WO2019126996A1 - 一种浸没式的动力电池散热装置 - Google Patents
一种浸没式的动力电池散热装置 Download PDFInfo
- Publication number
- WO2019126996A1 WO2019126996A1 PCT/CN2017/118556 CN2017118556W WO2019126996A1 WO 2019126996 A1 WO2019126996 A1 WO 2019126996A1 CN 2017118556 W CN2017118556 W CN 2017118556W WO 2019126996 A1 WO2019126996 A1 WO 2019126996A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- battery heat
- heat dissipation
- liquid
- power
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 24
- 238000007654 immersion Methods 0.000 title abstract 2
- 239000007788 liquid Substances 0.000 claims abstract description 60
- 239000003507 refrigerant Substances 0.000 claims abstract description 27
- 230000017525 heat dissipation Effects 0.000 claims description 38
- 238000004891 communication Methods 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 description 10
- 239000000110 cooling liquid Substances 0.000 description 7
- 239000002826 coolant Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/617—Types of temperature control for achieving uniformity or desired distribution of temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
Definitions
- the invention relates to the technical field of new energy vehicles, and in particular to a submerged power battery heat sink.
- the power battery is the power source in the electric vehicle and is the core component of the entire power car.
- the power battery generates a large amount of heat during charging and discharging, resulting in an increase in the temperature of the battery pack.
- the larger the charge and discharge rate of the power battery the faster the battery temperature rises.
- the power battery pack is usually composed of a plurality of battery cells, which causes a large accumulation of heat of the battery pack, and the temperature is too high, which affects the performance and life of the power battery, and may cause safety problems such as thermal runaway or even explosion. Therefore, it is of great significance to study the heat dissipation of power batteries.
- Air-cooled management technology means that cold air flows through the surface of the battery for heat exchange cooling.
- the air cooling mode is divided into natural cooling and forced cooling (using a fan, etc.).
- the technology uses natural wind or a fan to cool the battery with the evaporator that comes with the car.
- the liquid cooling heat management technology uses a water cooling method to heat the battery pack. When the battery is dissipating heat, the battery exchanges heat with the coolant in the pipeline.
- the existing air-cooling heat management technology has higher requirements on the ambient temperature, and the temperature of the inlet air is difficult to control, which makes the temperature of the battery difficult to control, and the heat transfer coefficient of the air is small due to the small heat transfer coefficient of the air.
- the efficiency is low, and uneven distribution of air may cause uneven distribution in the battery pack, which affects the temperature uniformity of the power battery.
- the existing liquid cooling and heat management technology generally adopts a liquid-cooled pipeline in which various structures are interposed between batteries, or a liquid-cooled plate is added between the surface of the battery and the battery, and heat generated during charging and discharging of the battery cannot be directly transmitted to the cooling liquid, so The cooling and cooling effect of the battery is not ideal.
- the present invention provides a submerged power battery heat sink capable of effectively cooling a battery, controlling battery temperature, and ensuring uniform temperature of the battery unit and improving power of the new energy vehicle. Battery performance and longevity.
- the technical solution adopted by the present invention is to provide an immersed power battery heat dissipation device, comprising: a battery heat dissipation module, a battery unit, a liquid refrigerant, a total liquid inlet pipe, and a total liquid discharge pipe;
- the battery heat dissipating module is a sealed box structure, the box body contains liquid refrigerant, and the plurality of battery heat dissipating modules are arranged in the power battery heat dissipating device according to a certain connection manner;
- the battery unit is installed in the battery heat dissipation module, and each of the battery units is immersed in the liquid refrigerant in the battery heat dissipation module, and the liquid refrigerant is branched from the total liquid inlet pipe through the liquid inlet port.
- the liquid refrigerant exchanges heat with the battery unit at the heat dissipation module of the battery; the liquid refrigerant after heat exchange flows into the total liquid discharge pipe through the liquid outlet, and flows out The power battery heat sink.
- a plurality of the battery heat dissipation modules are arranged in a parallel connection manner in the power battery heat sink.
- each of the battery heat dissipation modules further includes an expansion relief valve.
- each of the battery heat dissipation modules further includes a temperature detecting sensor.
- the power battery heat sink further includes a total communication cable and a total power cable, each of the battery heat dissipation modules having a communication interface connecting the total communication cables, and each of the battery heat dissipation modules has a connection to the total power supply The power connector of the cable.
- the liquid refrigerant is an electron fluorinating liquid.
- the invention can make the battery unit work at a lower temperature, and solves the problem of battery heating in the normal driving process and the rapid charging process of the new energy vehicle.
- the battery is effectively cooled, the battery temperature is controlled, and the temperature of the battery unit is ensured to be uniform, thereby improving the performance and life of the new energy vehicle power battery.
- FIG. 1 is a structural view of a power battery heat sink according to an embodiment of the present invention.
- FIG. 2 is a schematic structural view of a battery heat dissipation module according to an embodiment of the present invention.
- 1 total communication cable
- 2 total power cable
- 31 total inlet pipe inlet
- 32 total outlet pipe outlet
- 311 total liquid inlet pipe
- 312 total liquid outlet pipe
- 4 Battery cooling module
- 41 communication interface
- 42 power interface
- 431 inlet port
- 432 output port
- 6 expansion safety valve
- 7 temperature detection sensor
- a submerged power battery heat dissipation device includes: a battery heat dissipation module 4, a battery unit 5, a liquid refrigerant, a total liquid inlet pipe 311, and a total liquid discharge pipe. 312; wherein the battery heat dissipation module 4 is a sealed tank structure, the tank body contains liquid refrigerant, and the plurality of battery heat dissipation modules 4 are arranged in the power connection heat dissipation device according to a certain connection manner.
- the battery heat dissipation module 4 is a sealed tank structure, the tank body contains liquid refrigerant, and the plurality of battery heat dissipation modules 4 are arranged in the power connection heat dissipation device according to a certain connection manner.
- the battery unit 5 is installed in each of the battery heat dissipation modules 4, and each of the battery units 5 is immersed in the liquid refrigerant in the battery heat dissipation module 4, and the liquid refrigerant is fed by the total liquid
- the pipe 311 is branched into the battery heat dissipation module 4 through the liquid inlet 431; the liquid refrigerant exchanges heat with the battery unit 5 at the battery heat dissipation module 4; the liquid refrigerant after heat exchange passes through the liquid outlet 432 is merged into the total outlet conduit 321 and flows out of the power battery heat sink.
- the invention adopts an immersed power battery pack heat dissipation technology, and directly immerses the battery cell-battery unit 5 of the power battery in the cooling liquid, so that the battery unit 5 is effectively and reliably cooled, wherein the cooling liquid is an insulated liquid refrigerant.
- the cooling liquid is an insulated liquid refrigerant.
- an electronic fluorinated liquid if the insulating liquid refrigerant has a high thermal conductivity sufficient to cope with the heat generated by the battery unit 5, the insulating liquid refrigerant does not need to undergo a phase change.
- the power battery heat sink includes a plurality of battery cells 5, and the plurality of battery cells 5 are connected in series; the battery cells 5 are completely immersed in the coolant in the battery heat dissipation module 4, and the battery cells are battery-cooled by the flow of the coolant 5 The heat emitted is taken away.
- the battery unit 5 is fixed to the box body, and the tank body is respectively provided with a liquid inlet 431, a liquid outlet 432, a communication interface 41 and a power interface 42.
- the liquid inlet 431 and the liquid outlet 432 respectively correspond to the total liquid inlet
- the pipe 311 is connected to the total liquid outlet pipe 321 to realize the circulation of the liquid refrigerant into and out of the battery unit 5, and the heat exchange with the battery unit 5 is completed; the communication interface 41 and the power source interface 42 respectively communicate with the total communication cable 1 and the total power cable. 2 connection for communication of control signals and transmission of power and power.
- the cryogenic cooling liquid from the external coolant circulation system enters the total inlet conduit 311 from the total inlet conduit inlet 31, and enters the housing of each battery heat dissipation module 4 through a plurality of parallel/series inlet ports 431, respectively.
- the cooling liquid flows from one side of the battery heat dissipation module 4 and flows out from the other side of the battery heat dissipation module 4. During this process, the cooling liquid exchanges heat with the battery cell-battery unit 5, and the cooling liquid transfers heat from the liquid outlet. 432 flows into the total outlet conduit 321 and is carried away by the total outlet conduit outlet 32.
- each battery heat dissipating module 4 The structure and working principle of each battery heat dissipating module 4 are the same, and a plurality of battery heat dissipating modules 4 are arranged in the entire battery pack through a parallel or series connection manner to form a power battery pack heat dissipating system.
- an expansion safety valve 6 for monitoring the coolant pressure and temperature and a temperature monitoring sensor 7 are provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
一种浸没式的动力电池散热装置,包括:电池散热模块(4)、电池单元(5)、液态制冷剂、总进液管道(311)和总出液管道(321);每个所述电池散热模块(4)内安装有所述电池单元(5),每个所述电池单元(5)浸没在所述电池散热模块(4)内的所述液态制冷剂中,所述液态制冷剂由总进液管道(311)分流经进液口进入所述电池散热模块(4);所述液态制冷剂在所述电池散热模块(4)处与所述电池单元(5)进行换热。能够对电池进行有效的冷却、控制电池温度,并且能够保证电池单元的温度均匀一致,提高新能源汽车动力电池的使用性能和寿命。
Description
本发明涉及新能源汽车技术领域,具体来说,涉及一种浸没式的动力电池散热装置。
随着目前环境问题的日益突出,动力汽车迅速发展。动力电池为电动汽车中的动力源,是整个动力汽车中的核心构件。动力电池在充放电的过程中会产生大量的热,导致电池包的温度升高。动力电池的充放电倍率越大,电池温度升高的越快。并且,动力电池包通常是由多个电池单体组合而成,这就导致电池包的热量大量的聚集,温度过高,影响动力电池的性能、寿命,可能发生热失控甚至爆炸等安全问题,因此,对动力电池的散热研究具有重要意义。目前,常用的热管理技术为风冷热管理技术及液冷热管理技术。风冷管理技术是指冷风流经电池表面进行换热冷却。风冷模式分为自然冷却和强制冷却(利用风机等)。该技术利用自然风或风机,配合汽车自带的蒸发器为电池降温。液冷热管理技术为采用水冷方式对电池包进行换热。电池在散热时,电池通过与管路中的冷却液进行换热。
现有的风冷热管理技术对环境温度的要求较高,入口风的温度难以控制,这就导致电池的温度也难以控制,气体的温度中由于空气的传热系数小,所以导致散热冷却的效率低,并且,由于空气的流动不均会导致电池包内分布不均, 影响动力电池的温度一致性。现有液冷热管理技术一般采用电池间穿插各种结构的液冷管路,或者在电池的表面及电池间添加液冷板块,电池充放电过程中产生的热量不能直接传递至冷却液体,因此,电池的散热冷却效果不理想。
发明内容
针对现有技术中的不足,本发明提出一种一种浸没式的动力电池散热装置,能够对电池进行有效的冷却、控制电池温度,并且能够保证电池单元的温度均匀一致,提高新能源汽车动力电池的使用性能和寿命。
为实现本发明的目的,本发明采用的技术方案是:提供了一种浸没式的动力电池散热装置,包括:电池散热模块、电池单元、液态制冷剂、总进液管道和总出液管道;其中,所述电池散热模块为密封的箱体结构,所述箱体内容纳有液态制冷剂,多个所述电池散热模块按一定的连接方式排布在所述动力电池散热装置内;每个所述电池散热模块内安装有所述电池单元,每个所述电池单元浸没在所述电池散热模块内的所述液态制冷剂中,所述液态制冷剂由总进液管道分流经进液口进入所述电池散热模块;所述液态制冷剂在所述电池散热模块处与所述电池单元进行换热;换热后的所述液态制冷剂经出液口汇入总出液管道,流出所述动力电池散热装置。
优选地,多个所述电池散热模块以并联的连接方式排布在所述动力电池散热装置内。
优选地,每个所述电池散热模块还包括膨胀安全阀。
优选地,每个所述电池散热模块还包括温度检测传感器。
优选地,所述动力电池散热装置还包括总通讯电缆和总电源电缆,每个所述电池散热模块具有连接所述总通讯电缆的通讯接口,每个所述电池散热模块 具有连接所述总电源电缆的电源接口。
优选地,所述液态制冷剂为电子氟化液。
本发明与现有的风冷及液冷热管理技术相比,可以使电池单元在较低的温度下工作,解决了新能源汽车在正常行驶过程中以及快速充电过程中的电池发热问题,对电池进行有效的冷却、控制电池温度,并且能够保证电池单元的温度均匀一致,提高新能源汽车动力电池的使用性能和寿命。
图1显示了本发明实施例动力电池散热装置结构框架图。
图2显示了本发明实施例电池散热模块结构示意图。
附图标记的说明:1—总通讯电缆、2—总电源电缆、31—总进液管道进口、32—总出液管道出口、311—总进液管道、312—总出液管道、4—电池散热模块、41—通讯接口、42—电源接口、431—进液口、432—出液口、5—电池单元、6—膨胀安全阀、7—温度检测传感器。
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
根据本发明的实施例,如图1-2所示,一种浸没式的动力电池散热装置,包括:电池散热模块4、电池单元5、液态制冷剂、总进液管道311和总出液管道312;其中,所述电池散热模块4为密封的箱体结构,所述箱体内容纳有液态制冷剂,多个所述电池散热模块4按一定的连接方式排布在所述动力电池 散热装置内。每个所述电池散热模块4内安装有所述电池单元5,每个所述电池单元5浸没在所述电池散热模块4内的所述液态制冷剂中,所述液态制冷剂由总进液管道311分流经进液口431进入所述电池散热模块4;所述液态制冷剂在所述电池散热模块4处与所述电池单元5进行换热;换热后的液态制冷剂经出液口432汇入总出液管道321,流出所述动力电池散热装置。
本发明采用一种浸没式动力电池包散热技术,将动力电池的电池芯—电池单元5直接浸没于冷却液中,使得电池单元5得到有效可靠的冷却,其中,冷却液为绝缘的液态制冷剂,如电子氟化液,如果绝缘的液态制冷剂具有足以应对电池单元5所产生的热量的高热传导性能,则绝缘的液态制冷剂不需要发生相变。动力电池散热装置包含多个电池单元5,多个所述电池单元5串联连接;所述电池单元5完全浸没在电池散热模块4中的冷却液中,通过冷却液的流动将电池芯—电池单元5发出的热量带走。电池单元5固定于箱体,箱体上分别设置有进液口431、出液口432、通讯接口41以及电源接口42,所述进液口431和出液口432分别与所述总进液管道311和总出液管道321相连接,以实现液态制冷剂的循环进出,完成与电池单元5的热交换;所述通讯接口41以及电源接口42分别与所述总通讯电缆1及总电源电缆2连接,以进行控制信号的通讯以及电源电力的传输。来自外部冷却液循环系统的低温冷却液体由总进液管道进口31进入所述总进液管道311,通过多个并联/串联的进液口431分别进入每个电池散热模块4的箱体中,冷却液体由电池散热模块4的一侧流入后由电池散热模块4的另一侧流出,在此过程中冷却液体与电池芯—电池单元5直接接触后换热,冷却液体将热量由出液口432流入总出液管道321,由总出液管道出口32带走。
每一个电池散热模块4的结构和工作原理相同,多个电池散热模块4通过 并联或串联的连接方式排布在整个电池包内,形成动力电池包散热系统。
在每个电池散热模块4处,设置有用于监控冷却液压力和温度的膨胀安全阀6和为温度监测传感器7。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但都应落在本申请的保护范围内。
Claims (6)
- 一种浸没式的动力电池散热装置,其特征在于,包括:电池散热模块、电池单元、液态制冷剂、总进液管道和总出液管道;其中,所述电池散热模块为密封的箱体结构,所述箱体内容纳有液态制冷剂,多个所述电池散热模块相互连接排布在所述动力电池散热装置内;每个所述电池散热模块内安装有所述电池单元,每个所述电池单元浸没在所述电池散热模块内的所述液态制冷剂中,所述液态制冷剂由总进液管道分流经进液口进入所述电池散热模块;所述液态制冷剂在所述电池散热模块处与所述电池单元进行换热;换热后的所述液态制冷剂经出液口汇入总出液管道,流出所述动力电池散热装置。
- 根据权利要求1所述的浸没式的动力电池散热装置,其特征在于,多个所述电池散热模块以并联的连接方式排布在所述动力电池散热装置内。
- 根据权利要求1-2任一项所述的浸没式的动力电池散热装置,其特征在于,每个所述电池散热模块还包括膨胀安全阀。
- 根据权利要求1-2任一项所述的浸没式的动力电池散热装置,其特征在于,每个所述电池散热模块还包括温度检测传感器。
- 根据权利要求1-2任一项所述的浸没式的动力电池散热装置,其特征在于,所述动力电池散热装置还包括总通讯电缆和总电源电缆,每个所述电池散热模块具有连接所述总通讯电缆的通讯接口,每个所述电池散热模块具有连接所述总电源电缆的电源接口。
- 根据权利要求1-2任一项所述的浸没式的动力电池散热装置,其特征在于,所述液态制冷剂为电子氟化液。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/118556 WO2019126996A1 (zh) | 2017-12-26 | 2017-12-26 | 一种浸没式的动力电池散热装置 |
US16/618,180 US11404735B2 (en) | 2017-12-26 | 2017-12-26 | Immersed heat dissipation device for power battery |
EP17936931.9A EP3644432A4 (en) | 2017-12-26 | 2017-12-26 | SUBMERGED COOLING DEVICE FOR A POWER BATTERY |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/118556 WO2019126996A1 (zh) | 2017-12-26 | 2017-12-26 | 一种浸没式的动力电池散热装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019126996A1 true WO2019126996A1 (zh) | 2019-07-04 |
Family
ID=67064273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/118556 WO2019126996A1 (zh) | 2017-12-26 | 2017-12-26 | 一种浸没式的动力电池散热装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11404735B2 (zh) |
EP (1) | EP3644432A4 (zh) |
WO (1) | WO2019126996A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113910986A (zh) * | 2021-10-14 | 2022-01-11 | 岚图汽车科技有限公司 | 电池保温管理方法及相关设备 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113543595B (zh) * | 2021-07-12 | 2023-10-27 | 广东合一新材料研究院有限公司 | 流动浸没式服务器、工作站和工作系统 |
CN113571803B (zh) * | 2021-07-27 | 2022-12-16 | 苏州清陶新能源科技有限公司 | 一种电池模组及电池系统 |
CN115275422A (zh) * | 2022-07-12 | 2022-11-01 | 国网浙江省电力有限公司双创中心 | 一种浸没式液冷储能系统 |
CN115420855B (zh) * | 2022-08-23 | 2023-07-11 | 常州博瑞电力自动化设备有限公司 | 一种电池电芯在氟化液中运行兼容性的测试方法 |
US20250065708A1 (en) * | 2023-08-25 | 2025-02-27 | Girish Mandakolathur Krishnamurthi | Thermal management system for at least one module of an electrically powered vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201413858Y (zh) * | 2009-03-02 | 2010-02-24 | 江苏伊思达电池有限公司 | 具有高效冷却功能的防燃防爆型二次电池组系统 |
CN101794824A (zh) * | 2010-01-29 | 2010-08-04 | 天津大学 | 液体浸没太阳电池的散热装置 |
CN104466300A (zh) * | 2014-12-08 | 2015-03-25 | 江苏港星方能超声洗净科技有限公司 | 一种电池冷却装置 |
US20150214586A1 (en) * | 2012-08-31 | 2015-07-30 | Avl Test Systems, Inc. | High power battery cells having improved cooling |
CN206180046U (zh) * | 2016-10-25 | 2017-05-17 | 惠州市亿鹏能源科技有限公司 | 一种电池液冷散热装置 |
CN106843423A (zh) * | 2016-12-22 | 2017-06-13 | 曙光节能技术(北京)股份有限公司 | 用于刀片服务器的液冷装置及刀片服务器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201466117U (zh) * | 2009-07-24 | 2010-05-12 | 岑显荣 | 一种带冷却外壳的电动汽车蓄电池及其冷却装置 |
SE535318C2 (sv) * | 2010-12-01 | 2012-06-26 | Scania Cv Ab | Arrangemang och förfarande för att omvandla värmeenergi till mekanisk energi |
US8852772B2 (en) * | 2011-11-15 | 2014-10-07 | GM Global Technology Operations LLC | Lithium ion battery cooling system comprising dielectric fluid |
JP2014060088A (ja) * | 2012-09-19 | 2014-04-03 | Toshiba Corp | 二次電池装置および二次電池システム |
KR20150006103A (ko) * | 2013-07-05 | 2015-01-16 | 현대모비스 주식회사 | 직접 수냉 방식을 활용한 이차전지 모듈 및 이의 냉각방법 |
DE102014001022A1 (de) * | 2014-01-27 | 2015-07-30 | Liebherr-Transportation Systems Gmbh & Co. Kg | Fahrzeugkühlkreislauf |
CN105762437B (zh) * | 2014-12-17 | 2019-04-02 | 北京长城华冠汽车科技股份有限公司 | 浸液式电池箱温度控制系统 |
-
2017
- 2017-12-26 EP EP17936931.9A patent/EP3644432A4/en active Pending
- 2017-12-26 US US16/618,180 patent/US11404735B2/en active Active
- 2017-12-26 WO PCT/CN2017/118556 patent/WO2019126996A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201413858Y (zh) * | 2009-03-02 | 2010-02-24 | 江苏伊思达电池有限公司 | 具有高效冷却功能的防燃防爆型二次电池组系统 |
CN101794824A (zh) * | 2010-01-29 | 2010-08-04 | 天津大学 | 液体浸没太阳电池的散热装置 |
US20150214586A1 (en) * | 2012-08-31 | 2015-07-30 | Avl Test Systems, Inc. | High power battery cells having improved cooling |
CN104466300A (zh) * | 2014-12-08 | 2015-03-25 | 江苏港星方能超声洗净科技有限公司 | 一种电池冷却装置 |
CN206180046U (zh) * | 2016-10-25 | 2017-05-17 | 惠州市亿鹏能源科技有限公司 | 一种电池液冷散热装置 |
CN106843423A (zh) * | 2016-12-22 | 2017-06-13 | 曙光节能技术(北京)股份有限公司 | 用于刀片服务器的液冷装置及刀片服务器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3644432A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113910986A (zh) * | 2021-10-14 | 2022-01-11 | 岚图汽车科技有限公司 | 电池保温管理方法及相关设备 |
Also Published As
Publication number | Publication date |
---|---|
EP3644432A1 (en) | 2020-04-29 |
US11404735B2 (en) | 2022-08-02 |
US20200112073A1 (en) | 2020-04-09 |
EP3644432A4 (en) | 2021-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019126996A1 (zh) | 一种浸没式的动力电池散热装置 | |
CN103928729B (zh) | 一种基于热管的电动汽车动力电池组温控系统 | |
CN217589072U (zh) | 一种电芯热管理系统、电芯模组及动力电池 | |
CN108520991B (zh) | 一种新型车载锂离子电池的热管理系统 | |
CN216563302U (zh) | 一种动力电池液冷装置及动力电池系统 | |
CN107946696A (zh) | 一种基于液体介质的汽车动力电池组温控装置 | |
CN105576321A (zh) | 电池包热管理系统 | |
CN106711545B (zh) | 一种大功率电池组极耳流动浸泡式控温系统及方法 | |
CN220106662U (zh) | 液冷电池包 | |
CN108923097B (zh) | 一种磁流体液冷板、及其组成的液冷系统及控制方法 | |
CN114156560A (zh) | 一种浸没式液冷散热模组及散热方法 | |
CN108232361B (zh) | 一种动力电池包的散热系统以及动力电池的散热系统 | |
CN106252786A (zh) | 一种动力锂电池模组冷却装置 | |
CN110061325A (zh) | 一种基于螺旋式微通道液冷管的动力电池热管理系统 | |
CN211182455U (zh) | 电池液冷装置 | |
CN206353594U (zh) | 一种大功率电池组极耳流动浸泡式控温系统 | |
CN203760594U (zh) | 一种基于热管的电动汽车动力电池组温控系统 | |
CN107464965A (zh) | 一种电池包及电池包液冷冷却系统 | |
CN213425066U (zh) | 一种基于复合散热材料和液冷的电池热管理装置 | |
CN206134877U (zh) | 一种动力锂电池模组冷却装置 | |
CN211295320U (zh) | 一种新能源汽车电池冷却系统 | |
CN113540616A (zh) | 一种基于重力热管冷却的电池热管理系统及控制方法 | |
CN218632330U (zh) | 电池包及电动汽车 | |
CN117317467A (zh) | 一种储能电池模组组合散热装置及其控制方法 | |
TW202121731A (zh) | 電池模組散熱蓋板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17936931 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017936931 Country of ref document: EP Effective date: 20200120 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |