[go: up one dir, main page]

WO2019131097A1 - Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device - Google Patents

Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device Download PDF

Info

Publication number
WO2019131097A1
WO2019131097A1 PCT/JP2018/045350 JP2018045350W WO2019131097A1 WO 2019131097 A1 WO2019131097 A1 WO 2019131097A1 JP 2018045350 W JP2018045350 W JP 2018045350W WO 2019131097 A1 WO2019131097 A1 WO 2019131097A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
particles
resin composition
volume
mass
Prior art date
Application number
PCT/JP2018/045350
Other languages
French (fr)
Japanese (ja)
Inventor
格 山浦
実佳 田中
東哲 姜
健太 石橋
拓也 児玉
慧地 堀
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020207021189A priority Critical patent/KR20200094792A/en
Priority to JP2019562938A priority patent/JP7276151B2/en
Priority to CN201880084018.0A priority patent/CN111527144A/en
Publication of WO2019131097A1 publication Critical patent/WO2019131097A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates

Definitions

  • the present disclosure relates to an epoxy resin composition for sealing a ball grid array package, an epoxy resin cured product, and an electronic component device.
  • semiconductor packages in place of the conventional pin insertion type, are mainly of the surface mounting type suitable for high density mounting.
  • the surface mount semiconductor package is mounted by direct soldering to a printed circuit board or the like.
  • As a general mounting method there is a method of heating and mounting the whole semiconductor package by an infrared ray reflow method, a vapor phase reflow method, a solder dip method or the like.
  • BGA ball grid array
  • the BGA package is a single-sided resin-sealed package in which the semiconductor element mounting surface of the substrate is sealed with a resin composition.
  • a resin composition for sealing an epoxy resin composition is widely used from the viewpoint of the balance of various properties such as moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, adhesion to an insert, etc. There is.
  • Patent 4188634 gazette
  • Patent Document 1 a small amount of fine particle silica is mixed with an alumina filler, and a specific biphenyl-type epoxy resin having a relatively low viscosity is used to achieve high filling of the filler.
  • the method of Patent Document 1 has a problem in achieving both thermal conductivity and fluidity.
  • the present disclosure provides an epoxy resin composition for sealing a BGA package which is excellent in fluidity and excellent in thermal conductivity when cured, an epoxy resin cured product obtained by curing the epoxy resin composition, and the epoxy resin cured. It is an object of the present invention to provide an electronic component device including an element sealed by an object.
  • Means for solving the above problems include the following embodiments.
  • An epoxy resin containing a bisphenol F type epoxy resin, a curing agent, alumina particles, or silica particles are not contained, or alumina particles are further contained, and the silica particles are 0 mass to the total amount of alumina particles and silica particles
  • An epoxy resin composition for sealing a ball grid array package comprising: an inorganic filler containing more than 15% by mass and a plasticizer; and the content of the inorganic filler is 75% by volume to 84% by volume.
  • the inorganic filler contains alumina particles, does not contain silica particles, or contains alumina particles and further contains silica particles in an amount of more than 0% by mass and 10% by mass or less based on the total amount of alumina particles and silica particles ⁇
  • ⁇ 5> The epoxy resin for sealing a ball grid array package according to any one of ⁇ 1> to ⁇ 4>, wherein the curing agent contains a phenol resin having three or more phenolic hydroxyl groups in one molecule. Composition.
  • ⁇ 6> The epoxy resin composition for sealing a ball grid array package according to any one of ⁇ 1> to ⁇ 5>, wherein the curing agent contains a triphenylmethane type phenol resin.
  • ⁇ 7> The epoxy resin composition for sealing a ball grid array package according to any one of ⁇ 1> to ⁇ 6>, wherein the porosity of the inorganic filler is 18 volume% or less.
  • the ratio of particles having a particle diameter of 1 ⁇ m or less is 9 volume% or more, and the ratio of particles having a particle diameter of more than 1 ⁇ m to 10 ⁇ m is 45 volume% or less Any one of ⁇ 1> to ⁇ 7>, wherein the proportion of particles having a particle size of more than 10 ⁇ m and 30 ⁇ m or less is 20% by volume or more and the proportion of particles having a particle size of more than 30 ⁇ m is 18% by volume or more
  • the epoxy resin composition for ball grid array package sealing as described in a term.
  • the proportion of particles having a particle size of 1 ⁇ m or less is 11 vol% or more, and the proportion of particles having a particle size of more than 1 ⁇ m and 10 ⁇ m or less is 40 vol% or less Yes, the percentage of particles having a particle size of more than 10 ⁇ m and 30 ⁇ m or less is 22 vol% or more, and the percentage of particles having a particle size of more than 30 ⁇ m is 20 vol% or more.
  • Epoxy resin composition. ⁇ 10> A cured epoxy resin product obtained by curing the epoxy resin composition for sealing a ball grid array package according to any one of ⁇ 1> to ⁇ 9>.
  • the electronic component apparatus which has ⁇ 11> element and the epoxy resin hardened material as described in ⁇ 10> which has sealed the said element, and has a form of a ball grid array package.
  • an epoxy resin composition for sealing a BGA package which is excellent in fluidity and excellent in thermal conductivity when cured, an epoxy resin cured product obtained by curing the epoxy resin composition, and the epoxy resin cured
  • An electronic component device comprising an element sealed by an object is provided.
  • the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps.
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • Epoxy resin composition for sealing BGA package contains an epoxy resin containing a bisphenol F-type epoxy resin, a curing agent, and alumina particles and does not contain silica particles And an inorganic filler containing alumina particles and further containing 0% by mass or more and 15% by mass or less of silica particles based on the total amount of the alumina particles and the silica particles, and a plasticizer, and the content of the inorganic filler is It is 75% by volume to 84% by volume.
  • the epoxy resin composition of the present disclosure is excellent in fluidity and excellent in thermal conductivity when cured. Although the reason is not clear, it can be considered as follows. Generally, high thermal conductivity can be obtained by increasing the loading of alumina particles in the epoxy resin composition. However, with the high packing of alumina particles, the flowability of the composition decreases, which causes wire flow and the like. On the other hand, it is considered that the epoxy resin composition of the present disclosure can easily maintain fluidity by containing a bisphenol F-type epoxy resin and a plasticizer, even when containing a high proportion of alumina particles in the composition. . Furthermore, it is considered that this makes it possible to further improve the thermal conductivity when hardened by making the inorganic filler more highly filled.
  • the epoxy resin composition of the present disclosure is used to seal a BGA package.
  • the BGA package refers to a semiconductor package in which a plurality of metal bumps are arranged in a lattice on the substrate of the package.
  • the BGA package is manufactured by mounting an element on the front surface of a substrate having a metal bump formed on the back surface, connecting the element and a wiring formed on the substrate by bump or wire bonding, and sealing the element.
  • a CSP Chip Size Package
  • a CSP Chip Size Package
  • the outer diameter size is reduced to the same size as the element size is also a form of the BGA package.
  • the epoxy resin composition of the present disclosure contains an epoxy resin containing a bisphenol F-type epoxy resin.
  • the epoxy resin composition may contain an epoxy resin other than bisphenol F-type epoxy resin.
  • a bisphenol F-type epoxy resin refers to a diglycidyl ether of substituted or unsubstituted bisphenol F.
  • the bisphenol F-type epoxy resin may be used singly or in combination of two or more.
  • R1 to R8 each represent a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • n is an average value and represents a number of 0 to 10.
  • the bisphenol F-type epoxy resin represented by the above general formula (I) can be obtained by reacting a bisphenol F compound with epichlorohydrin by a known method.
  • an alkyl group having 1 to 18 carbon atoms such as hydrogen atom, methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, t-butyl group, etc., vinyl Groups, alkenyl groups having 1 to 18 carbon atoms such as allyl group and butenyl group, and aryl groups, and the like, and hydrogen atom or methyl group is preferable.
  • n is an average value, represents a number of 0 to 10, and is preferably a number of 0 to 4.
  • n 10 or less, the melt viscosity of the resin component does not become too high, the viscosity at the time of melt molding of the epoxy resin composition decreases, filling failure, deformation of bonding wire (gold wire connecting element and lead), etc. The tendency is to suppress the occurrence of
  • a bisphenol F-type epoxy resin for example, an epoxy resin having a diglycidyl ether of 4,4′-methylenebis (2,6-dimethylphenol) as a main component, 4,4′-methylenebis (2,3,6-trimethyl
  • the epoxy resin which has diglycidyl ether of phenol) as a main component, the epoxy resin which has diglycidyl ether of 4,4'- methylene bisphenol as a main component, etc. are mentioned. Among them, epoxy resins based on diglycidyl ether of 4,4'-methylenebis (2,6-dimethylphenol) are preferred.
  • YSLV-80XY Nippon Sumikin Sumikin Chemical Co., Ltd. brand name
  • the content of the bisphenol F-type epoxy resin is not particularly limited, and is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 25% by mass or more in the total amount of the epoxy resin.
  • the content of the bisphenol F-type epoxy resin may be 100% by mass or less, 75% by mass or less, or 50% by mass or less.
  • the epoxy equivalent of the bisphenol F-type epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, the epoxy equivalent of the bisphenol F-type epoxy resin is preferably 100 g / eq to 1000 g / eq, and 150 g / eq to 500 g / eq. It is more preferable that it is eq. Let the epoxy equivalent of an epoxy resin be a value measured by the method according to JISK7236: 2009. The same applies to the following.
  • the bisphenol F-type epoxy resin When the bisphenol F-type epoxy resin is solid, its softening point or melting point is not particularly limited.
  • the softening point or melting point of the bisphenol F-type epoxy resin is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and 50 ° C. from the viewpoint of handleability in preparation of the epoxy resin composition. It is more preferable that the temperature is ⁇ 130 ° C.
  • the melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234: 1986. The same applies to the following.
  • the epoxy resin composition may contain a biphenyl type epoxy resin in addition to the bisphenol F type epoxy resin.
  • the biphenyl type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton.
  • the epoxy resin etc. which are shown by following General formula (II) are mentioned.
  • R1 to R8 each represent a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • n is an average value and represents a number of 0 to 10.
  • the biphenyl type epoxy resin represented by the above general formula (II) can be obtained by reacting a biphenol compound with epichlorohydrin by a known method.
  • an alkyl group having 1 to 18 carbon atoms such as hydrogen atom, methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group or t-butyl group, vinyl Groups, alkenyl groups having 1 to 18 carbon atoms such as allyl group and butenyl group, and aryl groups, and the like, and hydrogen atom or methyl group is preferable.
  • n is an average value, represents a number of 0 to 10, and preferably a number of 0 to 4.
  • biphenyl type epoxy resin for example, 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′- It is obtained by reacting an epoxy resin containing tetramethylbiphenyl as a main component, epichlorohydrin with 4,4'-biphenol or 4,4 '-(3,3', 5,5'-tetramethyl) biphenol. An epoxy resin etc. are mentioned. Among them, epoxy resins containing 4,4'-bis (2,3-epoxypropoxy) -3,3 ', 5,5'-tetramethylbiphenyl as a main component are preferable.
  • the biphenyl type epoxy resin commercially available products such as YX-4000 (Mitsubishi Chemical Co., Ltd., trade name), YL-6121H (Mitsubishi Chemical Co., Ltd., trade name), and the like are available.
  • the content of the biphenyl type epoxy resin is not particularly limited, and is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total amount of the epoxy resin. It is further preferable that the content is at least% by mass.
  • the content of the biphenyl type epoxy resin may be less than 100% by mass, may be 90% by mass or less, may be 80% by mass or less, and may be 10% by mass or less.
  • the epoxy equivalent of the biphenyl type epoxy resin is not particularly limited.
  • the epoxy equivalent of the biphenyl type epoxy resin is preferably 100 g / eq to 1000 g / eq, and preferably 150 g / eq to 500 g / eq, from the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability. It is more preferable that
  • the softening point or melting point of the epoxy resin is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and 50 ° C. to 130 ° C. from the viewpoint of handleability in preparation of the epoxy resin composition. It is more preferable that
  • the epoxy resin composition may contain an epoxy resin other than bisphenol F-type epoxy resin and biphenyl type epoxy resin (also referred to as "other epoxy resin”).
  • the “other epoxy resin” is not particularly limited, and is preferably an epoxy resin having two or more epoxy groups in one molecule.
  • an epoxy resin having two or more epoxy groups in one molecule stilbene type epoxy resin, sulfur atom containing epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, salicylaldehyde type epoxy resin, naphthols and phenol And epoxy resins of the copolymerization type, aralkyl type epoxy resins, diphenylmethane type epoxy resins (excluding bisphenol F type epoxy resins), and triphenylmethane type epoxy resins.
  • the “other epoxy resins” may be used alone or in combination of two or more.
  • the content of the “other epoxy resin” is not particularly limited, and is preferably 30% by mass or less, more preferably 20% by mass or less, and 10% by mass or less based on the total amount of the epoxy resin. More preferably, it is particularly preferably 5% by mass or less.
  • the epoxy equivalent of "other epoxy resin” is not particularly limited. From the viewpoint of balance of various properties such as moldability, reflow resistance and electrical reliability, the epoxy equivalent of “other epoxy resin” is preferably 100 g / eq to 1000 g / eq, 150 g / eq to 500 g More preferably, it is / eq.
  • the “other epoxy resin” When the “other epoxy resin” is solid, its softening point or melting point is not particularly limited.
  • the softening point or melting point of the “other epoxy resin” is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and it is 50 from the viewpoint of handleability in preparation of the epoxy resin composition. It is more preferable that the temperature be in the range of ° C to 130 ° C.
  • the total content of the epoxy resin in the epoxy resin composition is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass, in view of strength, fluidity, heat resistance, moldability, etc. It is more preferable that
  • the epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule, and may contain an epoxy resin (also referred to as a multifunctional epoxy resin) having three or more epoxy groups in one molecule. .
  • the content of the polyfunctional epoxy resin relative to the total mass of the epoxy resin is 10 mass from the viewpoint of controlling the warp of the package during mounting. % Or less is preferable, 5% by mass or less is more preferable, 1% by mass or less is still more preferable, and substantially 0% by mass is particularly preferable.
  • the “substantially 0 mass%” content refers to the content of the polyfunctional epoxy resin to such an extent that the influence on the warp of the package at the time of mounting is not observed.
  • the epoxy resin composition of the present disclosure contains a curing agent.
  • the curing agent is not particularly limited as long as it can react with the epoxy resin.
  • the curing agent is preferably a compound having two or more phenolic hydroxyl groups in one molecule (hereinafter also referred to as a phenol curing agent).
  • the phenol curing agent may be a low molecular weight phenolic compound or a phenolic resin obtained by polymerizing a low molecular weight phenolic compound.
  • the phenol curing agent is preferably a phenol resin.
  • the curing agent may be used alone or in combination of two or more.
  • the phenol curing agent preferably contains a phenol resin having two or more phenolic hydroxyl groups in one molecule, and a phenol resin (also referred to as a polyfunctional phenol resin) having three or more phenolic hydroxyl groups in one molecule. It is more preferable to include.
  • the phenol resin is not particularly limited, and is not particularly limited, and biphenylene type phenol resin, aralkyl type phenol resin, dicyclopentadiene type phenol resin, copolymer resin of benzaldehyde type phenol resin and aralkyl type phenol resin, paraxylene modified phenol resin, triphenyl Methane type phenol resin etc. are mentioned. Among them, triphenylmethane-type phenol resin is preferable from the viewpoint of moldability. From the viewpoint of fluidity, para-xylene modified phenolic resin is preferred.
  • the paraxylene-modified phenolic resin is not particularly limited as long as it is a phenolic resin obtained using a compound having a paraxylene skeleton as a raw material.
  • phenol resins represented by the following general formula (XV), XL-225 (Mitsui Chemical Co., Ltd., trade name), XLC (Mitsui Chemical Co., Ltd., trade name), MEH-7800 (Meiwa Kasei Co., Ltd., trade name) Etc. are commercially available.
  • R 30 represents a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. Each i independently represents an integer of 0 to 3. n is an average value and is a number of 0 to 10. In the formula (XV), hydrogen atoms present on the aromatic ring are not shown.
  • the triphenylmethane-type phenol resin is not particularly limited as long as it is a phenol resin obtained using a compound having a triphenylmethane skeleton as a raw material.
  • a phenol resin represented by the following general formula (XVI) is preferable.
  • phenol resins represented by the following general formula (XVI), MEH-7500 (Meiwa Kasei Co., Ltd., trade name) or the like in which i is 0 and k is 0 is commercially available.
  • the hydroxyl equivalent of the curing agent is not particularly limited, and is preferably 500 g / eq or less, more preferably 400 g / eq or less, and still more preferably 300 g / eq or less.
  • the lower limit of the hydroxyl equivalent of the curing agent is preferably 50 g / eq or more, more preferably 60 g / eq or more, and still more preferably 70 g / eq or more.
  • the range of the hydroxyl equivalent of the curing agent is preferably 50 g / eq to 500 g / eq, more preferably 50 g / eq to 400 g / eq, and still more preferably 50 g / eq to 300 g / eq.
  • the curing agent preferably contains a phenol curing agent having a hydroxyl equivalent of 150 g / eq or less (hereinafter, also referred to as “specific phenol curing agent”).
  • specific phenol curing agent a phenol curing agent having a hydroxyl equivalent of 150 g / eq or less
  • the curing agent contains a specific phenol curing agent
  • the reduction in formability tends to be suppressed even in the case of containing an inorganic filler containing alumina particles. This is considered to be due to the increase in the crosslink density upon curing and the improvement of the curability.
  • the curing agent contains a specific phenol curing agent, the thermal conductivity of the cured product tends to be further improved.
  • the hydroxyl equivalent of the specific phenol curing agent is preferably 50 g / eq to 150 g / eq, more preferably 50 g / eq to 120 g / eq, still more preferably 60 g / eq to 110 eq, and 70 g / eq. Particularly preferred is eq ⁇ 110 g / eq.
  • the hydroxyl equivalent of the phenol curing agent is a value measured by a method according to JIS K 0070: 1992.
  • the phenol curing agent When the phenol curing agent is solid, its melting point or softening point is not particularly limited.
  • the melting point or softening point of the phenol curing agent is preferably 50 ° C. to 250 ° C., more preferably 65 ° C. to 200 ° C., and still more preferably 80 ° C. to 170 ° C.
  • the melting point or softening point of the phenol curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
  • the content ratio of the epoxy resin to the curing agent is the ratio of the number of equivalents of the functional group of the curing agent to the number of equivalents of the epoxy group of the epoxy resin (the number of equivalents of the functional group of the curing agent / the equivalent of the epoxy group Is preferably set to be in the range of 0.5 to 2.0, more preferably set to be 0.7 to 1.5, and more preferably 0.8 to 1.3. It is further preferable to set to be When the ratio is 0.5 or more, curing of the epoxy resin is sufficient, and the heat resistance, moisture resistance, and electrical characteristics of the cured product tend to be excellent. In addition, when the ratio is 2.0 or less, the amount of the functional group of the curing agent remaining in the cured resin is suppressed, and the electrical characteristics and the moisture resistance tend to be excellent.
  • the epoxy resin composition of the present disclosure contains alumina particles, does not contain silica particles, or contains alumina particles and further contains silica particles in an amount of more than 0% by mass and 15% by mass or less based on the total amount of alumina particles and silica particles. Contains wood.
  • the content of the inorganic filler is 75% by volume to 84% by volume based on the total volume of the composition.
  • the inorganic filler may contain an inorganic filler other than alumina particles and silica particles, may contain only alumina particles and silica particles, or may contain only alumina particles. Spherical silica, crystalline silica, etc. are mentioned as a silica particle.
  • the particle size distribution of the inorganic filler preferably has a maximum value in the range of 0.1 ⁇ m to 80 ⁇ m.
  • the average particle diameter of the alumina particles is, for example, preferably 0.1 ⁇ m to 80 ⁇ m, and more preferably 0.3 ⁇ m to 50 ⁇ m.
  • the average particle size of the alumina particles is 0.1 ⁇ m or more, the increase in viscosity of the epoxy resin composition tends to be easily suppressed.
  • the average particle size of the alumina particles is 80 ⁇ m or less, the mixing property of the epoxy resin composition and the alumina particles is improved, and the state of the package obtained by curing tends to be more homogeneous to suppress the dispersion of characteristics. Furthermore, the filling property in a narrow area tends to be improved.
  • the average particle diameter of the alumina particles is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 2 ⁇ m to 30 ⁇ m.
  • the heat conductivity tends to be excellent. It is considered that this is because a heat conduction path is easily formed.
  • the average particle diameter of the silica particles is, for example, preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.3 ⁇ m to 30 ⁇ m, and more preferably 0.5 ⁇ m to 20 ⁇ m. It is further preferred that Among them, when the average particle diameter of the silica particles is 10 ⁇ m or more, the warp of the package when cured tends to be suppressed. When the average particle size of the silica particles is 50 ⁇ m or less, the flowability tends to be improved.
  • the average particle size of the inorganic filler is measured using a dry particle size distribution analyzer, or using a wet particle size distribution measuring apparatus in the state of a slurry in which the inorganic filler is dispersed in water or an organic solvent. It can measure. In particular, when particles of 1 ⁇ m or less are contained, measurement is preferably performed using a wet particle size distribution analyzer. Specifically, a water slurry in which the concentration of the inorganic filler is adjusted to about 0.01% by mass is treated with a bath type ultrasonic cleaner for 5 minutes, and a laser diffraction type particle size measuring apparatus (LA-960, HORIBA, Ltd. It can be determined from the average value of all particles detected using In the present disclosure, the average particle size refers to the particle size (D50) at which the accumulation from the small diameter side is 50% in the volume-based particle size distribution.
  • alumina particles having an average particle diameter of 1 ⁇ m or more and alumina particles having an average particle diameter of less than 1 ⁇ m in combination it is preferable to use alumina particles having an average particle diameter of 1 ⁇ m to 50 ⁇ m in combination with alumina particles having an average particle diameter of 0.1 ⁇ m to less than 1 ⁇ m, and alumina particles having an average particle diameter of 5 ⁇ m to 50 ⁇ m and an average particle diameter of 0.
  • alumina particles of 1 ⁇ m or more and less than 1 ⁇ m More preferably, it is used in combination with alumina particles of 1 ⁇ m or more and less than 1 ⁇ m, and it is more preferable to use alumina particles with an average particle diameter of 5 ⁇ m to 30 ⁇ m and alumina particles with an average particle diameter of 0.3 ⁇ m or more and less than 1 ⁇ m. preferable.
  • the inorganic filler further contains a silica particle, it is preferable to use a combination of silica particles having an average particle diameter of 1 ⁇ m or less from the viewpoint of fluidity.
  • silica particles having an average particle diameter of 0.1 ⁇ m to 1 ⁇ m more preferably a combination of silica particles having an average particle diameter of 0.2 ⁇ m to 1 ⁇ m, and an average particle diameter of 0.3 ⁇ m It is more preferable to use silica particles of 1 to 1 ⁇ m in combination.
  • the inclusion of the inorganic filler in which the epoxy resin composition is combined as described above can be confirmed, for example, by determining the volume-based particle size distribution (frequency distribution) of the inorganic filler.
  • the mixing ratio when alumina particles having an average particle size of 1 ⁇ m or more and alumina particles having an average particle size of less than 1 ⁇ m are used in combination.
  • the proportion of alumina particles having an average particle diameter of 1 ⁇ m or less is preferably 5 to 20% by mass with respect to the total amount of alumina particles, and is preferably 10 to 15% by mass. It is more preferable to do.
  • the particle shape of the inorganic filler is preferably spherical, and the particle size distribution of the inorganic filler is preferably widely distributed.
  • 70% by mass or more of the inorganic filler be spherical particles, and the particle diameter of the spherical particles be distributed in a wide range of 0.1 ⁇ m to 80 ⁇ m.
  • Such an inorganic filler easily forms a close-packed structure by mixing particles having different sizes, and therefore, even if the content of the inorganic filler is increased, the increase in viscosity of the epoxy resin composition is suppressed. It tends to be able to obtain the epoxy resin composition which is excellent in fluidity.
  • the content of the inorganic filler is 75% by volume to 84% by volume with respect to the total volume of the composition, and 76% by volume to 84% by volume from the viewpoint of the balance of characteristics such as thermal conductivity and flowability. Is preferable, and 77% by volume to 83% by volume is more preferable.
  • the content of the inorganic filler is preferably 90% by mass to 96% by mass, based on the total mass of the composition, from 91% by mass to the total mass of the composition, from the viewpoint of property balance such as thermal conductivity and fluidity. It is more preferably 95% by mass, and still more preferably 92% by mass to 94% by mass.
  • the inorganic filler contains alumina particles and does not contain silica particles, or contains alumina particles and further contains silica particles in an amount of more than 0% by mass and 15% by mass or less based on the total amount of alumina particles and silica particles. From the viewpoint of thermal conductivity and flowability, the inorganic filler contains alumina particles or contains no silica particles, or contains alumina particles, and further contains silica particles in an amount of more than 0% by mass to 10% by mass relative to the total amount of alumina particles and silica particles. It is preferable to contain% or less.
  • the inorganic filler may contain alumina particles and no silica particles, or may contain alumina particles and further contain silica particles in an amount of more than 0% by mass and 5% by mass or less based on the total amount of alumina particles and silica particles.
  • the inorganic filler may contain alumina particles and further contain 5 to 10% by mass of silica particles based on the total amount of the alumina particles and the silica particles.
  • the use of silica particles in combination with alumina particles tends to improve the flowability. Although the reason for this is not clear, it is presumed that the contact area between the alumina particles is reduced and the friction between the alumina particles is reduced.
  • the inorganic filler other than the alumina particles and the silica particles is not particularly limited, and glass, calcium carbonate, zirconium silicate, magnesium oxide, calcium silicate, silicon nitride, aluminum nitride, boron nitride, silicon carbide, industrial diamond, Particles of inorganic substances such as beryllia, zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc, clay and mica, beads obtained by spheroidizing these particles, and the like can be mentioned.
  • inorganic fillers having a flame retardant effect may be used.
  • Examples of the inorganic filler having a flame retardant effect include particles of a composite metal hydroxide such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like.
  • the inorganic particles other than the alumina particles and the silica particles may be used alone or in combination of two or more.
  • the content of the inorganic filler other than the alumina particles and the silica particles is preferably 20% by volume or less, more preferably 10% by volume or less, and 5% by volume or less based on the total volume of the inorganic filler. Is more preferable, and 2% by volume or less is particularly preferable.
  • the porosity of the inorganic filler is not particularly limited, and is preferably 18% by volume or less, more preferably 16% by volume or less, still more preferably 15% by volume or less, and 14% by volume or less Is particularly preferred.
  • the porosity of the inorganic filler may be 7% by volume or more.
  • the porosity of the inorganic filler means the porosity of one type of inorganic filler, and in the case of two or more types of inorganic fillers, the porosity of the inorganic filler Means a porosity for a mixture of two or more inorganic fillers.
  • the porosity of an inorganic filler says the value measured by the following method.
  • the epoxy resin composition is placed in a crucible and left at 800 ° C. for 4 hours to incinerate.
  • the particle size distribution of the obtained ash content is measured by applying the refractive index of alumina using a laser diffraction type particle size distribution analyzer (for example, LA 920 manufactured by Horiba, Ltd.).
  • the void ratio ⁇ is calculated from the particle size distribution using the following equation of Ouchiyama.
  • the details of Ouchiyama's formula are described in the following documents. N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 19, 338 (1980) N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 20, 66 (1981) N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 23, 490 (1984)
  • the composition tends to be excellent in curability, flowability and moldability, and excellent in thermal conductivity when it is a cured product.
  • the ratio of particles having a particle diameter of 1 ⁇ m or less is 11 volume% or more, and the ratio of particles having a particle size of more than 1 ⁇ m to 10 ⁇ m is 40 volume% or less.
  • the proportion of particles having a diameter of more than 10 ⁇ m and 30 ⁇ m or less is preferably 22% by volume or more, and the proportion of particles having a particle size of more than 30 ⁇ m is more preferably 20% by volume or more.
  • the ratio of particles having a particle diameter of 1 ⁇ m or less is 12 volume% or more, and the ratio of particles having a particle size of more than 1 ⁇ m to 10 ⁇ m is 30 volume% or less It is more preferable that the proportion of particles having a diameter of more than 10 ⁇ m and 30 ⁇ m or less is 24% by volume or more, and the proportion of particles having a particle size of more than 30 ⁇ m is 30% by volume or more.
  • the volume-based particle size distribution of the inorganic filler can be measured by the following method.
  • the inorganic filler to be measured is added to the solvent (pure water) in the range of 1% by mass to 5% by mass together with 1% by mass to 8% by mass of the surfactant, and 30 seconds to 5 seconds by a 110 W ultrasonic cleaner. Vibrate for a minute to disperse the inorganic filler. About 3 mL of the dispersion is injected into the measuring cell and measured at 25 ° C.
  • the measuring apparatus measures the particle size distribution based on volume using a laser diffraction type particle size distribution analyzer (for example, LA920, manufactured by Horiba, Ltd.).
  • the method for adjusting the particle size distribution of the inorganic filler is not particularly limited.
  • a small particle size inorganic filler having an average particle size of about 0.5 ⁇ m a medium particle size inorganic filler having an average particle size of about 2 ⁇ m, and a large particle size inorganic filler having an average particle size of about 45 ⁇ m
  • the inorganic filler which exhibits the volume-based particle size distribution exemplified above is not particularly limited.
  • a small particle size inorganic filler having an average particle size of about 0.5 ⁇ m a medium particle size inorganic filler having an average particle size of about 2 ⁇ m, and a large particle size inorganic filler having an average particle size of about 45 ⁇ m
  • the inorganic filler which exhibits the volume-based particle size distribution exemplified above.
  • the content of the plasticizer is preferably 0.001% by mass to 30% by mass, more preferably 5% by mass to 20% by mass, and 5% by mass to 15% by mass with respect to the epoxy resin. Is more preferred.
  • the plasticizer may be used alone or in combination of two or more.
  • the epoxy resin composition of the present disclosure may optionally contain a curing accelerator.
  • a hardening accelerator what is generally used for the epoxy resin composition for sealing can be selected suitably, and can be used.
  • the curing accelerator include organic phosphorus compounds, imidazole compounds, tertiary amines, and quaternary ammonium salts. Among them, organic phosphorus compounds are preferable.
  • the curing accelerator may be used alone or in combination of two or more.
  • Organic phosphorus compounds such as organic phosphines such as tributyl phosphine, phenyl phosphine, diphenyl phosphine, triphenyl phosphine, methyl diphenyl phosphine, triparatolyl phosphine and the like, and phosphines such as maleic anhydride, benzoquinone, diazophenyl methane and the like ⁇ Phosphorus compounds having an intramolecular polarization formed by adding a compound having a bond (for example, an adduct of triphenylphosphine and benzoquinone, and an adduct of triparatolylphosphine and benzoquinone); tetraphenylphosphonium tetraphenylborate, triphenylphosphinetetra Examples include phenyl borate, 2-ethyl-4-methylimidazole tetraphenyl borate, triphenyl
  • an organophosphorus compound When used as a curing accelerator, high reliability tends to be obtained in an electronic component device sealed using an epoxy resin composition. Although the reason for this is not clear, it can be considered as follows. In general, when the epoxy resin composition contains alumina particles, the curability is reduced, and therefore, the amount of the curing accelerator tends to be increased. However, when the amount of the curing accelerator is increased, the amount of chlorine ions generated by the reaction between the chlorine derived from epichlorohydrin, which is a raw material of the epoxy resin, and the curing accelerator increases, which reduces the reliability of the electronic component device. There is a case.
  • the content of the curing accelerator is not particularly limited, and for example, it is 1.0% by mass to 10% by mass with respect to the total amount of the epoxy resin and the curing agent
  • the content is preferably 1.5% by mass to 7% by mass, and more preferably 1.8% by mass to 6% by mass.
  • the epoxy resin composition of the present disclosure may contain an organic solvent.
  • the organic solvent is not particularly limited, and may contain, for example, an organic solvent having a boiling point of 50 ° C. to 100 ° C. (hereinafter also referred to as a specific organic solvent).
  • the specific organic solvent is not particularly limited, and, for example, one having a boiling point of 50 ° C. to 100 ° C., preferably one that is nonreactive with the components in the epoxy resin composition can be appropriately selected and used.
  • the specific organic solvent include alcohol solvents, ether solvents, ketone solvents, ester solvents and the like. Among them, alcohol solvents are preferable, and methanol (boiling point 64.7 ° C.), ethanol (boiling point 78.37 ° C.), propanol (boiling point 97 ° C.) and isopropanol (boiling point 82.6 ° C.) are more preferable.
  • the specific organic solvents may be used alone or in combination of two or more.
  • the boiling point of the specific organic solvent refers to the boiling point of the specific organic solvent measured at normal pressure.
  • the content of the specific organic solvent in the epoxy resin composition is not particularly limited.
  • the content of the specific organic solvent is, for example, preferably 0.1% by mass to 10% by mass with respect to the total mass of the epoxy resin composition, and from the viewpoint of further improving the thermal conductivity, 0.3% by mass It is more preferably ⁇ 4.0% by mass, still more preferably 0.3% by mass to 3.0% by mass, and particularly preferably 0.3% by mass to 2.5% by mass.
  • the content of the specific organic solvent is 0.3% by mass or more, the effect of improving the fluidity tends to be further enhanced.
  • the content of the specific organic solvent is 3.0% by mass or less, generation of voids is further suppressed when the epoxy resin in the epoxy resin composition is cured, and a decrease in insulation reliability is further suppressed. is there.
  • the content rate of the alcohol solvent in the specific organic solvent is not particularly limited.
  • the content of the alcohol solvent is, for example, preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more based on the total mass of the specific organic solvent. And particularly preferably 95% by mass or more.
  • the epoxy resin composition may not substantially contain a specific organic solvent other than the alcohol solvent.
  • the epoxy resin composition may contain additives such as an anion exchanger, a mold release agent, a flame retardant, a coupling agent, a stress relaxation agent, a colorant and the like as necessary.
  • the epoxy resin composition may optionally contain an anion exchanger.
  • an anion exchanger when using an epoxy resin composition as a sealing material, it is preferable to contain an anion exchanger from the viewpoint of improving the moisture resistance and the high-temperature standing characteristics of the electronic component device provided with the element to be sealed.
  • the anion exchanger is not particularly limited and can be selected from those conventionally used commonly in the art.
  • hydrotalcite compounds and hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium and bismuth can be mentioned.
  • the anion exchanger is not particularly limited and can be selected from those conventionally used commonly in the art.
  • examples of the anion exchanger include a hydrotalcite compound having a composition represented by the following formula (I), and a hydrous oxide of an element selected from the group consisting of magnesium, aluminum, titanium, zirconium, bismuth and antimony. .
  • the anion exchangers may be used alone or in combination of two or more. Mg 1-x Al x (OH) 2 (CO 3 ) x / 2 ⁇ mH 2 O (I) (0 ⁇ X ⁇ 0.5, m is a positive number)
  • the hydrotalcite compound is captured by substituting anions such as halogen ions with CO 3 in the structure, and the halogen ions incorporated into the crystal structure are released until the crystal structure is destroyed at about 350 ° C. or higher. It is a compound with no property.
  • the hydrotalcites having such properties include Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O produced as a natural product, and Mg 4.3 Al 2 (OH) 12.6 CO 3 as a synthetic product. ⁇ MH 2 O etc. may be mentioned.
  • the epoxy resin composition contains a phenol curing agent as a curing agent
  • the epoxy resin composition exhibits an acidity under the influence of the phenol curing agent (for example, the extract of a cured product using pure water has a pH of 3 to 5)
  • the phenol curing agent for example, the extract of a cured product using pure water has a pH of 3 to 5
  • aluminum which is an amphoteric metal
  • the corrosion of aluminum is caused by the epoxy resin composition containing a hydrotalcite compound also having an action of adsorbing an acid. Tend to be suppressed.
  • the water-containing oxide of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium, bismuth and antimony can also be captured by substituting anions such as halogen ions with hydroxide ions. it can.
  • these ion exchangers exhibit excellent ion exchange ability on the acid side. Therefore, when the epoxy resin composition contains these ion exchangers, the corrosion of aluminum tends to be suppressed as in the case of containing the hydrotalcite compound.
  • the content of the anion exchanger is not particularly limited as long as it is an amount sufficient to capture anions such as halogen ions.
  • the content of the anion exchanger is, for example, preferably 0.1% by mass to 30% by mass, and 1.0% by mass to 5% by mass. It is more preferable that
  • the epoxy resin composition may contain a mold release agent as needed from the viewpoint of exhibiting good mold release property to the mold in the molding step.
  • the type of release agent is not particularly limited, and examples include release agents known in the art. Specifically, as a mold release agent, higher fatty acids such as carnauba wax, montanic acid and stearic acid, higher fatty acid metal salts, ester-based waxes such as montanic acid esters, and polyolefin-based waxes such as oxidized polyethylene and non-oxidized polyethylene It can be mentioned. Among them, carnauba wax and polyolefin wax are preferable.
  • the mold release agent may be used alone or in combination of two or more.
  • polystyrene-based wax a commercially available product may be used.
  • low molecular weight polyethylene having a number average molecular weight of about 500 to 10000 such as H4 of PECHET, PE, PED series, etc., can be mentioned.
  • the content of the polyolefin wax is preferably 0.01% by mass to 10% by mass, and 0.10% by mass to 5% by mass with respect to the epoxy resin. It is more preferable that When the content of the polyolefin wax is 0.01% by mass or more, sufficient releasability tends to be obtained, and when it is 10% by mass or less, sufficient adhesiveness tends to be obtained.
  • the epoxy resin composition contains a release agent other than polyolefin wax, or when the epoxy resin composition contains a polyolefin wax and another release agent, release agents other than polyolefin wax are released.
  • the content of the mold agent is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 3% by mass with respect to the epoxy resin.
  • the epoxy resin composition may contain a flame retardant, if necessary, from the viewpoint of imparting flame retardancy.
  • the flame retardant is not particularly limited, and examples thereof include known organic and inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, metal hydroxides, and acenaphthylene.
  • the flame retardant may be used alone or in combination of two or more.
  • the content of the flame retardant is not particularly limited as long as the flame retardant effect can be obtained.
  • the content of the flame retardant is preferably 1% by mass to 30% by mass, and more preferably 2% by mass to 15% by mass, with respect to the epoxy resin. preferable.
  • the epoxy resin composition may optionally contain a coupling agent from the viewpoint of enhancing the adhesion between the resin component and the inorganic filler.
  • the type of coupling agent is not particularly limited.
  • Examples of the coupling agent include various silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, methacrylsilane, acrylsilane and vinylsilane, titanium compounds, aluminum chelate compounds, aluminum and zirconium-containing compounds.
  • the coupling agents may be used alone or in combination of two or more.
  • the epoxy resin composition may contain a stress relaxation agent such as silicone oil or silicone rubber particles, if necessary, from the viewpoint of reducing the amount of warping and package cracking of the package.
  • a stress relaxation agent such as silicone oil or silicone rubber particles
  • a flexible agent stress relaxation agent generally used in the relevant technical field can be appropriately selected and used.
  • thermoplastic elastomers such as silicone, polystyrene, polyolefin, polyurethane, polyester, polyether, polyamide, polybutadiene, etc .; NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic rubber, urethane rubber Rubber particles such as silicone powder; methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, rubber having a core-shell structure such as methyl methacrylate-butyl acrylate copolymer Particle etc. are mentioned.
  • silicone-based stress relaxation agents containing silicone are preferable.
  • silicone type stress relaxation agent what has an epoxy group, what has an amino group, what carried out polyether modification of these etc. are mentioned.
  • the stress relaxation agents may be used alone or in combination of two or more.
  • the epoxy resin composition may contain a colorant such as carbon black, fibrous carbon, an organic dye, an organic colorant, titanium oxide, red lead, bengara and the like.
  • a colorant such as carbon black, fibrous carbon, an organic dye, an organic colorant, titanium oxide, red lead, bengara and the like.
  • the content of the colorant is preferably 0.05% by mass to 5.0% by mass with respect to the inorganic filler, and 0.10% by mass to 2.%. More preferably, it is 5% by mass.
  • any method may be used as long as various components can be dispersed and mixed.
  • a method of melt-kneading by a mixing roll, an extruder or the like, cooling, and crushing can be mentioned.
  • the epoxy resin composition is, for example, mixed and stirred with the above-mentioned components, and kneaded by a kneader, a roll, an extruder, etc. which has been heated to 70 ° C. to 140 ° C. in advance, and then cooled. It can be obtained by a method such as crushing.
  • the epoxy resin composition may be tableted in size and mass to match the molding conditions of the package. The tableting of the epoxy resin composition facilitates handling.
  • the epoxy resin composition of the present disclosure preferably exhibits a flow distance of 100 cm or more when the flowability is measured by the following method.
  • the epoxy resin composition is molded using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) of the molded product of the epoxy resin composition is measured.
  • the epoxy resin composition is molded using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa and a curing time of 120 seconds.
  • Epoxy resin cured product is formed by curing the above-described epoxy resin composition.
  • the epoxy resin cured product of the present disclosure tends to be excellent in thermal conductivity since it is obtained by curing the above-described epoxy resin composition.
  • the thermal conductivity of the cured epoxy resin is not particularly limited, and is preferably 4 W / (m ⁇ K) or more.
  • the thermal conductivity of the cured epoxy resin is a value measured as follows. Transfer molding is performed using an epoxy resin composition under the conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds, to obtain a mold-shaped epoxy resin cured product.
  • the specific gravity of the obtained epoxy resin cured product is measured by the Archimedes method, and the specific heat is measured by DSC (for example, Perkin Elmer, DSC Pyris 1).
  • the thermal diffusivity of the obtained cured product is measured by a laser flash method using a thermal diffusivity measuring device (for example, LFA 467, manufactured by NETZSCH).
  • the thermal conductivity of the epoxy resin cured product is calculated using the obtained specific gravity, specific heat, and thermal diffusivity.
  • the electronic component device of the present disclosure has a device and a cured product of the epoxy resin composition of the present disclosure sealing the device, and has the form of a BGA package.
  • a BGA package is manufactured by mounting an element on the front surface of a substrate having a metal bump formed on the back surface, connecting the element and a wiring formed on the substrate by bump or wire bonding, and sealing the element. .
  • the substrate may, for example, be a glass-epoxy substrate or a printed wiring board.
  • an active element, a passive element, etc. are mentioned.
  • the active element includes a semiconductor chip, a transistor, a diode, a thyristor and the like.
  • a passive element a capacitor, a resistor, a coil, etc. are mentioned.
  • the method for sealing the device with the epoxy resin cured product is not particularly limited, and methods known in the art can be applied.
  • a low pressure transfer molding method is generally used, an injection molding method, a compression molding method or the like may be used.
  • Epoxy resin 1 Biphenyl type epoxy resin (Mitsubishi Chemical Corporation, trade name "YX-4000") ⁇ Epoxy resin 2 ... bisphenol F type epoxy resin (Nippon Steel & Sumitomo Metal Chemical Co., Ltd., trade name "YSLV-80XY”) Curing agent: Multifunctional phenol resin (Air Water Co., Ltd., trade name "HE 910", triphenylmethane type phenol resin having a hydroxyl equivalent of 105 g / eq) ⁇ Hardening accelerator ⁇ Phosphorous hardening accelerator (organic phosphorus compound)
  • Inorganic filler 1 Alumina-silica mixed filler (silica content: 10% by mass), volume average particle diameter: 10 ⁇ m
  • Inorganic filler 2 alumina filler, volume average particle diameter: 10 ⁇ m
  • Inorganic filler 3 alumina filler, volume average particle diameter: 0.8 ⁇ m
  • Inorganic filler 4 silica filler, volume average particle diameter: 0.8 ⁇ m
  • Plasticizer 1 Organic phosphine oxide
  • Plasticizer 2 Indene-Styrene copolymer (Nisshin Chemical Co., Ltd., NH-100S)
  • Coupling agent Anilinosilane (N-phenyl-3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd., trade name: KBM-573)
  • Colorant carbon black (Mitsubishi Chemical Corporation, trade name: MA-100)
  • -Releasing agent Montanic acid ester (Celarika NODA)
  • the evaluation of the flowability of the epoxy resin composition was performed by a spiral flow test. Specifically, the epoxy resin composition was molded using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) of the molded product of the epoxy resin composition was measured. Molding of the epoxy resin composition was performed using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds. Moreover, fluidity
  • the evaluation of the thermal conductivity when the epoxy resin composition was cured was performed as follows. Specifically, transfer molding was performed using the prepared epoxy resin composition under conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds, to obtain a molded product having a mold shape.
  • the specific gravity of the obtained cured product measured by the Archimedes method was 3.00 to 3.40.
  • the specific heat of the obtained cured product was measured by DSC (Perkin Elmer, DSC Pyris 1). Further, the thermal diffusivity of the cured product was measured by a laser flash method using a thermal diffusivity measuring device (LFA 467, manufactured by NETZSCH).
  • the thermal conductivity of the epoxy resin cured product was calculated using the obtained specific gravity, specific heat, and thermal diffusivity.
  • the thermal conductivity was A at 4 W / (m ⁇ K) or more, and B at less than 4 W / (m ⁇ K).
  • the epoxy resin 2, the curing agent, the inorganic filler, and the plasticizer are contained, the content of the inorganic filler is 75% by volume to 84% by volume, and the total amount of alumina particles and silica particles In Examples 1 to 8 in which the ratio of silica particles to is within the range of 0% by mass to 15% by mass or less, both evaluations of fluidity and thermal conductivity were good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

An encapsulating epoxy resin composition for ball grid array (BGA) packages which comprises: one or more epoxy resins comprising a bisphenol F type epoxy resin; a hardener; an inorganic filler that comprises alumina particles but includes no silica particles or that comprises alumina particles and silica particles, the amount of the silica particles being larger than 0 mass% but not larger than 15 mass% with respect to the sum of the alumina particles and the silica particles; and a plasticizer. The epoxy resin composition has a content of the inorganic filler of 75-84 vol%.

Description

ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置Epoxy resin composition for sealing ball grid array package, epoxy resin cured product and electronic component device
 本開示は、ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置に関する。 The present disclosure relates to an epoxy resin composition for sealing a ball grid array package, an epoxy resin cured product, and an electronic component device.
 電子機器の小型化及び薄型化による高密度実装の要求が、近年、急激に増加している。このため、半導体パッケージは、従来のピン挿入型に代わり、高密度実装に適した表面実装型が主流になっている。表面実装型の半導体パッケージは、プリント基板等に直接はんだ付けすることにより実装される。一般的な実装方法としては、赤外線リフロー法、ベーパーフェーズリフロー法、はんだディップ法等により、半導体パッケージ全体を加熱して実装する方法が挙げられる。 The demand for high-density mounting due to the miniaturization and thinning of electronic devices has been rapidly increasing in recent years. For this reason, semiconductor packages, in place of the conventional pin insertion type, are mainly of the surface mounting type suitable for high density mounting. The surface mount semiconductor package is mounted by direct soldering to a printed circuit board or the like. As a general mounting method, there is a method of heating and mounting the whole semiconductor package by an infrared ray reflow method, a vapor phase reflow method, a solder dip method or the like.
 近年、実装密度をより高めるため、表面実装型の半導体パッケージの中でも、ボールグリッドアレイ(Ball Grid Array、以下BGAともいう)等のエリア実装パッケージが広く用いられている。BGAパッケージは、基板の半導体素子搭載面が樹脂組成物で封止された片面樹脂封止型パッケージとなっている。封止用の樹脂組成物としては、成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性のバランスの観点から、エポキシ樹脂組成物が広く使用されている。 In recent years, in order to further increase the mounting density, area mounting packages such as a ball grid array (hereinafter also referred to as BGA) are widely used among surface mounting type semiconductor packages. The BGA package is a single-sided resin-sealed package in which the semiconductor element mounting surface of the substrate is sealed with a resin composition. As a resin composition for sealing, an epoxy resin composition is widely used from the viewpoint of the balance of various properties such as moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, adhesion to an insert, etc. There is.
 一方、近年、電子部品の分野では高速化及び高密度化が進んでおり、それに伴って、電子部品の発熱量が顕著に増大している。また、高温下で作動する電子部品に対する需要も増加している。そのため、電子部品に使用されるプラスチック、特にエポキシ樹脂の硬化物に対しては、熱伝導性の向上が求められている。特にBGAパッケージでは、小型化、高密度化の要求から封止用の樹脂組成物の高い熱伝導性が求められている。BGAパッケージ等において、エポキシ樹脂の硬化物の熱伝導性を向上する方法として、アルミナ等の高熱伝導性の無機充填材を用いる方法、粘度の低い樹脂及び少量の微粒シリカを併用して当該無機充填材の充填量を増やす方法等が報告されている(例えば、特許文献1参照)。 On the other hand, in recent years, in the field of electronic components, higher speed and higher density have been progressed, and accordingly, the calorific value of the electronic components is significantly increased. There is also an increasing demand for electronic components that operate at high temperatures. Therefore, improvement in thermal conductivity is required for cured products of plastics, particularly epoxy resins, used for electronic parts. In particular, in the case of a BGA package, high thermal conductivity of a resin composition for sealing is required due to the demand for miniaturization and high density. In a BGA package or the like, as a method of improving the thermal conductivity of a cured product of an epoxy resin, a method using an inorganic filler of high thermal conductivity such as alumina, a combination of a low viscosity resin and a small amount of fine particle silica Methods and the like for increasing the filling amount of the material have been reported (see, for example, Patent Document 1).
特許第4188634号公報Patent 4188634 gazette
 しかしながら、高熱伝導化を目的としてエポキシ樹脂組成物中のアルミナの充填量を増大させると、流動性が低下して成形性を損なう可能性がある。特許文献1では、アルミナフィラーに微粒シリカを少量混合し、比較的粘度の低い特定のビフェニル型エポキシ樹脂を用いてフィラーの高充填化を図っている。しかしながら、特許文献1の方法では、熱伝導性及び流動性の両立には課題があった。 However, if the loading of alumina in the epoxy resin composition is increased for the purpose of achieving high thermal conductivity, there is a possibility that the flowability may be reduced and the moldability may be impaired. In Patent Document 1, a small amount of fine particle silica is mixed with an alumina filler, and a specific biphenyl-type epoxy resin having a relatively low viscosity is used to achieve high filling of the filler. However, the method of Patent Document 1 has a problem in achieving both thermal conductivity and fluidity.
 従って、本開示は、流動性に優れ、硬化したときの熱伝導性に優れるBGAパッケージ封止用エポキシ樹脂組成物、前記エポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物、及び前記エポキシ樹脂硬化物によって封止された素子を備える電子部品装置を提供することを課題とする。 Therefore, the present disclosure provides an epoxy resin composition for sealing a BGA package which is excellent in fluidity and excellent in thermal conductivity when cured, an epoxy resin cured product obtained by curing the epoxy resin composition, and the epoxy resin cured. It is an object of the present invention to provide an electronic component device including an element sealed by an object.
 上記課題を解決するための手段には、以下の実施形態が含まれる。
<1> ビスフェノールF型エポキシ樹脂を含むエポキシ樹脂と、硬化剤と、アルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超15質量%以下含む無機充填材と、可塑剤と、を含有し、前記無機充填材の含有率が75体積%~84体積%である、ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<2> 前記エポキシ樹脂がさらにビフェニル型エポキシ樹脂を含む、<1>に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<3> 前記無機充填材が、アルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超10質量%以下含む、<1>又は<2>に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<4> 前記硬化剤が、水酸基当量150g/eq以下のフェノール硬化剤を含む、<1>~<3>のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<5> 前記硬化剤が、1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂を含む、<1>~<4>のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<6> 前記硬化剤が、トリフェニルメタン型フェノール樹脂を含む、<1>~<5>のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<7> 前記無機充填材の空隙率が18体積%以下である<1>~<6>のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<8> 前記無機充填材の体積基準の粒度分布における、粒子径が1μm以下の粒子の割合が9体積%以上であり、粒子径が1μmを超え10μm以下の粒子の割合が45体積%以下であり、粒子径が10μmを超え30μm以下の粒子の割合が20体積%以上であり、粒子径が30μmを超える粒子の割合が18体積%以上である、<1>~<7>のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<9> 前記無機充填材の体積基準の粒度分布における、粒子径が1μm以下の粒子の割合が11体積%以上であり、粒子径が1μmを超え10μm以下の粒子の割合が40体積%以下であり、粒子径が10μmを超え30μm以下の粒子の割合が22体積%以上であり、粒子径が30μmを超える粒子の割合が20体積%以上である<8>に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<10> <1>~<9>のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。
<11> 素子と、前記素子を封止している<10>に記載のエポキシ樹脂硬化物と、を有し、ボールグリッドアレイパッケージの形態を有する、電子部品装置。
Means for solving the above problems include the following embodiments.
<1> An epoxy resin containing a bisphenol F type epoxy resin, a curing agent, alumina particles, or silica particles are not contained, or alumina particles are further contained, and the silica particles are 0 mass to the total amount of alumina particles and silica particles An epoxy resin composition for sealing a ball grid array package, comprising: an inorganic filler containing more than 15% by mass and a plasticizer; and the content of the inorganic filler is 75% by volume to 84% by volume.
<2> The epoxy resin composition for ball grid array package sealing according to <1>, wherein the epoxy resin further contains a biphenyl type epoxy resin.
<3> The inorganic filler contains alumina particles, does not contain silica particles, or contains alumina particles and further contains silica particles in an amount of more than 0% by mass and 10% by mass or less based on the total amount of alumina particles and silica particles < The epoxy resin composition for ball grid array package sealing as described in 1> or <2>.
<4> The epoxy resin composition for sealing a ball grid array package according to any one of <1> to <3>, wherein the curing agent comprises a phenol curing agent having a hydroxyl equivalent of 150 g / eq or less.
<5> The epoxy resin for sealing a ball grid array package according to any one of <1> to <4>, wherein the curing agent contains a phenol resin having three or more phenolic hydroxyl groups in one molecule. Composition.
<6> The epoxy resin composition for sealing a ball grid array package according to any one of <1> to <5>, wherein the curing agent contains a triphenylmethane type phenol resin.
<7> The epoxy resin composition for sealing a ball grid array package according to any one of <1> to <6>, wherein the porosity of the inorganic filler is 18 volume% or less.
<8> In the volume-based particle size distribution of the inorganic filler, the ratio of particles having a particle diameter of 1 μm or less is 9 volume% or more, and the ratio of particles having a particle diameter of more than 1 μm to 10 μm is 45 volume% or less Any one of <1> to <7>, wherein the proportion of particles having a particle size of more than 10 μm and 30 μm or less is 20% by volume or more and the proportion of particles having a particle size of more than 30 μm is 18% by volume or more The epoxy resin composition for ball grid array package sealing as described in a term.
<9> In the volume-based particle size distribution of the inorganic filler, the proportion of particles having a particle size of 1 μm or less is 11 vol% or more, and the proportion of particles having a particle size of more than 1 μm and 10 μm or less is 40 vol% or less Yes, the percentage of particles having a particle size of more than 10 μm and 30 μm or less is 22 vol% or more, and the percentage of particles having a particle size of more than 30 μm is 20 vol% or more. Epoxy resin composition.
<10> A cured epoxy resin product obtained by curing the epoxy resin composition for sealing a ball grid array package according to any one of <1> to <9>.
The electronic component apparatus which has <11> element and the epoxy resin hardened material as described in <10> which has sealed the said element, and has a form of a ball grid array package.
 本開示によれば、流動性に優れ、硬化したときの熱伝導性に優れるBGAパッケージ封止用エポキシ樹脂組成物、前記エポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物、及び前記エポキシ樹脂硬化物によって封止された素子を備える電子部品装置が提供される。 According to the present disclosure, an epoxy resin composition for sealing a BGA package which is excellent in fluidity and excellent in thermal conductivity when cured, an epoxy resin cured product obtained by curing the epoxy resin composition, and the epoxy resin cured An electronic component device comprising an element sealed by an object is provided.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps. .
In the present disclosure, numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
<BGAパッケージ封止用エポキシ樹脂組成物>
 本開示のBGAパッケージ封止用エポキシ樹脂組成物(以下、単にエポキシ樹脂組成物ともいう)は、ビスフェノールF型エポキシ樹脂を含むエポキシ樹脂と、硬化剤と、アルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超15質量%以下含む無機充填材と、可塑剤と、を含有し、前記無機充填材の含有率が75体積%~84体積%である。
<Epoxy resin composition for sealing BGA package>
Whether the epoxy resin composition for sealing a BGA package of the present disclosure (hereinafter, also simply referred to as an epoxy resin composition) contains an epoxy resin containing a bisphenol F-type epoxy resin, a curing agent, and alumina particles and does not contain silica particles And an inorganic filler containing alumina particles and further containing 0% by mass or more and 15% by mass or less of silica particles based on the total amount of the alumina particles and the silica particles, and a plasticizer, and the content of the inorganic filler is It is 75% by volume to 84% by volume.
 本開示のエポキシ樹脂組成物は、流動性に優れ、硬化したときの熱伝導性に優れる。その理由は明らかではないが、以下のように考えることができる。一般的に、エポキシ樹脂組成物においてアルミナ粒子の充填率を高めると、高熱伝導率が得られる。しかしながら、アルミナ粒子の高充填化に伴い、組成物の流動性が低下し、ワイヤ流れ等の原因となる。一方、本開示のエポキシ樹脂組成物は、ビスフェノールF型エポキシ樹脂及び可塑剤を含有することで、組成物としたときにアルミナ粒子を高割合で含む場合でも、流動性を担保しやすいと考えられる。さらに、これにより、無機充填材をより高充填として、硬化したときの熱伝導性をより向上することが可能になると考えられる。 The epoxy resin composition of the present disclosure is excellent in fluidity and excellent in thermal conductivity when cured. Although the reason is not clear, it can be considered as follows. Generally, high thermal conductivity can be obtained by increasing the loading of alumina particles in the epoxy resin composition. However, with the high packing of alumina particles, the flowability of the composition decreases, which causes wire flow and the like. On the other hand, it is considered that the epoxy resin composition of the present disclosure can easily maintain fluidity by containing a bisphenol F-type epoxy resin and a plasticizer, even when containing a high proportion of alumina particles in the composition. . Furthermore, it is considered that this makes it possible to further improve the thermal conductivity when hardened by making the inorganic filler more highly filled.
 本開示のエポキシ樹脂組成物は、BGAパッケージの封止に用いられる。BGAパッケージとは、パッケージの基板に複数の金属バンプが格子状に配列した半導体パッケージをいう。BGAパッケージは、裏面に金属バンプを形成した基板のおもて面に素子を搭載し、バンプ又はワイヤボンディングにより素子と基板に形成された配線を接続した後、素子を封止して作製する。外径寸法を素子の寸法と同程度にまで縮小化したCSP(Chip Size Package)等も、BGAパッケージの一形態である。 The epoxy resin composition of the present disclosure is used to seal a BGA package. The BGA package refers to a semiconductor package in which a plurality of metal bumps are arranged in a lattice on the substrate of the package. The BGA package is manufactured by mounting an element on the front surface of a substrate having a metal bump formed on the back surface, connecting the element and a wiring formed on the substrate by bump or wire bonding, and sealing the element. A CSP (Chip Size Package) or the like in which the outer diameter size is reduced to the same size as the element size is also a form of the BGA package.
[エポキシ樹脂]
 本開示のエポキシ樹脂組成物は、ビスフェノールF型エポキシ樹脂を含むエポキシ樹脂を含有する。エポキシ樹脂組成物は、ビスフェノールF型エポキシ樹脂以外のエポキシ樹脂を含有していてもよい。
[Epoxy resin]
The epoxy resin composition of the present disclosure contains an epoxy resin containing a bisphenol F-type epoxy resin. The epoxy resin composition may contain an epoxy resin other than bisphenol F-type epoxy resin.
(ビスフェノールF型エポキシ樹脂)
 本開示においてビスフェノールF型エポキシ樹脂とは、置換又は非置換のビスフェノールFのジグリシジルエーテルをいう。ビスフェノールF型エポキシ樹脂は、1種単独で用いても2種以上を組み合わせて用いてもよい。
(Bisphenol F type epoxy resin)
In the present disclosure, a bisphenol F-type epoxy resin refers to a diglycidyl ether of substituted or unsubstituted bisphenol F. The bisphenol F-type epoxy resin may be used singly or in combination of two or more.
 ビスフェノールF型エポキシ樹脂としては、例えば、下記一般式(I)で示されるエポキシ樹脂が挙げられる。 As a bisphenol F-type epoxy resin, the epoxy resin shown by following General formula (I) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、R1~R8は水素原子又は炭素数1~18の置換若しくは非置換の一価の有機基を表し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の数を示す。 In the general formula (I), R1 to R8 each represent a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. n is an average value and represents a number of 0 to 10.
 上記一般式(I)で示されるビスフェノールF型エポキシ樹脂は、ビスフェノールF化合物にエピクロロヒドリンを公知の方法で反応させることによって得ることができる。 The bisphenol F-type epoxy resin represented by the above general formula (I) can be obtained by reacting a bisphenol F compound with epichlorohydrin by a known method.
 一般式(I)中、R1~R8としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、t-ブチル基等の炭素数1~18のアルキル基、ビニル基、アリル基、ブテニル基等の炭素数1~18のアルケニル基、アリール基などが挙げられ、水素原子又はメチル基であることが好ましい。 In the general formula (I), as R1 to R8, an alkyl group having 1 to 18 carbon atoms, such as hydrogen atom, methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, t-butyl group, etc., vinyl Groups, alkenyl groups having 1 to 18 carbon atoms such as allyl group and butenyl group, and aryl groups, and the like, and hydrogen atom or methyl group is preferable.
 一般式(I)中、nは平均値であり、0~10の数を表し、0~4の数であることが好ましい。nが10以下であると樹脂成分の溶融粘度が高くなりすぎず、エポキシ樹脂組成物の溶融成形時の粘度が低下し、充填不良、ボンディングワイヤ(素子とリードを接続する金線)の変形等の発生が抑制される傾向にある。 In the general formula (I), n is an average value, represents a number of 0 to 10, and is preferably a number of 0 to 4. When n is 10 or less, the melt viscosity of the resin component does not become too high, the viscosity at the time of melt molding of the epoxy resin composition decreases, filling failure, deformation of bonding wire (gold wire connecting element and lead), etc. The tendency is to suppress the occurrence of
 ビスフェノールF型エポキシ樹脂としては、例えば、4,4’-メチレンビス(2,6-ジメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂、4,4’-メチレンビス(2,3,6-トリメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂、4,4’-メチレンビスフェノールのジグリシジルエーテルを主成分とするエポキシ樹脂等が挙げられる。中でも4,4’-メチレンビス(2,6-ジメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂が好ましい。ビスフェノールF型エポキシ樹脂としては、市販品としてYSLV-80XY(新日鐵住金化学株式会社、商品名)等が入手可能である。 As a bisphenol F-type epoxy resin, for example, an epoxy resin having a diglycidyl ether of 4,4′-methylenebis (2,6-dimethylphenol) as a main component, 4,4′-methylenebis (2,3,6-trimethyl The epoxy resin which has diglycidyl ether of phenol) as a main component, the epoxy resin which has diglycidyl ether of 4,4'- methylene bisphenol as a main component, etc. are mentioned. Among them, epoxy resins based on diglycidyl ether of 4,4'-methylenebis (2,6-dimethylphenol) are preferred. As a bisphenol F-type epoxy resin, YSLV-80XY (Nippon Sumikin Sumikin Chemical Co., Ltd. brand name) etc. are commercially available as a commercial item.
 ビスフェノールF型エポキシ樹脂の含有率は特に制限されず、エポキシ樹脂全量中10質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましい。ビスフェノールF型エポキシ樹脂の含有率は、100質量%以下であってもよく、75質量%以下であってもよく、50質量%以下であってもよい。 The content of the bisphenol F-type epoxy resin is not particularly limited, and is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 25% by mass or more in the total amount of the epoxy resin. The content of the bisphenol F-type epoxy resin may be 100% by mass or less, 75% by mass or less, or 50% by mass or less.
 ビスフェノールF型エポキシ樹脂のエポキシ当量は特に制限されない。成形性、耐リフロー性及び電気的信頼性等の各種特性バランスの観点からは、ビスフェノールF型エポキシ樹脂のエポキシ当量は、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。以下同様である。 The epoxy equivalent of the bisphenol F-type epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, the epoxy equivalent of the bisphenol F-type epoxy resin is preferably 100 g / eq to 1000 g / eq, and 150 g / eq to 500 g / eq. It is more preferable that it is eq. Let the epoxy equivalent of an epoxy resin be a value measured by the method according to JISK7236: 2009. The same applies to the following.
 ビスフェノールF型エポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。ビスフェノールF型エポキシ樹脂の軟化点又は融点は、成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、エポキシ樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。エポキシ樹脂の融点は示差走査熱量測定(DSC)で測定される値とし、エポキシ樹脂の軟化点はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。以下同様である。 When the bisphenol F-type epoxy resin is solid, its softening point or melting point is not particularly limited. The softening point or melting point of the bisphenol F-type epoxy resin is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and 50 ° C. from the viewpoint of handleability in preparation of the epoxy resin composition. It is more preferable that the temperature is ~ 130 ° C. The melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234: 1986. The same applies to the following.
(ビフェニル型エポキシ樹脂)
 エポキシ樹脂組成物は、ビスフェノールF型エポキシ樹脂に加えて、ビフェニル型エポキシ樹脂を含有してもよい。ビフェニル型エポキシ樹脂は、ビフェニル骨格を有するエポキシ樹脂であれば特に限定されない。例えば下記一般式(II)で示されるエポキシ樹脂等が挙げられる。
(Biphenyl type epoxy resin)
The epoxy resin composition may contain a biphenyl type epoxy resin in addition to the bisphenol F type epoxy resin. The biphenyl type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton. For example, the epoxy resin etc. which are shown by following General formula (II) are mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(II)中、R1~R8は水素原子又は炭素数1~18の置換若しくは非置換の一価の有機基を表し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の数を示す。 In the general formula (II), R1 to R8 each represent a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. n is an average value and represents a number of 0 to 10.
 上記一般式(II)で示されるビフェニル型エポキシ樹脂は、ビフェノール化合物にエピクロロヒドリンを公知の方法で反応させることによって得ることができる。 The biphenyl type epoxy resin represented by the above general formula (II) can be obtained by reacting a biphenol compound with epichlorohydrin by a known method.
 一般式(II)中、R1~R8としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、t-ブチル基等の炭素数1~18のアルキル基、ビニル基、アリル基、ブテニル基等の炭素数1~18のアルケニル基、アリール基などが挙げられ、水素原子又はメチル基であることが好ましい。 In the general formula (II), as R1 to R8, an alkyl group having 1 to 18 carbon atoms, such as hydrogen atom, methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group or t-butyl group, vinyl Groups, alkenyl groups having 1 to 18 carbon atoms such as allyl group and butenyl group, and aryl groups, and the like, and hydrogen atom or methyl group is preferable.
 一般式(II)中、nは平均値であり、0~10の数を表し、0~4の数であることが好ましい。 In the general formula (II), n is an average value, represents a number of 0 to 10, and preferably a number of 0 to 4.
 ビフェニル型エポキシ樹脂としては、例えば、4,4’-ビス(2,3-エポキシプロポキシ)ビフェニル又は4,4’-ビス(2,3-エポキシプロポキシ)-3,3’,5,5’-テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロロヒドリンと4,4’-ビフェノール又は4,4’-(3,3’,5,5’-テトラメチル)ビフェノールとを反応させて得られるエポキシ樹脂等が挙げられる。中でも4,4’-ビス(2,3-エポキシプロポキシ)-3,3’,5,5’-テトラメチルビフェニルを主成分とするエポキシ樹脂が好ましい。ビフェニル型エポキシ樹脂としては、市販品としてYX-4000(三菱ケミカル株式会社、商品名)、YL-6121H(三菱ケミカル株式会社、商品名)等が入手可能である。 As the biphenyl type epoxy resin, for example, 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′- It is obtained by reacting an epoxy resin containing tetramethylbiphenyl as a main component, epichlorohydrin with 4,4'-biphenol or 4,4 '-(3,3', 5,5'-tetramethyl) biphenol. An epoxy resin etc. are mentioned. Among them, epoxy resins containing 4,4'-bis (2,3-epoxypropoxy) -3,3 ', 5,5'-tetramethylbiphenyl as a main component are preferable. As the biphenyl type epoxy resin, commercially available products such as YX-4000 (Mitsubishi Chemical Co., Ltd., trade name), YL-6121H (Mitsubishi Chemical Co., Ltd., trade name), and the like are available.
 エポキシ樹脂がビフェニル型エポキシ樹脂を含む場合、ビフェニル型エポキシ樹脂の含有率は特に制限されず、エポキシ樹脂全量中20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。ビフェニル型エポキシ樹脂の含有率は、100質量%未満であってもよく、90質量%以下であってもよく、80質量%以下であってもよく、10質量%以下であってもよい。 When the epoxy resin contains a biphenyl type epoxy resin, the content of the biphenyl type epoxy resin is not particularly limited, and is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total amount of the epoxy resin. It is further preferable that the content is at least% by mass. The content of the biphenyl type epoxy resin may be less than 100% by mass, may be 90% by mass or less, may be 80% by mass or less, and may be 10% by mass or less.
 ビフェニル型エポキシ樹脂のエポキシ当量は特に制限されない。成形性、耐リフロー性及び電気的信頼性等の各種特性バランスの観点からは、ビフェニル型エポキシ樹脂のエポキシ当量は、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 The epoxy equivalent of the biphenyl type epoxy resin is not particularly limited. The epoxy equivalent of the biphenyl type epoxy resin is preferably 100 g / eq to 1000 g / eq, and preferably 150 g / eq to 500 g / eq, from the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability. It is more preferable that
 ビフェニル型エポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。エポキシ樹脂の軟化点又は融点は、成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、エポキシ樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 When the biphenyl type epoxy resin is solid, its softening point or melting point is not particularly limited. The softening point or melting point of the epoxy resin is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and 50 ° C. to 130 ° C. from the viewpoint of handleability in preparation of the epoxy resin composition. It is more preferable that
(その他のエポキシ樹脂)
 エポキシ樹脂組成物は、ビスフェノールF型エポキシ樹脂及びビフェニル型エポキシ樹脂以外のエポキシ樹脂(「その他のエポキシ樹脂」ともいう)を含有していてもよい。「その他のエポキシ樹脂」は特に制限されず、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。1分子中に2個以上のエポキシ基を有するエポキシ樹脂としては、スチルベン型エポキシ樹脂、硫黄原子含有エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂(ビスフェノールF型エポキシ樹脂を除く)、及びトリフェニルメタン型エポキシ樹脂等が挙げられる。「その他のエポキシ樹脂」は、1種単独で用いても2種以上を組み合わせて用いてもよい。
(Other epoxy resin)
The epoxy resin composition may contain an epoxy resin other than bisphenol F-type epoxy resin and biphenyl type epoxy resin (also referred to as "other epoxy resin"). The “other epoxy resin” is not particularly limited, and is preferably an epoxy resin having two or more epoxy groups in one molecule. As an epoxy resin having two or more epoxy groups in one molecule, stilbene type epoxy resin, sulfur atom containing epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, salicylaldehyde type epoxy resin, naphthols and phenol And epoxy resins of the copolymerization type, aralkyl type epoxy resins, diphenylmethane type epoxy resins (excluding bisphenol F type epoxy resins), and triphenylmethane type epoxy resins. The “other epoxy resins” may be used alone or in combination of two or more.
 「その他のエポキシ樹脂」の含有率は特に制限されず、エポキシ樹脂全量に対して30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましく、5質量%以下であることが特に好ましい。 The content of the “other epoxy resin” is not particularly limited, and is preferably 30% by mass or less, more preferably 20% by mass or less, and 10% by mass or less based on the total amount of the epoxy resin. More preferably, it is particularly preferably 5% by mass or less.
 「その他のエポキシ樹脂」のエポキシ当量は特に制限されない。成形性、耐リフロー性及び電気的信頼性等の各種特性バランスの観点からは、「その他のエポキシ樹脂」のエポキシ当量は、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 The epoxy equivalent of "other epoxy resin" is not particularly limited. From the viewpoint of balance of various properties such as moldability, reflow resistance and electrical reliability, the epoxy equivalent of “other epoxy resin” is preferably 100 g / eq to 1000 g / eq, 150 g / eq to 500 g More preferably, it is / eq.
 「その他のエポキシ樹脂」が固体である場合、その軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは、「その他のエポキシ樹脂」の軟化点又は融点は40℃~180℃であることが好ましく、エポキシ樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 When the “other epoxy resin” is solid, its softening point or melting point is not particularly limited. The softening point or melting point of the “other epoxy resin” is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and it is 50 from the viewpoint of handleability in preparation of the epoxy resin composition. It is more preferable that the temperature be in the range of ° C to 130 ° C.
 エポキシ樹脂組成物中のエポキシ樹脂の総含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましい。 The total content of the epoxy resin in the epoxy resin composition is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass, in view of strength, fluidity, heat resistance, moldability, etc. It is more preferable that
 エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましく、1分子中に3個以上のエポキシ基を有するエポキシ樹脂(多官能エポキシ樹脂ともいう)を含んでもよい。後述のように、エポキシ樹脂組成物が硬化促進剤として有機リン化合物を含有する場合、実装時のパッケージの反りを制御する観点から、エポキシ樹脂の全質量に対する多官能エポキシ樹脂の含有率は10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、実質的に0質量%であることが特に好ましい。「実質的に0質量%」の含有率とは、多官能エポキシ樹脂の、実装時のパッケージの反りに対する影響が観察されない程度の含有率をいう。 The epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule, and may contain an epoxy resin (also referred to as a multifunctional epoxy resin) having three or more epoxy groups in one molecule. . As described later, when the epoxy resin composition contains an organic phosphorus compound as a curing accelerator, the content of the polyfunctional epoxy resin relative to the total mass of the epoxy resin is 10 mass from the viewpoint of controlling the warp of the package during mounting. % Or less is preferable, 5% by mass or less is more preferable, 1% by mass or less is still more preferable, and substantially 0% by mass is particularly preferable. The “substantially 0 mass%” content refers to the content of the polyfunctional epoxy resin to such an extent that the influence on the warp of the package at the time of mounting is not observed.
[硬化剤]
 本開示のエポキシ樹脂組成物は、硬化剤を含有する。硬化剤は、エポキシ樹脂と反応しうるものであれば特に制限されない。耐熱性向上の観点から、硬化剤は、1分子中に2個以上のフェノール性水酸基を有する化合物(以下、フェノール硬化剤ともいう)が好ましい。フェノール硬化剤は、低分子のフェノール化合物であっても、低分子のフェノール化合物を高分子化したフェノール樹脂であってもよい。熱伝導性の観点からは、フェノール硬化剤はフェノール樹脂であることが好ましい。硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
[Hardener]
The epoxy resin composition of the present disclosure contains a curing agent. The curing agent is not particularly limited as long as it can react with the epoxy resin. From the viewpoint of improving heat resistance, the curing agent is preferably a compound having two or more phenolic hydroxyl groups in one molecule (hereinafter also referred to as a phenol curing agent). The phenol curing agent may be a low molecular weight phenolic compound or a phenolic resin obtained by polymerizing a low molecular weight phenolic compound. From the viewpoint of thermal conductivity, the phenol curing agent is preferably a phenol resin. The curing agent may be used alone or in combination of two or more.
 フェノール硬化剤は、1分子中に2個以上のフェノール性水酸基を有するフェノール樹脂を含むことが好ましく、1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂(多官能フェノール樹脂ともいう)を含むことがより好ましい。 The phenol curing agent preferably contains a phenol resin having two or more phenolic hydroxyl groups in one molecule, and a phenol resin (also referred to as a polyfunctional phenol resin) having three or more phenolic hydroxyl groups in one molecule. It is more preferable to include.
 フェノール樹脂としては、特に制限されず、ビフェニレン型フェノール樹脂、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ベンズアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂との共重合樹脂、パラキシレン変性フェノール樹脂、トリフェニルメタン型フェノール樹脂等が挙げられる。中でも、成形性の観点からはトリフェニルメタン型フェノール樹脂が好ましい。流動性の観点からは、パラキシレン変性フェノール樹脂が好ましい。 The phenol resin is not particularly limited, and is not particularly limited, and biphenylene type phenol resin, aralkyl type phenol resin, dicyclopentadiene type phenol resin, copolymer resin of benzaldehyde type phenol resin and aralkyl type phenol resin, paraxylene modified phenol resin, triphenyl Methane type phenol resin etc. are mentioned. Among them, triphenylmethane-type phenol resin is preferable from the viewpoint of moldability. From the viewpoint of fluidity, para-xylene modified phenolic resin is preferred.
 パラキシレン変性フェノール樹脂としては、パラキシレン骨格を有する化合物を原料として得られるフェノール樹脂であれば特に制限されない。例えば、下記一般式(XV)で表されるフェノール樹脂であることが好ましい。 The paraxylene-modified phenolic resin is not particularly limited as long as it is a phenolic resin obtained using a compound having a paraxylene skeleton as a raw material. For example, it is preferable that it is a phenol resin represented by the following general formula (XV).
 下記一般式(XV)で表されるフェノール樹脂の中でも、XL-225(三井化学株式会社、商品名)、XLC(三井化学株式会社、商品名)、MEH-7800(明和化成株式会社、商品名)等が市販品として入手可能である。 Among the phenol resins represented by the following general formula (XV), XL-225 (Mitsui Chemical Co., Ltd., trade name), XLC (Mitsui Chemical Co., Ltd., trade name), MEH-7800 (Meiwa Kasei Co., Ltd., trade name) Etc. are commercially available.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(XV)中、R30は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iはそれぞれ独立に0~3の整数を示す。nは平均値であり、0~10の数である。なお、式(XV)において、芳香環上に存在する水素原子は非表示としている。 In formula (XV), R 30 represents a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. Each i independently represents an integer of 0 to 3. n is an average value and is a number of 0 to 10. In the formula (XV), hydrogen atoms present on the aromatic ring are not shown.
 トリフェニルメタン型フェノール樹脂としては、トリフェニルメタン骨格を有する化合物を原料として得られるフェノール樹脂であれば特に制限されない。例えば、下記一般式(XVI)で表されるフェノール樹脂が好ましい。 The triphenylmethane-type phenol resin is not particularly limited as long as it is a phenol resin obtained using a compound having a triphenylmethane skeleton as a raw material. For example, a phenol resin represented by the following general formula (XVI) is preferable.
 下記一般式(XVI)で表されるフェノール樹脂の中でも、iが0であり、kが0であるMEH-7500(明和化成株式会社、商品名)等が市販品として入手可能である。 Among the phenol resins represented by the following general formula (XVI), MEH-7500 (Meiwa Kasei Co., Ltd., trade name) or the like in which i is 0 and k is 0 is commercially available.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(XVI)中、R30及びR31は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iはそれぞれ独立に0~3の整数であり、kはそれぞれ独立に0~4の整数である。nは平均値であり、0~10の数である。なお、式(XVI)において、芳香環上に存在する水素原子は非表示としている。 In formula (XVI), R 30 and R 31 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. Each i is independently an integer of 0 to 3, and each k is independently an integer of 0 to 4. n is an average value and is a number of 0 to 10. In formula (XVI), hydrogen atoms present on the aromatic ring are not shown.
 硬化剤の水酸基当量は、特に制限されず、500g/eq以下であることが好ましく、400g/eq以下であることがより好ましく、300g/eq以下であることが更に好ましい。硬化剤の水酸基当量の下限は、50g/eq以上であることが好ましく、60g/eq以上であることがより好ましく、70g/eq以上であることが更に好ましい。硬化剤の水酸基当量の範囲は、50g/eq~500g/eqであることが好ましく、50g/eq~400g/eqであることがより好ましく、50g/eq~300g/eqであることが更に好ましい。 The hydroxyl equivalent of the curing agent is not particularly limited, and is preferably 500 g / eq or less, more preferably 400 g / eq or less, and still more preferably 300 g / eq or less. The lower limit of the hydroxyl equivalent of the curing agent is preferably 50 g / eq or more, more preferably 60 g / eq or more, and still more preferably 70 g / eq or more. The range of the hydroxyl equivalent of the curing agent is preferably 50 g / eq to 500 g / eq, more preferably 50 g / eq to 400 g / eq, and still more preferably 50 g / eq to 300 g / eq.
 中でも、硬化剤は水酸基当量150g/eq以下のフェノール硬化剤(以下、「特定フェノール硬化剤」ともいう)を含むことが好ましい。硬化剤が特定フェノール硬化剤を含むと、アルミナ粒子を含む無機充填材を含む場合にも、成形性の低下が抑えられる傾向にある。これは、硬化するときの架橋密度が上がり硬化性が向上することが一因と考えられる。また、硬化剤が特定フェノール硬化剤を含むと、硬化物の熱伝導性がより向上する傾向にある。この理由は明らかではないが、架橋点間分子量が比較的小さいことが熱伝導性に寄与していると推測される。特定フェノール硬化剤の水酸基当量は、50g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、60g/eq~110eqであることが更に好ましく、70g/eq~110g/eqであることが特に好ましい。 Among them, the curing agent preferably contains a phenol curing agent having a hydroxyl equivalent of 150 g / eq or less (hereinafter, also referred to as “specific phenol curing agent”). When the curing agent contains a specific phenol curing agent, the reduction in formability tends to be suppressed even in the case of containing an inorganic filler containing alumina particles. This is considered to be due to the increase in the crosslink density upon curing and the improvement of the curability. In addition, when the curing agent contains a specific phenol curing agent, the thermal conductivity of the cured product tends to be further improved. Although the reason for this is not clear, it is presumed that the relatively small cross-linking point molecular weight contributes to the thermal conductivity. The hydroxyl equivalent of the specific phenol curing agent is preferably 50 g / eq to 150 g / eq, more preferably 50 g / eq to 120 g / eq, still more preferably 60 g / eq to 110 eq, and 70 g / eq. Particularly preferred is eq ̃110 g / eq.
 フェノール硬化剤の水酸基当量は、JIS K 0070:1992に準じた方法により測定される値とする。 The hydroxyl equivalent of the phenol curing agent is a value measured by a method according to JIS K 0070: 1992.
 フェノール硬化剤が固体である場合、その融点又は軟化点は特に制限されない。フェノール硬化剤の融点又は軟化点は、50℃~250℃であることが好ましく、65℃~200℃であることがより好ましく、80℃~170℃であることが更に好ましい。 When the phenol curing agent is solid, its melting point or softening point is not particularly limited. The melting point or softening point of the phenol curing agent is preferably 50 ° C. to 250 ° C., more preferably 65 ° C. to 200 ° C., and still more preferably 80 ° C. to 170 ° C.
 フェノール硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。 The melting point or softening point of the phenol curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
 エポキシ樹脂組成物における、エポキシ樹脂と硬化剤との含有比率は、エポキシ樹脂のエポキシ基の当量数に対する硬化剤の官能基の当量数の比率(硬化剤の官能基の当量数/エポキシ基の当量数)が0.5~2.0の範囲となるように設定されることが好ましく、0.7~1.5となるように設定されることがより好ましく、0.8~1.3となるように設定されることが更に好ましい。前記比率が0.5以上であると、エポキシ樹脂の硬化が充分となり、硬化物の耐熱性、耐湿性、及び電気特性に優れる傾向にある。また、前記比率が2.0以下であると、硬化樹脂中に残存する硬化剤の官能基の量が抑えられ、電気特性及び耐湿性に優れる傾向にある。 In the epoxy resin composition, the content ratio of the epoxy resin to the curing agent is the ratio of the number of equivalents of the functional group of the curing agent to the number of equivalents of the epoxy group of the epoxy resin (the number of equivalents of the functional group of the curing agent / the equivalent of the epoxy group Is preferably set to be in the range of 0.5 to 2.0, more preferably set to be 0.7 to 1.5, and more preferably 0.8 to 1.3. It is further preferable to set to be When the ratio is 0.5 or more, curing of the epoxy resin is sufficient, and the heat resistance, moisture resistance, and electrical characteristics of the cured product tend to be excellent. In addition, when the ratio is 2.0 or less, the amount of the functional group of the curing agent remaining in the cured resin is suppressed, and the electrical characteristics and the moisture resistance tend to be excellent.
[無機充填材]
 本開示のエポキシ樹脂組成物は、アルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超15質量%以下含む無機充填材を含有する。無機充填材の含有率は組成物の全体積に対して75体積%~84体積%である。無機充填材は、アルミナ粒子とシリカ粒子以外の無機充填材を含んでもよく、アルミナ粒子とシリカ粒子のみを含んでもよく、アルミナ粒子のみを含んでもよい。シリカ粒子としては、球状シリカ、結晶シリカ等が挙げられる。
[Inorganic filler]
The epoxy resin composition of the present disclosure contains alumina particles, does not contain silica particles, or contains alumina particles and further contains silica particles in an amount of more than 0% by mass and 15% by mass or less based on the total amount of alumina particles and silica particles. Contains wood. The content of the inorganic filler is 75% by volume to 84% by volume based on the total volume of the composition. The inorganic filler may contain an inorganic filler other than alumina particles and silica particles, may contain only alumina particles and silica particles, or may contain only alumina particles. Spherical silica, crystalline silica, etc. are mentioned as a silica particle.
 無機充填材の平均粒子径は、特に制限されない。無機充填材の平均粒子径は、例えば、0.1μm~80μmであることが好ましく、0.3μm~50μmであることがより好ましい。本開示において、無機充填材の平均粒子径は、無機充填材としてアルミナ粒子が単独で用いられている場合にはアルミナ粒子の平均粒子径をいい、無機充填材としてアルミナ粒子とその他の無機充填材とが併用されている場合には無機充填材全体としての平均粒子径をいう。無機充填材の平均粒子径が0.1μm以上であると、エポキシ樹脂組成物の粘度の上昇を抑えやすい傾向にある。無機充填材の平均粒子径が80μm以下であると、エポキシ樹脂組成物と無機充填材との混合性が向上し、硬化によって得られるパッケージの状態がより均質化して特性のばらつきが抑えられる傾向にあり、更に狭い領域への充填性が向上する傾向にある。なお、無機充填材の粒子径の分布は、0.1μm~80μmの範囲内に最大値を有することが好ましい。 The average particle size of the inorganic filler is not particularly limited. The average particle size of the inorganic filler is, for example, preferably 0.1 μm to 80 μm, and more preferably 0.3 μm to 50 μm. In the present disclosure, the average particle size of the inorganic filler refers to the average particle size of the alumina particles when alumina particles are used alone as the inorganic filler, and alumina particles and other inorganic fillers as the inorganic filler When and are used together, the average particle diameter as the whole inorganic filler is said. When the average particle size of the inorganic filler is 0.1 μm or more, the increase in the viscosity of the epoxy resin composition tends to be easily suppressed. When the average particle diameter of the inorganic filler is 80 μm or less, the mixing property of the epoxy resin composition and the inorganic filler is improved, and the package obtained by curing tends to be more homogeneous and the variation of the characteristics is suppressed. There is a tendency that the filling property to the narrow area is further improved. The particle size distribution of the inorganic filler preferably has a maximum value in the range of 0.1 μm to 80 μm.
 中でも、アルミナ粒子の平均粒子径は、例えば、0.1μm~80μmであることが好ましく、0.3μm~50μmであることがより好ましい。アルミナ粒子の平均粒子径が0.1μm以上であると、エポキシ樹脂組成物の粘度の上昇を抑えやすい傾向にある。アルミナ粒子の平均粒子径が80μm以下であると、エポキシ樹脂組成物とアルミナ粒子との混合性が向上し、硬化によって得られるパッケージの状態がより均質化して特性のばらつきが抑えられる傾向にあり、更に狭い領域への充填性が向上する傾向にある。 Among them, the average particle diameter of the alumina particles is, for example, preferably 0.1 μm to 80 μm, and more preferably 0.3 μm to 50 μm. When the average particle size of the alumina particles is 0.1 μm or more, the increase in viscosity of the epoxy resin composition tends to be easily suppressed. When the average particle size of the alumina particles is 80 μm or less, the mixing property of the epoxy resin composition and the alumina particles is improved, and the state of the package obtained by curing tends to be more homogeneous to suppress the dispersion of characteristics. Furthermore, the filling property in a narrow area tends to be improved.
 特に、高熱伝導性の観点からは、アルミナ粒子の平均粒子径は1μm~50μmであることが好ましく、2μm~30μmであることがより好ましい。中でも、アルミナ粒子の平均粒子径が10μm以上であると、熱伝導性に優れる傾向にある。これは、熱伝導パスが形成されやすいためであると考えられる。 In particular, from the viewpoint of high thermal conductivity, the average particle diameter of the alumina particles is preferably 1 μm to 50 μm, and more preferably 2 μm to 30 μm. Among them, when the average particle diameter of the alumina particles is 10 μm or more, the heat conductivity tends to be excellent. It is considered that this is because a heat conduction path is easily formed.
 また、無機充填材がシリカ粒子を含む場合、シリカ粒子の平均粒子径は、例えば、0.1μm~50μmであることが好ましく、0.3μm~30μmであることがより好ましく、0.5μm~20μmであることが更に好ましい。中でも、シリカ粒子の平均粒子径が10μm以上であると、硬化したときのパッケージの反りを抑制できる傾向にある。シリカ粒子の平均粒子径が50μm以下であると、流動性が向上する傾向にある。 When the inorganic filler contains silica particles, the average particle diameter of the silica particles is, for example, preferably 0.1 μm to 50 μm, more preferably 0.3 μm to 30 μm, and more preferably 0.5 μm to 20 μm. It is further preferred that Among them, when the average particle diameter of the silica particles is 10 μm or more, the warp of the package when cured tends to be suppressed. When the average particle size of the silica particles is 50 μm or less, the flowability tends to be improved.
 本開示において無機充填材の平均粒子径は、乾式の粒度分布計を使用して、又は、水若しくは有機溶媒中に無機充填材を分散したスラリーの状態で湿式の粒度分布測定装置を使用して測定できる。特に1μm以下の粒子を含む場合は、湿式の粒度分布計を使用して測定することが好ましい。具体的には、無機充填材の濃度を約0.01質量%に調整した水スラリーをバス式超音波洗浄機で5分間処理し、レーザー回折式粒度測定装置(LA-960、株式会社堀場製作所)を用いて検出された全粒子の平均値より求めることができる。本開示において平均粒子径とは、体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50)を表す。 In the present disclosure, the average particle size of the inorganic filler is measured using a dry particle size distribution analyzer, or using a wet particle size distribution measuring apparatus in the state of a slurry in which the inorganic filler is dispersed in water or an organic solvent. It can measure. In particular, when particles of 1 μm or less are contained, measurement is preferably performed using a wet particle size distribution analyzer. Specifically, a water slurry in which the concentration of the inorganic filler is adjusted to about 0.01% by mass is treated with a bath type ultrasonic cleaner for 5 minutes, and a laser diffraction type particle size measuring apparatus (LA-960, HORIBA, Ltd. It can be determined from the average value of all particles detected using In the present disclosure, the average particle size refers to the particle size (D50) at which the accumulation from the small diameter side is 50% in the volume-based particle size distribution.
 一実施形態において、熱伝導性の観点から、平均粒子径が1μm以上のアルミナ粒子と平均粒子径が1μm未満のアルミナ粒子とを組み合わせて用いることが好ましい。例えば、平均粒子径が1μm~50μmのアルミナ粒子と平均粒子径が0.1μm以上1μm未満のアルミナ粒子を組み合わせて用いることが好ましく、平均粒子径が5μm~50μmのアルミナ粒子と平均粒子径が0.1μm以上1μm未満のアルミナ粒子とを組み合わせて用いることがより好ましく、平均粒子径が5μm~30μmのアルミナ粒子と平均粒子径が0.3μm以上1μm未満のアルミナ粒子とを組み合わせて用いることが更に好ましい。
 また、無機充填材がさらにシリカ粒子を含む場合には、流動性の観点からは、平均粒径が1μm以下のシリカ粒子を組み合わせて用いることが好ましい。例えば、平均粒子径が0.1μm~1μmのシリカ粒子を組み合わせて用いることが好ましく、平均粒子径が0.2μm~1μmのシリカ粒子を組み合わせて用いることがより好ましく、平均粒子径が0.3μm~1μmのシリカ粒子を組み合わせて用いることが更に好ましい。
 エポキシ樹脂組成物が上記のように組み合わせた無機充填材を含有することは、例えば無機充填材の体積基準の粒度分布(頻度分布)を求めることで確認することができる。
In one embodiment, from the viewpoint of thermal conductivity, it is preferable to use alumina particles having an average particle diameter of 1 μm or more and alumina particles having an average particle diameter of less than 1 μm in combination. For example, it is preferable to use alumina particles having an average particle diameter of 1 μm to 50 μm in combination with alumina particles having an average particle diameter of 0.1 μm to less than 1 μm, and alumina particles having an average particle diameter of 5 μm to 50 μm and an average particle diameter of 0. More preferably, it is used in combination with alumina particles of 1 μm or more and less than 1 μm, and it is more preferable to use alumina particles with an average particle diameter of 5 μm to 30 μm and alumina particles with an average particle diameter of 0.3 μm or more and less than 1 μm. preferable.
When the inorganic filler further contains a silica particle, it is preferable to use a combination of silica particles having an average particle diameter of 1 μm or less from the viewpoint of fluidity. For example, it is preferable to use a combination of silica particles having an average particle diameter of 0.1 μm to 1 μm, more preferably a combination of silica particles having an average particle diameter of 0.2 μm to 1 μm, and an average particle diameter of 0.3 μm It is more preferable to use silica particles of 1 to 1 μm in combination.
The inclusion of the inorganic filler in which the epoxy resin composition is combined as described above can be confirmed, for example, by determining the volume-based particle size distribution (frequency distribution) of the inorganic filler.
 平均粒子径が1μm以上のアルミナ粒子と、平均粒子径が1μm未満のアルミナ粒子とを組み合わせて用いる場合の混合割合は特に制限されない。例えば、平均粒子径が1μm以下のアルミナ粒子の割合が、アルミナ粒子全量に対して5質量%~20質量%となるように配合することが好ましく、10質量%~15質量%となるように配合することがより好ましい。 There is no particular limitation on the mixing ratio when alumina particles having an average particle size of 1 μm or more and alumina particles having an average particle size of less than 1 μm are used in combination. For example, the proportion of alumina particles having an average particle diameter of 1 μm or less is preferably 5 to 20% by mass with respect to the total amount of alumina particles, and is preferably 10 to 15% by mass. It is more preferable to do.
 エポキシ樹脂組成物の流動性の観点から、無機充填材の粒子形状は球形が好ましく、無機充填材の粒度分布は広範囲に分布したものが好ましい。例えば、無機充填材の70質量%以上を球状粒子とし、この球状粒子の粒子径は0.1μm~80μmという広範囲に分布したものとすることが好ましい。このような無機充填材は、大きさが異なる粒子が混在することで最密充填構造を形成しやすいため、無機充填材の含有率を増加させてもエポキシ樹脂組成物の粘度上昇が抑えられ、流動性に優れるエポキシ樹脂組成物が得られる傾向にある。 From the viewpoint of the fluidity of the epoxy resin composition, the particle shape of the inorganic filler is preferably spherical, and the particle size distribution of the inorganic filler is preferably widely distributed. For example, it is preferable that 70% by mass or more of the inorganic filler be spherical particles, and the particle diameter of the spherical particles be distributed in a wide range of 0.1 μm to 80 μm. Such an inorganic filler easily forms a close-packed structure by mixing particles having different sizes, and therefore, even if the content of the inorganic filler is increased, the increase in viscosity of the epoxy resin composition is suppressed. It tends to be able to obtain the epoxy resin composition which is excellent in fluidity.
 無機充填材の含有率は、組成物の全体積に対して75体積%~84体積%であり、熱伝導性、流動性等の特性バランスの観点から、76体積%~84体積%であることが好ましく、77体積%~83体積%であることがより好ましい。
 また、無機充填材の含有率は、熱伝導性、流動性等の特性バランスの観点から、組成物の全質量に対して、90質量%~96質量%であることが好ましく、91質量%~95質量%であることがより好ましく、92質量%~94質量%であることが更に好ましい。
The content of the inorganic filler is 75% by volume to 84% by volume with respect to the total volume of the composition, and 76% by volume to 84% by volume from the viewpoint of the balance of characteristics such as thermal conductivity and flowability. Is preferable, and 77% by volume to 83% by volume is more preferable.
In addition, the content of the inorganic filler is preferably 90% by mass to 96% by mass, based on the total mass of the composition, from 91% by mass to the total mass of the composition, from the viewpoint of property balance such as thermal conductivity and fluidity. It is more preferably 95% by mass, and still more preferably 92% by mass to 94% by mass.
 無機充填材は、アルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超15質量%以下含む。熱伝導性と流動性の観点から、無機充填材はアルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超10質量%以下含むことが好ましい。例えば、無機充填材はアルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超5質量%以下含むものとしてもよい。また、無機充填材はアルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して5質量%~10質量%含むものとしてもよい。アルミナ粒子にシリカ粒子を併用すると流動性が向上する傾向にある。この理由は明らかではないが、アルミナ粒子間の接触面積が減少し、アルミナ粒子間の摩擦が低減されるためであると推測される。 The inorganic filler contains alumina particles and does not contain silica particles, or contains alumina particles and further contains silica particles in an amount of more than 0% by mass and 15% by mass or less based on the total amount of alumina particles and silica particles. From the viewpoint of thermal conductivity and flowability, the inorganic filler contains alumina particles or contains no silica particles, or contains alumina particles, and further contains silica particles in an amount of more than 0% by mass to 10% by mass relative to the total amount of alumina particles and silica particles. It is preferable to contain% or less. For example, the inorganic filler may contain alumina particles and no silica particles, or may contain alumina particles and further contain silica particles in an amount of more than 0% by mass and 5% by mass or less based on the total amount of alumina particles and silica particles. The inorganic filler may contain alumina particles and further contain 5 to 10% by mass of silica particles based on the total amount of the alumina particles and the silica particles. The use of silica particles in combination with alumina particles tends to improve the flowability. Although the reason for this is not clear, it is presumed that the contact area between the alumina particles is reduced and the friction between the alumina particles is reduced.
 アルミナ粒子とシリカ粒子以外の無機充填材としては、特に制限されず、ガラス、炭酸カルシウム、ケイ酸ジルコニウム、酸化マグネシウム、ケイ酸カルシウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、炭化ケイ素、工業用ダイヤモンド、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機物の粒子、これらの粒子を球形化したビーズなどが挙げられる。その他、難燃効果のある無機充填材を使用してもよい。難燃効果のある無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛との複合水酸化物等の複合金属水酸化物、ホウ酸亜鉛などの粒子が挙げられる。アルミナ粒子とシリカ粒子以外の無機充填材は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 The inorganic filler other than the alumina particles and the silica particles is not particularly limited, and glass, calcium carbonate, zirconium silicate, magnesium oxide, calcium silicate, silicon nitride, aluminum nitride, boron nitride, silicon carbide, industrial diamond, Particles of inorganic substances such as beryllia, zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc, clay and mica, beads obtained by spheroidizing these particles, and the like can be mentioned. In addition, inorganic fillers having a flame retardant effect may be used. Examples of the inorganic filler having a flame retardant effect include particles of a composite metal hydroxide such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like. The inorganic particles other than the alumina particles and the silica particles may be used alone or in combination of two or more.
 無機充填材の全体積に対する、アルミナ粒子とシリカ粒子以外の無機充填材の含有率は、20体積%以下であることが好ましく、10体積%以下であることがより好ましく、5体積%以下であることが更に好ましく、2体積%以下であることが特に好ましい。 The content of the inorganic filler other than the alumina particles and the silica particles is preferably 20% by volume or less, more preferably 10% by volume or less, and 5% by volume or less based on the total volume of the inorganic filler. Is more preferable, and 2% by volume or less is particularly preferable.
 無機充填材の空隙率は特に制限されず、18体積%以下であることが好ましく、16体積%以下であることがより好ましく、15体積%以下であることが更に好ましく、14体積%以下であることが特に好ましい。無機充填材の空隙率は7体積%以上であってもよい。無機充填材が1種類の場合には、無機充填材の空隙率は1種類の無機充填材についての空隙率を意味し、無機充填材が2種類以上の場合には、無機充填材の空隙率は2種類以上の無機充填材の混合物についての空隙率を意味する。 The porosity of the inorganic filler is not particularly limited, and is preferably 18% by volume or less, more preferably 16% by volume or less, still more preferably 15% by volume or less, and 14% by volume or less Is particularly preferred. The porosity of the inorganic filler may be 7% by volume or more. In the case of one type of inorganic filler, the porosity of the inorganic filler means the porosity of one type of inorganic filler, and in the case of two or more types of inorganic fillers, the porosity of the inorganic filler Means a porosity for a mixture of two or more inorganic fillers.
 無機充填材の空隙率は、無機充填材の嵩体積に占める空隙の割合((空隙/無機充填材の嵩体積)×100(%))を表す値である。無機充填材の重さが同じであれば、空隙率が小さくなるに従い無機充填材の嵩体積は小さくなる。エポキシ樹脂組成物に含まれる無機充填材の嵩体積が小さくなると、エポキシ樹脂組成物に含まれる無機充填材の含有量が同じであっても、エポキシ樹脂組成物の体積から無機充填材の嵩体積を差し引いて得られる値は大きくなる。以下、この値を「余剰樹脂の量」と称することがある。無機充填材の空隙率が小さくなる(すなわち、余剰樹脂の量が大きくなる)と、エポキシ樹脂組成物の硬化性、流動性、成形性及び硬化物としたときの熱伝導性が向上する傾向にある。この理由は明確ではないが、余剰樹脂の量が増加することでエポキシ樹脂組成物の粘度が低減して流動性が向上すると考えられる。また、余剰樹脂の量が増加することで、エポキシ樹脂組成物の混練時の分散性が良くなり、硬化性、成形性及び硬化物としたときの熱伝導性が向上すると推測される。 The porosity of the inorganic filler is a value representing the ratio of the void to the bulk volume of the inorganic filler ((void / bulk volume of the inorganic filler) × 100 (%)). If the weight of the inorganic filler is the same, the bulk volume of the inorganic filler decreases as the porosity decreases. When the bulk volume of the inorganic filler contained in the epoxy resin composition is reduced, the volume of the inorganic filler is determined from the volume of the epoxy resin composition even if the content of the inorganic filler contained in the epoxy resin composition is the same. The value obtained by subtracting becomes larger. Hereinafter, this value may be referred to as "the amount of surplus resin". When the porosity of the inorganic filler decreases (that is, the amount of excess resin increases), the curability of the epoxy resin composition, the flowability, the moldability and the thermal conductivity of the cured product tend to be improved. is there. Although the reason is not clear, it is considered that the viscosity of the epoxy resin composition is reduced and the fluidity is improved by the increase of the amount of the excess resin. Moreover, it is estimated that the dispersibility at the time of kneading | mixing of an epoxy resin composition becomes good, and the heat conductivity when it is set as hardened | cured material and a hardened | cured material improve because the quantity of excessive resin increases.
 無機充填材の空隙率は、下記方法により測定された値をいう。
 エポキシ樹脂組成物をるつぼに入れ、800℃で4時間放置し、灰化させる。得られた灰分の粒度分布を、レーザー回折式粒度分布計(例えば、株式会社堀場製作所、LA920)を用いてアルミナの屈折率を適用して測定する。粒度分布から下記の大内山の式を用いて、空隙率εを算出する。なお、大内山の式に関しては、下記文献に詳しい。
 N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam. , 19, 338 (1980)
 N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam. , 20, 66 (1981)
 N. Ouchiyama and T.Tanaka, Ind. Eng. Chem. Fundam. , 23, 490 (1984)
The porosity of an inorganic filler says the value measured by the following method.
The epoxy resin composition is placed in a crucible and left at 800 ° C. for 4 hours to incinerate. The particle size distribution of the obtained ash content is measured by applying the refractive index of alumina using a laser diffraction type particle size distribution analyzer (for example, LA 920 manufactured by Horiba, Ltd.). The void ratio ε is calculated from the particle size distribution using the following equation of Ouchiyama. The details of Ouchiyama's formula are described in the following documents.
N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 19, 338 (1980)
N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 20, 66 (1981)
N. Ouchiyama and T. Tanaka, Ind. Eng. Chem. Fundam. , 23, 490 (1984)
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 無機充填材の粒度分布は特に制限されない。例えば、無機充填材の体積基準の粒度分布における、粒子径が1μm以下の粒子の割合は9体積%以上であり、粒子径が1μmを超え10μm以下の粒子の割合は45体積%以下であり、粒子径が10μmを超え30μm以下の粒子の割合は20体積%以上であり、粒子径が30μmを超える粒子の割合は18体積%以上であることが好ましい。このような特定の粒度分布を示す無機充填材を含有すると、硬化性、流動性及び成形性に優れ、硬化物としたときの熱伝導性に優れる傾向にある。
 無機充填材の体積基準の粒度分布における、粒子径が1μm以下の粒子の割合は11体積%以上であり、粒子径が1μmを超え10μm以下の粒子の割合は40体積%以下であり、粒子径が10μmを超え30μm以下の粒子の割合は22体積%以上であり、粒子径が30μmを超える粒子の割合は20体積%以上であることがより好ましい。
 無機充填材の体積基準の粒度分布における、粒子径が1μm以下の粒子の割合は12体積%以上であり、粒子径が1μmを超え10μm以下の粒子の割合は30体積%以下であり、粒子径が10μmを超え30μm以下の粒子の割合は24体積%以上であり、粒子径が30μmを超える粒子の割合は30体積%以上であることが更に好ましい。
 無機充填材の体積基準の粒度分布における、粒子径が1μm以下の粒子の割合は20体積%以下であり、粒子径が1μmを超え10μm以下の粒子の割合は15体積%以上であり、粒子径が10μmを超え30μm以下の粒子の割合は35体積%以下であり、粒子径が30μmを超える粒子の割合は45体積%以下であってもよい。
The particle size distribution of the inorganic filler is not particularly limited. For example, in the volume-based particle size distribution of the inorganic filler, the proportion of particles having a particle size of 1 μm or less is 9 volume% or more, and the proportion of particles having a particle size of more than 1 μm and 10 μm or less is 45 volume% or less The proportion of particles having a particle size of more than 10 μm and 30 μm or less is preferably 20% by volume or more, and the proportion of particles having a particle size of more than 30 μm is preferably 18% by volume or more. When an inorganic filler exhibiting such a specific particle size distribution is contained, the composition tends to be excellent in curability, flowability and moldability, and excellent in thermal conductivity when it is a cured product.
In the volume-based particle size distribution of the inorganic filler, the ratio of particles having a particle diameter of 1 μm or less is 11 volume% or more, and the ratio of particles having a particle size of more than 1 μm to 10 μm is 40 volume% or less The proportion of particles having a diameter of more than 10 μm and 30 μm or less is preferably 22% by volume or more, and the proportion of particles having a particle size of more than 30 μm is more preferably 20% by volume or more.
In the volume-based particle size distribution of the inorganic filler, the ratio of particles having a particle diameter of 1 μm or less is 12 volume% or more, and the ratio of particles having a particle size of more than 1 μm to 10 μm is 30 volume% or less It is more preferable that the proportion of particles having a diameter of more than 10 μm and 30 μm or less is 24% by volume or more, and the proportion of particles having a particle size of more than 30 μm is 30% by volume or more.
In the volume-based particle size distribution of the inorganic filler, the ratio of particles having a particle size of 1 μm or less is 20 volume% or less, and the ratio of particles having a particle size of more than 1 μm to 10 μm is 15 volume% or more. The ratio of particles having a diameter of more than 10 μm and 30 μm or less may be 35% by volume or less, and the ratio of particles having a particle size of more than 30 μm may be 45% by volume or less.
 無機充填材の体積基準の粒度分布は、以下の方法により測定することができる。
 溶媒(純水)に、測定対象の無機充填材を1質量%~5質量%の範囲内で界面活性剤1質量%~8質量%とともに添加し、110Wの超音波洗浄機で30秒~5分間振動し、無機充填材を分散する。分散液の約3mL程度を測定セルに注入して25℃で測定する。測定装置は、レーザー回折式粒度分布計(例えば、株式会社堀場製作所、LA920)を用い、体積基準の粒度分布を測定する。平均粒子径は、体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50%)として求められる。なお、屈折率はアルミナ粒子の屈折率を用いる。無機充填材がアルミナ粒子とその他の無機充填材の混合物である場合においては、屈折率はアルミナ粒子の屈折率を用いるものとする。
The volume-based particle size distribution of the inorganic filler can be measured by the following method.
The inorganic filler to be measured is added to the solvent (pure water) in the range of 1% by mass to 5% by mass together with 1% by mass to 8% by mass of the surfactant, and 30 seconds to 5 seconds by a 110 W ultrasonic cleaner. Vibrate for a minute to disperse the inorganic filler. About 3 mL of the dispersion is injected into the measuring cell and measured at 25 ° C. The measuring apparatus measures the particle size distribution based on volume using a laser diffraction type particle size distribution analyzer (for example, LA920, manufactured by Horiba, Ltd.). The average particle size is determined as the particle size (D 50%) at which the accumulation from the small diameter side in the volume-based particle size distribution is 50%. The refractive index is the refractive index of alumina particles. In the case where the inorganic filler is a mixture of alumina particles and other inorganic fillers, the refractive index is the refractive index of alumina particles.
 無機充填材の粒度分布を調整する方法は特に制限されない。例えば、平均粒子径が0.5μm程度の小粒径の無機充填材と、平均粒子径が2μm程度の中粒径の無機充填材と、平均粒子径が45μm程度の大粒径の無機充填材とを適宜組み合わせて上記に例示した体積基準の粒度分布を示す無機充填材を調製してもよい。 The method for adjusting the particle size distribution of the inorganic filler is not particularly limited. For example, a small particle size inorganic filler having an average particle size of about 0.5 μm, a medium particle size inorganic filler having an average particle size of about 2 μm, and a large particle size inorganic filler having an average particle size of about 45 μm And the inorganic filler which exhibits the volume-based particle size distribution exemplified above.
〔可塑剤〕
 エポキシ樹脂組成物は、可塑剤を含有する。エポキシ樹脂組成物が可塑剤を含有すると、アルミナ粒子を含む無機充填材を高充填としても、ワイヤ流れ等の発生を抑制できる傾向にある。この理由は、高温弾性率の低下及び流動性の向上に起因するものと推測される。可塑剤としては、トリフェニルホスフィンオキシド、リン酸エステル等の有機リン化合物、シリコーン、これらの変性化合物などが挙げられる。また、可塑剤としてインデン-スチレン共重合物も好適に用いられる。中でも、可塑剤は有機リン化合物を含むことが好ましく、トリフェニルホスフィンオキシドを含むことがより好ましい。可塑剤の含有率は、エポキシ樹脂に対して0.001質量%~30質量%であることが好ましく、5質量%~20質量%であることがより好ましく、5質量%~15質量%であることが更に好ましい。可塑剤は1種を単独で用いても2種以上組み合わせて用いてもよい。
[Plasticizer]
The epoxy resin composition contains a plasticizer. When the epoxy resin composition contains a plasticizer, even when the inorganic filler containing alumina particles is highly filled, generation of wire flow and the like tends to be suppressed. The reason is presumed to be due to the decrease in high temperature elastic modulus and the improvement in fluidity. Examples of the plasticizer include organic phosphorus compounds such as triphenyl phosphine oxide and phosphoric acid esters, silicones, modified compounds thereof and the like. Further, an indene-styrene copolymer is also suitably used as a plasticizer. Among them, the plasticizer preferably contains an organophosphorus compound, and more preferably triphenylphosphine oxide. The content of the plasticizer is preferably 0.001% by mass to 30% by mass, more preferably 5% by mass to 20% by mass, and 5% by mass to 15% by mass with respect to the epoxy resin. Is more preferred. The plasticizer may be used alone or in combination of two or more.
[硬化促進剤]
 本開示のエポキシ樹脂組成物は、必要に応じて硬化促進剤を含有してもよい。硬化促進剤としては、封止用エポキシ樹脂組成物に一般に用いられるものを適宜選択して使用することができる。硬化促進剤としては、例えば、有機リン化合物、イミダゾール化合物、第3級アミン、及び第4級アンモニウム塩が挙げられる。中でも、有機リン化合物が好ましい。硬化促進剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
[Hardening accelerator]
The epoxy resin composition of the present disclosure may optionally contain a curing accelerator. As a hardening accelerator, what is generally used for the epoxy resin composition for sealing can be selected suitably, and can be used. Examples of the curing accelerator include organic phosphorus compounds, imidazole compounds, tertiary amines, and quaternary ammonium salts. Among them, organic phosphorus compounds are preferable. The curing accelerator may be used alone or in combination of two or more.
 有機リン化合物としては、 トリブチルホスフィン、フェニルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン、メチルジフェニルホスフィン、トリパラトリルホスフィン等の有機ホスフィン類、及びこれらのホスフィン類に無水マレイン酸、ベンゾキノン、ジアゾフェニルメタン等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物(例えば、トリフェニルホスフィンとベンゾキノンの付加物、及びトリパラトリルホスフィンとベンゾキノンの付加物);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、トリフェニルホスホニウム-トリフェニルボランなどが挙げられる。硬化促進剤として有機リン化合物を用いると、エポキシ樹脂組成物を用いて封止された電子部品装置において高い信頼性が得られる傾向にある。この理由は明らかではないが、以下のように考えることができる。一般的に、エポキシ樹脂組成物がアルミナ粒子を含有する場合、硬化性が低下することから、硬化促進剤の使用量を増やす傾向にある。しかしながら、硬化促進剤を増量すると、エポキシ樹脂の原料であるエピクロロヒドリンに由来する塩素と硬化促進剤との反応により発生する塩素イオンの量が増加し、電子部品装置の信頼性を低下させる場合がある。一方、有機リン化合物は反応性が高すぎないことから、硬化促進剤として有機リン化合物を使用すると、塩素との反応が抑えられるため、塩素イオンの発生も抑えられ、信頼性の低下を抑制することができると考えられる。 Organic phosphorus compounds such as organic phosphines such as tributyl phosphine, phenyl phosphine, diphenyl phosphine, triphenyl phosphine, methyl diphenyl phosphine, triparatolyl phosphine and the like, and phosphines such as maleic anhydride, benzoquinone, diazophenyl methane and the like π Phosphorus compounds having an intramolecular polarization formed by adding a compound having a bond (for example, an adduct of triphenylphosphine and benzoquinone, and an adduct of triparatolylphosphine and benzoquinone); tetraphenylphosphonium tetraphenylborate, triphenylphosphinetetra Examples include phenyl borate, 2-ethyl-4-methylimidazole tetraphenyl borate, triphenyl phosphonium triphenyl borane and the like. When an organophosphorus compound is used as a curing accelerator, high reliability tends to be obtained in an electronic component device sealed using an epoxy resin composition. Although the reason for this is not clear, it can be considered as follows. In general, when the epoxy resin composition contains alumina particles, the curability is reduced, and therefore, the amount of the curing accelerator tends to be increased. However, when the amount of the curing accelerator is increased, the amount of chlorine ions generated by the reaction between the chlorine derived from epichlorohydrin, which is a raw material of the epoxy resin, and the curing accelerator increases, which reduces the reliability of the electronic component device. There is a case. On the other hand, since the organophosphorus compound is not too reactive, when the organophosphorus compound is used as a curing accelerator, the reaction with chlorine is suppressed, and the generation of chloride ion is also suppressed, thereby suppressing the decrease in reliability. It is thought that can be done.
 エポキシ樹脂組成物が硬化促進剤を含有する場合、硬化促進剤の含有率は特に制限されず、例えば、エポキシ樹脂及び硬化剤の総量に対して1.0質量%~10質量%であることが好ましく、1.5質量%~7質量%であることがより好ましく、1.8質量%~6質量%であることが更に好ましい。 When the epoxy resin composition contains a curing accelerator, the content of the curing accelerator is not particularly limited, and for example, it is 1.0% by mass to 10% by mass with respect to the total amount of the epoxy resin and the curing agent The content is preferably 1.5% by mass to 7% by mass, and more preferably 1.8% by mass to 6% by mass.
[有機溶剤]
 本開示のエポキシ樹脂組成物は、有機溶剤を含有してもよい。エポキシ樹脂組成物が有機溶剤を含有すると、組成物の粘度が低下し、混練性及び流動性が向上する傾向にある。有機溶剤は特に制限されず、例えば、沸点が50℃~100℃である有機溶剤(以下、特定有機溶剤ともいう)を含有してもよい。
[Organic solvent]
The epoxy resin composition of the present disclosure may contain an organic solvent. When the epoxy resin composition contains an organic solvent, the viscosity of the composition tends to decrease, and the kneadability and fluidity tend to be improved. The organic solvent is not particularly limited, and may contain, for example, an organic solvent having a boiling point of 50 ° C. to 100 ° C. (hereinafter also referred to as a specific organic solvent).
 特定有機溶剤は特に制限されず、例えば、沸点が50℃~100℃であり、好ましくはエポキシ樹脂組成物中の成分と非反応性のものを適宜選択して使用することができる。特定有機溶剤としては、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、エステル系溶剤等が挙げられる。中でもアルコール系溶剤が好ましく、メタノール(沸点64.7℃)、エタノール(沸点78.37℃)、プロパノール(沸点97℃)及びイソプロパノール(沸点82.6℃)がより好ましい。特定有機溶剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。なお、特定有機溶剤としては、エポキシ樹脂組成物を調製する際に添加されるものであってもよく、エポキシ樹脂組成物を調製する際の混練過程の反応で発生するものであってもよい。なお、本開示において特定有機溶剤の沸点は、常圧にて測定される特定有機溶剤の沸点を指す。 The specific organic solvent is not particularly limited, and, for example, one having a boiling point of 50 ° C. to 100 ° C., preferably one that is nonreactive with the components in the epoxy resin composition can be appropriately selected and used. Examples of the specific organic solvent include alcohol solvents, ether solvents, ketone solvents, ester solvents and the like. Among them, alcohol solvents are preferable, and methanol (boiling point 64.7 ° C.), ethanol (boiling point 78.37 ° C.), propanol (boiling point 97 ° C.) and isopropanol (boiling point 82.6 ° C.) are more preferable. The specific organic solvents may be used alone or in combination of two or more. In addition, as a specific organic solvent, it may be added when preparing an epoxy resin composition, and it may generate | occur | produce in the reaction of the kneading process at the time of preparing an epoxy resin composition. In the present disclosure, the boiling point of the specific organic solvent refers to the boiling point of the specific organic solvent measured at normal pressure.
 エポキシ樹脂組成物中の特定有機溶剤の含有率は、特に制限されない。特定有機溶剤の含有率は、例えば、エポキシ樹脂組成物の全質量に対して0.1質量%~10質量%であることが好ましく、熱伝導性をより向上させる観点から、0.3質量%~4.0質量%であることがより好ましく、0.3質量%~3.0質量%であることが更に好ましく、0.3質量%~2.5質量%であることが特に好ましい。特定有機溶剤の含有率が0.3質量%以上であると、流動性の向上効果がより高まる傾向にある。特定有機溶剤の含有率が3.0質量%以下であると、エポキシ樹脂組成物中のエポキシ樹脂を硬化するときにボイドの発生がより抑制され、絶縁信頼性の低下がより抑制される傾向にある。 The content of the specific organic solvent in the epoxy resin composition is not particularly limited. The content of the specific organic solvent is, for example, preferably 0.1% by mass to 10% by mass with respect to the total mass of the epoxy resin composition, and from the viewpoint of further improving the thermal conductivity, 0.3% by mass It is more preferably ~ 4.0% by mass, still more preferably 0.3% by mass to 3.0% by mass, and particularly preferably 0.3% by mass to 2.5% by mass. When the content of the specific organic solvent is 0.3% by mass or more, the effect of improving the fluidity tends to be further enhanced. When the content of the specific organic solvent is 3.0% by mass or less, generation of voids is further suppressed when the epoxy resin in the epoxy resin composition is cured, and a decrease in insulation reliability is further suppressed. is there.
 特定有機溶剤中のアルコール系溶剤の含有率は、特に限定されない。アルコール系溶剤の含有率は、例えば、特定有機溶剤の全質量に対して50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、95質量%以上であることが特に好ましい。また、エポキシ樹脂組成物は、アルコール系溶剤以外の特定有機溶剤を実質的に含有していなくてもよい。 The content rate of the alcohol solvent in the specific organic solvent is not particularly limited. The content of the alcohol solvent is, for example, preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more based on the total mass of the specific organic solvent. And particularly preferably 95% by mass or more. In addition, the epoxy resin composition may not substantially contain a specific organic solvent other than the alcohol solvent.
[添加剤]
 エポキシ樹脂組成物は、必要に応じて陰イオン交換体、離型剤、難燃剤、カップリング剤、応力緩和剤、着色剤等の添加剤を含有してもよい。
[Additive]
The epoxy resin composition may contain additives such as an anion exchanger, a mold release agent, a flame retardant, a coupling agent, a stress relaxation agent, a colorant and the like as necessary.
(陰イオン交換体)
 エポキシ樹脂組成物は、必要に応じて陰イオン交換体を含有してもよい。特に、エポキシ樹脂組成物を封止材料として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、陰イオン交換体を含有することが好ましい。
(Anion exchanger)
The epoxy resin composition may optionally contain an anion exchanger. In particular, when using an epoxy resin composition as a sealing material, it is preferable to contain an anion exchanger from the viewpoint of improving the moisture resistance and the high-temperature standing characteristics of the electronic component device provided with the element to be sealed.
 陰イオン交換体は特に制限されず、従来から当該技術分野において一般的に使用されるものから選択できる。例えば、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスから選ばれる元素の含水酸化物が挙げられる。 The anion exchanger is not particularly limited and can be selected from those conventionally used commonly in the art. For example, hydrotalcite compounds and hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium and bismuth can be mentioned.
 陰イオン交換体は特に制限されず、従来から当該技術分野において一般に使用されるものから選択できる。陰イオン交換体としては、例えば、下記式(I)で示される組成のハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム、ビスマス及びアンチモンからなる群より選ばれる元素の含水酸化物が挙げられる。陰イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 Mg1-xAl(OH)(COx/2・mHO   (I)
 (0<X≦0.5、mは正の数)
The anion exchanger is not particularly limited and can be selected from those conventionally used commonly in the art. Examples of the anion exchanger include a hydrotalcite compound having a composition represented by the following formula (I), and a hydrous oxide of an element selected from the group consisting of magnesium, aluminum, titanium, zirconium, bismuth and antimony. . The anion exchangers may be used alone or in combination of two or more.
Mg 1-x Al x (OH) 2 (CO 3 ) x / 2 · mH 2 O (I)
(0 <X ≦ 0.5, m is a positive number)
 ハイドロタルサイト化合物は、ハロゲンイオン等の陰イオンを構造中のCO3と置換することで捕捉し、結晶構造の中に取り込まれたハロゲンイオンは約350℃以上で結晶構造が破壊するまで脱離しない性質を持つ化合物である。この様な性質を有するハイドロタルサイトとしては、天然物として産出されるMgAl(OH)16CO・4HO、合成品としてMg4.3Al(OH)12.6CO・mHO等が挙げられる。 The hydrotalcite compound is captured by substituting anions such as halogen ions with CO 3 in the structure, and the halogen ions incorporated into the crystal structure are released until the crystal structure is destroyed at about 350 ° C. or higher. It is a compound with no property. The hydrotalcites having such properties include Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O produced as a natural product, and Mg 4.3 Al 2 (OH) 12.6 CO 3 as a synthetic product.・ MH 2 O etc. may be mentioned.
 エポキシ樹脂組成物が硬化剤としてフェノール硬化剤を含有する場合、フェノール硬化剤の影響でエポキシ樹脂組成物は酸性を示す(例えば、純水を使用した硬化物の抽出液がpH3~5となる)。この場合、例えば、両性金属であるアルミニウムは、エポキシ樹脂組成物によって腐食されやすい環境となるが、酸を吸着する作用も持つハイドロタルサイト化合物をエポキシ樹脂組成物が含有することで、アルミニウムの腐食が抑制される傾向にある。 When the epoxy resin composition contains a phenol curing agent as a curing agent, the epoxy resin composition exhibits an acidity under the influence of the phenol curing agent (for example, the extract of a cured product using pure water has a pH of 3 to 5) . In this case, for example, aluminum, which is an amphoteric metal, becomes an environment susceptible to corrosion by the epoxy resin composition, but the corrosion of aluminum is caused by the epoxy resin composition containing a hydrotalcite compound also having an action of adsorbing an acid. Tend to be suppressed.
 また、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマス及びアンチモンからなる群より選ばれる少なくとも1種の元素の含水酸化物も、ハロゲンイオン等の陰イオンを水酸化物イオンと置換することで捕捉することができる。更にこれらのイオン交換体は酸性側で優れたイオン交換能を示す。従って、これらのイオン交換体をエポキシ樹脂組成物が含有することで、ハイドロタルサイト化合物を含有する場合と同様に、アルミニウムの腐食が抑制される傾向にある。含水酸化物としては、MgO・nHO、Al・nHO、ZrO・HO、Bi・HO、Sb・nHO等が挙げられる。 In addition, the water-containing oxide of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium, bismuth and antimony can also be captured by substituting anions such as halogen ions with hydroxide ions. it can. Furthermore, these ion exchangers exhibit excellent ion exchange ability on the acid side. Therefore, when the epoxy resin composition contains these ion exchangers, the corrosion of aluminum tends to be suppressed as in the case of containing the hydrotalcite compound. The hydrous oxide, MgO · nH 2 O, Al 2 O 3 · nH 2 O, ZrO 2 · H 2 O, Bi 2 O 3 · H 2 O, Sb 2 O 5 · nH 2 O , and the like.
 エポキシ樹脂組成物が陰イオン交換体を含有する場合、陰イオン交換体の含有率は、ハロゲンイオン等の陰イオンを捕捉できる充分な量であれば特に制限はない。エポキシ樹脂組成物が陰イオン交換体を含有する場合、陰イオン交換体の含有率は、例えば、0.1質量%~30質量%であることが好ましく、1.0質量%~5質量%であることがより好ましい。 When the epoxy resin composition contains an anion exchanger, the content of the anion exchanger is not particularly limited as long as it is an amount sufficient to capture anions such as halogen ions. When the epoxy resin composition contains an anion exchanger, the content of the anion exchanger is, for example, preferably 0.1% by mass to 30% by mass, and 1.0% by mass to 5% by mass. It is more preferable that
(離型剤)
 エポキシ樹脂組成物は、成形工程において金型に対する良好な離型性を発揮させる観点から、必要に応じて離型剤を含有してもよい。離型剤の種類は特に制限されず、当該技術分野において公知の離型剤が挙げられる。具体的に、離型剤としては、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。中でも、カルナバワックス及びポリオレフィン系ワックスが好ましい。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The epoxy resin composition may contain a mold release agent as needed from the viewpoint of exhibiting good mold release property to the mold in the molding step. The type of release agent is not particularly limited, and examples include release agents known in the art. Specifically, as a mold release agent, higher fatty acids such as carnauba wax, montanic acid and stearic acid, higher fatty acid metal salts, ester-based waxes such as montanic acid esters, and polyolefin-based waxes such as oxidized polyethylene and non-oxidized polyethylene It can be mentioned. Among them, carnauba wax and polyolefin wax are preferable. The mold release agent may be used alone or in combination of two or more.
 ポリオレフィン系ワックスとしては、市販品を用いてもよく、例えば、ヘキスト社のH4、PE、PEDシリーズ等の数平均分子量が500~10000程度の低分子量ポリエチレンなどが挙げられる。 As the polyolefin-based wax, a commercially available product may be used. For example, low molecular weight polyethylene having a number average molecular weight of about 500 to 10000, such as H4 of PECHET, PE, PED series, etc., can be mentioned.
 エポキシ樹脂組成物がポリオレフィン系ワックスを含有する場合、ポリオレフィン系ワックスの含有率は、エポキシ樹脂に対して0.01質量%~10質量%であることが好ましく、0.10質量%~5質量%であることがより好ましい。ポリオレフィン系ワックスの含有率が0.01質量%以上であると充分な離型性が得られる傾向にあり、10質量%以下であると充分な接着性が得られる傾向にある。
 また、エポキシ樹脂組成物がポリオレフィン系ワックス以外のその他の離型剤を含有する場合、又はエポキシ樹脂組成物がポリオレフィン系ワックス及びその他の離型剤を含有する場合、ポリオレフィン系ワックス以外のその他の離型剤の含有率は、エポキシ樹脂に対して0.1質量%~10質量%であることが好ましく、0.5質量%~3質量%であることがより好ましい。
When the epoxy resin composition contains a polyolefin wax, the content of the polyolefin wax is preferably 0.01% by mass to 10% by mass, and 0.10% by mass to 5% by mass with respect to the epoxy resin. It is more preferable that When the content of the polyolefin wax is 0.01% by mass or more, sufficient releasability tends to be obtained, and when it is 10% by mass or less, sufficient adhesiveness tends to be obtained.
When the epoxy resin composition contains a release agent other than polyolefin wax, or when the epoxy resin composition contains a polyolefin wax and another release agent, release agents other than polyolefin wax are released. The content of the mold agent is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 3% by mass with respect to the epoxy resin.
(難燃剤)
 エポキシ樹脂組成物は、難燃性を付与する観点から、必要に応じて難燃剤を含有してもよい。難燃剤は特に制限されず、例えば、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む公知の有機化合物及び無機化合物、金属水酸化物、並びにアセナフチレンが挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The epoxy resin composition may contain a flame retardant, if necessary, from the viewpoint of imparting flame retardancy. The flame retardant is not particularly limited, and examples thereof include known organic and inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, metal hydroxides, and acenaphthylene. The flame retardant may be used alone or in combination of two or more.
 エポキシ樹脂組成物が難燃剤を含有する場合、難燃剤の含有率は、難燃効果が得られる量であれば特に制限はない。エポキシ樹脂組成物が難燃剤を含有する場合、難燃剤の含有率は、エポキシ樹脂に対して、1質量%~30質量%であることが好ましく、2質量%~15質量%であることがより好ましい。 When the epoxy resin composition contains a flame retardant, the content of the flame retardant is not particularly limited as long as the flame retardant effect can be obtained. When the epoxy resin composition contains a flame retardant, the content of the flame retardant is preferably 1% by mass to 30% by mass, and more preferably 2% by mass to 15% by mass, with respect to the epoxy resin. preferable.
(カップリング剤)
 エポキシ樹脂組成物は、必要に応じて、樹脂成分と無機充填材との接着性を高める観点から、カップリング剤を含有してもよい。カップリング剤の種類は、特に制限されない。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、メタクリルシラン、アクリルシラン、ビニルシラン等の各種シラン化合物、チタン化合物、アルミニウムキレート化合物、アルミニウム及びジルコニウム含有化合物などが挙げられる。カップリング剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Coupling agent)
The epoxy resin composition may optionally contain a coupling agent from the viewpoint of enhancing the adhesion between the resin component and the inorganic filler. The type of coupling agent is not particularly limited. Examples of the coupling agent include various silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, methacrylsilane, acrylsilane and vinylsilane, titanium compounds, aluminum chelate compounds, aluminum and zirconium-containing compounds. The coupling agents may be used alone or in combination of two or more.
 エポキシ樹脂組成物がカップリング剤を含有する場合、カップリング剤の含有率は、無機充填材に対して0.05質量%~5.0質量%であることが好ましく、0.10質量%~2.5質量%であることがより好ましい。カップリング剤の含有率が0.05質量%以上であるとフレームとの接着性が向上する傾向にあり、5.0質量%以下であるとパッケージの成形性に優れる傾向にある。 When the epoxy resin composition contains a coupling agent, the content of the coupling agent is preferably 0.05% by mass to 5.0% by mass, and 0.10% by mass to the inorganic filler. More preferably, it is 2.5% by mass. When the content of the coupling agent is 0.05% by mass or more, the adhesion to the frame tends to be improved, and when the content is 5.0% by mass or less, the moldability of the package tends to be excellent.
(応力緩和剤)
 エポキシ樹脂組成物は、パッケージの反り変形量及びパッケージクラックを低減させる観点から、必要に応じて、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含有してもよい。使用可能な応力緩和剤としては、当該技術分野で一般に用いられる可とう剤(応力緩和剤)を適宜選択して使用することができる。
(Stress relaxation agent)
The epoxy resin composition may contain a stress relaxation agent such as silicone oil or silicone rubber particles, if necessary, from the viewpoint of reducing the amount of warping and package cracking of the package. As a usable stress relaxation agent, a flexible agent (stress relaxation agent) generally used in the relevant technical field can be appropriately selected and used.
 応力緩和剤として具体的には、シリコーン、ポリスチレン、ポリオレフィン、ポリウレタン、ポリエステル、ポリエーテル、ポリアミド、ポリブタジエン等の熱可塑性エラストマー;NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子;メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。中でも、シリコーンを含有するシリコーン系応力緩和剤が好ましい。シリコーン系応力緩和剤としては、エポキシ基を有するもの、アミノ基を有するもの、これらをポリエーテル変性したもの等が挙げられる。応力緩和剤は、1種を単独で用いても2種以上組み合わせて用いてもよい。 Specifically as stress relaxation agents, thermoplastic elastomers such as silicone, polystyrene, polyolefin, polyurethane, polyester, polyether, polyamide, polybutadiene, etc .; NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic rubber, urethane rubber Rubber particles such as silicone powder; methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, rubber having a core-shell structure such as methyl methacrylate-butyl acrylate copolymer Particle etc. are mentioned. Among them, silicone-based stress relaxation agents containing silicone are preferable. As a silicone type stress relaxation agent, what has an epoxy group, what has an amino group, what carried out polyether modification of these etc. are mentioned. The stress relaxation agents may be used alone or in combination of two or more.
(着色剤)
 エポキシ樹脂組成物は、カーボンブラック、繊維状カーボン、有機染料、有機着色剤、酸化チタン、鉛丹、ベンガラ等の着色剤を含有してもよい。エポキシ樹脂組成物が着色剤を含有する場合、着色剤の含有率は、無機充填材に対して0.05質量%~5.0質量%であることが好ましく、0.10質量%~2.5質量%であることがより好ましい。
(Colorant)
The epoxy resin composition may contain a colorant such as carbon black, fibrous carbon, an organic dye, an organic colorant, titanium oxide, red lead, bengara and the like. When the epoxy resin composition contains a colorant, the content of the colorant is preferably 0.05% by mass to 5.0% by mass with respect to the inorganic filler, and 0.10% by mass to 2.%. More preferably, it is 5% by mass.
[エポキシ樹脂組成物の調製方法]
 エポキシ樹脂組成物の調製には、各種成分を分散混合できるのであれば、いずれの手法を用いてもよい。一般的な手法として、各種成分をミキサー等によって充分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、エポキシ樹脂組成物は、例えば、上述した成分を混合して攪拌し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練した後、冷却し、粉砕する等の方法によって得ることができる。エポキシ樹脂組成物は、パッケージの成形条件に合うような寸法及び質量でタブレット化してもよい。エポキシ樹脂組成物をタブレット化することで、取り扱いが容易になる。
[Method of Preparing Epoxy Resin Composition]
For preparation of the epoxy resin composition, any method may be used as long as various components can be dispersed and mixed. As a general method, after various components are sufficiently mixed by a mixer or the like, a method of melt-kneading by a mixing roll, an extruder or the like, cooling, and crushing can be mentioned. More specifically, the epoxy resin composition is, for example, mixed and stirred with the above-mentioned components, and kneaded by a kneader, a roll, an extruder, etc. which has been heated to 70 ° C. to 140 ° C. in advance, and then cooled. It can be obtained by a method such as crushing. The epoxy resin composition may be tableted in size and mass to match the molding conditions of the package. The tableting of the epoxy resin composition facilitates handling.
[エポキシ樹脂組成物の流動性]
 本開示のエポキシ樹脂組成物は、以下の方法で流動性を測定したときに、100cm以上の流動距離を示すことが好ましい。EMMI-1-66に準じたスパイラルフロー測定用金型を用いてエポキシ樹脂組成物を成形し、エポキシ樹脂組成物の成形物の流動距離(cm)を測定する。エポキシ樹脂組成物の成形は、トランスファー成形機を用い、金型温度180℃、成形圧力6.9MPa、硬化時間120秒の条件下で行うものとする。
[Flowability of Epoxy Resin Composition]
The epoxy resin composition of the present disclosure preferably exhibits a flow distance of 100 cm or more when the flowability is measured by the following method. The epoxy resin composition is molded using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) of the molded product of the epoxy resin composition is measured. The epoxy resin composition is molded using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa and a curing time of 120 seconds.
<エポキシ樹脂硬化物>
 本開示のエポキシ樹脂硬化物は、上述したエポキシ樹脂組成物を硬化してなる。本開示のエポキシ樹脂硬化物は、上述したエポキシ樹脂組成物を硬化して得られることから、熱伝導性に優れる傾向にある。
<Epoxy resin cured product>
The epoxy resin cured product of the present disclosure is formed by curing the above-described epoxy resin composition. The epoxy resin cured product of the present disclosure tends to be excellent in thermal conductivity since it is obtained by curing the above-described epoxy resin composition.
[エポキシ樹脂硬化物の熱伝導率]
 エポキシ樹脂硬化物の熱伝導率は特に制限されず、4W/(m・K)以上であることが好ましい。本開示においてエポキシ樹脂硬化物の熱伝導率は以下のように測定したときの値とする。エポキシ樹脂組成物を用いて、金型温度180℃、成形圧力7MPa、硬化時間300秒間の条件でトランスファー成形を行い、金型形状のエポキシ樹脂硬化物を得る。得られたエポキシ樹脂硬化物の比重をアルキメデス法により測定し、比熱をDSC(例えば、Perkin Elmer社、DSC Pyris1)で測定する。また、得られた硬化物の熱拡散率を、熱拡散率測定装置(例えば、NETZSCH社、LFA467)を用いてレーザーフラッシュ法により測定する。得られた比重、比熱、及び熱拡散率を用いてエポキシ樹脂硬化物の熱伝導率を算出する。
[Thermal conductivity of epoxy resin cured product]
The thermal conductivity of the cured epoxy resin is not particularly limited, and is preferably 4 W / (m · K) or more. In the present disclosure, the thermal conductivity of the cured epoxy resin is a value measured as follows. Transfer molding is performed using an epoxy resin composition under the conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds, to obtain a mold-shaped epoxy resin cured product. The specific gravity of the obtained epoxy resin cured product is measured by the Archimedes method, and the specific heat is measured by DSC (for example, Perkin Elmer, DSC Pyris 1). In addition, the thermal diffusivity of the obtained cured product is measured by a laser flash method using a thermal diffusivity measuring device (for example, LFA 467, manufactured by NETZSCH). The thermal conductivity of the epoxy resin cured product is calculated using the obtained specific gravity, specific heat, and thermal diffusivity.
<電子部品装置>
 本開示の電子部品装置は、素子と、前記素子を封止している本開示のエポキシ樹脂組成物の硬化物と、を有し、BGAパッケージの形態を有する。BGAパッケージは、裏面に金属バンプを形成した基板のおもて面に素子を搭載し、バンプ又はワイヤボンディングにより素子と基板に形成された配線を接続した後、素子を封止して作製される。基板としては、ガラス-エポキシ基板、プリント配線版等が挙げられる。素子としては、能動素子、受動素子等が挙げられる。能動素子としては、半導体チップ、トランジスタ、ダイオード、サイリスタ等が挙げられる。受動素子としては、コンデンサ、抵抗体、コイル等が挙げられる。
<Electronic component device>
The electronic component device of the present disclosure has a device and a cured product of the epoxy resin composition of the present disclosure sealing the device, and has the form of a BGA package. A BGA package is manufactured by mounting an element on the front surface of a substrate having a metal bump formed on the back surface, connecting the element and a wiring formed on the substrate by bump or wire bonding, and sealing the element. . The substrate may, for example, be a glass-epoxy substrate or a printed wiring board. As an element, an active element, a passive element, etc. are mentioned. The active element includes a semiconductor chip, a transistor, a diode, a thyristor and the like. As a passive element, a capacitor, a resistor, a coil, etc. are mentioned.
 本開示の電子部品装置において、素子をエポキシ樹脂硬化物で封止する方法は、特に制限されず、当技術分野において公知の方法を適用することが可能である。例えば、低圧トランスファー成形法が一般的であるが、インジェクション成形法、圧縮成形法等を用いてもよい。 In the electronic component device of the present disclosure, the method for sealing the device with the epoxy resin cured product is not particularly limited, and methods known in the art can be applied. For example, although a low pressure transfer molding method is generally used, an injection molding method, a compression molding method or the like may be used.
 以下、上記実施形態の一例を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, although an example of the above-mentioned embodiment is concretely explained by an example, the present invention is not limited to these examples.
(エポキシ樹脂組成物の調製)
 下記に示す成分を表1に示す配合割合で混合し、実施例と比較例のエポキシ樹脂組成物を調製した。表1中、成分の配合量は特段の記載がない場合は質量部を表し、「-」は成分が配合されていないことを示す。
(Preparation of epoxy resin composition)
The components shown below were mixed at blending ratios shown in Table 1 to prepare epoxy resin compositions of the examples and comparative examples. In Table 1, the blending amounts of the components represent parts by mass unless otherwise specified, and "-" indicates that the component is not blended.
・エポキシ樹脂1・・・ビフェニル型エポキシ樹脂(三菱ケミカル株式会社、商品名「YX-4000」)
・エポキシ樹脂2・・・ビスフェノールF型エポキシ樹脂(新日鐵住金化学株式会社、商品名「YSLV-80XY」)
・硬化剤…多官能フェノール樹脂(エア・ウォーター株式会社、商品名「HE910」、水酸基当量105g/eqのトリフェニルメタン型フェノール樹脂)
・硬化促進剤…リン系硬化促進剤(有機リン化合物)
・ Epoxy resin 1: Biphenyl type epoxy resin (Mitsubishi Chemical Corporation, trade name "YX-4000")
・ Epoxy resin 2 ... bisphenol F type epoxy resin (Nippon Steel & Sumitomo Metal Chemical Co., Ltd., trade name "YSLV-80XY")
Curing agent: Multifunctional phenol resin (Air Water Co., Ltd., trade name "HE 910", triphenylmethane type phenol resin having a hydroxyl equivalent of 105 g / eq)
· Hardening accelerator ··· Phosphorous hardening accelerator (organic phosphorus compound)
 無機充填材として、以下を用意した。
・無機充填材1:アルミナ-シリカ混合フィラー(シリカ含有率:10質量%)、体積平均粒子径:10μm
・無機充填材2:アルミナフィラー、体積平均粒子径:10μm
・無機充填材3:アルミナフィラー、体積平均粒子径:0.8μm
・無機充填材4:シリカフィラー、体積平均粒子径:0.8μm
The following were prepared as inorganic fillers.
· Inorganic filler 1: Alumina-silica mixed filler (silica content: 10% by mass), volume average particle diameter: 10 μm
Inorganic filler 2: alumina filler, volume average particle diameter: 10 μm
Inorganic filler 3: alumina filler, volume average particle diameter: 0.8 μm
Inorganic filler 4: silica filler, volume average particle diameter: 0.8 μm
 可塑剤として、以下を用意した。
・可塑剤1:有機ホスフィンオキシド
・可塑剤2:インデン-スチレン共重合物(日塗化学株式会社、NH-100S)
The following were prepared as plasticizers.
・ Plasticizer 1: Organic phosphine oxide ・ Plasticizer 2: Indene-Styrene copolymer (Nisshin Chemical Co., Ltd., NH-100S)
 その他、各種添加剤として、以下を用意した。
・カップリング剤:アニリノシラン(N-フェニル-3-アミノプロピルトリメトキシシラン、信越化学工業株式会社、商品名:KBM-573)
・着色剤:カーボンブラック(三菱ケミカル株式会社、商品名:MA-100)
・離型剤:モンタン酸エステル(株式会社セラリカNODA)
In addition, the following were prepared as various additives.
Coupling agent: Anilinosilane (N-phenyl-3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd., trade name: KBM-573)
・ Colorant: carbon black (Mitsubishi Chemical Corporation, trade name: MA-100)
-Releasing agent: Montanic acid ester (Celarika NODA)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(流動性の評価)
 エポキシ樹脂組成物の流動性の評価は、スパイラルフロー試験により行った。
 具体的には、EMMI-1-66に準じたスパイラルフロー測定用金型を用いてエポキシ樹脂組成物を成形し、エポキシ樹脂組成物の成形物の流動距離(cm)を測定した。エポキシ樹脂組成物の成形は、トランスファー成形機を用い、金型温度180℃、成形圧力6.9MPa、硬化時間120秒の条件下で行った。また、流動性は100cm以上をAとし、100cm未満をBとした。
(Evaluation of liquidity)
The evaluation of the flowability of the epoxy resin composition was performed by a spiral flow test.
Specifically, the epoxy resin composition was molded using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) of the molded product of the epoxy resin composition was measured. Molding of the epoxy resin composition was performed using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds. Moreover, fluidity | liquidity made 100 cm or more into A, and made less than 100 cm into B.
(熱伝導率の評価)
 エポキシ樹脂組成物を硬化したときの熱伝導率の評価は、下記により行った。具体的には、調製したエポキシ樹脂組成物を用いて、金型温度180℃、成形圧力7MPa、硬化時間300秒間の条件でトランスファー成形を行い、金型形状の硬化物を得た。得られた硬化物をアルキメデス法により測定した比重は3.00~3.40であった。得られた硬化物の比熱をDSC(Perkin Elmer社、DSC Pyris1)で測定した。また硬化物の熱拡散率を熱拡散率測定装置(NETZSCH社、LFA467)を用いてレーザーフラッシュ法により測定した。得られた比重、比熱、及び熱拡散率を用いてエポキシ樹脂硬化物の熱伝導率を算出した。熱伝導率は4W/(m・K)以上をAとし、4W/(m・K)未満をBとした。
(Evaluation of thermal conductivity)
The evaluation of the thermal conductivity when the epoxy resin composition was cured was performed as follows. Specifically, transfer molding was performed using the prepared epoxy resin composition under conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds, to obtain a molded product having a mold shape. The specific gravity of the obtained cured product measured by the Archimedes method was 3.00 to 3.40. The specific heat of the obtained cured product was measured by DSC (Perkin Elmer, DSC Pyris 1). Further, the thermal diffusivity of the cured product was measured by a laser flash method using a thermal diffusivity measuring device (LFA 467, manufactured by NETZSCH). The thermal conductivity of the epoxy resin cured product was calculated using the obtained specific gravity, specific heat, and thermal diffusivity. The thermal conductivity was A at 4 W / (m · K) or more, and B at less than 4 W / (m · K).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 なお、実施例6における組成物中の無機充填材の含有率を85質量%に変更して混練を実施したところ、混練物を得ることができなかった。 In addition, when the content rate of the inorganic filler in the composition in Example 6 was changed to 85 mass% and the kneading was performed, a kneaded material could not be obtained.
 表2からわかるように、エポキシ樹脂2、硬化剤、無機充填材、及び可塑剤を含有し、無機充填材の含有率が75体積%~84体積%であり、アルミナ粒子及びシリカ粒子の合計量に対するシリカ粒子の割合が0質量%~15質量%以下の範囲内である実施例1~8では、流動性、及び熱伝導率のいずれの評価も良好であった。 As can be seen from Table 2, the epoxy resin 2, the curing agent, the inorganic filler, and the plasticizer are contained, the content of the inorganic filler is 75% by volume to 84% by volume, and the total amount of alumina particles and silica particles In Examples 1 to 8 in which the ratio of silica particles to is within the range of 0% by mass to 15% by mass or less, both evaluations of fluidity and thermal conductivity were good.
 日本国特許出願第2017-254882号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2017-254882 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are as specific and distinct as when individual documents, patent applications, and technical standards are incorporated by reference. Hereby incorporated by reference.

Claims (11)

  1.  ビスフェノールF型エポキシ樹脂を含むエポキシ樹脂と、
     硬化剤と、
     アルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超15質量%以下含む無機充填材と、
     可塑剤と、
    を含有し、前記無機充填材の含有率が75体積%~84体積%である、
    ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
    Epoxy resin containing bisphenol F type epoxy resin,
    A curing agent,
    An inorganic filler containing alumina particles, containing no silica particles, or containing alumina particles and further containing silica particles in an amount of more than 0% by mass and 15% by mass or less based on the total amount of the alumina particles and the silica particles;
    With a plasticizer,
    The content of the inorganic filler is 75% by volume to 84% by volume,
    Epoxy resin composition for sealing a ball grid array package.
  2.  前記エポキシ樹脂がさらにビフェニル型エポキシ樹脂を含む、請求項1に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 The epoxy resin composition for sealing a ball grid array package according to claim 1, wherein the epoxy resin further comprises a biphenyl type epoxy resin.
  3.  前記無機充填材が、アルミナ粒子を含みシリカ粒子を含まないか、アルミナ粒子を含みさらにシリカ粒子をアルミナ粒子とシリカ粒子の合計量に対して0質量%超10質量%以下含む、請求項1又は請求項2に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 The inorganic filler contains alumina particles and does not contain silica particles, or contains alumina particles and further contains silica particles in an amount of more than 0% by mass and 10% by mass or less based on the total amount of alumina particles and silica particles. The epoxy resin composition for ball grid array package sealing according to claim 2.
  4.  前記硬化剤が、水酸基当量150g/eq以下のフェノール硬化剤を含む、請求項1~請求項3のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 The epoxy resin composition for sealing a ball grid array package according to any one of claims 1 to 3, wherein the curing agent contains a phenol curing agent having a hydroxyl equivalent of 150 g / eq or less.
  5.  前記硬化剤が、1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂を含む、請求項1~請求項4のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 The epoxy resin composition for sealing a ball grid array package according to any one of claims 1 to 4, wherein the curing agent contains a phenolic resin having three or more phenolic hydroxyl groups in one molecule.
  6.  前記硬化剤が、トリフェニルメタン型フェノール樹脂を含む、請求項1~請求項5のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 The epoxy resin composition for sealing a ball grid array package according to any one of claims 1 to 5, wherein the curing agent comprises a triphenylmethane type phenolic resin.
  7.  前記無機充填材の空隙率が18体積%以下である請求項1~請求項6のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 The epoxy resin composition for sealing a ball grid array package according to any one of claims 1 to 6, wherein a porosity of the inorganic filler is 18 volume% or less.
  8.  前記無機充填材の体積基準の粒度分布における、粒子径が1μm以下の粒子の割合が9体積%以上であり、粒子径が1μmを超え10μm以下の粒子の割合が45体積%以下であり、粒子径が10μmを超え30μm以下の粒子の割合が20体積%以上であり、粒子径が30μmを超える粒子の割合が18体積%以上である、請求項1~請求項7のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 In the volume-based particle size distribution of the inorganic filler, the proportion of particles having a particle size of 1 μm or less is 9 volume% or more, and the proportion of particles having a particle size of more than 1 μm to 10 μm is 45 volume% or less The ratio of particles having a diameter of more than 10 μm and 30 μm or less is 20% by volume or more, and the ratio of particles having a particle size of more than 30 μm is 18% by volume or more. Epoxy resin composition for sealing a ball grid array package.
  9.  前記無機充填材の体積基準の粒度分布における、粒子径が1μm以下の粒子の割合が11体積%以上であり、粒子径が1μmを超え10μm以下の粒子の割合が40体積%以下であり、粒子径が10μmを超え30μm以下の粒子の割合が22体積%以上であり、粒子径が30μmを超える粒子の割合が20体積%以上である請求項8に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 In the volume-based particle size distribution of the inorganic filler, the proportion of particles having a particle size of 1 μm or less is 11 volume% or more, and the proportion of particles having a particle size of more than 1 μm to 10 μm is 40 volume% or less 9. The epoxy resin for sealing a ball grid array package according to claim 8, wherein the proportion of particles having a diameter of more than 10 μm and not more than 30 μm is 22 volume% or more and the proportion of particles having a particle size of more than 30 μm is 20 volume% or more. Composition.
  10.  請求項1~請求項9のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。 An epoxy resin cured product obtained by curing the epoxy resin composition for sealing a ball grid array package according to any one of claims 1 to 9.
  11.  素子と、前記素子を封止している請求項10に記載のエポキシ樹脂硬化物と、を有し、ボールグリッドアレイパッケージの形態を有する、電子部品装置。 The electronic component apparatus which has an element and the epoxy resin hardened material of Claim 10 which has sealed the said element, and has a form of a ball grid array package.
PCT/JP2018/045350 2017-12-28 2018-12-10 Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device WO2019131097A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207021189A KR20200094792A (en) 2017-12-28 2018-12-10 Epoxy resin composition for sealing a ball grid array package, cured epoxy resin, and electronic component device
JP2019562938A JP7276151B2 (en) 2017-12-28 2018-12-10 EPOXY RESIN COMPOSITION FOR BALL GRID ARRAY PACKAGE SEALING, EPOXY RESIN CURED MATERIAL, AND ELECTRONIC PARTS DEVICE
CN201880084018.0A CN111527144A (en) 2017-12-28 2018-12-10 Epoxy resin composition for sealing ball grid array package, cured epoxy resin, and electronic component device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-254882 2017-12-28
JP2017254882 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131097A1 true WO2019131097A1 (en) 2019-07-04

Family

ID=67067153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045350 WO2019131097A1 (en) 2017-12-28 2018-12-10 Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device

Country Status (5)

Country Link
JP (1) JP7276151B2 (en)
KR (1) KR20200094792A (en)
CN (1) CN111527144A (en)
TW (1) TWI820067B (en)
WO (1) WO2019131097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074746A4 (en) * 2019-12-10 2024-02-14 Nitto Shinko Corporation Resin composition and thermally conductive sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308229A (en) * 2021-05-21 2021-08-27 江苏联瑞新材料股份有限公司 Preparation method of high-thermal-conductivity spherical powder for ball grid array packaging
CN117736550A (en) * 2022-09-15 2024-03-22 华为技术有限公司 Resin composition and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028264A (en) * 2004-07-13 2006-02-02 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic component device
JP2012224799A (en) * 2011-04-22 2012-11-15 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and semiconductor device using the same
JP2013006893A (en) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP2014129485A (en) * 2012-12-28 2014-07-10 Hitachi Chemical Co Ltd Epoxy resin composition and electronic component device
JP2017190425A (en) * 2016-04-15 2017-10-19 京セラ株式会社 Granular resin composition for semiconductor sealing and semiconductor device
JP2017203132A (en) * 2016-05-13 2017-11-16 日立化成株式会社 Epoxy resin composition, epoxy resin cured product and electronic component device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4188634B2 (en) 2001-07-30 2008-11-26 スミトモ ベークライト シンガポール プライベート リミテッド Epoxy resin composition
JP6282390B2 (en) * 2010-12-16 2018-02-21 日立化成株式会社 Epoxy resin molding material for sealing and semiconductor device using the same
JPWO2012157529A1 (en) * 2011-05-13 2014-07-31 日立化成株式会社 Epoxy resin molding material for sealing and electronic component device
JP6646360B2 (en) * 2015-04-24 2020-02-14 日東電工株式会社 Sealing resin sheet and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028264A (en) * 2004-07-13 2006-02-02 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic component device
JP2012224799A (en) * 2011-04-22 2012-11-15 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and semiconductor device using the same
JP2013006893A (en) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP2014129485A (en) * 2012-12-28 2014-07-10 Hitachi Chemical Co Ltd Epoxy resin composition and electronic component device
JP2017190425A (en) * 2016-04-15 2017-10-19 京セラ株式会社 Granular resin composition for semiconductor sealing and semiconductor device
JP2017203132A (en) * 2016-05-13 2017-11-16 日立化成株式会社 Epoxy resin composition, epoxy resin cured product and electronic component device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074746A4 (en) * 2019-12-10 2024-02-14 Nitto Shinko Corporation Resin composition and thermally conductive sheet

Also Published As

Publication number Publication date
JPWO2019131097A1 (en) 2020-12-17
TW201930454A (en) 2019-08-01
JP7276151B2 (en) 2023-05-18
KR20200094792A (en) 2020-08-07
CN111527144A (en) 2020-08-11
TWI820067B (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP7287281B2 (en) EPOXY RESIN COMPOSITION FOR BALL GRID ARRAY PACKAGE SEALING, EPOXY RESIN CURED MATERIAL, AND ELECTRONIC PARTS DEVICE
JP5663250B2 (en) Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP7571815B2 (en) Encapsulating composition and semiconductor device
TW201920450A (en) Epoxy resin composition and electric component device
JP7276151B2 (en) EPOXY RESIN COMPOSITION FOR BALL GRID ARRAY PACKAGE SEALING, EPOXY RESIN CURED MATERIAL, AND ELECTRONIC PARTS DEVICE
JP6389382B2 (en) Semiconductor encapsulating resin sheet and resin encapsulating semiconductor device
TWI811279B (en) Epoxy resin composition for sealing ball grid array package, epoxy resin cured product and electronic component device
JP2019044006A (en) Semiconductor sealing resin composition and semiconductor device
KR101955754B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JP5407767B2 (en) Epoxy resin composition and semiconductor device
CN112424284B (en) Resin composition for sheet-like encapsulation and semiconductor device
JP5938741B2 (en) Epoxy resin composition for sealing, method for producing the same, and semiconductor device
WO2018179438A1 (en) Epoxy resin composition, epoxy resin cured product, and electronic component device
JP2009096889A (en) Resin composition for molding, molded article and semiconductor package
JP2009235164A (en) Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition
JP2017128657A (en) Sealing epoxy resin composition, and semiconductor device and method for manufacturing the same
JP6686428B2 (en) Epoxy resin composition and semiconductor device
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device
JP2012111844A (en) Epoxy resin composition for sealing, and semiconductor device sealed using the same
JPWO2020130098A1 (en) Encapsulation composition and semiconductor device
JP2013067693A (en) Epoxy resin composition for sealing semiconductor, and semiconductor apparatus
JP2018123245A (en) Resin composition for sealing and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021189

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18895039

Country of ref document: EP

Kind code of ref document: A1