WO2019124388A1 - Analysis device and analysis method - Google Patents
Analysis device and analysis method Download PDFInfo
- Publication number
- WO2019124388A1 WO2019124388A1 PCT/JP2018/046604 JP2018046604W WO2019124388A1 WO 2019124388 A1 WO2019124388 A1 WO 2019124388A1 JP 2018046604 W JP2018046604 W JP 2018046604W WO 2019124388 A1 WO2019124388 A1 WO 2019124388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- overvoltage
- charge transfer
- transfer coefficient
- alternating current
- sample electrode
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 102
- 238000012546 transfer Methods 0.000 claims abstract description 144
- 230000004044 response Effects 0.000 claims abstract description 42
- 238000004364 calculation method Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 52
- 238000005259 measurement Methods 0.000 claims description 41
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 230000007423 decrease Effects 0.000 claims description 18
- 230000006870 function Effects 0.000 description 39
- 239000000463 material Substances 0.000 description 29
- 238000006276 transfer reaction Methods 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 23
- 239000007789 gas Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 239000003792 electrolyte Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 239000008151 electrolyte solution Substances 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000005275 alloying Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000011245 gel electrolyte Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 3
- 229910052752 metalloid Inorganic materials 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical class N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000002986 genetic algorithm method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011809 glassy carbon fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present technology relates to an analysis device and an analysis method for analyzing a charge transfer reaction generated between a sample electrode and ion species present on the surface of the sample electrode.
- An electrode releases and transfers charge to cause a redox reaction (charge transfer reaction) of ionic species present on the surface of the electrode.
- a redox reaction charge transfer reaction
- the behavior during the charge transfer reaction is represented by the Butler-Volmer equation.
- the Butler-Volmer equation contains two parameters that represent the charge transfer characteristics of the electrode.
- the first parameter is the exchange current density that represents the reaction barrier of the charge transfer reaction
- the second parameter is the charge transfer coefficient that represents the symmetry of the charge transfer reaction. Since exchange current density and charge transfer coefficient are important to know the characteristics of the electrode, they are widely used in the research and development field of the electrode and the material used for the electrode, manufacturing control field, and the like.
- the exchange current density and the charge transfer coefficient may be calculated by linearly approximating the relationship between the current and the overvoltage (see, for example, Non-Patent Document 2). This method is called Stern-Geary method.
- the present technology has been made in view of such problems, and an object thereof is to provide an analysis apparatus and an analysis method capable of analyzing the charge transfer characteristics of various sample electrodes.
- An analysis apparatus includes a current supply unit that supplies an alternating current to a sample electrode, and a sample electrode based on an overvoltage response generated in the sample electrode in response to the supply of the alternating current by the current supply unit. And an operation unit for calculating the exchange current density and the charge transfer coefficient.
- An analysis method supplies an alternating current to a sample electrode, and based on an overvoltage response generated at the sample electrode in response to the supply of the alternating current, the exchange current density and charge transfer coefficient for the sample electrode Is calculated.
- an alternating current is supplied to the sample electrode, and the exchange current related to the sample electrode is generated based on the overvoltage response generated in the sample electrode in response to the supply of the alternating current. Since the density and charge transfer coefficient are calculated, the charge transfer characteristics of various electrode materials can be analyzed.
- effect described here is not necessarily limited, and may be any effect described in the present technology.
- Analysis device 1-1 Overall configuration 1-2. Configuration of sample including sample electrode 1-3. Forming material of sample electrode Theory of operation 3. Method of setting frequency of alternating current 4. Operation (analysis method) 5. Action and effect 6. Modified example
- the analysis device described here is a device that analyzes the charge transfer characteristic, which is an important characteristic regarding the sample electrode 121, by analyzing the sample electrode 121 (see FIG. 1) contained in the sample 12 described later. .
- this analyzer calculates the exchange current density i 0 (A / m 2 ) and the charge transfer coefficient ⁇ , which are indices representing the charge transfer characteristics of the sample electrode 121.
- the analysis apparatus uses the new arithmetic expression derived based on the new arithmetic theory described later to convert the exchange current density i 0 and the charge transfer coefficient ⁇ based on the overvoltage response of the sample electrode 121. In the calculation, the influence of the non-linear component of the over-voltage response is taken into consideration.
- the type of the sample 12 is not particularly limited as long as the sample electrode 121 to be analyzed is included.
- the sample 12 is, for example, a battery and a capacitor.
- the type of cell is not particularly limited, and examples thereof include primary cells, secondary cells, fuel cells, and dye-sensitized solar cells.
- FIG. 1 shows a block configuration of the analysis device.
- This analyzer includes, for example, as shown in FIG. 1, a sample 12 including a sample electrode 121, a current supply unit 14 for supplying an alternating current I to the sample 12 (sample electrode 121), and a current supply unit 14
- the analysis device includes, for example, the control unit 11, the function generation unit 13, the overvoltage measurement unit 15, and the overvoltage amplitude measurement unit 16 together with the sample 12, the current supply unit 14 and the calculation unit 17 described above. , A waveform display unit 18, an analysis display unit 19, and a storage unit 20.
- the control unit 11 controls the overall operation of the analysis device.
- the control unit 11 includes, for example, a central processing unit (CPU) and various memories.
- the control unit 11 includes, for example, a personal computer and the like, and incorporates a control program for executing an operation (analysis method) of an analysis device described later.
- the sample 12 is an element that causes a charge transfer reaction to proceed between the sample electrode 121 and the ion species present on the surface of the sample electrode 121.
- the sample 12 causes the above-described charge transfer reaction to proceed when the alternating current I is supplied from the current supply unit 14 to the sample electrode 121.
- the number of samples 12 is not particularly limited. The detailed configuration of the sample 12 including the sample electrode 121 will be described later (see FIG. 2).
- the function generation unit 13 sets the frequency f (Hz) of the alternating current I supplied from the current supply unit 14 to the sample electrode 121, and sends an alternating current signal corresponding to the frequency f of the alternating current I to the current supply unit 14. Send.
- the function generator 13 includes, for example, a lock-in amplifier.
- the frequency f of the alternating current I is not particularly limited, but is preferably a frequency f within a specific range (a specific frequency range Rf described later). As described later, since the influence of the resistance component caused by the diffusion resistance is suppressed, the analysis accuracy of the sample electrode 121, that is, the calculation accuracy of the exchange current density i 0 and the charge transfer coefficient ⁇ is improved.
- the function generating unit 13 examines the resistance characteristic of the sample electrode 121 using an electrochemical impedance method (linear alternating current impedance method) in advance. To identify the specific frequency Rf.
- an electrochemical impedance method linear alternating current impedance method
- the function generation unit 13 measures, for example, the impedance Z of the sample electrode 121 while changing the frequency f.
- the function generation unit 13 measures, for example, the impedance Z of the sample electrode 121 while changing the frequency f.
- a range in which the impedance Z becomes substantially constant (specific frequency range Rf)
- the frequency f of the alternating current I is set so as to be a value in.
- the function generation unit 13 determines the specific frequency
- the frequency f of the alternating current I is set so as to be a value within the range Rf.
- the value of the frequency f set by the function generation unit 13 is not particularly limited as long as it is an arbitrary value within the range of the specific frequency range Rf described above.
- the function generation unit 13 sets the frequency f of the alternating current I as described above.
- the corresponding AC signal is transmitted to the current supply unit 14.
- the current supply unit 14 supplies an alternating current I to the sample electrode 121.
- the current supply unit 14 includes, for example, a current control device such as a galvanostat.
- the reason why the current supply unit 14 supplies the alternating current I to the sample electrode 121 is that the composition of the sample electrode 121 is unlikely to change at the time of analysis using the analyzer (at the time of progress of charge transfer reaction).
- an alloying material such as silicon which forms an alloy at the time of progress of charge transfer reaction is also used.
- the sample electrode 121 contains an alloying material
- the composition of the sample electrode 121 changes in the process of progress of the charge transfer reaction, so that the charge transfer characteristics of the sample electrode 121 in the original composition can not be analyzed.
- the alloying material described here is an example of a material whose composition changes in the course of the charge transfer reaction.
- the sample electrode 121 contains an alloying material
- the alternating current I when an alternating current I is supplied to the sample electrode 121, the alternating current for exactly N cycles (N is a natural number) After I is supplied, the time integral value of the alternating current I becomes zero. That is, the number of moles required for the oxidation reaction and the number of moles needed for the reduction reaction are equal to each other.
- the composition of the sample electrode 121 does not change in the process of progress of the charge transfer reaction, so that the charge transfer characteristic of the sample electrode 121 in the original composition can be analyzed.
- the frequency f of the alternating current I supplied to the sample electrode 121 by the current supply unit 14 is not particularly limited. However, as described above, the value of the frequency f of the alternating current I is set by the function generation unit 13 It is preferable that the value is within the specific frequency range Rf. This is because the analysis accuracy of the sample electrode 121 is improved.
- the overvoltage measuring unit 15 measures the overvoltage E generated in the sample electrode 121.
- the overvoltage measurement unit 15 includes, for example, a galvanostat.
- the overvoltage measuring unit 15 transmits the measurement result of the overvoltage E to the overvoltage amplitude measuring unit 16.
- the overvoltage amplitude measurement unit 16 measures overvoltage amplitudes of two or more frequency components of the overvoltage E measured by the overvoltage measurement unit 15. More specifically, the overvoltage amplitude measurement unit 16 extracts a non-linear component of 2 or more n-th order (n is an integer of 2 or more) as the overvoltage amplitude of the above-mentioned 2 or more frequency components. The overvoltage amplitude V n (V) of the two or more n-th nonlinear components is measured.
- the overvoltage amplitude measurement unit 16 includes, for example, a signal extraction device such as a lock-in amplifier. Note that two or more lock-in amplifiers may be used in combination to measure the overvoltage amplitude V n of the two or more n-th nonlinear components.
- the type of the overvoltage amplitude V n of the n-th non-linear component measured by the overvoltage amplitude measurement unit 16 is not particularly limited.
- the overvoltage amplitude measurement section 16 as an overvoltage amplitude V n of 2 or more n-order nonlinear components described above, one or more overvoltage overvoltage amplitude V n and one or more even-order non-linear components of odd-order nonlinear component
- the amplitude V n is measured. This is because the analysis accuracy of the sample electrode 121 is improved.
- the odd-order non-linear components are, for example, third-order non-linear components, fifth-order non-linear components, seventh-order non-linear components, and ninth-order non-linear components.
- the even-order nonlinear components include, for example, second-order nonlinear components, fourth-order nonlinear components, sixth-order nonlinear components, and eighth-order nonlinear components.
- the overvoltage amplitude measurement unit 16 measure the overvoltage amplitude V n of the lower order two or more nonlinear components, more specifically, the overvoltage amplitude V 2 of the second order nonlinear component. and third order is preferable to measure the overvoltage amplitude V 3 of the nonlinear components. This is because it is more difficult for the low-order non-linear component to include the high-order non-linear component, so that the analysis accuracy of the sample electrode 121 is further improved.
- the overvoltage amplitude measurement unit 16 measures, for example, the overvoltage amplitude V n of the 2 or more n-th nonlinear component
- the measurement result of the overvoltage amplitude V n of the 2 or more n-th nonlinear component is Send.
- Arithmetic unit 17 calculates exchange current density i 0 and charge transfer coefficient ⁇ for sample electrode 121 based on the overvoltage response generated at sample electrode 121 in response to the supply of alternating current I by current supply unit 14.
- the operation unit 17 determines Calculate density i 0 and charge transfer coefficient ⁇ .
- the arithmetic unit 17 for example, secondary
- the exchange current density i 0 and the charge transfer coefficient ⁇ are calculated based on the overvoltage amplitude V 2 of the non-linear component and the overvoltage amplitude V 3 of the non-linear component of the third order.
- the arithmetic unit 17 When the overvoltage amplitude measurement unit 16 is over-voltage amplitude V 3 of the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component is measured, the arithmetic unit 17, for example, using Equation (1) below Charge transfer coefficient ⁇ is calculated. Further, the calculation unit 17 calculates the exchange current density i 0 using, for example, the following equation (2) or (3) based on the calculation value of the charge transfer coefficient ⁇ calculated in advance.
- ⁇ is the charge transfer coefficient
- V 2 is the overvoltage amplitude (V) of the second-order nonlinear component
- V 3 is the overvoltage amplitude (V) of the third-order nonlinear component
- R is the gas constant (J / [K ⁇ mol])
- T is the absolute temperature (K)
- n is the number of reaction electrons
- F is the Faraday constant (C / mol).
- I 0 is the exchange current density (A / m 2 )
- ⁇ is the charge transfer coefficient
- I is the alternating current (A)
- V 2 is the overvoltage amplitude (V) of the second-order nonlinear component
- R is the gas constant (J / [K ⁇ mol])
- T is the absolute temperature (K)
- n is the number of reaction electrons
- F is the Faraday constant (C / mol).
- I 0 is the exchange current density (A / m 2 )
- ⁇ is the charge transfer coefficient
- I is the alternating current (A)
- V 3 is the overvoltage amplitude (V) of the third nonlinear component
- R is the gas constant (J / [K ⁇ mol])
- T is the absolute temperature (K)
- n is the number of reaction electrons
- F is the Faraday constant (C / mol).
- the charge transfer coefficient ⁇ calculated here is not the overvoltage amplitude V 1 of the linear component but the overvoltage amplitude V n of the n-th nonlinear component of 2 or more (the second nonlinear component It is calculated by using the over-voltage amplitude V 3) of the overvoltage amplitude V 2 and third-order nonlinear component of.
- charge transfer coefficient ⁇ is because it is independent of the overvoltage amplitude V 1 of the linear component, overvoltage amplitude V 1 of the the linear component are not dependent parameter of the charge transfer coefficient ⁇ . Therefore, the charge transfer coefficient ⁇ can not be calculated based on the overvoltage amplitude V 1 of the linear component.
- the charge transfer coefficient ⁇ depends on the overvoltage amplitude V n of the n-th nonlinear component
- the n-th nonlinear The component overvoltage amplitude V n is a dependent parameter of the charge transfer coefficient ⁇ . Therefore, the charge transfer coefficient ⁇ can be calculated based on the overvoltage amplitude V n of the n-th non-linear component.
- the exchange current density i 0 computed here uses the computed value of the charge transfer coefficient ⁇ computed using the above equation (1) Is calculated.
- equation (1) all parameters (gas constant R, absolute temperature T, reaction electrons other than charge transfer coefficient ⁇ , overvoltage amplitude V 2 of second- order nonlinear component and overvoltage amplitude V 3 of third-order nonlinear component
- the number n and the Faraday constant F are constants (known values). Therefore, calculation unit 17, for example, based on the measured value of the overvoltage amplitude V 3 of the actual measurement value and the third-order nonlinear component of the overvoltage amplitude V 2 of the second-order nonlinear component obtained from the overvoltage amplitude measurement section 16, the formula The charge transfer coefficient ⁇ can be calculated using (1).
- the waveform display unit 18 displays the waveform of the overvoltage E measured by the overvoltage measurement unit 15.
- the waveform display unit 18 includes, for example, an oscilloscope.
- the analysis display unit 19 is a display device on which an operation screen for analysis, an analysis result, and the like are displayed.
- the operation screen for analysis is, for example, an input screen of various parameters.
- the analysis result is, for example, the calculation result of the exchange current density i 0 and the charge transfer coefficient ⁇ .
- the storage unit 20 stores information necessary for analysis, and includes, for example, a read only memory (ROM) and a random access memory (RAM).
- the type of information stored in the storage unit 20 is not particularly limited. Specifically, the information includes various constants such as, for example, the gas constant R, the absolute temperature T, the number of reaction electrons n, and the Faraday constant F described above.
- the information may also include a conversion table (see Table 1) and the like described later.
- the information stored in the storage unit 20 can be changed at any time, for example.
- FIG. 2 schematically shows the cross-sectional configuration of the sample 12 including the sample electrode 121. As shown in FIG.
- the sample 12 includes the sample electrode (working electrode) 121, the counter electrode 122, and the electrolyte 123 described above.
- An alternating current I is supplied to the sample 12 by the current supply unit 14 via the sample electrode 121 and the counter electrode 122.
- FIG. 2 shows a configuration in which the electrolyte 123 is sandwiched between the sample electrode 121 and the counter electrode 122
- the configuration is merely an example. Therefore, the configuration of the sample 12 can be arbitrarily changed according to, for example, the configuration of the electrolyte 123 and the like.
- the sample electrode 121 is an electrode whose charge transfer characteristic is analyzed using an analyzer. Details of the forming material of the sample electrode 121 will be described later.
- the counter electrode 122 is an electrode for advancing a charge transfer reaction with the sample electrode 121, and moves charges (ions) between the sample electrode 121 and the counter electrode 122 when the charge transfer reaction progresses.
- the counter electrode 122 includes, for example, any one or two or more materials capable of transferring and releasing charges, and details of the material may be, for example, the formation of a sample electrode 121 described later. The details are the same as for the material.
- the electrolyte 123 is a medium for moving charges (ions) between the sample electrode 121 and the counter electrode 122.
- the configuration of the electrolyte 123 is not particularly limited as long as the charge can be moved between the sample electrode 121 and the counter electrode 122.
- the electrolyte 123 may be, for example, a liquid electrolyte (electrolyte solution) or a gel electrolyte (gel electrolyte).
- the electrolytic solution contains, for example, a solvent, an electrolyte salt, and the like, and in the electrolytic solution, for example, the electrolytic salt is dissolved or dispersed in the solvent.
- the electrolytic solution may be impregnated in, for example, a separator interposed between the sample electrode 121 and the counter electrode 123.
- the gel electrolyte contains, for example, a polymer compound and the like together with the above-described electrolytic solution (solvent and electrolyte salt), and in the gel electrolyte, the electrolytic solution is held, for example, by the polymer compound.
- the sample 12 may further include, for example, one or more of other components such as a reference electrode (not shown).
- the type of the forming material of the sample electrode 121 is not particularly limited as long as it is any one type or two or more types of materials capable of releasing and transferring electric charge on the surface of the sample electrode 121.
- the forming material of the sample electrode 121 is, for example, a carbon material and a metal-based material.
- the carbon material is, for example, graphitizable carbon, non-graphitizable carbon, and graphite. More specifically, the carbon material is, for example, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, carbon blacks and the like.
- the metal-based material is a material containing one or more of metal elements and metalloid elements as constituent elements.
- the metal-based material may be a single material, an alloy, a compound, a mixture of two or more thereof, or a material including two or more phases thereof.
- the metal-based material may be, for example, an insertion material (or an intercalation material), a solid solution, a eutectic (eutectic mixture), or an intermetallic compound, or two of them. It may be a coexistence of the above.
- the alloy may be, for example, a material composed of two or more types of metal elements, or a material including one or more types of metal elements and one or more types of metalloid elements.
- the alloy may contain, for example, one or more types of nonmetallic elements.
- the insertion material, the solid solution, the intermetallic compound, and the like described here are, as with the above-described alloying material, representative examples of materials whose composition is likely to change in the course of the charge transfer reaction.
- the type of metal element and metalloid element is not particularly limited.
- J current density (A / m 2 )
- j 0 exchange current density (A / m 2 )
- ⁇ a charge transfer coefficient
- ⁇ an overvoltage (V)
- n the number of reaction electrons
- F is a Faraday constant (C / Mol)
- R is the gas constant (J / [K ⁇ mol])
- T is the absolute temperature (K).
- the total current density is represented by the sum of the current density of the anode and the current density of the cathode.
- the current density of the anode is expressed by an exp function, it has large non-linearity.
- the current density of the cathode is represented by the exp function, and thus has large non-linearity.
- the sum of the current density of the anode and the current density of the cathode also has large non-linearity.
- the Butler-Volmer equation is expressed as the following equation (7).
- the Butler-Volmer equation is an equation solved with respect to the current density, that is, an equation expressing what kind of current flows when an overvoltage is applied to the electrode.
- the Butler-Volmer equation is an equation that is caused by an overvoltage and results in a current.
- the overvoltage ⁇ is expressed as the following equation (10).
- the first four terms ( ⁇ (1) , ⁇ (2) , ⁇ (3) and ⁇ (4) ) of ⁇ (i) (i is an integer of 1 or more) are It is expressed by the equations (11) to (14).
- Tn gradually decreases as n increases. That is, in F1 to F4, the foot base of Tn is wider at F2 than F1, the foot base of Tn is wider at F3 than F2, and the foot base of Tn is wider at F4 than F3. This is because higher order harmonic components are more susceptible to higher order terms.
- the voltage and current supplied to the sample electrode 121 are not necessarily as large as possible, but rather, it is desirable that the voltage and current be as small as possible to the extent that the signal is not affected by noise.
- the amplitude of the nth harmonic component related to the overvoltage ⁇ ( ⁇ (n) rms jrms ⁇ 0 ) when the current density amplitude (rms value) jrms is extrapolated to zero is V n (n is 1 It is an integer greater than or equal to.).
- the amplitude of the opposite phase is negative.
- the response of the linear component (voltage response, which is the voltage response) related to the overvoltage ⁇ includes the passive component (the electrical resistance R, the capacitance C and the inductance L) that the electrode inherently has. Therefore, in this case, attention is focused on the response of the second-order nonlinear component not including the passive element component described above and the response of the third-order nonlinear component. Then, when equations (19) and (20) are solved with respect to exchange current density i 0 , positive real solutions are expressed as equations (2) and (3) described above.
- the procedure for specifically calculating the charge transfer coefficient ⁇ is as follows. First, based on the over-voltage amplitude V 3 of the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component, to calculate the ⁇ defined by the following formula (22). This ⁇ is the left side of equation (1).
- the value represented by the equation (1) that is, the value of ⁇ is a real number or an imaginary number depending on whether the overvoltage amplitude V 2 of the second-order nonlinear component is positive or negative.
- ⁇ is a real number or an imaginary number depending on whether the overvoltage amplitude V 2 of the second-order nonlinear component is positive or negative.
- the frequency f of the alternating current I is set by, for example, the function generator 13 as described above.
- FIG. 3 shows an image in which the resistance characteristics (Bode plot) of the sample electrode 121 measured using the electrochemical impedance method (linear AC impedance method) are separated into respective resistance components.
- FIG. 3 shows the correlation between the absolute value of impedance
- of the impedance of the sample electrode 121 When the absolute value
- of the impedance mainly includes four types of resistance components R1 to R4 described below.
- the resistance component R1 is, for example, a component resulting from a diffusion resistance in which charges (ions) present on the surface of the sample electrode 121 diffuse in a direction toward the electrolyte 123.
- the resistance component R1 disappears in the regions L2 to L4, for example, as the frequency f increases, the resistance component R1 gradually decreases in the region L1.
- the resistance component R2 is, for example, a component resulting from diffusion resistance in which charges (ions) present on the surface of the sample electrode 121 are diffused in a direction toward the inside of the sample electrode 121.
- the resistance component R2 disappears in the regions L2 to L4 by decreasing gradually in the region L1 as the frequency f increases, for example, similarly to the above-described resistance component R1.
- the resistance component R3 is, for example, a charge transfer resistance component resulting from a charge transfer reaction generated between the sample electrode 121 and a charge (ion) present on the surface of the sample electrode 121.
- the resistance component R3 disappears in the region L4 by, for example, becoming substantially constant in the regions L1 and L2 when the frequency f increases, and then rapidly decreasing in the region L3.
- the resistance component R4 is, for example, a component resulting from a solution resistance, an electrode coating (SEI: Solid Electrolyte Interphase) resistance, and an electronic resistance.
- the solution resistance is the resistance of the electrolyte itself when the electrolyte 123 contains the electrolyte.
- the SEI resistance is the resistance of the film formed on the surface of the sample electrode 121 or the like due to the decomposition reaction of the electrolyte 123 or the like during the charge transfer reaction.
- the electron resistance is a resistance when electrons move in the electrolyte 123.
- the resistance component R4 is, for example, substantially constant in the regions L1 to L4 without depending on the frequency f.
- of the impedance changes as described below as the frequency f increases.
- the impedance Z gradually decreases while including the resistance components R1 to R4.
- of the impedance becomes substantially constant while including the resistance components R3 and R4.
- of the impedance continues to rapidly decrease while including the resistance components R3 and R4.
- the resistance component R4 sharply decreases while the resistance component R4 is substantially constant.
- the impedance Z becomes substantially constant while including only the resistance component R4.
- the frequency range Rf is a range between the frequencies f1 and f2. If the frequency f set by the function generation unit 13 is within the range of the specific frequency range Rf, the resistance components R1 and R2 caused by the diffusion of electric charges hardly affect the analysis accuracy, and the analysis accuracy is improved. It is from.
- the value of the frequency f set by the function generation unit 13 is not particularly limited as long as it is a value within the specific frequency range Rf as described above.
- the overvoltage amplitude V n of the nth nonlinear component is measured between the frequencies f 1 and f 2
- the imaginary part of the overvoltage amplitude V n of the nth nonlinear component is close to zero. It is preferable that it is a value. Since the overvoltage amplitude V n of the nth nonlinear component of the charge transfer resistance is theoretically zero, the fact that the imaginary part described above is close to zero means that the resistance component at that frequency f is almost only the charge transfer resistance It is because it is thought.
- FIG. 4 illustrates the flow of an analysis method using an analysis apparatus.
- the analyzer analyzes the charge transfer characteristics (exchange current density i 0 and charge transfer coefficient ⁇ ) of the sample electrode 121 according to the procedure shown in FIG. 4, for example.
- the function generation unit 13 sets the frequency f of the alternating current I supplied to the sample 12 (sample electrode 121) in the later process (FIG. 4: step S1).
- the function generation unit 13 checks the change behavior (FIG. 3) of the absolute value
- the current supply unit 14 supplies an alternating current I of frequency f to the sample 12 via the sample electrode (working electrode) 121 and the counter electrode 122 based on the frequency f set by the function generation unit 13 (see FIG. 4: Step S2).
- the charge transfer reaction of ion species present on the surface of the sample electrode 121 proceeds. More specifically, in response to the supply of alternating current I, the oxidation reaction and reduction reaction of ion species present on the surface of sample electrode 121 are repeated.
- the overvoltage measuring unit 15 measures the overvoltage E generated in the sample electrode 121 in response to the supply of the alternating current I (FIG. 4: step S3).
- the overvoltage amplitude measuring unit 16 determines the overvoltage amplitude V of the second-order nonlinear component as the overvoltage amplitude of two or more frequency components (the overvoltage amplitude V n of the n-th nonlinear component of two or more) based on the overvoltage E. overvoltage amplitude V 3 of 2 and third-order nonlinear component measuring ( Figure 4: step S4, S5).
- the waveform of the overvoltage E measured by the overvoltage amplitude measurement unit 16 is displayed on the waveform display unit 18.
- non-linear alternating current impedance method is a method of measuring the overvoltage amplitude V n of 2 or more n-th nonlinear components (the overvoltage amplitude V 2 of the second nonlinear component and the overvoltage amplitude V 3 of the third nonlinear component) It is called.
- the operating unit 17, based on the measured value of the overvoltage amplitude V 3 of the actual measurement value and the third-order nonlinear component of the overvoltage amplitude V 2 of the second-order nonlinear component, charge transfer coefficient using equation (1) alpha Are calculated (FIG. 4: step S6).
- the calculation unit 17 reads a series of constants (gas constant R, absolute temperature T, number of reaction electrons n, and Faraday constant F) stored in the storage unit 20.
- the calculation unit 17 converts the value of ⁇ into the value of the charge transfer coefficient ⁇ by reading the conversion table (Table 1) stored in the storage unit 20 as necessary.
- the calculation result of the charge transfer coefficient ⁇ is displayed on the analysis display unit 19.
- the calculation unit 17 based on the AC current I, to the measured value of the overvoltage amplitude V 2 of the second-order nonlinear component, the measured value of the overvoltage amplitude V 3 of the third-order non-linear component, equation (2) or it calculates the exchange current density i 0 using equation (3) (Fig. 4: step S7).
- the calculation unit 17 reads a series of constants (gas constant R, absolute temperature T, number of reaction electrons n, and Faraday constant F) stored in the storage unit 20.
- the calculation result of the exchange current density i 0 is displayed on the analysis display unit 19.
- the alternating current I is supplied to the sample electrode 121, and the exchange current density of the sample electrode 121 is changed based on the overvoltage response generated in the sample electrode 121 in response to the supply of the alternating current I. i 0 and charge transfer coefficient ⁇ are calculated. Therefore, the charge transfer characteristics of various electrode materials can be analyzed for the reasons described below.
- an apparatus which analyzes the charge transfer characteristic of the sample electrode 121 using the Tafel equation can be mentioned.
- the composition of the sample electrode 121 changes in the progress of the charge transfer reaction, so the charge transfer of the sample electrode 121 in the original composition Characteristics can not be analyzed. Therefore, the sample electrode 121 capable of analyzing the charge transfer characteristic is limited to only the sample electrode 121 whose composition does not change in the process of the charge transfer reaction, and thus the charge transfer characteristic of various sample electrodes 121 can not be analyzed.
- the composition of the sample electrode 121 does not change in the process of charge transfer reaction.
- the charge transfer characteristics of the electrode 121 can be analyzed. Therefore, the sample electrode 121 capable of analyzing the charge transfer characteristic is not limited to only the sample electrode 121 whose composition does not change in the process of the charge transfer reaction, so that the charge transfer characteristic of various sample electrodes 121 can be analyzed.
- the overvoltage amplitude of two or more frequency components (the overvoltage amplitude V n of the n-order non-linear component of 2 or more) is measured based on the overvoltage response (overvoltage E). If the exchange current density i 0 and the charge transfer coefficient ⁇ are calculated based on the overvoltage amplitude V n of the n-th nonlinear component described above, the influence of the overvoltage amplitude V n of the two or more n-th nonlinear components is taken into consideration. Thus, the exchange current density i 0 and the charge transfer coefficient ⁇ are calculated. Therefore, since analysis accuracy is further improved, higher effects can be obtained.
- an analyzer if it is possible to perform the above-described analysis, that is, if it is possible to calculate the exchange current density i 0 and the charge transfer coefficient ⁇ in which the influence of the overvoltage amplitude V n of the nth nonlinear component is taken into account, an analyzer
- the configuration of can be arbitrarily changed. Similar effects can be obtained also in the case described below.
- the analysis apparatus is provided with the function generation unit 13, the current supply unit 14, the overvoltage measurement unit 15, and the overvoltage amplitude measurement unit 16, one of them may serve as two or more roles. Specifically, for example, if a galvanostat is used, the galvanostat can also serve as each of the current supply unit 14 and the overvoltage measurement unit 15. Also, for example, if a lock-in amplifier is used, the lock-in amplifier can serve as each of the functions of the function generation unit 13 and the overvoltage amplitude measurement unit 16.
- control unit 11 may also play a role of one or more of the operation unit 17 and the like.
- the control unit 11 since the control unit 11 includes a central processing unit or the like, the control unit 11 can also play a role of one or more of the calculation unit 17 and the like.
- the frequency f of the alternating current I is made to be an appropriate value in advance without setting the frequency f of the alternating current I by the function generating unit 13.
- the setting operation of the frequency of the alternating current I by the function generation unit 13 may be omitted.
- an appropriate value (a value within the specific frequency range Rf) of the frequency f of the alternating current I may be stored in the storage unit 20 in advance, and the user of the analysis device An appropriate value of the frequency f of the alternating current I may be input.
- a sample including the sample electrode was prepared.
- a reference electrode silver / silver chloride electrode
- a counter electrode platinum wire
- An electrochemical measurement system including a diameter of 0.5 mm ⁇ length of 3 cm and an electrolytic solution an aqueous solution containing iron (II) sulfate, iron (III) sulfate, magnesium sulfate and sulfuric acid was used.
- concentration of iron (II) sulfate 0.05 mol / dm 3
- concentration of iron (III) sulfate 0.05 mol / dm 3
- concentration of magnesium sulfate 1 mol / dm 3
- the concentration of sulfuric acid was 1 mol / dm 3 .
- water-saturated nitrogen gas was sufficiently blown into the electrolyte during preparation so that the iron (II) sulfate was not oxidized due to oxygen in the air.
- FIG. 5 shows a Cole-Cole plot (horizontal axis: real part ReZ ( ⁇ cm 2 ) of impedance, vertical axis: imaginary part ImZ ( ⁇ cm 2 ) of impedance), and FIG. 6 shows Bode plot (horizontal axis) : Frequency f (Hz), vertical axis: absolute value of impedance
- the start value of the frequency f 100 kHz
- the end value of the frequency f 100 mHz
- the current amplitude 0.5 mA.
- the Cole-Cole plot depicts the shape of a typical Randles-type equivalent circuit.
- the high frequency region in which the semicircular arc P1 is obtained is considered to be a region belonging to the charge transfer resistance, and the low frequency region in which the straight line P2 is obtained is considered to be a region belonging to the diffusion resistance.
- of the impedance changes while including the regions L1 to L4 according to the change of the frequency f.
- a frequency range in which the frequency f is smaller than approximately 1 Hz corresponds to the range L1
- a frequency range in which the frequency f is approximately 1 Hz to 100 Hz corresponds to the range L2
- the frequency f is greater than approximately 100 Hz.
- the large frequency range corresponds to the range L3, L4.
- the resistance components generated in the frequency region (regions L3 and L4) in which the frequency f is larger than about 100 Hz are mainly electronic resistance and charge transfer resistance.
- the resistance components that occur in the frequency region (region L1) where the frequency f is smaller than about 1 Hz are mainly electronic resistance, charge transfer characteristics and diffusion resistance.
- the resistive components occurring in the frequency range (range L2) where the frequency f is about 1 Hz to 100 Hz are mainly electronic resistance and charge transfer resistance.
- the charge transfer coefficient ⁇ is calculated by the analysis method of the present technology using the above-described calculation theory (equations (1) to (3)).
- the exchange current density i 0 was calculated using the value.
- the charge transfer coefficient ⁇ and the exchange current density i 0 fluctuated according to the frequency f of the alternating current I supplied to the charge transfer device.
- the start potential is 410 mV
- the end potential is 550 mV
- the measurement interval of potential is 10 mV.
- the current after holding for 200 seconds at each potential is measured, and the current is log i
- the exchange current density i 0 and the charge transfer coefficient ⁇ were calculated based on the intercept and the slope by plotting the relationship between / (1 ⁇ e f ⁇ )] and ⁇ ⁇ ⁇ .
- the equilibrium potential was 485 mV
- the charge transfer coefficient ⁇ was 0.54
- the exchange current density i 0 was 0.24 mA / cm 2 .
- the charge transfer coefficient ⁇ calculated by the analysis method of the comparative example is 0.54 as described above
- the charge transfer coefficient ⁇ calculated by the analysis method of the present technology is an alternating current
- the frequency f of I was about 0.50 in the vicinity of about 10 Hz within the range of the specific frequency range Rf. Therefore, the value of the charge transfer coefficient ⁇ calculated by the analysis method of the present technology has a value substantially close to the value of the charge transfer coefficient ⁇ calculated by the analysis method of the comparative example.
- the alternating current is supplied to the sample electrode, and the charge transfer characteristic (exchange current density i 0 and the charge transfer coefficient for the sample electrode) based on the overvoltage response generated in the sample electrode in response to the supply of the alternating current.
- the charge transfer characteristic exchange current density i 0 and the charge transfer coefficient for the sample electrode
- the present technology can also be configured as follows.
- a current supply unit for supplying an alternating current to the sample electrode;
- An operation unit configured to calculate an exchange current density and a charge transfer coefficient of the sample electrode based on an overvoltage response generated at the sample electrode in response to the supply of the alternating current by the current supply unit.
- An overvoltage measuring unit that measures an overvoltage generated at the sample electrode according to the supply of the alternating current by the current supply unit;
- An overvoltage amplitude measurement unit that measures overvoltage amplitudes of two or more frequency components of the overvoltage measured by the overvoltage measurement unit;
- the calculation unit calculates the exchange current density and the charge transfer coefficient based on the overvoltage amplitudes of the two or more frequency components measured by the overvoltage amplitude measurement unit.
- the overvoltage amplitude measurement unit measures an overvoltage amplitude of a second nonlinear component and an overvoltage amplitude of a third nonlinear component as the overvoltage amplitude of the two or more frequency components.
- the computing unit computes the charge transfer coefficient using the following equation (1), and then uses the following equation (2) or (3) based on the computed value of the charge transfer coefficient: Calculate the density, The analyzer described in (3) above.
- ( ⁇ is the charge transfer coefficient
- V 2 is the overvoltage amplitude (V) of the second-order nonlinear component
- V 3 is the overvoltage amplitude (V) of the third-order nonlinear component
- R is the gas constant (J / [K ⁇ mol])
- T is the absolute temperature (K)
- n is the number of reaction electrons
- F is the Faraday constant (C / mol).
- I 0 is the exchange current density (A / m 2 )
- ⁇ is the charge transfer coefficient
- I is the alternating current (A)
- V 2 is the overvoltage amplitude (V) of the second-order nonlinear component
- R is the gas constant (J / [K ⁇ mol])
- T is the absolute temperature (K
- the analyzer according to any one of (1) to (4) described above.
- (6) Supply alternating current to the sample electrode, The exchange current density and charge transfer coefficient for the sample electrode are calculated based on the overvoltage response generated at the sample electrode in response to the supply of the alternating current. analysis method.
- an overvoltage generated at the sample electrode in response to the supply of the alternating current is measured;
- the exchange current density and the charge transfer coefficient are calculated based on overvoltage amplitudes of the two or more frequency components, The analysis method described in (6) above.
- the overvoltage amplitude of the second-order nonlinear component and the overvoltage amplitude of the third-order nonlinear component are measured as the overvoltage amplitudes of the two or more frequency components.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
This analysis device is provided with: a current supply unit that supplies an alternating current to a sample electrode; and a calculation unit that calculates an exchange current density and a charge transfer coefficient, which relate to the sample electrode, on the basis of an overvoltage response generated at the sample electrode in accordance with the alternating current supply from the current supply unit.
Description
本技術は、試料電極とその試料電極の表面に存在するイオン種との間において発生する電荷移動反応を解析する解析装置および解析方法に関する。
The present technology relates to an analysis device and an analysis method for analyzing a charge transfer reaction generated between a sample electrode and ion species present on the surface of the sample electrode.
電極は、電荷を放出および授受することにより、その電極の表面に存在するイオン種の酸化還元反応(電荷移動反応)を引き起こす。この電荷移動反応時の挙動(電流と過電圧との関係)は、Butler-Volmer式により表される。
An electrode releases and transfers charge to cause a redox reaction (charge transfer reaction) of ionic species present on the surface of the electrode. The behavior during the charge transfer reaction (the relationship between the current and the overvoltage) is represented by the Butler-Volmer equation.
Butler-Volmer式には、電極の電荷移動特性を表す2つのパラメータが含まれている。1つ目のパラメータは、電荷移動反応の反応障壁を表す交換電流密度であると共に、2つ目のパラメータは、電荷移動反応の対称性を表す電荷移動係数である。交換電流密度および電荷移動係数は、電極の特性を知る上で重要であるため、電極およびその電極に用いられる材料の研究開発分野および製造管理分野などにおいて広く活用されている。
The Butler-Volmer equation contains two parameters that represent the charge transfer characteristics of the electrode. The first parameter is the exchange current density that represents the reaction barrier of the charge transfer reaction, and the second parameter is the charge transfer coefficient that represents the symmetry of the charge transfer reaction. Since exchange current density and charge transfer coefficient are important to know the characteristics of the electrode, they are widely used in the research and development field of the electrode and the material used for the electrode, manufacturing control field, and the like.
交換電流密度および電荷移動係数を求める方法としては、既にいくつかの方法が提案されている。
Several methods have already been proposed as methods for determining the exchange current density and charge transfer coefficient.
具体的には、物質輸送を十分に無視できる条件下において電流および過電圧を測定したのち、電流をiおよび過電圧をηとしてlog[i/(1-efη)]とηとの関係をプロットすることにより、切片および傾きに基づいて交換電流密度および電荷移動係数を算出している(例えば、非特許文献1参照。)。ただし、f=nF/RTであり、nは反応電子数、Fはファラデー定数、Rは気体定数、Tは絶対温度である。この方法は、Allen-Hickling法と呼ばれている。また、Butler-Volmer式が簡略化されたTafel式を利用して、log(i)とηとの関係をプロットすることにより、切片および傾きに基づいて交換電流密度および電荷移動係数を算出してもよい。
Specifically, after measuring the current and overpotential under conditions where material transport can be sufficiently ignored, the relationship between log [i / (1-e f η)] and η is plotted with the current as i and overpotential as η Thus, the exchange current density and the charge transfer coefficient are calculated based on the intercept and the slope (see, for example, Non-Patent Document 1). However, f = nF / RT, n is the number of reaction electrons, F is the Faraday constant, R is the gas constant, and T is the absolute temperature. This method is called the Allen-Hickling method. Also, by plotting the relationship between log (i) and η using the Tafel equation in which the Butler-Volmer equation is simplified, the exchange current density and charge transfer coefficient are calculated based on the intercept and the slope. It is also good.
また、電流と過電圧との関係を線形近似することにより、交換電流密度および電荷移動係数を算出してもよい(例えば、非特許文献2参照。)。この方法は、Stern-Geary法と呼ばれている。
Alternatively, the exchange current density and the charge transfer coefficient may be calculated by linearly approximating the relationship between the current and the overvoltage (see, for example, Non-Patent Document 2). This method is called Stern-Geary method.
この他、乱数探索法、遺伝的アルゴリズム法および逐次探索法などを用いて交換電流密度および電荷移動係数を算出することも提案されている(例えば、特許文献1参照。)。
Besides, it has also been proposed to calculate the exchange current density and the charge transfer coefficient using a random number search method, a genetic algorithm method, a sequential search method or the like (see, for example, Patent Document 1).
なお、電流と過電圧との関係を調べる方法としては、ポテンショスタットを用いて電位規制下または電圧規制下において電流および過電圧を測定する方法と、ガルバノスタットを用いて電流規制下において電流および過電圧を測定する方法とが知られている(例えば、特許文献2参照。)。両者の方法は、さらに、測定値が安定するまで定電位状態、定電圧状態または定電流状態を維持し続ける方法と、過度応答の解析を行うことにより定常値を予測する方法とに分類される。
In addition, as a method of examining the relationship between current and overvoltage, a method of measuring current and overvoltage under potential regulation or voltage regulation using a potentiostat, and current and overvoltage under current regulation using a galvanostat Methods are known (see, for example, Patent Document 2). Both methods are further classified into methods in which the constant potential state, constant voltage state or constant current state is maintained until the measured value is stabilized, and methods in which steady-state values are predicted by analysis of transient response. .
交換電流密度および電荷移動係数を求めるためにいくつかの方法が提案されているが、いずれの方法も電流と過電圧との関係を用いている。この場合には、電流と過電圧との関係を調べるために、その過電圧の測定値が安定するまで電流を流し続ける必要があると共に、過度応答の解析を行うことにより定常値を予想する場合においても相当の電流を流す必要がある。このため、電流を流すことに起因して組成が変化する電極を用いる場合には、過電圧の測定中において電極の組成が経時的に変化するため、交換電流密度および電荷移動係数を求めることができない。よって、組成が変化する電極を含む多様な電極に関して、交換電流密度および電荷移動係数を求めることが要望されている。
Several methods have been proposed to determine the exchange current density and charge transfer coefficient, but both methods use the relationship between current and overvoltage. In this case, in order to investigate the relationship between the current and the overvoltage, it is necessary to keep the current flowing until the measured value of the overvoltage stabilizes, and also in the case of predicting the steady-state value by analyzing the transient response. It is necessary to flow a considerable amount of current. For this reason, when using an electrode whose composition changes due to the flow of current, the composition of the electrode changes with time during measurement of overvoltage, so the exchange current density and charge transfer coefficient can not be determined. . Thus, there is a need to determine exchange current density and charge transfer coefficients for various electrodes, including electrodes of varying composition.
本技術はかかる問題点に鑑みてなされたもので、その目的は、多様な試料電極の電荷移動特性を解析することが可能な解析装置および解析方法を提供することにある。
The present technology has been made in view of such problems, and an object thereof is to provide an analysis apparatus and an analysis method capable of analyzing the charge transfer characteristics of various sample electrodes.
本技術の一実施形態の解析装置は、試料電極に交流電流を供給する電流供給部と、その電流供給部による交流電流の供給に応じて試料電極において発生した過電圧応答に基づいて、その試料電極に関する交換電流密度および電荷移動係数を演算する演算部とを備えたものである。
An analysis apparatus according to an embodiment of the present technology includes a current supply unit that supplies an alternating current to a sample electrode, and a sample electrode based on an overvoltage response generated in the sample electrode in response to the supply of the alternating current by the current supply unit. And an operation unit for calculating the exchange current density and the charge transfer coefficient.
本技術の一実施形態の解析方法は、試料電極に交流電流を供給し、その交流電流の供給に応じて試料電極において発生した過電圧応答に基づいて、その試料電極に関する交換電流密度および電荷移動係数を演算するものである。
An analysis method according to an embodiment of the present technology supplies an alternating current to a sample electrode, and based on an overvoltage response generated at the sample electrode in response to the supply of the alternating current, the exchange current density and charge transfer coefficient for the sample electrode Is calculated.
本技術の一実施形態の解析装置または解析方法によれば、試料電極に交流電流を供給し、その交流電流の供給に応じて試料電極において発生した過電圧応答に基づいて、その試料電極に関する交換電流密度および電荷移動係数を演算しているので、多様な電極材料の電荷移動特性を解析することができる。
According to the analysis device or the analysis method of one embodiment of the present technology, an alternating current is supplied to the sample electrode, and the exchange current related to the sample electrode is generated based on the overvoltage response generated in the sample electrode in response to the supply of the alternating current. Since the density and charge transfer coefficient are calculated, the charge transfer characteristics of various electrode materials can be analyzed.
なお、ここに記載された効果は、必ずしも限定されるわけではなく、本技術中に記載されたいずれの効果であってもよい。
In addition, the effect described here is not necessarily limited, and may be any effect described in the present technology.
以下、本技術の一実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.解析装置
1-1.全体構成
1-2.試料電極を含む試料の構成
1-3.試料電極の形成材料
2.演算理論
3.交流電流の周波数の設定方法
4.動作(解析方法)
5.作用および効果
6.変形例
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order to be described is as follows.
1. Analysis device 1-1. Overall configuration 1-2. Configuration of sample including sample electrode 1-3. Forming material of sample electrode Theory of operation 3. Method of setting frequency of alternating current 4. Operation (analysis method)
5. Action and effect 6. Modified example
1.解析装置
1-1.全体構成
1-2.試料電極を含む試料の構成
1-3.試料電極の形成材料
2.演算理論
3.交流電流の周波数の設定方法
4.動作(解析方法)
5.作用および効果
6.変形例
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order to be described is as follows.
1. Analysis device 1-1. Overall configuration 1-2. Configuration of sample including sample electrode 1-3. Forming material of sample electrode Theory of operation 3. Method of setting frequency of alternating current 4. Operation (analysis method)
5. Action and effect 6. Modified example
<1.解析装置>
まず、本技術の一実施形態の解析装置に関して説明する。 <1. Analyzer>
First, an analysis device according to an embodiment of the present technology will be described.
まず、本技術の一実施形態の解析装置に関して説明する。 <1. Analyzer>
First, an analysis device according to an embodiment of the present technology will be described.
ここで説明する解析装置は、後述する試料12に含まれている試料電極121(図1参照)を解析することにより、その試料電極121に関する重要な特性である電荷移動特性を解析する装置である。
The analysis device described here is a device that analyzes the charge transfer characteristic, which is an important characteristic regarding the sample electrode 121, by analyzing the sample electrode 121 (see FIG. 1) contained in the sample 12 described later. .
この解析装置は、特に、試料電極121の電荷移動特性を表す指標である交換電流密度i0 (A/m2 )および電荷移動係数αを演算する。この場合には、解析装置は、後述する新規の演算理論に基づいて導出された新規の演算式を用いることにより、試料電極121の過電圧応答に基づいて交換電流密度i0 および電荷移動係数αを演算する際に、その過電圧応答のうちの非線形成分の影響を加味する。
In particular, this analyzer calculates the exchange current density i 0 (A / m 2 ) and the charge transfer coefficient α, which are indices representing the charge transfer characteristics of the sample electrode 121. In this case, the analysis apparatus uses the new arithmetic expression derived based on the new arithmetic theory described later to convert the exchange current density i 0 and the charge transfer coefficient α based on the overvoltage response of the sample electrode 121. In the calculation, the influence of the non-linear component of the over-voltage response is taken into consideration.
なお、試料12の種類は、解析対象である試料電極121を含んでいれば、特に限定されない。具体的には、試料12は、例えば、電池およびキャパシタなどである。電池の種類は、特に限定されないが、例えば、一次電池、二次電池、燃料電池および色素増感太陽電池などである。
The type of the sample 12 is not particularly limited as long as the sample electrode 121 to be analyzed is included. Specifically, the sample 12 is, for example, a battery and a capacitor. The type of cell is not particularly limited, and examples thereof include primary cells, secondary cells, fuel cells, and dye-sensitized solar cells.
<1-1.全体構成>
最初に、解析装置の全体構成に関して説明する。図1は、解析装置のブロック構成を表している。 <1-1. Overall configuration>
First, the entire configuration of the analysis device will be described. FIG. 1 shows a block configuration of the analysis device.
最初に、解析装置の全体構成に関して説明する。図1は、解析装置のブロック構成を表している。 <1-1. Overall configuration>
First, the entire configuration of the analysis device will be described. FIG. 1 shows a block configuration of the analysis device.
この解析装置は、例えば、図1に示したように、試料電極121を含む試料12と、その試料12(試料電極121)に交流電流Iを供給する電流供給部14と、その電流供給部14による交流電流Iの供給に応じて試料12(試料電極121)において発生した過電圧応答に基づいて、その試料電極121に関する交換電流密度i0 および電荷移動係数αを演算する演算部17とを備えている。
This analyzer includes, for example, as shown in FIG. 1, a sample 12 including a sample electrode 121, a current supply unit 14 for supplying an alternating current I to the sample 12 (sample electrode 121), and a current supply unit 14 An arithmetic unit 17 for calculating the exchange current density i 0 and the charge transfer coefficient α for the sample electrode 121 based on the overvoltage response generated in the sample 12 (sample electrode 121) in response to the supply of the alternating current I by There is.
より具体的には、解析装置は、例えば、上記した試料12、電流供給部14および演算部17と共に、制御部11と、関数発生部13と、過電圧測定部15と、過電圧振幅測定部16と、波形表示部18と、解析表示部19と、記憶部20とを備えている。
More specifically, the analysis device includes, for example, the control unit 11, the function generation unit 13, the overvoltage measurement unit 15, and the overvoltage amplitude measurement unit 16 together with the sample 12, the current supply unit 14 and the calculation unit 17 described above. , A waveform display unit 18, an analysis display unit 19, and a storage unit 20.
[制御部]
制御部11は、解析装置の全体の動作を制御する。この制御部11は、例えば、中央演算処理装置(CPU)および各種メモリなどを含んでいる。具体的には、制御部11は、例えば、パーソナルコンピュータなどを含んでおり、後述する解析装置の動作(解析方法)を実行させるための制御プログラムを内蔵している。 [Control unit]
Thecontrol unit 11 controls the overall operation of the analysis device. The control unit 11 includes, for example, a central processing unit (CPU) and various memories. Specifically, the control unit 11 includes, for example, a personal computer and the like, and incorporates a control program for executing an operation (analysis method) of an analysis device described later.
制御部11は、解析装置の全体の動作を制御する。この制御部11は、例えば、中央演算処理装置(CPU)および各種メモリなどを含んでいる。具体的には、制御部11は、例えば、パーソナルコンピュータなどを含んでおり、後述する解析装置の動作(解析方法)を実行させるための制御プログラムを内蔵している。 [Control unit]
The
[試料電極を含む試料]
試料12は、試料電極121とその試料電極121の表面に存在するイオン種との間において電荷移動反応を進行させる素子である。この試料12は、電流供給部14から試料電極121に交流電流Iが供給されることにより、上記した電荷移動反応を進行させる。試料12の数は、特に限定されない。なお、試料電極121を含む試料12の詳細な構成に関しては、後述する(図2参照)。 [Sample containing sample electrode]
Thesample 12 is an element that causes a charge transfer reaction to proceed between the sample electrode 121 and the ion species present on the surface of the sample electrode 121. The sample 12 causes the above-described charge transfer reaction to proceed when the alternating current I is supplied from the current supply unit 14 to the sample electrode 121. The number of samples 12 is not particularly limited. The detailed configuration of the sample 12 including the sample electrode 121 will be described later (see FIG. 2).
試料12は、試料電極121とその試料電極121の表面に存在するイオン種との間において電荷移動反応を進行させる素子である。この試料12は、電流供給部14から試料電極121に交流電流Iが供給されることにより、上記した電荷移動反応を進行させる。試料12の数は、特に限定されない。なお、試料電極121を含む試料12の詳細な構成に関しては、後述する(図2参照)。 [Sample containing sample electrode]
The
[関数発生部]
関数発生部13は、電流供給部14から試料電極121に供給される交流電流Iの周波数f(Hz)を設定すると共に、その交流電流Iの周波数fに対応する交流信号を電流供給部14に送信する。この関数発生部13は、例えば、ロックインアンプなどを含んでいる。 [Function generator]
Thefunction generation unit 13 sets the frequency f (Hz) of the alternating current I supplied from the current supply unit 14 to the sample electrode 121, and sends an alternating current signal corresponding to the frequency f of the alternating current I to the current supply unit 14. Send. The function generator 13 includes, for example, a lock-in amplifier.
関数発生部13は、電流供給部14から試料電極121に供給される交流電流Iの周波数f(Hz)を設定すると共に、その交流電流Iの周波数fに対応する交流信号を電流供給部14に送信する。この関数発生部13は、例えば、ロックインアンプなどを含んでいる。 [Function generator]
The
交流電流Iの周波数fは、特に限定されないが、中でも、特定の範囲(後述する特定周波数範囲Rf)内の周波数fであることが好ましい。後述するように、拡散抵抗に起因する抵抗成分の影響が抑制されるため、試料電極121の解析精度、すなわち交換電流密度i0 および電荷移動係数αの演算精度が向上するからである。
The frequency f of the alternating current I is not particularly limited, but is preferably a frequency f within a specific range (a specific frequency range Rf described later). As described later, since the influence of the resistance component caused by the diffusion resistance is suppressed, the analysis accuracy of the sample electrode 121, that is, the calculation accuracy of the exchange current density i 0 and the charge transfer coefficient α is improved.
具体的には、関数発生部13は、例えば、試料電極121の電荷移動特性が解析される前に、あらかじめ電気化学インピーダンス法(線形交流インピーダンス法)を用いて試料電極121の抵抗特性を調べることにより、特定周波数Rfを特定する。
Specifically, for example, before the charge transfer characteristic of the sample electrode 121 is analyzed, the function generating unit 13 examines the resistance characteristic of the sample electrode 121 using an electrochemical impedance method (linear alternating current impedance method) in advance. To identify the specific frequency Rf.
この場合には、関数発生部13は、例えば、周波数fを変化させながら試料電極121のインピーダンスZを測定する。この結果、関数発生部13は、例えば、インピーダンスZが周波数fの増加に応じて略一定になるまで減少したのちに再び減少した際に、そのインピーダンスZが略一定になる範囲(特定周波数範囲Rf)内の値となるように、交流電流Iの周波数fを設定する。
In this case, the function generation unit 13 measures, for example, the impedance Z of the sample electrode 121 while changing the frequency f. As a result, for example, when the function generator 13 decreases again until the impedance Z decreases to be substantially constant according to the increase of the frequency f, a range in which the impedance Z becomes substantially constant (specific frequency range Rf The frequency f of the alternating current I is set so as to be a value in.
すなわち、関数発生部13は、例えば、上記した電気化学インピーダンス法を用いて調べられた試料電極121の抵抗特性(インピーダンスZの変化パターン)に基づいて特定周波数範囲Rfを特定したのち、その特定周波数範囲Rfの範囲内の値となるように、交流電流Iの周波数fを設定する。
That is, for example, after specifying the specific frequency range Rf based on the resistance characteristic (the change pattern of the impedance Z) of the sample electrode 121 examined using the above-described electrochemical impedance method, the function generation unit 13 determines the specific frequency The frequency f of the alternating current I is set so as to be a value within the range Rf.
なお、関数発生部13により設定される周波数fの値は、上記した特定周波数範囲Rfの範囲内における任意の値であれば、特に限定されない。
The value of the frequency f set by the function generation unit 13 is not particularly limited as long as it is an arbitrary value within the range of the specific frequency range Rf described above.
この関数発生部13は、例えば、特定周波数範囲Rfを特定することにより、その特定周波数範囲Rfに基づいて交流電流Iの周波数fを設定すると、上記したように、その交流電流Iの周波数fに対応する交流信号を電流供給部14に送信する。
For example, when the frequency f of the alternating current I is set based on the specific frequency range Rf by specifying the specific frequency range Rf, the function generation unit 13 sets the frequency f of the alternating current I as described above. The corresponding AC signal is transmitted to the current supply unit 14.
なお、具体的な交流電流Iの周波数fの設定手順(特定周波数範囲Rfの詳細を含む。)に関しては、後述する(図3参照)。
A specific setting procedure of the frequency f of the alternating current I (including the details of the specific frequency range Rf) will be described later (see FIG. 3).
[電流供給部]
電流供給部14は、試料電極121に交流電流Iを供給する。この電流供給部14は、例えば、ガルバノスタットなどの電流制御装置を含んでいる。 [Current supply unit]
Thecurrent supply unit 14 supplies an alternating current I to the sample electrode 121. The current supply unit 14 includes, for example, a current control device such as a galvanostat.
電流供給部14は、試料電極121に交流電流Iを供給する。この電流供給部14は、例えば、ガルバノスタットなどの電流制御装置を含んでいる。 [Current supply unit]
The
電流供給部14が試料電極121に交流電流Iを供給するのは、解析装置を用いた解析時(電荷移動反応の進行時)において試料電極121の組成が変化しにくくなるからである。
The reason why the current supply unit 14 supplies the alternating current I to the sample electrode 121 is that the composition of the sample electrode 121 is unlikely to change at the time of analysis using the analyzer (at the time of progress of charge transfer reaction).
詳細には、試料電極121の形成材料としては、後述するように、炭素材料などの非合金化材料の他、電荷移動反応の進行時において合金を形成するケイ素などの合金化材料も用いられる。試料電極121に合金化材料が含まれている場合において、その試料電極121に直流電流が供給されると、その直流電流の符号に応じて酸化反応および還元反応のうちのいずれか一方だけが進行する。これにより、電荷移動反応が進行する過程において試料電極121の組成が変化するため、本来の組成における試料電極121の電荷移動特性を解析することができない。なお、ここで説明した合金化材料は、電荷移動反応の進行過程において組成が変化する材料の一例である。
Specifically, as described later, as a forming material of the sample electrode 121, in addition to a non-alloying material such as a carbon material, an alloying material such as silicon which forms an alloy at the time of progress of charge transfer reaction is also used. In the case where the sample electrode 121 contains an alloying material, when a direct current is supplied to the sample electrode 121, only one of the oxidation reaction and the reduction reaction proceeds according to the sign of the direct current. Do. As a result, the composition of the sample electrode 121 changes in the process of progress of the charge transfer reaction, so that the charge transfer characteristics of the sample electrode 121 in the original composition can not be analyzed. The alloying material described here is an example of a material whose composition changes in the course of the charge transfer reaction.
これに対して、試料電極121に合金化材料が含まれている場合において、その試料電極121に交流電流Iが供給されると、ちょうどN周期(Nは、自然数である。)分の交流電流Iが供給されたのち、その交流電流Iの時間積分値はゼロになる。すなわち、酸化反応に要したモル数と還元反応に要したモル数とは、互いに等しくなる。これにより、電荷移動反応が進行する過程において試料電極121の組成が変化しないため、本来の組成における試料電極121の電荷移動特性を解析することができる。
On the other hand, in the case where the sample electrode 121 contains an alloying material, when an alternating current I is supplied to the sample electrode 121, the alternating current for exactly N cycles (N is a natural number) After I is supplied, the time integral value of the alternating current I becomes zero. That is, the number of moles required for the oxidation reaction and the number of moles needed for the reduction reaction are equal to each other. Thus, the composition of the sample electrode 121 does not change in the process of progress of the charge transfer reaction, so that the charge transfer characteristic of the sample electrode 121 in the original composition can be analyzed.
電流供給部14により試料電極121に供給される交流電流Iの周波数fは、特に限定されないが、中でも、上記したように、その交流電流Iの周波数fの値は、関数発生部13により設定される特定周波数範囲Rfの範囲内の値であることが好ましい。試料電極121の解析精度が向上するからである。
The frequency f of the alternating current I supplied to the sample electrode 121 by the current supply unit 14 is not particularly limited. However, as described above, the value of the frequency f of the alternating current I is set by the function generation unit 13 It is preferable that the value is within the specific frequency range Rf. This is because the analysis accuracy of the sample electrode 121 is improved.
[過電圧測定部]
過電圧測定部15は、電流供給部14により試料電極121に交流電流Iが供給された際に、その試料電極121において発生した過電圧Eを測定する。この過電圧測定部15は、例えば、ガルバノスタットなどを含んでいる。なお、過電圧測定部15は、例えば、過電圧Eを測定すると、その過電圧Eの測定結果を過電圧振幅測定部16に送信する。 [Overvoltage measurement unit]
When the alternating current I is supplied to thesample electrode 121 by the current supply unit 14, the overvoltage measuring unit 15 measures the overvoltage E generated in the sample electrode 121. The overvoltage measurement unit 15 includes, for example, a galvanostat. For example, when measuring the overvoltage E, the overvoltage measuring unit 15 transmits the measurement result of the overvoltage E to the overvoltage amplitude measuring unit 16.
過電圧測定部15は、電流供給部14により試料電極121に交流電流Iが供給された際に、その試料電極121において発生した過電圧Eを測定する。この過電圧測定部15は、例えば、ガルバノスタットなどを含んでいる。なお、過電圧測定部15は、例えば、過電圧Eを測定すると、その過電圧Eの測定結果を過電圧振幅測定部16に送信する。 [Overvoltage measurement unit]
When the alternating current I is supplied to the
[過電圧振幅測定部]
過電圧振幅測定部16は、過電圧測定部15により測定された過電圧Eのうちの2以上の周波数成分の過電圧振幅を測定する。より具体的には、過電圧振幅測定部16は、上記した2以上の周波数成分の過電圧振幅として、2以上のn次(nは、2以上の整数である。)の非線形成分を抽出することにより、その2以上のn次の非線形成分の過電圧振幅Vn (V)を測定する。この過電圧振幅測定部16は、例えば、ロックインアンプなどの信号抽出装置を含んでいる。なお、2以上のn次の非線形成分の過電圧振幅Vn を測定するために、2個以上のロックインアンプが併用されてもよい。 [Overvoltage amplitude measurement unit]
The overvoltage amplitude measurement unit 16 measures overvoltage amplitudes of two or more frequency components of the overvoltage E measured by theovervoltage measurement unit 15. More specifically, the overvoltage amplitude measurement unit 16 extracts a non-linear component of 2 or more n-th order (n is an integer of 2 or more) as the overvoltage amplitude of the above-mentioned 2 or more frequency components. The overvoltage amplitude V n (V) of the two or more n-th nonlinear components is measured. The overvoltage amplitude measurement unit 16 includes, for example, a signal extraction device such as a lock-in amplifier. Note that two or more lock-in amplifiers may be used in combination to measure the overvoltage amplitude V n of the two or more n-th nonlinear components.
過電圧振幅測定部16は、過電圧測定部15により測定された過電圧Eのうちの2以上の周波数成分の過電圧振幅を測定する。より具体的には、過電圧振幅測定部16は、上記した2以上の周波数成分の過電圧振幅として、2以上のn次(nは、2以上の整数である。)の非線形成分を抽出することにより、その2以上のn次の非線形成分の過電圧振幅Vn (V)を測定する。この過電圧振幅測定部16は、例えば、ロックインアンプなどの信号抽出装置を含んでいる。なお、2以上のn次の非線形成分の過電圧振幅Vn を測定するために、2個以上のロックインアンプが併用されてもよい。 [Overvoltage amplitude measurement unit]
The overvoltage amplitude measurement unit 16 measures overvoltage amplitudes of two or more frequency components of the overvoltage E measured by the
過電圧振幅測定部16により測定されるn次の非線形成分の過電圧振幅Vn の種類は、特に限定されない。中でも、過電圧振幅測定部16は、上記した2以上のn次の非線形成分の過電圧振幅Vn として、1以上の奇数次の非線形成分の過電圧振幅Vn および1以上の偶数次の非線形成分の過電圧振幅Vn を測定することが好ましい。試料電極121の解析精度が向上するからである。奇数次の非線形成分とは、例えば、3次の非線形成分、5次の非線形成分、7次の非線形成分および9次の非線形成分などである。偶数次の非線形成分とは、例えば、2次の非線形成分、4次の非線形成分、6次の非線形成分および8次の非線形成分などである。
The type of the overvoltage amplitude V n of the n-th non-linear component measured by the overvoltage amplitude measurement unit 16 is not particularly limited. Among them, the overvoltage amplitude measurement section 16, as an overvoltage amplitude V n of 2 or more n-order nonlinear components described above, one or more overvoltage overvoltage amplitude V n and one or more even-order non-linear components of odd-order nonlinear component Preferably, the amplitude V n is measured. This is because the analysis accuracy of the sample electrode 121 is improved. The odd-order non-linear components are, for example, third-order non-linear components, fifth-order non-linear components, seventh-order non-linear components, and ninth-order non-linear components. The even-order nonlinear components include, for example, second-order nonlinear components, fourth-order nonlinear components, sixth-order nonlinear components, and eighth-order nonlinear components.
この場合には、過電圧振幅測定部16は、より低次である2以上の非線形成分の過電圧振幅Vn を測定することが好ましく、より具体的には、2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 を測定することが好ましい。低次の非線形成分ほど高次の非線形成分を含みにくくなるため、試料電極121の解析精度がより向上するからである。
In this case, it is preferable that the overvoltage amplitude measurement unit 16 measure the overvoltage amplitude V n of the lower order two or more nonlinear components, more specifically, the overvoltage amplitude V 2 of the second order nonlinear component. and third order is preferable to measure the overvoltage amplitude V 3 of the nonlinear components. This is because it is more difficult for the low-order non-linear component to include the high-order non-linear component, so that the analysis accuracy of the sample electrode 121 is further improved.
なお、過電圧振幅測定部16は、例えば、2以上のn次の非線形成分の過電圧振幅Vn を測定すると、その2以上のn次の非線形成分の過電圧振幅Vn の測定結果を演算部17に送信する。
When the overvoltage amplitude measurement unit 16 measures, for example, the overvoltage amplitude V n of the 2 or more n-th nonlinear component, the measurement result of the overvoltage amplitude V n of the 2 or more n-th nonlinear component is Send.
[演算部]
演算部17は、電流供給部14による交流電流Iの供給に応じて試料電極121において発生した過電圧応答に基づいて、その試料電極121に関する交換電流密度i0 および電荷移動係数αを演算する。 [Operation unit]
Arithmetic unit 17 calculates exchange current density i 0 and charge transfer coefficient α for sample electrode 121 based on the overvoltage response generated at sample electrode 121 in response to the supply of alternating current I by current supply unit 14.
演算部17は、電流供給部14による交流電流Iの供給に応じて試料電極121において発生した過電圧応答に基づいて、その試料電極121に関する交換電流密度i0 および電荷移動係数αを演算する。 [Operation unit]
具体的には、演算部17は、例えば、過電圧振幅測定部16により測定された2以上の周波数成分の過電圧振幅(2以上のn次の非線形成分の過電圧振幅Vn )に基づいて、交換電流密度i0 および電荷移動係数αを演算する。より具体的には、過電圧振幅測定部16により2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 が測定された場合には、演算部17は、例えば、2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 に基づいて、交換電流密度i0 および電荷移動係数αを演算する。
Specifically, for example, based on the overvoltage amplitudes of two or more frequency components (the overvoltage amplitude V n of the n-th non-linear component of 2 or more) measured by the overvoltage amplitude measuring unit 16, the operation unit 17 determines Calculate density i 0 and charge transfer coefficient α. More specifically, when the over-voltage amplitude measurement unit 16 is over-voltage amplitude V 3 of the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component is measured, the arithmetic unit 17, for example, secondary The exchange current density i 0 and the charge transfer coefficient α are calculated based on the overvoltage amplitude V 2 of the non-linear component and the overvoltage amplitude V 3 of the non-linear component of the third order.
過電圧振幅測定部16により2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 が測定された場合には、演算部17は、例えば、下記の式(1)を用いて電荷移動係数αを演算する。また、演算部17は、例えば、先に演算された電荷移動係数αの演算値に基づいて、下記の式(2)または式(3)を用いて交換電流密度i0 を演算する。
When the overvoltage amplitude measurement unit 16 is over-voltage amplitude V 3 of the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component is measured, the arithmetic unit 17, for example, using Equation (1) below Charge transfer coefficient α is calculated. Further, the calculation unit 17 calculates the exchange current density i 0 using, for example, the following equation (2) or (3) based on the calculation value of the charge transfer coefficient α calculated in advance.
ここで演算される電荷移動係数αは、式(1)から明らかなように、線形成分の過電圧振幅V1 ではなく、2以上のn次の非線形成分の過電圧振幅Vn (2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 )を用いて演算される。
As apparent from the equation (1), the charge transfer coefficient α calculated here is not the overvoltage amplitude V 1 of the linear component but the overvoltage amplitude V n of the n-th nonlinear component of 2 or more (the second nonlinear component It is calculated by using the over-voltage amplitude V 3) of the overvoltage amplitude V 2 and third-order nonlinear component of.
後述する式(18)から明らかなように、電荷移動係数αは、線形成分の過電圧振幅V1 から独立しているため、その線形成分の過電圧振幅V1 は、電荷移動係数αの従属パラメータでない。よって、線形成分の過電圧振幅V1 に基づいて電荷移動係数αを演算することはできない。
As is apparent from later-described equation (18), charge transfer coefficient α is because it is independent of the overvoltage amplitude V 1 of the linear component, overvoltage amplitude V 1 of the the linear component are not dependent parameter of the charge transfer coefficient α . Therefore, the charge transfer coefficient α can not be calculated based on the overvoltage amplitude V 1 of the linear component.
これに対して、後述する式(19)~式(21)から明らかなように、電荷移動係数αは、n次の非線形成分の過電圧振幅Vn に依存しているため、そのn次の非線形成分の過電圧振幅Vn は、電荷移動係数αの従属パラメータである。よって、n次の非線形成分の過電圧振幅Vn に基づいて電荷移動係数αを演算することができる。
On the other hand, as apparent from the equations (19) to (21) described later, since the charge transfer coefficient α depends on the overvoltage amplitude V n of the n-th nonlinear component, the n-th nonlinear The component overvoltage amplitude V n is a dependent parameter of the charge transfer coefficient α. Therefore, the charge transfer coefficient α can be calculated based on the overvoltage amplitude V n of the n-th non-linear component.
また、ここで演算される交換電流密度i0 は、式(2)または式(3)から明らかなように、上記した式(1)を用いて演算された電荷移動係数αの演算値を用いて演算される。
Also, as is clear from the equation (2) or the equation (3), the exchange current density i 0 computed here uses the computed value of the charge transfer coefficient α computed using the above equation (1) Is calculated.
なお、式(1)では、電荷移動係数α、2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 以外の全てのパラメータ(気体定数R、絶対温度T、反応電子数nおよびファラデー定数F)が定数(既知の値)である。このため、演算部17は、例えば、過電圧振幅測定部16から得られる2次の非線形成分の過電圧振幅V2 の実測値および3次の非線形成分の過電圧振幅V3 の実測値に基づいて、式(1)を用いて電荷移動係数αを演算することができる。
In equation (1), all parameters (gas constant R, absolute temperature T, reaction electrons other than charge transfer coefficient α, overvoltage amplitude V 2 of second- order nonlinear component and overvoltage amplitude V 3 of third-order nonlinear component The number n and the Faraday constant F) are constants (known values). Therefore, calculation unit 17, for example, based on the measured value of the overvoltage amplitude V 3 of the actual measurement value and the third-order nonlinear component of the overvoltage amplitude V 2 of the second-order nonlinear component obtained from the overvoltage amplitude measurement section 16, the formula The charge transfer coefficient α can be calculated using (1).
また、式(2)では、電荷移動係数αおよび2次の非線形成分の過電圧振幅V2 以外の全てのパラメータ(気体定数R、絶対温度T、反応電子数nおよびファラデー定数F)が定数である。このため、演算部17は、例えば、過電圧振幅測定部16から得られる2次の非線形成分の過電圧振幅V2 の実測値と、先に演算した電荷移動係数αの演算値とに基づいて、式(2)を用いて交換電流密度i0 を演算することができる。
In equation (2), all parameters (gas constant R, absolute temperature T, number of reaction electrons n, and Faraday constant F) other than the charge transfer coefficient α and the overvoltage amplitude V 2 of the second-order nonlinear component are constants. . Therefore, calculation unit 17, for example, the measured value of the overvoltage amplitude V 2 of the second-order nonlinear component obtained from the overvoltage amplitude measurement section 16, based on the calculated value of the charge transfer coefficient α computed above formula The exchange current density i 0 can be calculated using (2).
同様に、式(3)では、電荷移動係数αおよび3次の非線形成分の過電圧振幅V3 以外の全てのパラメータ(気体定数R、絶対温度T、反応電子数nおよびファラデー定数F)が定数である。このため、演算部17は、例えば、過電圧振幅測定部16から得られる3次の非線形成分の過電圧振幅V3 の実測値と、先に演算した電荷移動係数αの演算値とに基づいて、式(3)を用いて交換電流密度i0 を演算することができる。
Similarly, in Formula (3), all parameters except the overvoltage amplitude V 3 of charge transfer coefficient α and third-order nonlinear component (gas constant R, absolute temperature T, the number of reaction electrons n and the Faraday constant F) is a constant is there. Therefore, calculation unit 17, for example, the measured value of the overvoltage amplitude V 3 of the third-order nonlinear component obtained from the overvoltage amplitude measurement section 16, based on the calculated value of the charge transfer coefficient α computed above formula The exchange current density i 0 can be calculated using (3).
なお、上記した式(1)~式(3)の演算理論、すなわち式(1)~式(3)の導出経緯に関しては、後述する。
The calculation theory of the equations (1) to (3), that is, the background of the derivation of the equations (1) to (3) will be described later.
[波形表示部]
波形表示部18は、過電圧測定部15により測定された過電圧Eの波形を表示する。この波形表示部18は、例えば、オシロスコープなどを含んでいる。 [Waveform display section]
Thewaveform display unit 18 displays the waveform of the overvoltage E measured by the overvoltage measurement unit 15. The waveform display unit 18 includes, for example, an oscilloscope.
波形表示部18は、過電圧測定部15により測定された過電圧Eの波形を表示する。この波形表示部18は、例えば、オシロスコープなどを含んでいる。 [Waveform display section]
The
[解析表示部]
解析表示部19は、解析用の操作画面および解析結果などが表示される表示装置である。解析用の操作画面は、例えば、各種パラメータの入力画面などである。解析結果は、例えば、交換電流密度i0 および電荷移動係数αの演算結果などである。 [Analytical display section]
Theanalysis display unit 19 is a display device on which an operation screen for analysis, an analysis result, and the like are displayed. The operation screen for analysis is, for example, an input screen of various parameters. The analysis result is, for example, the calculation result of the exchange current density i 0 and the charge transfer coefficient α.
解析表示部19は、解析用の操作画面および解析結果などが表示される表示装置である。解析用の操作画面は、例えば、各種パラメータの入力画面などである。解析結果は、例えば、交換電流密度i0 および電荷移動係数αの演算結果などである。 [Analytical display section]
The
[記憶部]
記憶部20は、解析に必要な情報を記憶しており、例えば、リード・オンリー・メモリ(ROM)およびランダム・アクセス・メモリ(RAM)などを含んでいる。記憶部20に記憶されている情報の種類は、特に限定されない。具体的には、情報は、例えば、上記した気体定数R、絶対温度T、反応電子数nおよびファラデー定数Fなどの各種定数を含んでいる。また、情報は、後述する換算表(表1参照)などを含んでいてもよい。もちろん、記憶部20に記憶されている情報は、例えば、随時変更可能である。 [Storage unit]
Thestorage unit 20 stores information necessary for analysis, and includes, for example, a read only memory (ROM) and a random access memory (RAM). The type of information stored in the storage unit 20 is not particularly limited. Specifically, the information includes various constants such as, for example, the gas constant R, the absolute temperature T, the number of reaction electrons n, and the Faraday constant F described above. The information may also include a conversion table (see Table 1) and the like described later. Of course, the information stored in the storage unit 20 can be changed at any time, for example.
記憶部20は、解析に必要な情報を記憶しており、例えば、リード・オンリー・メモリ(ROM)およびランダム・アクセス・メモリ(RAM)などを含んでいる。記憶部20に記憶されている情報の種類は、特に限定されない。具体的には、情報は、例えば、上記した気体定数R、絶対温度T、反応電子数nおよびファラデー定数Fなどの各種定数を含んでいる。また、情報は、後述する換算表(表1参照)などを含んでいてもよい。もちろん、記憶部20に記憶されている情報は、例えば、随時変更可能である。 [Storage unit]
The
<1-2.試料電極を含む試料の構成>
次に、試料電極121を含む試料12の構成に関して説明する。図2は、試料電極121を含む試料12の断面構成を模式的に表している。 <1-2. Configuration of sample including sample electrode>
Next, the configuration of thesample 12 including the sample electrode 121 will be described. FIG. 2 schematically shows the cross-sectional configuration of the sample 12 including the sample electrode 121. As shown in FIG.
次に、試料電極121を含む試料12の構成に関して説明する。図2は、試料電極121を含む試料12の断面構成を模式的に表している。 <1-2. Configuration of sample including sample electrode>
Next, the configuration of the
この試料12は、例えば、図2に示したように、上記した試料電極(作用極)121と、対極122と、電解質123とを含んでいる。試料12には、試料電極121および対極122を介して電流供給部14により交流電流Iが供給される。
For example, as shown in FIG. 2, the sample 12 includes the sample electrode (working electrode) 121, the counter electrode 122, and the electrolyte 123 described above. An alternating current I is supplied to the sample 12 by the current supply unit 14 via the sample electrode 121 and the counter electrode 122.
なお、図2では、試料電極121および対極122により電解質123が挟まれた構成を示しているが、その構成はあくまで一例にすぎない。このため、試料12の構成は、例えば、電解質123の構成などに応じて任意に変更可能である。
Although FIG. 2 shows a configuration in which the electrolyte 123 is sandwiched between the sample electrode 121 and the counter electrode 122, the configuration is merely an example. Therefore, the configuration of the sample 12 can be arbitrarily changed according to, for example, the configuration of the electrolyte 123 and the like.
試料電極121は、解析装置を用いて電荷移動特性が解析される電極である。試料電極121の形成材料の詳細に関しては、後述する。
The sample electrode 121 is an electrode whose charge transfer characteristic is analyzed using an analyzer. Details of the forming material of the sample electrode 121 will be described later.
対極122は、試料電極121と共に電荷移動反応を進行させるための電極であり、その電荷移動反応の進行時において試料電極121と対極122との間において電荷(イオン)を移動させる。この対極122は、例えば、電荷を授受および放出することが可能である材料のうちのいずれか1種類または2種類以上を含んでおり、その材料に関する詳細は、例えば、後述する試料電極121の形成材料に関する詳細と同様である。
The counter electrode 122 is an electrode for advancing a charge transfer reaction with the sample electrode 121, and moves charges (ions) between the sample electrode 121 and the counter electrode 122 when the charge transfer reaction progresses. The counter electrode 122 includes, for example, any one or two or more materials capable of transferring and releasing charges, and details of the material may be, for example, the formation of a sample electrode 121 described later. The details are the same as for the material.
電解質123は、試料電極121と対極122との間において電荷(イオン)を移動させる媒質である。電解質123の構成は、試料電極121と対極122との間において電荷を移動させることが可能であれば、特に限定されない。具体的には、電解質123は、例えば、液状の電解質(電解液)でもよいし、ゲル状の電解質(ゲル電解質)でもよい。
The electrolyte 123 is a medium for moving charges (ions) between the sample electrode 121 and the counter electrode 122. The configuration of the electrolyte 123 is not particularly limited as long as the charge can be moved between the sample electrode 121 and the counter electrode 122. Specifically, the electrolyte 123 may be, for example, a liquid electrolyte (electrolyte solution) or a gel electrolyte (gel electrolyte).
電解液は、例えば、溶媒および電解質塩などを含んでおり、その電解液中では、例えば、溶媒中において電解質塩が溶解または分散されている。なお、電解液は、例えば、試料電極121と対極123との間に介在するセパレータなどに含浸されていてもよい。
The electrolytic solution contains, for example, a solvent, an electrolyte salt, and the like, and in the electrolytic solution, for example, the electrolytic salt is dissolved or dispersed in the solvent. The electrolytic solution may be impregnated in, for example, a separator interposed between the sample electrode 121 and the counter electrode 123.
ゲル電解質は、例えば、上記した電解液(溶媒および電解質塩)と共に高分子化合物などを含んでおり、そのゲル電解質では、例えば、高分子化合物により電解液が保持されている。
The gel electrolyte contains, for example, a polymer compound and the like together with the above-described electrolytic solution (solvent and electrolyte salt), and in the gel electrolyte, the electrolytic solution is held, for example, by the polymer compound.
なお、試料12は、例えば、さらに、図示しない参照極などの他の構成要素のうちのいずれか1種類または2種類以上を含んでいてもよい。
The sample 12 may further include, for example, one or more of other components such as a reference electrode (not shown).
<1-3.試料電極の形成材料>
次に、試料電極121の形成材料に関して説明する。 <1-3. Sample electrode forming material>
Next, the forming material of thesample electrode 121 will be described.
次に、試料電極121の形成材料に関して説明する。 <1-3. Sample electrode forming material>
Next, the forming material of the
試料電極121の形成材料の種類は、その試料電極121の表面において電荷を放出および授受することが可能である材料のうちのいずれか1種類または2種類以上であれば、特に限定されない。具体的には、試料電極121の形成材料は、例えば、炭素材料および金属系材料などである。
The type of the forming material of the sample electrode 121 is not particularly limited as long as it is any one type or two or more types of materials capable of releasing and transferring electric charge on the surface of the sample electrode 121. Specifically, the forming material of the sample electrode 121 is, for example, a carbon material and a metal-based material.
炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。
The carbon material is, for example, graphitizable carbon, non-graphitizable carbon, and graphite. More specifically, the carbon material is, for example, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, carbon blacks and the like.
金属系材料は、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料である。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。また、金属系材料は、例えば、インサーション材料(またはインターカレーション材料)でもよいし、固溶体でもよいし、共晶(共融混合物)でもよいし、金属間化合物でもよいし、それらの2種類以上の共存物でもよい。ただし、合金は、例えば、2種類以上の金属元素からなる材料でもよいし、1種類以上の金属元素と1種類以上の半金属元素とを含む材料でもよい。なお、合金は、例えば、1種類以上の非金属元素を含んでいてもよい。ここで説明したインサーション材料、固溶体および金属間化合物などは、上記した合金化材料と同様に、電荷移動反応の進行過程において組成が変化しやすい材料の代表例である。
The metal-based material is a material containing one or more of metal elements and metalloid elements as constituent elements. The metal-based material may be a single material, an alloy, a compound, a mixture of two or more thereof, or a material including two or more phases thereof. The metal-based material may be, for example, an insertion material (or an intercalation material), a solid solution, a eutectic (eutectic mixture), or an intermetallic compound, or two of them. It may be a coexistence of the above. However, the alloy may be, for example, a material composed of two or more types of metal elements, or a material including one or more types of metal elements and one or more types of metalloid elements. The alloy may contain, for example, one or more types of nonmetallic elements. The insertion material, the solid solution, the intermetallic compound, and the like described here are, as with the above-described alloying material, representative examples of materials whose composition is likely to change in the course of the charge transfer reaction.
金属元素および半金属元素の種類は、特に限定されないが、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。
The type of metal element and metalloid element is not particularly limited. For example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge) ), Tin (Sn), lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) And platinum (Pt).
<2.演算理論>
次に、上記した式(1)~式(3)の演算理論に関して説明する。 <2. Operation theory>
Next, the operation theory of the above-described equations (1) to (3) will be described.
次に、上記した式(1)~式(3)の演算理論に関して説明する。 <2. Operation theory>
Next, the operation theory of the above-described equations (1) to (3) will be described.
[Butler-Volmer式]
電荷移動律速状態における電極反応(電荷移動反応)時の挙動は、上記したように、Butler-Volmer式により表される。このButler-Volmer式は、下記の式(4)に示した通りである。 [Butler-Volmer type]
The behavior during the electrode reaction (charge transfer reaction) in the charge transfer limited state is represented by the Butler-Volmer equation, as described above. The Butler-Volmer equation is as shown in the following equation (4).
電荷移動律速状態における電極反応(電荷移動反応)時の挙動は、上記したように、Butler-Volmer式により表される。このButler-Volmer式は、下記の式(4)に示した通りである。 [Butler-Volmer type]
The behavior during the electrode reaction (charge transfer reaction) in the charge transfer limited state is represented by the Butler-Volmer equation, as described above. The Butler-Volmer equation is as shown in the following equation (4).
このButler-Volmer式では、全電流密度がアノードの電流密度とカソードの電流密度との和により表される。ここで、アノードの電流密度は、exp関数により表されるため、大きな非線形性を有している。同様に、カソードの電流密度は、exp関数により表されるため、大きな非線形性を有している。このため、アノードの電流密度とカソードの電流密度との和も、大きな非線形性を有している。なお、アノードの電流密度とカソードの電流密度とのバランスは、電荷移動係数αにより表される。α=0.5である場合において、電流密度jと過電圧ηとの相関を表す曲線は、原点を中心として点対称な曲線(=奇関数)になる。
In this Butler-Volmer equation, the total current density is represented by the sum of the current density of the anode and the current density of the cathode. Here, since the current density of the anode is expressed by an exp function, it has large non-linearity. Similarly, the current density of the cathode is represented by the exp function, and thus has large non-linearity. For this reason, the sum of the current density of the anode and the current density of the cathode also has large non-linearity. The balance between the current density of the anode and the current density of the cathode is represented by the charge transfer coefficient α. In the case of α = 0.5, the curve representing the correlation between the current density j and the overvoltage η is a point-symmetrical curve (= odd function) about the origin.
Butler-Volmer式の非線形性を議論するために、まず、Butler-Volmer式のTaylor級数展開を行う。指数関数のTaylor級数展開は、下記の式(5)のように表されるため、その指数関数の差のTaylor級数展開は、下記の式(6)のように表される。
In order to discuss the non-linearity of the Butler-Volmer equation, first, Taylor series expansion of the Butler-Volmer equation is performed. Since the Taylor series expansion of the exponential function is expressed as the following expression (5), the Taylor series expansion of the difference of the exponential function is expressed as the following expression (6).
式(6)を式(4)と比較することにより、Butler-Volmer式は、下記の式(7)のように表される。
By comparing the equation (6) with the equation (4), the Butler-Volmer equation is expressed as the following equation (7).
ところで、Butler-Volmer式は、電流密度に関して解かれた式であり、すなわち電極に過電圧を印加した場合においてどのような電流が流れるかを表した式である。言い替えれば、Butler-Volmer式は、過電圧を原因とすると共に電流を結果とした式である。
By the way, the Butler-Volmer equation is an equation solved with respect to the current density, that is, an equation expressing what kind of current flows when an overvoltage is applied to the electrode. In other words, the Butler-Volmer equation is an equation that is caused by an overvoltage and results in a current.
ここで、Butler-Volmer式を過電圧ηに関して解くことにより、電極に電流を流した場合においてどのような過電圧が発生するかを表す式にすることを考える。
Here, by solving the Butler-Volmer equation with respect to the overvoltage 考 え る, it is considered to make an equation representing what overvoltage will occur when a current is supplied to the electrode.
[Butler-Volmer式の逆関数]
Butler-Volmer式は、下記の式(8)のように簡略化して表すことができる。 [Inverse function of Butler-Volmer equation]
The Butler-Volmer equation can be simplified and expressed as the following equation (8).
Butler-Volmer式は、下記の式(8)のように簡略化して表すことができる。 [Inverse function of Butler-Volmer equation]
The Butler-Volmer equation can be simplified and expressed as the following equation (8).
上記したように、Butler-Volmer式を過電圧ηに関して解くために、まずは、簡略化された式(8)をxに関して解くことを考える。このButler-Volmer式は、2つのexp関数を含んでいる。そこで、もしもα=0.5である場合には、Butler-Volmer式が1つのsinh関数により表されるため、そのButler-Volmer式の逆関数は1つのsinh-1関数により表される。
As mentioned above, in order to solve the Butler-Volmer equation for over voltage 過 電 圧, first consider solving the simplified equation (8) for x. This Butler-Volmer expression contains two exp functions. Therefore, if α = 0.5, since the Butler-Volmer equation is represented by one sinh function, the inverse function of the Butler-Volmer equation is represented by one sinh −1 function.
一方、α≠0.5である場合には、Butler-Volmer式が1つのsinh関数により表されないため、そのButler-Volmer式の逆関数も1つのsinh-1関数により表されない。しかしながら、MorseおよびFeshbackにより報告された公式を用いて、無限級数という形式により、下記の式(9)のように表される。
On the other hand, when α ≠ 0.5, the Butler-Volmer equation is not represented by one sinh function, so the inverse function of the Butler-Volmer equation is also not represented by one sinh −1 function. However, using the formulas reported by Morse and Feshback, it can be expressed in the form of an infinite series as shown in the following equation (9).
なお、上記したMorseおよびFeshbackにより報告された公式は、ある関数に関するTaylor級数展開の係数から、その関数の逆関数に関するTaylor級数展開の係数を直接求める公式である(P.M.Morse and H.Feshbach,Methods of Theoretical Physics,Part 1,New York:McGraw-Hill,pp.411-413,1953)。
The above-mentioned formulas reported by Morse and Feshback are formulas for directly obtaining the coefficients of Taylor series expansions related to inverse functions of the functions from coefficients of Taylor series expansion related to a function (PM Morse and H. Feshbach, Methods of Theoretical Physics, Part 1, New York: McGraw-Hill, pp. 411-413, 1953).
上記した簡略化されていない式(1)に式(9)の関係を適用することにより、過電圧ηは、下記の式(10)のように表される。ただし、η(i) (iは、1以上の整数である。)のうちの最初の4項(η(1) 、η(2) 、η(3) およびη(4) )は、下記の式(11)~式(14)により表される。
By applying the relationship of the equation (9) to the above-described non-simplified equation (1), the overvoltage 簡略 is expressed as the following equation (10). However, the first four terms (η (1) , η (2) , η (3) and η (4) ) of η (i) (i is an integer of 1 or more) are It is expressed by the equations (11) to (14).
[Taylor級数展開の係数と交流測定時における高次歪みとの関係]
[Relationship between coefficients of Taylor series expansion and higher-order distortion in AC measurement]
次に、Taylor級数展開の係数とFourier級数展開の係数との関係に関して議論する。ここでは、式(11)~式(14)のような非線形現象の式を多項式にTaylor級数展開した場合におけるn乗の項の係数をTn(nは、1以上の整数である)とする。また、交流刺激を与えた場合における非線形応答のn次の高調波成分の振幅、すなわちFourier級数展開の係数をFn(nは、1以上の整数である。)とする。TnとFnとの関係は、下記の式(15)のように表される。
Next, the relationship between the coefficients of the Taylor series expansion and the coefficients of the Fourier series expansion will be discussed. Here, it is assumed that the coefficient of the term of n-th power in the case of Taylor series expansion of a non-linear equation such as Equation (11) to Equation (14) into a polynomial is Tn (n is an integer of 1 or more). Further, it is assumed that the amplitude of the nth harmonic component of the nonlinear response when AC stimulation is given, that is, the coefficient of the Fourier series expansion is Fn (n is an integer of 1 or more). The relationship between Tn and Fn is represented by the following equation (15).
この場合には、Tn≠Fnであることに注意しなければならない。高調波成分の振幅は、Taylor級数展開の係数とは異なるからである。ここでは具体的な導出の過程を省略するが、式(15)に示した関係が全てのθに対して恒等的に成立している場合には、下記の式(16)のように、FnはTnを用いて表される。
In this case, it should be noted that Tn ≠ Fn. This is because the amplitude of the harmonic component is different from the coefficient of Taylor series expansion. Although the process of specific derivation is omitted here, if the relationship shown in equation (15) holds identically for all θ, as shown in equation (16) below, Fn is expressed using Tn.
一例として、F1~F4のそれぞれがTaylor級数展開された場合には、下記の式(17)のように表される。
As an example, when each of F1 to F4 is subjected to Taylor series expansion, it is expressed as the following equation (17).
ここで、nとTnとの関係をグラフ化した場合には、nが増加するにしたがってTnが次第に減少する。すなわち、F1~F4では、F1よりもF2においてTnの裾野が広がり、F2よりもF3においてTnの裾野が広がり、F3よりもF4においてTnの裾野が広がる。高次の高調波成分ほど、高次の項の影響を受けやすいからである。
Here, when the relationship between n and Tn is graphed, Tn gradually decreases as n increases. That is, in F1 to F4, the foot base of Tn is wider at F2 than F1, the foot base of Tn is wider at F3 than F2, and the foot base of Tn is wider at F4 than F3. This is because higher order harmonic components are more susceptible to higher order terms.
この結果から、試料電極121に供給される電圧および電流は、大きければ大きいほどよいというわけではなく、むしろ逆に、信号がノイズの影響を受けすぎない程度において、できるだけ小さいことが望ましい。
From this result, the voltage and current supplied to the sample electrode 121 are not necessarily as large as possible, but rather, it is desirable that the voltage and current be as small as possible to the extent that the signal is not affected by noise.
電極反応(電荷移動反応)は、本来的に非線形性が大きいため、入力(電圧および電流)が小さくても、十分に大きな非線形成分の応答が得られる。入力が必要以上に大きいと、信号がより高次の項の影響うけやすくなるため、注意が必要である。やむを得ず入力を大きくする場合には、入力値を変更しながら信号の変化を調べることにより、外挿法を用いて入力値がゼロになる場合のインピーダンスを求めるなどの工夫を行うことが望ましい。
Since the electrode reaction (charge transfer reaction) is inherently large in nonlinearity, a sufficiently large nonlinear component response can be obtained even with a small input (voltage and current). Care must be taken because if the input is larger than necessary, the signal is susceptible to higher order terms. In the case where the input is inevitably increased, it is desirable to devise a method such as finding the impedance when the input value becomes zero using extrapolation by examining the change in the signal while changing the input value.
[交流測定時における高次歪みに基づいてButler-Volmer式中のj0 およびαを算出]
上記した一連の議論を総括することにより、電極に交流電流Iを流した場合におけるn次の非線形成分の応答(過電圧応答である過電圧振幅)を式で表すことができる。この場合において基礎となるのは、式(11)~式(14)に示したTaylor級数展開の係数である。Taylor級数展開の係数をFourier級数展開の係数にするために定数を掛けると共に、交流測定時の実効値(rms:root mean square value)がピーク値の1/(21/2 )であることを考慮すると、式(11)~式(14)は、下記の式(18)~式(21)のように表される。 [Calculating j 0 and α in Butler-Volmer equation based on higher-order distortion in AC measurement]
By summarizing the above series of discussions, it is possible to express the response of the n-th non-linear component (overvoltage amplitude which is the over-voltage response) when an alternating current I is applied to the electrode. The basis in this case is the coefficients of the Taylor series expansion shown in equations (11) to (14). In order to make the coefficient of Taylor series expansion be a coefficient of Fourier series expansion, the rms (root mean square value) at the time of alternating current measurement is 1 / (2 1/2 ) of the peak value. Taking into consideration, the equations (11) to (14) are expressed as the following equations (18) to (21).
上記した一連の議論を総括することにより、電極に交流電流Iを流した場合におけるn次の非線形成分の応答(過電圧応答である過電圧振幅)を式で表すことができる。この場合において基礎となるのは、式(11)~式(14)に示したTaylor級数展開の係数である。Taylor級数展開の係数をFourier級数展開の係数にするために定数を掛けると共に、交流測定時の実効値(rms:root mean square value)がピーク値の1/(21/2 )であることを考慮すると、式(11)~式(14)は、下記の式(18)~式(21)のように表される。 [Calculating j 0 and α in Butler-Volmer equation based on higher-order distortion in AC measurement]
By summarizing the above series of discussions, it is possible to express the response of the n-th non-linear component (overvoltage amplitude which is the over-voltage response) when an alternating current I is applied to the electrode. The basis in this case is the coefficients of the Taylor series expansion shown in equations (11) to (14). In order to make the coefficient of Taylor series expansion be a coefficient of Fourier series expansion, the rms (root mean square value) at the time of alternating current measurement is 1 / (2 1/2 ) of the peak value. Taking into consideration, the equations (11) to (14) are expressed as the following equations (18) to (21).
式(18)~式(21)では、交換電流密度j0 および電荷移動係数α以外の全てのパラメータ(気体定数R、絶対温度T、反応電子数n、ファラデー定数Fおよび電流密度振幅(実効値)jrms)の値が既知である。このため、式(18)~式(21)のうちの任意の2つの式を用いて連立方程式を解くことにより、交換電流密度j0 および電荷移動係数αを演算することができる。これらの演算理論に基づいた交換電流密度j0 および電荷移動係数αの演算方法は、新規の演算方法である。
In the equations (18) to (21), all parameters (gas constant R, absolute temperature T, number of reaction electrons n, Faraday constant F and current density amplitude (effective value) except the exchange current density j 0 and charge transfer coefficient α The value of) jrms) is known. Therefore, the exchange current density j 0 and the charge transfer coefficient α can be calculated by solving the simultaneous equations using any two of the equations (18) to (21). The calculation method of the exchange current density j 0 and the charge transfer coefficient α based on these calculation theory is a novel calculation method.
なお、簡略化するために、電流密度振幅(実効値)jrmsの代わりに交流電流(実効値)I=irms=Ajrms(Aは、電極の面積である。)を用いると共に、交換電流密度j0 の代わりに交換電流密度i0 を用いる。電気化学測定機では、電極の面積を知ることができないからである。この場合には、電流密度振幅(実効値)jrmsをゼロまで外挿した場合の過電圧ηに関するn次の高調波成分の振幅(η(n) rmsjrms→0)をVn (nは、1以上の整数である。)と表す。ただし、逆位相の振幅は負とする。
Note that, instead of the current density amplitude (effective value) jrms, an alternating current (effective value) I = irms = Ajrms (A is an area of the electrode) is used for simplification, and the exchange current density j 0 Use exchange current density i 0 instead of This is because the electrochemical measuring device can not know the area of the electrode. In this case, the amplitude of the nth harmonic component related to the overvoltage η ( 成分 (n) rms jrms → 0 ) when the current density amplitude (rms value) jrms is extrapolated to zero is V n (n is 1 It is an integer greater than or equal to.). However, the amplitude of the opposite phase is negative.
過電圧ηに関する線形成分の応答(電圧応答である電圧振幅)は、電極が本来的に有する受動素子成分(電気抵抗R、キャパシタンスCおよびインダクタンスL)を含んでいる。よって、ここでは、上記した受動素子成分を含んでいない2次の非線形成分の応答および3次の非線形成分の応答に着目する。そこで、式(19)および式(20)を交換電流密度i0 に関して解くと、正の実数解は、上記した式(2)および式(3)のように表される。
The response of the linear component (voltage response, which is the voltage response) related to the overvoltage η includes the passive component (the electrical resistance R, the capacitance C and the inductance L) that the electrode inherently has. Therefore, in this case, attention is focused on the response of the second-order nonlinear component not including the passive element component described above and the response of the third-order nonlinear component. Then, when equations (19) and (20) are solved with respect to exchange current density i 0 , positive real solutions are expressed as equations (2) and (3) described above.
よって、式(2)および式(3)を用いて連立方程式を解くことにより、交換電流密度i0 および交流電流Iを消去すると、上記した式(1)が導き出される。
Therefore, when the exchange current density i 0 and the alternating current I are eliminated by solving the simultaneous equations using the equations (2) and (3), the above equation (1) is derived.
この式(1)を用いれば、2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 を実測することにより、電荷移動係数αを算出することができる。
Using this equation (1), by measuring the over-voltage amplitude V 3 of the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component, it is possible to calculate the charge transfer coefficient alpha.
電荷移動係数αを具体的に算出する手順は、以下の通りである。まず、2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 に基づいて、下記の式(22)により定義されるβを計算する。このβは、式(1)の左辺である。なお、定数(=0.7346)は、(23/4 ×181/3 )/6に由来する値である。
The procedure for specifically calculating the charge transfer coefficient α is as follows. First, based on the over-voltage amplitude V 3 of the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component, to calculate the β defined by the following formula (22). This β is the left side of equation (1). Here, the constant (= 0.7346) is a value derived from (2 3/4 × 18 1/3 ) / 6.
ただし、式(1)により表される値、すなわちβの値は、2次の非線形成分の過電圧振幅V2 が正であるか負であるかに応じて、実数または虚数になる。しかしながら、ここでは、簡略化するために、βを実数に限定する。その代わりに、2次の非線形成分の過電圧振幅V2 がゼロ以上であるか、その2次の非線形成分の過電圧振幅V2 がゼロ未満であるかに応じて、場合分けする。
However, the value represented by the equation (1), that is, the value of β is a real number or an imaginary number depending on whether the overvoltage amplitude V 2 of the second-order nonlinear component is positive or negative. However, here, for simplicity, we restrict β to real numbers. Instead, the overvoltage amplitude V 2 of the second-order nonlinear component or is greater than zero, over-voltage amplitude V 2 of the second-order nonlinear component depending on whether less than zero, case analysis.
2次の非線形成分の過電圧振幅V2 の実測値がゼロ以上である場合(V2 ≧0)には、電荷移動係数αは、下記の式(23)を満たすと共に、2次の非線形成分の過電圧振幅V2 の実測値がゼロ未満である場合(V2 <0)には、電荷移動係数αは、下記の式(24)を満たす。ただし、式(23)または式(24)を電荷移動係数αに関して解くことは、困難である。そこで、式(23)または式(24)を数値的に解析することにより、βを電荷移動係数αに換算してもよい。または、下記の表1に示した換算表を用いることにより、βの値を電荷移動係数αの値に換算してもよい。
When the measured value of the overvoltage amplitude V 2 of the second-order nonlinear component is greater than or equal to zero (V 2 00), the charge transfer coefficient α satisfies the following equation (23) and the second-order nonlinear component When the measured value of the overvoltage amplitude V 2 is less than zero (V 2 <0), the charge transfer coefficient α satisfies the following equation (24). However, solving equation (23) or equation (24) for the charge transfer coefficient α is difficult. Therefore, β may be converted to the charge transfer coefficient α by numerically analyzing the equation (23) or the equation (24). Alternatively, the value of β may be converted to the value of the charge transfer coefficient α by using the conversion table shown in Table 1 below.
表1では、2次の非線形成分の過電圧振幅V2 の実測値がゼロ以上である場合(V2 ≧0)と、その2次の非線形成分の過電圧振幅V2 の実測値がゼロ未満である場合(V2 <0)とに場合分けした上で、βの値と電荷移動係数αの値との対応関係が表されている。このため、βを算出すれば、表1に示した換算表を用いて、迅速かつ正確にβの値を電荷移動係数αの値に換算することができる。
In Table 1, when the measured value of the overvoltage amplitude V 2 of the second-order nonlinear component is greater than zero and (V 2 ≧ 0), the measured value of the overvoltage amplitude V 2 of the second-order nonlinear component is less than zero The case is divided into cases (V 2 <0), and the correspondence between the value of β and the value of the charge transfer coefficient α is shown. Therefore, if β is calculated, the value of β can be converted into the value of the charge transfer coefficient α quickly and accurately using the conversion table shown in Table 1.
なお、電荷移動係数αを算出すれば、2次の非線形成分の過電圧振幅V2 または3次の非線形成分の過電圧振幅V3 を実測することにより、上記した式(2)または式(3)を用いて交換電流密度i0 を算出することができる。
Incidentally, by calculating the charge transfer coefficient alpha, by actually measuring the over-voltage amplitude V 3 of the overvoltage amplitude V 2 or third-order nonlinear component of the second-order nonlinear component, the above-mentioned formula (2) or equation (3) The exchange current density i 0 can be calculated using this.
<3.交流電流の周波数の設定方法>
次に、交流電流Iの周波数fの設定方法に関して説明する。この交流電流Iの周波数fは、例えば、上記したように、関数発生部13により設定される。 <3. How to set the frequency of alternating current>
Next, a method of setting the frequency f of the alternating current I will be described. The frequency f of the alternating current I is set by, for example, thefunction generator 13 as described above.
次に、交流電流Iの周波数fの設定方法に関して説明する。この交流電流Iの周波数fは、例えば、上記したように、関数発生部13により設定される。 <3. How to set the frequency of alternating current>
Next, a method of setting the frequency f of the alternating current I will be described. The frequency f of the alternating current I is set by, for example, the
図3は、電気化学インピーダンス法(線形交流インピーダンス法)を用いて測定された試料電極121の抵抗特性(Bodeプロット)を各抵抗成分に分離したイメージを表している。図3では、インピーダンスの絶対値|Z|(Ωcm2 )と周波数f(Hz)との相関を表している。
FIG. 3 shows an image in which the resistance characteristics (Bode plot) of the sample electrode 121 measured using the electrochemical impedance method (linear AC impedance method) are separated into respective resistance components. FIG. 3 shows the correlation between the absolute value of impedance | Z | (Ω cm 2 ) and the frequency f (Hz).
交流電流Iの周波数fを変化させながら試料電極121のインピーダンスの絶対値|Z|を測定すると、そのインピーダンスの絶対値|Z|は、図3に示したように、周波数fが増加するにしたがって次第に減少する。より具体的には、インピーダンスの絶対値|Z|は、周波数fが増加すると、緩やかに減少してから(傾きが大きい領域L1)、略一定になったのち(傾きが小さい領域L2)、急激に減少してから(傾きが大きい領域L3)、再び略一定になる(傾きが小さい領域L4)。なお、領域L2に関して説明した「略一定」とは、領域L1,L3のそれぞれにおけるインピーダンスの絶対値|Z|の傾きに対して、領域L2におけるインピーダンス|Z|の傾きが十分に小さくなることを意味する。
When the absolute value | Z | of the impedance of the sample electrode 121 is measured while changing the frequency f of the alternating current I, as shown in FIG. 3, the absolute value | Z | of the impedance increases as the frequency f increases. It will decrease gradually. More specifically, when the frequency f increases, the absolute value | Z | of impedance gradually decreases (region with large inclination L1), then becomes substantially constant (region with small inclination L2), (Region L3 with a large inclination), it becomes substantially constant again (region L4 with a small inclination). Note that “substantially constant” described with respect to the area L2 means that the slope of the impedance | Z | in the area L2 is sufficiently smaller than the slope of the absolute value | Z | of the areas L1 and L3. means.
この場合には、インピーダンスの絶対値|Z|は、主に、以下で説明する4種類の抵抗成分R1~R4を含んでいる。
In this case, the absolute value | Z | of the impedance mainly includes four types of resistance components R1 to R4 described below.
抵抗成分R1は、例えば、試料電極121の表面に存在する電荷(イオン)が電解質123に向かう方向に濃度拡散する拡散抵抗に起因する成分である。なお、抵抗成分R1は、例えば、周波数fが増加すると、領域L1において次第に減少することにより、領域L2~L4において消滅する。
The resistance component R1 is, for example, a component resulting from a diffusion resistance in which charges (ions) present on the surface of the sample electrode 121 diffuse in a direction toward the electrolyte 123. The resistance component R1 disappears in the regions L2 to L4, for example, as the frequency f increases, the resistance component R1 gradually decreases in the region L1.
抵抗成分R2は、例えば、試料電極121の表面に存在する電荷(イオン)が試料電極121の内部に向かう方向に濃度拡散する拡散抵抗に起因する成分である。なお、抵抗成分R2は、例えば、上記した抵抗成分R1と同様に、周波数fが増加すると、領域L1において次第に減少することにより、領域L2~L4において消滅する。
The resistance component R2 is, for example, a component resulting from diffusion resistance in which charges (ions) present on the surface of the sample electrode 121 are diffused in a direction toward the inside of the sample electrode 121. The resistance component R2 disappears in the regions L2 to L4 by decreasing gradually in the region L1 as the frequency f increases, for example, similarly to the above-described resistance component R1.
抵抗成分R3は、例えば、試料電極121とその試料電極121の表面に存在する電荷(イオン)との間において発生する電荷移動反応に起因する電荷移動抵抗成分である。なお、抵抗成分R3は、例えば、周波数fが増加すると、領域L1,L2において略一定になったのち、領域L3において急激に減少することにより、領域L4において消滅する。
The resistance component R3 is, for example, a charge transfer resistance component resulting from a charge transfer reaction generated between the sample electrode 121 and a charge (ion) present on the surface of the sample electrode 121. The resistance component R3 disappears in the region L4 by, for example, becoming substantially constant in the regions L1 and L2 when the frequency f increases, and then rapidly decreasing in the region L3.
抵抗成分R4は、例えば、溶液抵抗、電極被膜(SEI:Solid Electrolyte Interphase)抵抗および電子抵抗に起因する成分である。溶液抵抗は、電解質123が電解液を含んでいる場合において、その電解液自体の抵抗である。SEI抵抗は、電荷移動反応時において電解質123の分解反応などに起因して試料電極121などの表面に形成される被膜の抵抗である。電子抵抗は、電解質123中を電子が移動する場合の抵抗である。なお、抵抗成分R4は、例えば、周波数fに依存せずに、領域L1~l4において略一定である。
The resistance component R4 is, for example, a component resulting from a solution resistance, an electrode coating (SEI: Solid Electrolyte Interphase) resistance, and an electronic resistance. The solution resistance is the resistance of the electrolyte itself when the electrolyte 123 contains the electrolyte. The SEI resistance is the resistance of the film formed on the surface of the sample electrode 121 or the like due to the decomposition reaction of the electrolyte 123 or the like during the charge transfer reaction. The electron resistance is a resistance when electrons move in the electrolyte 123. The resistance component R4 is, for example, substantially constant in the regions L1 to L4 without depending on the frequency f.
これらの抵抗成分R1~R4を踏まえると、インピーダンスの絶対値|Z|は、周波数fが増加するにしたがって、以下で説明するように変化する。最初に、領域L1では、インピーダンスZが抵抗成分R1~R4を含みながら緩やかに減少する。続いて、領域L2では、抵抗成分R1,R2のそれぞれが既に消滅したことに伴い、インピーダンスの絶対値|Z|が抵抗成分R3,R4を含みながら略一定になる。続いて、領域L3では、インピーダンスの絶対値|Z|が引き続き抵抗成分R3,R4を含みながら急激に減少する。この場合には、抵抗成分R4が略一定である一方で、抵抗成分R3が急激に減少する。最後に、領域L4では、抵抗成分R3が既に消滅したことに伴い、インピーダンスZが抵抗成分R4だけを含みながら略一定になる。
Considering these resistance components R1 to R4, the absolute value | Z | of the impedance changes as described below as the frequency f increases. First, in the region L1, the impedance Z gradually decreases while including the resistance components R1 to R4. Subsequently, in the region L2, as the resistance components R1 and R2 have already disappeared, the absolute value | Z | of the impedance becomes substantially constant while including the resistance components R3 and R4. Subsequently, in the region L3, the absolute value | Z | of the impedance continues to rapidly decrease while including the resistance components R3 and R4. In this case, the resistance component R4 sharply decreases while the resistance component R4 is substantially constant. Finally, in the region L4, as the resistance component R3 has already disappeared, the impedance Z becomes substantially constant while including only the resistance component R4.
ここで、周波数fが増加することに応じて、抵抗成分R1,R2のそれぞれが消滅する周波数f(f1)と、抵抗成分R3が減少し始める周波数f(f2)とに着目すると、上記した特定周波数範囲Rfは、周波数f1,f2の間の範囲である。関数発生部13により設定される周波数fが特定周波数範囲Rfの範囲内であれば、電荷の拡散に起因する抵抗成分R1,R2が解析精度に影響を及ぼしにくくなるため、その解析精度が向上するからである。
Here, focusing on the frequency f (f1) at which each of the resistance components R1 and R2 disappears and the frequency f (f2) at which the resistance component R3 starts to decrease in response to the increase of the frequency f, The frequency range Rf is a range between the frequencies f1 and f2. If the frequency f set by the function generation unit 13 is within the range of the specific frequency range Rf, the resistance components R1 and R2 caused by the diffusion of electric charges hardly affect the analysis accuracy, and the analysis accuracy is improved. It is from.
なお、関数発生部13により設定される周波数fの値は、上記したように、特定周波数範囲Rfの範囲内の値であれば、特に限定されない。中でも、周波数fの値は、周波数f1,f2の間においてn次の非線形成分の過電圧振幅Vn を測定した際に、そのn次の非線形成分の過電圧振幅Vn の虚部がゼロに近くなる値であることが好ましい。電荷移動抵抗のn次の非線形成分の過電圧振幅Vn は理論的にはゼロであるため、上記した虚部がゼロに近いということは、その周波数fにおける抵抗成分がほぼ電荷移動抵抗だけになると考えられるからである。
The value of the frequency f set by the function generation unit 13 is not particularly limited as long as it is a value within the specific frequency range Rf as described above. Above all, when the overvoltage amplitude V n of the nth nonlinear component is measured between the frequencies f 1 and f 2, the imaginary part of the overvoltage amplitude V n of the nth nonlinear component is close to zero. It is preferable that it is a value. Since the overvoltage amplitude V n of the nth nonlinear component of the charge transfer resistance is theoretically zero, the fact that the imaginary part described above is close to zero means that the resistance component at that frequency f is almost only the charge transfer resistance It is because it is thought.
<4.動作(解析方法)>
次に、解析装置の動作に関して説明する。 <4. Operation (analysis method)>
Next, the operation of the analysis device will be described.
次に、解析装置の動作に関して説明する。 <4. Operation (analysis method)>
Next, the operation of the analysis device will be described.
なお、本技術の一実施形態の解析方法は、以下で説明する解析装置の動作により説明される。よって、本技術の一実施形態の解析方法に関しては、以下で併せて説明する。以下では、上記した図1~図3と共に、図4を参照する。
In addition, the analysis method of one embodiment of the present technology is described by the operation of the analysis device described below. Therefore, an analysis method according to an embodiment of the present technology will be described together below. In the following, reference will be made to FIG. 4 together with FIGS. 1 to 3 described above.
図4は、解析装置を用いた解析方法の流れを説明している。この解析装置は、例えば、図4に示した手順により、試料電極121の電荷移動特性(交換電流密度i0 および電荷移動係数α)を解析する。
FIG. 4 illustrates the flow of an analysis method using an analysis apparatus. The analyzer analyzes the charge transfer characteristics (exchange current density i 0 and charge transfer coefficient α) of the sample electrode 121 according to the procedure shown in FIG. 4, for example.
最初に、関数発生部13は、後工程において試料12(試料電極121)に供給される交流電流Iの周波数fを設定する(図4:ステップS1)。
First, the function generation unit 13 sets the frequency f of the alternating current I supplied to the sample 12 (sample electrode 121) in the later process (FIG. 4: step S1).
この場合には、関数発生部13は、例えば、上記したように、電気化学インピーダンス法を用いて試料電極121のインピーダンスの絶対値|Z|の変化挙動(図3)を調べることにより、特定周波数範囲Rfを特定したのち、その特定周波数範囲Rfの範囲内の値となるように周波数fの値を設定する。
In this case, for example, as described above, the function generation unit 13 checks the change behavior (FIG. 3) of the absolute value | Z | of the impedance of the sample electrode 121 using the electrochemical impedance method to obtain the specific frequency. After specifying the range Rf, the value of the frequency f is set to be a value within the range of the specific frequency range Rf.
続いて、電流供給部14は、関数発生部13により設定された周波数fに基づいて、試料電極(作用極)121および対極122を介して試料12に周波数fの交流電流Iを供給する(図4:ステップS2)。
Subsequently, the current supply unit 14 supplies an alternating current I of frequency f to the sample 12 via the sample electrode (working electrode) 121 and the counter electrode 122 based on the frequency f set by the function generation unit 13 (see FIG. 4: Step S2).
これにより、試料電極121の表面に存在するイオン種の電荷移動反応が進行する。より具体的には、交流電流Iの供給に応じて、試料電極121の表面に存在するイオン種の酸化反応および還元反応が繰り返される。
Thereby, the charge transfer reaction of ion species present on the surface of the sample electrode 121 proceeds. More specifically, in response to the supply of alternating current I, the oxidation reaction and reduction reaction of ion species present on the surface of sample electrode 121 are repeated.
続いて、過電圧測定部15は、交流電流Iの供給に応じて試料電極121において発生した過電圧Eを測定する(図4:ステップS3)。
Subsequently, the overvoltage measuring unit 15 measures the overvoltage E generated in the sample electrode 121 in response to the supply of the alternating current I (FIG. 4: step S3).
続いて、過電圧振幅測定部16は、過電圧Eに基づいて、2以上の周波数成分の過電圧振幅(2以上のn次の非線形成分の過電圧振幅Vn )として、2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 を測定する(図4:ステップS4,S5)。なお、過電圧振幅測定部16により測定された過電圧Eの波形は、波形表示部18に表示される。以下では、2以上のn次の非線形成分の過電圧振幅Vn (2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 )を測定する方法を「非線形交流インピーダンス法」と呼称する。
Subsequently, the overvoltage amplitude measuring unit 16 determines the overvoltage amplitude V of the second-order nonlinear component as the overvoltage amplitude of two or more frequency components (the overvoltage amplitude V n of the n-th nonlinear component of two or more) based on the overvoltage E. overvoltage amplitude V 3 of 2 and third-order nonlinear component measuring (Figure 4: step S4, S5). The waveform of the overvoltage E measured by the overvoltage amplitude measurement unit 16 is displayed on the waveform display unit 18. In the following, the “non-linear alternating current impedance method” is a method of measuring the overvoltage amplitude V n of 2 or more n-th nonlinear components (the overvoltage amplitude V 2 of the second nonlinear component and the overvoltage amplitude V 3 of the third nonlinear component) It is called.
続いて、演算部17は、2次の非線形成分の過電圧振幅V2 の実測値および3次の非線形成分の過電圧振幅V3 の実測値に基づいて、式(1)を用いて電荷移動係数αを演算する(図4:ステップS6)。この場合には、演算部17は、記憶部20に記憶されている一連の定数(気体定数R、絶対温度T、反応電子数nおよびファラデー定数F)を読み込む。また、演算部17は、必要に応じて、記憶部20に記憶されている換算表(表1)を読み込むことにより、βの値を電荷移動係数αの値に換算する。なお、電荷移動係数αの演算結果は、解析表示部19に表示される。
Subsequently, the operating unit 17, based on the measured value of the overvoltage amplitude V 3 of the actual measurement value and the third-order nonlinear component of the overvoltage amplitude V 2 of the second-order nonlinear component, charge transfer coefficient using equation (1) alpha Are calculated (FIG. 4: step S6). In this case, the calculation unit 17 reads a series of constants (gas constant R, absolute temperature T, number of reaction electrons n, and Faraday constant F) stored in the storage unit 20. In addition, the calculation unit 17 converts the value of β into the value of the charge transfer coefficient α by reading the conversion table (Table 1) stored in the storage unit 20 as necessary. The calculation result of the charge transfer coefficient α is displayed on the analysis display unit 19.
最後に、演算部17は、交流電流Iと、2次の非線形成分の過電圧振幅V2 の実測値と、3次の非線形成分の過電圧振幅V3 の実測値とに基づいて、式(2)または式(3)を用いて交換電流密度i0 を演算する(図4:ステップS7)。この場合には、演算部17は、記憶部20に記憶されている一連の定数(気体定数R、絶対温度T、反応電子数nおよびファラデー定数F)を読み込む。なお、交換電流密度i0 の演算結果は、解析表示部19に表示される。
Finally, the calculation unit 17, based on the AC current I, to the measured value of the overvoltage amplitude V 2 of the second-order nonlinear component, the measured value of the overvoltage amplitude V 3 of the third-order non-linear component, equation (2) or it calculates the exchange current density i 0 using equation (3) (Fig. 4: step S7). In this case, the calculation unit 17 reads a series of constants (gas constant R, absolute temperature T, number of reaction electrons n, and Faraday constant F) stored in the storage unit 20. The calculation result of the exchange current density i 0 is displayed on the analysis display unit 19.
これにより、試料電極121の電荷移動特性(交換電流密度i0 および電荷移動係数α)が解析される。
Thereby, the charge transfer characteristics (exchange current density i 0 and charge transfer coefficient α) of the sample electrode 121 are analyzed.
<5.作用および効果>
最後に、解析装置の作用および効果に関して説明する。 <5. Action and effect>
Finally, the operation and effects of the analysis device will be described.
最後に、解析装置の作用および効果に関して説明する。 <5. Action and effect>
Finally, the operation and effects of the analysis device will be described.
本実施形態の解析装置によれば、試料電極121に交流電流Iを供給し、その交流電流Iの供給に応じて試料電極121において発生した過電圧応答に基づいて、その試料電極121に関する交換電流密度i0 および電荷移動係数αを演算している。よって、以下で説明する理由により、多様な電極材料の電荷移動特性を解析することができる。
According to the analysis apparatus of the present embodiment, the alternating current I is supplied to the sample electrode 121, and the exchange current density of the sample electrode 121 is changed based on the overvoltage response generated in the sample electrode 121 in response to the supply of the alternating current I. i 0 and charge transfer coefficient α are calculated. Therefore, the charge transfer characteristics of various electrode materials can be analyzed for the reasons described below.
試料電極121の電荷移動特性を解析する他の解析装置(比較例の解析装置)としては、例えば、上記したように、試料電極121に直流電流を供給すると共に電流と過電圧との関係を調べることにより、Tafel式を用いて試料電極121の電荷移動特性を解析する装置が挙げられる。
As another analysis device (analyzer of a comparative example) which analyzes the charge transfer characteristic of sample electrode 121, for example, as mentioned above, while examining direct current to sample electrode 121 and examining the relation between current and overvoltage Thus, an apparatus that analyzes the charge transfer characteristic of the sample electrode 121 using the Tafel equation can be mentioned.
しかしながら、試料電極121に直流電流を供給する比較例の解析装置では、上記したように、電荷移動反応の進行過程において試料電極121の組成が変化するため、本来の組成における試料電極121の電荷移動特性を解析することができない。よって、電荷移動特性を解析できる試料電極121は、電荷移動反応の進行過程において組成が変化しない試料電極121だけに限定されるため、多様な試料電極121の電荷移動特性を解析することができない。
However, in the analysis device of the comparative example for supplying a direct current to the sample electrode 121, as described above, the composition of the sample electrode 121 changes in the progress of the charge transfer reaction, so the charge transfer of the sample electrode 121 in the original composition Characteristics can not be analyzed. Therefore, the sample electrode 121 capable of analyzing the charge transfer characteristic is limited to only the sample electrode 121 whose composition does not change in the process of the charge transfer reaction, and thus the charge transfer characteristic of various sample electrodes 121 can not be analyzed.
これに対して、試料電極121に交流電流Iを供給する本実施形態の解析装置では、上記したように、電荷移動反応の進行過程において試料電極121の組成が変化しないため、本来の組成における試料電極121の電荷移動特性を解析することができる。よって、電荷移動特性を解析できる試料電極121は、電荷移動反応の進行過程において組成が変化しない試料電極121だけに限定されないため、多様な試料電極121の電荷移動特性を解析することができる。
On the other hand, in the analysis apparatus of the present embodiment for supplying the alternating current I to the sample electrode 121, as described above, the composition of the sample electrode 121 does not change in the process of charge transfer reaction. The charge transfer characteristics of the electrode 121 can be analyzed. Therefore, the sample electrode 121 capable of analyzing the charge transfer characteristic is not limited to only the sample electrode 121 whose composition does not change in the process of the charge transfer reaction, so that the charge transfer characteristic of various sample electrodes 121 can be analyzed.
特に、本実施形態の解析装置では、過電圧応答(過電圧E)に基づいて2以上の周波数成分の過電圧振幅(2以上のn次の非線形成分の過電圧振幅Vn )を測定することにより、その2以上のn次の非線形成分の過電圧振幅Vn に基づいて交換電流密度i0 および電荷移動係数αを演算すれば、その2以上のn次の非線形成分の過電圧振幅Vn の影響を加味することにより交換電流密度i0 および電荷移動係数αが演算される。よって、解析精度がより向上するため、より高い効果を得ることができる。
In particular, in the analysis apparatus of the present embodiment, the overvoltage amplitude of two or more frequency components (the overvoltage amplitude V n of the n-order non-linear component of 2 or more) is measured based on the overvoltage response (overvoltage E). If the exchange current density i 0 and the charge transfer coefficient α are calculated based on the overvoltage amplitude V n of the n-th nonlinear component described above, the influence of the overvoltage amplitude V n of the two or more n-th nonlinear components is taken into consideration. Thus, the exchange current density i 0 and the charge transfer coefficient α are calculated. Therefore, since analysis accuracy is further improved, higher effects can be obtained.
この場合には、2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 を測定することにより、その2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 に基づいて交換電流密度i0 および電荷移動係数αを演算すれば、解析精度がさらに向上するため、さらに高い効果を得ることができる。
In this case, by measuring the over-voltage amplitude V 3 of the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component, the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component If the exchange current density i 0 and the charge transfer coefficient α are calculated based on the overvoltage amplitude V 3 , the analysis accuracy is further improved, and a higher effect can be obtained.
また、式(1)を用いて電荷移動係数αを演算したのち、その電荷移動係数αの演算値に基づいて式(2)または式(3)を用いて交換電流密度i0 を演算すれば、解析精度が十分に向上するため、十分に高い効果を得ることができる。
Further, after calculating charge transfer coefficient α using equation (1), if exchange current density i 0 is calculated using equation (2) or equation (3) based on the calculated value of charge transfer coefficient α Since the analysis accuracy is sufficiently improved, a sufficiently high effect can be obtained.
また、電気化学インピーダンス法(線形交流インピーダンス法)を用いて試料電極121のインピーダンスの絶対値|Z|の変化挙動(図3)を調べることにより、特定周波数範囲Rfの範囲内の値となるように交流電流Iの周波数fを設定すれば、上記したように、電荷の拡散に起因する抵抗成分R1,R2が解析精度に影響を及ぼしにくくなる。よって、解析精度が向上するため、より高い効果を得ることができる。
Also, by examining the change behavior (FIG. 3) of the absolute value | Z | of the impedance of the sample electrode 121 using the electrochemical impedance method (linear alternating current impedance method), it becomes a value within the specific frequency range Rf If the frequency f of the alternating current I is set as described above, as described above, the resistance components R1 and R2 resulting from the diffusion of the charge hardly affect the analysis accuracy. Therefore, since the analysis accuracy is improved, a higher effect can be obtained.
なお、上記した本実施形態の解析装置に関する一連の作用および効果は、本実施形態の解析方法においても同様に得られる。
In addition, a series of operations and effects relating to the analysis apparatus of the present embodiment described above can be obtained similarly in the analysis method of the present embodiment.
<6.変形例>
上記した解析装置の構成および解析方法の手順などは、適宜、変更可能である。 <6. Modified example>
The configuration of the analysis apparatus described above and the procedure of the analysis method can be changed as appropriate.
上記した解析装置の構成および解析方法の手順などは、適宜、変更可能である。 <6. Modified example>
The configuration of the analysis apparatus described above and the procedure of the analysis method can be changed as appropriate.
具体的には、上記した解析、すなわちn次の非線形成分の過電圧振幅Vn の影響が加味された交換電流密度i0 および電荷移動係数αの演算処理を行うことが可能であれば、解析装置の構成は、任意に変更可能である。以下で説明する場合においても、同様の効果を得ることができる。
Specifically, if it is possible to perform the above-described analysis, that is, if it is possible to calculate the exchange current density i 0 and the charge transfer coefficient α in which the influence of the overvoltage amplitude V n of the nth nonlinear component is taken into account, an analyzer The configuration of can be arbitrarily changed. Similar effects can be obtained also in the case described below.
例えば、解析装置が関数発生部13、電流供給部14、過電圧測定部15および過電圧振幅測定部16を備えるようにしたが、それらのうちの1つが2つ以上の役割を兼ねるようにしてもよい。具体的には、例えば、ガルバノスタットを用いれば、そのガルバノスタットが電流供給部14および過電圧測定部15のそれぞれの役割を兼ねることができる。また、例えば、ロックインアンプを用いれば、そのロックインアンプが関数発生部13および過電圧振幅測定部16のそれぞれの役割を兼ねることができる。
For example, although the analysis apparatus is provided with the function generation unit 13, the current supply unit 14, the overvoltage measurement unit 15, and the overvoltage amplitude measurement unit 16, one of them may serve as two or more roles. . Specifically, for example, if a galvanostat is used, the galvanostat can also serve as each of the current supply unit 14 and the overvoltage measurement unit 15. Also, for example, if a lock-in amplifier is used, the lock-in amplifier can serve as each of the functions of the function generation unit 13 and the overvoltage amplitude measurement unit 16.
また、例えば、解析装置が制御部11と共に演算部17などを備えるようにしたが、その制御部11が演算部17などのうちのいずれか1種類または2種類以上の役割を兼ねるようにしてもよい。この場合には、例えば、制御部11が中央演算処理装置などを含んでいるため、その制御部11が演算部17などのうちのいずれか1種類または2種類以上の役割を兼ねることができる。
Further, for example, although the analysis device includes the operation unit 17 and the like together with the control unit 11, the control unit 11 may also play a role of one or more of the operation unit 17 and the like. Good. In this case, for example, since the control unit 11 includes a central processing unit or the like, the control unit 11 can also play a role of one or more of the calculation unit 17 and the like.
この他、例えば、特定周波数範囲Rfが既知であるため、関数発生部13による交流電流Iの周波数fの設定作業を行わなくても、あらかじめ適正な値となるように交流電流Iの周波数fを設定できる場合には、その関数発生部13による交流電流Iの周波数の設定作業を省略してもよい。この場合には、例えば、交流電流Iの周波数fの適正値(特定周波数範囲Rf内の値)があらかじめ記憶部20に記憶されていてもよいし、解析装置の使用者が解析表示部19を用いて交流電流Iの周波数fの適正値を入力してもよい。
Besides, for example, since the specific frequency range Rf is known, the frequency f of the alternating current I is made to be an appropriate value in advance without setting the frequency f of the alternating current I by the function generating unit 13. When the setting can be performed, the setting operation of the frequency of the alternating current I by the function generation unit 13 may be omitted. In this case, for example, an appropriate value (a value within the specific frequency range Rf) of the frequency f of the alternating current I may be stored in the storage unit 20 in advance, and the user of the analysis device An appropriate value of the frequency f of the alternating current I may be input.
本技術の実施例に関して説明する。なお、説明する順序は、下記の通りである。
1.本技術の解析方法
2.比較例の解析方法
3.本技術の解析方法と比較例の解析方法との比較
An embodiment of the present technology will be described. The order to be described is as follows.
1. Analysis method of this technology Analysis method of comparative example 3. Comparison between the analysis method of the present technology and the analysis method of the comparative example
1.本技術の解析方法
2.比較例の解析方法
3.本技術の解析方法と比較例の解析方法との比較
An embodiment of the present technology will be described. The order to be described is as follows.
1. Analysis method of this technology Analysis method of comparative example 3. Comparison between the analysis method of the present technology and the analysis method of the comparative example
<1.本技術の解析方法>
本技術の解析方法を用いて、試料電極の電荷移動特性(交換電流密度i0 および電荷移動係数α)を解析した。 <1. Analysis method of this technology>
The charge transfer characteristics (exchange current density i 0 and charge transfer coefficient α) of the sample electrode were analyzed using the analysis method of the present technology.
本技術の解析方法を用いて、試料電極の電荷移動特性(交換電流密度i0 および電荷移動係数α)を解析した。 <1. Analysis method of this technology>
The charge transfer characteristics (exchange current density i 0 and charge transfer coefficient α) of the sample electrode were analyzed using the analysis method of the present technology.
試料電極の電荷移動特性を解析する場合には、最初に、その試料電極を含む試料を準備した。ここでは、試料として、試料電極(白金ディスク電極,直径=5mm)と、参照極(銀/塩化銀電極、内部溶液は濃度=3mol/dm3 である塩化ナトリウム水溶液)と、対極(白金線,直径=0.5mm×長さ=3cm)と、電解液(硫酸鉄(II)と硫酸鉄(III)と硫酸マグネシウムと硫酸とを含む水溶液)とを含む電気化学測定システムを用いた。電解液中における各成分の濃度は、硫酸鉄(II)の濃度=0.05mol/dm3 、硫酸鉄(III)の濃度=0.05mol/dm3 、硫酸マグネシウムの濃度=1mol/dm3 、硫酸の濃度=1mol/dm3 とした。なお、電解液を調製する場合には、硫酸鉄(II)が空気中の酸素に起因して酸化しないように、調製途中の電解液に水飽和窒素ガスを十分に吹き込んだ。
When analyzing the charge transfer characteristics of a sample electrode, first, a sample including the sample electrode was prepared. Here, as a sample, a sample electrode (platinum disk electrode, diameter = 5 mm), a reference electrode (silver / silver chloride electrode, an internal solution is a sodium chloride aqueous solution having a concentration = 3 mol / dm 3 ) and a counter electrode (platinum wire, An electrochemical measurement system including a diameter of 0.5 mm × length of 3 cm and an electrolytic solution (an aqueous solution containing iron (II) sulfate, iron (III) sulfate, magnesium sulfate and sulfuric acid) was used. The concentration of each component in the electrolytic solution is: concentration of iron (II) sulfate = 0.05 mol / dm 3 , concentration of iron (III) sulfate = 0.05 mol / dm 3 , concentration of magnesium sulfate = 1 mol / dm 3 , The concentration of sulfuric acid was 1 mol / dm 3 . In the preparation of the electrolyte, water-saturated nitrogen gas was sufficiently blown into the electrolyte during preparation so that the iron (II) sulfate was not oxidized due to oxygen in the air.
続いて、電気化学インピーダンス法(線形交流インピーダンス法)を用いて試料電極の抵抗特性を調べたところ、図5および図6に示した結果が得られた。図5は、Cole-Coleプロット(横軸:インピーダンスの実数部ReZ(Ωcm2 ),縦軸:インピーダンスの虚数部ImZ(Ωcm2 ))を表していると共に、図6は、Bodeプロット(横軸:周波数f(Hz),縦軸:インピーダンスの絶対値|Z|(Ωcm2 ))を表している。この場合には、周波数fの開始値=100kHz、周波数fの終了値=100mHz、電流振幅=0.5mAとした。
Subsequently, when the resistance characteristics of the sample electrode were examined using an electrochemical impedance method (linear alternating current impedance method), the results shown in FIGS. 5 and 6 were obtained. FIG. 5 shows a Cole-Cole plot (horizontal axis: real part ReZ (Ωcm 2 ) of impedance, vertical axis: imaginary part ImZ (Ωcm 2 ) of impedance), and FIG. 6 shows Bode plot (horizontal axis) : Frequency f (Hz), vertical axis: absolute value of impedance | Z | (Ω cm 2 )). In this case, the start value of the frequency f = 100 kHz, the end value of the frequency f = 100 mHz, and the current amplitude = 0.5 mA.
Cole-Coleプロット(図5)では、高周波数領域に半円弧状の曲線P1が得られると共に、低周波数領域に傾きが45°である直線P2が得られた。すなわち、Cole-Coleプロットでは、典型的なRandles型等価回路の形状が描かれた。半円弧状の曲線P1が得られた高周波数領域は、電荷移動抵抗に帰属する領域であると共に、直線P2が得られた低周波数領域は、拡散抵抗に帰属する領域であると考えられる。
In the Cole-Cole plot (FIG. 5), a semicircular arc-shaped curve P1 was obtained in the high frequency region, and a straight line P2 having a slope of 45 ° was obtained in the low frequency region. That is, the Cole-Cole plot depicts the shape of a typical Randles-type equivalent circuit. The high frequency region in which the semicircular arc P1 is obtained is considered to be a region belonging to the charge transfer resistance, and the low frequency region in which the straight line P2 is obtained is considered to be a region belonging to the diffusion resistance.
一方、Bodeプロット(図6)では、図3を参照しながら説明したように、周波数fの変化に応じて、インピーダンスの絶対値|Z|が領域L1~L4を含みながら変化した。この場合には、周波数fが約1Hzよりも小さい周波数領域が領域L1に対応しており、周波数fが約1Hz~100Hzである周波数領域が領域L2に対応しており、周波数fが約100Hzよりも大きい周波数領域が領域L3,L4に対応していた。このBodeプロットに基づいて、特定周波数範囲Rfが約1Hz~100Hzであると共に、Cole-Coleプロット中において高周波数領域と低周波数領域との境界は約1Hz~100Hzであることが確認された。
On the other hand, in the Bode plot (FIG. 6), as described with reference to FIG. 3, the absolute value | Z | of the impedance changes while including the regions L1 to L4 according to the change of the frequency f. In this case, a frequency range in which the frequency f is smaller than approximately 1 Hz corresponds to the range L1, and a frequency range in which the frequency f is approximately 1 Hz to 100 Hz corresponds to the range L2, and the frequency f is greater than approximately 100 Hz. The large frequency range corresponds to the range L3, L4. Based on this Bode plot, it was confirmed that the specific frequency range Rf is about 1 Hz to 100 Hz, and the boundary between the high frequency region and the low frequency region is about 1 Hz to 100 Hz in the Cole-Cole plot.
すなわち、周波数fが約100Hzよりも大きい周波数領域(領域L3,L4)において生じる抵抗成分は、主に、電子抵抗および電荷移動抵抗である。周波数fが約1Hzよりも小さい周波数領域(領域L1)において生じる抵抗成分は、主に、電子抵抗、電荷移動特性および拡散抵抗である。周波数fが約1Hz~100Hzである周波数領域(領域L2)において生じる抵抗成分は、主に、電子抵抗および電荷移動抵抗である。
That is, the resistance components generated in the frequency region (regions L3 and L4) in which the frequency f is larger than about 100 Hz are mainly electronic resistance and charge transfer resistance. The resistance components that occur in the frequency region (region L1) where the frequency f is smaller than about 1 Hz are mainly electronic resistance, charge transfer characteristics and diffusion resistance. The resistive components occurring in the frequency range (range L2) where the frequency f is about 1 Hz to 100 Hz are mainly electronic resistance and charge transfer resistance.
最後に、上記した構成を有する試料を用いて、上記した非線形交流インピーダンス法を用いて2次の非線形成分の過電圧振幅V2 および3次の非線形成分の過電圧振幅V3 を測定した。この場合には、周波数fの開始値=100Hz、周波数fの終了値=1Hz、電流振幅=1mAとした。これにより、上記した式(1)~式(3)を用いて交換電流密度i0 および電荷移動係数αを算出したところ、表2に示した結果が得られた。
Finally, using samples having the configuration described above, was measured overvoltage amplitude V 3 of the overvoltage amplitude V 2 and third-order nonlinear component of the second-order nonlinear component using a non-linear alternating current impedance method described above. In this case, the start value of the frequency f = 100 Hz, the end value of the frequency f = 1 Hz, and the current amplitude = 1 mA. As a result, when the exchange current density i 0 and the charge transfer coefficient α were calculated using the above-mentioned equations (1) to (3), the results shown in Table 2 were obtained.
表2に示したように、上記した演算理論(式(1)~式(3))を用いた本技術の解析方法により、電荷移動係数αが演算されたのち、その電荷移動係数αの演算値を利用して交換電流密度i0 が算出された。電荷移動係数αおよび交換電流密度i0 は、電荷移動素子に供給される交流電流Iの周波数fに応じて変動した。
As shown in Table 2, after the charge transfer coefficient α is calculated by the analysis method of the present technology using the above-described calculation theory (equations (1) to (3)), the charge transfer coefficient α is calculated. The exchange current density i 0 was calculated using the value. The charge transfer coefficient α and the exchange current density i 0 fluctuated according to the frequency f of the alternating current I supplied to the charge transfer device.
<2.比較例の解析方法>
比較のために、同様の構成を有する試料を用いて、上記したAllen-Hickling法を用いたことを除いて同様の手順により、試料電極の電荷移動特性(交換電流密度i0 および電荷移動係数α)を解析した。 <2. Analysis method of comparative example>
For comparison, charge transfer characteristics of the sample electrode (exchange current density i 0 and charge transfer coefficient α) are obtained by the same procedure except that the sample having the same configuration is used and the above-mentioned Allen-Hickling method is used. Was analyzed.
比較のために、同様の構成を有する試料を用いて、上記したAllen-Hickling法を用いたことを除いて同様の手順により、試料電極の電荷移動特性(交換電流密度i0 および電荷移動係数α)を解析した。 <2. Analysis method of comparative example>
For comparison, charge transfer characteristics of the sample electrode (exchange current density i 0 and charge transfer coefficient α) are obtained by the same procedure except that the sample having the same configuration is used and the above-mentioned Allen-Hickling method is used. Was analyzed.
この場合には、開始電位=410mV、終了電位=550mV、電位の測定間隔=10mVとして、各電位において200秒間ずつ保持したのちの電流を測定し、その電流をiおよび過電圧をηとしてlog[i/(1-efη)]とηとの関係をプロットすることにより、切片および傾きに基づいて交換電流密度i0 および電荷移動係数αを算出した。この結果、平衡電位=485mV、電荷移動係数α=0.54、交換電流密度i0 =0.24mA/cm2 であった。
In this case, the start potential is 410 mV, the end potential is 550 mV, and the measurement interval of potential is 10 mV. The current after holding for 200 seconds at each potential is measured, and the current is log i The exchange current density i 0 and the charge transfer coefficient α were calculated based on the intercept and the slope by plotting the relationship between / (1−e f η)] and お よ び. As a result, the equilibrium potential was 485 mV, the charge transfer coefficient α was 0.54, and the exchange current density i 0 was 0.24 mA / cm 2 .
<3.本技術の解析方法と比較例の解析方法との比較>
本技術の解析方法による解析結果と比較例の解析方法による解析結果とを互いに比較したところ、以下の傾向が得られた。 <3. Comparison of the analysis method of the present technology and the analysis method of the comparative example>
When the analysis result by the analysis method of the present technology and the analysis result by the analysis method of the comparative example are compared with each other, the following tendency is obtained.
本技術の解析方法による解析結果と比較例の解析方法による解析結果とを互いに比較したところ、以下の傾向が得られた。 <3. Comparison of the analysis method of the present technology and the analysis method of the comparative example>
When the analysis result by the analysis method of the present technology and the analysis result by the analysis method of the comparative example are compared with each other, the following tendency is obtained.
まず、比較例の解析方法により演算された電荷移動係数αは、上記したように、0.54であったのに対して、本技術の解析方法により演算された電荷移動係数αは、交流電流Iの周波数fが特定周波数範囲Rfの範囲内である約10Hzの近傍において、約0.50であった。このため、本技術の解析方法により演算された電荷移動係数αの値は、比較例の解析方法により演算された電荷移動係数αの値にほぼ近い値となった。
First, while the charge transfer coefficient α calculated by the analysis method of the comparative example is 0.54 as described above, the charge transfer coefficient α calculated by the analysis method of the present technology is an alternating current The frequency f of I was about 0.50 in the vicinity of about 10 Hz within the range of the specific frequency range Rf. Therefore, the value of the charge transfer coefficient α calculated by the analysis method of the present technology has a value substantially close to the value of the charge transfer coefficient α calculated by the analysis method of the comparative example.
また、比較例の解析方法により演算された交換電流密度i0 は、上記したように、0.24mA/cm2 であったのに対して、本技術の解析方法により演算された交換電流密度i0 (周波数f=10Hz)は、約0.79mA/cm2 であった。このため、本技術の解析方法により演算された交換電流密度i0 の値は、比較例の解析方法により演算された交換電流密度i0 の値にほぼ近い値、すなわち同じ桁の値となった。
Further, while the exchange current density i 0 calculated by the analysis method of the comparative example was 0.24 mA / cm 2 as described above, the exchange current density i calculated by the analysis method of the present technology is 0 (frequency f = 10 Hz) was about 0.79 mA / cm 2 . Therefore, the value of the exchange current density i 0 calculated by the analysis method of the present technology is a value substantially close to the value of the exchange current density i 0 calculated by the analysis method of the comparative example, that is, the value of the same digit .
これらの結果から、試料電極に交流電流を供給し、その交流電流の供給に応じて試料電極において発生した過電圧応答に基づいて、その試料電極に関する電荷移動特性(交換電流密度i0 および電荷移動係数α)を解析することにより、多様な試料電極の電荷移動特性が解析された。
From these results, the alternating current is supplied to the sample electrode, and the charge transfer characteristic (exchange current density i 0 and the charge transfer coefficient for the sample electrode) based on the overvoltage response generated in the sample electrode in response to the supply of the alternating current. By analyzing α), charge transfer characteristics of various sample electrodes were analyzed.
なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。
In addition, the effect described in this specification is an illustration to the last, is not limited, and may have other effects.
なお、本技術は、以下のような構成を取ることも可能である。
(1)
試料電極に交流電流を供給する電流供給部と、
前記電流供給部による前記交流電流の供給に応じて前記試料電極において発生した過電圧応答に基づいて、前記試料電極に関する交換電流密度および電荷移動係数を演算する演算部と
を備えた、解析装置。
(2)
さらに、
前記電流供給部による前記交流電流の供給に応じて前記試料電極において発生した過電圧を測定する過電圧測定部と、
前記過電圧測定部により測定された前記過電圧のうちの2以上の周波数成分の過電圧振幅を測定する過電圧振幅測定部と
を備え、
前記演算部は、前記過電圧振幅測定部により測定された前記2以上の周波数成分の過電圧振幅に基づいて、前記交換電流密度および前記電荷移動係数を演算する、
上記した(1)に記載の解析装置。
(3)
前記過電圧振幅測定部は、前記2以上の周波数成分の過電圧振幅として、2次の非線形成分の過電圧振幅および3次の非線形成分の過電圧振幅を測定する、
上記した(2)に記載の解析装置。
(4)
前記演算部は、下記の式(1)を用いて前記電荷移動係数を演算したのち、前記電荷移動係数の演算値に基づいて下記の式(2)または式(3)を用いて前記交換電流密度を演算する、
上記した(3)に記載の解析装置。
(αは電荷移動係数、V2 は2次の非線形成分の過電圧振幅(V)、V3 は3次の非線形成分の過電圧振幅(V)、Rは気体定数(J/[K・mol])、Tは絶対温度(K)、nは反応電子数、Fはファラデー定数(C/mol)である。)
(i0 は交換電流密度(A/m2 )、αは電荷移動係数、Iは交流電流(A)、V2 は2次の非線形成分の過電圧振幅(V)、Rは気体定数(J/[K・mol])、Tは絶対温度(K)、nは反応電子数、Fはファラデー定数(C/mol)である。)
(i0 は交換電流密度(A/m2 )、αは電荷移動係数、Iは交流電流(A)、V3 は3次の非線形成分の過電圧振幅(V)、Rは気体定数(J/[K・mol])、Tは絶対温度(K)、nは反応電子数、Fはファラデー定数(C/mol)である。)
(5)
さらに、電気化学インピーダンス法を用いて前記試料電極のインピーダンスを測定した結果、前記インピーダンスが略一定になるまで減少したのちに再び減少した際に、前記インピーダンスが略一定になる範囲内の値となるように前記交流電流の周波数を設定すると共に、前記交流電流の周波数に対応する交流信号を前記電流供給部に送信する関数発生部を備えた、
上記した(1)ないし(4)のいずれかに記載の解析装置。
(6)
試料電極に交流電流を供給し、
前記交流電流の供給に応じて前記試料電極において発生した過電圧応答に基づいて、前記試料電極に関する交換電流密度および電荷移動係数を演算する、
解析方法。
(7)
さらに、前記交流電流の供給に応じて前記試料電極において発生した過電圧を測定し、
前記過電圧のうちの2以上の周波数成分の過電圧振幅を測定することにより、
前記2以上の周波数成分の過電圧振幅に基づいて、前記交換電流密度および前記電荷移動係数を演算する、
上記した(6)に記載の解析方法。
(8)
前記2以上の周波数成分の過電圧振幅として、2次の非線形成分の過電圧振幅および3次の非線形成分の過電圧振幅を測定する、
上記した(7)に記載の解析方法。
(9)
下記の式(1)用いて前記電荷移動係数を演算したのち、前記電荷移動係数の演算値に基づいて下記の式(2)または式(3)を用いて前記交換電流密度を演算する、
上記した(8)に記載の解析方法。
(αは電荷移動係数、V2 は2次の非線形成分の過電圧振幅(V)、V3 は3次の非線形成分の過電圧振幅(V)、Rは気体定数(J/[K・mol])、Tは絶対温度(K)、nは反応電子数、Fはファラデー定数(C/mol)である。)
(i0 は交換電流密度(A/m2 )、αは電荷移動係数、Iは交流電流(A)、V2 は2次の非線形成分の過電圧振幅(V)、Rは気体定数(J/[K・mol])、Tは絶対温度(K)、nは反応電子数、Fはファラデー定数(C/mol)である。)
(i0 は交換電流密度(A/m2 )、αは電荷移動係数、Iは交流電流(A)、V3 は3次の非線形成分の過電圧振幅(V)、Rは気体定数(J/[K・mol])、Tは絶対温度(K)、nは反応電子数、Fはファラデー定数(C/mol)である。)
(10)
さらに、電気化学インピーダンス法を用いて前記試料電極のインピーダンスを測定した結果、前記インピーダンスが略一定になるまで減少したのちに再び減少した際に、前記インピーダンスが略一定になる範囲内の値となるように、前記交流電流の周波数を設定する、
上記した(6)ないし(9)のいずれかに記載の解析方法。 The present technology can also be configured as follows.
(1)
A current supply unit for supplying an alternating current to the sample electrode;
An operation unit configured to calculate an exchange current density and a charge transfer coefficient of the sample electrode based on an overvoltage response generated at the sample electrode in response to the supply of the alternating current by the current supply unit.
(2)
further,
An overvoltage measuring unit that measures an overvoltage generated at the sample electrode according to the supply of the alternating current by the current supply unit;
An overvoltage amplitude measurement unit that measures overvoltage amplitudes of two or more frequency components of the overvoltage measured by the overvoltage measurement unit;
The calculation unit calculates the exchange current density and the charge transfer coefficient based on the overvoltage amplitudes of the two or more frequency components measured by the overvoltage amplitude measurement unit.
The analyzer described in (1) above.
(3)
The overvoltage amplitude measurement unit measures an overvoltage amplitude of a second nonlinear component and an overvoltage amplitude of a third nonlinear component as the overvoltage amplitude of the two or more frequency components.
The analyzer described in (2) above.
(4)
The computing unit computes the charge transfer coefficient using the following equation (1), and then uses the following equation (2) or (3) based on the computed value of the charge transfer coefficient: Calculate the density,
The analyzer described in (3) above.
(Α is the charge transfer coefficient, V 2 is the overvoltage amplitude (V) of the second-order nonlinear component, V 3 is the overvoltage amplitude (V) of the third-order nonlinear component, R is the gas constant (J / [K · mol]) , T is the absolute temperature (K), n is the number of reaction electrons, and F is the Faraday constant (C / mol).)
(I 0 is the exchange current density (A / m 2 ), α is the charge transfer coefficient, I is the alternating current (A), V 2 is the overvoltage amplitude (V) of the second-order nonlinear component, R is the gas constant (J / [K · mol]), T is the absolute temperature (K), n is the number of reaction electrons, and F is the Faraday constant (C / mol).)
(I 0 is the exchange current density (A / m 2 ), α is the charge transfer coefficient, I is the alternating current (A), V 3 is the overvoltage amplitude (V) of the third nonlinear component, R is the gas constant (J / [K · mol]), T is the absolute temperature (K), n is the number of reaction electrons, and F is the Faraday constant (C / mol).)
(5)
Furthermore, as a result of measuring the impedance of the sample electrode using the electrochemical impedance method, when the impedance decreases until it becomes substantially constant, when it decreases again, the impedance becomes a value within a range where it becomes substantially constant. And setting a frequency of the alternating current as well as a function generating unit which transmits an alternating current signal corresponding to the frequency of the alternating current to the current supply unit.
The analyzer according to any one of (1) to (4) described above.
(6)
Supply alternating current to the sample electrode,
The exchange current density and charge transfer coefficient for the sample electrode are calculated based on the overvoltage response generated at the sample electrode in response to the supply of the alternating current.
analysis method.
(7)
Furthermore, an overvoltage generated at the sample electrode in response to the supply of the alternating current is measured;
By measuring the overvoltage amplitude of two or more frequency components of the overvoltage,
The exchange current density and the charge transfer coefficient are calculated based on overvoltage amplitudes of the two or more frequency components,
The analysis method described in (6) above.
(8)
The overvoltage amplitude of the second-order nonlinear component and the overvoltage amplitude of the third-order nonlinear component are measured as the overvoltage amplitudes of the two or more frequency components.
The analysis method described in (7) above.
(9)
After the charge transfer coefficient is calculated using the following equation (1), the exchange current density is calculated using the following equation (2) or (3) based on the calculated value of the charge transfer coefficient:
The analysis method described in (8) above.
(Α is the charge transfer coefficient, V 2 is the overvoltage amplitude (V) of the second-order nonlinear component, V 3 is the overvoltage amplitude (V) of the third-order nonlinear component, R is the gas constant (J / [K · mol]) , T is the absolute temperature (K), n is the number of reaction electrons, and F is the Faraday constant (C / mol).)
(I 0 is the exchange current density (A / m 2 ), α is the charge transfer coefficient, I is the alternating current (A), V 2 is the overvoltage amplitude (V) of the second-order nonlinear component, R is the gas constant (J / [K · mol]), T is the absolute temperature (K), n is the number of reaction electrons, and F is the Faraday constant (C / mol).)
(I 0 is the exchange current density (A / m 2 ), α is the charge transfer coefficient, I is the alternating current (A), V 3 is the overvoltage amplitude (V) of the third nonlinear component, R is the gas constant (J / [K · mol]), T is the absolute temperature (K), n is the number of reaction electrons, and F is the Faraday constant (C / mol).)
(10)
Furthermore, as a result of measuring the impedance of the sample electrode using the electrochemical impedance method, when the impedance decreases until it becomes substantially constant, when it decreases again, the impedance becomes a value within a range where it becomes substantially constant. To set the frequency of the alternating current,
The analysis method according to any one of (6) to (9) described above.
(1)
試料電極に交流電流を供給する電流供給部と、
前記電流供給部による前記交流電流の供給に応じて前記試料電極において発生した過電圧応答に基づいて、前記試料電極に関する交換電流密度および電荷移動係数を演算する演算部と
を備えた、解析装置。
(2)
さらに、
前記電流供給部による前記交流電流の供給に応じて前記試料電極において発生した過電圧を測定する過電圧測定部と、
前記過電圧測定部により測定された前記過電圧のうちの2以上の周波数成分の過電圧振幅を測定する過電圧振幅測定部と
を備え、
前記演算部は、前記過電圧振幅測定部により測定された前記2以上の周波数成分の過電圧振幅に基づいて、前記交換電流密度および前記電荷移動係数を演算する、
上記した(1)に記載の解析装置。
(3)
前記過電圧振幅測定部は、前記2以上の周波数成分の過電圧振幅として、2次の非線形成分の過電圧振幅および3次の非線形成分の過電圧振幅を測定する、
上記した(2)に記載の解析装置。
(4)
前記演算部は、下記の式(1)を用いて前記電荷移動係数を演算したのち、前記電荷移動係数の演算値に基づいて下記の式(2)または式(3)を用いて前記交換電流密度を演算する、
上記した(3)に記載の解析装置。
(5)
さらに、電気化学インピーダンス法を用いて前記試料電極のインピーダンスを測定した結果、前記インピーダンスが略一定になるまで減少したのちに再び減少した際に、前記インピーダンスが略一定になる範囲内の値となるように前記交流電流の周波数を設定すると共に、前記交流電流の周波数に対応する交流信号を前記電流供給部に送信する関数発生部を備えた、
上記した(1)ないし(4)のいずれかに記載の解析装置。
(6)
試料電極に交流電流を供給し、
前記交流電流の供給に応じて前記試料電極において発生した過電圧応答に基づいて、前記試料電極に関する交換電流密度および電荷移動係数を演算する、
解析方法。
(7)
さらに、前記交流電流の供給に応じて前記試料電極において発生した過電圧を測定し、
前記過電圧のうちの2以上の周波数成分の過電圧振幅を測定することにより、
前記2以上の周波数成分の過電圧振幅に基づいて、前記交換電流密度および前記電荷移動係数を演算する、
上記した(6)に記載の解析方法。
(8)
前記2以上の周波数成分の過電圧振幅として、2次の非線形成分の過電圧振幅および3次の非線形成分の過電圧振幅を測定する、
上記した(7)に記載の解析方法。
(9)
下記の式(1)用いて前記電荷移動係数を演算したのち、前記電荷移動係数の演算値に基づいて下記の式(2)または式(3)を用いて前記交換電流密度を演算する、
上記した(8)に記載の解析方法。
(10)
さらに、電気化学インピーダンス法を用いて前記試料電極のインピーダンスを測定した結果、前記インピーダンスが略一定になるまで減少したのちに再び減少した際に、前記インピーダンスが略一定になる範囲内の値となるように、前記交流電流の周波数を設定する、
上記した(6)ないし(9)のいずれかに記載の解析方法。 The present technology can also be configured as follows.
(1)
A current supply unit for supplying an alternating current to the sample electrode;
An operation unit configured to calculate an exchange current density and a charge transfer coefficient of the sample electrode based on an overvoltage response generated at the sample electrode in response to the supply of the alternating current by the current supply unit.
(2)
further,
An overvoltage measuring unit that measures an overvoltage generated at the sample electrode according to the supply of the alternating current by the current supply unit;
An overvoltage amplitude measurement unit that measures overvoltage amplitudes of two or more frequency components of the overvoltage measured by the overvoltage measurement unit;
The calculation unit calculates the exchange current density and the charge transfer coefficient based on the overvoltage amplitudes of the two or more frequency components measured by the overvoltage amplitude measurement unit.
The analyzer described in (1) above.
(3)
The overvoltage amplitude measurement unit measures an overvoltage amplitude of a second nonlinear component and an overvoltage amplitude of a third nonlinear component as the overvoltage amplitude of the two or more frequency components.
The analyzer described in (2) above.
(4)
The computing unit computes the charge transfer coefficient using the following equation (1), and then uses the following equation (2) or (3) based on the computed value of the charge transfer coefficient: Calculate the density,
The analyzer described in (3) above.
(5)
Furthermore, as a result of measuring the impedance of the sample electrode using the electrochemical impedance method, when the impedance decreases until it becomes substantially constant, when it decreases again, the impedance becomes a value within a range where it becomes substantially constant. And setting a frequency of the alternating current as well as a function generating unit which transmits an alternating current signal corresponding to the frequency of the alternating current to the current supply unit.
The analyzer according to any one of (1) to (4) described above.
(6)
Supply alternating current to the sample electrode,
The exchange current density and charge transfer coefficient for the sample electrode are calculated based on the overvoltage response generated at the sample electrode in response to the supply of the alternating current.
analysis method.
(7)
Furthermore, an overvoltage generated at the sample electrode in response to the supply of the alternating current is measured;
By measuring the overvoltage amplitude of two or more frequency components of the overvoltage,
The exchange current density and the charge transfer coefficient are calculated based on overvoltage amplitudes of the two or more frequency components,
The analysis method described in (6) above.
(8)
The overvoltage amplitude of the second-order nonlinear component and the overvoltage amplitude of the third-order nonlinear component are measured as the overvoltage amplitudes of the two or more frequency components.
The analysis method described in (7) above.
(9)
After the charge transfer coefficient is calculated using the following equation (1), the exchange current density is calculated using the following equation (2) or (3) based on the calculated value of the charge transfer coefficient:
The analysis method described in (8) above.
(10)
Furthermore, as a result of measuring the impedance of the sample electrode using the electrochemical impedance method, when the impedance decreases until it becomes substantially constant, when it decreases again, the impedance becomes a value within a range where it becomes substantially constant. To set the frequency of the alternating current,
The analysis method according to any one of (6) to (9) described above.
Claims (10)
- 試料電極に交流電流を供給する電流供給部と、
前記電流供給部による前記交流電流の供給に応じて前記試料電極において発生した過電圧応答に基づいて、前記試料電極に関する交換電流密度および電荷移動係数を演算する演算部と
を備えた、解析装置。 A current supply unit for supplying an alternating current to the sample electrode;
An operation unit configured to calculate an exchange current density and a charge transfer coefficient of the sample electrode based on an overvoltage response generated at the sample electrode in response to the supply of the alternating current by the current supply unit. - さらに、
前記電流供給部による前記交流電流の供給に応じて前記試料電極において発生した過電圧を測定する過電圧測定部と、
前記過電圧測定部により測定された前記過電圧のうちの2以上の周波数成分の過電圧振幅を測定する過電圧振幅測定部と
を備え、
前記演算部は、前記過電圧振幅測定部により測定された前記2以上の周波数成分の過電圧振幅に基づいて、前記交換電流密度および前記電荷移動係数を演算する、
請求項1記載の解析装置。 further,
An overvoltage measuring unit that measures an overvoltage generated at the sample electrode according to the supply of the alternating current by the current supply unit;
An overvoltage amplitude measurement unit that measures overvoltage amplitudes of two or more frequency components of the overvoltage measured by the overvoltage measurement unit;
The calculation unit calculates the exchange current density and the charge transfer coefficient based on the overvoltage amplitudes of the two or more frequency components measured by the overvoltage amplitude measurement unit.
The analysis device according to claim 1. - 前記過電圧振幅測定部は、前記2以上の周波数成分の過電圧振幅として、2次の非線形成分の過電圧振幅および3次の非線形成分の過電圧振幅を測定する、
請求項2記載の解析装置。 The overvoltage amplitude measurement unit measures an overvoltage amplitude of a second nonlinear component and an overvoltage amplitude of a third nonlinear component as the overvoltage amplitude of the two or more frequency components.
The analysis device according to claim 2. - 前記演算部は、下記の式(1)を用いて前記電荷移動係数を演算したのち、前記電荷移動係数の演算値に基づいて下記の式(2)または式(3)を用いて前記交換電流密度を演算する、
請求項3記載の解析装置。
The analyzer according to claim 3.
- さらに、電気化学インピーダンス法を用いて前記試料電極のインピーダンスを測定した結果、前記インピーダンスが略一定になるまで減少したのちに再び減少した際に、前記インピーダンスが略一定になる範囲内の値となるように前記交流電流の周波数を設定すると共に、前記交流電流の周波数に対応する交流信号を前記電流供給部に送信する関数発生部を備えた、
請求項1ないし請求項4のいずれか1項に記載の解析装置。 Furthermore, as a result of measuring the impedance of the sample electrode using the electrochemical impedance method, when the impedance decreases until it becomes substantially constant, when it decreases again, the impedance becomes a value within a range where it becomes substantially constant. And setting a frequency of the alternating current as well as a function generating unit which transmits an alternating current signal corresponding to the frequency of the alternating current to the current supply unit.
The analyzer according to any one of claims 1 to 4. - 試料電極に交流電流を供給し、
前記交流電流の供給に応じて前記試料電極において発生した過電圧応答に基づいて、前記試料電極に関する交換電流密度および電荷移動係数を演算する、
解析方法。 Supply alternating current to the sample electrode,
The exchange current density and charge transfer coefficient for the sample electrode are calculated based on the overvoltage response generated at the sample electrode in response to the supply of the alternating current.
analysis method. - さらに、前記交流電流の供給に応じて前記試料電極において発生した過電圧を測定し、
前記過電圧のうちの2以上の周波数成分の過電圧振幅を測定することにより、
前記2以上の周波数成分の過電圧振幅に基づいて、前記交換電流密度および前記電荷移動係数を演算する、
請求項6記載の解析方法。 Furthermore, an overvoltage generated at the sample electrode in response to the supply of the alternating current is measured;
By measuring the overvoltage amplitude of two or more frequency components of the overvoltage,
The exchange current density and the charge transfer coefficient are calculated based on overvoltage amplitudes of the two or more frequency components,
The analysis method according to claim 6. - 前記2以上の周波数成分の過電圧振幅として、2次の非線形成分の過電圧振幅および3次の非線形成分の過電圧振幅を測定する、
請求項7記載の解析方法。 The overvoltage amplitude of the second-order nonlinear component and the overvoltage amplitude of the third-order nonlinear component are measured as the overvoltage amplitudes of the two or more frequency components.
The analysis method according to claim 7. - 下記の式(1)用いて前記電荷移動係数を演算したのち、前記電荷移動係数の演算値に基づいて下記の式(2)または式(3)を用いて前記交換電流密度を演算する、
請求項8記載の解析方法。
The analysis method according to claim 8.
- さらに、電気化学インピーダンス法を用いて前記試料電極のインピーダンスを測定した結果、前記インピーダンスが略一定になるまで減少したのちに再び減少した際に、前記インピーダンスが略一定になる範囲内の値となるように、前記交流電流の周波数を設定する、
請求項6ないし請求項9のいずれか1項に記載の解析方法。 Furthermore, as a result of measuring the impedance of the sample electrode using the electrochemical impedance method, when the impedance decreases until it becomes substantially constant, when it decreases again, the impedance becomes a value within a range where it becomes substantially constant. To set the frequency of the alternating current,
The analysis method according to any one of claims 6 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019561120A JP6863482B2 (en) | 2017-12-19 | 2018-12-18 | Analytical device and analysis method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-242760 | 2017-12-19 | ||
JP2017242760 | 2017-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019124388A1 true WO2019124388A1 (en) | 2019-06-27 |
Family
ID=66993521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/046604 WO2019124388A1 (en) | 2017-12-19 | 2018-12-18 | Analysis device and analysis method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6863482B2 (en) |
WO (1) | WO2019124388A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024176416A1 (en) * | 2023-02-22 | 2024-08-29 | 日置電機株式会社 | Battery inspection device and battery inspection method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3669669B2 (en) * | 1998-09-18 | 2005-07-13 | 松下電器産業株式会社 | Battery characteristic analysis method and analysis apparatus using the same |
JP2012038455A (en) * | 2010-08-04 | 2012-02-23 | Toyota Motor Corp | Fuel cell system |
JP6026055B2 (en) * | 2014-07-04 | 2016-11-16 | 日本防蝕工業株式会社 | Method for measuring corrosion rate of metal bodies |
-
2018
- 2018-12-18 JP JP2019561120A patent/JP6863482B2/en active Active
- 2018-12-18 WO PCT/JP2018/046604 patent/WO2019124388A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3669669B2 (en) * | 1998-09-18 | 2005-07-13 | 松下電器産業株式会社 | Battery characteristic analysis method and analysis apparatus using the same |
JP2012038455A (en) * | 2010-08-04 | 2012-02-23 | Toyota Motor Corp | Fuel cell system |
JP6026055B2 (en) * | 2014-07-04 | 2016-11-16 | 日本防蝕工業株式会社 | Method for measuring corrosion rate of metal bodies |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024176416A1 (en) * | 2023-02-22 | 2024-08-29 | 日置電機株式会社 | Battery inspection device and battery inspection method |
Also Published As
Publication number | Publication date |
---|---|
JP6863482B2 (en) | 2021-04-21 |
JPWO2019124388A1 (en) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pell et al. | Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour | |
Zaccagnini et al. | Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis | |
Xu et al. | Toward reliable values of electrochemical stability limits for electrolytes | |
Schranzhofer et al. | Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes | |
Ahmed et al. | Study of influence of electrode geometry on impedance spectroscopy | |
Jang et al. | Effects of carbon additives on spinel dissolution and capacity losses in 4 V Li/LixMn2O4 rechargeable cells | |
KR101366585B1 (en) | Electrode evaluation apparatus and electrode evaluation method | |
Matsumiya et al. | Temperature dependence of kinetics and diffusion coefficients for ferrocene/ferricenium in ammonium-imide ionic liquids | |
Simon et al. | Development of a wire reference electrode for lithium all-solid-state batteries with polymer electrolyte: FEM simulation and experiment | |
Stro et al. | Determination of fractal dimension by cyclic I-V studies: The Laplace-transform method | |
Kim et al. | Comparison of transmissive permeable and reflective impermeable interfaces between electrode and electrolyte | |
Wang et al. | Comparison of lithium diffusion coefficient measurements in tellurium electrodes via different electrochemical techniques | |
Kumar et al. | Electrochemical characterization of a zinc-based gel-polymer electrolyte and its application in rechargeable batteries | |
Zhang et al. | Investigations on kinetics properties of hydrogen adsorbing/desorbing reactions for metal hydride electrodes | |
Reimer et al. | Time Dependence of the Open Circuit Potential of Platinum Disk Electrodes in Half Cell Experiments | |
Jia et al. | Electrochemical breakdown in hydrogel ionotronic devices | |
WO2019124388A1 (en) | Analysis device and analysis method | |
JP3669669B2 (en) | Battery characteristic analysis method and analysis apparatus using the same | |
Li et al. | The correlation of the properties of pyrrolidinium-based ionic liquid electrolytes with the discharge–charge performances of rechargeable Li–O2 batteries | |
Yarlagadda et al. | Conductivity measurements of molten Bi2O3 | |
Levi et al. | Li-insertion into thin monolithic V2O5 films electrodes characterized by a variety of electroanalytical techniques | |
Su et al. | Sodium insertion into vanadium pentoxide in methanesulfonyl chloride–aluminum chloride ionic liquid | |
Kheirmand et al. | Analytic parameter identification of proton exchange membrane fuel cell catalyst layer using electrochemical impedance spectroscopy | |
Blood et al. | An electrochemical technique for state of charge (SOC) probing of positive lead–acid battery plates | |
Kek et al. | Investigation of hydrogen oxidation reaction on a metal/perovskite proton conductor interface by impedance spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18893152 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019561120 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18893152 Country of ref document: EP Kind code of ref document: A1 |