WO2019119271A1 - 一种玻璃和贴附于低辐射Low-E玻璃的材料 - Google Patents
一种玻璃和贴附于低辐射Low-E玻璃的材料 Download PDFInfo
- Publication number
- WO2019119271A1 WO2019119271A1 PCT/CN2017/117253 CN2017117253W WO2019119271A1 WO 2019119271 A1 WO2019119271 A1 WO 2019119271A1 CN 2017117253 W CN2017117253 W CN 2017117253W WO 2019119271 A1 WO2019119271 A1 WO 2019119271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- low
- layer
- signal
- impedance
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 109
- 239000000463 material Substances 0.000 title claims abstract description 88
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 7
- 229920005372 Plexiglas® Polymers 0.000 claims description 7
- 239000005341 toughened glass Substances 0.000 claims description 6
- 210000001124 body fluid Anatomy 0.000 claims 1
- 239000010839 body fluid Substances 0.000 claims 1
- 230000008054 signal transmission Effects 0.000 abstract description 11
- 238000013461 design Methods 0.000 abstract description 9
- 238000012423 maintenance Methods 0.000 abstract description 9
- 230000001934 delay Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
Definitions
- the present application relates to the field of communication technologies, and in particular, to a glass and a material attached to a low emission (Low-E) glass.
- Low-E low emission
- wireless communication has become an indispensable part of the user's life, and users can receive and transmit various information through the terminal device anytime and anywhere, so it is important to ensure that the terminal device can receive the signal from the base station.
- windows are the best signal-to-home location.
- the use of Low-E glass is becoming more and more common, but the reflection of the signal through the Low-E glass will greatly attenuate the signal. It makes the signal difficult to enter the home, resulting in poor indoor signal and affecting the user experience. Therefore, the problem of large signal attenuation is an urgent problem to be solved.
- the first method assists in receiving signals by installing customer premise equipment (CPE) to make the indoor signal better.
- CPE customer premise equipment
- the CPE is composed of an outdoor unit (ODU) installed outdoors and an indoor unit (IDU) installed in the room, and the ODU and the IDU are connected by a network cable.
- the IDU transfers the signal from the base station received by the ODU to the room.
- the CPE is relatively expensive and requires professional installation and debugging, and post-maintenance is also difficult, so this method cannot be widely applied.
- a second method by adding at least one relay node between the base station and the terminal device, so that the signal is forwarded at least once by the at least one relay node, thereby replacing at least one link with poor transmission quality into at least one Two better quality links, so that the final home signal is better.
- this method causes delays in signal transmission, and once any of the relay nodes fails, the signal transmission fails.
- the embodiments of the present application provide a glass and a material attached to the Low-E glass to avoid problems such as high cost, difficult maintenance, and signal transmission delay when solving the problem of large signal-to-home attenuation.
- an embodiment of the present application provides a material attached to a Low-E glass, the material comprising at least one matching layer, wherein a total impedance of at least one matching layer and the Low-E glass
- the integrated impedance of the impedance is close to the characteristic impedance of the air.
- the material can be attached to both sides of the existing Low-E glass, so that the impedance of the final glass is close to the characteristic impedance of the air, so that the signal reflection can be reduced and the signal attenuation can be reduced when the signal enters the household.
- the cost of using the material is low, avoiding the existing high cost problem, and avoiding problems such as existing post-maintenance difficulties and signal transmission delays.
- the material of the at least one matching layer may be present in the form of a film such that the material may be attached to both sides of an existing Low-E glass to reduce signal attenuation.
- the first matching layer of the at least one matching layer of the material may include the first a material layer and a second material layer bonded to the first material layer, the first material layer is filled with a solid inside, and the second material layer is filled with a liquid; wherein the first matching layer is Said at least one of the matching layers. This can adjust the impedance of the at least one matching layer by setting the first matching layer.
- the solid filled inside the first material layer may be tempered glass or plexiglass
- the liquid filled in the second material layer may be water, ethylene glycol, water-B.
- the organic glass may be a poly carbonate (PC) glass, an acrylic glass or the like.
- one side of the first matching layer in the first matching layer and the second material layer are provided with at least one hole, and a part of the second material layer is disposed on Within the hole.
- the first material layer filled with solids may be punched into at least one hole, and then the liquid filling the second material layer may be injected into the holes to form the second layer that is bonded to the first material layer.
- the ratio of the first material layer and the second material layer in the first matching layer can be adjusted by adjusting the number of holes provided to adjust the dielectric constant of the first matching layer to adjust the The dielectric constant of at least one of the matching layers is described such that the impedance of the at least one matching layer meets the requirements.
- the first matching layer may have a dielectric constant of 10.9, so that after the material is attached to the Low-E glass, the final impedance is closer to the characteristic impedance of the air. It can make the attenuation of the signal smaller.
- embodiments of the present application provide a glass comprising Low-E glass and materials mentioned in the above designs attached to both sides of the Low-E glass, respectively. Since the impedance of the glass is close to the characteristic impedance of the air, the glass can be used to reduce the reflection of the signal when the signal is put into the household, reduce the attenuation of the signal, and the cost of using the glass is low, thereby avoiding the existing high cost. The problem can also avoid the problems of existing post-maintenance difficulties and signal transmission delays.
- the glass has a dielectric constant of 4 or more and 70 or less. In this way, the impedance of the glass can be close to the characteristic impedance of the air, thereby reducing the reflection of the signal when the signal enters the home, thereby reducing the attenuation of the signal and making the indoor signal better.
- FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present disclosure
- FIG. 2 is a schematic structural view of a material attached to a Low-E glass according to an embodiment of the present application
- FIG. 3 is a view showing an example of a material attached to a Low-E glass according to an embodiment of the present application
- FIG. 4 is a schematic diagram of a model of a glass according to an embodiment of the present application.
- FIG. 5 is a schematic diagram of another model of a glass according to an embodiment of the present application.
- FIG. 6 is a view showing an example of a glass provided by an embodiment of the present application.
- Figure 7 is a schematic view showing the effect of Low-E glass on the reflection of signals
- FIG. 8 is a schematic diagram of an effect of reflection of a signal on a glass according to an embodiment of the present application.
- FIG. 9 is a schematic diagram showing the effect of another glass on the reflection of a signal according to an embodiment of the present application.
- the invention provides a glass and a material attached to the Low-E glass for solving the problem of large signal attenuation, and avoiding problems such as high cost, difficult maintenance, and signal transmission delay. .
- the present application designs a glass and a material attached to the Low-E glass by the impedance matching method, so that the impedance of the designed glass or the Low-E glass to which the material is attached is close to the characteristic impedance of the air.
- the impedance is close to the characteristic impedance of the air, which means that the characteristic impedance difference between the impedance and the air is within a set value range. Specifically, the smaller the characteristic impedance difference between the impedance and the air, the later reduced signal The greater the degree of reflection, the better the effect achieved, ie the closer the characteristic impedance of the impedance to the air is, the better the effect.
- FIG. 1 shows a possible application scenario of a glass provided by an embodiment of the present application and a material attached to a Low-E glass.
- a terminal device in a room receives a base station entering a room through a window.
- signal of. Specifically, in order to meet the needs of energy saving, Low-E glass is generally used in windows, but in practical applications, the reflection of the signal when entering the room through Low-E glass will greatly attenuate the signal, causing difficulty in signal entry, resulting in users. The indoor signal is poor.
- the materials attached to the Low-E glass provided by the embodiments of the present application may be respectively attached to the two sides of the Low-E glass on the current window, or The Low-E glass on the window is replaced with the glass provided in the examples of the present application.
- the embodiment of the present application provides a material attached to the Low-E glass, which is suitable for the application scenario shown in FIG. 1.
- the schematic diagram shown in FIG. 2 is a schematic structural view of the material, wherein: the material includes at least A layer of matching layer, such as layer 1, layer 2, layer 3 shown in FIG.
- the material composed of the at least one matching layer may exist in the form of a film, and the film may be symmetrically attached to both sides of the existing Low-E glass so that at least one matching layer is total.
- the integrated impedance formed by the impedance and the impedance of the Low-E glass is close to the characteristic impedance of the air, thereby reducing the reflection of the signal, thereby reducing the attenuation of the signal, making the signal in the user room better and improving the user experience.
- the existence of the material may be other than the film, and the same effect can be achieved, which is not limited in the present application.
- the first matching layer of the at least one matching layer in the material may include a first material layer and a second material layer that is bonded to the first material layer.
- the inside of the first material layer is filled with a solid, and the second material layer is internally filled with a liquid; wherein the first matching layer is any one of the at least one matching layer, for example, the first match
- the layer may be any one of layer 1, layer 2, and layer 3 shown in FIG.
- the solid filled in the first material layer may be tempered glass or plexiglass, and the liquid filled in the second material layer may be water or ethylene glycol.
- the organic glass may be polycarbonate (polycarbonate) glass, acrylic glass or the like.
- a side of the first matching layer in which the first material layer and the second material layer are attached are provided with at least one hole, and a part of the second material layer Disposed in the hole.
- a specific implementation manner may be: inserting at least one hole of the first material layer filled with solids, and then injecting a liquid filling the second material layer into the hole to form a layer with the first material layer The second material layer is combined to obtain the first matching layer.
- the method for setting the at least one hole is not specifically limited in the present application.
- the impedance of the at least one matching layer can be quickly adjusted by setting the first matching layer, since the impedance Z of any medium can be determined by the characteristic impedance ⁇ of the air and its own dielectric constant ⁇ , which specifically conforms to the formula: Therefore, in an optional embodiment, the ratio of the first material layer and the second material layer in the first matching layer may be adjusted by adjusting the number of holes provided to adjust the first Matching a dielectric constant of the layer to adjust a dielectric constant of the at least one matching layer such that an impedance of the at least one matching layer meets a requirement, that is, attaching the material to the Low- The combined impedance behind the sides of the E glass is close to the characteristic impedance of the air.
- the first matching layer may have a dielectric constant of 10.9, and may be specifically made of a porous glass having a dielectric constant of 2.8, and water is injected into the hole to obtain a dielectric constant.
- the first matching layer of 10.9.
- the dielectric constant of the at least one matching layer may also be adjusted by adjusting the thickness of each of the at least one matching layer, so that the at least one The impedance of the layer matching layer meets the requirements.
- the matching layer of the at least one matching layer of the material other than the first matching layer may be a complete solid filling layer or a complete liquid filling layer, wherein
- the solid filling layer may be a tempered glass layer, an organic glass layer or the like; the liquid filled with the liquid filling layer may be water or the like.
- FIG. 3 shows a specific example diagram of at least one matching layer, wherein the first matching layer is a matching layer of plexiglass and water combined, a matching layer composed of water, and a matching layer composed of tempered glass. And other matching layers in the at least one matching layer except the first matching layer.
- the at least one matching layer of the material needs to be combined with cost issues and whether it is common (ie, easy to obtain) in the material selection.
- water and plexiglass which are relatively low cost and relatively common, can be selected. Tempered glass, etc. This reduces the signal attenuation while ensuring lower cost and easier maintenance.
- the embodiment of the present application further provides a glass, which is suitable for the application scenario as shown in FIG. 1 , wherein the glass includes Low-E glass and are respectively attached to both sides of the Low-E glass.
- the materials on both sides of the Low-E glass are completely symmetrically disposed, and the impedance of the glass is close to the characteristic impedance of the air.
- the impedance of any medium is related to the characteristic impedance of air and its own dielectric constant. Therefore, in an alternative embodiment, the dielectric constant of the glass may be greater than or equal to 4 and less than or equal to. 70, this can make the impedance of the glass close to the characteristic impedance of the air, thereby reducing the reflection of the signal when passing through the glass, thereby reducing the attenuation of the signal, so that the signal in the user's room is better, and the user experience can be improved.
- FIG. 4 and FIG. 5 respectively show a model of glass on which two layers of matching layers are attached on both sides of the Low-E glass (hereinafter referred to as a three-layer matching model) and three layers on both sides of the Low-E glass.
- a model of the glass of the matching layer (hereinafter referred to as a four-layer matching model), wherein the matching layers on both sides of the Low-E glass are entirely the materials described in the above embodiments, and the two sides of the Low-E glass can be seen from the figure.
- the matching layer is completely symmetrical.
- the matching layer 1 on both sides of the Low-E glass shown in FIG. 4 may be composed of a dielectric constant of 2.8. a matching layer having a thickness of 2 mm and a dielectric constant of 10.9 formed by disposing at least one hole in the plexiglass and injecting water having a dielectric constant of 81 into the hole; the matching layer 2 may be formed of water having a thickness of 1.46 mm, a matching layer having a dielectric constant of 81, such that the dielectric constant of the three-layer matching model is greater than or equal to 4 and less than or equal to 70, so that the impedance of the three-layer matching model is close to the characteristic impedance of the air, thereby achieving Reduce the purpose of signal attenuation.
- the matching layer 1 on both sides of the Low-E glass shown in FIG. 5 may be formed by providing at least one hole in the plexiglass having a dielectric constant of 2.8 and injecting water having a dielectric constant of 81 into the hole.
- the matching layer 2 may be a matching layer formed of water having a thickness of 1.46 mm and a dielectric constant of 81
- the matching layer 3 may be formed of a thickness of 1.57 mm of organic glass.
- a matching layer having a dielectric constant of 2.8 such that the dielectric constant of the four-layer matching model is greater than or equal to 4 and less than or equal to 70, so that the impedance of the three-layer matching model is close to the characteristic impedance of the air, thereby Achieve the purpose of reducing the attenuation of the signal.
- each of the matching layers in the above model is not limited to being composed of the above substances (organic glass or water), and may be other materials that meet the requirements, which is not limited in the present application.
- the order of arrangement of the matching layers in the above model is not limited to the order shown in the drawing, as long as the matching layers on both sides of the Low-E glass are completely symmetrical.
- the thickness of the matching layer and the corresponding dielectric constant in the above model are only specific examples, and the above model is not limited. The thickness and dielectric constant can be adjusted according to specific conditions, as long as the impedance of the final glass is close to The characteristic impedance of the air is sufficient.
- the above model may also be a matching model larger than four layers as long as the impedance of the final glass is close to the characteristic impedance of the air.
- the schematic diagram shown in FIG. 6 is a schematic diagram of a specific example of the glass provided by the embodiment of the present application, wherein the matching layers on both sides of the Low-E glass are respectively a combination of PC glass and water, water, PC glass.
- FIG. 7 is a schematic diagram showing the effect of the reflection of the signal on the signal of the Low-E glass
- FIG. 8 is a schematic diagram showing the effect of the three-layer matching model in the glass on the reflection of the signal in the embodiment of the present application
- FIG. 9 is in the glass provided in the embodiment of the present application.
- the effect of the four-layer matching model on the reflection of the signal wherein the ordinate in each figure represents the transmission coefficient of the signal, and the larger the transmission coefficient, the smaller the reflection of the signal and the smaller the signal attenuation.
- the transmission coefficient of the signal is lower than -21.5 decibels (dB), and the visible signal is difficult to pass through the Low-E glass, resulting in signal reflection.
- the signal attenuation is large; as can be seen from Figure 8, the signal transmission coefficient is between -14.5 and -17dB, and the average is about -16dB; as can be seen from Figure 9, the signal transmission coefficient is -13.5 ⁇ - Between 17dB, the average is about -15dB.
- the glass provided by the embodiment of the present application has a higher transmission coefficient than the signal of the existing Low-E glass, the glass provided by the embodiment of the present application can reduce the reflection of the signal, and thus the signal can be made. The attenuation is small.
- the average value of the transmission coefficient of the signal using the four-layer matching model is higher than that of the three-layer matching model. Therefore, when the four-layer matching model is used, it is more complicated than when the three-layer matching model is used. Reducing the reflection of the signal, the attenuation of the signal can be lower, that is, the effect of using the four-layer matching model can be better, and the indoor signal can be better.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
一种玻璃和贴附于低辐射Low-E玻璃的材料,用以避免在解决信号入户衰减大的问题时出现成本高、后期维护困难、信号传输延时等问题。所述材料包括至少一层匹配层,至少一层匹配层的总阻抗与所述Low-E玻璃的阻抗构成的综合阻抗接近于空气的特征阻抗;所述玻璃包括Low-E玻璃,和分别贴附于所述Low-E玻璃两侧的上述材料。通过设计上述材料和玻璃,可以在减少信号的衰减的同时,保证成本较低,后期维护较容易以及解决信号传输延时的问题。
Description
本申请涉及通信技术领域,尤其涉及一种玻璃和贴附于低辐射(low emission,Low-E)玻璃的材料。
随着无线通信技术的飞速发展,无线通信已经成为用户生活中不可缺少的一部分,用户可以随时随地通过终端设备接收和发送各种信息,因此保证终端设备能够接收到来自基站的信号至关重要。而目前窗户是最佳的信号入户位置,近年来随着节能的需求,窗户采用Low-E玻璃越来越普遍,但是信号通过Low-E玻璃入户时的反射会对信号造成大幅度衰减,造成信号入户困难,导致用户室内信号较差,影响用户体验。因此,信号入户衰减大的难题是目前急需解决的问题。
目前,解决上述问题的方法,通常有以下两种:
第一种方法:通过安装客户端设备(customer premise equipment,CPE)辅助接收信号以使用户室内信号较好。具体的:所述CPE由安装在室外的室外单元(outdoor unit,ODU)和安装在室内的室内单元(indoor unit,IDU)组成,所述ODU和所述IDU之间由网线连接,通过所述IDU将所述ODU接收到的来自基站的信号转到室内。但是,所述CPE价格较高,且需要专业人员进行安装调试,后期维护也比较困难,所以这种方法不能被广泛应用。
第二种方法:通过在基站与终端设备之间增加至少一个中继节点,以使通过所述至少一个中继节点对信号进行至少一次转发,进而使一个传输质量较差的链路替换成至少两个质量较好的链路,这样来使最终入户的信号较好。但是,这种方法会对信号传输造成时延,并且一旦当任一个中继节点出现故障,会导致信号传输失败。
综上,现在亟需一种新的方法,在能够解决信号入户衰减大的问题的同时,也可以避免上述方法出现的弊端。
发明内容
本申请实施例提供了一种玻璃和贴附于Low-E玻璃的材料,用以避免在解决信号入户衰减大的问题时出现成本高、后期维护困难、信号传输延时等问题。
第一方面,本申请实施例提供了一种贴附于Low-E玻璃的材料,所述材料包括至少一层匹配层,其中,至少一层匹配层的总阻抗与所述Low-E玻璃的阻抗构成的综合阻抗接近于空气的特征阻抗。这样可以采用所述材料贴附于现有的Low-E玻璃两侧,使得最终的玻璃的阻抗接近于空气的特征阻抗,以使在信号入户时可以减少信号的反射,减少信号的衰减,且采用所述材料的成本较低,避免现有的高成本问题,同时还可以避免现有的后期维护困难、信号传输延时等问题。
在一种可能的设计中,所述至少一层匹配层构成的所述材料可以以薄膜的形态存在,这样可以将所述材料贴附于现有的Low-E玻璃两侧,以减少信号的衰减。
在一种可能的设计中,所述材料中的所述至少一层匹配层中的第一匹配层可以包括第
一材料层和与所述第一材料层贴合的第二材料层,所述第一材料层内部被填充固体,所述第二材料层内部被填充液体;其中所述第一匹配层为所述至少一层匹配层中的任意一层。这样可以通过设置所述第一匹配层来调节所述至少一层匹配层的阻抗。
在一种可能的设计中,所述第一材料层内部被填充的固体可以为钢化玻璃或有机玻璃等,所述第二材料层内部被填充的液体可以为水、乙二醇、水-乙二醇溶液中任一种,其中所述有机玻璃可以为聚碳酸酯(poly carbonate,PC)玻璃、亚克力玻璃等。这样采用常见且易于取得的物质组成所述材料,可以使成本较低,易于维护。
在一种可能的设计中,所述第一匹配层中的所述第一材料层与所述第二材料层贴合的一侧设有至少一个孔,所述第二材料层的一部分设置于所述孔内。例如,可以将填充固体的所述第一材料层打至少一个孔,然后在所述孔中注入填充所述第二材料层的液体,形成与所述第一材料层贴合的所述第二材料层,从而得到所述第一匹配层。这样可以通过调整设置的孔的多少来调节所述第一匹配层中所述第一材料层和所述第二材料层的比例,来调节所述第一匹配层的介电常数,以调节所述至少一层匹配层的介电常数,以使所述至少一层匹配层的阻抗符合需求。
在一种可能的设计中,所述第一匹配层的介电常数可以为10.9,这样可以使得将所述材料贴附于Low-E玻璃后,最终的阻抗更接近于空气的特征阻抗,进而可以使信号的衰减更小。
第二方面,本申请实施例提供了一种玻璃,所述玻璃包括Low-E玻璃和分别贴附于所述Low-E玻璃两侧的上述设计中提及的材料。由于所述玻璃的阻抗接近于空气的特征阻抗,因此采用所述玻璃使信号入户时可以减少信号的反射,减少信号的衰减,且采用所述玻璃的成本较低,避免现有的高成本问题,同时还可以避免现有的后期维护困难、信号传输延时等问题。
在一种可能的设计中,所述玻璃的介电常数大于等于4且小于等于70。这样可以使所述玻璃的阻抗接近于空气的特征阻抗,进而可以使信号入户时减少信号的反射,从而可以减少信号的衰减,使得室内信号较好。
图1为本申请实施例提供的一种应用场景的示意图;
图2为本申请实施例提供的一种贴附于Low-E玻璃的材料的结构示意图;
图3为本申请实施例提供的一种贴附于Low-E玻璃的材料的示例图;
图4为本申请实施例提供的一种玻璃的模型示意图;
图5为本申请实施例提供的另一种玻璃的模型示意图;
图6为本申请实施例提供的一种玻璃的示例图;
图7为Low-E玻璃对信号的反射的效果示意图;
图8为本申请实施例提供的一种玻璃对信号的反射的效果示意图;
图9为本申请实施例提供的另一种玻璃对信号的反射的效果示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地
描述。
本申请实施例提供的一种玻璃和贴附于Low-E玻璃的材料,用以在解决信号入户衰减大的问题的同时,可以避免出现成本高、后期维护困难、信号传输延时等问题。
众所周知,当信号通过窗户入户时,是信号先通过空气然后在通过玻璃,由于通常窗户采用的Low-E玻璃的阻抗和空气的特征阻抗相差较大,因此,在空气和Low-E玻璃分界面上存在很大的反射,使得信号入户时信号的衰减较大。基于此,本申请通过阻抗匹配方法设计了一种玻璃和贴附于Low-E玻璃的材料,以使设计的玻璃或者贴附了所述材料的Low-E玻璃的阻抗接近于空气的特征阻抗,这样可以减少信号的反射,从而可以减少信号的衰减,提高用户体验,且还可以避免出现成本高、后期维护困难、信号传输延时等问题。其中,阻抗接近于空气的特征阻抗,是指所述阻抗与空气的特征阻抗差值在设定值范围内,具体的,所述阻抗与空气的特征阻抗差值越小,后期减少的信号的反射程度越大,达到的效果越好,即所述阻抗与空气的特征阻抗越接近效果越好。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的玻璃和贴附于Low-E玻璃的材料进行详细说明。
图1示出了本申请实施例提供的玻璃和贴附于Low-E玻璃的材料适用的一种可能的应用场景,在该应用场景中,处于室内的终端设备接收通过窗户进入室内的来自基站的信号。具体的,为了适应节能需求,目前窗户普遍采用Low-E玻璃,但是在实际应用中,信号通过Low-E玻璃进入室内时的反射会对信号造成大幅度衰减,造成信号入户困难,导致用户室内信号较差。因此,为了减少信号的反射,减小信号入户衰减,可以将本申请实施例提供的贴附于Low-E玻璃的材料分别贴附于目前窗户上的Low-E玻璃两侧,或者将目前窗户上的Low-E玻璃替换为本申请实施例提供的玻璃。通过上述两种方法,可以使窗户上的最终的玻璃的阻抗接近于空气的特征阻抗,因此可以使得来自基站的信号在通过窗户进入室内时,可以减少对信号的反射,进而可以减少对信号的衰减。
本申请实施例提供了一种贴附于Low-E玻璃的材料,适用于如图1所示的应用场景,图2所示的示意图为所述材料的结构示意图,其中:所述材料包括至少一层匹配层,例如图2中示出的层1、层2、层3。
具体的,所述至少一层匹配层构成的所述材料可以以薄膜的形态存在,进而可以将薄膜对称地贴附于现有的Low-E玻璃两侧,以使至少一层匹配层的总阻抗和所述Low-E玻璃的阻抗构成的综合阻抗接近于空气的特征阻抗,进而可以减少对信号的反射,从而可以减少对信号的衰减,使得用户室内的信号较好,提高用户体验。当然,所述材料的存在形态还可以为除薄膜以外的其它方式,可以达到同样的效果,本申请对此不作限定。
在一种可选的实施方式中,所述材料中的所述至少一层匹配层中的第一匹配层可以包括第一材料层和与所述第一材料层贴合的第二材料层,所述第一材料层内部被填充固体,所述第二材料层内部被填充液体;其中所述第一匹配层为所述至少一层匹配层中的任意一层,例如,所述第一匹配层可以为图2所示的层1、层2、层3中的任意一层。其中,在一种可选的实施方式中,所述第一材料层内部被填充的固体可以为钢化玻璃或有机玻璃等,所述第二材料层内部被填充的液体可以为水、乙二醇、水-乙二醇溶液中任一种,或者其它符合需求的液体,其中在所述液体为水-乙二醇溶液时可以降低所述材料的冰点,使得所述材料应用到寒冷地区。具体的,所述有机玻璃可以为聚碳酸酯(poly carbonate,PC)玻璃、亚克力玻璃等。
在一种可选的实施方式中,所述第一匹配层中的所述第一材料层与所述第二材料层贴合的一侧设有至少一个孔,所述第二材料层的一部分设置于所述孔内。一种具体的实现方式可以为:将填充固体的所述第一材料层打至少一个孔,然后在所述孔中注入填充所述第二材料层的液体,形成与所述第一材料层贴合的所述第二材料层,从而得到所述第一匹配层。其中,所述至少一个孔的设置方法本申请不作具体限定。
通过设置第一匹配层可以快速调节所述至少一层匹配层的阻抗,由于任何介质的阻抗Z均可以通过空气的特征阻抗η和自身的介电常数ε确定,具体符合公式:因此,在一种可选的实施方式中,可以通过调整设置的孔的多少来调节所述第一匹配层中所述第一材料层和所述第二材料层的比例,来调节所述第一匹配层的介电常数,以调节所述至少一层匹配层的介电常数,以使所述至少一层匹配层的阻抗符合需求,也就是使得将所述材料贴附于所述Low-E玻璃两侧后的综合阻抗接近于空气的特征阻抗。在一种可选的实施方式中,所述第一匹配层的介电常数可以为10.9,具体可以由在介电常数为2.8的有机玻璃上打孔,在孔中注入水得到介电常数为10.9的第一匹配层。
在另一种可选的实施方式中,还可以通过调节所述至少一层匹配层中每层匹配层的厚度,来调节所述至少一层匹配层的介电常数,以使所述至少一层匹配层的阻抗符合需求。
当然还可以结合上述描述的两种方法共同调节所述至少一层匹配层的介电常数,以使所述至少一层匹配层的阻抗符合需求,此外,还可以有其它多种方法,本申请对此不作限定。
在一种可选的实施方式中,所述材料的所述至少一层匹配层中除所述第一匹配层以外的其它匹配层可以是完全的固体填充层或者完全的液体填充层,其中,所述固体填充层可以是钢化玻璃层、有机玻璃层等;所述液体填充层填充的液体可以是水等。例如,图3示出了一种至少一层匹配层的具体示例图,其中,所述第一匹配层为有机玻璃和水组合成的匹配层,水组成的匹配层、钢化玻璃组成的匹配层为所述至少一层匹配层中除所述第一匹配层之外的其它匹配层。
在实际中,所述材料的所述至少一层匹配层在选材上需要结合成本问题和是否常见(即是否易取得)的问题,例如,可以选择成本较低且比较常见的水、有机玻璃、钢化玻璃等。这样在减小信号衰减的同时,还可以保证成本较低,并且后期维护比较容易。
基于以上实施例,本申请实施例还提供了一种玻璃,适用于如图1所示的应用场景,其中,所述玻璃包括Low-E玻璃和分别贴附于所述Low-E玻璃两侧的上述实施例中描述的材料,所述Low-E玻璃两侧的材料完全对称设置,所述玻璃的阻抗接近于空气的特征阻抗。具体的,所述材料的详细介绍参见上述实施例,此处不再赘述。
由上述实施例描述的可知,任何介质的阻抗和空气的特征阻抗和自身的介电常数有关,因此在一种可选的实施方式中,所述玻璃的介电常数可以大于等于4且小于等于70,这样可以使所述玻璃的阻抗接近于空气的特征阻抗,从而可以减少信号通过所述玻璃时的反射,进而可以减少信号的衰减,使得用户室内的信号较好,可以提高用户体验。
例如,图4和图5分别示出了Low-E玻璃两侧分别贴附了两层匹配层的玻璃的模型(以下简称三层匹配模型)和Low-E玻璃两侧分别贴附了三层匹配层的玻璃的模型(以下简称四层匹配模型),其中,Low-E玻璃两侧的匹配层整体为上述实施例中所述的材料,从图中可以看出Low-E玻璃两侧的匹配层是完全对称的。
在具体实现时,图4中所示的Low-E玻璃两侧的匹配层1可以是由在介电常数2.8的
有机玻璃上设置至少一个孔并在孔中注入介电常数为81的水而形成的厚度为2毫米、介电常数为10.9的匹配层;匹配层2可以是由水形成的厚度为1.46毫米、介电常数为81的匹配层,这样可以使所述三层匹配模型的介电常数大于等于4且小于等于70,以使所述三层匹配模型的阻抗接近于空气的特征阻抗,从而可以达到减少信号的衰减的目的。
同样的,图5中所示的Low-E玻璃两侧的匹配层1可以是由在介电常数2.8的有机玻璃上设置至少一个孔并在孔中注入介电常数为81的水而形成的厚度为2毫米、介电常数为10.9的匹配层;匹配层2可以是由水形成的厚度为1.46毫米、介电常数为81的匹配层;匹配层3可以是有机玻璃形成的厚度为1.57毫米、介电常数为2.8的匹配层,这样可以使所述四层匹配模型的介电常数大于等于4且小于等于70,以使所述三层匹配模型的阻抗接近于空气的特征阻抗,从而可以达到减少信号的衰减的目的。
需要说明的是,上述模型中的各匹配层不限于为上述物质(有机玻璃、水)构成,还可以是其它符合需求的物质,本申请对此不作限定。上述模型中的各匹配层的排列顺序也不限于为图中所示的顺序,只要Low-E玻璃两侧的匹配层完全对称即可。上述模型中的个匹配层的厚度和对应的介电常数仅仅是具体的示例,并不对上述模型造成限定,厚度和介电常数均可以根据具体情况进行调整,只要使得最终的玻璃的阻抗接近于空气的特征阻抗即可。并且上述模型还可以是大于四层的匹配模型,只要最终的玻璃的阻抗接近于空气的特征阻抗即可。
具体的,图6所示的示意图为本申请实施例提供的所述玻璃的一种具体示例的示意图,其中,Low-E玻璃两侧的匹配层依次分别为PC玻璃和水的组合、水、PC玻璃。
基于以上实施例,对在相同的应用场景下,本申请实施例提供的玻璃中的上述三层匹配模型和四层匹配模型与现有的Low-E玻璃对信号的反射的效果进行简单说明:
图7为Low-E玻璃对信号的反射的效果示意图,图8为本申请实施例提供的玻璃中的三层匹配模型对信号的反射的效果示意图,图9为本申请实施例提供的玻璃中的四层匹配模型对信号的反射的效果示意图,其中,每个图中的纵坐标表示信号的传输系数,传输系数越大说明对信号的反射越小,信号衰减越小。
具体的,从图7中可以看出信号通过Low-E玻璃传输时,信号的传输系数低于-21.5分贝(decibel,dB),可见信号很难通过所述Low-E玻璃,导致信号反射较大,信号衰减较大;从图8可以看出,信号的传输系数在-14.5~-17dB之间,平均约在-16dB左右;从图9可以看出,信号的传输系数在-13.5~-17dB之间,平均约-15dB左右。显然,采用本申请实施例提供的玻璃时信号的传输系数比采用现有的Low-E玻璃时信号的传输系数高,因此采用本申请实施例提供的玻璃可以减少信号的反射,进而可以使信号的衰减较小。
进一步地,图8和图9还可以看出采用四层匹配模型比采用三层匹配模型的信号的传输系数的平均值较高,因此采用四层匹配模型会比采用三层匹配模型时,更加减小信号的反射,使得信号的衰减可以更低,也就是采用四层匹配模型效果可以更好,可以使室内信号更好。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技
术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (7)
- 一种贴附于低辐射Low-E玻璃的材料,其特征在于,所述材料包括至少一层匹配层,其中,至少一层匹配层的总阻抗与所述Low-E玻璃的阻抗构成的综合阻抗接近于空气的特征阻抗。
- 如权利要求1所述的材料,其特征在于,第一匹配层包括第一材料层和与所述第一材料层贴合的第二材料层,所述第一材料层内部被填充固体,所述第二材料层内部被填充液体;其中所述第一匹配层为所述至少一层匹配层中的任意一层。
- 如权利要求2所述的材料,其特征在于,所述第一匹配层的介电常数为10.9。
- 如权利要求2或3所述的材料,其特征在于,所述第一材料层与所述第二材料层贴合的一侧设有至少一个孔,所述第二材料层的一部分设置于所述孔内。
- 如权利要求2-4任一项所述的材料,其特征在于,所述固体为钢化玻璃或有机玻璃,所述体液为水、乙二醇、水-乙二醇溶液中任一种。
- 一种玻璃,其特征在于,包括低辐射Low-E玻璃,和分别贴附于所述Low-E玻璃两侧的如权利要求1~5任一所述的材料。
- 如权利要求6所述的玻璃,其特征在于,所述玻璃的介电常数大于等于4且小于等于70。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/117253 WO2019119271A1 (zh) | 2017-12-19 | 2017-12-19 | 一种玻璃和贴附于低辐射Low-E玻璃的材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/117253 WO2019119271A1 (zh) | 2017-12-19 | 2017-12-19 | 一种玻璃和贴附于低辐射Low-E玻璃的材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019119271A1 true WO2019119271A1 (zh) | 2019-06-27 |
Family
ID=66994304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/117253 WO2019119271A1 (zh) | 2017-12-19 | 2017-12-19 | 一种玻璃和贴附于低辐射Low-E玻璃的材料 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019119271A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101269917A (zh) * | 2007-03-21 | 2008-09-24 | 鸿富锦精密工业(深圳)有限公司 | 低辐射玻璃 |
CN201127128Y (zh) * | 2007-04-17 | 2008-10-01 | 信义汽车玻璃(东莞)有限公司 | 汽车用热反射膜加热除霜雾夹层玻璃 |
KR20100057442A (ko) * | 2008-11-21 | 2010-05-31 | (주)엘지하우시스 | 내구성이 우수한 저방사 유리 |
CN203391417U (zh) * | 2013-07-16 | 2014-01-15 | 苏州华东镀膜玻璃有限公司 | 一种具有双低辐射膜层的玻璃 |
CN205443063U (zh) * | 2016-03-24 | 2016-08-10 | 东莞市银建玻璃工程有限公司 | 一种防火弯钢Low-E玻璃 |
CN206219441U (zh) * | 2016-09-30 | 2017-06-06 | 东莞市银建玻璃工程有限公司 | 一种彩釉Low‑e玻璃 |
-
2017
- 2017-12-19 WO PCT/CN2017/117253 patent/WO2019119271A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101269917A (zh) * | 2007-03-21 | 2008-09-24 | 鸿富锦精密工业(深圳)有限公司 | 低辐射玻璃 |
CN201127128Y (zh) * | 2007-04-17 | 2008-10-01 | 信义汽车玻璃(东莞)有限公司 | 汽车用热反射膜加热除霜雾夹层玻璃 |
KR20100057442A (ko) * | 2008-11-21 | 2010-05-31 | (주)엘지하우시스 | 내구성이 우수한 저방사 유리 |
CN203391417U (zh) * | 2013-07-16 | 2014-01-15 | 苏州华东镀膜玻璃有限公司 | 一种具有双低辐射膜层的玻璃 |
CN205443063U (zh) * | 2016-03-24 | 2016-08-10 | 东莞市银建玻璃工程有限公司 | 一种防火弯钢Low-E玻璃 |
CN206219441U (zh) * | 2016-09-30 | 2017-06-06 | 东莞市银建玻璃工程有限公司 | 一种彩釉Low‑e玻璃 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2025084815A (ja) | 建物内の制御されたカバレッジのためのアンテナシステム | |
CN206524140U (zh) | 一种穹幕显示屏 | |
US11841613B2 (en) | Electrokinetic device with imaging sensor | |
WO2019119271A1 (zh) | 一种玻璃和贴附于低辐射Low-E玻璃的材料 | |
US20220282567A1 (en) | Window system and method utilizing a window pane assembly and locking system for easy insertion of a window pane assembly with electronically controllable scalable apertures for attenuating or otherwise modulating light transmission through said assembly | |
CN104790839A (zh) | 微孔式消声隔声窗 | |
CN207118161U (zh) | 一种防水箱体 | |
CN107241741A (zh) | 一种td‑lte网络覆盖方法 | |
CN106801566A (zh) | 一种透光度实时可调的节能降噪窗结构及其优化方法 | |
CN209494407U (zh) | 一种保温性能好的平开窗结构 | |
CN206693837U (zh) | 一种改进的物联网智能窗户 | |
EP2853110B1 (en) | Method of controlling operation of small base station and the small base station in a communication system | |
CN211144177U (zh) | 一种基于铝木结构的新型门窗 | |
CN214785146U (zh) | 一种玻璃幕墙 | |
CN110656850B (zh) | 一种密封隔热的节能门窗及其工艺 | |
CN210948361U (zh) | 一种隔热节能窗 | |
CN105820428A (zh) | 一种手机信号增强器 | |
CN209539143U (zh) | 一种节能隔音隔热门窗 | |
CN211598238U (zh) | 一种密封隔热节能门窗 | |
CN205153889U (zh) | 一种氩气密封改进型节能窗 | |
CN212089144U (zh) | 一种带遮光帘的船用窗斗 | |
WO2018223308A1 (zh) | 通信信号增强装置及通信系统 | |
CN106677685B (zh) | 一种通风采光消音窗 | |
CN217813066U (zh) | 一种内双开窗 | |
CN205638055U (zh) | 一种被动式房屋用窗的木窗框安装结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17935171 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17935171 Country of ref document: EP Kind code of ref document: A1 |