[go: up one dir, main page]

WO2019127254A1 - 一种车辆定位方法、装置及存储介质 - Google Patents

一种车辆定位方法、装置及存储介质 Download PDF

Info

Publication number
WO2019127254A1
WO2019127254A1 PCT/CN2017/119524 CN2017119524W WO2019127254A1 WO 2019127254 A1 WO2019127254 A1 WO 2019127254A1 CN 2017119524 W CN2017119524 W CN 2017119524W WO 2019127254 A1 WO2019127254 A1 WO 2019127254A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
vehicle
road surface
pressure change
preset
Prior art date
Application number
PCT/CN2017/119524
Other languages
English (en)
French (fr)
Inventor
阳光
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2017/119524 priority Critical patent/WO2019127254A1/zh
Priority to CN201780035387.6A priority patent/CN109328292B/zh
Publication of WO2019127254A1 publication Critical patent/WO2019127254A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00

Definitions

  • the present invention relates to the field of positioning technologies, and in particular, to a vehicle positioning method, device, and storage medium.
  • the positioning of the vehicle during the running of the vehicle is the basis of the driving application. Navigation, maps, intelligent transportation systems, etc. all need to locate the vehicle.
  • positioning methods such as GPS positioning, satellite positioning, and base station positioning are generally used.
  • the conventional positioning method usually has a certain positioning error, and in the case of intelligent driving and the like, the positioning requirement cannot be satisfied when more precise positioning is required.
  • the present invention provides a vehicle positioning method, the method comprising:
  • the preset pressure change information indicates a pressure change between the wheel and the road surface when the vehicle travels on a road surface having a set concave and convex pattern
  • the pre-stored position information of the road surface indicated by the matched preset pressure change information is acquired as the current position information of the vehicle.
  • the present invention provides a vehicle positioning apparatus including: a pressure sensor, a memory, and a processor coupled to each other through a bus;
  • the pressure sensor is configured to detect pressure data between a wheel and the road surface when the vehicle is traveling on the road surface;
  • the memory is configured to store an operation instruction executed by the processor, and various collected data in a vehicle positioning process
  • the processor is operative to perform the vehicle positioning method described above in accordance with the operational command.
  • the present invention provides a storage medium storing program data that can be executed to implement the vehicle positioning method described above.
  • the present invention detects the pressure change between the wheel and the set concave and convex pattern on the road surface when the vehicle travels over the road surface, and matches the corresponding preset according to the detected pressure change condition.
  • the pressure change information acquires the pre-stored position information of the road surface indicated by the preset pressure change information by the preset pressure change information, and uses the pre-stored position information of the road surface as the current position information of the vehicle. Positioning the vehicle with pressure changes improves the positioning accuracy of the vehicle.
  • FIG. 1 is a schematic flow chart of a first embodiment of a vehicle positioning method according to the present invention
  • step S11 in FIG. 1 is a schematic flow chart of step S11 in FIG. 1;
  • FIG. 3a-3c are schematic views of a first embodiment of the vehicle positioning method shown in FIG. 1;
  • step S111 in FIG. 2 is a schematic flow chart of an embodiment of step S111 in FIG. 2;
  • FIG. 5 is a schematic flow chart of another embodiment of step S111 in FIG. 2;
  • FIG. 6 is a schematic flow chart of a second embodiment of a vehicle positioning method according to the present invention.
  • FIG. 7 is a schematic flow chart of a third embodiment of a vehicle positioning method according to the present invention.
  • FIG. 8 is a schematic flow chart of a fourth embodiment of a vehicle positioning method according to the present invention.
  • FIG. 9 is a schematic structural view of an embodiment of a vehicle positioning device of the present invention.
  • FIG. 10 is a schematic structural view of another embodiment of a vehicle positioning device of the present invention.
  • Figure 11 is a block diagram showing an embodiment of a storage medium of the present invention.
  • FIG. 1 is a schematic flow chart of a first embodiment of a vehicle positioning method according to the present invention. As shown in FIG. 1, the vehicle positioning method of this embodiment may include the following steps:
  • step S11 a change in pressure between the wheel and the road surface when the vehicle is traveling on the road surface is detected.
  • the pressure between the wheel and the road surface changes according to the condition of the road surface, and the different road surfaces have a unique geographical position.
  • the pressure between the vehicle and the road surface caused by the road surface condition in this embodiment is used.
  • the change is matched to the corresponding road surface to obtain the geographical position of the vehicle at this time.
  • the pressure sensor provided on the wheel is used to detect the pressure change between the wheel and the road surface when the vehicle is traveling on the road surface.
  • step S12 preset pressure change information matching the pressure change condition is found.
  • the specific road surface condition causes the pressure change between the vehicle and the road surface
  • the pressure change between the vehicle and the road surface caused by the specific road surface condition is used as the preset pressure change information, that is, the preset pressure change information may indicate that the vehicle has a specific road surface condition.
  • the pressure changes while driving on the road.
  • a set concave and convex pattern is disposed on the road surface of different geographical positions, so that when the vehicle travels through the set concave and convex pattern, the pressure change is caused by setting the concave and convex pattern, and the pressure change corresponding to the different set concave and convex patterns is changed.
  • the matching is performed in the database by using the pressure change situation obtained in step S101 to find the corresponding preset pressure change information, that is, equivalent to finding the corresponding set concave and convex pattern.
  • the concave and convex patterns are set as a plurality of convex strips or concave strips arranged in a pitch along the longitudinal direction of the road surface, and the widths of the protruding strips or the concave strips in the set concave and convex patterns at different positions may not be completely the same, and The pitch between the raised strips or the depressed strips is also not completely the same, whereby different predetermined concave and convex patterns can be formed by using the raised strips or the depressed strips. It can be understood that there is a height difference between the raised strips or the recessed strips in the concave-convex pattern and the flat road surface. Therefore, when the vehicle enters or leaves the raised strips or depression strips in the set concave-convex pattern, the wheels are The pressure data detected by the pressure sensor will be abrupt, that is, a sudden change in pressure between the wheel and the road surface.
  • the protrusions or depressions in the set concave-convex pattern may be set to have protrusions of a specific specification or
  • a deceleration strip having a specific width, an oblique angle, and a height can be used as a raised strip for setting the concave-convex pattern, and a speed reducer composed of a plurality of deceleration strips can be used as the set concave-convex pattern.
  • the width of each of the raised strips or the recessed strips is set to an integral multiple of a predetermined unit width.
  • the preset width is 13 cm
  • the width of each of the raised strips or the recessed strips may be set to 13 cm, 26 cm, 39 cm, etc., each The spacing between the raised strips or the depressed strips can also be set to an integral multiple of the preset unit width.
  • a pressure sensor on the wheel of the vehicle is disposed along its outer surface to allow the vehicle to continuously detect pressure changes between its wheel and the road surface during travel.
  • the set concave and convex pattern is a deceleration pattern, and a plurality of convex strips or concave strips are speed reduction belts.
  • step S13 when the matched preset pressure change information is found, the pre-stored position information of the road surface indicated by the matched preset pressure change information is acquired as the current position information of the vehicle.
  • the matching preset pressure change information is found in step S12, which is equivalent to finding the set concave and convex pattern that the vehicle has traveled at this time. Since the set concave-convex pattern corresponds to the position information, in other words, the preset pressure change information also corresponds to the position information, and the position information is the position information of the set concave-convex pattern, and the position information is the pre-stored position information.
  • the corresponding pre-stored location information can be found by using the preset pressure change information acquired in step S12, and the matched pre-stored location information is used as the current location information of the vehicle.
  • the invention detects the pressure change between the wheel and the set concave and convex pattern on the road surface when the vehicle travels over the road surface, matches the corresponding preset pressure change information according to the detected pressure change condition, and changes the information through the preset pressure change.
  • the pre-stored position information of the road surface indicated by the preset pressure change information is obtained, and the pre-stored position information of the road surface is used as the current position information of the vehicle. Positioning the vehicle with pressure changes improves the positioning accuracy of the vehicle.
  • step S11 in FIG. 1 may include the following steps:
  • step S111 pressure data between the wheel and the road surface of the vehicle during road running is detected by the pressure sensor of the wheel, and a pressure change curve is formed from the detected pressure data.
  • the pressure sensor disposed on the wheel is used to obtain the pressure data between the wheel and the road surface when the vehicle is traveling on the road surface, and the pressure data is taken as the ordinate and the time is taken as the abscissa, and the corresponding pressure change curve is obtained.
  • the pressure data acquired in this embodiment is pressure data between the wheel and the road surface when the vehicle travels on a road surface having a set concave-convex pattern.
  • step S112 the pressure variation curve is encoded to obtain a detection code sequence composed of the first code value and the second code value.
  • the pressure variation curve is further encoded, and the pressure variation curve is encoded to obtain a detection code sequence composed of the first code value and the second code value.
  • the first code value and the second code value are two natural numbers that are not equal in value to each other.
  • the first code value may be set to 1
  • the second code value may be set to 0, 2, or 3.
  • the preset pressure change information is set as a preset code sequence composed of the first code value and the second code value, and correspondingly, the detected pressure change between the wheel and the road surface is also detected according to the detected a detection code sequence composed of a first code value and a second code value obtained by compressing a pressure change curve; correspondingly, the preset pressure change information matching the pressure transformation condition in step S13 is a search and detection code sequence matching Preset code sequence.
  • a set concave and convex pattern is disposed on the road surface, and the concave and convex pattern is set to include two raised strips, wherein the width of the first raised strip is two of preset unit widths. Times, the distance between the two raised strips is a preset unit width.
  • the pressure data changes, so that the code of the vehicle when driving on the raised strip is 1
  • the code of the vehicle when traveling on the road surface between the two raised strips is 0.
  • the preset code sequence of the preset pressure change information corresponding to the set concave and convex pattern may be encoded.
  • the position information S of the set concave-convex pattern is the pre-stored position information.
  • a sudden change in pressure occurs when the vehicle enters or leaves the raised strip, and therefore, from the time the vehicle travels into the first raised strip to the second raised strip,
  • the detected pressure data is used to form a pressure change curve as shown in FIG. 3b, and the pressure change curve is further encoded, and the partial pressure curve of the vehicle traveling on the raised strip is coded as 1, and the pitch portions of the two raised strips are
  • the partial pressure curve on the road surface is coded as 0, and the detection code sequence shown in FIG. 3c is obtained.
  • the detection code sequence detected when the vehicle travels through the set concave and convex pattern is the same as the preset code sequence, so
  • the preset position information S of the corresponding set concave and convex pattern can be searched for, and the pre-stored position information S can be used as the current position information of the vehicle to complete the positioning of the vehicle.
  • step S111 may include the following steps:
  • step S1111 the pressure sensor of the wheel is used to detect the first pressure data change between the wheel and the road surface when the vehicle is traveling on the road surface, and the time when the first pressure data changes is recorded.
  • the embossed pattern is set as a plurality of raised strips or depressions arranged in a pitch along the length of the road surface, the pressure detected by the pressure sensor on the wheel when entering or leaving the raised strip or the depressed strip in the set concave-convex pattern
  • the data will be abrupt, a sudden change in pressure between the wheel and the road.
  • the first pressure sudden change referred to in this embodiment refers to the pressure data that is suddenly detected when the pressure data remains stable for a long period of time and suddenly the pressure data changes. Change as the first pressure mutation and record the time of the first pressure mutation.
  • the pressure sensor will detect the pressure data change when the vehicle enters the speed bump, and the pressure data detected at this time will change to the first pressure change. And record the time of the first pressure mutation.
  • step S1112 the pressure data between the wheel and the road surface is continuously detected, and it is determined whether the time interval between the time when the second pressure sudden change occurs and the time when the first pressure sudden change occurs is equal to the product of the raised bar or the depressed strip. An integer multiple of the width.
  • the pressure data changes when the vehicle enters and leaves the protruding strip or the concave strip in the set concave-convex pattern. Therefore, after detecting the first pressure sudden change in step S1111, it is necessary to detect the first The secondary pressure is abrupt, and it is judged by two pressure abrupt changes whether the detected pressure data changes is a set concave-convex pattern.
  • the width of each of the raised strips or the depressed strips in the set concave-convex pattern is set to an integral multiple of the preset unit width, if the sudden change in pressure is caused by setting the concave-convex pattern, the detected first pressure sudden change and The product of the time interval between the second pressure jumps and the vehicle speed should be an integer multiple of the width of the raised or depressed strip.
  • the product of the time interval between the first pressure sudden change and the second pressure sudden change and the vehicle speed is matched with an integral multiple of the width of the raised strip or the depressed strip to determine the first pressure sudden change and the first Whether the product of the time interval between the two pressure changes and the vehicle speed is equal to an integral multiple of the width of the raised strip or the depressed strip, and the subsequent steps are performed according to the judgment structure selection.
  • step S1113 the time at which the first pressure is abrupt is taken as the starting point of the pressure change curve.
  • the product of the time interval between the first pressure sudden change and the second pressure sudden change and the vehicle speed is equal to an integral multiple of the width of the raised strip or the depressed strip, then the first pressure sudden change and the second pressure sudden change are respectively entered by the vehicle and Leaving the first raised strip or depression strip in the set concave and convex pattern, so the time of the first pressure sudden change is used as the starting point of the pressure change curve, and the pressure data between the wheel and the road surface is continuously detected for use in Form a complete pressure curve.
  • step S1114 the time of the first pressure sudden change is discarded, and when the sudden change in pressure between the wheel and the road surface is detected again, the above steps are repeated.
  • step S1111 is repeated until it is detected that the time interval between the adjacent two pressure sudden changes and the vehicle speed is equal to the convex strip.
  • the previous pressure in the two pressure mutations is mutated to the first pressure mutation, and the time of the previous pressure mutation in the two pressure mutations is taken as the starting point of the pressure change curve.
  • step S1113 the following steps are further included:
  • step S1115 the pressure data between the wheel and the road surface is continuously detected, and it is judged whether the pressure data satisfies the end detection condition after the second pressure sudden change.
  • the second pressure abruptly changes the pressure data caused when the wheel leaves the first raised strip or the depressed strip in the set concave and convex pattern. After that, the pressure data continues to be detected to determine when to use as the end point of the pressure curve.
  • step S1116 the time at which the pressure detected at the end of the detection condition is abrupt is taken as the end point of the pressure change curve.
  • step S1115 If the pressure data detected in step S1115 satisfies the end detection condition, the time at which the corresponding pressure is abrupt is taken as the end point of the pressure change curve.
  • the end detection condition may be that after the second pressure sudden change, the next pressure sudden change is not detected within the preset time threshold, that is, after the vehicle no longer enters the next raised bar or the depressed strip, It is considered that the set concave and convex pattern contains only one convex strip or one concave strip, that is, the vehicle leaves the convex or concave strip to leave the set concave and convex pattern, and the time when the second pressure is abrupt is the end. Point, therefore, the second pressure mutation is taken as the corresponding pressure sudden change when the end detection condition is satisfied, and the time of the second pressure mutation is taken as the end point of the pressure change condition.
  • the preset time threshold may be set according to a spacing between adjacent two raised strips or recessed strips in the generally set concave and convex pattern, for example, among a plurality of set concave and convex patterns disposed on the road surface, adjacent two protrusions
  • the distance between the strips or the strips is at most 3 preset unit widths, and the preset time threshold can be set to 3 preset unit widths divided by the average vehicle speed time value.
  • the end detection condition may also be that after the second pressure sudden change, the product of the time interval of the adjacent two pressure sudden changes detected and the vehicle speed is not equal to an integral multiple of the width of the raised strip or the depressed strip.
  • the width of the convex strip or the concave strip in the concave-convex pattern is set, and the spacing between the convex strips or the concave strips is set to an integral multiple of the preset unit width, and correspondingly, the detected adjacent two
  • the product of the time interval of the secondary pressure sudden change and the vehicle speed should also be equal to an integral multiple of the preset unit width.
  • the latter pressure mutation in the two adjacent pressure mutations is not caused by setting the concave-convex pattern, indicating that the vehicle has left the set concave-convex pattern when the previous pressure sudden change in the two adjacent pressure changes, and therefore, will be adjacent
  • the previous pressure mutation in the two pressure mutations serves as the corresponding pressure mutation when the end detection condition is satisfied, and the time of the previous pressure mutation in the adjacent two pressure mutations is taken as the end point of the pressure change curve.
  • step S1117 the pressure data is continuously detected until the pressure data satisfies the end detection condition.
  • step S1115 If the pressure data detected in step S1115 does not satisfy the end detection condition, the pressure data between the wheel and the road surface is continuously detected until the detected pressure data satisfies the end detection condition.
  • the start point and the end point of the pressure change curve are determined, and a corresponding pressure change curve is formed based on the pressure data detected between the start point and the end point.
  • the starting point and the ending point of the pressure change curve are determined to clarify the detected pressure change curve, so that the predicted code sequence obtained by encoding the subsequent pressure change curve is obtained. more precise.
  • FIG. 6 is a schematic flow chart of a second embodiment of a vehicle positioning method according to the present invention.
  • the present embodiment is improved on the basis of the embodiment shown in FIG. 1-5.
  • the vehicle positioning method of this embodiment further includes the following steps after step S111:
  • step S113 it is determined whether the curve mode of the pressure change curve matches the preset pressure curve mode.
  • the pressure change thereof has a setting and a setting.
  • the corresponding curve pattern of the concave-convex pattern, and the pressure change between the wheel and the road surface caused by the unevenness of the road surface itself does not have such a curve mode, therefore, in order to avoid the occurrence of erroneous measurement, after the pressure change curve is formed,
  • the curve mode forming the pressure change curve is judged, and it is judged whether the curve mode forming the pressure change curve matches the preset pressure curve mode, wherein the preset pressure curve mode is a mode of setting the pressure curve caused by the specification of the concave-convex pattern.
  • step S112 If the curve mode of the pressure change curve matches the preset pressure curve mode, it indicates that the detected pressure change is caused by the set concave and convex pattern, and then proceeds to step S112 to encode the pressure change curve to obtain the first code value and The detection code sequence formed by the second code value; otherwise, the pressure change curve is not encoded, and the process returns to step S111 to continue to detect the pressure data between the wheel and the road surface during the road running of the vehicle.
  • step S111 in this embodiment can still be performed by using the embodiments shown in FIG. 4 and FIG. 5.
  • the curve mode of the pressure change curve is determined, thereby eliminating the interference of the pressure change caused by the unevenness of the road surface on the vehicle positioning, and further improving the accuracy of the vehicle positioning.
  • FIG. 7 is a schematic flowchart diagram of a third embodiment of a vehicle positioning method according to the present invention. As shown in FIG. 7, the vehicle positioning method of this embodiment may include the following steps:
  • step S201 a change in pressure between the wheel and the road surface when the vehicle is traveling on the road surface is detected.
  • step S202 preset pressure change information matching the pressure change condition is found.
  • the steps S201 and S202 are the same as the steps S101 and S102 in the first embodiment and the second embodiment of the vehicle positioning method shown in FIG. 1 to FIG. 6, and are not described herein again.
  • step S203 the matched preset pressure change information is found, and the pre-stored position information indicated by the preset pressure change information is acquired, and it is determined whether the acquired pre-stored position information is unique.
  • the pre-stored position information represented by the preset pressure change information is obtained.
  • the preset pressure change information corresponds to the set concave and convex pattern, and the plurality of set concave and convex patterns may be different.
  • the preset concave pressure pattern corresponding to the preset preset pressure change information is unique, and the corresponding pre-stored position is corresponding.
  • the information is also unique. However, for a large geographical range, it is more complicated and difficult to set the set concave and convex patterns on each road surface to different set concave and convex patterns.
  • the plurality of set concave and convex patterns set in the A area different in the geographical area may be the same as the plurality of set concave and convex patterns set in the B area, and the pre-stored position information indicated by the preset pressure change information at this time corresponds to A at the same time.
  • the pre-stored position information of a set concave-convex pattern in the area and the pre-stored position information of the same set concave-convex pattern in the B area, in other words, the stored pre-stored position information at this time is not unique.
  • the present embodiment determines whether the pre-stored location information is unique, and selects a subsequent execution step according to the determination result.
  • step S204 the pre-stored location information is taken as the current location information of the vehicle.
  • the pre-stored location information acquired in step S203 is unique, it indicates that the obtained pre-stored location information uniquely corresponds to the set concave-convex pattern that the vehicle has traveled at this time, and the pre-stored location information corresponds to the set concave-convex pattern that the vehicle has traveled at this time, that is,
  • the pre-stored location information can be used as the current location information of the vehicle.
  • step S205 acquiring GPS positioning, satellite positioning or base station positioning to obtain current positioning coordinates of the vehicle; determining a current geographical area of the vehicle according to current positioning coordinates, and belonging to the plurality of pre-stored position information represented by the preset pressure change information
  • the pre-stored location information is used as the current location information of the vehicle.
  • the pre-stored location information obtained in step S203 is not unique, that is, the set concave-convex pattern that the vehicle has traveled at this time is used in at least two geographical regions, and in this case, it is necessary to determine which region the vehicle is in. Exclude other pre-stored location information.
  • the current positioning coordinates of the vehicle can be obtained by means of GPS positioning, satellite positioning, or base station positioning, etc., thereby knowing which area the vehicle is currently in, and belonging to the geographical area in the plurality of pre-stored position information represented by the preset pressure change information.
  • the pre-stored location information is used as the current location information of the vehicle.
  • GPS positioning, satellite positioning, or base station positioning may be first obtained to obtain a current positioning coordinate of the vehicle, first determining a geographical area where the vehicle is currently located, and finding a matching preset pressure change information to obtain
  • the search is performed only in the pre-stored position information in the geographical area. For example, first obtaining GPS positioning, satellite positioning or base station positioning to obtain the current positioning coordinates of the vehicle, first determining that the vehicle is currently in the geographical area A, and acquiring the pre-stored position information indicated by the preset pressure change information, only in the A area.
  • the pre-stored location information corresponding to the obtained preset pressure change information is searched for in the preset location information.
  • the previous pre-stored location information represented by the preset pressure change information obtained from the previous matching may be acquired; and the plurality of pre-stored preset pressure change information is represented.
  • the pre-stored location information that satisfies the preset spatial relationship between the location information and the previous pre-stored location information is used as the current location information of the vehicle. It can be understood that there should be a certain spatial relationship between the previous pre-stored location information and the pre-stored location information obtained at this time. Among them, the spatial relationship may be a distance relationship, and the set concave and convex pattern passing through the vehicle twice must have a certain distance relationship, and the set concave and convex patterns that pass twice before and after are not too far apart.
  • FIG. 8 is a schematic flowchart diagram of a fourth embodiment of a vehicle positioning method according to the present invention. As shown in FIG. 8, the vehicle positioning method of this embodiment may include the following steps:
  • step S301 a change in pressure between the wheel and the road surface when the vehicle is traveling on the road surface is detected.
  • step S302 preset pressure change information matching the pressure change condition is found.
  • step S303 the matched preset pressure change information is found, and the pre-stored position information indicated by the preset pressure change information is acquired.
  • the steps S301 to S303 are the same as the steps S101 to S103 in the embodiment shown in FIG. 1 to FIG. 6 , and details are not described herein again.
  • step S304 GPS positioning, satellite positioning or base station positioning is obtained to obtain the current positioning coordinates of the vehicle.
  • the current positioning coordinates of the vehicle are further acquired by GPS positioning, satellite positioning, base station positioning, or the like.
  • step S305 it is determined whether the error value between the pre-stored position information and the current positioning coordinate is less than or equal to a preset error threshold.
  • step S305 it is determined whether the error value between the current positioning coordinate and the pre-stored position information obtained in step S305 is less than or equal to a preset error threshold. It can be understood that if the pressure change between the wheel and the road surface is caused by setting the concave and convex pattern, the error value between the current positioning coordinate and the pre-stored position information should be small, if the pressure between the wheel and the road surface changes. The situation is not caused by setting the concave and convex pattern, but due to other factors, such as the unevenness of the road surface itself, there is a large error value between the current positioning coordinate and the pre-stored position information.
  • the subsequent execution step is selected according to the determination result.
  • step S306 the pre-stored location information is taken as the current location information of the vehicle.
  • the pre-stored position information can be used as the vehicle Current location information.
  • step S307 the current positioning coordinates are taken as the current position information of the vehicle.
  • the current positioning coordinates of the acquired vehicle such as GPS positioning, satellite positioning or base station positioning are taken as the current position information of the vehicle.
  • FIG. 9 is a schematic structural view of an embodiment of a vehicle positioning device according to the present invention.
  • the vehicle positioning device of the present embodiment includes a pressure sensor, a memory, and a processor coupled by a bus.
  • the pressure sensor is used to detect the pressure data between the wheel and the road surface when the vehicle is traveling on the road surface.
  • the memory is used to store operational instructions executed by the processor, as well as various data collected during vehicle positioning.
  • the processor is configured to perform a corresponding operation according to the operation instruction stored in the memory, to implement any one of the first embodiment to the third embodiment of the vehicle positioning method shown in FIG. 1 to FIG. 8. For details, please refer to FIG. 1 to FIG. The detailed description of the first embodiment to the third embodiment of the vehicle positioning method shown in FIG. 8 will not be repeated here.
  • the vehicle positioning apparatus of this embodiment may further include a data transceiver for uploading the obtained current location information of the vehicle to the server.
  • a data transceiver for uploading the obtained current location information of the vehicle to the server.
  • FIG. 11 is a schematic structural diagram of an embodiment of a storage medium according to the present invention.
  • the storage medium in this embodiment stores program data, which can be executed to implement any of the first to third embodiments of the vehicle positioning method shown in FIGS. 1 to 8.
  • program data can be executed to implement any of the first to third embodiments of the vehicle positioning method shown in FIGS. 1 to 8.
  • FIGS. 1 to 8 For a specific description, please refer to the specific description of the first embodiment to the third embodiment of the vehicle positioning method shown in FIG. 1 to FIG. 8 , and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开一种车辆定位方法、装置及存储介质。该车辆定位方法包括检测车辆在路面行驶时其车轮与所述路面之间的压力变化情况;查找与所述压力变化情况匹配的预设压力变化信息;其中,所述预设压力变化信息表示车辆在一具有设定凹凸图案的路面行驶时车轮与路面间的压力变化情况;当查找到匹配的预设压力变化信息时,获取所述匹配的预设压力变化信息表示的路面的预存位置信息,以作为所述车辆的当前位置信息。本发明通过上述方法能够在车辆行驶过程中对车辆的当前位置进行较准确的定位。

Description

一种车辆定位方法、装置及存储介质
【技术领域】
本发明涉及定位技术领域,尤其涉及一种车辆定位方法、装置及存储介质。
【背景技术】
在车辆行驶中对车辆的定位是很用驾驶应用的基础,导航、地图、智能交通系统等均需要对车辆进行定位。
现有技术中,通常采用GPS定位、卫星定位、基站定位等定位方式,然而传统的定位方法通常会存在一定的定位误差,在智能驾驶等情况下需要较精确的定位时则无法满足定位需求。
【发明内容】
本发明的目的在于提供一种车辆定位方法、装置及存储介质,能够对车辆提高对车辆定位的定位精度。
为实现上述目的,本发明提供一种车辆定位方法,该方法包括:
检测车辆在路面行驶时其车轮与所述路面之间的压力变化情况;
查找与所述压力变化情况匹配的预设压力变化信息;其中,所述预设压力变化信息表示车辆在一具有设定凹凸图案的路面行驶时车轮与路面间的压力变化情况;
当查找到匹配的预设压力变化信息时,获取所述匹配的预设压力变化信息表示的路面的预存位置信息,以作为所述车辆的当前位置信息。
另一方面,本发明提出了一种车辆定位装置,该装置包括:通过总线相互耦接的压力传感器、存储器和处理器;
所述压力传感器,用于检测车辆在路面上行驶时其车轮与所述路面之间的压力数据;
所述存储器,用于存储所述处理器执行的操作指令,以及车辆定位过程中的采集到的各种数据;
所述处理器用于根据所述操作指令以执行上述车辆定位方法。
另一方面,本发明提出了一种存储介质,该存储介质存储有程序数据,所述程序数据能够被执行以实现上述车辆定位方法。
有益效果:区别于现有技术的情况,本发明通过检测车辆行驶过路面时,其车轮与路面上的设定凹凸图案之间的压力变化情况,根据检测到的压力变化情况匹配相应的预设压力变化信息,在通过预设压力变化信息获取该预设压力变化信息表示的路面的预存位置信息,将路面的预存位置信息作为车辆的当前位置信息。利用压力变化情况对车辆进行定位,提高了对车辆的定位精度。
【附图说明】
图1是本发明车辆定位方法第一实施例的流程示意图;
图2是图1中步骤S11的流程示意图;
图3a-3c是图1所示的车辆定位方法第一实施例的示意图;
图4是图2中步骤S111的一实施方式的流程示意图;
图5是图2中步骤S111的另一实施方式的流程示意图;
图6是本发明车辆定位方法第二实施例的流程示意图;
图7是本发明车辆定位方法第三实施例的流程示意图;
图8是本发明车辆定位方法第四实施例的流程示意图;
图9是本发明车辆定位装置一实施例的结构示意图;
图10是本发明车辆定位装置另一实施例的结构示意图;
图11是本发明存储介质一实施例的结构示意图。
【具体实施方式】
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明进一步详细描述。显然,所描述的实施方式仅仅是本发明的部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,均属于本发明保护的范围。
请参阅图1,图1是本发明车辆定位方法第一实施例的流程示意图。如图1所示,本实施例的车辆定位方法可包括如下步骤:
在步骤S11中,检测车辆在路面行驶时其车轮与路面之间的压力变化情况。
车辆在路面上行驶时,根据路面的状况,车轮与路面之间的压力会发生变化,而不同的路面的具有唯一的地理位置,换言之,本实施例利用路面情况造成的车辆与路面间的压力变化情况匹配到对应路面,以得到此时车辆的地理位置。
本实施例中,利用车轮上设置的压力传感器,检测车辆在路面上行驶时车轮与路面之间的压力变化情况。
在步骤S12中,查找与压力变化情况匹配的预设压力变化信息。
特定的路面状况会造成车辆与路面间的压力变化,将特定的路面状况造成的车辆与路面间的压力变化作为预设压力变化信息,即预设压力变化信息可表示车辆在一具有特定路面状况的路面上行驶时的压力变化情况。
本实施例中,在不同地理位置的路面上设置有设定凹凸图案,以使车辆在行驶过设定凹凸图案时,由设定凹凸图案引起压力变化,令不同设定凹凸图案对应的压力变化为预设压力变化信息。利用步骤S101中得到的压力变化情况在数据库中进行匹配,以查找到对应的预设压力变化信息,即相当于查找到对应的设定凹凸图案。
本实施例中,设定凹凸图案为由沿路面长度方向间距排列的若干凸起条或凹陷条,在不同位置的设定凹凸图案中的凸起条或凹陷条的宽度可以不完全相同,且凸起条或凹陷条间的间距也不完全相同,由此,利用凸起条或凹陷条可以构成不同的预定凹凸图案。可以理解的是,设定凹凸图案中的凸起条或凹陷条与平坦路面之间存在高度差,因此,车辆在进入或离开设定凹凸图案中的凸起条或凹陷条时,车轮上的压力传感器检测到的压力数据会发生突变,即车轮与路面之间发生压力突变。
此外,为了将路面自身的凸起或凹陷与设定凹凸图案中的凸起条或凹陷条区分开,可以令设定凹凸图案中的凸起条或凹陷条设置为具有特定规格的凸起或凹陷,例如,具有特定宽度、斜角、高度的减速条即可作为设定凹凸图案的凸起条,由若干个减速条构成的减速带即可作为设定凹凸图案。每个凸起条或凹陷条的宽度设置为预设单位宽度的整数倍,例如,预设宽度为13cm,则每个凸起条或凹陷条的宽度可设置为13cm、26cm、39cm等,每个凸起条或凹陷条间的间距也可设置为预设单位宽度的整数倍。
进一步,车辆的车轮上的压力传感器沿其外表面设置,以使车辆在行驶过程中持续检测其车轮与路面之间的压力变化情况。该设定凹凸图案为减速图案,若干凸起条或凹陷条为减速带。
在步骤S13中,当查找到匹配的预设压力变化信息时,获取匹配的预设压力变化信息表示的路面的预存位置信息,以作为车辆的当前位置信息。
在步骤S12中查找到匹配的预设压力变化信息,相当于查找到此时车辆行驶过的设定凹凸图案。由于设定凹凸图案对应有位置信息,换言之,预设压力变化信息也对应有位置信息,且该位置信息即为设定凹凸图案的位置信息,该位置信息即为预存位置信息。
因此,可以通过步骤S12中获取到的预设压力变化信息查找到对应的预存位置信息,将匹配到的预存位置信息作为车辆的当前位置信息。
本发明通过检测车辆行驶过路面时,其车轮与路面上的设定凹凸图案之间的压力变化情况,根据检测到的压力变化情况匹配相应的预设压力变化信息,在通过预设压力变化信息获取该预设压力变化信息表示的路面的预存位置信息,将路面的预存位置信息作为车辆的当前位置信息。利用压力变化情况对车辆进行定位,提高了对车辆的定位精度。
进一步,请参阅图2,图1中步骤S11可包括如下步骤:
在步骤S111中,利用车轮的压力传感器检测车辆在路面行驶过程中其车轮与路面之间的压力数据,由检测到的压力数据形成压力变化曲线。
利用设置在车轮上的压力传感器获取车辆在路面上行驶时车轮与路面之间的压力数据,将压力数据作为纵坐标,时间作为横坐标,即可得到相应的压力变化曲线。
可以理解的是,本实施例获取的压力数据是车辆在具有设定凹凸图案的路面上行驶时车轮与路面间的压力数据。
在步骤S112中,对压力变化曲线进行编码,得到由第一码值和第二码值构成的检测码序列。
在本实施例中,进一步对压力变化曲线进行编码,将压力变化曲线编码得到由第一码值和第二码值构成的检测码序列。其中,第一码值和第二码值为数值上互不相等的两个自然数,例如,第一码值可以设置为1,第二码值可以设置为0、2或3。
本实施例中,预设压力变化信息被设置为由第一码值和第二码值构成的预设码序列,对应的,检测到的车轮与路面间的压力变化情况也为根据检测到的压力变化曲线编码得到的由第一码值和第二码值构成的检测码序列;相应的,步骤S13中查找与压力变压情况匹配的预设压力变化信息即为查找与检测码序列匹配的预设码序列。
对本实施例的车辆定位方法举例说明,如图3a,路面上设置有一设定凹凸图案,设定凹凸图案包含两个凸起条,其中第一个凸起条的宽度为预设单位宽度的两倍,两个凸起条间的间距为一个预设单位宽度,对应的,车辆行驶进入第一个凸起条时,压力数据会发生变化,令车辆则凸起条上行驶时的编码为1,车辆在两个凸起条间的路面上行驶时的编码为0,根据两个凸起条的宽度和间距,可将该设定凹凸图案对应的预设压力变化信息的预设码序列编码为1101,该设定凹凸图案的位置信息S即为预存位置信息。当车辆行驶过该设定凹凸图案的过程中,车辆进入或离开凸起条时,均会发生压力突变,因此,从车辆行驶入第一凸起条到离开第二凸起条的过程中,会利用检测到的压力数据形成如图3b的压力变化曲线,进一步对该压力变化曲线进行编码,将车辆行驶在凸起条上的部分压力曲线编码为1,两个凸起条的间距部分的路面上的部分压力曲线编码为0,即可得到如图3c所示的检测码序列,可以看出,车辆行驶过该设定凹凸图案时检测到的检测码序列与预设码序列相同,因此可以对应查找到相应的设定凹凸图案的预设位置信息S,将预存位置信息S作为车辆的当前位置信息,完成对车辆的定位。
进一步,请参阅图4,步骤S111可包括如下步骤:
在步骤S1111中,利用车轮的压力传感器检测车辆在路面行驶时其车轮与路面之间发生第一次压力数据变化,记录第一次压力数据变化的时间。
由于设定凹凸图案为由沿路面长度方向间距排列的若干凸起条或凹陷条,车辆在进入或离开设定凹凸图案中的凸起条或凹陷条时,车轮上的压力传感器检测到的压力数据会发生突变,即车轮与路面之间发生压力突变。可以理解的是,本实施例中所说的第一次压力突变指的是在一段较长时间内压力数据保持平稳,突然检测到压力数据发生变化时,则将此时突然检测到的压力数据变化作为第一次压力突变,并记录该第一次压力突变的时间。
例如,车辆在一段较长的平坦公路上行驶,突然进入减速带,则压力传感器会在车辆进入减速带时检测到压力数据变化,则令此时检测到的压力数据变化为第一次压力突变,并记录该第一次压力突变的时间。
在步骤S1112中,持续检测车轮与路面之间的压力数据,并判断发生第二次压力突变的时间与第一次压力突变的时间的时间间隔与车速的乘积是否等于凸起条或凹陷条的宽度的整数倍。
可以理解的是,车辆在驶入以及离开设定凹凸图案中的凸起条或凹陷条时,均会发生压力数据变化,因此,在步骤S1111中检测到第一压力突变后,还需要检测第二次压力突变,通过两次压力突变判断引起检测到的压力数据变化的是否为设定凹凸图案。
由于设定的凹凸图案中每个凸起条或凹陷条的宽度设置为预设单位宽度的整数倍,因此,若引起压力突变的是设定凹凸图案,则检测到的第一次压力突变和第二压力突变之间的时间间隔与车速的乘积应当为凸起条或凹陷条的宽度的整数倍。因此,本实施例中,将第一次压力突变和第二压力突变之间的时间间隔与车速的乘积与凸起条或凹陷条的宽度的整数倍进行匹配,判断第一次压力突变和第二压力突变之间的时间间隔与车速的乘积是否等于凸起条或凹陷条的宽度的整数倍,并根据判断结构选择执行后续步骤。
在步骤S1113中,将第一次压力突变的时间作为压力变化曲线的起始点。
若第一次压力突变和第二压力突变之间的时间间隔与车速的乘积等于凸起条或凹陷条的宽度的整数倍,则说明第一压力突变和第二压力突变分别由车辆驶入和离开设定凹凸图案中的第一个凸起条或凹陷条引起,因此将第一次压力突变的时间作为压力变化曲线的起始点,并持续检测车轮与路面之间的压力数据,以用于形成完整的压力变化曲线。
在步骤S1114中,丢弃第一次压力突变的时间,并当再次检测到车轮与路面之间的发生压力突变时,重复上述步骤。
若第一次压力突变和第二压力突变之间的时间间隔与车速的乘积不等于凸起条或凹陷条的宽度的整数倍,则说明第一压力突变和第二压力突变均不是由设定凹凸图案引起,因此,丢弃第一次压力突变的时间,并继续记录下一次压力突变,并重复步骤S1111,直至检测到相邻两次压力突变之间的时间间隔与车速的乘积等于凸起条或凹陷条的宽度的整数倍时,令两次压力突变中的前一次压力突变为第一次压力突变,并将两次压力突变中的前一次压力突变的时间作为压力变化曲线的起始点。
进一步,如图5所示,在步骤S1113之后,还包括如下步骤:
在步骤S1115中,继续检测其车轮与路面之间的压力数据,判断在第二次压力突变之后,压力数据是否满足结束检测条件。
可以理解的是,第二压力突变为车轮离开设定凹凸图案中第一个凸起条或凹陷条时引起的压力数据变化。在此后,继续检测压力数据,以便确定以何时作为压力变化曲线的结束点。
在步骤S1116中,将满足结束检测条件时检测到的压力突变的时间作为压力变化曲线的结束点。
若步骤S1115中检测到的压力数据满足结束检测条件,则将相应的压力突变的时间作为压力变化曲线的结束点。
本实施例中,结束检测条件可以为在第二次压力突变后,在预设时间阈值内未检测到下一次压力突变,即在之后车辆不再驶入下一个凸起条或凹陷条,可以认为该设定凹凸图案中仅包含一个凸起条或一个凹陷条,也就是说,车辆离开该凸起条或凹陷条即为离开该设定凹凸图案,第二次压力突变的时间即为结束点,因此将第二次压力突变作为满足结束检测条件时对应的压力突变,并将第二次压力突变的时间作为压力变化情况的结束点。
预设时间阈值可以根据通常设定凹凸图案中相邻两个凸起条或凹陷条之间的间距进行设置,例如,在路面上设置的多个设定凹凸图案中,相邻两个凸起条或凹陷条之间的间距最大为3个预设单位宽度,则预设时间阈值可以设置为3个预设单位宽度除以平均车速的时间值。
此外,结束检测条件还可以为在第二次压力突变后,检测到的相邻两次压力突变的时间间隔与车速的乘积不等于凸起条或凹陷条的宽度的整数倍。可以理解的是,设定凹凸图案中的凸起条或凹陷条的宽度,以及凸起条或凹陷条间的间距均设置为预设单位宽度的整数倍,相应的,检测到的相邻两次压力突变的时间间隔与车速的乘积也应当等于预设单位宽度的整数倍,若相邻两次压力突变的时间间隔与车速的乘积不等于凸起条或凹陷条的宽度的整数倍,则说明相邻两次压力突变中的后一次压力突变不是由设定凹凸图案引起的,说明车辆在相邻两次压力突变中的前一次压力突变时已经离开设定凹凸图案,因此,将相邻两次压力突变中的前一次压力突变作为满足结束检测条件时对应的压力突变,并将相邻两次压力突变中的前一次压力突变的时间作为压力变化曲线的结束点。
在步骤S1117中,继续检测压力数据,直至压力数据满足结束检测条件。
若步骤S1115中检测到的压力数据不满足结束检测条件,则继续检测车轮与路面间的压力数据,直至检测到的压力数据满足结束检测条件。
由此,确定了压力变化曲线的起始点和结束点,并根据在起始点和结束点之间检测到的压力数据形成相应的压力变化曲线。
本实施例通过每次检测到的压力发生突变的时间关系,确定压力变化曲线的起始点和结束点,以明确检测到的压力变化曲线,以使后续对压力变化曲线进行编码得到的预测码序列更加准确。
进一步,请参阅图6,图6是本发明车辆定位方法第二实施例的流程示意图。本实施例是在图1-5所示的实施例的基础上改进得到的,如图6所示,本实施例的车辆定位方法在步骤S111之后还包括如下步骤:
在步骤S113中,判断压力变化曲线的曲线模式与预设压力曲线模式是否匹配。
由于设定凹凸图案中的凸起条或凹陷条具有特定规格,例如,与路面间的特定角度、特定宽度或特定高度,因此,车辆通过设定凹凸图案时,其压力变化会具有与设定凹凸图案相应的曲线模式,而由路面本身不平坦造成的车轮与路面间的压力变化则不会不具有这种曲线模式,因此,为了避免出现误测量的情况,在形成压力变化曲线后,先对形成压力变化曲线的曲线模式进行判断,判断形成压力变化曲线的曲线模式与预设压力曲线模式是否匹配,其中,预设压力曲线模式即为设定凹凸图案的规格引起的压力曲线的模式。
若压力变化曲线的曲线模式与预设压力曲线模式匹配,则说明检测到的压力变化是有设定凹凸图案引起,则继续执行步骤S112,对压力变化曲线进行编码,得到由第一码值和第二码值构成的检测码序列;否则不对压力变化曲线进行编码,返回步骤S111,继续检测车辆在路面行驶过程中其车轮与路面之间的压力数据。
可以理解的是,本实施例中步骤S111的具体实施方式仍可以采用图4和图5所示的实施方式执行。
本实施例通过对压力变化曲线的曲线模式进行确定,进而排除由路面自身不平坦造成的压力变化对车辆定位的干扰,进一步提高车辆定位的准确度。
进一步,请参阅图7,图7是本发明车辆定位方法第三实施例的流程示意图。如图7所示,本实施例的车辆定位方法可包括如下步骤:
在步骤S201中,检测车辆在路面行驶时其车轮与路面之间的压力变化情况。
在步骤S202中,查找与压力变化情况匹配的预设压力变化信息。
本实施例中,步骤S201和步骤S202与图1至图6所示的车辆定位方法第一实施例和第二实施例中的步骤S101和步骤S102相同,此处不再赘述。
在步骤S203中,查找到匹配的预设压力变化信息,获取与预设压力变化信息表示的预存位置信息,判断获取的预存位置信息是否唯一。
通过步骤S202查找到的预设压力变化信息,利用查找到的预设压力变化信息获取其表示的预存位置信息。可以理解的是,预设压力变化信息对应于设定凹凸图案,若干个设定凹凸图案可以均不相同,此时查找到的预设压力变化信息对应的设定凹凸图案唯一,对应的预存位置信息也唯一。但对于较大地理范围内,将每个路面上的设定凹凸图案均设置为不同的设定凹凸图案是比较复杂和困难的,因此在设置设定凹凸图案时,可以分区域设置,例如对地理区域不同的A区域内设置的若干个设定凹凸图案可以和B区域内设置的若干个设定凹凸图案相同,则此时查找到预设压力变化信息表示的预存位置信息则会同时对应A区域中某一设定凹凸图案的预存位置信息和B区域中相同设定凹凸图案的预存位置信息,换言之,此时查找到的预存位置信息不唯一。
因此,本实施例在获取与预设压力变化信息表示的预存位置信息时,判断该预存位置信息是否唯一,根据判断结果选择后续执行步骤。
在步骤S204中,将预存位置信息作为车辆的当前位置信息。
若步骤S203中,获取的预存位置信息唯一,则说明得到的预存位置信息唯一对应于此时车辆行驶过的设定凹凸图案,预存位置信息与此时车辆行驶过的设定凹凸图案对应,即可将预存位置信息作为车辆的当前位置信息。
在步骤S205中,获取GPS定位、卫星定位或基站定位得到车辆的当前定位坐标;根据当前定位坐标确定车辆当前所在地理区域,将预设压力变化信息表示的多个预存位置信息中属于地理区域内的预存位置信息作为车辆的当前位置信息。
若步骤S203中,获取的预存位置信息不唯一,也就是说,在至少两个地理区域中使用了此时车辆行驶过的设定凹凸图案,此时,需要确定车辆处于哪个区域中,即可对其他的预存位置信息进行排除。本实施例中,可以通过GPS定位、卫星定位或基站定位等方式得到车辆的当前定位坐标,进而知晓车辆当前处于哪个区域,在将预设压力变化信息表示的多个预存位置信息中属于地理区域内的预存位置信息作为车辆的当前位置信息。
可以理解的是,在其他实施方式中,可以先获取GPS定位、卫星定位或基站定位得到车辆的当前定位坐标,先确定车辆当前所在的地理区域,在查找到匹配的预设压力变化信息,获取与预设压力变化信息表示的预存位置信息时,仅在该地理区域内的预存位置信息中进行查找。例如,先获取GPS定位、卫星定位或基站定位得到车辆的当前定位坐标,先确定车辆当前处于地理区域A内,则获取与预设压力变化信息表示的预存位置信息时,只在A区域内的预设位置信息中查找与获得的预设压力变化信息对应的预存位置信息。
此外,若获取的预存位置信息不唯一,在其他实施方式中,还可以获取与上一次匹配得到的预设压力变化信息表示的前一次预存位置信息;将预设压力变化信息表示的多个预存位置信息中与前一次预存位置信息之间满足预设空间关系的预存位置信息作为车辆的当前位置信息。可以理解的是,前一次预存位置信息与此时得到的预存位置信息之间应当具有一定的空间关系。其中,空间关系可以为距离关系,车辆前后两次经过的设定凹凸图案必定会有一定的距离关系,前后两次经过的设定凹凸图案不会相距太远。
进一步,请参阅图8,图8是本发明车辆定位方法第四实施例的流程示意图。如图8所示,本实施例的车辆定位方法可包括如下步骤:
在步骤S301中,检测车辆在路面行驶时其车轮与路面之间的压力变化情况。
在步骤S302中,查找与压力变化情况匹配的预设压力变化信息。
在步骤S303中,查找到匹配的预设压力变化信息,获取与预设压力变化信息表示的预存位置信息。
本实施例中,步骤S301至步骤S303与图1至图6所示的实施例中的步骤S101至步骤S103相同,此处不再赘述。
在步骤S304中,获取GPS定位、卫星定位或基站定位得到车辆的当前定位坐标。
本实施例中,进一步通过GPS定位、卫星定位或基站定位等获取车辆的当前定位坐标。
在步骤S305中,判断预存位置信息和当前定位坐标之间的误差值是否小于或等于预设误差阈值。
进一步,判断步骤S305中获得的当前定位坐标与预存位置信息之间的误差值是否小于或等于预设误差阈值。可以理解的是,若车轮与路面之间的压力变化情况是由设定凹凸图案引起的,则当前定位坐标与预存位置信息之间的误差值应当较小,若车轮与路面之间的压力变化情况不是由设定凹凸图案引起的,而是由于其他因素,例如路面自身的不平坦引起的,则当前定位坐标与预存位置信息之间会存在较大的误差值。
因此,本实施例通过判断预存位置信息和当前定位坐标之间的误差值是否小于或等于预设误差阈值,进而根据判断结果选择后续执行步骤。
在步骤S306中,将预存位置信息作为车辆的当前位置信息。
若预存位置信息和当前定位坐标之间的误差值小于或等于预设误差阈值,则说明车轮与路面之间的压力变化情况是由设定凹凸图案引起的,因此可将预存位置信息作为车辆的当前位置信息。
在步骤S307中,将当前定位坐标作为车辆的当前位置信息。
若预存位置信息和当前定位坐标之间的误差值大于预设误差阈值,则说明车轮与路面之间的压力变化情况不是由设定凹凸图案引起的,而是由于其他因素,例如路面自身的不平坦引起的。因此,将GPS定位、卫星定位或基站定位等获取车辆的当前定位坐标作为车辆的当前位置信息。
请参阅图9,图9是本发明车辆定位装置一实施例的结构示意图。如图9所示,本实施例的车辆定位装置包括通过总线耦接的压力传感器、存储器和处理器。
其中,压力传感器用于检测车辆在路面上行驶时其车轮与路面之间的压力数据。存储器用于存储处理器执行的操作指令,以及车辆定位过程中的采集到的各种数据。处理器用于根据存储器中存储的操作指令执行相应操作,以实现图1至图8所示的车辆定位方法第一实施例至第三实施例中的任意一种,具体说明请参见图1至图8所示的车辆定位方法第一实施例至第三实施例的具体说明,此处不再赘述。
进一步,如图10所示,本实施例的车辆定位装置还可以还包括数据收发器,数据收发器用于将得到的车辆的当前位置信息上传至服务器。如此,即可将单一的车辆通过服务器进行数据共享,可在智能交通中得到更进一步的应用。
进一步,请参阅图11,图11是本发明存储介质一实施例的结构示意图。如图11所示,本实施例中的存储介质存储有程序数据,该程序数据能够被执行以实现如图1至图8所示的车辆定位方法第一实施例至第三实施例中的任意一种,具体说明请参见图1至图8所示的车辆定位方法第一实施例至第三实施例的具体说明,此处不再赘述。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围。

Claims (14)

  1. 一种车辆定位方法,其中,包括:
    检测车辆在路面行驶时其车轮与所述路面之间的压力变化情况;
    查找与所述压力变化情况匹配的预设压力变化信息;其中,所述预设压力变化信息表示车辆在一具有设定凹凸图案的路面行驶时车轮与路面间的压力变化情况;
    当查找到匹配的预设压力变化信息时,获取所述匹配的预设压力变化信息表示的路面的预存位置信息,以作为所述车辆的当前位置信息。
  2. 根据权利要求1所述的车辆定位方法,其中,
    所述预设压力变化信息为由第一码值和第二码值构成的预设码序列;
    所述检测车辆在路面行驶时其车轮与所述路面之间的压力变化情况,包括:
    利用车轮的压力传感器检测车辆在路面行驶过程中其车轮与所述路面之间的压力数据,由所述检测到的压力数据形成压力变化曲线;
    对所述压力变化曲线进行编码,得到由第一码值和第二码值构成的检测码序列;
    所述查找与所述压力变化情况匹配的预设压力变化信息,包括:
    查找与所述检测码序列相同的预设码序列。
  3. 根据权利要求2所述的车辆定位方法,其中,
    所述利用车轮的压力传感器检测车辆在路面行驶过程中其车轮与所述路面之间的压力数据,由所述检测到的压力数据形成压力变化曲线之后,还包括:
    判断所述压力变化曲线的曲线模式与预设压力曲线模式是否匹配;
    若是,则对所述压力变化曲线进行编码,得到由第一码值和第二码值构成的检测码序列;
    否则对所述压力变化曲线不进行编码。
  4. 根据权利要求2所述的车辆定位方法,其中,
    所述设定凹凸图案由沿路面长度方向间距排列的若干凸起条或凹陷条;其中,不同位置的路面的凸起条或凹陷条之间的间距和/或宽度不完全相同,以构成不同的设定凹凸图案;
    当车轮进入或离开所述凸起条或凹陷条时,所述车轮与路面之间发生压力突变。
  5. 根据权利要求4所述的车辆定位方法,其中,
    利用车轮的压力传感器检测车辆在路面行驶过程中其车轮与所述路面之间的压力数据,由所述检测到的压力数据形成压力变化曲线,包括:
    利用车轮的压力传感器检测车辆在路面行驶时其车轮与所述路面之间发生第一次压力突变,记录所述第一次压力突变的时间;
    持续检测所述车轮与所述路面之间的压力数据,并判断发生第二次压力突变的时间与所述第一次压力突变的时间的时间间隔与车速的乘积是否等于所述凸起条或凹陷条的宽度的整数倍;
    若是,则将所述第一次压力突变的时间作为所述压力变化曲线的起始点;
    否则,丢弃所述第一次压力突变的时间,并当再次检测到车轮与所述路面之间的发生压力突变时,重复上述步骤。
  6. 根据权利要求5所述的车辆定位方法,其中,
    在所述将所述第一次压力数据变化的时间作为所述压力变化曲线的起始点之后,还包括:
    继续检测其车轮与所述路面之间的压力数据,判断在所述第二次压力突变之后,所述压力数据是否满足结束检测条件;
    若是,将满足结束检测条件时检测到的压力突变的时间作为所述压力变化曲线的结束点;
    否则,继续检测所述压力数据,直至所述压力数据满足结束检测条件。
  7. 根据权利要求6所述的车辆定位方法,其中,
    所述结束检测条件包括:
    在所述第二次压力突变后,在预设时间阈值内未检测到下一次压力突变;
    所述将满足结束检测条件时检测到的压力数据的时间作为所述压力变化曲线的结束点,包括:
    将所述第二次压力突变作为满足结束检测条件时对应的压力突变,并将所述第二次压力突变的时间作为所述压力变化情况的结束点。
  8. 根据权利要求6所述的车辆定位方法,其中,
    所述结束检测条件还包括:
    在所述第二次压力突变后,检测到的相邻两次压力突变的时间间隔与车速的乘积不等于所述凸起条或凹陷条的宽度的整数倍;
    所述将满足结束检测条件时检测到的压力数据的时间作为所述压力变化曲线的结束点,包括:
    将所述相邻两次压力突变中的前一次压力突变作为满足结束检测条件时对应的压力突变,并将所述相邻两次压力突变中的前一次压力突变的时间作为所述压力变化曲线的结束点。
  9. 根据权利要求1所述的车辆定位方法,其中,
    查找到匹配的预设压力变化信息,获取所述匹配的预设压力变化信息表示的路面的预存位置信息,以作为所述车辆的当前位置信息,包括:
    查找到匹配的预设压力变化信息,获取与所述预设压力变化信息表示的预存位置信息,判断获取的所述预存位置信息是否唯一;
    若所述预设压力变化信息表示的预存位置信息为唯一预存位置信息,则将所述预存位置信息作为车辆的当前位置信息;
    若所述预设压力变化信息表示的预存位置信息不唯一,则获取GPS定位、卫星定位或基站定位得到所述车辆的当前定位坐标;根据所述当前定位坐标确定所述车辆当前所在地理区域,将所述预设压力变化信息表示的多个预存位置信息中属于所述地理区域内的预存位置信息作为车辆的当前位置信息;或
    获取与上一次匹配得到的预设压力变化信息表示的前一次预存位置信息;将所述预设压力变化信息表示的多个预存位置信息中与所述前一次预存位置信息之间满足预设空间关系的预存位置信息作为车辆的当前位置信息。
  10. 根据权利要求1所述的车辆定位方法,其中,
    查找到匹配的预设压力变化信息,获取所述匹配的预设压力变化信息表示的路面的预存位置信息,以作为所述车辆的当前位置信息,包括:
    查找到匹配的预设压力变化信息,获取与所述预设压力变化信息表示的预存位置信息;
    获取GPS定位、卫星定位或基站定位得到所述车辆的当前定位坐标;
    判断所述预存位置信息和所述当前定位坐标之间的误差值是否小于或等于预设误差阈值;
    若是,则将所述预存位置信息作为车辆的当前位置信息;
    否则,将所述当前定位坐标作为车辆的当前位置信息。
  11. 根据权利要求1所述的车辆定位方法,其中,
    所述车轮的压力传感器沿其外表面设置,以使车辆在行驶过程中持续检测其车轮与所述路面之间的压力变化情况。
  12. 根据权利要求1所述的车辆定位方法,其中,
    所述设定凹凸图案为减速图案,所述若干凸起条或凹陷条为减速带。
  13. 一种车辆定位装置,其中,包括:通过总线相互耦接的压力传感器、存储器和处理器;
    所述压力传感器,用于检测车辆在路面上行驶时其车轮与所述路面之间的压力数据;
    所述存储器,用于存储所述处理器执行的操作指令,以及车辆定位过程中的采集到的各种数据;
    所述处理器用于根据所述操作指令执行权利要求1-12任意一项所述的车辆定位方法。
  14. 一种存储介质,其中,存储有程序数据,所述程序数据能够被执行以实现权利要求1-12任意一项所述的车辆定位方法。
PCT/CN2017/119524 2017-12-28 2017-12-28 一种车辆定位方法、装置及存储介质 WO2019127254A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/119524 WO2019127254A1 (zh) 2017-12-28 2017-12-28 一种车辆定位方法、装置及存储介质
CN201780035387.6A CN109328292B (zh) 2017-12-28 2017-12-28 一种车辆定位方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119524 WO2019127254A1 (zh) 2017-12-28 2017-12-28 一种车辆定位方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2019127254A1 true WO2019127254A1 (zh) 2019-07-04

Family

ID=65244666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119524 WO2019127254A1 (zh) 2017-12-28 2017-12-28 一种车辆定位方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN109328292B (zh)
WO (1) WO2019127254A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435476A (zh) * 2020-12-19 2021-03-02 宋彦震 车库出车安全提示系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120130B2 (ja) * 2019-04-04 2022-08-17 株式会社デンソー 車両位置決定装置および車両位置決定方法
CN113299102A (zh) * 2021-03-27 2021-08-24 宁波工程学院 一种地下停车场导航方法、系统及存储介质
CN114154533B (zh) * 2021-11-04 2025-02-07 东风汽车集团股份有限公司 一种道路凹凸物检测方法及装置
CN114234980B (zh) * 2021-12-16 2023-11-10 哈尔滨工业大学 一种基于压力感知的室内定位装置及方法
CN116416592A (zh) * 2021-12-30 2023-07-11 北京万集科技股份有限公司 车辆信息的识别方法和装置、存储介质及电子装置
CN115472015B (zh) * 2022-09-20 2024-01-02 福建鼎旸信息科技股份有限公司 一种基于地基物联网定位校正的高精度引导系统与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049048A1 (en) * 1996-06-17 1997-12-24 Idd Enterprises, L.P. Hypertext document retrieval system and method
CN1641712A (zh) * 2004-01-15 2005-07-20 于君 车辆定位系统及其专用的车载装置和路边设施
US20110131025A1 (en) * 2009-11-27 2011-06-02 Corghi S.P.A. Apparatus and method for supplying a person with information for statically adjusting a motor vehicle equipped with wheels fitted with tyres
CN104115196A (zh) * 2012-02-14 2014-10-22 日立建机株式会社 路面管理系统
CN105981086A (zh) * 2014-02-24 2016-09-28 日产自动车株式会社 自身位置计算装置以及自身位置计算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8548671B2 (en) * 2011-06-06 2013-10-01 Crown Equipment Limited Method and apparatus for automatically calibrating vehicle parameters
KR102034664B1 (ko) * 2013-06-18 2019-10-22 현대모비스 주식회사 차량의 전후륜 압력 모니터링을 통한 맵매칭 시스템 및 방법
CN103473774B (zh) * 2013-09-09 2017-04-05 长安大学 一种基于路面图像特征匹配的车辆定位方法
JP6405239B2 (ja) * 2014-03-19 2018-10-17 株式会社小松製作所 路面状態判定方法、路面状態出力方法、路面状態判定装置および路面状態出力装置
CN106448225B (zh) * 2016-08-25 2019-12-10 深圳市元征科技股份有限公司 一种路段信息共享方法及装置
CN106934119A (zh) * 2017-02-23 2017-07-07 山西省交通科学研究院 一种利用轮地接触压力评价行车振动噪声的方法
CN106960591B (zh) * 2017-03-31 2019-08-27 武汉理工大学 一种基于路面指纹的车辆高精度定位装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049048A1 (en) * 1996-06-17 1997-12-24 Idd Enterprises, L.P. Hypertext document retrieval system and method
CN1641712A (zh) * 2004-01-15 2005-07-20 于君 车辆定位系统及其专用的车载装置和路边设施
US20110131025A1 (en) * 2009-11-27 2011-06-02 Corghi S.P.A. Apparatus and method for supplying a person with information for statically adjusting a motor vehicle equipped with wheels fitted with tyres
CN104115196A (zh) * 2012-02-14 2014-10-22 日立建机株式会社 路面管理系统
CN105981086A (zh) * 2014-02-24 2016-09-28 日产自动车株式会社 自身位置计算装置以及自身位置计算方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435476A (zh) * 2020-12-19 2021-03-02 宋彦震 车库出车安全提示系统

Also Published As

Publication number Publication date
CN109328292A (zh) 2019-02-12
CN109328292B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2019127254A1 (zh) 一种车辆定位方法、装置及存储介质
CN108253973B (zh) 高精度地图和标准地图关联的方法及装置
WO2018126605A1 (zh) 一种机器人的移动控制方法及机器人
CN106530716A (zh) 基于手机信令数据计算高速公路路段平均速度的方法
WO2019127830A1 (zh) 轮胎监测方法、滑移率计算装置、系统、车辆、存储装置
CN108844553B (zh) 校正机器人移动过程中的里程的方法、装置及机器人
CN110434831A (zh) 一种轨道式巡检机器人定位及位置校准系统及方法
CN110738856A (zh) 一种基于移动聚类的城市交通拥堵精细识别方法
WO2021006441A1 (ko) 이동식 도면화 시스템을 이용한 도로 표지 정보 수집 방법
JP2005534100A (ja) 携帯電話通信を解析して道路の交通量を測定する方法
CN102479434B (zh) 道路估计设备和用于估计道路的方法
WO2018021870A1 (ko) 내비게이션 시스템 및 내비게이션 시스템의 위치 보정 방법
WO2011034343A2 (ko) 단일 광원과 평면 센서부를 이용하여 물체의 물리량을 측정하는 방법 및 이를 이용하는 가상 골프 시스템
CN110793513B (zh) 一种正交式平面移动机器人位姿检测装置与检测方法
CN110426034A (zh) 基于地图信息辅助惯导阵列的室内定位方法
CN109405823A (zh) 管廊轨道式巡检机器人充电点快速定位系统及定位方法
WO2022203415A1 (ko) 공간 정보 기반의 경로 데이터 및 센서 데이터 매칭 시스템
CN104767994B (zh) 一种车载dvr视频数据存储完整性的检测方法
CN109521447B (zh) 一种基于贪心策略的失踪目标搜索方法
CN112733436A (zh) 一种基于二维运动导引的充电及停车位识别方法
CN117058877B (zh) 一种城市交通智能监控方法及系统
CN115495678B (zh) 一种基于稀疏蜂窝信令数据的共乘匹配方法、系统及设备
JP3613593B2 (ja) 車両位置検出装置
CN115169476B (zh) 一种顾及语义的轨迹数据异常检测方法
WO2022240254A1 (ko) 실외 이동 로봇의 보도 주행을 위한 2차원 위상 지도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936665

Country of ref document: EP

Kind code of ref document: A1