酸化パラジウム(1.50g)を加え、水素ガスを含む風船を付して3日間撹拌した。反応終了後、ろ紙を用いてろ過し、ろ液を濃縮した。残存する水を除去するため、イソプロパノールとの共沸減圧蒸留を行った結果、粉末状のリゾ-PCD3(11)1.89gを得た(収率85.2%)。
Step 8: Synthesis of Lyso-PCD 3 (11) :
2-O-benzyl-1-O-palmitoylphosphatidylcholine D3 (10) (2.62 g, 44.5 mmol) is dissolved in a mixed solvent of methanol (30 mL) and water (3 mL), and carbon-supported palladium hydroxide (1. 50 g) was added and stirred for 3 days with a balloon containing hydrogen gas. After completion of the reaction, the solution was filtered using filter paper and the filtrate was concentrated. As a result of performing azeotropic distillation with isopropanol in order to remove the remaining water, 1.89 g of powdery lyso-PCD3 (11) was obtained (yield: 85.2%).
 工程9:2-O-ドコサペンタエノイル-1-O-パルミトイル-グリセロホスホコリンD3(13)の合成
 リゾ-PCD3(11)(0.30g,0.60mmol)とドコサヘキサエン酸(0.5g,1.50mmol)をエタノールを含まない乾燥クロロホルム(5.0mL)に溶解し、これにジシクロヘキシルカルボジイミド(0.44g,2.0mmol)とジメチルアミノピリジン(26mg,0.2mmol)および抗酸化剤として極少量のブチル化ヒドロキシトルエンを加えて窒素雰囲気下2日間撹拌した。反応終了後、濃縮し、残渣をシリカゲルカラムで精製して0.36gの生成物を得た(収率74.0%)。
Step 9: Synthesis of 2-O-docosapentaenoyl-1-O-palmitoyl-glycerophosphocholine D3 (13) :
Lyso-PCD 3 (11) (0.30 g, 0.60 mmol) and docosahexaenoic acid (0.5 g, 1.50 mmol) were dissolved in dry chloroform (5.0 mL) containing no ethanol, and dicyclohexyl carbodiimide (0. 2) was dissolved therein. 44 g (2.0 mmol), dimethylaminopyridine (26 mg, 0.2 mmol) and a very small amount of butylated hydroxytoluene as an antioxidant were added and stirred for 2 days under a nitrogen atmosphere. After completion of the reaction, it was concentrated, and the residue was purified by silica gel column to obtain 0.36 g of product (yield: 74.0%).
 H NMR(600MHz;CDOD):δ 0.88(3H,t,j=7.8,パルミトイル基の末端CH),0.97(3H,t,j=7.8,ドコササペンタエノイル基の末端CH),1.28(26H,m,CHx13),1.38(2H,m,C=C-C-CH-C),1.61(2H,m,CH-CH-C=C),2.08(2H,m,COCHCH),2.3(4H,m,それぞれの脂肪酸鎖のOCOCH),2.85(8H,m,C=C-CH-C=Cx4),3.22(6H,s,N[CH),3.64(2H,m,CHN),4.00-4.45(m,5H,グリセロール骨格上のプロトン),4.28(2H,br,P-O-CH),5.24-5.40(m,10H,オレフィンのプロトン)
 ESI MS 観測m/z=811.6006、[C4783NOP+H]の計算値=811.6039。
1 H NMR (600 MHz; CD 3 OD): δ 0.88 (3 H, t, j = 7.8, terminal CH 3 of palmitoyl group), 0.97 (3 H, t, j = 7.8, docosa) Terminal CH 3 of pentaenoyl group, 1.28 (26 H, m, CH 2 x 13), 1. 38 ( 2 H, m, CCC-C-CH 2 -C), 1.61 (2 H, m , CH 3 -CH 2 -C = C), 2.08 (2H, m, COCH 2 CH 2 ), 2.3 (4H, m, OCOCH 2 of each fatty acid chain), 2.85 (8H, m , C = C-CH 2 -C = C x 4), 3.22 (6 H, s, N [CH 3 ] 2 ), 3. 64 ( 2 H, m, CH 2 N), 4.00-4.45 ( m, 5H, protons on the glycerol backbone), 4.28 (2H, br, P-O-CH 2), 5.24-5.40 (m 10H, olefinic proton)
ESI MS observed m / z = 811.6006, [C 47 H 83 D 3 NO 8 P + H] + Calculated = 811.6039.
 (実施例2)
2-O-エイコサペンタエノイル-1-O-パルミトイル-グリセロホスホコリンD3の合成
 実施例1と同様にEPA-PCd3を合成した。0.40g(84.7%)
 H NMR(600MHz;CDOD):δ 0.80(3H,t,j=7.8,パルミトイル基の末端CH),0.86(3H,t,j=7.8,エイコサペンタエノイル基の末端CH),1.19(26H,m,CHx13),1.59(2H,m,CH-CH-C=C),2.00(2H,m,COCHCH),2.25(4H,m,それぞれの脂肪酸鎖のOCOCH),2.75(8H,m,C=C-CH-C=Cx4),3.12(6H,s,N[CH),3.54(2H,m,CHN),3.86-4.35(m,5H,グリセロール骨格上のプロトン),4.32(2H,br,P-O-CH),5.18-5.33(m,10H,オレフィンのプロトン).
 ESI MS 観測m/z=783.57349、[C4475NOP+H]の計算値=783.57382
 (実施例3)
2-O-ドコサヘキサエノイル-1-O-パルミトイル-グリセロホスホコリンD3の合成
 実施例1と同様にDHA-PCd3を合成した。0.20g(28.4%)
 H NMR(600MHz;CDOD):δ 0.91(3H,t,j=7.8,パルミトイル基の末端CH),0.97(3H,t,j=7.8,ドコサヘキサエノイル基の末端CH),1.28(26H,m,CHx13),1.59(2H,m,CH-CH-C=C),2.19(2H,m,COCHCH),2.30 - 2.42(4H,m,それぞれの脂肪酸鎖のOCOCH),2.81-2.90(10H,m,C=C-CH-C=Cx5),3.30(6H,s,N[CH),3.64(2H,m,CHN),4.00-4.43(m,5H,グリセロール骨格上のプロトン),4.27(2H,br,P-O-CH),5.23-5.40(m,10H,オレフィンのプロトン).
 ESI MS 観測m/z=809.5837、[C4781NOP+H]の計算値=809.5883
 (注記)
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
(Example 2)
Synthesis of 2-O-eicosapentaenoyl-1-O-palmitoyl-glycerophosphocholine D3 EPA-PCd3 was synthesized in the same manner as in Example 1. 0.40 g (84.7%)
1 H NMR (600 MHz; CD 3 OD): δ 0.80 (3 H, t, j = 7.8, terminal CH 3 of palmitoyl group), 0.86 (3 H, t, j = 7.8, eicosa Pentaenoiru terminal CH 3 groups), 1.19 (26H, m, CH 2 x13), 1.59 (2H, m, CH 3 -CH 2 -C = C), 2.00 (2H, m, COCH 2 CH 2), 2.25 ( 4H, m, OCOCH 2) of each fatty chain, 2.75 (8H, m, C = C-CH 2 -C = Cx4), 3.12 (6H, s , N [CH 3 ] 2 ), 3.54 (2H, m, CH 2 N), 3.86-4. 35 (m, 5H, proton on glycerol skeleton), 4.32 (2H, br, P -O-CH 2), 5.18-5.33 ( m, 10H, olefinic protons).
ESI MS observation m / z = 783.57349, calculated value for [C 44 H 75 D 3 NO 8 P + H] + = 783.57382
(Example 3)
Synthesis of 2-O-docosahexaenoyl-1-O-palmitoyl-glycerophosphocholine D3 DHA-PCd3 was synthesized in the same manner as in Example 1. 0.20 g (28.4%)
1 H NMR (600 MHz; CD 3 OD): δ 0.91 (3 H, t, j = 7.8, terminal CH 3 of palmitoyl group), 0.97 (3 H, t, j = 7.8, docosahexa) Terminal CH 3 of the enoyl group, 1.28 (26 H, m, CH 2 x 13), 1.59 (2 H, m, CH 3 -CH 2 -C = C), 2.19 (2 H, m, COCH) 2 CH 2 ), 2.30-2.42 (4 H, m, OCOCH 2 of each fatty acid chain), 2.8 1-2. 90 (10 H, m, C = C-CH 2 -C = C x 5), 3.30 (6H, s, N [ CH 3] 2), 3.64 (2H, m, CH 2 N), 4.00-4.43 (m, 5H, protons on the glycerol backbone), 4. 27 (2H, br, P- O-CH 2), 5.23-5.40 (m, 10H, olefin-flop Tons).
ESI MS observed m / z = 809.5837, [C 47 H 81 D 3 NO 8 P + H] + Calculated = 809.5883
(Note)
As mentioned above, although the present invention is illustrated using a preferred embodiment of the present invention, it is understood that the present invention should be interpreted the scope only by a claim. Patents, patent applications and documents cited in the present specification should be incorporated by reference to the present specification as the content itself is specifically described in the present specification. Be understood.
 本発明は、リン脂質が関与する疾患に関する研究の試料、診断薬、およびリン脂質を含む食品の品質・劣化の評価のための試薬など、医薬・食品分野において広く利用可能である。 The present invention can be widely used in the pharmaceutical and food fields such as samples for research on diseases involving phospholipids, diagnostic agents, and reagents for evaluating the quality and deterioration of foods containing phospholipids.

Claims (15)

  1.  以下の式I
    Figure JPOXMLDOC01-appb-C000001

    (式中、
    およびRは、それぞれ独立に-Hまたは-C(=O)Rであり、
    Rは、直鎖または分岐状の飽和または不飽和炭化水素基であり、
    ここで、該炭化水素基は8~36個の炭素原子を含み、
    該炭化水素基は0~8個の二重結合を含み、
    該炭化水素基上の炭素のうち少なくとも1つは、=O、-OHおよび-OOHからなる群から選択される置換基で置換されていてもよく、
    該炭化水素基上の隣接する2つの炭素の組のうち少なくとも1つは、Oで置換されることでエポキシ基
    Figure JPOXMLDOC01-appb-C000002

    を形成していてもよく、
    各Rは、それぞれ独立に水素、重水素または三重水素から選択される)
    の構造を有する化合物またはその塩。
    The following formula I
    Figure JPOXMLDOC01-appb-C000001

    (In the formula,
    R 1 and R 2 are each independently —H or —C (= O) R,
    R is a linear or branched saturated or unsaturated hydrocarbon group,
    Wherein the hydrocarbon group contains 8 to 36 carbon atoms,
    The hydrocarbon group contains 0-8 double bonds,
    At least one of carbons on the hydrocarbon group may be substituted with a substituent selected from the group consisting of = O, -OH and -OOH,
    At least one of two adjacent sets of carbons on the hydrocarbon group is substituted with O to be an epoxy group
    Figure JPOXMLDOC01-appb-C000002

    May form a
    Each R A is independently selected from hydrogen, deuterium or tritium)
    Or a salt thereof.
  2.  同じ炭素原子上の全てのRが、水素、重水素または三重水素から選択される同じ水素原子である、請求項1に記載の化合物またはその塩。 The compound or a salt thereof according to claim 1, wherein all R A on the same carbon atom are the same hydrogen atom selected from hydrogen, deuterium or tritium.
  3.  請求項1に記載の化合物またはその塩の製造方法であって、
    工程1)トリジュウテリオメチル基導入試薬
    Figure JPOXMLDOC01-appb-C000003

    を調製する工程、
    工程2)以下の構造
    Figure JPOXMLDOC01-appb-C000004

    から選択される重水素化メチル基を含むコリンを合成する工程、
    工程3)グリセロールの1-ヒドロキシ基および3-ヒドロキシ基を保護する工程、
    工程4)グリセロールの2-ヒドロキシ基を保護する工程、
    工程5)グリセロールの1-ヒドロキシ基および3-ヒドロキシ基を脱保護する工程、
    工程6)グリセロールの1-ヒドロキシ基にR-OHの構造の脂肪酸を導入する工程、工程7)グリセロールの3-ヒドロキシ基にリン酸基および工程2の重水素化メチル基を含むコリンを導入する工程、
    工程8)グリセロールの2-ヒドロキシ基を脱保護する工程、
    工程9)グリセロールの2-ヒドロキシ基にR-OHの構造の脂肪酸を導入する工程
    の工程のうちの少なくとも1つを含み、任意選択でさらに以下の工程
    工程10)工程7で導入された重水素化メチル基を含むコリンをアミノエタノールに変換する工程、および
    工程11)アミノエタノールに重水素化メチル基を導入する工程
    を含む、製造方法。
    A method for producing a compound according to claim 1 or a salt thereof,
    Step 1) Trideuterio methyl group introduction reagent
    Figure JPOXMLDOC01-appb-C000003

    Preparing the
    Process 2) The following structure
    Figure JPOXMLDOC01-appb-C000004

    Synthesizing a choline containing a deuterated methyl group selected from
    Step 3) protecting 1-hydroxy group and 3-hydroxy group of glycerol,
    Step 4) protecting the 2-hydroxy group of glycerol,
    Step 5) Deprotecting 1-hydroxy group and 3-hydroxy group of glycerol,
    Step 6) Step of introducing fatty acid of R 1 -OH structure into 1-hydroxy group of glycerol, step 7) Introduction of choline containing phosphate group and deuterated methyl group of step 2 into 3-hydroxy group of glycerol The process to
    Step 8) Deprotecting 2-hydroxy group of glycerol,
    Step 9) At least one of the steps of the step of introducing the fatty acid of the structure of R 2 -OH into 2-hydroxy group of glycerol, and optionally the weight introduced further in the following step 10) step 7 A production method comprising the steps of: converting choline containing a methylated methyl group into aminoethanol; and introducing a deuterated methyl group into aminoethanol.
  4.  請求項1または2に記載の化合物またはその塩を含む組成物。 A composition comprising the compound according to claim 1 or a salt thereof.
  5.  リン脂質代謝異常の測定のための、請求項4に記載の組成物。 A composition according to claim 4 for the measurement of phospholipid metabolism disorders.
  6.  疾患または状態の診断のための、請求項4に記載の組成物。 A composition according to claim 4 for the diagnosis of a disease or condition.
  7.  前記疾患または状態が、脂質代謝に異常を生じる疾患である、請求項6に記載の組成物。 The composition according to claim 6, wherein the disease or condition is a disease causing an abnormality in lipid metabolism.
  8.  前記疾患または状態が、肥満、高脂血症、インスリン非依存性糖尿病、および、変形性膝関節症からなる群から選択される、請求項6に記載の組成物。 The composition according to claim 6, wherein the disease or condition is selected from the group consisting of obesity, hyperlipidemia, non-insulin dependent diabetes and osteoarthritis of the knee.
  9.  前記疾患または状態が、がん、炎症、動脈硬化、アルツハイマー病、敗血症、および、抗リン脂質抗体症候群からなる群から選択される、請求項6に記載の組成物。 7. The composition of claim 6, wherein the disease or condition is selected from the group consisting of cancer, inflammation, arteriosclerosis, Alzheimer's disease, sepsis, and antiphospholipid antibody syndrome.
  10.  不飽和脂肪酸でパルミトイル化されたパルミトイルグリセロールの製造方法であって、(i)式(A)、式(B)、および、式(C)からなる群から選択される化合物
    Figure JPOXMLDOC01-appb-C000005

    (式中、R~R11は独立に、Hまたは炭素数1~6のアルキル基である)、ならびに、
    (ii)不飽和脂肪酸、
    を基質としたリパーゼ酵素反応を行う工程を包含する、方法。
    A method for producing palmitoyl glycerol palmitoylated with unsaturated fatty acid, which is selected from the group consisting of (i) Formula (A), Formula (B), and Formula (C)
    Figure JPOXMLDOC01-appb-C000005

    (Wherein, R 1 to R 11 are each independently H or an alkyl group having 1 to 6 carbon atoms);
    (Ii) unsaturated fatty acids,
    Performing a lipase-enzyme reaction using a substrate as a substrate.
  11.  請求項10に記載の方法であって、前記不飽和脂肪酸が、8~36個の炭素原子を含み、かつ、1~8個の二重結合を含む、方法。 The method according to claim 10, wherein the unsaturated fatty acid contains 8 to 36 carbon atoms and contains 1 to 8 double bonds.
  12.  請求項10に記載の方法であって、前記不飽和脂肪酸上の炭素のうち少なくとも1つは、=O、-OHおよび-OOHからなる群から選択される置換基で置換されていてもよく、
    該炭化水素基上の隣接する2つの炭素の組のうち少なくとも1つは、Oで置換されることでエポキシ基
    Figure JPOXMLDOC01-appb-C000006

    を形成していてもよい、方法。
    The method according to claim 10, wherein at least one of carbons on the unsaturated fatty acid may be substituted with a substituent selected from the group consisting of = O, -OH and -OOH.
    At least one of two adjacent sets of carbons on the hydrocarbon group is substituted with O to be an epoxy group
    Figure JPOXMLDOC01-appb-C000006

    May form a way.
  13.  請求項10に記載の方法であって、前記リパーゼ酵素反応が-20℃~50℃の温度で0.5時間~24時間行われる、方法。 The method according to claim 10, wherein the lipase enzyme reaction is performed at a temperature of -20 ° C to 50 ° C for 0.5 hour to 24 hours.
  14.  さらにアシル化剤を用いる、請求項10に記載の方法。 The method according to claim 10, further comprising using an acylating agent.
  15.  さらに溶媒を用いる、請求項10に記載の方法。
     
    The method according to claim 10, further using a solvent.
PCT/JP2018/048187 2018-01-04 2018-12-27 Deuterated phospholipid and method for producing same WO2019135386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019563973A JP7279941B2 (en) 2018-01-04 2018-12-27 Deuterated phospholipid and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-000178 2018-01-04
JP2018000178 2018-01-04

Publications (1)

Publication Number Publication Date
WO2019135386A1 true WO2019135386A1 (en) 2019-07-11

Family

ID=67144017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048187 WO2019135386A1 (en) 2018-01-04 2018-12-27 Deuterated phospholipid and method for producing same

Country Status (2)

Country Link
JP (1) JP7279941B2 (en)
WO (1) WO2019135386A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996221A (en) * 2020-08-31 2020-11-27 陕西科技大学 Method for preparing sn2-LPC by enzyme method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129191A (en) * 1984-11-27 1986-06-17 Nippon Oil & Fats Co Ltd Glycerophospholipid containing decosahexaenoic acid
JP2007143479A (en) * 2005-11-28 2007-06-14 Kyushu Univ Method for producing phospholipids containing long-chain highly unsaturated fatty acids using microorganisms of the genus Schizochytrium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3026049C (en) * 2016-06-02 2024-04-09 Metabolon, Inc. Mass spectrometry method for detection and quantitation of metabolites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129191A (en) * 1984-11-27 1986-06-17 Nippon Oil & Fats Co Ltd Glycerophospholipid containing decosahexaenoic acid
JP2007143479A (en) * 2005-11-28 2007-06-14 Kyushu Univ Method for producing phospholipids containing long-chain highly unsaturated fatty acids using microorganisms of the genus Schizochytrium

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ARNOLD, D. ET AL.: "Syntheses of choline phosphatides. III. Synthesis of lysolecithins and their ether analogs", JUSTUS LIEBIGS ANNALEN DER CHEMIE, vol. 709, no. 1, 18 December 1967 (1967-12-18), pages 234 - 239 *
AYANOGLU, E. ET AL.: "Mass spectrometry of phospholipids. Some applications of desorption chemical ionization and fast atom bombardment", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 106, no. 18, 1 September 1984 (1984-09-01), pages 5246 - 51, XP055619648 *
BABA, N. ET AL.: "A regioselective, stereoselective synthesis of a diacylglycerophosphocholine hydroperoxide by use of lipoxygenase and lipase", JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, no. 18, 1990, pages 1281 - 1282, XP055619651 *
BABA, N. ET AL.: "Chemoenzymic synthesis of phospholipid hydroperoxides", SCIENTIFIC REPORTS OF THE FACULTY OF AGRICULTURE- OKAYAMA UNIVERSITY, vol. 99, 2010, pages 71 - 84, XP055619654 *
CABOT, M. C. ET AL.: "Vasopressin, phorbol diesters and serum elicit choline glycerophospholipid hydrolysis and diacylglycerol formation in nontransformed cells: transformed derivatives do not respond", BIOCHIMICA ET BIOPHYSICA ACTA , LIPIDS AND LIPID METABOLISM, vol. 959, no. 1, 1988, pages 46 - 57, XP024553595, doi:10.1016/0005-2760(88)90148-8 *
CHUDINOV, M. V. ET AL.: "Synthesis of phosphatidy lcholines with selective deuterium labels", BIOORGANICHESKAYA KHIMIYA, vol. 19, no. 2, 1993, pages 250 - 61, XP055619656 *
LIN, S. ET AL.: "Syntheses of 1,2-di-O-palmitoyl- sn-glycero-3-phosphocholine (DPPC) and analogs with 13C- and 2H-labeled choline head groups", CHEMISTRY AND PHYSICS OF LIPIDS, vol. 86, no. 2, 1997, pages 171 - 181, XP055016886, doi:10.1016/S0009-3084(97)02672-8 *
YAMANAKA, T. ET AL.: "Surface chemical properties of homologs and analogs of lysophosphatidylcholine and lysophosphatidylethanolamine in water", CHEMISTRY AND PHYSICS OF LIPIDS, vol. 90, no. 1 , 2, November 1997 (1997-11-01), pages 97 - 107, XP055619657 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996221A (en) * 2020-08-31 2020-11-27 陕西科技大学 Method for preparing sn2-LPC by enzyme method
CN111996221B (en) * 2020-08-31 2022-03-29 陕西科技大学 Method for preparing sn2-LPC by enzyme method

Also Published As

Publication number Publication date
JP7279941B2 (en) 2023-05-23
JPWO2019135386A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
Sidhu et al. N-acyl-O-phosphocholineserines: Structures of a novel class of lipids that are biomarkers for Niemann-Pick C1 disease
Cuyamendous et al. The novelty of phytofurans, isofurans, dihomo-isofurans and neurofurans: Discovery, synthesis and potential application
Harrison et al. Analysis of oxidized glycerophosphocholine lipids using electrospray ionization mass spectrometry and microderivatization techniques
Song et al. Phospholipase D (PLD) catalyzed synthesis of phosphatidyl-glucose in biphasic reaction system
Haas et al. The mode of action of phospholipase A on synthetic “mixed-acid” L-α-phosphatidyl ethanolamines
JP2022118008A (en) Novel phospholipid and use thereof, and development of phospholipid separation measurement method
JP7279941B2 (en) Deuterated phospholipid and method for producing same
Orr et al. Synthesis of the diastereoisomers of 1, 2-dipalmitoyl-sn-glycero-3-thiophosphorylethanolamine and their stereospecific hydrolysis by phospholipases A2 and C
Furse et al. Synthesis of unsaturated phosphatidylinositol 4-phosphates and the effects of substrate unsaturation on Sop B phosphatase activity
Shibuya et al. Synthesis of 24 (S)-hydroxycholesterol esters responsible for the induction of neuronal cell death
Rosseto et al. Synthesis of phospholipids on a glyceric acid scaffold: design and preparation of phospholipase A2 specific substrates
Rosseto et al. Synthesis of phosphatidylcholine analogues derived from glyceric acid: a new class of biologically active phospholipid compounds
Wang et al. Synthesis of mixed-chain phosphatidylcholines including coumarin fluorophores for FRET-based kinetic studies of phospholipase A2 enzymes
Van et al. Synthesis and identification of AceDoxyPC, a protectin-containing structured phospholipid, using liquid chromatography/mass spectrometry
Bogojevic et al. Enzyme-assisted synthesis of high-purity, chain-deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
Pencreac'h et al. DHA-lysophospholipid Production
Gompertz Phospholipids and their metabolism
Kaki et al. Lipase-catalyzed synthesis and characterization of 1-butanoyl-2-palmitoyl phosphatidylcholine, a potential lipidic prodrug of butyric acid
Jones et al. A re-investigation of the mycolic acids of Mycobacterium avium
Koeppen et al. Fatty acid chain elongation in rat brain synaptosomes
Snyder Synthesis of a thiophosphate analog of dioctanoylphosphatidylcholine: a phospholipase C substrate
Huang et al. Incorporation of a fluorous diazirine group into phosphatidylinositol 4, 5-bisphosphate to illustrate its interaction with ADP-ribosylation factor 1
Lacey et al. Phospholipid synthesis based on new sequential phosphate and carboxylate ester bond formation steps
JP2009149582A (en) Novel compound effective for measuring lysophospholipase D activity and method for measuring the same
Lo Van et al. Synthesis and identification of AceDoxyPC, a protectin-containing structured phospholipid, using liquid chromatography/mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898191

Country of ref document: EP

Kind code of ref document: A1