WO2019124782A2 - Method for producing acetoin, butanediol, or butanol from ethanol - Google Patents
Method for producing acetoin, butanediol, or butanol from ethanol Download PDFInfo
- Publication number
- WO2019124782A2 WO2019124782A2 PCT/KR2018/014538 KR2018014538W WO2019124782A2 WO 2019124782 A2 WO2019124782 A2 WO 2019124782A2 KR 2018014538 W KR2018014538 W KR 2018014538W WO 2019124782 A2 WO2019124782 A2 WO 2019124782A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fls
- mutant
- ddh
- butanediol
- amino acid
- Prior art date
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 212
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 67
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 title claims abstract description 20
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 title abstract description 12
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 title abstract description 6
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 47
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000002105 nanoparticle Substances 0.000 claims abstract description 12
- 244000005700 microbiome Species 0.000 claims abstract description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 219
- 108010065027 Propanediol Dehydratase Proteins 0.000 claims description 87
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 claims description 69
- 108010007843 NADH oxidase Proteins 0.000 claims description 37
- 230000035772 mutation Effects 0.000 claims description 30
- 150000001413 amino acids Chemical class 0.000 claims description 29
- 235000001014 amino acid Nutrition 0.000 claims description 23
- 229940024606 amino acid Drugs 0.000 claims description 23
- 235000018102 proteins Nutrition 0.000 claims description 17
- 235000004279 alanine Nutrition 0.000 claims description 16
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 12
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 claims description 12
- 101710088194 Dehydrogenase Proteins 0.000 claims description 8
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 8
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 8
- 102100022768 D-beta-hydroxybutyrate dehydrogenase, mitochondrial Human genes 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229960000310 isoleucine Drugs 0.000 claims description 6
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- 125000003729 nucleotide group Chemical group 0.000 claims description 6
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 239000013598 vector Substances 0.000 claims description 6
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 5
- 239000004475 Arginine Chemical group 0.000 claims description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Chemical group OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 4
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Chemical group OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 4
- 235000013922 glutamic acid Nutrition 0.000 claims description 4
- 239000004220 glutamic acid Chemical group 0.000 claims description 4
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 claims description 4
- 108700026220 vif Genes Proteins 0.000 claims description 4
- 230000003100 immobilizing effect Effects 0.000 claims description 3
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 3
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical group NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical group OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 claims description 2
- 235000003704 aspartic acid Nutrition 0.000 claims description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 6
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims 2
- 239000004473 Threonine Substances 0.000 claims 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims 1
- 239000004471 Glycine Substances 0.000 claims 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims 1
- 125000000539 amino acid group Chemical group 0.000 claims 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 claims 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims 1
- 229930182817 methionine Natural products 0.000 claims 1
- 230000009261 transgenic effect Effects 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 abstract description 77
- 108090000790 Enzymes Proteins 0.000 abstract description 75
- 238000006243 chemical reaction Methods 0.000 abstract description 43
- 230000003197 catalytic effect Effects 0.000 abstract description 19
- 230000037361 pathway Effects 0.000 abstract description 15
- 238000006555 catalytic reaction Methods 0.000 abstract description 8
- 238000000855 fermentation Methods 0.000 abstract description 4
- 230000004151 fermentation Effects 0.000 abstract description 4
- 102000008300 Mutant Proteins Human genes 0.000 abstract description 3
- 108010021466 Mutant Proteins Proteins 0.000 abstract description 3
- 230000010261 cell growth Effects 0.000 abstract description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 87
- 239000000758 substrate Substances 0.000 description 62
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 56
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 50
- 230000000694 effects Effects 0.000 description 39
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 38
- 239000005515 coenzyme Substances 0.000 description 35
- 102220089649 rs201519600 Human genes 0.000 description 28
- 229960002363 thiamine pyrophosphate Drugs 0.000 description 24
- 235000008170 thiamine pyrophosphate Nutrition 0.000 description 24
- 239000011678 thiamine pyrophosphate Substances 0.000 description 24
- YXVCLPJQTZXJLH-UHFFFAOYSA-N thiamine(1+) diphosphate chloride Chemical compound [Cl-].CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N YXVCLPJQTZXJLH-UHFFFAOYSA-N 0.000 description 24
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 23
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 22
- 101150066721 dhaR gene Proteins 0.000 description 20
- 101100387236 Lactococcus lactis subsp. lactis (strain IL1403) dhaS gene Proteins 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 17
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 14
- 239000011541 reaction mixture Substances 0.000 description 14
- OWBTYPJTUOEWEK-ZXZARUISSA-N meso-butane-2,3-diol Chemical compound C[C@@H](O)[C@H](C)O OWBTYPJTUOEWEK-ZXZARUISSA-N 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000012790 confirmation Methods 0.000 description 11
- 108010093096 Immobilized Enzymes Proteins 0.000 description 10
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 9
- 239000007995 HEPES buffer Substances 0.000 description 9
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 238000012937 correction Methods 0.000 description 7
- -1 medical supplies Substances 0.000 description 7
- 229910021645 metal ion Inorganic materials 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- OWBTYPJTUOEWEK-QWWZWVQMSA-N (R,R)-butane-2,3-diol Chemical compound C[C@@H](O)[C@@H](C)O OWBTYPJTUOEWEK-QWWZWVQMSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000008363 phosphate buffer Substances 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000004408 titanium dioxide Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OAJLVMGLJZXSGX-SLAFOUTOSA-L (2s,3s,4r,5r)-2-(6-aminopurin-9-yl)-5-methanidyloxolane-3,4-diol;cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7 Chemical compound [Co+3].O[C@H]1[C@@H](O)[C@@H]([CH2-])O[C@@H]1N1C2=NC=NC(N)=C2N=C1.[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O OAJLVMGLJZXSGX-SLAFOUTOSA-L 0.000 description 4
- OWBTYPJTUOEWEK-IMJSIDKUSA-N (S,S)-butane-2,3-diol Chemical compound C[C@H](O)[C@H](C)O OWBTYPJTUOEWEK-IMJSIDKUSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 239000013613 expression plasmid Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 4
- 230000004001 molecular interaction Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 240000001929 Lactobacillus brevis Species 0.000 description 3
- 235000013957 Lactobacillus brevis Nutrition 0.000 description 3
- 241000218588 Lactobacillus rhamnosus Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 101150052778 bdh gene Proteins 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- FDJOLVPMNUYSCM-UVKKECPRSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2,7, Chemical compound [Co+3].N#[C-].C1([C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)[N-]\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O FDJOLVPMNUYSCM-UVKKECPRSA-L 0.000 description 3
- 238000001952 enzyme assay Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000007986 glycine-NaOH buffer Substances 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 238000000329 molecular dynamics simulation Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 241001656809 Clostridium autoethanogenum Species 0.000 description 2
- 241001528539 Cupriavidus necator Species 0.000 description 2
- 108010002998 NADPH Oxidases Proteins 0.000 description 2
- 102000004722 NADPH Oxidases Human genes 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 241000589540 Pseudomonas fluorescens Species 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 229930003779 Vitamin B12 Natural products 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000002210 biocatalytic effect Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010523 cascade reaction Methods 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- FDJOLVPMNUYSCM-WZHZPDAFSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+3].N#[C-].N([C@@H]([C@]1(C)[N-]\C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C(\C)/C1=N/C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C\C1=N\C([C@H](C1(C)C)CCC(N)=O)=C/1C)[C@@H]2CC(N)=O)=C\1[C@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]1[C@@H](O)[C@@H](N2C3=CC(C)=C(C)C=C3N=C2)O[C@@H]1CO FDJOLVPMNUYSCM-WZHZPDAFSA-L 0.000 description 2
- JBJSVEVEEGOEBZ-SCZZXKLOSA-K coenzyme B(3-) Chemical compound [O-]P(=O)([O-])O[C@H](C)[C@@H](C([O-])=O)NC(=O)CCCCCCS JBJSVEVEEGOEBZ-SCZZXKLOSA-K 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 101150081618 nox gene Proteins 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000009790 rate-determining step (RDS) Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000011715 vitamin B12 Substances 0.000 description 2
- 235000019163 vitamin B12 Nutrition 0.000 description 2
- BTANRVKWQNVYAZ-BYPYZUCNSA-N (2S)-butan-2-ol Chemical compound CC[C@H](C)O BTANRVKWQNVYAZ-BYPYZUCNSA-N 0.000 description 1
- 229940082044 2,3-dihydroxybenzoic acid Drugs 0.000 description 1
- 102100026188 3-hydroxybutyrate dehydrogenase type 2 Human genes 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 101000764864 Homo sapiens 3-hydroxybutyrate dehydrogenase type 2 Proteins 0.000 description 1
- 101000903373 Homo sapiens D-beta-hydroxybutyrate dehydrogenase, mitochondrial Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 229960003624 creatine Drugs 0.000 description 1
- 239000006046 creatine Substances 0.000 description 1
- 101150057904 ddh gene Proteins 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 208000035790 developmental dysplasia of the hip 1 Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940120503 dihydroxyacetone Drugs 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 101150096282 fls gene Proteins 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000006115 industrial coating Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010189 intracellular transport Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- ZNJHFNUEQDVFCJ-UHFFFAOYSA-M sodium;2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid;hydroxide Chemical compound [OH-].[Na+].OCCN1CCN(CCS(O)(=O)=O)CC1 ZNJHFNUEQDVFCJ-UHFFFAOYSA-M 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/14—Enzymes or microbial cells immobilised on or in an inorganic carrier
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/16—Butanols
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a process for the production of acetone, butanediol or butanol in ethanol and its various applications.
- bioethanol Although interest in bioethanol, biodiesel, biogas, and butanol represented by bioenergy is increasing, all of the types of bioenergy mentioned above can be used as a fuel for power generation or transportation, but some disadvantages of practical application and production methods There is growing interest in hydrocarbon-based compounds, new renewable energy sources.
- Acetone, butanediol or butanol is very useful as an intermediate compound having a wide range of applications such as cosmetics, perfume, hormone, hygiene agent, industrial coating agent, paint additive, fiber, plastic monomer, medical supplies, vitamins, antibiotics and pesticides .
- Butanediol or butanol in ethanol Butanediol or butanol in ethanol.
- the method for producing acetone, butanediol or butanol in ethanol of the present invention is a method for producing an acetone, butanediol or butanol by designing an artificial synthetic pathway so that NOX, EtDH, FLS, BDH and DDH proteins and their mutant proteins are displayed as multi- -free catalyst method.
- the production method of the present invention can produce butanol efficiently because it is not necessary to grow the cells as compared with the conventional microbial fermentation method and can easily control a short synthesis route, a fast reaction rate, a high yield and productivity, and a desired reaction condition .
- the protein is fixed to nanoparticles and can be reused in a large number, and is also effective in producing acetone, butanediol or butanol, which is economical.
- FIG. 1A shows a method for producing acetone in ethanol using a cell-free multi-catalytic system comprising the optimum enzyme of the present invention
- FIG. 1B shows a method for producing 2,3-butanediol from ethanol
- FIG. This is a schematic diagram of a method for producing butanol.
- the present invention provides FLS mutant amino acids comprising at least one mutation selected from the group consisting of mutations in which the 482nd leucine is substituted with serine, arginine and glutamic acid in the FLS (formolase) amino acid represented by SEQ ID NO: 8.
- FLS (formolase) in the present invention catalyzes the carbolination of three 1-carbon formaldehyde molecules into one 3-carbon dihydroxyacetone molecule.
- FLS and its variants produce acetone using acetaldehyde produced in the course of alcohol metabolism as a substrate, and use it as a substrate to produce 2,3-butanediol and to use 2,3-butanediol as the substrate But is not limited thereto.
- FLS-mutated amino acid in the present invention means substitution, insertion, deletion or modification of one or more amino acids of the wild-type FLS amino acid.
- FLS: L482S is represented by the amino acid sequence of SEQ ID NO: 10
- the 482nd leucine is replaced with arginine
- FLS: L482R is represented by the amino acid of SEQ ID NO: 11
- the mutant in which the 482nd leucine is replaced by glutamic acid is represented by amino acid of SEQ ID NO: 12 (FLS: L482E).
- the FLS mutant amino acid may further include at least one selected from the group consisting of mutation at position 396, mutation at position 446, mutation at position 473, mutation at position 477, mutation at position 499, But is not limited thereto, so as to achieve the purpose of converting acetaldehyde produced in the metabolism into acetone.
- the FLS is derived from, but is not limited to, Pseudomonas fluorescens .
- the FLS mutation of the present invention has analyzed the structure of the FLS and found six remaining six hotspots (T396, T446, M473, S477, L482 and L499). Among them, molecular interactions with acetaldehyde, substrate, confirmed that W480 was the active site residue, and FLS: L482S binds more strongly to substrate than FLS, confirming hydrogen bonding.
- the present invention also provides a gene coding for the FLS mutant amino acid.
- the present invention also relates to a gene encoding the above-mentioned FLS-mutated amino acid, a 2,3-butanediol dehydrogenase (BDH) gene, a BDH gene, an NADH oxidase gene, EtDH , A gene for a mutation of a DDH gene, a gene for a DDH (diol dehydratase), and a gene for a DDH mutation.
- BDH 2,3-butanediol dehydrogenase
- NADH oxidase uses oxygen as a substrate and oxidizes NADH to regenerate NAD + .
- the regenerated NAD < + > can be used as coenzyme in EtDH.
- EtDH ethanol dehydrogenase
- NAD + and / or NADP + as a coenzyme using ethanol as a substrate.
- the production of acetaldehyde can be induced, and FLS using the acetaldehyde as a substrate can be produced to produce acetone.
- BDH (2,3-butanediol dehydrogenase) in the present invention catalyzes the production of 2,3-butanediol using acetophenone as a substrate and NADPH as a coenzyme.
- BDH 2,3-butanediol dehydrogenase
- DDH diol dehydratase
- the NOX gene is derived from Lactobacillus rhamnosus and the EtDH gene or EtDH mutation gene can be derived from Cupriavidus necator .
- the BDH gene or the BDH mutant gene may be derived from Clostridium autoethanogenum
- the DDH (diol dehydratase) gene and the DDH mutant gene may be derived from Lactobacillus brevis , But is not limited to, for the production of an enzyme for butanol production of the present invention.
- the NOX gene is the nucleotide sequence of SEQ ID NO: 1
- the EtDH gene is the nucleotide sequence of SEQ ID NO: 3
- the mutant of EtDH is the 46th aspartic acid of EtDH represented by the amino acid sequence of SEQ ID NO: 4 (EtDH: D46G), the nucleotide sequence of SEQ ID NO: 5 and the amino acid sequence of SEQ ID NO: 6.
- the BDH gene may be a variant of the BDH wherein the 199th serine of BDH represented by the amino acid sequence of SEQ ID NO: 14 is substituted with alanine (BDH: S199A), the nucleotide sequence of SEQ ID NO: 15 and the amino acid of SEQ ID NO: have.
- DDH: S302A in which the 302th serine of DDH amino acid sequence of SEQ ID NO: 18 is substituted with alanine
- 337th mutant in which glutamine is replaced with alanine
- DDH: F375I in which the 375th phenylalanine is substituted with isoleucine, but not limited to, one or more single or multiple mutants selected from the group consisting of:
- DDH DDH: Q337A / F375I
- 337th glutamine of the DDH amino acid of SEQ ID NO: 18 is alanine and the 375th phenylalanine is replaced by isoleucine
- Mutants in which the 302nd serine alanine and 37th glutamine are substituted with alanine S302A / F375I
- the mutant of DDH can express dhaR which is a reactivating factor of DDH.
- plasmids were prepared to express each protein and its variants.
- FLS L482S
- BDH S199A
- DDH Q337A / F375I expression plasmids and vector maps were prepared (Tables 1 and 2).
- the structure of the DDH of the present invention and mutants thereof were analyzed. As a result, it was confirmed that the active site residue was E171 in the molecular interaction with the substrate 2,3-butanediol, and DDH: Q337A / F375I binds more strongly to the substrate, confirming hydrogen bonding and water bridges.
- the DDH of the present invention and its variants exhibit stereoselectivity and do not generate butanone with (2R, 3R) -2,3-butanediol and (2S, 3S) -2,3-butanediol was used as a substrate to produce butanone.
- EtDH: D46G, EtDH: D46G, EtDH: D46G, FLS, FLS: L482S, BDH: EtDH, D46G and D46G were obtained as a result of confirming thermostability when the protein of the present invention was used as an enzyme in the present invention.
- S199A, BDH: S199A, DHH with dhaR: Q337A / F375 and NOX proteins exhibited thermal stability even at high 30 to 45 degrees, and particularly excellent activity at 30 degrees.
- the present invention also provides a transformed microorganism into which the recombinant vector has been introduced.
- the transformant of the present invention can be constructed by introducing the vector into the host cell in such a manner that the promoter can function.
- the present invention provides a method for producing butanol, which comprises purifying and reacting a protein produced in the transforming microorganism.
- the butanol may be at least one selected from the group consisting of 2-butanol, n-butanol, isobutanol and tert-butanol, preferably 2-butanol.
- the production method is a method for producing butanol by using a protein produced in the transformed microorganism in a cell-free state by performing a multistage catalysis, and using ethanol as a substrate, but is not limited thereto.
- the production method further includes at least one kind of coenzyme selected from the group consisting of coenzyme NAD + , NADP + , vitamin B 12, and thiamine pyrophosphate (TPP), but its treatment concentration or throughput is also not limited.
- the production method further comprises at least one metal ion selected from the group consisting of metal ions Mg 2+ , Mn 2+ , Ca 2+ , Fe 2+ , Ni 2+ , Cu 2+ and Zn 2+ , Mg 2+ , Mn 2+ , Ca 2+ , Fe 2+ and Ni 2+ can induce the catalytic reaction more efficiently, but this is not limited to produce butanol.
- the production method produces butanol at a pH of from 5.0 to 9.0, preferably from 6.5 to 8.5, but is not limited thereto in order to achieve the objective of producing butanol.
- the production method produces butanol at 16 to 45 degrees, preferably 25 to 42 degrees, but is not limited thereto.
- an artificial synthetic pathway using cascade enzymes was designed to produce C 4 compound, butanol, from ethanol.
- the multi-step enzymes include NOX, EtDH, FLS, BDH and DDH and their mutants Respectively.
- NOX uses oxygen as a substrate and oxidizes NADH to regenerate NAD + .
- the regenerated NAD + uses EtDH as a coenzyme.
- EtDH and its variants induce acetaldehyde production by using ethanol as a substrate and dehydrogenating ethanol using NAD + and / or NADP + as coenzyme.
- FLS and its mutants induce the production of acetone using acetaldehyde as a substrate.
- BDH catalyzes the formation of 2,3-butanediol using acetyl as a substrate and NADPH as a coenzyme.
- DDH catalyzes the formation of butanone when 2,3-butanediol is used as a substrate and vitamin B12 is used as a coenzyme.
- the BDH catalyzes the catalytic reaction of BDH using catalytic butanone as a substrate to finally produce butanol.
- the present invention achieves the objective of artificial synthesis of butanol in ethanol using a simplified pathway in vitro using a cell-free multi-enzyme catalysis (CFME) method.
- CFME cell-free multi-enzyme catalysis
- the optimal method for producing butanol according to the method of Example 7-6 uses a cell-free multi-enzyme catalyst according to the artificial synthetic pathway designed in the present invention and uses ethanol as a substrate .
- NAD + , NADP + , TPP, vitamin B 12 and Mg 2+ were added as a coenzyme using NOX, EtDH: D46G, FLS: L482S, BDH: S199A and DDH: Q337A / F375I as enzymes.
- -Butanol production can be effectively induced.
- the present invention also provides a method for producing butanol, which comprises immobilizing and reacting a protein produced in the transforming microorganism with nanoparticles.
- the nanoparticles are attached to silicon oxide and are reacted with glutaraldehyde.
- the nanoparticles are not limited thereto, so as to achieve the purpose of producing butanol by attaching the protein of the present invention to nanoparticles.
- the fixed protein nanoparticles are reusable, preferably 1 to 30 times reusable, more preferably 1 to 20 times, but not limited thereto.
- the optimal method for producing butanol according to the method of Example 7-6 uses a cell-free multi-enzyme catalyst according to the artificial synthetic pathway designed in the present invention and uses ethanol as a substrate .
- NAD + , NADP + , TPP, vitamin B 12 and Mg 2+ were added as a coenzyme using NOX, EtDH: D46G, FLS: L482S, BDH: S199A and DDH: Q337A / F375I as enzymes.
- -Butanol production can be effectively induced.
- the enzyme was attached to the nanoparticles to fix and induce butanol production.
- DNA Polymerase High Fidelity and T4 DNA ligase were purchased from TaKaRa Biotech (Shiga, Japan) and New England Biolabs (Ipswich, MA, USA). DNA and protein markers were purchased from Tiangen Biotech (Shanghai, China). (IPTG), dithiothreitol (DTT) and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Sinopharm (Shanghai, China).
- (3S / 3R) -acetone was prepared by reacting (2S, 3S) -2,3-butanediol, (2R, 3R) -2,3-butanediol, meso Butanediol, butanone and 2-butanol were purchased from Sigma-Aldrich. All other reagents were of analytical grade and commercially available unless otherwise specified.
- the strains and plasmids used in the present invention are shown in Table 1 below.
- Escherichia coli DH5? And BL21 (DE3) were used as cloning and expression expression hosts and cultured at 37 ⁇ ⁇ .
- An expression vector was constructed using the plasmid pET28a.
- Luria-Bertani (LB) medium was used for strain culture and recombinant protein expression, and kanamycin was added to the medium to cultivate a recombinant strain at a final concentration of 50 ⁇ g mL -1 .
- Protein expression plasmids were introduced into E. coli BL21 (DE3), and each of the pET-EtDH, pET-FLS, pET-BDH, pET-DDH, pET-dhaR, pET-DDH-dhaR, and pET- Recombinant E. coli BL21 (DE3) was cultured at 37 ° C in LB medium containing 0.5 mM IPTG at an optical density of 0.6 at 600 nm. After induction at 18 ° C for 24 hours, cells were obtained by centrifugation and disrupted by sonication in an ice bath. Cell lysates were centrifuged at 8000 ⁇ g for 10 min to remove cell debris.
- EtDH D46G and BDH: S199A mutants were subjected to site-directed mutagenesis using EtDH1 / EtDH2 and BDH1 / BDH2 primers shown in Table 3 below to construct EtDH or BDH variants Respectively.
- Recombinant plasmids pET-EtDH and pET-BDH containing wild-type EtDH and BDH genes were used as DNA templates for PCR amplification, respectively. After transformation of the recombinant plasmid containing the correct mutant gene into E. coli BL21 (DE3), the colonies were selected for kanamycin resistance and used for protein expression.
- the cells were obtained by centrifugation and incubated for 6 hours at 30 ° C. in a reaction mixture containing 50 mM phosphate buffer (pH 8.0), 100 mM acetaldehyde and 40 g L -1 wet cell weight (WCW) Catalytic activity was performed.
- DDH mutants were prepared and used for the expression of dhaR, which is a reactivating factor of DDH, including S302A, Q337A, F375I, S302A / Q337A, S302A / F375I, Q337A / F375I and S302A / Q337A /
- the DDH variants were prepared to confirm the catalytic efficiency as compared to the wild type DDH enzyme.
- DDH1-DDH6 primer shown in Table 2 below to induce site-specific mutagenesis.
- the pET-DDH-dhaR recombinant plasmid containing wild-type DDH and its activator dhaR gene were used as DNA templates for PCR amplification.
- the PCR product was transformed into E. coli BL21 (DE3) and cultured in LB medium containing 0.5 mM IPTG at 18 degrees for 24 hours.
- the mutants were used for the evaluation of catalytic activity using total-cell biocatalysis analysis using meso-2,3-butanediol as a substrate.
- the reaction mixture contained 50 mM HEPES buffer (pH 7.0), 50 mM meso-2,3-b butanediol, 20 ⁇ M coenzyme B12 and 40 g L -1 wet cell weight, It was carried out at 30 degrees for 6 hours.
- the butanone product was quantified using gas chromatography. The origins and nucleotide sequences of the respective enzymes and some variants thereof are shown in Table 4.
- the EtDH enzyme activity assay For the EtDH enzyme activity assay, the EtDH enzyme activity and its variants were incubated with the reaction mixture containing 100 mM glycine-NaOH buffer (pH 9.5), 5 mM Mg 2+ , 3 mM NAD + / NADP + Respectively. The activity was confirmed by NAD + / NADP + reduction at 340 nm using a spectrophotometer (UV-1800, MAPADA, Shanghai, China). One unit of EtDH activity was identified by the amount of enzyme required to reduce 1 ⁇ mol of NAD + / NADP + per minute.
- FLS enzyme activity analysis FLS enzyme activity and its variants were assayed with a reaction mixture containing 100 mM phosphate buffer (pH 8.0), 1 mM Mg + , 0.1 mM TPP and 20 mM acetaldehyde, The concentration of acetone in acetaldehyde was measured by VP reaction and calculated by the standard acetone calibration curve.
- FLS enzyme activity and its variants were assayed in 50 mM Tris-HCl buffer (pH 7.5), 0.2 mM NADPH, 1 mM DTT; And 20 mM acetone or 5 mM butanone at room temperature.
- the activity was confirmed by the rate of oxidation of NADPH at 340 nm using a spectrophotometer (UV-1800, MAPADA).
- One unit of BDH activity was defined as the amount of enzyme required to oxidize 1 ⁇ mol NADPH per minute.
- mutants containing DDH enzyme activity and dhaR activator were incubated in 50 mM phosphate buffer (pH 7.0), 1 mM coenzyme B12, 100 mM ATP, 1 mM Mg 2+ and 50 mM meso-2,3 ≪ / RTI > butanediol.
- NOX enzyme activity assay NOX enzyme activity was measured at room temperature with a reaction mixture containing 50 mM HEPES-NaOH buffer (pH 8.0) and 0.2 mM NADH. The activity was confirmed by the NADH oxidation rate at 340 nm using a spectrophotometer (UV-1800, MAPADA). One unit of NOX activity was determined by the amount of enzyme required to oxidize 1 ⁇ mol NADH per minute.
- Each treatment group was centrifuged at 10,000 ⁇ g for 5 minutes at 4 ° C.
- 0.3 mL of diluted samples, 0.3 mL of 0.5% creatine, 0.3 mL of 5% alpha-naphthol and 0.3 mL of 5% NaOH were added to each 10 mL tube to analyze the acetone concentration in each treatment group and quantify in the VP reaction.
- Gently shaken The optical density of the reaction solution was measured at 520 nm using a spectrophotometer (UV-1800, MAPADA) and the concentration of acetone was calculated from the calibration curve.
- the calibration curve was measured between the standard acetone concentration and the optical density at 520 nm after the VP reaction in the range of 0.04-0.4 mM.
- the kinetic parameters of EtDH and EtDH: D46G were determined at room temperature with the reaction mixture containing 100 mM glycine-NaOH buffer (pH 9.5), 5 mM Mg 2+ , 3 mM NAD + / NADP + and 0.5-100 mM ethanol .
- the kinetic parameters of FLS and its variants were confirmed at room temperature with a reaction mixture containing 100 mM phosphate buffer (pH 8.0), 1 mM Mg + , 0.1 mM TPP and 0.5-20 mM acetaldehyde.
- BDH and BDH The kinetic parameters of S199A were: 50 mM Tris-HCl buffer (pH 7.5), 0.2 mM NADPH, 1 mM DTT; And 0.5-100 mM acetone or 0.5-10 mM butanone at room temperature. The Km and kcat values were confirmed by nonlinear regression fitting of Michaelis-Menten equation and were repeated three times.
- acetone, 2,3-butanediol or 2-butanol from ethanol using an amoebic cell multi-enzyme catalyst was carried out in the presence of substrate, coenzyme, metal ion and 0.5 -mL reaction mixture.
- the reaction conditions including temperature, pH, coenzyme and metal ion were performed under optimum conditions to increase the flux of the artificial reaction path.
- the optimum reaction conditions are as follows.
- Acetone production was performed in 50 mM HEPES buffer (pH 8.0), 1 mM NAD + , 0.1 mg mL -1 EtDH, 0.2 mg mL -1 FLS: L482S, 0.1 mg mL -1 NOX, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO and 100 mM ethanol at 30 [deg.] C.
- 2,3-butanediol was dissolved in 50 mM HEPES buffer (pH 8.0), 1 mM NAD + , 1 mM NADP + , 0.1 mg mL -1 EtDH: D46G, 0.2 mg mL -1 FLS: L482S, 0.1 mg mL -1 NOX, A 0.5-mL reaction mixture containing 0.1 mg mL -1 BDH: S199A, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO and 100 mM ethanol was run at 30 ° C.
- 2-butanol is 50 mM HEPES buffer (pH 8.0) , 1 mM NAD +, 1 mM NADP +, 0.1 mg mL -1 EtDH: D46G, 0.2 mg mL -1 FLS: L482S, 0.1 mg mL -1 NOX, 0.1 mg mL -1 BDH: S199A, 0.2 mg mL -1 DDH: Q337A / F375I, 0.2 mg mL -1 dhaR, 0.1 mM TPP, 1 mM Mg 2+, 1 mM DTT, 20% DMSO, 1 mM coenzyme B12, 100 mM ATP and 100 mM ethanol at 30 [deg.] C.
- the purified enzyme was mixed with active silicon oxide particles and cultured for 12 hours at 4 ° C.
- silicon oxide particles 4830HT; Nanostructured & Amorphous Materials, Houston, TX, USA
- ⁇ i is the total activity of the immobilized enzyme
- ⁇ f is the total activity of the free enzyme
- Pi is the total protein content of the coenzyme preparation
- Pw and Ps are the protein concentrations of the washing solution or supernatant after fixation.
- acetone 50 mM HEPES buffer (pH 8.0), 1 mM NAD + , 1.06 U mL -1 EtDH, 0.05 U mL -1 FLS: L482S, 0.98 U mL -1 NOX, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO, and 100 mM ethanol.
- the immobilized enzyme was removed by centrifugation at 4000 x g for 30 minutes. The immobilized enzyme was collected and washed with deionized water and buffer. For the second-order reaction cycle, the immobilized enzyme was dissolved in a new buffer, the substrate was added, and then treated in the same manner as the first-order reaction cycle.
- GC-MS analysis was performed using a gas chromatograph system (Agilent GC9860, Santa Clara, CA, USA) equipped with a chiral column (Supelco ⁇ -DEX TM 120, 30-m length, 0.25- Respectively.
- the operating conditions were as follows: N2 was used as the carrier gas at a flow rate of 1.2 mL min < -1 & gt ;; The injector temperature and the detector temperature were set at 215 and 245 degrees, respectively; The column temperature was maintained at 50 ° C for 1.5 minutes and then increased to 180 ° C at a rate of 15 ° C min -1 .
- the cells were induced by centrifugation at 18 ° C for 24 hours and then disrupted by ultrasonication in an ice bath. Cell lysates were centrifuged at 8000 ⁇ g for 10 min to remove cell debris. To obtain NOX, EtDH, FLS, BDH and dhaR enzymes, soluble fractions were purified using HisTrap HP column according to purification protocol (GE Healthcare, Little Chalfont, UK). DDH purification was performed in a conventional manner [M. Seyfried, et al., J. Bacteriol., 1996, 178, 5793].
- Each of the purified enzymes was concentrated by ultrafiltration and de-chlorinated, and then detected by SDS-PAGE. As a result, it was confirmed that EtDH and EtDH: D46G proteins and BDH and BDH: S199A proteins were expressed at the same molecular weight, and it was confirmed that there was no difference in molecular weight expressed between wild type and mutant type.
- NOX proteins derived from Lactobacillus rhamnosus or Lactobacillus brevis have different molecular weights, and thus it has been confirmed that proteins expressed according to their origins are different even if they are the same genes.
- FLS gene was correctly expressed.
- a VP reaction was carried out, and 50 or 100 nM acetaldehyde as a substrate was treated, or treated with FLS enzyme for 0 or 6 hours And each condition was set. As a result, it was confirmed that acetone was produced, and the concentration of acetone obtained when the FLS enzyme was treated and the substrate acetaldehyde was changed at different concentrations was confirmed through the darkness of the color change.
- the multistage enzymes of the present invention was synthesized using acetylation, 2,3-butanediol and 2-butanol by artificial synthetic pathway using a cell-free multi-enzyme catalytic system.
- the analysis results using the multi-step enzyme according to the present invention of the present invention were carried out by GC / GC-MS analysis.
- the kinetic parameters of EtDH and EtDH: D46G were determined at room temperature with a reaction mixture containing 100 mM glycine-NaOH buffer (pH 9.5), 5 mM Mg 2+ , 3 mM NAD + / NADP + and 0.5-100 mM ethanol Respectively.
- the kinetic parameters of FLS and its variants were confirmed at room temperature with a reaction mixture containing 100 mM phosphate buffer (pH 8.0), 1 mM Mg + , 0.1 mM TPP and 0.5-20 mM acetaldehyde.
- BDH and BDH The kinetic parameters of S199A were: 50 mM Tris-HCl buffer (pH 7.5), 0.2 mM NADPH, 1 mM DTT; And 0.5-100 mM acetone or 0.5-10 mM butanone at room temperature.
- the results are shown in Table 5.
- EtDH and EtDH D46G enzymes were found to have kcat / Km values of 17.09 and 9.97 s -1 mM -1 when using ethanol as a substrate and NAD + as a coenzyme.
- NADP + It has been confirmed that the use of NAD + can increase the catalyst efficiency.
- the kcat / Km value of the FLS enzyme was 7.69 ⁇ 10 -3 s -1 mM -1 when acetaldehyde was used as a substrate and thiamine pyrophosphate (TPP) was used as a coenzyme.
- FLS: L482S, FLS: L482R and FLS: L482E which are variants thereof, confirmed that the kcat / Km values were 1.33 x 10 -2 , 1.06 x 10 -2 and 9.66 x 10 -3 s -1 mM -1 , It was confirmed that the catalytic efficiency was increased to 72.95%, 37.84% and 25.62%, respectively, as compared with the wild-type FLS enzyme.
- BDH S199A enzyme was compared with wild type BDH, it was confirmed that the catalyst efficiency was increased when butanone was used as a substrate and NADPH was used as a coenzyme.
- the present inventors analyzed the stereoselectivity of the DDH enzyme of the present invention and found that 20.56 mM butanone was generated from 50 mM meso-2,3-butanediol. On the other hand, it was confirmed that butanone was not detected when (2R, 3R) -2,3-butanediol and (2S, 3S) -2,3-butanediol were used as a substrate. Therefore, the DDH enzyme including dhaR exhibited a high catalytic activity in meso-2,3-butanediol in vivo, confirming excellent stereoselectivity.
- the thermal stability of the EtDH, FLS and NOX enzymes at 30 ° C was 87.91%, 70.43%, and 91.30%, respectively.
- the NOX enzyme showed continuous thermal stability.
- the initial reaction is 50 mM HEPES buffer (pH 7.0), 0.1 mg mL -1 EtDH, 0.2 mg mL -1 FLS, 0.1 mg mL -1 NOX, 4 mM NAD +, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO, and a 0.5-mL reaction mixture containing 100 mM ethanol as an initial substrate.
- the reaction was carried out under the conditions of 30 ° C. for 6 hours and 17.98 mM of acetone, which is 35.96% of the theoretical yield, was produced.
- the temperature was set to 20, 25, 30, 37, and 42 degrees in order to find the optimal reaction conditions, depending on the conditions of temperature, pH, coenzyme (NAD + and TPP) and metal ion.
- the NAD + at 1, 2, 4, 6, and 8 mM concentrations of TPP were found to be 1, 0.1, 0.2, 0.3, 0.4, and 0.5 at pH 6.0, 6.5, 7.0, 7.5, 8.0,
- the optimum conditions for the metal ions were determined by treating Mg 2+ , Mn 2+ , Ca 2+ , Fe 2+ , Ni 2+ , Cu 2+ and Zn 2+ .
- the optimum condition for the metal ion Mg 2+ was the pH condition at 8.0, the temperature at 30 ° C, the NAD + concentration at 1 mM and the TPP at 0.1 mM concentration, and the reaction flux from ethanol to acetone .
- each EtDH, FLS or NOX enzyme was reduced to a concentration of 1/10, and the remaining amount of the enzyme was maintained at a constant concentration to confirm the amount of acetone.
- the concentration of FLS enzyme is lower than that of EtDH or NOX enzyme, it affects the production of acetone. Therefore, it was confirmed that the FLS enzyme is an enzyme important for the production of acetone.
- a mutated hot spot of the FLS amino acid sequence was analyzed using the HotSpot Wizard 2.0 server.
- the Hotspot Wizard 2.0 server we confirmed the saturation mutagenesis of six sites of hot spot residues (T396, T446, M473, S477, L482 and L499) and confirmed their structural models. As a result, 482 sites in FLS It is confirmed that it plays an important role.
- FLS and its mutants L482S, L482R and L482E were subjected to the VP-method using acetaldehyde (100 mM) as a substrate using the all-cell biocatalytic method Respectively.
- the activity (%) of each mutant was compared with 0.16 U / mg, which is the specific activity of FLS, and the mean ⁇ standard deviation was calculated by repeating 3 times.
- the FLS mutant It was confirmed that it further produced acetone.
- the FLS mutations L482S, L482R and L482E increased to 59.03%, 36.89% and 34.12%, respectively, from the FLS intrinsic activity. Therefore, it was confirmed that L482S was most effective for the production of acetone during the FLS mutation.
- Wild type FLS and its mutations To compare the structure and activity of FLS: L482S, a molecular dynamics simulation analysis of 100 ns was used to confirm the correlation between the structural changes of wild type FLS and its mutant FLS: L482S and enzyme activity. As a result, the wild-type FLS and its mutant FLS: L482S have a strong interaction with acetaldehyde (2.8 ⁇ ), which is a substrate mutant FLS: L482S, ). Furthermore, it was confirmed that the mutant FLS: L482S was more hydrogen-bonded than the wild-type FLS.
- BDH: S199A is a conventional method [DJ Maddock, et al., Protein Eng. Des. Sel., 2015, 28, 251].
- the thermal stability of the mutant was confirmed at 30, 37 and 45 degrees.
- the EtDH: D46G mutant was cultured at 30 degrees for 6 hours when acetaldehyde was used as a substrate having coenzyme NAD + and NADP + And the activity levels were maintained at 86.53% and 86.67%, respectively.
- the activity level of BDH: S199A mutant was maintained at 80.81% for 6 hours at 30 ° C. when NADPH coenzyme and acetone were used as a substrate.
- the DDH enzyme catalyzes only butanoyl meso-2,3-butanediol, which is not (2R, 3R) -butanediol and (2S, 3S) -butanediol, And the form of acetone and 2,3-butanediol produced in the reaction was confirmed. Specifically, the form of acetone and 2,3-butanediol was confirmed using a GC system equipped with a chiral column.
- DDH and NOX including EtDH: D46G, FLS: L482S, BDH: S199A and dhaR as a reactivity factor were used as enzymes with 100 mM as a substrate .
- concentration of DDH containing BDH: S199A or dhaR as a reactivity factor was reduced to a concentration of 1/10, and the remaining enzyme was maintained at a constant concentration and repeated three times to determine the concentration (mM) of 2-butanol .
- the molecular interaction with the substrate, 2,3-butanediol was found to be the active site residue E171 in the mutant DDH: Q337A / F375I and bound to the substrate at 1.9 ⁇ .
- 100 ns molecular dynamics analysis confirmed that the active site residue E171 in the wild type DDH contained substrate and hydrogen bonds and water bridges.
- the active site residue E171 was mainly hydrogen bonded. Therefore, it was confirmed that the mutant DDH: Q337A / F375I binds more strongly to the substrate than the wild type DDH, and thus the catalytic activity is excellent.
- BDH S199A mutant enzymes were found to be 51.13 ⁇ 3.74 and 57.55 ⁇ 2.65 U mg -1 , respectively, when acetone or butanone was used as a substrate and NADPH was used as a coenzyme.
- each enzyme for the production of acetone or each enzyme for the production of 2,3-butanediol was prepared according to the method of Example 1-8
- the active silicon oxide particles were mixed and cultured for 12 hours at 4 ° C.
- silicon oxide particles 4830HT; Nanostructured & Amorphous Materials, Houston, Tex., USA
- the immobilization yield (%) and immobilization efficiency (%) were confirmed.
- acetone was effectively produced in ethanol.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
In a method for producing acetoin, butanediol, or butanol from ethanol according to the present invention, a cell-free catalysis method was used by designing an artificial synthetic pathway so that proteins of NOX, EtDH, FLS, BDH, and DDH and mutant proteins thereof exhibit multi-step catalytic activity as enzymes. Compared to existing fermentation methods using microorganisms, the production method according to the present invention does not require cell growth and has a short synthetic pathway, a fast reaction rate, high yield and productivity, adjustment of targeted reaction conditions is convenient, and butanol can be effectively produced. Moreover, same can be reused numerous times by fixing the proteins to nanoparticles, and are also effective for producing acetoin, butanediol, or butanol, thus being economical. Therefore, the production method may be usefully adopted in the relevant industries requiring acetoin, butanediol, or butanol.
Description
본 발명은 에탄올에서 아세토인, 부탄디올 또는 부탄올의 생산방법 및 이의 다양한 적용에 관한 것이다. The present invention relates to a process for the production of acetone, butanediol or butanol in ethanol and its various applications.
바이오에너지로 대표되는 바이오에탄올, 바이오디젤, 바이오가스, 부탄올에 대한 관심이 증가하고 있지만, 언급된 종류의 바이오에너지 모두 전력생산이나 수송용 연료로 사용될 수 있으나, 실적용 및 생산 방법의 몇몇 단점으로 인해 새로운 신재생에너지 자원인 탄화수소(hydrocarbon) 형태의 화합물에 대한 관심이 증가되고 있다. 아세토인, 부탄디올 또는 부탄올은, 화장품, 향수, 호르몬, 위생제, 산업용 코팅제, 페인트첨가제, 섬유, 플라스틱 모노머, 의료용품, 비타민, 항생제, 농약 등 활용범위가 매우 넓은 중간체 화합물로 그 효용성이 매우 크다. 미생물을 이용하여 산업적으로 유용한 수준으로 부탄올을 생산하기 위하여는 발효 과정을 수행하여야 하며, 아세토인, 부탄디올 또는 부탄올의 선택성, 수율 및 생산성, 즉 단위시간 당 부탄올의 생산량 모두가 우수하여야 하고, 이와 같은 조건을 만족하는 미생물을 발굴하기 위해서는 과도한 반복 실험이 요구되어 왔다.Although interest in bioethanol, biodiesel, biogas, and butanol represented by bioenergy is increasing, all of the types of bioenergy mentioned above can be used as a fuel for power generation or transportation, but some disadvantages of practical application and production methods There is growing interest in hydrocarbon-based compounds, new renewable energy sources. Acetone, butanediol or butanol is very useful as an intermediate compound having a wide range of applications such as cosmetics, perfume, hormone, hygiene agent, industrial coating agent, paint additive, fiber, plastic monomer, medical supplies, vitamins, antibiotics and pesticides . In order to produce butanol at a level industrially useful by using microorganisms, a fermentation process must be carried out, and the selectivity, yield and productivity of acetone, butanediol or butanol, that is, the yield of butanol per unit time should be excellent. Excessive repeated experiments have been required to find microorganisms satisfying the conditions.
에탄올에서 아세토인, 부탄디올 또는 부탄올의 생산방법을 제공하는 것이다.Butanediol or butanol in ethanol.
에탄올에서 아세토인, 부탄디올 또는 부탄올의 생산방법을 제공한다.Provides a process for the production of acetone, butanediol or butanol in ethanol.
본 발명의 에탄올에서 아세토인, 부탄디올 또는 부탄올 생산 방법은, 효소로서 NOX, EtDH, FLS, BDH 및 DDH의 단백질과 이의 변이 단백질을 다단계 촉매활성이 나타나도록 인공 합성 경로를 디자인하여 무-세포(cell-free) 촉매 방법을 이용하였다. 본 발명의 생산 방법은 종래 미생물 이용 발효법과 비교하여 세포 생장이 필요하지 않고, 짧은 합성 경로, 빠른 반응 속도, 높은 수율 및 생산성, 목적으로 하는 반응 조건의 조절이 용이하여, 효과적으로 부탄올을 생산할 수 있다. 또한, 상기 단백질을 나노입자에 고정하여 다수의 재사용이 가능하고 아세토인, 부탄디올 또는 부탄올 생성에도 효과적이므로 경제적이다. The method for producing acetone, butanediol or butanol in ethanol of the present invention is a method for producing an acetone, butanediol or butanol by designing an artificial synthetic pathway so that NOX, EtDH, FLS, BDH and DDH proteins and their mutant proteins are displayed as multi- -free catalyst method. The production method of the present invention can produce butanol efficiently because it is not necessary to grow the cells as compared with the conventional microbial fermentation method and can easily control a short synthesis route, a fast reaction rate, a high yield and productivity, and a desired reaction condition . In addition, the protein is fixed to nanoparticles and can be reused in a large number, and is also effective in producing acetone, butanediol or butanol, which is economical.
도 1a는 본 발명의 최적 효소를 포함하는 무-세포 다중 촉매 시스템을 이용한 에탄올에서 아세토인의 생성 방법을, 도 1b는 에탄올에서 2,3-부탄디올의 생성 방법을, 도 1c는 에탄올에서 2-부탄올의 생성 방법을 모식화한 도이다.FIG. 1A shows a method for producing acetone in ethanol using a cell-free multi-catalytic system comprising the optimum enzyme of the present invention, FIG. 1B shows a method for producing 2,3-butanediol from ethanol, FIG. This is a schematic diagram of a method for producing butanol.
도 2는 본 발명의 다단계 효소 및 이의 변이체를 이용한 아세토인, 2,3-부탄디올 및 2-부탄올 생성을 키랄-칼럼 GC(Chiral-column GC) 분석한 결과이다.2 is a chiral-column GC analysis of the production of acetone, 2,3-butanediol and 2-butanol using the multistage enzyme of the present invention and its variants.
본 발명은 서열번호 8로 표시되는 FLS(formolase) 아미노산에서 482번째 루신이 세린, 아르기닌 및 글루탐산으로 치환된 변이로 구성된 군에서 선택된 1종 이상의 변이를 포함하는 FLS 변이 아미노산을 제공한다. The present invention provides FLS mutant amino acids comprising at least one mutation selected from the group consisting of mutations in which the 482nd leucine is substituted with serine, arginine and glutamic acid in the FLS (formolase) amino acid represented by SEQ ID NO: 8.
본 발명에서 용어, "FLS(formolase)"는 3개의 1-카본 포름알데히드(carbon formaldehyde) 분자를 하나의 3-카본 디하이드록시아세톤(dihydroxyacetone) 분자로 carboligation을 촉매한다. 본 발명의 목적 상, FLS 및 이의 변이체는 알코올 대사 과정에서 생성된 아세트알데히드를 기질로 하여 아세토인을 생성하고, 이를 기질로 2,3-부탄디올 생성 및 상기 2,3-부탄디올을 기질로 하는 부탄올의 생성을 의미할 수 있으나, 이에 제한되지 않는다.The term "FLS (formolase) " in the present invention catalyzes the carbolination of three 1-carbon formaldehyde molecules into one 3-carbon dihydroxyacetone molecule. For the purpose of the present invention, FLS and its variants produce acetone using acetaldehyde produced in the course of alcohol metabolism as a substrate, and use it as a substrate to produce 2,3-butanediol and to use 2,3-butanediol as the substrate But is not limited thereto.
본 발명에서 용어, "FLS 변이 아미노산"은 야생형 FLS 아미노산 중 하나 이상의 아미노산을 치환, 삽입, 제거 또는 변형한 것을 의미한다. 상기 FLS는 서열번호 7로 표시되는 염기서열로 코딩될 수 있고, 상기 FLS에서 482번째 루신이 세린으로 치환된 변이체는(FLS:L482S) 서열번호 10의 아미노산으로 표시되고, 482번째 루신이 아르기닌으로 치환된 변이체는(FLS:L482R) 서열번호 11의 아미노산으로 표시되며, 482번째 루신이 글루탐산으로 치환된 변이체는(FLS:L482E) 서열번호 12의 아미노산으로 표시된다. 상기 FLS 변이 아미노산은 396번째 트레오닌의 변이, 446번째 트레오닌의 변이, 473번째 메티오닌의 변이, 477번째 세린의 변이 및 499번째 루신의 변이로 구성된 군에서 선택된 1종 이상을 더 포함할 수 있으나, 에탄올 대사 과정에서 생산된 아세트알데히드를 아세토인으로 전환시키기 위한 목적을 달성하기 위해서라면, 이에 제한되지 않는다. 상기 FLS는 슈도모나스 플루오레스센스(Pseudomonas fluorescens)로부터 유래되나, 이에 제한되지 않는다. The term "FLS-mutated amino acid" in the present invention means substitution, insertion, deletion or modification of one or more amino acids of the wild-type FLS amino acid. (FLS: L482S) is represented by the amino acid sequence of SEQ ID NO: 10, and the 482nd leucine is replaced with arginine (FLS: L482R) is represented by the amino acid of SEQ ID NO: 11, and the mutant in which the 482nd leucine is replaced by glutamic acid is represented by amino acid of SEQ ID NO: 12 (FLS: L482E). The FLS mutant amino acid may further include at least one selected from the group consisting of mutation at position 396, mutation at position 446, mutation at position 473, mutation at position 477, mutation at position 499, But is not limited thereto, so as to achieve the purpose of converting acetaldehyde produced in the metabolism into acetone. The FLS is derived from, but is not limited to, Pseudomonas fluorescens .
본 발명의 일실시예에 있어서, 본 발명의 FLS 변이는 FLS의 구조를 분석한 결과, 6개의 잔여(Six residuals) 핫스팟(T396, T446, M473, S477, L482 및 L499)를 발굴하였다. 그 중, 기질인 아세트알데히드와 분자 상호 작용은 활성 부위 잔기는 W480임을 확인하고, FLS 보다 변이 FLS:L482S가 더 강하게 기질과 결합하고, 수소 결합함을 확인하였다. In one embodiment of the present invention, the FLS mutation of the present invention has analyzed the structure of the FLS and found six remaining six hotspots (T396, T446, M473, S477, L482 and L499). Among them, molecular interactions with acetaldehyde, substrate, confirmed that W480 was the active site residue, and FLS: L482S binds more strongly to substrate than FLS, confirming hydrogen bonding.
또한 본 발명은 상기 FLS 변이 아미노산을 코딩하는 유전자를 제공한다. 또한 본 발명은 NOX(NADH oxidase) 유전자, EtDH(ethanol dehydrogenase) 유전자, EtDH의 변이 유전자, FLS(formolase) 유전자, 상기 FLS 변이 아미노산을 코딩하는 유전자, BDH(2,3-butanediol dehydrogenase) 유전자, BDH의 변이 유전자, DDH(diol dehydratase) 유전자 및 DDH의 변이 유전자로 구성된 군에서 선택된 1종 이상의 유전자를 포함하는 재조합 벡터를 제공한다.The present invention also provides a gene coding for the FLS mutant amino acid. The present invention also relates to a gene encoding the above-mentioned FLS-mutated amino acid, a 2,3-butanediol dehydrogenase (BDH) gene, a BDH gene, an NADH oxidase gene, EtDH , A gene for a mutation of a DDH gene, a gene for a DDH (diol dehydratase), and a gene for a DDH mutation.
본 발명에서 용어, "NOX(NADH oxidase)"는 본 발명의 목적 상, 기질로서 산소를 이용하며, NADH를 산화시켜 NAD+를 재생산한다. 상기 재생산된 NAD+는 EtDH가 조효소로 이용할 수 있다.For the purpose of the present invention, the term "NOX (NADH oxidase)" in the present invention uses oxygen as a substrate and oxidizes NADH to regenerate NAD + . The regenerated NAD < + > can be used as coenzyme in EtDH.
본 발명에서 용어, "EtDH(ethanol dehydrogenase)"는 본 발명의 목적 상, 에탄올을 기질로 이용하고, 조효소로서 NAD+ 및/또는 NADP+를 이용하여 에탄올을 탈수소시킬 수 있다. 이 후, 아세트알데히드 생산을 유도하여, 이를 기질로 이용하는 FLS가 아세토인을 생성하도록 할 수 있다.The term "EtDH (ethanol dehydrogenase)" in the present invention can be used for the purpose of the present invention by dehydrogenating ethanol using NAD + and / or NADP + as a coenzyme using ethanol as a substrate. Thereafter, the production of acetaldehyde can be induced, and FLS using the acetaldehyde as a substrate can be produced to produce acetone.
본 발명에서 용어, "BDH(2,3-butanediol dehydrogenase)"는 본 발명의 목적 상, 아세토인을 기질로 하여 NADPH를 조효소로 이용하여 2,3-부탄디올의 생성을 촉매시킨다. 또한, 상기 생성된 2,3-부탄디올을 기질로 하는 DDH에 의해 촉매된 부탄온을 다시 기질로 하여 BDH가 촉매 반응되면, 최종적으로 부탄올을 생성할 수 있다. For the purpose of the present invention, the term "BDH (2,3-butanediol dehydrogenase) " in the present invention catalyzes the production of 2,3-butanediol using acetophenone as a substrate and NADPH as a coenzyme. In addition, when BDH is catalytically reacted with butanone catalyzed by DDH using 2,3-butanediol as a substrate, butanol can be finally produced.
본 발명에서 용어, "DDH(diol dehydratase)"는 본 발명의 목적 상, 2,3-부탄디올을 기질로 하여 조효소로서 비타민 B12를 이용 시, 부탄온의 생성을 촉매할 수 있다. For the purpose of the present invention, the term "DDH (diol dehydratase)" in the present invention can catalyze the formation of butanone when 2,3-butanediol is used as a substrate and vitamin B12 is used as a coenzyme.
상기 NOX 유전자는 락토바실러스 람노서스(Lactobacillus rhamnosus)로부터 유래되고, 상기 EtDH 유전자 또는 EtDH 변이 유전자는 쿠프리아비두스 네카터(Cupriavidus necator)로부터 유래될 수 있다. 또한, 상기 BDH 유전자 또는 BDH 변이 유전자는 클로스트리디움 오토에타노지넘(Clostridium autoethanogenum)으로부터, 상기 DDH(diol dehydratase) 유전자 및 DDH의 변이 유전자는 락토바실러스 브레비스(Lactobacillus brevis)로부터 유래될 수 있으나, 본 발명의 부탄올 생성을 위한 효소 생산을 위해서라면, 이에 제한되지 않는다. The NOX gene is derived from Lactobacillus rhamnosus and the EtDH gene or EtDH mutation gene can be derived from Cupriavidus necator . In addition, the BDH gene or the BDH mutant gene may be derived from Clostridium autoethanogenum , the DDH (diol dehydratase) gene and the DDH mutant gene may be derived from Lactobacillus brevis , But is not limited to, for the production of an enzyme for butanol production of the present invention.
상기 NOX 유전자는 서열번호 1로 표시되는 염기서열로, EtDH 유전자는 서열번호 3으로 표시되는 염기서열로, 상기 EtDH의 변이체는 서열번호 4의 아미노산 서열로 표시되는 EtDH의 46번째 아스파르트산이 글리신으로 치환되고(EtDH:D46G), 서열번호 5의 염기서열 및 서열번호 6의 아미노산 서열로 표시될 수 있다.The NOX gene is the nucleotide sequence of SEQ ID NO: 1, the EtDH gene is the nucleotide sequence of SEQ ID NO: 3, and the mutant of EtDH is the 46th aspartic acid of EtDH represented by the amino acid sequence of SEQ ID NO: 4 (EtDH: D46G), the nucleotide sequence of SEQ ID NO: 5 and the amino acid sequence of SEQ ID NO: 6.
상기 BDH 유전자는 상기 BDH의 변이체는 서열번호 14의 아미노산 서열로 표시되는 BDH의 199번째 세린이 알라닌으로 치환되고(BDH:S199A), 서열번호 15의 염기서열 및 서열번호 16의 아미노산으로 표시될 수 있다.The BDH gene may be a variant of the BDH wherein the 199th serine of BDH represented by the amino acid sequence of SEQ ID NO: 14 is substituted with alanine (BDH: S199A), the nucleotide sequence of SEQ ID NO: 15 and the amino acid of SEQ ID NO: have.
상기 DDH 유전자는 서열번호 17로 표시되는 염기서열로, 상기 DDH의 변이체는 서열번호 18의 DDH 아미노산의 302번째 세린이 알라닌으로 치환된 변이체(DDH:S302A); 337번째 글루타민이 알라닌으로 치환된 변이체(DDH:Q337A); 375번째 페닐알라닌이 이소루신으로 치환된 변이체(DDH:F375I);으로 이루어진 군에서 선택된 1종 이상의 단일 또는 다중 변이체이나, 이에 제한되지 않는다. (DDH: S302A) in which the 302th serine of DDH amino acid sequence of SEQ ID NO: 18 is substituted with alanine; 337th mutant in which glutamine is replaced with alanine (DDH: Q337A); (DDH: F375I) in which the 375th phenylalanine is substituted with isoleucine, but not limited to, one or more single or multiple mutants selected from the group consisting of:
상기 다중 변이체는 서열번호 18의 DDH 아미노산의 337번째 글루타민이 알라닌 및 375번째 페닐알라닌이 이소루신으로 치환된 변이체(DDH:Q337A/F375I); 302번째 세린이 알라닌 및 37번째 글루타민이 알라닌으로 치환된 변이체(S302A/F375I); 또는 302번째 세린이 알라닌으로, 337번째 글루타민이 알라닌으로, 375번째 페닐알라닌이 이소루신으로 치환된 변이체(S302A/Q337A/F375I)이나, 이에 제한되지 않는다.(DDH: Q337A / F375I) wherein the 337th glutamine of the DDH amino acid of SEQ ID NO: 18 is alanine and the 375th phenylalanine is replaced by isoleucine; Mutants in which the 302nd serine alanine and 37th glutamine are substituted with alanine (S302A / F375I); Or a variant (S302A / Q337A / F375I) in which the 302th serine is alanine, the 337th glutamine is alanine, and the 375th phenylalanine is isoleucine.
상기 DDH의 변이체는 DDH의 재활성 인자(reactivating factor)인 dhaR를 발현할 수 있다.The mutant of DDH can express dhaR which is a reactivating factor of DDH.
본 발명의 일실시예에 있어서, 각 단백질 및 이의 변이체를 발현하도록 플라미스미드를 제작하였다. 또한, EtDH 또는 EtDH:D46G 변이 발현 플라스미드 및 벡터맵을 제작하였다. 또한, FLS:L482S, BDH:S199A, DDH:Q337A/F375I 변이 발현 플라스미드 및 벡터맵을 제작하였다(표 1, 2).In one embodiment of the present invention, plasmids were prepared to express each protein and its variants. In addition, EtDH or EtDH: D46G mutant expression plasmids and vector maps were prepared. In addition, FLS: L482S, BDH: S199A, DDH: Q337A / F375I expression plasmids and vector maps were prepared (Tables 1 and 2).
본 발명의 일실시예에 있어서, 본 발명의 DDH 및 이의 변이체의 구조를 분석한 결과, 기질인 2,3-부탄디올과 분자 상호 작용은 활성 부위 잔기는 E171임을 확인하고, DDH 보다 변이 DDH:Q337A/F375I가 더 강하게 기질과 결합하고, 수소 결합 및 water bridges함을 확인하였다. 또한, 본 발명의 DDH 및 이의 변이체는 입체 선택성이 나타나, (2R, 3R)-2,3-부탄디올 및 (2S, 3S)-2,3-부탄디올을 기질로 하여 부탄온을 생성하지 않고, meso-2,3- 부탄디올만을 기질로 하여 부탄온을 생성함을 확인하였다. In an embodiment of the present invention, the structure of the DDH of the present invention and mutants thereof were analyzed. As a result, it was confirmed that the active site residue was E171 in the molecular interaction with the substrate 2,3-butanediol, and DDH: Q337A / F375I binds more strongly to the substrate, confirming hydrogen bonding and water bridges. In addition, the DDH of the present invention and its variants exhibit stereoselectivity and do not generate butanone with (2R, 3R) -2,3-butanediol and (2S, 3S) -2,3-butanediol was used as a substrate to produce butanone.
본 발명의 일실시예에 있어서, 본 발명의 단백질을 효소로 이용 시, 열 안정성(Thermostability)을 확인한 결과, EtDH, EtDH:D46G, EtDH:D46G, EtDH:D46G, FLS, FLS:L482S, BDH:S199A, BDH:S199A, dhaR 포함 DDH:Q337A/F375 및 NOX 단백질은 높은 30 내지 45도에서도 열 안정성이 나타나며, 특히 30도에서 반응 활성이 우수함을 확인하였다. EtDH: D46G, EtDH: D46G, EtDH: D46G, FLS, FLS: L482S, BDH: EtDH, D46G and D46G were obtained as a result of confirming thermostability when the protein of the present invention was used as an enzyme in the present invention. S199A, BDH: S199A, DHH with dhaR: Q337A / F375 and NOX proteins exhibited thermal stability even at high 30 to 45 degrees, and particularly excellent activity at 30 degrees.
또한 본 발명은 상기 재조합 벡터가 도입된 형질전환 미생물을 제공한다. The present invention also provides a transformed microorganism into which the recombinant vector has been introduced.
본 발명의 형질전환체는 벡터를 프로모터가 작용할 수 있는 양태로 숙주세포 내에 도입시키는 것에 의해 구축될 수 있다.The transformant of the present invention can be constructed by introducing the vector into the host cell in such a manner that the promoter can function.
또한 본 발명은 상기 형질전환 미생물에서 생산된 단백질을 정제하고 반응시키는 단계;를 포함하는 부탄올 생산 방법을 제공한다.Also, the present invention provides a method for producing butanol, which comprises purifying and reacting a protein produced in the transforming microorganism.
상기 부탄올은 2-부탄올, n-부탄올, 아이소부탄올(isobutanol) 및 터트-부탄올(tert-Butanol)으로 구성된 군에서 선택된 1종 이상이고, 바람직하게는 2-부탄올이나, 이에 제한되지 않는다. 상기 생산 방법은 무-세포(cell-free) 상태에서 상기 형질전환 미생물에서 생산된 단백질을 다단계 촉매 작용을 수행하여 부탄올을 생산하고, 에탄올을 기질로 이용하나, 이에 제한되지 않는다. The butanol may be at least one selected from the group consisting of 2-butanol, n-butanol, isobutanol and tert-butanol, preferably 2-butanol. The production method is a method for producing butanol by using a protein produced in the transformed microorganism in a cell-free state by performing a multistage catalysis, and using ethanol as a substrate, but is not limited thereto.
상기 생산 방법은 조효소인 NAD+, NADP+, 비타민 B12 및 TPP(thiamine pyrophosphate)로 구성된 군에서 선택된 1종 이상의 조효소를 더 포함하나, 이의 처리 농도 또는 처리량 또한 제한되지 않는다. 상기 생산 방법은 금속 이온 Mg2+, Mn2+, Ca2+, Fe2+, Ni2+, Cu2+ 및 Zn2+으로 구성된 군에서 선택된 1종 이상의 금속 이온을 더 포함하며, 바람직하게는 Mg2+, Mn2+, Ca2+, Fe2+ 및 Ni2+이 더 효율적으로 촉매 반응을 유도할 수 있으나, 부탄올을 생산하기 위해서라면 이에 제한되지 않는다. The production method further includes at least one kind of coenzyme selected from the group consisting of coenzyme NAD + , NADP + , vitamin B 12, and thiamine pyrophosphate (TPP), but its treatment concentration or throughput is also not limited. The production method further comprises at least one metal ion selected from the group consisting of metal ions Mg 2+ , Mn 2+ , Ca 2+ , Fe 2+ , Ni 2+ , Cu 2+ and Zn 2+ , Mg 2+ , Mn 2+ , Ca 2+ , Fe 2+ and Ni 2+ can induce the catalytic reaction more efficiently, but this is not limited to produce butanol.
상기 생산 방법은 pH 5.0 내지 9.0의 조건으로 부탄올을 생산하고, 바람직하게는 6.5 내지 8.5의 조건이나, 부탄올 생성 목적 달성을 위해서라면 이에 제한되지 않는다. 상기 생산 방법은 16 내지 45도에서 부탄올을 생산하나, 바람직하게는 25 내지 42도의 조건이나, 이에 제한되지 않는다. The production method produces butanol at a pH of from 5.0 to 9.0, preferably from 6.5 to 8.5, but is not limited thereto in order to achieve the objective of producing butanol. The production method produces butanol at 16 to 45 degrees, preferably 25 to 42 degrees, but is not limited thereto.
본 발명은 에탄올에서 C4 화합물인 부탄올을 생성하기 위하여, 다단계 효소(cascade enzymes)를 이용한 인공 합성 경로를 디자인하였으며, 상기 다단계 효소로서, NOX, EtDH, FLS, BDH 및 DDH와 이의 각 변이체를 선발하였다. 구체적으로, NOX는 기질로서 산소를 이용하며, NADH를 산화시켜 NAD+를 재생산한다. 상기 재생산된 NAD+는 EtDH가 조효소로 이용한다. EtDH 및 이의 변이체는 에탄올을 기질로 이용하고, 조효소로서 NAD+ 및/또는 NADP+를 이용하여 에탄올을 탈수소화하여, 아세트알데히드 생산을 유도한다. 이 후, FLS 및 이의 변이체는 아세트알데히드를 기질로 하여 아세토인의 생성을 유도한다. BDH는 아세토인을 기질로 하여 NADPH를 조효소로 이용하여 2,3-부탄디올의 생성을 촉매시킨다. DDH는 본 발명의 목적 상, 2,3-부탄디올을 기질로 하여 조효소로서 비타민 B12를 이용 시, 부탄온의 생성을 촉매한다. 이 후, 상기 BDH는 촉매된 부탄온을 다시 기질로 하여 BDH가 촉매 반응되면, 최종적으로 부탄올을 생성한다.In the present invention, an artificial synthetic pathway using cascade enzymes was designed to produce C 4 compound, butanol, from ethanol. The multi-step enzymes include NOX, EtDH, FLS, BDH and DDH and their mutants Respectively. Specifically, NOX uses oxygen as a substrate and oxidizes NADH to regenerate NAD + . The regenerated NAD + uses EtDH as a coenzyme. EtDH and its variants induce acetaldehyde production by using ethanol as a substrate and dehydrogenating ethanol using NAD + and / or NADP + as coenzyme. Thereafter, FLS and its mutants induce the production of acetone using acetaldehyde as a substrate. BDH catalyzes the formation of 2,3-butanediol using acetyl as a substrate and NADPH as a coenzyme. For the purpose of the present invention, DDH catalyzes the formation of butanone when 2,3-butanediol is used as a substrate and vitamin B12 is used as a coenzyme. Thereafter, the BDH catalyzes the catalytic reaction of BDH using catalytic butanone as a substrate to finally produce butanol.
본 발명은 무세포 다중 효소 촉매(Cell-free multi-enzyme catalysis, CFME) 방법을 이용한 in vitro 상에서 간소화된 경로를 이용하여 에탄올에서 부탄올의 인공 합성 목적을 달성하였다. 상기 무-세포 다중 효소 촉매 방법을 이용 시, 종래의 세포를 이용한 대사 공학, 예컨대 박테리아, 재조합 미생물 등을 배양한 발효법의 낮은 목표 생성물 수율, 원치 않는 부산물 생성, 세포내 수송 제약 등의 문제점을 해결하여, 세포 생장이 필요하지 않고, 짧은 합성 경로, 빠른 반응 속도, 높은 수율 및 생산성, 목적으로 하는 반응 조건의 조절 등과 같은 장점이 존재한다. The present invention achieves the objective of artificial synthesis of butanol in ethanol using a simplified pathway in vitro using a cell-free multi-enzyme catalysis (CFME) method. Using the above-mentioned cell-free multi-enzyme catalytic method, the problems such as low target product yield, undesired by-product production, and intracellular transport restriction of the fermentation method in which conventional metabolic engineering such as bacteria and recombinant microorganisms are cultured are solved Thus, there is no need for cell growth, and there are advantages such as short synthesis route, fast reaction rate, high yield and productivity, and control of desired reaction conditions.
본 발명의 일실시예에 있어서, 실시예 7-6의 방법에 따라, 최적의 부탄올 생산 방법은, 본 발명에서 디자인한 인공 합성 경로에 따라 무세포 다중 효소 촉매를 이용하고, 기질로서 에탄올을 이용한다. 효소로서 NOX, EtDH:D46G, FLS:L482S, BDH:S199A, DDH:Q337A/F375I를 이용하고, 조효소로서, NAD+, NADP+, TPP, 비타민 B12, Mg2+을 첨가한 반응 혼합물로 2-부탄올 생성을 효과적으로 유도할 수 있다.In one embodiment of the present invention, the optimal method for producing butanol according to the method of Example 7-6 uses a cell-free multi-enzyme catalyst according to the artificial synthetic pathway designed in the present invention and uses ethanol as a substrate . NAD + , NADP + , TPP, vitamin B 12 and Mg 2+ were added as a coenzyme using NOX, EtDH: D46G, FLS: L482S, BDH: S199A and DDH: Q337A / F375I as enzymes. -Butanol production can be effectively induced.
또한 본 발명은 상기 형질전환 미생물에서 생산된 단백질을 나노입자에 고정하고 반응시키는 단계;를 포함하는 부탄올 생산 방법을 제공한다.The present invention also provides a method for producing butanol, which comprises immobilizing and reacting a protein produced in the transforming microorganism with nanoparticles.
상기 나노입자는 산화 규소(silicon oxide)를 부착하고 글루타알데히드(glutaraldehyde)와 반응시키나, 본 발명의 단백질을 나노입자에 부착하여 부탄올을 생산하기 위한 목적을 달성하기 위해서라면, 이에 제한되지 않는다. 상기 고정된 단백질 나노입자는 재사용이 가능하고, 바람직하게는 1 내지 30회 재사용이 가능하며, 더욱 바람직하게는 1 내지 20회이나, 이에 제한되지 않는다.The nanoparticles are attached to silicon oxide and are reacted with glutaraldehyde. However, the nanoparticles are not limited thereto, so as to achieve the purpose of producing butanol by attaching the protein of the present invention to nanoparticles. The fixed protein nanoparticles are reusable, preferably 1 to 30 times reusable, more preferably 1 to 20 times, but not limited thereto.
본 발명의 일실시예에 있어서, 실시예 7-6의 방법에 따라, 최적의 부탄올 생산 방법은, 본 발명에서 디자인한 인공 합성 경로에 따라 무세포 다중 효소 촉매를 이용하고, 기질로서 에탄올을 이용한다. 효소로서 NOX, EtDH:D46G, FLS:L482S, BDH:S199A, DDH:Q337A/F375I를 이용하고, 조효소로서, NAD+, NADP+, TPP, 비타민 B12, Mg2+을 첨가한 반응 혼합물로 2-부탄올 생성을 효과적으로 유도할 수 있다. 상기 효소를 나노입자에 부착시켜 고정시키고 부탄올 생성을 유도한 결과, 재사용 후에도 효과적으로 부탄올이 생성됨을 확인하였다.In one embodiment of the present invention, the optimal method for producing butanol according to the method of Example 7-6 uses a cell-free multi-enzyme catalyst according to the artificial synthetic pathway designed in the present invention and uses ethanol as a substrate . NAD + , NADP + , TPP, vitamin B 12 and Mg 2+ were added as a coenzyme using NOX, EtDH: D46G, FLS: L482S, BDH: S199A and DDH: Q337A / F375I as enzymes. -Butanol production can be effectively induced. The enzyme was attached to the nanoparticles to fix and induce butanol production.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, the following examples are only for the purpose of illustrating the present invention, and thus the present invention is not limited thereto.
<실시예 1> 실험 준비 및 실험 방법≪ Example 1 > Experimental Preparation and Experimental Method
<1-1> 효소 및 시약 구입<1-1> Purchase of enzymes and reagents
제한 효소인 DNA Polymerase High Fidelity and T4 DNA ligase는 TaKaRa Biotech(Shiga, Japan) 및 New England Biolabs(Ipswich, MA, USA)에서 각각 구입하였다. DNA 및 단백질 마커는 Tiangen Biotech(Shanghai, China)에서 구입하였다. IPTG(Isopropyl-beta-D-thiogalactopyranoside), DTT(dithiothreitol) 및 DMSO(dimethyl sulfoxide)는 Sigma-Aldrich(St. Louis, MO, USA) 및 Sinopharm(Shanghai, China)에서 각각 구입하였다. 대조군으로서, (3S/3R)-아세토인(acetoin)은 (2S, 3S)-2,3-부탄에디올(butanediol), (2R, 3R)-2,3-부탄에디올(butanediol), meso-2,3-부탄에디올(butanediol), 부탄온(butanone) 및 2-부탄올(butanol)은 Sigma-Aldrich에서 구입하였다. 모든 다른 시약은 달리 명시되지 않는 한, 분석 등급이었으며 상업적으로 이용 가능한 것을 이용하였다. DNA Polymerase High Fidelity and T4 DNA ligase were purchased from TaKaRa Biotech (Shiga, Japan) and New England Biolabs (Ipswich, MA, USA). DNA and protein markers were purchased from Tiangen Biotech (Shanghai, China). (IPTG), dithiothreitol (DTT) and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Sinopharm (Shanghai, China). As a control, (3S / 3R) -acetone was prepared by reacting (2S, 3S) -2,3-butanediol, (2R, 3R) -2,3-butanediol, meso Butanediol, butanone and 2-butanol were purchased from Sigma-Aldrich. All other reagents were of analytical grade and commercially available unless otherwise specified.
<1-2> 박테리아 균주, 플라스미드 및 박테리아 성장 조건<1-2> Bacterial strains, plasmid and bacterial growth conditions
본 발명에 이용된 균주 및 플라스미드는 하기 표 1에 나타내었으며, 클로닝 및 발현 발현 숙주로서 Escherichia coli DH5α 및 BL21(DE3)을 이용하였으며 37도에서 배양하였다. 플라스미드 pET28a를 이용하여 발현 벡터를 제작하였다. Luria-Bertani(LB) 배지는 균주 배양 및 재조합 단백질 발현에 사용되었으며, 최종 농도 50 μg mL-1의 재조합 균주를 배양하기 위해 카나마이신을 상기 배지에 추가하였다. The strains and plasmids used in the present invention are shown in Table 1 below. Escherichia coli DH5? And BL21 (DE3) were used as cloning and expression expression hosts and cultured at 37 占 폚. An expression vector was constructed using the plasmid pET28a. Luria-Bertani (LB) medium was used for strain culture and recombinant protein expression, and kanamycin was added to the medium to cultivate a recombinant strain at a final concentration of 50 μg mL -1 .
<1-3> 다단계 효소(cascade enzymes)의 재조합 단백질 발현 및 정제<1-3> Recombinant protein expression and purification of cascade enzymes
에탄올에서 C4 화합물인 아세토인 및 2,3-부탄디올을 생성하고 최종적으로 2-부탄올을 생성하기 위하여, 다단계 효소(cascade enzymes)를 이용하였으며, EtDH(ethanol dehydrogenase), FLS(formolase), BDH(2,3-butanediol dehydrogenase), DDH(diol dehydratase), 및 NOX(NADH oxidase)의 유전자는 각 쿠프리아비두스 네카터(Cupriavidus necator)[T. Y. Wu, et al., Appl. Microbiol. Biotechnol. 2016, 100, 1], 슈도모나스 플루오레스센스(Pseudomonas fluorescens)[ J. Siegel, et al., Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 3704], 클로스트리디움 오토에타노지넘(Clostridium autoethanogenum)[M. Kopke, et al., Appl. Environ. Microbiol., 2014, 80, 3394], 락토바실러스 브레비스(Lactobacillus brevis)[(Z. Chen, et al., Bioresource Technol., 2015, 197, 260), (M. Yamanishi, et al., FEBS. J., 2012, 279, 793)] 및 락토바실러스 람노서스(Lactobacillus rhamnosus)[ Y. W. Zhang, et al., Enzyme Microb. Tech., 2012, 50, 255]에서 유래한 유전자를 이용하였으며, General Biosystems, Inc. (Anhui, China)에서 합성하였다. 또한, 상기 각 유전자를 발현 플라스미드 pET28a에 클로닝되었다. 단백질 발현 플라스미드를 E. coli BL21(DE3)에 도입하였으며, 각 pET-EtDH, pET-FLS, pET-BDH, pET-DDH, pET-dhaR, pET-DDH-dhaR, 및 pET-NOX가 포함된 각 재조합 E. coli BL21(DE3)를 600 nm 에서 광학 밀도가 0.6 일 때, 0.5 mM IPTG가 포함된 LB 배지에 37도로 배양하였다. 18도에서 24시간 유도한 후, 세포를 원심분리하여 수득하고 ice bath에서 초음파 처리하여 파쇄하였다. 세포 파편을 제거하기 위하여 세포 용해물을 8000 ×g, 10분간 원심 분리하였다. EtDH, FLS, BDH, dhaR 및 NOX 효소를 수득하기 위하여, 용해성 분획을 정제 프로토콜(GE Healthcare, Little Chalfont, UK)에 따라 HisTrap HP 칼럼을 이용하여 정제하였다. DDH 정제는 종래의 방법으로 수행하였다[M. Seyfried, et al., J. Bacteriol., 1996, 178, 5793]. 상기 각 정제된 효소는 초미세여과(ultrafiltration)하여 농축 및 탈염화시킨 후, SDS-PAGE로 검출하였다. (Ethanol dehydrogenase), FLS (formolase) and BDH (ethanol) were used to produce acetone and 2,3-butanediol, which are C 4 compounds in ethanol and finally to produce 2-butanol 2,3-butanediol dehydrogenase, DDH (diol dehydratase), and NOX (NADH oxidase) genes were isolated from each of the cupriavidus necator [TY Wu, et al., Appl. Microbiol. Biotechnol. 2016, 100, 1], Pseudomonas fluorescens [J. Siegel, et al., Proc. Natl. Acad. Sci. USA, 2015, 112, 3704], Clostridium autoethanogenum [M. Kopke, et al., Appl. Environ. Lactobacillus brevis [(Z. Chen, et al., Bioresource Technol., 2015, 197, 260), (M. Yamanishi, et al., FEBS. J , 2012, 279, 793) and Lactobacillus rhamnosus [YW Zhang, et al., Enzyme Microb. Tech., 2012, 50, 255] General Biosystems, Inc. (Anhui, China). In addition, each of the above genes was cloned into the expression plasmid pET28a. Protein expression plasmids were introduced into E. coli BL21 (DE3), and each of the pET-EtDH, pET-FLS, pET-BDH, pET-DDH, pET-dhaR, pET-DDH-dhaR, and pET- Recombinant E. coli BL21 (DE3) was cultured at 37 ° C in LB medium containing 0.5 mM IPTG at an optical density of 0.6 at 600 nm. After induction at 18 ° C for 24 hours, cells were obtained by centrifugation and disrupted by sonication in an ice bath. Cell lysates were centrifuged at 8000 × g for 10 min to remove cell debris. To obtain EtDH, FLS, BDH, dhaR and NOX enzymes, soluble fractions were purified using HisTrap HP column according to purification protocol (GE Healthcare, Little Chalfont, UK). DDH purification was performed in a conventional manner [M. Seyfried, et al., J. Bacteriol., 1996, 178, 5793]. Each of the purified enzymes was concentrated by ultrafiltration and de-chlorinated, and then detected by SDS-PAGE.
<1-4> 효소 변이체(enzyme variants)의 제작<1-4> Production of enzyme variants
상기 각 EtDH, FLS, BDH 및 DDH 효소에 대한 변이체를 제작하고 이를 발현 및 정제하였다. 또한, EtDH 또는 BDH 변이체를 제작하기 위하여, EtDH:D46G 및 BDH:S199A 변이체는 하기 표 3에 나타낸 EtDH1/EtDH2 및 BDH1/BDH2 프라이머를 이용하여 부위 특이적 돌연변이 유도(site-directed mutagenesis)를 수행하여 제작하였다. 야생형 EtDH 및 BDH 유전자를 포함하는 재조합 플라스미드 pET-EtDH 및 pET-BDH는 PCR 증폭을 위한 DNA 주형으로서 각각 사용되었다. 정정된(correct) 돌연변이 유전자를 포함하는 재조합 플라스미드를 E. coli BL21(DE3)에 형질전환 시킨 후, 콜로니는 카나마이신 저항성인 것으로 선택하여 단백질 발현에 이용하였다. 각 단백질의 정제 후, EtDH 및 BDH 변이체의 활성 및 운동 파라미터(kinetic parameter)를 측정하였다. 또한, FLS 효소의 촉매 효율을 높이기 위하여, 신규한 돌연변이 영역을 찾아내고자, HotSpot Wizard 2.0 server를 이용하여 FLS 구조(PDB No.: 4QPZ)를 입력하여 핫 스팟을 분석하였다[(J. Siegel, et al., Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 3704), (J. Bendl, et al., Acids Res., 2016, 44, 479)]. 6개의 잔여(Six residuals) 핫스팟(T396, T446, M473, S477, L482 및 L499)를 하기 표 2의 FLS1-FLS12 프라이머를 이용하여 부위 특이적 돌연변이를 유도하였다. 야생형 FLS를 포함하는 재조합 플라스미드 pET-FLS를 DNA 주형으로 이용하였으며, 돌연변이 유전자를 포함하는 재조합 플라스미드를 E. coli BL21(DE3)로 형질전환하였다. FLS 변이체를 아세트알데이히드(acetaldehyde)를 기질로 하는 전체-세포 생촉매법(whole-cell biocatalytic method)을 이용하여 스크리닝 하였다. 구체적으로, 콜로니를 LB 배지에 접종한 후 600 nm에서 광학 밀도가 0.6에 도달하였을 때, 18도로 24시간 동안 0.5 mM IPTG를 추가하여 단백질 발현을 유도하였다. 상기 세포는 원심 분리하여 수득하고, 50 mM 인산 완충액(pH 8.0), 100 mM 아세트알데히드 및 40 gL-1 wet cell weight(WCW)를 포함하는 반응 혼합물로 6시간, 30도 조건으로 전체-세포 생촉매 작용을 수행하였다. 또한, DDH 변이체를 제작하고, 상기 DDH의 재활성 인자(reactivating factor)인 dhaR 발현을 위하여, S302A, Q337A, F375I, S302A/Q337A, S302A/F375I, Q337A/F375I 및 S302A/Q337A/F375I 를 포함하는 DDH 변이체는 야생형 DDH 효소와 비교하여 촉매 효율을 확인하기 위하여 제작하였다. 하기 표 2의 DDH1-DDH6 프라이머를 이용하여 부위 특이적 돌연변이 유도하여 제작하였다. 야생형 DDH를 포함하는 pET-DDH-dhaR 재조합 플라스미드 및 이의 활성화 인자 dhaR 유전자는 PCR 증폭의 DNA 주형으로 이용하였다. 각 단백질 발현을 유도하기 위하여, 상기 PCR 생성물을 E. coli BL21(DE3)에 형질전환하고, 0.5 mM IPTG를 포함하는 LB 배지에 18도, 24시간 동안 배양하였다. 상기 변이체는 meso-2,3-부탄디올을 기질로 이용하는 전체-세포 생촉매 분석에 이용하여 촉매 활성을 평가하는데 사용하였다. 반응 혼합물은 50 mM HEPES 완충액(pH 7.0), 50 mM meso-2,3-b부탄다이올, 20 μM 조효소 B12 및 40 gL-1 wet cell weight를 포함하며, 전체-세포 생촉매는 암조건에서 30도에서 6시간 수행되었다. 부탄온 생성물은 가스 크로마토그래피를 이용하여 정량하였다. 각 효소 및 이의 일부 변이체에 대한 유래 및 염기서열은 표 4에 나타내었다.Mutants for the EtDH, FLS, BDH and DDH enzymes were prepared and expressed and purified. In addition, EtDH: D46G and BDH: S199A mutants were subjected to site-directed mutagenesis using EtDH1 / EtDH2 and BDH1 / BDH2 primers shown in Table 3 below to construct EtDH or BDH variants Respectively. Recombinant plasmids pET-EtDH and pET-BDH containing wild-type EtDH and BDH genes were used as DNA templates for PCR amplification, respectively. After transformation of the recombinant plasmid containing the correct mutant gene into E. coli BL21 (DE3), the colonies were selected for kanamycin resistance and used for protein expression. After purification of each protein, the activity and kinetic parameters of EtDH and BDH variants were measured. In order to increase the catalytic efficiency of the FLS enzyme, a hot spot was analyzed by inputting the FLS structure (PDB No.: 4QPZ) using a HotSpot Wizard 2.0 server to find a new mutation region [J. Siegel, et (J. Bendl, et al., Acids Res., 2016, 44, 479). Site specific mutations were induced using the FLS1-FLS12 primer of Table 2 below with the six residuals (T396, T446, M473, S477, L482 and L499) Recombinant plasmid pET-FLS containing wild-type FLS was used as a DNA template, and a recombinant plasmid containing the mutant gene was transformed into E. coli BL21 (DE3). FLS variants were screened using the whole-cell biocatalytic method with acetaldehyde as the substrate. Specifically, when the colonies were inoculated on LB medium and the optical density reached 0.6 at 600 nm, protein expression was induced by addition of 0.5 mM IPTG at 18 degrees for 24 hours. The cells were obtained by centrifugation and incubated for 6 hours at 30 ° C. in a reaction mixture containing 50 mM phosphate buffer (pH 8.0), 100 mM acetaldehyde and 40 g L -1 wet cell weight (WCW) Catalytic activity was performed. Also, DDH mutants were prepared and used for the expression of dhaR, which is a reactivating factor of DDH, including S302A, Q337A, F375I, S302A / Q337A, S302A / F375I, Q337A / F375I and S302A / Q337A / The DDH variants were prepared to confirm the catalytic efficiency as compared to the wild type DDH enzyme. DDH1-DDH6 primer shown in Table 2 below to induce site-specific mutagenesis. The pET-DDH-dhaR recombinant plasmid containing wild-type DDH and its activator dhaR gene were used as DNA templates for PCR amplification. To induce each protein expression, the PCR product was transformed into E. coli BL21 (DE3) and cultured in LB medium containing 0.5 mM IPTG at 18 degrees for 24 hours. The mutants were used for the evaluation of catalytic activity using total-cell biocatalysis analysis using meso-2,3-butanediol as a substrate. The reaction mixture contained 50 mM HEPES buffer (pH 7.0), 50 mM meso-2,3-b butanediol, 20 μM coenzyme B12 and 40 g L -1 wet cell weight, It was carried out at 30 degrees for 6 hours. The butanone product was quantified using gas chromatography. The origins and nucleotide sequences of the respective enzymes and some variants thereof are shown in Table 4.
<1-5> 효소 활성 분석<1-5> Enzyme Activity Analysis
EtDH 효소 활성 분석을 위하여, EtDH 효소 활성 및 이의 변이체는 100 mM glycine-NaOH 완충액(pH 9.5), 5 mM Mg2+, 3 mM NAD+/NADP+ 및 10 mM 에탄올을 포함하는 반응 혼합물로 25도에서 측정하였다. 활성은 분광광도계(UV-1800, MAPADA, Shanghai, China)를 이용하여 340 nm에서 NAD+/NADP+ 감소율로 확인하였다. 1 단위의 EtDH 활성은 분 당 1 μmol의 NAD+/NADP+ 를 감소시키는데 필요한 효소의 양으로 확인하였다. FLS 효소 활성 분석을 위하여, FLS 효소 활성 및 이의 변이체는 100 mM 인산 완충액(pH 8.0), 1 mM Mg+, 0.1 mM TPP 및 20 mM 아세트알데히드를 포함하는 반응 혼합물로 검정하였으며, 반응 후 실온에서 1시간 두었으며, 아세트알데히드에서 아세토인의 농도는 VP 반응으로 측정하였으며, 표준 아세토인 검정곡선으로 계산하였다. BDH 효소 활성 분석을 위하여, FLS 효소 활성 및 이의 변이체는 50 mM Tris-HCl 완충액(pH 7.5), 0.2 mM NADPH, 1 mM DTT; 및 20 mM 아세토인 또는 5 mM 부탄온을 포함하는 반응 혼합물로 실온에 두어 측정하였다. 활성은 분광광도계(UV-1800, MAPADA)를 사용하여 340 nm에서 NADPH의 산화율로 확인하였다. 1 단위의 BDH 활성은 분 당 1 μmol NADPH를 산화시키는데 필요한 효소의 양으로 정의되었다. DDH 효소 활성 분석을 위하여, DDH 효소 활성 및 활성화 인자 dhaR를 포함하는 변이체는 50 mM 인산 완충액(pH 7.0), 1 mM 조효소 B12, 100 mM ATP, 1 mM Mg2+ 및 50 mM meso-2,3-부탄다이올을 포함하는 반응 혼합물로 측정하였다. 실온에서 암조건으로 1시간 동안 둔 후, 시트르산염 버퍼(100 mM, pH 3.6)를 동일한 부피로 추가하여 반응을 중지시켰다. 부탄온 생성물은 가스크로마토그래피로 측정하였으며, 1 단위의 DDH 활성은 분 당 meso-2,3-부탄다이올로부터 1 μmol 부탄온을 생성하는 효소의 양으로 확인하였다. NOX 효소 활성 분석을 위하여, NOX 효소 활성은 50 mM HEPES-NaOH buffer (pH 8.0) 및 0.2 mM NADH를 포함하는 반응 혼합물로 실온에서 측정하였다. 활성은 분광광도계(UV-1800, MAPADA)를 이용하여 340 nm에서 NADH의 산화율로 확인하였다. 1단위의 NOX 활성은 분 당 1 μmol NADH를 산화시키는데 필요한 효소의 양으로 측정하였다. For the EtDH enzyme activity assay, the EtDH enzyme activity and its variants were incubated with the reaction mixture containing 100 mM glycine-NaOH buffer (pH 9.5), 5 mM Mg 2+ , 3 mM NAD + / NADP + Respectively. The activity was confirmed by NAD + / NADP + reduction at 340 nm using a spectrophotometer (UV-1800, MAPADA, Shanghai, China). One unit of EtDH activity was identified by the amount of enzyme required to reduce 1 μmol of NAD + / NADP + per minute. For FLS enzyme activity analysis, FLS enzyme activity and its variants were assayed with a reaction mixture containing 100 mM phosphate buffer (pH 8.0), 1 mM Mg + , 0.1 mM TPP and 20 mM acetaldehyde, The concentration of acetone in acetaldehyde was measured by VP reaction and calculated by the standard acetone calibration curve. For the BDH enzyme activity assay, FLS enzyme activity and its variants were assayed in 50 mM Tris-HCl buffer (pH 7.5), 0.2 mM NADPH, 1 mM DTT; And 20 mM acetone or 5 mM butanone at room temperature. The activity was confirmed by the rate of oxidation of NADPH at 340 nm using a spectrophotometer (UV-1800, MAPADA). One unit of BDH activity was defined as the amount of enzyme required to oxidize 1 μmol NADPH per minute. For DDH enzyme activity analysis, mutants containing DDH enzyme activity and dhaR activator were incubated in 50 mM phosphate buffer (pH 7.0), 1 mM coenzyme B12, 100 mM ATP, 1 mM Mg 2+ and 50 mM meso-2,3 ≪ / RTI > butanediol. After standing for 1 hour at room temperature under dark conditions, the reaction was stopped by adding citrate buffer (100 mM, pH 3.6) in the same volume. The butanone product was determined by gas chromatography, and one unit of DDH activity was confirmed by the amount of enzyme producing 1 μmol butanone from meso-2,3-butanediol per minute. For NOX enzyme activity assay, NOX enzyme activity was measured at room temperature with a reaction mixture containing 50 mM HEPES-NaOH buffer (pH 8.0) and 0.2 mM NADH. The activity was confirmed by the NADH oxidation rate at 340 nm using a spectrophotometer (UV-1800, MAPADA). One unit of NOX activity was determined by the amount of enzyme required to oxidize 1 μmol NADH per minute.
<1-6> VP(Voges-proskauer) 반응<1-6> VP (Voges-proskauer) reaction
각 조건의 처리군을 10,000×g에서 5분 간 4도에서 원심분리 하였다. 각 처리군의 아세토인 농도를 분석하고 VP 반응에서 정량화하기 위하여, 10mL 튜브에 희석된 시료 0.3 mL, 0.5 % 크레아틴 0.3 mL, 5 % 알파 나프톨 0.3 mL 및 5 % NaOH 0.3 mL를 넣고 30 에서 30 분간 부드럽게 진탕시켰다. 분광 광도계 (UV-1800, MAPADA)를 사용하여 520 nm에서 반응 용액의 광학 밀도를 측정하고 검량선으로부터 아세토인 농도를 계산하였다. 보정 그래프는 표준 아세토인 농도와 0.04-0.4 mM 범위의 VP 반응 후 520 nm에서 해당 광학 밀도 사이에 측정하였다.Each treatment group was centrifuged at 10,000 × g for 5 minutes at 4 ° C. 0.3 mL of diluted samples, 0.3 mL of 0.5% creatine, 0.3 mL of 5% alpha-naphthol and 0.3 mL of 5% NaOH were added to each 10 mL tube to analyze the acetone concentration in each treatment group and quantify in the VP reaction. Gently shaken. The optical density of the reaction solution was measured at 520 nm using a spectrophotometer (UV-1800, MAPADA) and the concentration of acetone was calculated from the calibration curve. The calibration curve was measured between the standard acetone concentration and the optical density at 520 nm after the VP reaction in the range of 0.04-0.4 mM.
<1-7> 운동 파라미터(kinetic parameters)의 측정<1-7> Measurement of kinetic parameters
EtDH 및 EtDH:D46G의 운동 파라미터는 100 mM glycine-NaOH 완충액(pH 9.5), 5 mM Mg2+, 3 mM NAD+/NADP+ 및 0.5-100 mM 에탄올을 포함하는 반응 혼합물로 실온에 두어 확인하였다. FLS 및 이의 변이체의 운동 파라미터는 100 mM 인산 완충액(pH 8.0), 1 mM Mg+, 0.1 mM TPP 및 0.5-20 mM 아세트알데히드를 포함하는 반응 혼합물로 실온에 두어 확인하였다. BDH 및 BDH:S199A의 운동 파라미터는 50 mM Tris-HCl 완충액(pH 7.5), 0.2 mM NADPH, 1 mM DTT; 및 0.5-100 mM 아세토인 또는 0.5-10 mM 부탄온을 포함하는 반응 혼합물로 실온에 두어 평가하였다. 상기 Km 및 kcat 값은 미카엘리스-멘텐 방정식(Michaelis-Menten equation)의 비선형 회귀 피팅으로 확인하였으며 3회 반복하였다.The kinetic parameters of EtDH and EtDH: D46G were determined at room temperature with the reaction mixture containing 100 mM glycine-NaOH buffer (pH 9.5), 5 mM Mg 2+ , 3 mM NAD + / NADP + and 0.5-100 mM ethanol . The kinetic parameters of FLS and its variants were confirmed at room temperature with a reaction mixture containing 100 mM phosphate buffer (pH 8.0), 1 mM Mg + , 0.1 mM TPP and 0.5-20 mM acetaldehyde. BDH and BDH: The kinetic parameters of S199A were: 50 mM Tris-HCl buffer (pH 7.5), 0.2 mM NADPH, 1 mM DTT; And 0.5-100 mM acetone or 0.5-10 mM butanone at room temperature. The Km and kcat values were confirmed by nonlinear regression fitting of Michaelis-Menten equation and were repeated three times.
<1-8> 무-세포 다중 효소 촉매 시스템(Cell-free multi-enzyme catalysis system)<1-8> Cell-free multi-enzyme catalysis system
도 1a 내지 도 1c에 나타낸 바와 같이, 무-세포 다중 효소 촉매를 이용하여 에탄올로부터 아세토인, 2,3-부탄디올 또는 2-부탄올의 합성은 기질, 조효소, 금속 이온 및 해당되는 효소를 포함하는 0.5-mL 반응 혼합물로 수행하였다. 온도, pH, 조효소 및 메탈 이온을 포함하는 반응 조건은 인공적인 반응 경로의 플럭스(flux)를 증대시키기 위한 최적 조건으로 수행하였다. 아세토인, 2,3-부탄디올 또는 2-부탄올을 최적 반응 조건은 하기와 같다. 아세토인 생성은 50 mM HEPES buffer (pH 8.0), 1 mM NAD+, 0.1 mg mL-1 EtDH, 0.2 mg mL-1 FLS:L482S, 0.1 mg mL-1 NOX, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20 % DMSO 및 100 mM 에탄올을 포함하는 0.5-mL 반응 혼합물을 30도 두어 수행하였다. 2,3-부탄디올은 50 mM HEPES 완충액(pH 8.0), 1 mM NAD+, 1 mM NADP+, 0.1 mg mL-1 EtDH:D46G, 0.2 mg mL-1 FLS:L482S, 0.1 mg mL-1 NOX, 0.1 mg mL-1 BDH:S199A, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20 % DMSO 및 100 mM 에탄올을 포함하는 0.5-mL 반응 혼합물을 30도 두어 수행하였다. 2-부탄올은 50 mM HEPES buffer (pH 8.0), 1 mM NAD+, 1 mM NADP+, 0.1 mg mL-1 EtDH:D46G, 0.2 mg mL-1 FLS:L482S, 0.1 mg mL-1 NOX, 0.1 mg mL-1 BDH:S199A, 0.2 mg mL-1 DDH:Q337A/F375I, 0.2 mg mL-1 dhaR, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20 % DMSO, 1 mM 조효소 B12, 100 mM ATP 및 100 mM 에탄올을 포함하는 0.5-mL 반응 혼합물을 30도 두어 수행하였다. 모든 반응은 6시간 동안 수행하였으며, 각 생성물은 가스 크로마토그래피로 확인하였다. 또한, 생성물에 대한 백분율 수율은 하기와 같은 수식으로 계산하였다: 백분율 수율(%) = 생성물 수율(mM)/이론 수율(theoretical yield)(mM). 이론적으로, 2몰의 에탄올은 1몰의 아세토인, 2,3- 부탄디올 또는 2-부탄올을 생성할 수 있다. As shown in Figs. 1A to 1C, the synthesis of acetone, 2,3-butanediol or 2-butanol from ethanol using an amoebic cell multi-enzyme catalyst was carried out in the presence of substrate, coenzyme, metal ion and 0.5 -mL reaction mixture. The reaction conditions including temperature, pH, coenzyme and metal ion were performed under optimum conditions to increase the flux of the artificial reaction path. Acetone, 2,3-butanediol or 2-butanol. The optimum reaction conditions are as follows. Acetone production was performed in 50 mM HEPES buffer (pH 8.0), 1 mM NAD + , 0.1 mg mL -1 EtDH, 0.2 mg mL -1 FLS: L482S, 0.1 mg mL -1 NOX, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO and 100 mM ethanol at 30 [deg.] C. 2,3-butanediol was dissolved in 50 mM HEPES buffer (pH 8.0), 1 mM NAD + , 1 mM NADP + , 0.1 mg mL -1 EtDH: D46G, 0.2 mg mL -1 FLS: L482S, 0.1 mg mL -1 NOX, A 0.5-mL reaction mixture containing 0.1 mg mL -1 BDH: S199A, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO and 100 mM ethanol was run at 30 ° C. 2-butanol is 50 mM HEPES buffer (pH 8.0) , 1 mM NAD +, 1 mM NADP +, 0.1 mg mL -1 EtDH: D46G, 0.2 mg mL -1 FLS: L482S, 0.1 mg mL -1 NOX, 0.1 mg mL -1 BDH: S199A, 0.2 mg mL -1 DDH: Q337A / F375I, 0.2 mg mL -1 dhaR, 0.1 mM TPP, 1 mM Mg 2+, 1 mM DTT, 20% DMSO, 1 mM coenzyme B12, 100 mM ATP and 100 mM ethanol at 30 [deg.] C. All reactions were carried out for 6 hours and each product was confirmed by gas chromatography. The percentage yield for the product was calculated by the following equation: Percentage yield (%) = Product yield (mM) / Theoretical yield (mM). Theoretically, 2 moles of ethanol can produce 1 mole of acetone, 2,3-butanediol or 2-butanol.
<1-9> 단계적 연쇄 반응의 재순환성 확인(Recyclability of cascade reactions)<1-9> Recyclability of cascade reactions
정제된 효소를 활성 규소 산화물 입자와 혼합하고 이를 12시간, 4도 조건으로 배양하였다. 고정화하기 전에, 규소 산화물 입자(4830HT; Nanostructured & Amorphous Materials, Houston, TX, USA)를 글루타르알데히드(glutaraldehyde) (Sigma)를 포함하는 나노입자를 처리하여 활성화시켰다. 고정화 수율(%) 및 고정화 효율(%)은 다음과 같은 고정화된 효소로 다음과 같은 수학식으로 계산하였다 : 고정화 효율 = (αi/αf) ×100, 고정화 수율 = [{Pi-(Pw + Ps)}/Pi]×100. αi는 고정화된 효소의 총 활성도이고, αf는 자유 효소의 총 활성도이며, Pi는 조효소 제제의 총 단백질 함량이고, Pw 및 Ps는 고정 후 세척용액 또는 상등액의 단백질 농도를 의미한다. 아세토인 생산을 위하여, 50 mM HEPES 완충액(pH 8.0), 1 mM NAD+, 1.06 U mL-1 EtDH, 0.05 U mL-1 FLS:L482S, 0.98 U mL-1 NOX, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20% DMSO 및 100 mM 에탄올을 포함하는 0.5mL 반응 혼합물로 반응을 수행하였다. 2,3-부탄디올 생성을 위하여, 50 mM HEPES 완충액(pH 8.0), 1 mM NAD+, 1 mM NADP+, 0.1 mg mL-1 EtDH:D46G, 0.2 mg mL-1 FLS:L482S, 0.1 mg mL-1 NOX, 0.1 mg mL-1 BDH:S199A, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20% DMSO 및 100 mM 에탄올을 포함하는 0.5mL 반응 혼합물로 30도, 6시간 동안 반응을 수행하였다. 또한, 고정화된 효소의 재사용성을 확인하기 위하여, 상기와 같은 동일한 반응 조건하에 수행하였다. 각 1차 반응 순환 후, 고정화된 효소는 4000×g로 30분 동안 원심분리하여 제거하였다. 고정화된 효소를 수집하고 탈이온수 및 완충액으로 세척하였다. 2차 반응 순환을 위하여, 상기 고정화된 효소를 새로운 완충액에 용해시키고, 기질을 첨가한 후, 상기 1차 반응 순환과 동일하게 처리하였다. The purified enzyme was mixed with active silicon oxide particles and cultured for 12 hours at 4 ° C. Before immobilization, silicon oxide particles (4830HT; Nanostructured & Amorphous Materials, Houston, TX, USA) were activated by treating nanoparticles containing glutaraldehyde (Sigma). Immobilization yield (%), and immobilization efficiency (%) was in the following immobilized enzyme as calculated with the following equation of: immobilizing efficiency = (α i / α f) × 100, immobilization yield = [{P i - ( P w + P s )} / P i ] × 100. α i is the total activity of the immobilized enzyme, α f is the total activity of the free enzyme, Pi is the total protein content of the coenzyme preparation, and Pw and Ps are the protein concentrations of the washing solution or supernatant after fixation. For the production of acetone, 50 mM HEPES buffer (pH 8.0), 1 mM NAD + , 1.06 U mL -1 EtDH, 0.05 U mL -1 FLS: L482S, 0.98 U mL -1 NOX, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO, and 100 mM ethanol. In order to produce 2,3-butanediol, 50 mM HEPES buffer (pH 8.0), 1 mM NAD +, 1 mM NADP +, 0.1 mg mL -1 EtDH: D46G, 0.2 mg mL -1 FLS: L482S, 0.1 mg mL - 1 NOX, 0.1 mg mL- 1 BDH: S199A, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO and 100 mM ethanol at 30 degrees for 6 hours Respectively. Further, in order to confirm the reusability of the immobilized enzyme, it was carried out under the same reaction conditions as described above. After each primary reaction cycle, the immobilized enzyme was removed by centrifugation at 4000 x g for 30 minutes. The immobilized enzyme was collected and washed with deionized water and buffer. For the second-order reaction cycle, the immobilized enzyme was dissolved in a new buffer, the substrate was added, and then treated in the same manner as the first-order reaction cycle.
<1-10> 분석 방법<1-10> Analysis method
세포 성장 분석은, 세포 성장은 분광 광도계(UV-1800, MAPADA)를 사용하여 600 nm에서 광학 밀도를 측정하여 확인하였다. 단백질 농도는 브레트포드 법(Bradford method)을 이용하여 측정하였고, 소 혈청 알부민(bovine serum albumin)을 표준 단백질로 사용하였다. GC-MS 분석은, 키랄 칼럼(chiral column)(Supelco β-DEX™ 120, 30-m 길이, 0.25-mm 내경)이 장착된 가스 크로마토그래프 시스템(Agilent GC9860, Santa Clara, CA, USA)을 사용하여 정량하였다. 수행 조건은 다음과 같다: N2를 1.2 mL min-1의 유속으로 캐리어 카스로서 이용하였다; 인젝터 온도 및 검출기 온도는 각각 215 및 245도로 설정하였다; 칼럼 온도는 50도에서 1.5분간 유지시킨 후, 15°C min-1의 속도로 180도까지 증가시켰다.Cell growth analysis was confirmed by measuring optical density at 600 nm using a spectrophotometer (UV-1800, MAPADA). Protein concentration was measured using the Bradford method and bovine serum albumin was used as the standard protein. GC-MS analysis was performed using a gas chromatograph system (Agilent GC9860, Santa Clara, CA, USA) equipped with a chiral column (Supelco β-DEX ™ 120, 30-m length, 0.25- Respectively. The operating conditions were as follows: N2 was used as the carrier gas at a flow rate of 1.2 mL min < -1 & gt ;; The injector temperature and the detector temperature were set at 215 and 245 degrees, respectively; The column temperature was maintained at 50 ° C for 1.5 minutes and then increased to 180 ° C at a rate of 15 ° C min -1 .
<실시예 2> 본 발명의 다단계 효소 및 이의 변이체의 단백질 발현 확인Example 2 Confirmation of Protein Expression of Multistage Enzyme and Mutant of the Present Invention
본 발명의 다단계 효소 및 이의 변이 단백질 발현을 확인하기 위하여, 18도에서 24시간 유도한 후, 세포를 원심 분리하여 수득하고 ice bath에서 초음파 처리하여 파쇄하였다. 세포 파편을 제거하기 위하여 세포 용해물을 8000×g, 10분간 원심 분리하였다. NOX, EtDH, FLS, BDH 및 dhaR 효소를 수득하기 위하여, 용해성 분획을 정제 프로토콜(GE Healthcare, Little Chalfont, UK)에 따라 HisTrap HP 칼럼을 이용하여 정제하였다. DDH 정제는 종래의 방법으로 수행하였다[M. Seyfried, et al., J. Bacteriol., 1996, 178, 5793]. 상기 각 정제된 효소는 초미세여과(ultrafiltration)하여 농축 및 탈염화시킨 후, SDS-PAGE로 검출하였다. 그 결과, EtDH 및 EtDH:D46G 단백질과 BDH 및 BDH: S199A 단백질은 동일한 분자량으로 발현됨을 확인하여, 야생형과 변이형간의 발현되는 분자량은 차이가 없음을 확인하였다. 또한, 락토바실러스 람노서스(Lactobacillus rhamnosus) 유래 또는 락토바실러스 브레비스(Lactobacillus brevis) 유래된 NOX 단백질은 각각 분자량이 상이하여, 동일한 유전자라 할지라도 유래에 따라 발현되는 단백질이 상이함을 확인하였다. 또한, FLS 유전자가 제대로 발현됨을 확인하였다.In order to confirm the expression of the multistage enzyme of the present invention and mutant proteins thereof, the cells were induced by centrifugation at 18 ° C for 24 hours and then disrupted by ultrasonication in an ice bath. Cell lysates were centrifuged at 8000 × g for 10 min to remove cell debris. To obtain NOX, EtDH, FLS, BDH and dhaR enzymes, soluble fractions were purified using HisTrap HP column according to purification protocol (GE Healthcare, Little Chalfont, UK). DDH purification was performed in a conventional manner [M. Seyfried, et al., J. Bacteriol., 1996, 178, 5793]. Each of the purified enzymes was concentrated by ultrafiltration and de-chlorinated, and then detected by SDS-PAGE. As a result, it was confirmed that EtDH and EtDH: D46G proteins and BDH and BDH: S199A proteins were expressed at the same molecular weight, and it was confirmed that there was no difference in molecular weight expressed between wild type and mutant type. In addition, NOX proteins derived from Lactobacillus rhamnosus or Lactobacillus brevis have different molecular weights, and thus it has been confirmed that proteins expressed according to their origins are different even if they are the same genes. In addition, FLS gene was correctly expressed.
<실시예 3> 본 발명의 다단계 효소 및 이의 변이체를 이용한 에탄올에서 C4 의 화합물 생성 확인Example 3 Confirmation of Production of C 4 Compound in Ethanol Using Multistage Enzyme of the Present Invention and its Variant
본 발명의 다단계 효소 및 이의 변이체를 이용하여, 에탄올에서 C4 화합물인 아세토인(acetoin), 2,3-부탄디올(2,3-butanediol) 및 2-부탄올(2-butanol) 생성을 유도하기 위하여, 상기 무-세포 다중 효소 촉매 시스템을 이용한 인공 합성 경로를 도 1a 내지 도 1c와 같이 설계하였다. 에탄올은 먼저 NAD(P)H-의존성 EtDH에 의해 탈수소되어 아세트알데히드를 생성하며, 응축 반응을 거쳐 본 발명의 FLS 및 이의 변이체에 의하여 아세토인을 생성한다. NOX는 NAD+를 재생하는 데 사용한다. 이어서, NADPH-의존성 BDH에 의해 아세토인이 환원되어 2,3-부탄디올이 생성된다. 마지막으로, 2-부탄올은 각각 DDH 및 BDH에 의한 탈수 및 수소화 반응을 통해 수득할 수 있다.In order to induce the production of C 4 compounds acetoin, 2,3-butanediol and 2-butanol in ethanol using the multistage enzyme of the present invention and its variants, , An artificial synthetic pathway using the above-mentioned cell-free multi-enzyme catalytic system was designed as shown in Figs. 1A to 1C. Ethanol is first dehydrogenated by NAD (P) H-dependent EtDH to produce acetaldehyde and undergoes a condensation reaction to produce acetone by the FLS of the present invention and its variants. NOX is used to regenerate NAD +. Subsequently, acetone is reduced by NADPH-dependent BDH to produce 2,3-butanediol. Finally, 2-butanol can be obtained via dehydration and hydrogenation reactions with DDH and BDH, respectively.
<3-1> 본 발명의 FLS 효소에 따른 아세토인 생성 확인<3-1> Production of acetone according to the FLS enzyme of the present invention
본 발명의 FLS 효소에 의한 아세트알데히드에서 아세토인으로의 전환능을 확인하기 위하여, VP 반응을 수행하였으며, 기질인 아세트알데히드를 50 또는 100nM 처리하거나, 처리시간을 0 또는 6시간 두고 FLS 효소를 처리하여 각 조건을 설정하였다. 그 결과, 아세토인이 생성됨을 확인하여, FLS 효소를 처리하고, 기질인 아세트알데히드를 농도로 달리할 경우 얻어지는 아세토인 농도도 다르다는 것을 색의 변화가 짙음을 통해 효과적으로 확인하였다.In order to confirm the ability of the FLS enzyme of the present invention to convert acetaldehyde to acetone, a VP reaction was carried out, and 50 or 100 nM acetaldehyde as a substrate was treated, or treated with FLS enzyme for 0 or 6 hours And each condition was set. As a result, it was confirmed that acetone was produced, and the concentration of acetone obtained when the FLS enzyme was treated and the substrate acetaldehyde was changed at different concentrations was confirmed through the darkness of the color change.
<3-2> 본 발명의 다단계 효소 및 이의 변이체를 이용한 아세토인, 2,3-부탄디올 및 2-부탄올 생성 분석<3-2> Analysis of production of acetone, 2,3-butanediol and 2-butanol using the multistage enzyme of the present invention and its variants
본 발명의 다단계 효소 및 이의 변이체를 이용하여, 이를 무-세포 다중 효소 촉매 시스템을 이용한 인공 합성 경로로 아세토인, 2,3-부탄디올 및 2-부탄올을 생성하였다. 그 후, 시판되는 표준 물질인 에탄올, 아세트알데히드, 3S/3R)-아세토인(acetoin)은 (2S, 3S)-2,3-부탄에디올(butanediol), (2R, 3R)-2,3-부탄에디올(butanediol), meso-2,3-부탄에디올(butanediol), 부탄온(butanone) 및 2-부탄올(butanol)을 혼합하여 이를 대조군으로서 이용하였다. 또한, 본 발명의 무-세포 다중 효소 촉매에 따른 각 다단계 효소를 이용한 분석 결과를 GC/GC-MS 분석을 이용하여 수행하였다. 그 결과 본 발명의 각 다단계 효소를 이용한 무-세포 다중 효소 촉매 시스템을 이용 시, 시판되는 표준 물질과 비교하여 동일한 피크의 아세토인, 2,3-부탄디올 및 2-부탄올을 생성함을 확인하였다(도 2). Using the multistage enzymes of the present invention and its variants, it was synthesized using acetylation, 2,3-butanediol and 2-butanol by artificial synthetic pathway using a cell-free multi-enzyme catalytic system. (2S, 3S) -2,3-butanediol, (2R, 3R) -2,3-dihydroxybenzoic acid, Butanediol, butanediol, butanediol, butanediol and 2-butanol were mixed and used as a control. In addition, the analysis results using the multi-step enzyme according to the present invention of the present invention were carried out by GC / GC-MS analysis. As a result, it was confirmed that when using the multi-stage enzyme-free multi-enzyme catalytic system of the present invention, acetoin, 2,3-butanediol and 2-butanol were produced at the same peaks as those of commercially available standard products 2).
<실시예 4> 본 발명의 인공 합성 경로에서 다단계 효소 및 이의 변이체의 촉매 효과 확인Example 4 Confirmation of Catalytic Effect of Multistage Enzyme and Its Variants in the Artificial Synthetic Pathway of the Present Invention
<4-1> 본 발명의 다단계 효소 및 이의 변이체의 운동 파라미터(kinetic parameter) 측정을 통한 촉매 효율 비교<4-1> Comparison of catalytic efficiency by measuring kinetic parameters of the multistage enzyme of the present invention and mutants thereof
본 발명의 다단계 효소 및 이의 변이체의 운동 파라미터(kinetic parameter) 측정을 통한 촉매 효율을 비교하기 위하여, 다음과 같은 실험을 수행하였다. 구체적으로, EtDH 및 EtDH:D46G의 운동 파라미터는 100 mM glycine-NaOH 완충액(pH 9.5), 5 mM Mg2+, 3 mM NAD+/NADP+ 및 0.5-100 mM 에탄올을 포함하는 반응 혼합물로 실온에 두어 확인하였다. FLS 및 이의 변이체의 운동 파라미터는 100 mM 인산 완충액(pH 8.0), 1 mM Mg+, 0.1 mM TPP 및 0.5-20 mM 아세트알데히드를 포함하는 반응 혼합물로 실온에 두어 확인하였다. BDH 및 BDH:S199A의 운동 파라미터는 50 mM Tris-HCl 완충액(pH 7.5), 0.2 mM NADPH, 1 mM DTT; 및 0.5-100 mM 아세토인 또는 0.5-10 mM 부탄온을 포함하는 반응 혼합물로 실온에 두어 평가하였다. 기질 친화도인 Km 및 kcat 값은 미카엘리스-멘텐 방정식(Michaelis-Menten equation)의 비선형 회귀 피팅으로 확인하였으며 3회 반복하였다. DDH 및 NOX는 종래 결과[(S. Kwak, et al., Bioresource Technol., 2013, 135, 432), (M. Kopke, et al., Appl. Environ. Microbiol., 2014, 80, 3394)]를 참고하여 비교하였다. 그 결과를 표 5에 나타내었다. 표 4에 나타낸 바와 같이, EtDH 및 EtDH:D46G 효소는 기질로서 에탄올, 조효소로서 NAD+를 이용 시, 각 kcat/Km 값이 17.09, 9.97s-1mM-1임을 확인하여, 조효소로서 NADP+를 이용하는 것 보다 NAD+를 이용하는 것이 촉매 효율을 높일 수 있음을 확인하였다. 또한, FLS 효소는 기질로서 아세트알데히드를, 조효소로서 TPP(thiamine pyrophosphate)를 이용 시, kcat/Km 값이 7.69×10-3 s-1mM-1임을 확인하였다. 또한, 이의 변이체인 FLS:L482S, FLS:L482R 및 FLS:L482E는 각 kcat/Km 값이 1.33×10-2, 1.06×10-2 및 9.66×10-3s-1mM-1임을 확인하여, 상기 야생형 FLS 효소 보다 각 72.95%, 37.84% 및 25.62%으로 촉매 효율이 증가됨을 확인하였다. 또한, BDH:S199A 효소는 야생형 BDH와 비교하였을 때, 기질로서 부탄온을, 조효소로서 NADPH를 이용 시 촉매효율이 증가됨을 확인하였다. In order to compare the catalytic efficiency by measuring the kinetic parameters of the multistage enzyme of the present invention and its variants, the following experiment was conducted. Specifically, the kinetic parameters of EtDH and EtDH: D46G were determined at room temperature with a reaction mixture containing 100 mM glycine-NaOH buffer (pH 9.5), 5 mM Mg 2+ , 3 mM NAD + / NADP + and 0.5-100 mM ethanol Respectively. The kinetic parameters of FLS and its variants were confirmed at room temperature with a reaction mixture containing 100 mM phosphate buffer (pH 8.0), 1 mM Mg + , 0.1 mM TPP and 0.5-20 mM acetaldehyde. BDH and BDH: The kinetic parameters of S199A were: 50 mM Tris-HCl buffer (pH 7.5), 0.2 mM NADPH, 1 mM DTT; And 0.5-100 mM acetone or 0.5-10 mM butanone at room temperature. The substrate affinities, Km and kcat, were determined by nonlinear regression fitting of the Michaelis-Menten equation and repeated three times. DDH and NOX have been found to be more potent than conventional results (S. Kwak, et al., Bioresource Technol., 2013, 135, 432), (M. Kopke, et al., Appl. Environ. Microbiol., 2014, 80, 3394) . The results are shown in Table 5. As shown in Table 4, EtDH and EtDH: D46G enzymes were found to have kcat / Km values of 17.09 and 9.97 s -1 mM -1 when using ethanol as a substrate and NAD + as a coenzyme. As a result, NADP + It has been confirmed that the use of NAD + can increase the catalyst efficiency. In addition, it was confirmed that the kcat / Km value of the FLS enzyme was 7.69 × 10 -3 s -1 mM -1 when acetaldehyde was used as a substrate and thiamine pyrophosphate (TPP) was used as a coenzyme. FLS: L482S, FLS: L482R and FLS: L482E, which are variants thereof, confirmed that the kcat / Km values were 1.33 x 10 -2 , 1.06 x 10 -2 and 9.66 x 10 -3 s -1 mM -1 , It was confirmed that the catalytic efficiency was increased to 72.95%, 37.84% and 25.62%, respectively, as compared with the wild-type FLS enzyme. In addition, when BDH: S199A enzyme was compared with wild type BDH, it was confirmed that the catalyst efficiency was increased when butanone was used as a substrate and NADPH was used as a coenzyme.
<4-2> 본 발명의 다단계 효소 및 이의 변이체의 입체 선택성(stereoselectivity) 확인본 발명의 DDH 효소의 입체 선택성을 분석하기 위하여, DDH 효소 및 이의 재활성 인자인 dhaR를 발현하는 세포(E. coli/pET-DDH-dhaR)를 이용하여 전체-세포 생촉매법(whole-cell biocatalysis)법을 수행하였고, 기질로서 3개의 2,3-부탄디올 이성질체(meso-2,3-butanediol, (2R,3R)-butanediol 및 (2S,3S)-butanediol)을 이용하여 2-부탄올의 전 합성 단계인 부탄온(butanone)으로의 전환을 확인하였다. 그 결과, 본 발명의 DDH 효소의 입체 선택성을 분석한 결과, 50 mM meso-2,3-butanediol으로부터 20.56 mM의 부탄온이 생성됨을 확인하였다. 반면, (2R, 3R)-2,3- 부탄디올 및 (2S, 3S)-2,3-부탄디올을 기질로 이용 시 부탄온이 검출되지 않음을 확인하였다. 따라서, dhaR을 포함하는 DDH 효소는 in vivo 상에서 meso-2,3- 부탄디올에 대해 높은 촉매 활성을 나타내어, 입체 선택성이 뛰어남을 확인하였다. <4-2> Confirmation of Stereoselectivity of Multistage Enzymes and Mutants of the Present Invention In order to analyze the stereoselectivity of the DDH enzyme of the present invention, cells expressing DDH enzyme and its reactivity factor dhaR (E. coli (pET-DDH-dhaR) was used to perform whole-cell biocatalysis. Three 2,3-butanediol isomers (meso-2,3-butanediol, ) -butanediol and (2S, 3S) -butanediol), the conversion of 2-butanol to butanone was confirmed. As a result, the present inventors analyzed the stereoselectivity of the DDH enzyme of the present invention and found that 20.56 mM butanone was generated from 50 mM meso-2,3-butanediol. On the other hand, it was confirmed that butanone was not detected when (2R, 3R) -2,3-butanediol and (2S, 3S) -2,3-butanediol were used as a substrate. Therefore, the DDH enzyme including dhaR exhibited a high catalytic activity in meso-2,3-butanediol in vivo, confirming excellent stereoselectivity.
<4-3> 본 발명의 다단계 효소 및 이의 변이체의 열 안정성(Thermostability) 확인<4-3> Determination of the Thermostability of the Multistage Enzyme of the Present Invention and Its Variants
본 발명의 다단계 효소 및 이의 변이체의 열 안정성을 확인하기 위하여, EtDH(에탄올, NAD+ 포함), EtDH:D46G(에탄올, NAD+ 포함), EtDH:D46G(에탄올, NADP+), EtDH:D46G (ethanol, NAD+ 포함), FLS(아세트알데히드, TPP 포함), FLS:L482S(아세트알데히드, TPP), BDH:S199A(아세토인, NADPH 포함), BDH:S199A(부탄온, NADPH 포함), dhaR 포함DDH:Q337A/F375(meso-2,3-부탄디올, B12 포함), NOX (O2, NADH 포함) 세포를 30, 37, 45 에서 6시간 동안 배양한 후 활성을 측정하였다. 그 결과, 열 안정성을 확인한 결과, 30도 조건에서 EtDH, FLS 및 NOX 효소는 각 87.91%, 70.43%, 및 91.30%의 열 안정성이 나타남을 확인하였다. 또한, 37도 및 45도에서 NOX 효소는 지속적인 열 안정성이 나타남을 확인하였다. (Including ethanol and NAD + ), EtDH: D46G (including ethanol and NAD + ), EtDH: D46G (ethanol, NADP + ), EtDH: D46G (containing ethanol and NAD + ), and the like were used in order to confirm the thermal stability of the multistage enzyme of the present invention and its mutants (including acetaldehyde, TPP), BDH: S199A (including acetone and NADPH), BDH: S199A (including butanone and NADPH), dhaR (including ethanol and NAD +), FLS (including acetaldehyde and TPP) : the Q337A / F375 (2,3- meso-butanediol, B12 included), NOX (O 2, comprising NADH) cells 30, 37, and incubated at 45 for 6 hours, activity was measured. As a result, it was confirmed that the thermal stability of the EtDH, FLS and NOX enzymes at 30 ° C was 87.91%, 70.43%, and 91.30%, respectively. In addition, at 37 and 45 degrees, the NOX enzyme showed continuous thermal stability.
<실시예 5> 본 발명의 인공 합성 경로를 통한 아세토인 생성 Example 5 Production of Acetone by the Artificial Synthesis Pathway of the Present Invention
<5-1> 에탄올에서 아세토인으로의 최적 반응 조건 확인<5-1> Determination of optimal reaction conditions from ethanol to acetone
에탄올에서 아세토인의 생성을 위하여, EtDH, FLS 및 NOX 효소를 사용하였다. 구체적으로, 초기 반응은 50 mM HEPES 버퍼(pH 7.0), 0.1 mg mL-1 EtDH, 0.2 mg mL-1 FLS, 0.1 mg mL-1 NOX, 4 mM NAD+, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20% DMSO, 초기 기질로서 100 mM 에탄올을 포함하는 0.5-mL 반응 혼합액을 이용하였다. 반응은 30도 조건에서 6시간 동안 진행하였고, 반응 용액에서 이론적 수득율(theoretical yield)의 35.96%인 17.98 mM의 아세토인이 생성됨을 확인하여, 본 발명의 인공 합성 경로를 이용시, 에탄올에서 아세토인으로 반응 유도가 가능함을 확인하였다. 또한, 온도, pH, 조효소(NAD+ 및 TPP) 및 금속 이온의 조건에 따라, 반응 최적 조건을 찾기 위하여, 온도는 20, 25, 30, 37 및 42도의 조건을 두었다. 또한, pH는 6.0, 6.5, 7.0, 7.5, 8.0, 8.5 및 8.5의 조건에서, NAD+ 는 1, 2, 4, 6, 8 mM 농도 조건에서, TPP는 1, 0.1, 0.2, 0.3, 0.4 및 0.5 mM 농도 조건에서, 금속 이온은 Mg2+, Mn2+, Ca2+, Fe2+, Ni2+, Cu2+ 및 Zn2+을 처리하여 최적 반응 조건을 확인하였다. 그 결과 pH 조건은 8.0이, 온도는 30도에서, NAD+의 농도는 1mM에서, TPP는 0.1mM 농도에서, 금속 이온 Mg2+에서 가장 최적 반응 조건임을 확인하였으며, 에탄올에서 아세토인으로의 반응 플럭스를 향상시킴을 확인하였다. 또한, 상기 최적 반응 조건에 시간에 따른 아세토인의 생성을 확인하기 위하여, EtDH, FLS 및 NOX 효소를 이용하고 100 mM 에탄올을 기질로 하여 0, 2, 4, 6, 및 8 시간을 처리하였다. 그 결과, 6시간 처리 시, 이론적 수득율(theoretical yield)의 45.50%인 22.75 mM의 아세토인이 생성됨을 확인하였다.For the production of acetone in ethanol, EtDH, FLS and NOX enzymes were used. Specifically, the initial reaction is 50 mM HEPES buffer (pH 7.0), 0.1 mg mL -1 EtDH, 0.2 mg mL -1 FLS, 0.1 mg mL -1 NOX, 4 mM NAD +, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO, and a 0.5-mL reaction mixture containing 100 mM ethanol as an initial substrate. The reaction was carried out under the conditions of 30 ° C. for 6 hours and 17.98 mM of acetone, which is 35.96% of the theoretical yield, was produced. As a result, when using the artificial synthetic route of the present invention, It was confirmed that the reaction could be induced. The temperature was set to 20, 25, 30, 37, and 42 degrees in order to find the optimal reaction conditions, depending on the conditions of temperature, pH, coenzyme (NAD + and TPP) and metal ion. In addition, the NAD + at 1, 2, 4, 6, and 8 mM concentrations of TPP were found to be 1, 0.1, 0.2, 0.3, 0.4, and 0.5 at pH 6.0, 6.5, 7.0, 7.5, 8.0, At 0.5 mM concentration, the optimum conditions for the metal ions were determined by treating Mg 2+ , Mn 2+ , Ca 2+ , Fe 2+ , Ni 2+ , Cu 2+ and Zn 2+ . As a result, it was confirmed that the optimum condition for the metal ion Mg 2+ was the pH condition at 8.0, the temperature at 30 ° C, the NAD + concentration at 1 mM and the TPP at 0.1 mM concentration, and the reaction flux from ethanol to acetone . In order to confirm the production of acetone over time in the optimal reaction conditions, EtDH, FLS and NOX enzymes were used and treated with 100 mM ethanol as a substrate for 0, 2, 4, 6, and 8 hours. As a result, it was confirmed that at 6 hours treatment, an acetone of 22.75 mM, which is 45.50% of the theoretical yield, was produced.
<5-2> 에탄올에서 아세토인으로의 속도 조절 단계(Rate limiting step) 확인<5-2> Confirmation of the rate limiting step from ethanol to acetone
에탄올에서 아세토인으로의 속도 조절 단계를 확인하기 위하여, 각 EtDH, FLS 또는 NOX 효소를 1/10의 농도로 줄이고 이를 제외한 나머지 효소는 일정한 농도를 유지하여 3회 반복하여 아세토인 양을 확인하였다. 그 결과, EtDH 또는 NOX 효소보다 FLS 효소의 농도가 줄어들었을 때, 아세토인의 생성에 영향을 끼침을 확인하였다. 따라서, 상기 FLS 효소는 아세토인 생성에 중요한 효소임을 확인하였다. In order to confirm the step of controlling the rate of ethanol to acetone, each EtDH, FLS or NOX enzyme was reduced to a concentration of 1/10, and the remaining amount of the enzyme was maintained at a constant concentration to confirm the amount of acetone. As a result, it was confirmed that when the concentration of FLS enzyme is lower than that of EtDH or NOX enzyme, it affects the production of acetone. Therefore, it was confirmed that the FLS enzyme is an enzyme important for the production of acetone.
<5-3> FLS 효소 변이체의 촉매 효율 확인 및 선발<5-3> Identification and selection of catalytic efficiency of FLS enzyme mutants
FLS 효소의 촉매 효율을 향상시키기 위해, HotSpot Wizard 2.0 서버를 사용하여 FLS 아미노산 서열의 돌연변이 핫스팟을 분석 하였다. 핫 스팟 마법사 2.0 서버를 사용하여 핫 스팟 잔기(T396, T446, M473, S477, L482 및 L499) 6개 부위 포화 돌연변이 유발을 확인하고, 이의 각 구조 모델을 확인한 결과, FLS에서 482 부위가 효소 활성에 중요한 역할을 함을 확인하였다. 또한, 상기 FLS 변이체를 선발하기 위하여, FLS 및 이의 변이체인 L482S, L482R 및 L482E를 전체-세포 생촉매법을 이용하여 기질로서 아세트알데히드(100 mM)를 이용하여 아세토인을 생성 농도를 VP 법을 이용하여 확인하였다. 또한, 정제 후 FLS의 고유 활성(specific activity)인 0.16 U/mg과 비교하여, 각 변이체의 활성(%)을 비교하였으며 3회 반복하여 평균 ± 표준 편차값을 구하였다.야생 FLS보다 FLS 변이체가 아세토인을 더 생성함을 확인하였다. 또한, FLS 변이 L482S, L482R 및 L482E은 FLS 고유 활성보다 각 59.03%, 36.89% 및 34.12%로 증가됨을 확인하였다. 따라서, FLS 변이 중L482S가 가장 아세토인 생성에 효과적임을 확인하였다.To improve the catalytic efficiency of the FLS enzyme, a mutated hot spot of the FLS amino acid sequence was analyzed using the HotSpot Wizard 2.0 server. Using the Hotspot Wizard 2.0 server, we confirmed the saturation mutagenesis of six sites of hot spot residues (T396, T446, M473, S477, L482 and L499) and confirmed their structural models. As a result, 482 sites in FLS It is confirmed that it plays an important role. In order to select the FLS variant, FLS and its mutants L482S, L482R and L482E were subjected to the VP-method using acetaldehyde (100 mM) as a substrate using the all-cell biocatalytic method Respectively. After the purification, the activity (%) of each mutant was compared with 0.16 U / mg, which is the specific activity of FLS, and the mean ± standard deviation was calculated by repeating 3 times. The FLS mutant It was confirmed that it further produced acetone. In addition, it was confirmed that the FLS mutations L482S, L482R and L482E increased to 59.03%, 36.89% and 34.12%, respectively, from the FLS intrinsic activity. Therefore, it was confirmed that L482S was most effective for the production of acetone during the FLS mutation.
<5-4> 야생형 FLS와 이의 변이 FLS:L482S의 구조 및 활성 비교<5-4> Comparison of wild type FLS and mutation FLS: L482S structure and activity
야생형 FLS와 이의 변이 FLS:L482S의 구조 및 활성을 비교하기 위하여, 100 ns에 대한 분자 역학 시뮬레이션 분석을 사용하여 야생형 FLS와 이의 변이 FLS:L482S의 구조적 변화와 효소 활성간의 상관 관계를 확인하였다. 그 결과, 야생형 FLS와 이의 변이 FLS:L482S는 기질인 아세트알데히드와 분자 상호 작용은 활성 부위 잔기 W480이며, 야생형 FLS보다(2.1Å) 변이 FLS:L482S가 기질인 아세트알데히드에 더 강하게 결합(2.8Å)함을 확인하였다. 또한, 변이 FLS:L482S는 야생형 FLS보다 더 수소 결합함을 확인하였다.Wild type FLS and its mutations To compare the structure and activity of FLS: L482S, a molecular dynamics simulation analysis of 100 ns was used to confirm the correlation between the structural changes of wild type FLS and its mutant FLS: L482S and enzyme activity. As a result, the wild-type FLS and its mutant FLS: L482S have a strong interaction with acetaldehyde (2.8 Å), which is a substrate mutant FLS: L482S, ). Furthermore, it was confirmed that the mutant FLS: L482S was more hydrogen-bonded than the wild-type FLS.
<5-5> 기질 및 농도에 따른 FLS:L482S의 활성 비교<5-5> Comparison of FLS: L482S activity by substrate and concentration
기질로서 에탄올을 이용하고 이의 농도에 따른 FLS:L482S의 활성을 비교하기 위하여, 50 mM HEPES 버퍼(pH 8.0), 1 mM NAD+, 1.06 Uml-1 EtDH, 0.05 U mL-1 FLS:L482S, 0.98 U mL-1 NOX, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20% DMSO, 및 100-500 mM 에탄올을 포함하는 0.5-mL 반응 혼합액으로 반응을 수행하였다. 그 후, 0-6시간, 30도의 조건을 두어 아세토인 생성을 확인하였다. 그 결과, 반응 4시간째에 100 mM 에탄올을 기질로 이용 시, 이론적 수율의 88.78%에 해당하는 44.39 mM의 아세토인을 수득하였다. 아세토인 이외에, 에탄올의 대사 작용에 생성되는 아세트알데히드가 측정되었고, 이는 반응 2시간 동안 9.58 mM까지 축적된 다음 6 시간에 5.65 mM로 감소함을 확인하였다. 또한, 다른 부산물은 축적되지 않아, FLS:L482S를 이용한 아세토인의 생산을 위한 본 발명의 인공 합성 경로는 기질에 특이적임을 확인하였다. 또한, 아세토인 생산에 대한 기질 농도(200, 300, 400 및 500 mM)의 영향을 확인한 결과, 농도 의존적으로 아세토인 및 아세트알데히드의 생성이 증가됨을 확인하였다. In order to compare the activity of FLS: L482S with ethanol as a substrate, 50 mM HEPES buffer (pH 8.0), 1 mM NAD + , 1.06 Uml -1 EtDH, 0.05 U mL -1 FLS: L482S, 0.98 The reaction was carried out with a 0.5-mL reaction mixture containing U mL -1 NOX, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO, and 100-500 mM ethanol. Thereafter, the formation of acetone was confirmed under the conditions of 0-6 hours and 30 degrees. As a result, when 100 mM ethanol was used as a substrate at 4 hours of reaction, 44.39 mM of acetone corresponding to 88.78% of the theoretical yield was obtained. In addition to acetone, the acetaldehyde produced by the metabolism of ethanol was measured, and it was confirmed that it accumulated to 9.58 mM for 2 hours and decreased to 5.65 mM for the next 6 hours. In addition, no other by-products were accumulated, confirming that the artificial synthetic pathway of the present invention for production of acetone using FLS: L482S is substrate specific. In addition, the effect of substrate concentration (200, 300, 400 and 500 mM) on the production of acetone was confirmed, and it was confirmed that the production of acetone and acetaldehyde was increased in a concentration dependent manner.
<실시예 6> 본 발명의 인공 합성 경로를 통한 2,3-부탄디올 생성 Example 6 Production of 2,3-butanediol through the artificial synthetic route of the present invention
<6-1> EtDH:D46G 변이 및 BDH:S199A 제작 <6-1> Production of EtDH: D46G mutation and BDH: S199A
에탄올에서 2,3-부탄디올 생성하는 본 발명의 인공 합성 경로를 설계 시, 에탄올을 아세트알데히드로 전환시키고, 조효소로서 NAD+ 및 NADP+를 동시에 이용하면서, NADH 축적을 방지하기 위한 NAD(P)H 퍼지 벨브 조절 노드(purge valve regulatory node)를 디자인하기 위해, EtDH의 변이체를 제작하였다. 구체적으로 PDB 데이터베이스에서 다른 탈수소효소(dehydrogenase)를 포함하는 EtDH(cnMDH)의 아미노산 서열을 정렬하였다. 그 결과, 조효소로서 NAD+만을 이용하는 부위와, NAD+/NADP+ 동시 이용 부위를 확인하였고, 상기 동시 이용 부위를 포함하는 EtDH:D46G을 선발하였다. 또한, BDH:S199A는 종래 방법[D. J. Maddock, et al., Protein Eng. Des. Sel., 2015, 28, 251]을 이용하여 부위 특이적 돌연변이 유도(site-specific mutagenesis)하여 제작하였다. 그 결과, 상기 변이체의 열안정성을 30, 37 및 45도에서 분석 확인한 결과, EtDH:D46G 변이체는 아세트알데히드를 조효소 NAD+ 및 NADP+가 있는 기질로 사용했을 때, 30 도에서 6 시간 동안 배양 한 후 활성 수준이 86.53% 및 86.67 %로 유지됨을 확인하였다. 또한, BDH:S199A 변이체는 조효소인 NADPH와 기질로서 아세토인을 사용 시, 30 도에서 6 시간 동안 활성 수준이80.81%로 유지됨을 확인하였다. (P) H to prevent NADH accumulation while simultaneously converting ethanol into acetaldehyde and simultaneously using NAD + and NADP + as coenzyme when designing the artificial synthetic pathway of the present invention to produce 2,3-butanediol in ethanol To design the purge valve regulatory node, variants of EtDH were constructed. Specifically, the amino acid sequence of EtDH (cnMDH) containing another dehydrogenase in the PDB database was aligned. As a result, a site using NAD + alone as a coenzyme and a site coexisting with NAD + / NADP + were confirmed, and EtDH: D46G containing the concurrent site was selected. In addition, BDH: S199A is a conventional method [DJ Maddock, et al., Protein Eng. Des. Sel., 2015, 28, 251]. As a result, the thermal stability of the mutant was confirmed at 30, 37 and 45 degrees. As a result, the EtDH: D46G mutant was cultured at 30 degrees for 6 hours when acetaldehyde was used as a substrate having coenzyme NAD + and NADP + And the activity levels were maintained at 86.53% and 86.67%, respectively. Also, it was confirmed that the activity level of BDH: S199A mutant was maintained at 80.81% for 6 hours at 30 ° C. when NADPH coenzyme and acetone were used as a substrate.
<6-2> 조효소에 따른 에탄올에서 2,3-부탄디올 생성 확인<6-2> Confirmation of the formation of 2,3-butanediol in ethanol by coenzyme
조효소에 따른 에탄올에서 2,3-부탄디올 생성을 확인하기 위하여, EtDH: D46G, FLS:L482S, BDH:S199A 및 NOX 효소를 1 mM NAD+ 및/또는 1 mM NADP+ 존재 하에 100 mM 에탄올과 반응시킨 후, 2,3-부탄디올 생성 농도(mM)를 확인하였다. 그 결과, NAD+를 조효소로 사용될 때 2,3-부탄디올은 검출되지 않음을 확인하였다. 반면, NADP+ 존재 시 에탄올로부터 18.20 mM의 2,3-부탄디올이 생성됨을 확인하였다. 따라서, BDH가 아세토인을 2,3-부탄디올로 전환시키는 NADPH 의존 효소인 바, 2,3-부탄디올 생성에는 NADP+ 조효소가 필요함을 확인하였다. To confirm the formation of 2,3-butanediol in ethanol according to the coenzyme, EtDH: D46G, FLS: L482S, BDH: S199A and NOX enzyme were reacted with 100 mM ethanol in the presence of 1 mM NAD + and / or 1 mM NADP + , And the concentration (mM) of 2,3-butanediol was confirmed. As a result, it was confirmed that 2,3-butanediol was not detected when NAD + was used as a coenzyme. On the other hand, it was confirmed that 18.20 mM 2,3-butanediol was produced from ethanol in the presence of NADP + . Therefore, it is confirmed that BDH is an NADPH-dependent enzyme that converts acetone to 2,3-butanediol, and that NADP + coenzyme is required for the production of 2,3-butanediol.
<6-3> 기질 및 농도에 따른 2,3-부탄디올 생성 확인 <6-3> Confirmation of 2,3-butanediol formation by substrate and concentration
기질로서 에탄올을 이용하고 이의 농도에 따른 2,3-부탄디올 생성을 비교하기 위하여, 50 mM HEPES 버퍼(pH 8.0), 1 mM NAD+, 1 mM NADP+, 0.88 UmL-1 EtDH:D46G, 0.05 UmL-1 FLS:L482S, 0.98 UmL-1 NOX, 5.11 UmL-1 BDH:S199A, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20% DMSO 및 100-500 mM 에탄올을 포함하는 0.5-mL 반응 혼합액으로 무-세포 다중 효소 촉매 반응을 수행하였다. 그 후, 0-6시간, 30도의 조건을 두어 2,3-부탄디올 생성을 확인하였다. 그 결과, 조효소인 NAD+ 및 1 mM NADP+를 동시에 사용 시, 반응 5 시간에서 이론적 수율의 88.28 %의 2,3-부탄디올이 생성됨을 확인하였다. 따라서, NADH 축적을 저해하고, 반응 과정 전반에 걸쳐 저농도의 아세토 인이 반응액에 축적되어 BDH:S199A에 의하여 아세토인에서 2,3- 부탄디올로의 높은 촉매 효율이 나타남을 확인하였다. 그 결과, 상이한 기질 농도를 사용 시, 농도 의존적으로 2,3-부탄디올이 생성되며, 에탄올 농도가 500 mM 일 때 최대 2,3-부탄디올 농도가 127.3 mM임을 확인하였다. 1 mM NADP + , 0.88 UmL- 1 EtDH: D46G, 0.05 & lt ; RTI ID = 0.0 & gt ; um & lt ; / RTI & gt ; -1 FLS: L482S, 0.98 UmL -1 NOX, 5.11 UmL -1 BDH: S199A, 0.1 mM TPP, 1 mM Mg 2+ , 1 mM DTT, 20% DMSO and 100-500 mM ethanol Cell-free multi-enzyme catalytic reaction was performed. Thereafter, the formation of 2,3-butanediol was confirmed under the conditions of 0-6 hours and 30 degrees. As a result, it was confirmed that when the coenzyme NAD + and 1 mM NADP + were used simultaneously, 2,3-butanediol of 88.28% of the theoretical yield was produced at the reaction time of 5 hours. Therefore, it was confirmed that BDH: S199A showed high catalytic efficiency from acetone to 2,3-butanediol by inhibiting NADH accumulation and accumulating low concentration of acetone in the reaction solution throughout the reaction process. As a result, when different substrate concentrations were used, 2,3-butanediol was produced in a concentration-dependent manner, and it was confirmed that the maximum 2,3-butanediol concentration was 127.3 mM when the ethanol concentration was 500 mM.
<실시예 7> 에탄올에서 2-부탄올의 생성 확인Example 7 Confirmation of Production of 2-Butanol in Ethanol
<7-1> 반응 조건에 따른 meso-2,3-부탄디올의 부탄온으로의 전환 확인<7-1> Confirmation of conversion of meso-2,3-butanediol to butanone by reaction conditions
에탄올에서 2-부탄올을 생성하기 위하여, 반응 조건에 따른 meso-2,3-부탄디올의 부탄온으로의 전환을 확인하였다. 구체적으로, 0.2mg ml-1 DDH를 효소로 이용하고, 0 또는 1mM 조효소 B12, 0 또는 100mM ATP, 0 또는 1mM Mg2+ 및 DDH의 재활성 인자 0 또는 0.2mg ml-1 dhaR에 의한 meso-2,3-부탄디올의 부탄온으로의 전환에 대한 효과를 확인하였다. 표 6에 나타낸 바와 같이, 조효소 B12 및 ATP가 촉매 반응에 필요하다는 것을 확인하였으며 dhaR 및 Mg2+는 meso-2,3-부탄디올로부터 부탄올 생성을 효율적으로 증진시킴을 확인하였다. 따라서, DDH 효소는 (2R, 3R)- 부탄디올과 (2S, 3S)- 부탄디올은 DDH의 기질이 아니나, meso-2,3- 부탄디올 만을 부탄온으로 촉매함을 확인하였다.In order to produce 2-butanol in ethanol, conversion of meso-2,3-butanediol to butanone was confirmed by reaction conditions. Specifically, 0.2 mg ml -1 DDH was used as the enzyme, and the meso- and lipid contents were measured by 0 or 1 mM coenzyme B 12, 0 or 100 mM ATP, 0 or 1 mM Mg 2+ and the reactivity factor 0 or 0.2 mg ml -1 dhaR of DDH, The effect of 2,3-butanediol on the conversion to butanone was confirmed. As shown in Table 6, it was confirmed that coenzyme B12 and ATP were required for the catalytic reaction, and dhaR and Mg 2+ were confirmed to effectively enhance butanol production from meso-2,3-butanediol. Therefore, it was confirmed that DDH enzyme catalyzes only (2R, 3R) -butanediol and (2S, 3S) -butanediol as a substrate of DDH but only meso-2,3-butanediol as butanone.
<7-2> BDH:S199A 변이체에 따른 2-부탄올 생성 확인BDH:S199A 변이체에 따른 2-부탄온에서 거울상 이성질체(enantiomers) 2-부탄올의 생성을 확인하기 위하여, 50 mM HEPES 버퍼(pH 8.0), 40 g L-1 유도된 E. coli/pET28a-BDH:S199A 세포(wet cell weight), 25 mM 부탄온을 포함하여 전체-세포 생촉매 시스템을 수행하였고, 이를 GC분석하였다. 그 결과, BDH:S199A 변이체를 효소로 이용 시, R- 및 S-2-부탄올은 1.23:1의 비율로 생성됨을 확인하였다. <7-2> Confirmation of production of 2-butanol by BDH: S199A mutant BDH: In order to confirm the formation of enantiomers 2-butanol in 2-butanone according to S199A variant, 50 mM HEPES buffer (pH 8.0) , A 40 g L -1 induced E. coli / pET28a-BDH: S199A cell (wet cell weight), and 25 mM butanone was performed and analyzed by GC. As a result, it was confirmed that when the BDH: S199A mutant was used as an enzyme, R- and S-2-butanol were produced at a ratio of 1.23: 1.
<7-3> 아세토인과 2,3-부탄디올의 형태 확인<7-3> Identification of acetone and 2,3-butanediol
에탄올에서 2-부탄올을 생성하기 위하여, DDH 효소는 (2R, 3R)- 부탄디올과 (2S, 3S)- 부탄디올이 아닌 meso-2,3-부탄디올 만을 부탄온으로 촉매시키므로, 본 발명의 인공 합성 경로에서 생성되는 아세토인 및 2,3-부탄디올의 형태를 확인하였다. 구체적으로, 키랄 칼럼이 장착된 GC 시스템을 사용하여 아세토인과 2,3-부탄디올의 형태를 확인하였다. 그 결과, 기질로서 아세트알데히드를, FLS:L482S 변이 효소를 이용 시, 아세토인은 (3S)-아세토인 및 (3R)-아세토인이고, 이로부터 meso-2,3-부탄디올(65 %) 및 (2R, 3R)-부탄디올(35 %)이 생성됨을 확인하였다. In order to produce 2-butanol in ethanol, the DDH enzyme catalyzes only butanoyl meso-2,3-butanediol, which is not (2R, 3R) -butanediol and (2S, 3S) -butanediol, And the form of acetone and 2,3-butanediol produced in the reaction was confirmed. Specifically, the form of acetone and 2,3-butanediol was confirmed using a GC system equipped with a chiral column. As a result, acetaldehyde was used as a substrate, (3S) -acetone and (3R) -acetone acetone were used when the FLS: L482S mutant enzyme was used, from which meso-2,3-butanediol (65%) and (2R, 3R) -butanediol (35%) was produced.
<7-4> 에탄올에서 2-부탄올으로의 속도 조절 단계(Rate limiting step) 확인 및 DDH의 변이체의 선발<7-4> Identification of the rate limiting step from ethanol to 2-butanol and selection of mutants of DDH
에탄올에서 2-부탄올으로의 속도 조절 단계를 확인하기 위하여, 100 mM 을 기질로 하고, EtDH:D46G, FLS:L482S, BDH:S199A, 재활성 인자인 dhaR를 포함하는 DDH 및 NOX를 효소로 이용하였다. 구체적으로, 상기 BDH:S199A 또는 재활성 인자인 dhaR를 포함하는 DDH를 1/10의 농도로 줄이고 이를 제외한 나머지 효소는 일정한 농도를 유지하여 3회 반복하고 2-부탄올의 농도(mM)를 확인하였다. 또한, DDH 및 이의 변이체인 S302A, Q337A, F375I, S302A/Q337A, S302A/F375I, Q337A/F375I 및 S302A/Q337A/F375I을 이용한 부탄온의 생성 농도(mM)를 확인하였다. 그 결과, 재활성 인자인 dhaR를 포함하는 DDH의 농도가 낮아졌을 때, 2-부탄올의 생성 농도 또한 79.16%의 현저한 감소가 확인되어, dhaR를 포함하는 DDH는 2-부탄올 생성에 중요한 효소임을 확인하였다. 또한, DDH의 변이 중 Q337A/F375I가 다른 변이체와 비교하여 가장 높은 부탄온 생성 농도가 나타남을 확인하였다. 또한, 상기 DDH의 변이 중 DDH:Q337A/F375I의 단백질 발현을 SDS-PAGE를 이용하여 확인한 결과, DDH의 재활성 인자인 dhaR 포함하여 발현함을 확인하였다. In order to confirm the step of controlling the rate of ethanol to 2-butanol, DDH and NOX including EtDH: D46G, FLS: L482S, BDH: S199A and dhaR as a reactivity factor were used as enzymes with 100 mM as a substrate . Specifically, the concentration of DDH containing BDH: S199A or dhaR as a reactivity factor was reduced to a concentration of 1/10, and the remaining enzyme was maintained at a constant concentration and repeated three times to determine the concentration (mM) of 2-butanol . In addition, the concentration (mM) of butanone formation was confirmed using DDH and its mutants S302A, Q337A, F375I, S302A / Q337A, S302A / F375I, Q337A / F375I and S302A / Q337A / F375I. As a result, when the concentration of DDH containing dhaR, which is a reactivity factor, was lowered, the production concentration of 2-butanol was also remarkably decreased by 79.16%, indicating that DDH containing dhaR is an enzyme important for 2-butanol production Respectively. In addition, Q337A / F375I showed the highest concentration of butanone in DDH compared to other variants. In addition, protein expression of DDH: Q337A / F375I among the above DDH mutations was confirmed by SDS-PAGE, and it was confirmed that it expresses dhaR as a regulatory factor of DDH.
<7-5> 야생형 DDH와 이의 변이 DDH:Q337A/F375I의 구조 및 활성 비교<7-5> Comparison of wild type DDH and mutant DDH: Q337A / F375I structure and activity
야생형 DDH와 이의 변이 DDH:Q337A/F375I의 구조 및 활성을 비교하기 위하여, 100 ns에 대한 분자 역학 시뮬레이션 분석을 사용하여 야생형 DDH와 이의 변이 DDH:Q337A/F375I의 구조적 변화와 효소 활성간의 상관 관계를 확인하였다. 그 결과, 기질인 2,3-부탄디올과 분자 상호 작용은 야생형 DDH에서 활성 부위 잔기 E171이며, 기질과 2.6Å로 결합함을 확인하였다. 그 결과, 기질인 2,3-부탄디올과 분자 상호 작용은 변이 DDH:Q337A/F375I에서 활성 부위 잔기 E171이며, 기질과 1.9Å로 결합함을 확인하였다. 그 결과, 100 ns 분자 역학 분석 결과, 야생형 DDH에서 활성 부위 잔기 E171는 기질과 수소 결합 및 water bridges함을 확인하였고, 변이 DDH:Q337A/F375I에서 활성 부위 잔기 E171는 주로 수소 결합함을 확인하였다. 따라서, 야생형 DDH보다 변이 DDH:Q337A/F375I가 기질과 더 강하게 결합하여 촉매 활성이 뛰어남을 확인하였다. To compare the structure and activity of wild-type DDH and its mutants DDH: Q337A / F375I, we used a molecular dynamics simulation analysis of 100 ns to show the correlation between the structural changes of wild-type DDH and its mutant DDH: Q337A / F375I and enzyme activity Respectively. As a result, the molecular interaction with the substrate 2,3-butanediol was found to be the active site residue E171 in the wild-type DDH and bind to the substrate at 2.6 Å. As a result, the molecular interaction with the substrate, 2,3-butanediol, was found to be the active site residue E171 in the mutant DDH: Q337A / F375I and bound to the substrate at 1.9 Å. As a result, 100 ns molecular dynamics analysis confirmed that the active site residue E171 in the wild type DDH contained substrate and hydrogen bonds and water bridges. In the mutant DDH: Q337A / F375I, the active site residue E171 was mainly hydrogen bonded. Therefore, it was confirmed that the mutant DDH: Q337A / F375I binds more strongly to the substrate than the wild type DDH, and thus the catalytic activity is excellent.
<7-6> 본 발명의 인공 합성 경로를 통한 에탄올에서 2-부탄올의 생성 확인<7-6> Confirmation of formation of 2-butanol in ethanol through the artificial synthetic route of the present invention
본 발명의 인공 합성 경로를 통한 에탄올에서 최종적으로 2-부탄올의 생성을 확인하기 위하여, 50 mM HEPES 버퍼(pH 8.0), 1 mM NAD+, 1 mM NADP+, 0.88 U mL-1 EtDH:D46G, 0.05 U mL-1 FLS:L482S, 0.98 U mL-1 NOX, 5.11 U mL-1 BDH:S199A, 0.01 U mL-1 DDH:Q337A/F375I, 0.2 mg mL-1 dhaR, 0.1 mM TPP, 1 mM Mg2+, 1 mM DTT, 20% DMSO, 1 mM 조효소 B12, 100 mM ATP 및 0-100 mM 에탄올을 포함하는 0.5-mL 반응 혼합물을 30분, 6 시간 처리하는 것으로 무-세포 다중 촉매 시스템을 이용하여 에탄올에서 아세트알데히드,아세토인, 2,3-부탄디올, 2-부탄온 및 2-부탄올의 생성 농도(mM)를 확인하였다. 그 결과, 이론적 수율 27.24 %의 13.62 mM 2-부탄올이 생성됨을 확인하였다. 또한, 높은 수준의 2,3-부탄디올(최대 32.55 mM)이 반응 액에 축적되는 반면, 부탄온은 반응 과정 중에 검출되지 않음을 확인하였다. 1 mM NAD + , 1 mM NADP + , 0.88 U mL- 1 EtDH: D46G, pH 7.4, to confirm the formation of 2-butanol finally in ethanol via the artificial synthetic route of the present invention. 0.05 U mL -1 FLS: L482S, 0.98 U mL -1 NOX, 5.11 U mL -1 BDH: S199A, 0.01 U mL -1 DDH: Q337A / F375I, 0.2 mg mL -1 dhaR, 0.1 mM TPP, 1 mM Mg A cell-free, multi-catalytic system was prepared by treating the 0.5-mL reaction mixture containing 2+ , 1 mM DTT, 20% DMSO, 1 mM coenzyme B 12 , 100 mM ATP and 0-100 mM ethanol for 30 min, The concentration (mM) of acetaldehyde, acetone, 2,3-butanediol, 2-butanone and 2-butanol in ethanol was determined. As a result, it was confirmed that 13.62 mM 2-butanol having a theoretical yield of 27.24% was produced. It was also confirmed that a high level of 2,3-butanediol (up to 32.55 mM) was accumulated in the reaction solution, whereas butanone was not detected during the reaction.
<실시예 8> 본 발명의 인공 합성 경로에서의 최적 효소 및 이의 고유 활성도Example 8 Optimal Enzymes and Their Intrinsic Activity in the Artificial Synthetic Pathway of the Present Invention
본 발명의 인공 합성 경로에서의 최적 효소와 이의 활성에 영향을 미치는 각 기질 및 조효소를 확인하였다. 또한, 각 효소의 고유 활성도(Specific activity)를 확인하였다. 표 7에 나타낸 바와 같이, EtDH 또는 EtDH:D46G 변이 효소는 기질로서 에탄올, 조효소로서 NAD+을 이용 시, 고유 활성도가 각 10.64±0.15, 8.81±0.13 U mg-1임을 확인하였다. 또한, FLS:L482S 변이 효소는 기질로 아세트알데히드, 조효소로 TPP를 이용 시, 0.26±0.01 U mg-1임을 관찰하였다. 또한, BDH:S199A 변이 효소는 기질로 아세토인 또는 부탄온을 이용하고 조효소로 NADPH 이용 시 각 51.13 ± 3.74, 57.55 ± 2.65 U mg-1임을 관찰하였다. dhaR를 포함하는 DDH:Q337A/F375I 변이 효소는 meso-2,3-Butanediol을 기질로, B12 조효소일 때, 0.05 ± 0.01 mg-1이고, NOX 조효소는 O2 기질, NADH 조효소일 때 9.83 ± 0.48 mg-1의 고유 활성도가 나타남을 확인하였다. The optimum enzyme in the artificial synthetic pathway of the present invention and each substrate and coenzyme affecting its activity were identified. In addition, specific activity of each enzyme was confirmed. As shown in Table 7, it was confirmed that EtDH or EtDH: D46G mutant enzyme had an intrinsic activity of 10.64 ± 0.15 and 8.81 ± 0.13 U mg -1 , respectively, when using ethanol as a substrate and NAD + as a coenzyme. In addition, it was observed that the FLS: L482S mutant enzyme was 0.26 ± 0.01 U mg -1 when acetaldehyde was used as a substrate and TPP was used as a coenzyme. In addition, BDH: S199A mutant enzymes were found to be 51.13 ± 3.74 and 57.55 ± 2.65 U mg -1 , respectively, when acetone or butanone was used as a substrate and NADPH was used as a coenzyme. The DDH: Q337A / F375I mutant enzyme containing dhaR was 0.05 ± 0.01 mg -1 when meso-2,3-butanediol was a substrate and B 12 coenzyme, and the NOX coenzyme was 9.83 ± 0.12 when it was O 2 substrate and NADH coenzyme. 0.48 mg -1 was observed.
<실시예 9> 아세토인 또는 2,3-부탄디올 생산을 위한 효소의 재순환성 확인(Recyclability of cascade reactions)Example 9 Recyclability of the enzyme for the production of acetone or 2,3-butanediol (Recyclability of cascade reactions)
아세토인 또는 2,3-부탄디올 생산을 위한 효소의 재순환성을 확인하기 위하여, 상기 실시예 1-8의 방법에 따라, 아세토인 생산을 위한 각 효소 또는 2,3-부탄디올 생산을 위한 각 효소를 활성 규소 산화물 입자와 혼합하고 이를 12시간, 4도 조건으로 배양하였다. 고정화하기 전에, 규소 산화물 입자(4830HT; Nanostructured & Amorphous Materials, Houston, TX, USA)를 글루타르알데히드(glutaraldehyde) (Sigma)를 포함하는 나노입자를 처리하여 활성화 시키고, 1차-10차 반응 순환하여 고정화 수율(%) 및 고정화 효율(%)을 확인하였다. 그 결과, 고정화된 효소를 이용 시, 효과적으로 에탄올에서 아세토인을 생성함을 확인하였다. 또한, 아세토인 생성을 위한 고정화된 효소를 1차 내지 10차 반응 순환한 결과, 10차 재사용 후에도 초기 1차 아세토인 생성 농도와 비교하여 94 %의 효율이 나타남을 확인하였다. 또한, 고정화된 효소를 이용 시 에탄올에서 2,3-부탄디올을 효과적으로 생성함을 확인하였다. 또한, 2,3-부탄디올 생성을 위한 고정화된 효소를 1차 내지 10차 반응 순환한 결과, 10차 재사용 후에도 초기 1차 2,3-부탄디올 생성 농도와 비교하여 73%의 효율이 나타남을 확인하였다.To confirm the recycling of the enzyme for the production of acetone or 2,3-butanediol, each enzyme for the production of acetone or each enzyme for the production of 2,3-butanediol was prepared according to the method of Example 1-8 The active silicon oxide particles were mixed and cultured for 12 hours at 4 ° C. Before immobilization, silicon oxide particles (4830HT; Nanostructured & Amorphous Materials, Houston, Tex., USA) were activated by treating nanoparticles containing glutaraldehyde (Sigma) The immobilization yield (%) and immobilization efficiency (%) were confirmed. As a result, it was confirmed that when immobilized enzyme was used, acetone was effectively produced in ethanol. As a result of the first to tenth reaction cycles of the immobilized enzyme for the production of acetone, it was confirmed that even after the 10th reuse, 94% efficiency was obtained compared with the initial acetic acid production concentration. In addition, it was confirmed that 2,3-butanediol was effectively produced in ethanol when the immobilized enzyme was used. As a result of the first to tenth reaction cycles of the immobilized enzyme for the production of 2,3-butanediol, it was confirmed that the efficiency was 73% as compared with the initial primary 2,3-butanediol concentration even after the 10th reuse .
Claims (14)
- 서열번호 8로 표시되는 FLS(formolase) 아미노산에서 482번째 루신이 세린, 아르기닌 및 글루탐산으로 치환된 변이로 구성된 군에서 선택된 1종 이상의 변이를 포함하는 FLS 변이 아미노산. A FLS mutant amino acid comprising at least one mutation selected from the group consisting of mutations in which the 482nd leucine is substituted with serine, arginine and glutamic acid in FLS (formolase) amino acid represented by SEQ ID NO: 8.
- 제1항에 있어서, 상기 FLS 아미노산에서 482번째 루신이 세린으로 치환된 변이는(FLS:L482S) 서열번호 10의 아미노산으로 표시되고, 482번째 루신이 아르기닌으로 치환된 변이는(FLS:L482R) 서열번호 11의 아미노산으로 표시되며, 482번째 루신이 글루탐산으로 치환된 변이는(FLS:L482E) 서열번호 12의 아미노산으로 표시되는 것을 특징으로 하는, FLS 변이 아미노산.10. The method according to claim 1, wherein the mutation in which the 482nd leucine in the FLS amino acid is substituted with serine is represented by (FLS: L482S) the amino acid in SEQ ID NO: 10 and the mutation in which the 482nd leucine is substituted with arginine is (FLS: L482R) Wherein the mutation in which the 482nd leucine is replaced with glutamic acid is represented by the amino acid of SEQ ID NO: 12 and (FLS: L482E) is represented by the amino acid of SEQ ID NO: 12.
- 제1항에 있어서, 상기 FLS 변이 아미노산은 396번째 트레오닌의 변이, 446번째 트레오닌의 변이, 473번째 메티오닌의 변이, 477번째 세린의 변이 및 499번째 루신의 변이로 구성된 군에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는, FLS 변이 아미노산.The FLS mutant amino acid according to claim 1, wherein the FLS mutant amino acid further comprises at least one selected from the group consisting of mutation at position 396 th threonine, mutation at position 446 threonine, mutation at position 473 th methionine, mutation at position 477 serine, and mutation at position 499 leucine / RTI > amino acid residues.
- 제1항의 FLS 변이 아미노산을 코딩하는 유전자. A gene encoding the FLS mutant amino acid of claim 1.
- NOX(NADH oxidase) 유전자, EtDH(ethanol dehydrogenase) 유전자, EtDH의 변이 유전자, FLS(formolase) 유전자, 제2항의 FLS 변이 아미노산을 코딩하는 유전자, BDH(2,3-butanediol dehydrogenase) 유전자, BDH의 변이 유전자, DDH(diol dehydratase) 유전자 및 DDH의 변이 유전자로 구성된 군에서 선택된 1종 이상의 유전자를 포함하는 재조합 벡터. A mutant gene of EtDH, a FLS (formolase) gene, a gene coding for the FLS mutant amino acid of claim 2, a 2,3-butanediol dehydrogenase (BDH) gene, a mutation of BDH, an NADH oxidase gene, an EtDH (ethanol dehydrogenase) A recombinant vector comprising at least one gene selected from the group consisting of a gene, a DDH (diol dehydratase) gene and a mutant gene of DDH.
- 제5항에 있어서, 상기 EtDH의 변이체는 서열번호 4의 아미노산 서열로 표시되는 EtDH의 46번째 아스파르트산이 글리신으로 치환되고(EtDH:D46G), 서열번호 5의 염기서열 및 서열번호 6의 아미노산 서열로 표시되는 것을 특징으로 하는, 재조합 벡터.6. The method according to claim 5, wherein the mutant of EtDH comprises a nucleotide sequence of SEQ ID NO: 5 and an amino acid sequence of SEQ ID NO: 6, wherein the 46th aspartic acid of EtDH represented by the amino acid sequence of SEQ ID NO: 4 is substituted by glycine Lt; RTI ID = 0.0 > 1, < / RTI >
- 제5항에 있어서, 상기 BDH의 변이체는 서열번호 14의 아미노산 서열로 표시되는 BDH의 199번째 세린이 알라닌으로 치환되고(BDH:S199A), 서열번호 15의 염기서열 및 서열번호 16의 아미노산으로 표시되는 것을 특징으로 하는, 재조합 벡터.[Claim 15] The method according to claim 5, wherein the variant of BDH is selected from the group consisting of the nucleotide sequence of SEQ ID NO: 15 and the amino acid sequence of SEQ ID NO: 16, wherein the 199th serine of BDH represented by the amino acid sequence of SEQ ID NO: 14 is substituted by alanine (BDH: S199A) ≪ / RTI >
- 제5항에 있어서, 상기 DDH의 변이체는 서열번호 18의 DDH 아미노산의 302번째 세린이 알라닌으로 치환된 변이체(DDH:S302A); 337번째 글루타민이 알라닌으로 치환된 변이체(DDH:Q337A); 375번째 페닐알라닌이 이소루신으로 치환된 변이체(DDH:F375I); 으로 이루어진 군에서 선택된 1종 이상의 단일 또는 다중 변이체인 것을 특징으로 하는, 재조합 벡터. [6] The mutant of DDH according to claim 5, wherein the mutant DDH (S302A) in which the 302nd serine of the DDH amino acid sequence of SEQ ID NO: 18 is substituted with alanine; 337th mutant in which glutamine is replaced with alanine (DDH: Q337A); 375th mutant (DDH: F375I) in which phenylalanine is substituted with isoleucine; ≪ / RTI > wherein said recombinant vector is at least one single or multiple variant selected from the group consisting of:
- 제8항에 있어서, 상기 다중 변이체는 서열번호 18의 DDH 아미노산의 337번째 글루타민이 알라닌 및 375번째 페닐알라닌이 이소루신으로 치환된 변이체(DDH:Q337A/F375I); 302번째 세린이 알라닌 및 37번째 글루타민이 알라닌으로 치환된 변이체(S302A/F375I); 또는 302번째 세린이 알라닌으로, 337번째 글루타민이 알라닌으로, 375번째 페닐알라닌이 이소루신으로 치환된 변이체(S302A/Q337A/F375I)인 것을 특징으로 하는, 재조합 벡터. 9. The mutant according to claim 8, wherein the mutant is a mutant (DDH: Q337A / F375I) wherein the 337th glutamine of the DDH amino acid of SEQ ID NO: 18 is alanine and the 375th phenylalanine is replaced by isoleucine; Mutants in which the 302nd serine alanine and 37th glutamine are substituted with alanine (S302A / F375I); Or a mutant (S302A / Q337A / F375I) wherein the 302st serine is alanine, the 337th glutamine is alanine, and the 375th phenylalanine is isoleucine.
- 제5항에 있어서, 상기 DDH 변이체는 DDH의 재활성 인자(reactivating factor)인 dhaR를 발현하는 것을 특징으로 하는, 재조합 벡터. 6. The recombinant vector according to claim 5, wherein the DDH mutant expresses dhaR, a reactivating factor of DDH.
- 제5항의 재조합 벡터가 도입된 형질전환 미생물. A transformed microorganism into which the recombinant vector of claim 5 has been introduced.
- 제11항의 형질전환 미생물에서 생산된 단백질을 정제하고 반응시키는 단계;를 포함하는 아세토인, 부탄디올 및 부탄올으로 이루어진 군에서 선택된 1종 이상의 생산 방법.11. A method for producing at least one selected from the group consisting of acetone, butanediol, and butanol, which comprises purifying and reacting a protein produced in the transforming microorganism of claim 11.
- 제11항의 형질전환 미생물에서 생산된 단백질을 나노입자에 고정하고 반응시키는 단계;를 포함하는 아세토인, 부탄디올 및 부탄올으로 이루어진 군에서 선택된 1종 이상의 생산 방법. A method for producing at least one selected from the group consisting of acetone, butanediol, and butanol, comprising: immobilizing and reacting a protein produced in the transgenic microorganism of claim 11 with nanoparticles.
- 제13항에 있어서, 상기 나노입자는 산화 규소(silicon oxide)를 부착하고 글루타알데히드(glutaraldehyde)와 반응시키는 것을 특징으로 하는 방법. 14. The method of claim 13, wherein the nanoparticles are attached to silicon oxide and reacted with glutaraldehyde.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/956,064 US11441142B2 (en) | 2017-12-20 | 2018-11-23 | FLS variant having increased activity |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170176269 | 2017-12-20 | ||
KR10-2017-0176269 | 2017-12-20 | ||
KR1020180007006A KR102013059B1 (en) | 2018-01-19 | 2018-01-19 | A method for producing butanol from ethanol |
KR10-2018-0007006 | 2018-01-19 | ||
KR1020180006982A KR102013058B1 (en) | 2018-01-19 | 2018-01-19 | A method for producing butandiol from ethanol |
KR10-2018-0006982 | 2018-01-19 | ||
KR1020180020623A KR102093546B1 (en) | 2017-12-20 | 2018-02-21 | A method for producing acetoin from ethanol |
KR10-2018-0020623 | 2018-02-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2019124782A2 true WO2019124782A2 (en) | 2019-06-27 |
WO2019124782A3 WO2019124782A3 (en) | 2019-08-15 |
Family
ID=66993722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/014538 WO2019124782A2 (en) | 2017-12-20 | 2018-11-23 | Method for producing acetoin, butanediol, or butanol from ethanol |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019124782A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115838714A (en) * | 2022-12-07 | 2023-03-24 | 福建农林大学 | Acetaldehyde lyase, acetaldehyde lyase fusion protein, and preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104017758A (en) * | 2014-06-05 | 2014-09-03 | 江南大学 | Method for producing acetoin through high-efficiency fermentation by appropriately expressing novel bacillus subtilis NADH oxidizing enzyme |
RU2686614C2 (en) * | 2014-07-25 | 2019-04-29 | Альдери | Acetoin production method |
KR101819189B1 (en) * | 2015-12-03 | 2018-01-16 | 서울대학교산학협력단 | Genetically engineered yeast cell producing acetoin and method of producing acetoin using the same |
CN107129959B (en) * | 2017-06-28 | 2020-12-18 | 广西科学院 | Construction method and application of genetic engineering strain for producing (R)-acetoin |
CN107475281B (en) * | 2017-09-06 | 2020-10-13 | 福建农林大学 | Bioconversion methanol metabolic pathway |
-
2018
- 2018-11-23 WO PCT/KR2018/014538 patent/WO2019124782A2/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115838714A (en) * | 2022-12-07 | 2023-03-24 | 福建农林大学 | Acetaldehyde lyase, acetaldehyde lyase fusion protein, and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2019124782A3 (en) | 2019-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kostichka et al. | Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1 | |
Lang et al. | Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites | |
JP4886775B2 (en) | Production method of glycolic acid by coenzyme regeneration | |
Dudek et al. | Extending the substrate scope of a Baeyer–Villiger monooxygenase by multiple-site mutagenesis | |
Patel et al. | Mutation of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase at Trp-110 affects stereoselectivity of aromatic ketone reduction | |
JP4954985B2 (en) | Production method of glycolic acid by enhancing coenzyme synthesis | |
CN109825538B (en) | A kind of synthetic method of chiral 2-amino-1-butanol | |
TWI824995B (en) | Arginine supplementation to improve efficiency in gas fermenting acetogens | |
CN110551771B (en) | Synthesis method of chiral 3-amino-1-butanol | |
Hummel et al. | Towards a large‐scale asymmetric reduction process with isolated enzymes: Expression of an (S)‐alcohol dehydrogenase in E. coli and studies on the synthetic potential of this biocatalyst | |
CN112852895B (en) | Method for synthesizing (R) -3-amino-1-butanol by double-enzyme cascade catalysis | |
US11441142B2 (en) | FLS variant having increased activity | |
CN107653259B (en) | A kind of method of external enzyme reaction production D- (-) -3-hydroxy-2-butanone | |
WO2019124782A2 (en) | Method for producing acetoin, butanediol, or butanol from ethanol | |
CN114752574A (en) | Enzyme catalysis system, catalase, preparation method and application | |
KR102013058B1 (en) | A method for producing butandiol from ethanol | |
KR20190074917A (en) | A method for producing acetoin from ethanol | |
CN117660392A (en) | Application of a coenzyme self-sufficient chassis cell in biosynthesis | |
CN114760980A (en) | Peroxidase activity against 10-acetyl-3, 7-dihydroxyphenoxazines | |
EP3922728B1 (en) | Method for producing (1r,3r)-3-(trifluoromethyl)cyclohexan-1-ol and intermediate thereof | |
Nanduri et al. | Purification of a stereospecific 2-ketoreductase from Gluconobacter oxydans | |
CN115975964A (en) | A highly active keto-pantoate lactone reductase mutant and its coding gene and application | |
CN108949647A (en) | A kind of engineering bacteria and its application in production l-tyrosine | |
Park et al. | The analysis and application of a recombinant monooxygenase library as a biocatalyst for the Baeyer-Villiger reaction | |
CN111254170B (en) | Method for preparing (S) -1,2,3, 4-tetrahydroisoquinoline-3-formic acid by multienzyme coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18890034 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18890034 Country of ref document: EP Kind code of ref document: A2 |