WO2019111504A1 - スイッチング電源装置の制御方法、スイッチング電源装置およびその制御回路 - Google Patents
スイッチング電源装置の制御方法、スイッチング電源装置およびその制御回路 Download PDFInfo
- Publication number
- WO2019111504A1 WO2019111504A1 PCT/JP2018/035934 JP2018035934W WO2019111504A1 WO 2019111504 A1 WO2019111504 A1 WO 2019111504A1 JP 2018035934 W JP2018035934 W JP 2018035934W WO 2019111504 A1 WO2019111504 A1 WO 2019111504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching element
- time
- counter
- target value
- current
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 19
- 239000003990 capacitor Substances 0.000 claims description 56
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 24
- 230000004044 response Effects 0.000 claims description 10
- 230000001960 triggered effect Effects 0.000 claims description 10
- 238000012935 Averaging Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 2
- 230000004043 responsiveness Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 11
- 238000004804 winding Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/337—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
- H02M3/3376—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33515—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33538—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
- H02M3/33546—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
- H02M3/33553—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33571—Half-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0064—Magnetic structures combining different functions, e.g. storage, filtering or transformation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a switching power supply control method, a switching power supply, and a control circuit for the switching power supply, in which responsiveness to a sudden change in load is improved in an LLC current resonant converter which is one type of switching power supply.
- a current resonant converter is used as a highly efficient switching power supply.
- a current resonant converter generally comprises a half bridge circuit, a resonant circuit and a rectifier circuit.
- the half bridge circuit is configured by connecting two switching elements in series, and alternately outputs the DC voltage as a rectangular voltage by switching the switching elements alternately.
- the resonance circuit has a resonance inductor, an excitation inductor of a transformer, and a resonance capacitor, receives a rectangular voltage, performs resonance operation, and outputs an AC voltage to the secondary side of the transformer.
- the rectifier circuit rectifies an AC voltage, smoothes it with a capacitor, and outputs a DC voltage. This DC output voltage is applied to the load.
- an error signal between an output voltage and its target voltage is fed back to a control IC (Integrated Circuit) of a half bridge circuit, and a switching frequency corresponding to the error signal is obtained.
- This system is so-called voltage mode control, whereby the output voltage is controlled to be constant.
- a phase compensation capacitor is included in a system for feeding back an error signal, but the capacitance value of the capacitor has a large value in the case of a current resonance converter.
- the switching power supply device performs control such that burst operation (intermittent operation) is performed to improve efficiency when the load is light, including no load, and the operation returns to continuous operation when the load becomes heavy. In this case, when the load suddenly increases from the light load to shift to the continuous operation, the feedback voltage changes slowly due to the large capacitance value of the phase compensation capacitor, and the return to the continuous operation is also delayed. There is a characteristic that the response is not good.
- Patent Document 1 it is also performed to control power transmission from the primary side to the secondary side of the transformer for each switching cycle using current mode control in which load transient response is faster than voltage mode control (for example, Patent Document 1).
- a central voltage generated by dividing an input voltage and an error voltage which is considered to be generated based on a signal obtained by feedback of the output voltage are obtained. From the center voltage and the error voltage, a first threshold voltage higher than the center voltage by the error voltage is set, and a second threshold voltage lower than the center voltage by the error voltage is set.
- the resonant voltage of the sine wave generated by dividing the voltage across the resonant capacitor is compared with the first and second threshold voltages.
- the switching frequency or period
- the switching frequency is changed by changing the first and second threshold voltages in accordance with the output voltage, and the output voltage is controlled to be constant.
- the duty ratio of the square wave generated by the half bridge circuit is maintained at 50%.
- the present invention has been made in view of such a point, and it is possible to perform stable control without using new external parts and also under no load condition, and further, to respond to sudden change in load. It is an object of the present invention to provide an improved control method of a switching power supply, a switching power supply and a control circuit thereof.
- the present invention in order to solve the above-mentioned problems, it has a half bridge circuit configured by connecting in series a high side first switching element and a low side second switching element, and a resonant inductor and a resonant capacitor.
- a control method of a switching power supply comprising a resonant circuit is provided.
- the control method of this switching power supply detects a resonance current of a resonance circuit, acquires a feedback signal representing an error between an output voltage and its target voltage from an output circuit that outputs a DC voltage, and generates a first switching element and a first switching element In a half cycle from when one of the two switching elements is turned off to when the other of the first switching element and the second switching element is turned off, from when the resonance current reverses polarity to when the half cycle ends Resonant current reversal time is calculated based on multiplication of time information counted from the start point of the half cycle and feedback signal acquired at the start of the half cycle, and resonant current calculated from the time when the resonant current reverses polarity After a lapse of time after inversion, the other of the first switching element and the second switching element is turned off.
- a resonance circuit having a half bridge circuit in which a high side first switching element and a low side second switching element are connected in series, a resonance inductor and a resonance capacitor, and
- a switching power supply device is provided that includes a switching element and a control circuit that controls a second switching element.
- the control circuit of the switching power supply device starts counting operation when one of the first switching element and the second switching element is turned off, detects a resonance current flowing in the resonance circuit, and the resonance current is inverted in polarity.
- the first and second pre-current reversal time counters which stop the count operation triggered by the event, and the resonant current pre-reversion time and DC voltage, which are the count values of the first and second pre-current reversal time counters, are output.
- First and second target value calculators for calculating target values representing the length of time after resonance current inversion from the error signal fed back from the output circuit, and the first or second current pre-inversion counter.
- the first and second current reversal time counters that start counting operation triggered by the termination of the operation, and the first or second current reversal time It has a first and a second comparator for turning off the other of the first switching element and second switching element when a match by comparing the count value and the target value of the motor, the.
- a switching power supply comprising a half bridge circuit configured by connecting in series a high side first switching element and a low side second switching element, and a resonant circuit having a resonant inductor and a resonant capacitor.
- a control circuit of the device is provided. The control circuit of the switching power supply device starts counting operation when one of the first switching element and the second switching element is turned off, detects a resonance current flowing in the resonance circuit, and the resonance current is inverted in polarity.
- First and second target value calculators that calculate target values representing the length of time after resonance current inversion from the error signal that has been fed back, and the first or second pre-current inversion time counter ends the count operation
- the first and second current reversal time counters that start counting operation triggered by the event and the count of the first and second current reversal time counters Includes a first and second comparator to turn off the other of the first switching element and second switching element when a match by comparing the target value.
- the control circuit of the switching power supply configured as described above controls the timing at which the high-side and low-side switching elements are turned off at every half cycle when switching, so that the response at the time of sudden load change can be improved. There is. Further, since only the resonance current is detected, the number of parts for detection is small, which contributes to the cost reduction of the switching power supply device. Furthermore, since it does not depend on the input voltage of the power supply and the LC constant of the resonant circuit, there is no need to design the power supply constant for each of the switching power supply devices with different specifications.
- FIG. 6 is a diagram showing an example of input and output waveforms of the digital control circuit in the first embodiment. It is a block diagram showing an example of functional composition of a digital control circuit. It is a figure which shows the relationship between load and current phase ratio.
- FIG. 1 is a circuit diagram showing a configuration example of a switching power supply device according to a first embodiment
- FIG. 2 is a view showing a configuration example of a control IC for controlling the switching power supply device.
- the switching power supply has input terminals IN1 and IN2, and a DC voltage Vi is applied to the input terminals IN1 and IN2.
- the DC voltage Vi can be used as an output voltage of a power factor correction (PFC) circuit that improves the power factor by suppressing the harmonic current generated in the switching power supply device to a certain limit value or less.
- PFC power factor correction
- the input terminals IN1, IN2 are also connected to both terminals of the capacitor C1.
- the input terminals IN1 and IN2 are further connected to a half bridge circuit in which a high side switching element Q1 and a low side switching element Q2 are connected in series. That is, the input terminal IN1 is connected to the drain terminal of the switching element Q1, the source terminal of the switching element Q1 is connected to the drain terminal of the switching element Q2, and the source terminal of the switching element Q2 is connected to the input terminal IN2.
- the switching elements Q1 and Q2 use N-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) in the illustrated example.
- the gate terminal of the high-side switching element Q1 is connected to one terminal of the resistor R1, and the other terminal of the resistor R1 is connected to the HO terminal of the control IC 10.
- the gate terminal of the low-side switching element Q2 is connected to one terminal of the resistor R2, and the other terminal of the resistor R2 is connected to the LO terminal of the control IC 10.
- the common connection point of the switching elements Q1 and Q2 is connected to the VS terminal of the control IC 10 and one terminal of the bootstrap capacitor C2.
- the other terminal of the bootstrap capacitor C2 is connected to a VB terminal which is a power supply terminal of the high side circuit of the control IC 10.
- a VCC terminal which is a power supply terminal of the low side circuit of the control IC 10, is connected to one terminal of the capacitor C3 and the anode terminal of the bootstrap diode D1.
- the other terminal of the capacitor C3 is connected to the GND terminal of the control IC 10, and the cathode terminal of the bootstrap diode D1 is connected to the VB terminal of the control IC 10.
- the common connection point of switching elements Q1 and Q2 is also connected to one terminal of primary winding P1 of transformer T1, and the other terminal of primary winding P1 is connected to one terminal of resonant capacitor Cr It is done.
- the other terminal of the resonance capacitor Cr is connected to the GND terminal of the control IC 10 and the input terminal IN2.
- the leakage inductance and the resonance capacitor Cr existing between the primary winding P1 and the secondary windings S1 and S2 of the transformer T1 constitute a resonance circuit.
- the resonance circuit may be configured by connecting in series a resonance inductor different from the inductance that constitutes the transformer T1 to the resonance capacitor Cr without using the leakage inductance.
- One terminal of the resonant capacitor Cr is also connected to one terminal of the shunt capacitor Cis, the other terminal of the shunt capacitor Cis is connected to one terminal of the shunt resistor Ris, and the other terminal of the shunt resistor Ris is , Is connected to the GND terminal of the control IC 10.
- a common connection point between the shunt capacitor Cis and the shunt resistor Ris is connected to the IS terminal of the control IC 10, and a signal obtained by shunting the resonant current Icr flowing to the resonant capacitor Cr is supplied to the control IC 10.
- One terminal of the secondary winding S1 of the transformer T1 is connected to the anode terminal of the diode D2, and one terminal of the secondary winding S2 is connected to the anode terminal of the diode D3.
- the cathode terminals of the diodes D2 and D3 are connected to the positive electrode terminal of the output capacitor C4 and the output terminal OUT1.
- the negative terminal of the output capacitor C4 is connected to the common connection point of the other terminals of the secondary windings S1 and S2 and the output terminal OUT2.
- the secondary windings S1 and S2, the diodes D2 and D3, and the output capacitor C4 constitute a circuit that rectifies and smoothes the AC voltage generated in the secondary windings S1 and S2 to convert it into a DC output voltage Vo.
- An output circuit of the switching power supply device is configured.
- a load is connected to the output terminals OUT1 and OUT2.
- the positive terminal of the output capacitor C4 is connected to the anode terminal of the light emitting diode of the photocoupler PC1 via the resistor R3, and the cathode terminal of the light emitting diode is connected to the cathode terminal of the shunt regulator SR1.
- a resistor R4 is connected between the anode terminal and the cathode terminal of the light emitting diode.
- the shunt regulator SR1 has a reference terminal connected to the connection point of the resistors R5 and R6 connected in series between the positive electrode terminal and the negative electrode terminal of the output capacitor C4. In the shunt regulator SR1, a series circuit of a resistor R7 and a capacitor C5 is connected between the reference terminal and the cathode terminal.
- the shunt regulator SR1 supplies a current corresponding to a difference between a voltage obtained by dividing the output voltage Vo (voltage across the output capacitor C4) and a built-in reference voltage to the light emitting diode of the photocoupler PC1.
- the phototransistor of the photocoupler PC1 has its collector terminal connected to the FB terminal of the control IC 10, its emitter terminal connected to the GND terminal of the control IC 10, and a capacitor C6 connected between the collector terminal and the emitter terminal. There is. Accordingly, in order to control the output voltage Vo to be the target voltage, the shunt regulator SR1 feeds back a signal of an error between the output voltage Vo and the target voltage to the control IC 10.
- the IS terminal is connected to one terminal of the resistor Ris_lvs1, and the other terminal of the resistor Ris_lvs1 is connected to one terminal of the resistor Ris_lvs2.
- the other terminal of the resistor Ris_lvs2 is connected to an internal voltage source that supplies the reference voltage VDD.
- the resistors Ris_lvs1 and the resistors Ris_lvs2 form a pull-up circuit, and have the same value so that the voltage division ratio is 1 ⁇ 2.
- the common connection point of the resistors Ris_lvs1 and Ris_lvs2 is connected to the non-inverting input terminal of the comparator Comp, and the inverting input terminal of the comparator Comp is connected to a voltage source supplying the voltage VDD / 2.
- the output terminal of the comparator Comp is connected to the digital control circuit 20 to supply the digital control circuit 20 with a current inversion signal Sinv of the resonance current Icr.
- the FB terminal of the control IC 10 is connected to the input terminal of the analog to digital converter ADC.
- the output terminal of the analog-to-digital converter ADC is connected to the digital control circuit 20 to supply the digitally converted feedback signal Dfb to the digital control circuit 20.
- the digital control circuit 20 has a function of receiving the current inversion signal Sinv and the feedback signal Dfb and outputting drive signals Vho and Vlo for driving the switching elements Q1 and Q2.
- the high side drive signal Vho is supplied to the HO terminal through the buffer circuit Buf1
- the low side drive signal Vlo is supplied to the LO terminal through the buffer circuit Buf2.
- a shunt circuit consisting of a series circuit consisting of a shunt capacitor Cis and a shunt resistor Ris externally connected to the resonant capacitor Cr is connected in parallel to the IS terminal of the control IC 10, and the resonant current Icr is shunted by this shunt circuit. It is input.
- the shunt circuit is originally provided in the switching power supply device to detect an overcurrent of the switching elements Q1 and Q2. Therefore, since the shunt capacitor Cis and the shunt resistor Ris are not newly added to the control IC 10 to obtain the current reversal signal Sinv, they are not substantially new external parts.
- the switching power supply device first, the DC voltage Vi is applied to the input terminals IN1 and IN2, and the switching operation is started by the control IC 10 at a ratio of 50% of the switching elements Q1 and Q2.
- the switching frequency at that time is approximately equal to the resonant frequency determined by the exciting inductor and the resonant capacitor Cr included in the primary side of the transformer T1.
- Power is transferred from the primary side to the secondary side of the transformer T1 by the switching operation of the switching elements Q1 and Q2.
- the AC voltage output to the secondary side of the transformer T1 is rectified and smoothed to become a DC output voltage Vo, and is supplied to the load from the output terminals OUT1 and OUT2.
- the output voltage Vo is detected by the shunt regulator SR1, and a signal of an error with the target voltage is fed back to the FB terminal of the control IC 10 through the photocoupler PC1. Further, in the IS terminal of the control IC 10, the resonance current Icr flowing through the resonance capacitor Cr is divided by the dividing capacitor Cis and the dividing resistor Ris, and the divided current is converted into a voltage signal by the dividing resistor Ris. A voltage signal is input.
- the feedback voltage Vfb input to the FB terminal is converted into a feedback signal Dfb of a digital signal by the analog-to-digital converter ADC, and is input to the digital control circuit 20.
- the voltage signal corresponding to the resonance current Icr input to the IS terminal is pulled up by the resistors Ris_lvs1 and Ris_lvs2, and converted to the voltage Vis based on the voltage VDD / 2.
- the voltage Vis is compared with the voltage VDD / 2 in the comparator Comp, and is supplied to the digital control circuit 20 as a current inversion signal Sinv representing the timing at which the resonance current Icr of the resonance circuit inverts in polarity.
- FIG. 3 is a flowchart showing the operation of the digital control circuit in the first embodiment
- FIG. 4 is a diagram showing an example of input / output waveforms of the digital control circuit in the first embodiment.
- the digital control circuit 20 As shown in FIG. 3, first, the low side drive signal Vlo is turned off, and the low side switching element Q2 is turned off (step S1). In response to the off operation of the low side drive signal Vlo, the digital control circuit 20 starts the counting operation of the high side resonance current before inversion time Tbh (step S2).
- the digital control circuit 20 determines whether or not the current inversion signal Sinv is inverted (step S3). If the current inversion signal Sinv is not inverted, counting operation of the resonance current before inversion time Tbh is performed until the inversion. To continue.
- the digital control circuit 20 ends the count operation of the time Tbh before the resonance current inversion and holds the count value. At the same time, the digital control circuit 20 starts counting operation of time Tah after inversion of the resonance current on the high side (step S4).
- the digital control circuit 20 calculates, from the feedback signal Dfb, a target value Tah_t of the time Tah after inversion of the resonance current at which the high-side drive signal Vho is to be turned off (step S5).
- the digital control circuit 20 continues the counting operation of the high side resonance current reversal after time Tah (step S6), and determines whether the count value of the resonance current reversal time Tah has reached the target value Tah_t. (Step S7). If the count value of the resonance current reversal time Tah does not reach the target value Tah_t, the digital control circuit 20 controls the high side resonance current until the count value of the resonance current reversal time Tah reaches the target value Tah_t. After the inversion, the counting operation of time Tah is continued.
- the digital control circuit 20 ends the counting operation of the high side resonance current reversal time Tah (step S8). At the same time, the digital control circuit 20 changes the drive signal Vho on the high side to a state instructing an off state to turn off the switching element Q1 on the high side (step S9).
- the digital control circuit 20 starts the count operation of the low-side resonance current before inversion time Tbl in response to the OFF operation of the drive signal Vho on the high side (step S10).
- the digital control circuit 20 determines whether the current inversion signal Sinv is inverted (step S11). If the current inversion signal Sinv is not inverted, the counting operation of the resonance current before inversion time Tbl is performed until the inversion. To continue.
- the digital control circuit 20 ends the count operation of the time Tbl before the resonance current inversion and holds the count value. At the same time, the digital control circuit 20 starts the counting operation of the time Tal after inversion of the low-side resonance current (step S12).
- the digital control circuit 20 calculates, from the feedback signal Dfb, a target value Tal_t of the time Tal after reversal of resonance current at which the drive signal Vlo on the high side is to be turned off (step S13).
- the digital control circuit 20 continues the count operation of the low-side resonant current inversion reverse time Tal (step S14), and determines whether the count value of the resonant current inversion reverse time Tal has reached the target value Tal_t. (Step S15). If the count value of the resonance current reversal time Tal does not reach the target value Tal_t, the digital control circuit 20 reverses the low-side resonance current until the count value of the resonance current reversal time Tal reaches the target value Tal_t. The counting operation of the post time Tal continues.
- the digital control circuit 20 ends the counting operation of the time Tal after reversal of the resonance current on the low side (step S16). Then, returning to step S1, the digital control circuit 20 ends the count operation of the low-side resonant current reversal time Tal at the same time, changes the low-side drive signal Vlo to a state instructing OFF, and switches the low-side switching element Q2. Turn off.
- FIG. 3 does not show the control related to the turning on of the switching elements Q1 and Q2, it is controlled such that the other switching element is turned on after a predetermined dead time since one of the switching elements Q1 and Q2 turns off. ing. That is, as shown in FIG. 4, the high-side drive signal Vho becomes high level after the lapse of the dead time Td1 after the low-side drive signal Vlo becomes low level and the low-side switching element Q2 is turned off. The side switching element Q1 is turned on. Also, after the dead time Td2 has elapsed since the high-side drive signal Vho goes low and the high-side switching element Q2 turns off, the low-side drive signal Vlo goes high and the high-side switching element Q1 turns on. Do.
- the processing functions of the digital control circuit 20 described above are implemented using the processor and memory of the computer that the control IC 10 has.
- the processing function of the digital control circuit 20 is implemented by configuring the control IC 10 with an FPGA (Field-Programmable Gate Array) or the like designed to realize the logic function of FIG. 3.
- FPGA Field-Programmable Gate Array
- the digital control circuit 20 controls the time ratio before and after the polarity inversion of the resonant current Icr with the feedback signal Dfb every half cycle.
- the voltage Vis is a signal corresponding to the current obtained by combining the excitation current (the current which does not depend on the load) and the load current, and as shown by the alternate long and short dash line in FIG.
- the time Tbh, Tbl before resonance current inversion becomes shorter as the load becomes heavier, and becomes longer as the load becomes lighter.
- the times Tah and Tal after resonance current inversion are controlled by the feedback signal Dfb representing the weight of the load.
- voltage Vis changes the resonant current pre-reversal times Tbh and Tbl according to the weight of the load every half cycle, so switching between the standby state and the normal operation state at the time of start-up or at the load It is possible to improve the responsiveness in the case of a sudden change in load as when it was performed.
- FIG. 5 is a block diagram showing an example of the functional configuration of the digital control circuit
- FIG. 6 is a diagram showing the relationship between a load and a current phase ratio
- FIG. 7 is a diagram showing an example of operation waveforms of the digital control circuit A) is an operation waveform at the time of normal control
- (B) is an operation waveform at the time of no load control.
- the digital control circuit 20 has a Tbh counter 21, a target value calculation unit 22, a Tah counter 23, a digital comparator 24, a drive signal generation unit 25, and a dead time counter 26 for the high side.
- the digital control circuit 20 also has a Tbl counter 27, a target value calculation unit 28, a Tal counter 29, a digital comparator 30, a drive signal generation unit 31, and a dead time counter 32 for the low side.
- the Tbh counter 21 and the Tbl counter 27 respectively count the times Tbh and Tbl before the resonance current inversion, and the output terminals of the comparator Comp are connected to their Stop terminals.
- a signal synchronized with the rising edge of the current inversion signal Sinv is input to the Stop terminal of the Tbh counter 21, and a signal synchronized with the falling edge of the current inversion signal Sinv is input to the Stop terminal of the Tbl counter 27.
- Output terminals of the Tbh counter 21 and the Tbl counter 27 are connected to the target value calculation units 22 and 28, respectively.
- the input terminals of the target value calculation units 22 and 28 are connected to the output terminal of the analog-to-digital converter ADC.
- the target value calculation units 22 and 28 respectively calculate target values Tah_t and Tal_t representing the length of time Tah after inversion of the resonance current based on the feedback signal Dfb when the Tbh counter 21 and the Tbl counter 27 end counting operation. calculate.
- the output terminals of the Tbh counter 21 and the Tbl counter 27 are also connected to the input terminals of the Tah counter 23 and the Tal counter 29, respectively.
- the Tbh counter 21 and the Tbl counter 27 start counting the time Tah, Tal after inversion of the resonance current, when the Tbh counter 21 and the Tbl counter 27 at the previous stage end the counting operation.
- the Tah counter 23 and the Tal counter 29 preferably clear the counter value before the start of the counting operation or after the end of the comparing operation of the digital comparators 24 and 30 at the next stage.
- the output terminals of the target value calculator 22 and the Tah counter 23 are connected to the input terminal of the digital comparator 24.
- the digital comparator 24 compares the counter value counted by the Tah counter 23 with the target value Tah_t which is the length of the resonance current reversal time Tah calculated by the target value calculation unit 22, and when both match, the OFF signal Output OFF_h.
- the output terminals of the target value calculator 28 and the Tal counter 29 are connected to the input terminal of the digital comparator 30.
- the digital comparator 30 compares the counter value counted by the Tal counter 29 with the target value Tal_t, which is the length of the time Tal after reversal of resonance current calculated by the target value calculation unit 28, and when both match, the off signal Output OFF_l.
- the output terminal of the high-side digital comparator 24 is connected to the start terminal of the low-side Tbl counter 27, and the output terminal of the low-side digital comparator 30 is connected to the start terminal of the high-side Tbh counter 21. It is done. Therefore, the Tbl counter 27 starts counting when the off signal OFF_h is input, and starts counting when the off signal OFF_l is input.
- the output terminal of the high side digital comparator 24 is also connected to the input terminal of the low side dead time counter 32, and the output terminal of the low side digital comparator 30 is the high side dead time counter 26. Connected to the input terminal.
- the dead time counter 26 starts counting the dead time when the off signal OFF_l is input from the digital comparator 30, and outputs the on signal ON_h when the time is up after a predetermined time.
- the dead time counter 32 starts counting the dead time when the off signal OFF_h from the digital comparator 24 is input, and outputs the on signal ON_l when the time is up after a predetermined time.
- the output terminals of the digital comparator 24 and the dead time counter 26 are connected to the input terminal of the drive signal generator 25, and the output terminal of the drive signal generator 25 is connected to the input terminal of the buffer circuit Buf1.
- the drive signal generation unit 25 outputs a drive signal Vho that rises when the on signal ON_h from the dead time counter 26 is input, and falls when the off signal OFF_h from the digital comparator 24 is input.
- the output terminals of the digital comparator 30 and the dead time counter 32 are connected to the input terminal of the drive signal generation unit 31, and the output terminal of the drive signal generation unit 31 is connected to the input terminal of the buffer circuit Buf2.
- the drive signal generation unit 31 outputs a drive signal Vlo that rises when the on signal ON_l from the dead time counter 32 is input, and falls when the off signal OFF_l from the digital comparator 30 is input.
- the time average of the Vfb voltage by the capacitor C6 connected to the FB terminal is used (a time averaging period is about half switching period, for example). Control is performed according to the weight of the load every half cycle.
- control by the digital control circuit 20 capable of coping with sudden load change will be described.
- the weight of the load is represented by the current phase ratio Kcpr of the resonance current Icr.
- the voltage Vis in FIG. 4 has a steeper rise as the load becomes heavier, so the resonance current inversion time Tbh, Tbl becomes shorter as the load becomes heavier, and becomes longer as the load becomes lighter.
- the current phase ratio Kcpr represents the weight of the load, and as the high side and low side resonant current pre-reversion times Tbh and Tbl become shorter (after the resonant current is inverted) The longer the time Tah, Tal), the heavier the load.
- the graph of the relationship between the load weight (Po) and the current phase ratio Kcpr is shown in FIG. This graph is a straight line connecting the point of no load Po_min and the point corresponding to the maximum load Po_max. Further, it is assumed that the load weight Po and the Vfb voltage are proportional to each other. The relationship between the load weight Po and the current phase ratio Kcpr is not necessarily guaranteed to be linear as illustrated, but can be approximated approximately linearly. Similarly, there is no guarantee that the load weights Po and Vfb voltages are completely proportional, but the first approximation holds.
- Vfb Kcpr / A + B (2) Is represented by Here, A and B are constants.
- Tah (Vfb-B) ⁇ A ⁇ Tbh ⁇ ⁇ ⁇ (3)
- Tal (Vfb-B) ⁇ A ⁇ Tbl ⁇ (4) Is required.
- the resonance current after reversal times Tah and Tal obtained by the equations (3) and (4) are equal to the target values Tah_t and Tal_t calculated by the target value calculators 22 and 28, respectively.
- Vfb_min 1V
- Vfb_max 3V at the minimum value and the maximum value set at the VF terminal in the control IC 10 of this embodiment.
- the resonance current reversal time Tah is determined by multiplying the resonance current reversal time Tbh and the Vbf voltage
- the resonance current reversal time Tal is determined by multiplying the resonance current reversal time Tbl and the Vbf voltage.
- the operation at the time of normal control of the digital control circuit 20 shown in FIG. 5 will be described with reference to FIG. 7 (A).
- the digital comparator 30 outputs the off signal OFF_l at time t1
- the drive signal generation unit 31 outputs the drive signal Vlo that turns off the switching element Q2.
- the Tbh counter 21 starts the count operation and the dead time counter 26 also starts the count operation triggered by the digital comparator 30 outputting the off signal OFF_l.
- the Tbh counter 21 ends the count operation.
- the target value calculating unit 22 calculates the target value Tah_t, and the Tah counter 23 starts the counting operation.
- the Tah counter 23 may start the counting operation after the target value calculation unit 22 finishes calculating the target value Tah_t.
- the digital comparator 24 outputs the off signal OFF_h.
- the drive signal generation unit 25 outputs the drive signal Vho for turning off the switching element Q1.
- the off signal OFF_h is also supplied to the low side Tbl counter 27 and the dead time counter 32, and the Tbl counter 27 starts counting and the dead time counter 32 also starts counting.
- the next half cycle is also similar to the high side control operation. That is, when the dead time counter 32 times up at time t5, the drive signal Vlo changes from the off state to the on state, and the Tbl counter 27 ends the count operation at time t6.
- the target value calculator 28 calculates the target value Tal_t, and the Tal counter 29 starts the count operation.
- the digital comparator 30 outputs the off signal OFF_l, and the drive signal generation unit 31 drives the switching element Q2 to turn off. Output Vlo.
- control of time t1 to time t7 is repeated.
- the resonance current Icr of the LLC current resonance converter is only the excitation current Im not related to the power transfer from the primary side to the secondary side.
- the excitation current Im is as shown in FIG. As shown in (B), it fluctuates linearly. That is, when the digital comparator 30 outputs the off signal OFF_l at time t11 and the drive signal generation unit 31 outputs the drive signal Vlo turned off, the Tbh counter 21 starts counting and the dead time counter 26 also counts. To start.
- the drive signal Vho output from the drive signal generation unit 25 transitions from the off state to the on state.
- the Tbh counter 21 ends the count operation
- the target value calculation unit 22 calculates the target value Tah_t
- the Tah counter 23 starts the count operation.
- the digital comparator 24 When the count value of the Tah counter 23 reaches the target value Tah_t of the target value calculation unit 22 at time t14, the digital comparator 24 outputs the off signal OFF_h, and the drive signal generation unit 25 turns off the switching element Q1.
- the drive signal Vho is output.
- the low side Tbl counter 27 starts the counting operation and the dead time counter 32 also starts the counting operation.
- the Tbl counter 27 ends the count operation.
- the target value calculation unit 28 calculates the target value Tal_t, and the Tal counter 29 starts counting operation.
- the digital comparator 30 outputs the off signal OFF_l, and the drive signal generation unit 31 outputs the drive signal Vlo in the off state. Do. After time t17, control of time t11 to time t17 is repeated.
- the digital control circuit 20 when the load of the switching power supply device suddenly changes from, for example, a no-load state to a normal load state, the state of FIG. Control can be instantly switched to the state. Thereby, the digital control circuit 20 can perform tracking control without response delay when the load changes. Moreover, since the operating point of the FB voltage does not depend on the input voltage of the power supply and the LC constant of the resonant circuit as understood from the above equations (6) and (7), the power supply constant is set for each switching power supply device with different specifications. There is no need to design, and the degree of freedom of power supply constant design is high.
- the switching power supply according to the second embodiment is different from the switching power supply according to the first embodiment in how to obtain the times Tah and Tal after inversion of the resonance current. That is, in the switching power supply according to the first embodiment, the resonance current inversion time Tah, Tal is the start of the half period before the resonance current inversion time Tbh, Tbl as time information counted from the start of the half period. It is calculated based on multiplication with the FB voltage acquired at the time. On the other hand, in the second embodiment, as the time information counted from the start point of the half cycle, an average time obtained by averaging the time of the latest consecutive half cycles is used.
- the resonance current post-reversal time Tah, Tal according to the second embodiment is calculated based on the multiplication of the average time and the FB voltage acquired at the start of the half cycle.
- the switching power supply according to the second embodiment has the entire configuration and the configuration of the control IC in the entire configuration (FIG. 1) of the switching power supply according to the first embodiment and the configuration of the control IC 10 The same as FIG. 2). Therefore, the switching power supply according to the second embodiment will be described from the operation of the digital control circuit of the control IC 10.
- FIG. 8 is a flow chart showing the switching operation of the digital control circuit in the second embodiment
- FIG. 9 is a flow chart showing the half cycle average value calculation operation in the second embodiment
- FIG. 10 is the flow chart in the second embodiment. It is a figure which shows the example of the input-output waveform of a digital control circuit.
- the digital control circuit 20a first, the low-side drive signal Vlo is turned off, and the low-side switching element Q2 is turned off to start the switching operation (step S21).
- FIG. 10 shows an input / output waveform of the digital control circuit 20a after the start of the switching operation, not at the start of the switching operation.
- the digital control circuit 20a samples the feedback signal Dfb to obtain the FB voltage Vfbh for calculating the time Tah after the inversion of the high-side resonant current (step S22).
- the digital control circuit 20a starts the dead time counting operation (step S23), and after a predetermined time, ends the dead time counting operation (step S24). At the same time as the end of the count operation, the digital control circuit 20a changes the drive signal Vho on the high side to a state instructing turn-off to turn on the switching element Q1 on the high side (step S25).
- the digital control circuit 20a determines whether the current inversion signal Sinv inverts its polarity from negative to positive (step S26), and waits for inversion if the current inversion signal Sinv is not inverted.
- the digital control circuit 20a calculates the target value Tah_t of the time Tah after the inversion of the resonance current on the high side (step S27).
- the digital control circuit 20a starts counting operation of time Tah after inversion of the resonance current on the high side (step S28). The counting operation of the time Tah after the resonance current inversion may be started simultaneously with the calculation of the target value Tah_t after the current inversion signal Sinv is inverted.
- the digital control circuit 20a determines whether the count value of the time Tah after resonance current reversal has reached the target value Tah_t (step S29). If the count value of the resonance current reversal time Tah does not reach the target value Tah_t, the digital control circuit 20a controls the high side resonance current until the count value of the resonance current reversal time Tah reaches the target value Tah_t. After the inversion, the counting operation of time Tah is continued.
- the digital control circuit 20a ends the counting operation of the high side resonance current after inversion time Tah (step S30). At the same time, the digital control circuit 20a changes the drive signal Vho on the high side to a state instructing an off state to turn off the switching element Q1 on the high side (step S31).
- the digital control circuit 20a samples the feedback signal Dfb to obtain the FB voltage Vfbl for calculating the low-side resonant current post-reversal reversal time Tal (step S32).
- the digital control circuit 20a starts a dead time counting operation (step S33), and after a predetermined time, ends the dead time counting operation (step S34). At the same time as the end of the count operation, the digital control circuit 20a changes the low side drive signal Vlo to a state instructing an off state to turn on the low side switching element Q2 (step S35).
- the digital control circuit 20a determines whether or not the current inversion signal Sinv inverts the polarity from positive to negative (step S36), and waits for inversion if the current inversion signal Sinv is not inverted.
- the digital control circuit 20a calculates the target value Tal_t of the time Tal after inversion of the low-side resonance current (step S37).
- k is a constant
- Vfbl is the FB voltage obtained by sampling in step S22
- Tco is a half cycle average value obtained by the half cycle average value calculation operation of FIG.
- the digital control circuit 20a starts the counting operation of the time Tal after inversion of the low side resonance current (step S38).
- the counting operation of the time Tal after inversion of the resonance current may be started simultaneously with the calculation of the target value Tal_t after the current inversion signal Sinv is inverted.
- the digital control circuit 20a determines whether the count value of the time Tal after inversion of the resonance current has reached the target value Tal_t (step S39). If the count value of the time Tal after reversal of the resonance current does not reach the target value Tal_t, the digital control circuit 20a switches the resonance current on the high side until the count value of the time Tal after reversal of the resonance current reaches the target value Tal_t. After the inversion, the counting operation of the time Tal is continued.
- the digital control circuit 20a ends the count operation of the low side resonance current after reversal time Tal (step S40). Next, the switching operation returns to step S21, and repeats the processing of steps S21 to S40.
- the digital control circuit 20a first sets the initial value of the half cycle average value Tco when the switching power supply device is started (step S41).
- a temporary half cycle count value is set in an empty register storing a half cycle count value so that the half cycle average value Tco can be obtained immediately after startup of the switching power supply device.
- the temporary count value the value of the minimum half cycle at which the switching frequency is maximum is set, thereby realizing the soft start of the switching power supply device.
- the digital control circuit 20a determines whether the low side switching element Q2 is turned off (step S42). If the low side switching element Q2 is not turned off, it waits until the low side switching element Q2 is turned off.
- the digital control circuit 20a ends counting of the low side cycle Tcl and holds the count value (step S43). At the same time, the digital control circuit 20a starts counting the high side cycle Tch (step S44).
- the digital control circuit 20a determines whether the high side switching element Q1 is turned off (step S45). If the high side switching element Q1 is not turned off, the process waits until the low side switching element Q2 is turned off.
- the digital control circuit 20a ends the counting of the high side cycle Tch and holds the count value (step S46).
- the digital control circuit 20a uses the count value and the count value of the continuous predetermined cycle that has already been obtained to obtain an average value Tco of half cycles in the switching operation. Is calculated (step S47). This low side and high side half cycle average value Tco is
- N is the number of switching cycles to be averaged
- Tcli is the low side half cycle width (from high side turn off to low side turn off)
- Tchi is high side half cycle width (low side turn off to high side) Until the turn-off of
- the average value Tco may be calculated from an average time corresponding to half of the length of one cycle before the start of the half cycle.
- step S48 the digital control circuit 20a starts counting the low side cycle Tcl (step S48).
- step S48 the process of calculating the half cycle average value Tco returns to step S42, and repeats the processes of steps S42 to S48.
- the processing functions of the digital control circuit 20a described above are implemented using the processor and memory of the computer that the control IC 10 has.
- the processing function of the digital control circuit 20 a is implemented by configuring the control IC 10 with an FPGA or the like designed to realize the logic functions of FIGS. 8 and 9.
- the digital control circuit 20a controls the average time of the most recent consecutive half cycles with the FB voltages Vfbl and Vfbh for each switching half cycle.
- the digital control circuit 20a can improve responsiveness to sudden changes in load. Also, since the values multiplied by the FB voltages Vfbl and Vfbh when calculating the times Tal and Tah after resonance current inversion are average times that do not change suddenly themselves, the digital control circuit 20a enables relatively stable control. Become.
- FIG. 11 is a block diagram showing an example of the functional configuration of the digital control circuit according to the second embodiment
- FIG. 12 is a diagram showing the relationship between the FB voltage and the load.
- the digital control circuit 20a has a Tch counter 41, a target value calculator 42, a Tah counter 43, a digital comparator 44, a drive signal generator 45, and a dead time counter 46 for the high side.
- the digital control circuit 20a also has a Tco calculating unit 47 for high side and low side.
- the digital control circuit 20a further has a Tcl counter 48, a target value calculation unit 49, a Tal counter 50, a digital comparator 51, a drive signal generation unit 52, and a dead time counter 53 for low side.
- the Tch counter 41 counts the high side period Tch, and is connected to the output terminal of the digital comparator 44 at its Stop terminal, and connected to the output terminal of the digital comparator 51 at its Start terminal.
- the Tcl counter 48 counts the low side period Tcl, and is connected to the output terminal of the digital comparator 51 at its Stop terminal, and connected to the output terminal of the digital comparator 44 at its Start terminal.
- the output terminals of the Tch counter 41 and the Tcl counter 48 are connected to the input terminal of the Tco calculator 47.
- the Tco calculating unit 47 calculates the half cycle average value Tco, and the output terminals thereof are connected to the first input terminals of the target value calculating units 42 and 49, respectively.
- the second input terminals of the target value calculation units 42 and 49 are connected to the output terminal of the analog-to-digital converter ADC so as to receive the feedback signal Dfb.
- the target value calculation units 42 and 49 receive the half cycle average value Tco from the Tco calculation unit 47 and the feedback signal Dfb (FB voltage), and output target values Tah_t and Tal_t.
- Tco calculation unit 47 has, for example, N registers for high side and low side, and is configured to sequentially hold and always hold the latest 2N data each time half cycle data is calculated. I have to.
- the half cycle average value Tco is a moving average value obtained by adding the latest 2N pieces of data each time they are held and dividing the result by 2N, and in the target value calculation units 42 and 49, It is commonly used to calculate the target values Tah_t and Tal_t.
- the feedback signal Dfb input to the target value calculation units 42 and 49 changes in accordance with the weight Po of the load. That is, as shown in FIG. 12, the Vfb voltage (FB voltage) and the weight Po of the load have a relationship such that the Vfb voltage (FB voltage) is saturated as the weight Po of the load increases. ing.
- the operating range of the FB voltage is set to 1.0 to 2.0 volts (V).
- the ratio Ta / Tco between the time Ta after resonance current inversion and the half cycle average value Tco is 0.5 to 1, according to the equations (9) and (11), the constant k is 0.5 is there.
- the input terminals of the Tah counter 43 and the Tal counter 50 are connected to the output terminal of the comparator Comp so as to receive the current inversion signal Sinv.
- An output terminal of the Tah counter 43 is connected to a first input terminal of the digital comparator 44, and an output terminal of the Tal counter 50 is connected to a first input terminal of the digital comparator 51.
- the second input terminal of the digital comparator 44 is connected to the output terminal of the target value calculation unit 42, and the second input terminal of the digital comparator 51 is connected to the output terminal of the target value calculation unit 49.
- the digital comparator 44 compares the counter value counted by the Tah counter 43 with the target value Tah_t which is the length of the resonance current reversal time Tah calculated by the target value calculation unit 42, and when both match, the high side The off signal OFF_h is output.
- the digital comparator 51 compares the counter value counted by the Tal counter 50 with the target value Tal_t, which is the length of the time Tal after reversal of resonance current calculated by the target value calculation unit 49, and when both match, low side The off signal OFF_l is output.
- the off signal OFF_h output from the high-side digital comparator 44 is used to start the counting operation of the Tcl counter 48 and is used to stop the counting operation of the Tch counter 41.
- the off signal OFF_l output from the low-side digital comparator 51 is used to start the counting operation of the Tch counter 41 and is used to stop the counting operation of the Tcl counter 48.
- the output terminal of the high side digital comparator 44 is also connected to the input terminal of the low side dead time counter 53, and the output terminal of the low side digital comparator 51 is the high side dead time counter 46 Connected to the input terminal.
- the dead time counter 46 starts counting the dead time when the off signal OFF_l is input from the digital comparator 51, and outputs the on signal ON_h when the time is up after a predetermined time.
- the dead time counter 53 starts counting the dead time when the off signal OFF_h from the digital comparator 44 is input, and outputs the on signal ON_l when time is up after a predetermined time.
- the output terminals of the digital comparator 44 and the dead time counter 46 are connected to the input terminal of the drive signal generation unit 45, and the output terminal of the drive signal generation unit 45 is connected to the input terminal of the buffer circuit Buf1.
- the drive signal generation unit 45 outputs a drive signal Vho that rises when the on signal ON_h from the dead time counter 46 is input, and falls when the off signal OFF_h from the digital comparator 44 is input.
- the output terminals of the digital comparator 51 and the dead time counter 53 are connected to the input terminal of the drive signal generation unit 52, and the output terminal of the drive signal generation unit 52 is connected to the input terminal of the buffer circuit Buf2.
- the drive signal generation unit 52 outputs a drive signal Vlo that rises when the on signal ON_l from the dead time counter 53 is input, and falls when the off signal OFF_l from the digital comparator 51 is input.
- the tracking control is performed without response delay by controlling in units of half cycles. can do.
- the operating point of the FB voltage does not depend on the input voltage of the power supply and the LC constant of the resonant circuit, there is no need to design the power supply constant for each switching power supply device with different specifications It becomes.
- time information counted from the start of the half cycle the time before the resonance current reversal from the start of the half cycle to the reversal of the polarity in the first embodiment in the second embodiment
- the average time which averaged the time of the nearest consecutive predetermined number of half cycles was used in the form, you may use the time information counted from the start time of the other half cycle.
- time information counted from before and after the start point of the half cycle may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
LLC電流共振コンバータにおいて、負荷急変時における応答性を改善する。 まず、ローサイドのスイッチング素子がオフされる(S1)とする。このとき、共振電流反転前時間Tbhをカウントし(S2)、共振電流が反転したら(S3)、そのカウント値を保持し、共振電流反転後時間Tahのカウント動作を開始する(S4)。次に、フィードバック信号を基にハイサイドのスイッチング素子がオフすべきTahの目標値Tah_tを計算し(S5)、Tahのカウント動作を継続する(S6)。そのカウント値がその目標値Tah_tに達したら(S7)、Tahのカウント動作を終了し(S8)、ハイサイドのスイッチング素子がオフされる(S9)。このハイサイドについての半周期を制御した後は、ローサードの半周期を同様に制御する(S10-S16)。半周期ごとの制御により、負荷急変時の応答性が改善される。
Description
本発明は、スイッチング電源の一方式であるLLC電流共振コンバータにおいて負荷急変時における応答性を改善したスイッチング電源装置の制御方法、スイッチング電源装置およびその制御回路に関する。
高効率なスイッチング電源装置として電流共振コンバータが使われている。電流共振コンバータは、一般に、ハーフブリッジ回路、共振回路および整流回路を備えている。ハーフブリッジ回路は、2つのスイッチング素子を直列に接続して構成され、スイッチング素子を交互にスイッチングすることによって直流電圧を矩形の電圧にして出力する。共振回路は、共振インダクタと、トランスの励磁インダクタと、共振コンデンサとを有し、矩形の電圧を受けて共振動作をし、トランスの2次側に交流電圧を出力する。整流回路は、交流電圧を整流し、コンデンサで平滑化して直流の電圧を出力する。この直流の出力電圧が、負荷に印加される。
このような電流共振コンバータでは、出力電圧とその目標電圧との誤差信号をハーフブリッジ回路の制御IC(Integrated Circuit)にフィードバックし、誤差信号に応じたスイッチング周波数にしている。この方式は、いわゆる、電圧モード制御であり、これによって、出力電圧が一定に制御されている。この電圧モード制御では、誤差信号をフィードバックする系に、位相補償のコンデンサを有しているが、そのコンデンサの容量値は、電流共振コンバータの場合、大きな値を有している。一方、一般的にスイッチング電源装置は、無負荷を含む軽負荷になると、効率改善のためにバースト動作(間欠動作)を行い、負荷が重くなると連続動作に戻るという制御を行っている。この場合、軽負荷から負荷が急増して連続動作に移行する際、位相補償のコンデンサの大きな容量値に起因してフィードバック電圧の変化が遅く、連続動作に戻るのも遅くなるため、負荷変動に対する応答がよくないという特性がある。
これに対し、負荷過渡応答が電圧モード制御よりも高速な電流モード制御を用い、トランスの1次側から2次側への電力伝送をスイッチング周期ごとに制御することも行われている(たとえば、特許文献1参照)。この特許文献1に記載の技術によれば、入力電圧を分圧して生成した中心電圧と、出力電圧をフードバックした信号を基に生成したと思われる誤差電圧とを求めている。中心電圧および誤差電圧からは、中心電圧に対して誤差電圧分だけ高い第1の閾値電圧を設定し、中心電圧に対して誤差電圧分だけ低い第2の閾値電圧を設定している。
ここで、共振コンデンサの両端電圧を分圧して生成した正弦波の共振電圧を第1および第2の閾値電圧と比較する。このとき、共振電圧が変化して第1の閾値電圧まで高くなると、ハイサイドのスイッチング素子がオフされ、第2の閾値電圧まで低くなると、ローサイドのスイッチング素子がオフされる。このように、出力電圧に応じて第1および第2の閾値電圧が変化することにより、スイッチング周波数(または周期)が変化され、出力電圧が一定になるように制御される。また、第1および第2の閾値電圧が中心電圧に対して同じ誤差電圧分だけ上下に設定されているので、ハーフブリッジ回路で生成される方形波の時比率は、50%に保持される。
しかしながら、特許文献1に記載の技術では、たとえばその図14に示すように、電源の入力電圧および共振コンデンサの両端電圧を検出するための抵抗およびコンデンサによる外付けの分圧回路が必要であるため、コストアップになっている。また、分圧回路では、抵抗およびコンデンサに高い精度が要求されるが、抵抗およびコンデンサのばらつきが大きいために、特に無負荷時の制御が極めて難しいという問題がある。
本発明はこのような点に鑑みてなされたものであり、新たな外付け部品を用いることなく、また、無負荷時でも安定した制御が可能であって、さらに、負荷急変時における応答性を改善したスイッチング電源装置の制御方法、スイッチング電源装置およびその制御回路を提供することを目的とする。
本発明では、上記の課題を解決するために、ハイサイドの第1のスイッチング素子およびローサイドの第2のスイッチング素子を直列に接続して構成したハーフブリッジ回路と、共振インダクタおよび共振コンデンサとを有する共振回路とを備えたスイッチング電源装置の制御方法が提供される。このスイッチング電源装置の制御方法は、共振回路の共振電流を検出し、直流電圧を出力する出力回路から出力電圧とその目標電圧との誤差を表すフィードバック信号を取得し、第1のスイッチング素子および第2のスイッチング素子の一方がターンオフしてから第1のスイッチング素子および第2のスイッチング素子の他方がターンオフするまでの半周期のうちで共振電流が極性を反転したときから半周期が終了するまでの共振電流反転後時間を、半周期の開始時点からカウントした時間情報と半周期の開始時に取得したフィードバック信号との乗算に基づいて算出し、共振電流が極性を反転したときから算出された共振電流反転後時間を経過した後に第1のスイッチング素子および第2のスイッチング素子の他方をターンオフする。
また、本発明は、ハイサイドの第1のスイッチング素子およびローサイドの第2のスイッチング素子を直列に接続して構成したハーフブリッジ回路と、共振インダクタおよび共振コンデンサとを有する共振回路と、第1のスイッチング素子および第2のスイッチング素子を制御する制御回路とを備えたスイッチング電源装置が提供される。このスイッチング電源装置の制御回路は、第1のスイッチング素子および第2のスイッチング素子の一方がターンオフしたことを契機にカウント動作を開始し、共振回路を流れる共振電流を検出し、共振電流が極性反転したことを契機にカウント動作を停止する第1および第2の電流反転前時間カウンタと、第1および第2の電流反転前時間カウンタのカウント値である共振電流反転前時間と直流電圧を出力する出力回路からフィードバックされた誤差信号とから共振電流反転後時間の長さを表す目標値を算出する第1および第2の目標値算出部と、第1または第2の電流反転前時間カウンタがカウント動作を終了したことを契機にカウント動作を開始する第1および第2の電流反転後時間カウンタと、第1または第2の電流反転後時間カウンタのカウント値と目標値とを比較して一致したときに第1のスイッチング素子および第2のスイッチング素子の他方をターンオフする第1および第2の比較器と、を有している。
また、本発明は、ハイサイドの第1のスイッチング素子およびローサイドの第2のスイッチング素子を直列に接続して構成したハーフブリッジ回路と、共振インダクタおよび共振コンデンサを有する共振回路とを備えたスイッチング電源装置の制御回路が提供される。このスイッチング電源装置の制御回路は、第1のスイッチング素子および第2のスイッチング素子の一方がターンオフしたことを契機にカウント動作を開始し、共振回路を流れる共振電流を検出し、共振電流が極性反転したことを契機に停止する第1および第2の電流反転前時間カウンタと、第1および第2の電流反転前時間カウンタのカウント値である共振電流反転前時間と直流電圧を出力する出力回路からフィードバックされた誤差信号とから共振電流反転後時間の長さを表す目標値を算出する第1および第2の目標値算出部と、第1または第2の電流反転前時間カウンタがカウント動作を終了したことを契機にカウント動作を開始する第1および第2の電流反転後時間カウンタと、第1または第2の電流反転後時間カウンタのカウント値と目標値とを比較して一致したときに第1のスイッチング素子および第2のスイッチング素子の他方をターンオフする第1および第2の比較器と、を備えている。
上記構成のスイッチング電源装置の制御回路は、スイッチングするときに、半周期ごとに、ハイサイドおよびローサイドのスイッチング素子がターンオフするタイミングを制御しているので、負荷急変時の応答性を改善できるという利点がある。また、共振電流のみの検出をしているため、検出用の部品が少なく、スイッチング電源装置のコストダウンに寄与している。さらに、電源の入力電圧および共振回路のLC定数に依存しないので、仕様の異なるスイッチング電源装置ごとに電源定数を設計する必要がなく、電源定数設計の自由度が高いものとなる。
本発明の上記および他の目的、特徴および利点は、本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
以下、本発明の実施の形態について、スイッチング電源装置のLLC電流共振コンバータに適用した場合を例に、図面を参照して詳細に説明する。なお、以下では、それぞれの図の中で、同一の符号で示される部分は、同一の構成要素を示している。また、以下の説明において、端子名とその端子における電圧、信号などは、同じ符号を用いることがある。
[第1の実施の形態]
図1は第1の実施の形態に係るスイッチング電源装置の構成例を示す回路図、図2はスイッチング電源装置を制御する制御ICの構成例を示す図である。
図1は第1の実施の形態に係るスイッチング電源装置の構成例を示す回路図、図2はスイッチング電源装置を制御する制御ICの構成例を示す図である。
本実施の形態に係るスイッチング電源装置は、図1に示したように、入力端子IN1,IN2を有し、この入力端子IN1,IN2には、直流電圧Viが印加される。直流電圧Viは、スイッチング電源装置で発生する高調波電流をある制限値以下に抑えて力率を改善する力率改善(PFC:Power Factor Correction)回路の出力電圧とすることができる。入力端子IN1,IN2は、また、コンデンサC1の両端子に接続されている。
入力端子IN1,IN2は、さらに、ハイサイドのスイッチング素子Q1とローサイドのスイッチング素子Q2とを直列に接続して構成したハーフブリッジ回路に接続されている。すなわち、入力端子IN1は、スイッチング素子Q1のドレイン端子に接続され、スイッチング素子Q1のソース端子は、スイッチング素子Q2のドレイン端子に接続され、スイッチング素子Q2のソース端子は、入力端子IN2に接続されている。スイッチング素子Q1,Q2は、図示の例では、NチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を使用している。
ハイサイドのスイッチング素子Q1のゲート端子は、抵抗R1の一方の端子に接続され、抵抗R1の他方の端子は、制御IC10のHO端子に接続されている。ローサイドのスイッチング素子Q2のゲート端子は、抵抗R2の一方の端子に接続され、抵抗R2の他方の端子は、制御IC10のLO端子に接続されている。スイッチング素子Q1,Q2の共通の接続点は、制御IC10のVS端子と、ブートストラップコンデンサC2の一方の端子とに接続されている。ブートストラップコンデンサC2の他方の端子は、制御IC10のハイサイド用回路の電源端子であるVB端子に接続されている。
制御IC10のローサイド用回路の電源端子であるVCC端子は、コンデンサC3の一方の端子とブートストラップダイオードD1のアノード端子とにそれぞれ接続されている。コンデンサC3の他方の端子は、制御IC10のGND端子に接続され、ブートストラップダイオードD1のカソード端子は、制御IC10のVB端子に接続されている。
スイッチング素子Q1,Q2の共通の接続点は、また、トランスT1の1次巻線P1の一方の端子に接続され、1次巻線P1の他方の端子は、共振コンデンサCrの一方の端子に接続されている。共振コンデンサCrの他方の端子は、制御IC10のGND端子および入力端子IN2に接続されている。ここで、トランスT1の1次巻線P1と2次巻線S1,S2との間に存在するリーケージインダクタンスおよび共振コンデンサCrは、共振回路を構成している。なお、リーケージインダクタンスを利用せずに、共振コンデンサCrにトランスT1を構成するインダクタンスとは別の共振インダクタを直列に接続して共振回路を構成するようにしてもよい。共振コンデンサCrの一方の端子は、また、分流コンデンサCisの一方の端子に接続され、分流コンデンサCisの他方の端子は、分流抵抗Risの一方の端子に接続され、分流抵抗Risの他方の端子は、制御IC10のGND端子に接続されている。分流コンデンサCisと分流抵抗Risとの共通の接続点は、制御IC10のIS端子に接続されており、共振コンデンサCrに流れる共振電流Icrを分流して電圧に変換した信号を制御IC10に供給する。
トランスT1の2次巻線S1の一方の端子は、ダイオードD2のアノード端子に接続され、2次巻線S2の一方の端子は、ダイオードD3のアノード端子に接続されている。ダイオードD2,D3のカソード端子は、出力コンデンサC4の正極端子および出力端子OUT1に接続されている。出力コンデンサC4の負極端子は、2次巻線S1,S2の他方の端子の共通の接続点および出力端子OUT2に接続されている。2次巻線S1,S2、ダイオードD2,D3および出力コンデンサC4は、2次巻線S1,S2に生起された交流電圧を整流および平滑して直流の出力電圧Voに変換する回路を構成し、スイッチング電源装置の出力回路を構成している。出力端子OUT1,OUT2には、負荷が接続される。
出力コンデンサC4の正極端子は、抵抗R3を介してフォトカプラPC1の発光ダイオードのアノード端子に接続され、発光ダイオードのカソード端子は、シャントレギュレータSR1のカソード端子に接続されている。発光ダイオードのアノード端子とカソード端子との間には、抵抗R4が接続されている。シャントレギュレータSR1は、出力コンデンサC4の正極端子と負極端子との間に直列接続された抵抗R5,R6の接続点に接続されたリファレンス端子を有している。シャントレギュレータSR1は、リファレンス端子とカソード端子との間に、抵抗R7およびコンデンサC5の直列回路が接続されている。このシャントレギュレータSR1は、出力電圧Vo(出力コンデンサC4の両端電圧)を分圧した電圧と内蔵の基準電圧との差に応じた電流をフォトカプラPC1の発光ダイオードに流すものである。フォトカプラPC1のフォトトランジスタは、そのコレクタ端子が制御IC10のFB端子に接続され、エミッタ端子が制御IC10のGND端子に接続され、コレクタ端子とエミッタ端子との間には、コンデンサC6が接続されている。したがって、シャントレギュレータSR1は、出力電圧Voが目標電圧になるよう制御するために、出力電圧Voの目標電圧との誤差の信号を制御IC10にフィードバックしていることになる。
制御IC10では、図2に示したように、IS端子は、抵抗Ris_lvs1の一方の端子に接続され、抵抗Ris_lvs1の他方の端子は、抵抗Ris_lvs2の一方の端子に接続されている。抵抗Ris_lvs2の他方の端子は、基準電圧VDDを供給する内部の電圧源に接続されている。これにより、抵抗Ris_lvs1および抵抗Ris_lvs2は、プルアップ回路を構成し、かつ、同じ値にして分圧比が1/2となるようにしている。抵抗Ris_lvs1と抵抗Ris_lvs2との共通の接続点は、比較器Compの非反転入力端子に接続され、比較器Compの反転入力端子は、電圧VDD/2を供給する電圧源に接続されている。比較器Compの出力端子は、デジタル制御回路20に接続されてデジタル制御回路20に共振電流Icrの電流反転信号Sinvを供給している。
制御IC10のFB端子は、アナログ・デジタル変換器ADCの入力端子に接続されている。アナログ・デジタル変換器ADCの出力端子は、デジタル制御回路20に接続されてデジタル制御回路20にデジタル変換されたフィードバック信号Dfbを供給している。
デジタル制御回路20は、電流反転信号Sinvおよびフィードバック信号Dfbを入力してスイッチング素子Q1,Q2を駆動する駆動信号Vho,Vloを出力する機能を有している。ハイサイド用の駆動信号Vhoは、バッファ回路Buf1を介してHO端子に供給され、ローサイド用の駆動信号Vloは、バッファ回路Buf2を介してLO端子に供給される。
なお、制御IC10のIS端子には、共振コンデンサCrに外付けの分流コンデンサCisおよび分流抵抗Risの直列回路で構成した分流回路を並列に接続し、共振電流Icrをこの分流回路で分流した信号を入力している。この分流回路は、スイッチング素子Q1,Q2の過電流を検出するためにスイッチング電源装置が本来備えているものである。したがって、分流コンデンサCisおよび分流抵抗Risは、電流反転信号Sinvを得るために新たに制御IC10に付加したものではないため、実質的に新たな外付けの追加部品ではない。
次に、以上の構成を有するスイッチング電源装置の概略的な動作について説明する。スイッチング電源装置は、まず、入力端子IN1,IN2に直流電圧Viが印加され、制御IC10によってスイッチング素子Q1,Q2が50%の時比率でスイッチング動作が開始される。そのときのスイッチング周波数は、トランスT1の1次側に含まれる励磁インダクタと共振コンデンサCrとによって決定される共振周波数にほぼ等しい。スイッチング素子Q1,Q2のスイッチング動作により、トランスT1の1次側から2次側へ電力が転送される。トランスT1の2次側に出力された交流電圧は、整流および平滑されて直流の出力電圧Voとなり、出力端子OUT1,OUT2から負荷へ供給される。
この出力電圧Voは、シャントレギュレータSR1により検出され、目標電圧との誤差の信号がフォトカプラPC1を介して制御IC10のFB端子にフィードバックされる。また、制御IC10のIS端子には、共振コンデンサCrに流れる共振電流Icrを分流コンデンサCisおよび分流抵抗Risで分流し、分流した電流を分流抵抗Risで電圧信号に変換した、共振電流Icrに相当する電圧信号が入力されている。
制御IC10では、FB端子に入力されたフィードバック電圧Vfbがアナログ・デジタル変換器ADCによりデジタル信号のフィードバック信号Dfbに変換されて、デジタル制御回路20に入力される。IS端子に入力された共振電流Icrに相当する電圧信号は、抵抗Ris_lvs1,Ris_lvs2によりプルアップされて電圧VDD/2を基準とした電圧Visに変換される。この電圧Visは、比較器Compにおいて電圧VDD/2と比較され、共振回路の共振電流Icrが極性反転するタイミングを表す電流反転信号Sinvとなって、デジタル制御回路20に供給される。なお、プルアップした電圧Vis=VDD/2は、共振電流Icr=0に相当する。
次に、デジタル制御回路20の概略的な動作について説明する。
図3は第1の実施の形態におけるデジタル制御回路の動作を示すフローチャート、図4は第1の実施の形態におけるデジタル制御回路の入出力波形の例を示す図である。
図3は第1の実施の形態におけるデジタル制御回路の動作を示すフローチャート、図4は第1の実施の形態におけるデジタル制御回路の入出力波形の例を示す図である。
デジタル制御回路20では、図3に示したように、まず、ローサイドの駆動信号Vloがオフされ、ローサイドのスイッチング素子Q2がターンオフされる(ステップS1)。このローサイドの駆動信号Vloのオフ動作を契機に、デジタル制御回路20は、ハイサイドの共振電流反転前時間Tbhのカウント動作を開始する(ステップS2)。
次に、デジタル制御回路20は、電流反転信号Sinvが反転したかどうかを判断し(ステップS3)、電流反転信号Sinvが反転していない場合は、反転するまで共振電流反転前時間Tbhのカウント動作を継続する。
次に、電流反転信号Sinvが反転した場合、デジタル制御回路20は、共振電流反転前時間Tbhのカウント動作を終了してそのカウント値を保持する。また、同時にデジタル制御回路20は、ハイサイドの共振電流反転後時間Tahのカウント動作を開始する(ステップS4)。
次に、デジタル制御回路20は、フィードバック信号Dfbからハイサイドの駆動信号Vhoがオフすべき共振電流反転後時間Tahの目標値Tah_tを計算する(ステップS5)。
次に、デジタル制御回路20は、ハイサイドの共振電流反転後時間Tahのカウント動作を継続し(ステップS6)、共振電流反転後時間Tahのカウント値がその目標値Tah_tに到達したかどうかを判断する(ステップS7)。共振電流反転後時間Tahのカウント値がその目標値Tah_tに到達しなければ、デジタル制御回路20は、共振電流反転後時間Tahのカウント値がその目標値Tah_tに到達するまで、ハイサイドの共振電流反転後時間Tahのカウント動作を継続する。
共振電流反転後時間Tahのカウント値がその目標値Tah_tに到達すると、デジタル制御回路20は、ハイサイドの共振電流反転後時間Tahのカウント動作を終了する(ステップS8)。また、同時にデジタル制御回路20は、ハイサイドの駆動信号Vhoを、オフを指示する状態に変化させてハイサイドのスイッチング素子Q1をターンオフする(ステップS9)。
次に、デジタル制御回路20は、ハイサイドの駆動信号Vhoのオフ動作を契機に、ローサイドの共振電流反転前時間Tblのカウント動作を開始する(ステップS10)。
次に、デジタル制御回路20は、電流反転信号Sinvが反転したかどうかを判断し(ステップS11)、電流反転信号Sinvが反転していない場合は、反転するまで共振電流反転前時間Tblのカウント動作を継続する。
次に、デジタル制御回路20は、電流反転信号Sinvが反転したかどうかを判断し(ステップS11)、電流反転信号Sinvが反転していない場合は、反転するまで共振電流反転前時間Tblのカウント動作を継続する。
次に、電流反転信号Sinvが反転した場合、デジタル制御回路20は、共振電流反転前時間Tblのカウント動作を終了してそのカウント値を保持する。また、同時にデジタル制御回路20は、ローサイドの共振電流反転後時間Talのカウント動作を開始する(ステップS12)。
次に、デジタル制御回路20は、フィードバック信号Dfbからハイサイドの駆動信号Vloがオフすべき共振電流反転後時間Talの目標値Tal_tを計算する(ステップS13)。
次に、デジタル制御回路20は、ローサイドの共振電流反転後時間Talのカウント動作を継続し(ステップS14)、共振電流反転後時間Talのカウント値がその目標値Tal_tに到達したかどうかを判断する(ステップS15)。共振電流反転後時間Talのカウント値がその目標値Tal_tに到達しなければ、デジタル制御回路20は、共振電流反転後時間Talのカウント値がその目標値Tal_tに到達するまで、ローサイドの共振電流反転後時間Talのカウント動作を継続する。
共振電流反転後時間Talのカウント値がその目標値Tal_tに到達すると、デジタル制御回路20は、ローサイドの共振電流反転後時間Talのカウント動作を終了する(ステップS16)。そして、ステップS1に戻り、デジタル制御回路20は、ローサイドの共振電流反転後時間Talのカウント動作を終了すると同時に、ローサイドの駆動信号Vloを、オフを指示する状態に変化させてローサイドのスイッチング素子Q2をターンオフする。
なお、図3ではスイッチング素子Q1,Q2のターンオンに関する制御が示されていないが、スイッチング素子Q1,Q2の一方がターンオフしてから所定のデッドタイム経過後に、他方のスイッチング素子がターンオンするよう制御されている。すなわち、図4に示されるように、ローサイドの駆動信号Vloがローレベルになってローサイドのスイッチング素子Q2がターンオフしてからデッドタイムTd1の経過後にハイサイドの駆動信号Vhoがハイレベルになってハイサイドのスイッチング素子Q1がターンオンする。また、ハイサイドの駆動信号Vhoがローレベルになってハイサイドのスイッチング素子Q2がターンオフしてからデッドタイムTd2の経過後にローサイドの駆動信号Vloがハイレベルになってハイサイドのスイッチング素子Q1がターンオンする。
以上のデジタル制御回路20の処理機能は、制御IC10が有するコンピュータのプロセッサおよびメモリを用いて実施される。または、制御IC10を図3の論理機能を実現するように設計されたFPGA(Field-Programmable Gate Array)などで構成することにより、デジタル制御回路20の処理機能が実施される。
このようにして、デジタル制御回路20は、半周期ごとに、共振電流Icrの極性反転前後の時間比をフィードバック信号Dfbで制御していることになる。なお、電圧Visは、励磁電流(負荷に拠らない電流)と負荷電流とを合わせた電流に対応する信号であり、図4に一点鎖線で示したように、負荷が重くなるほど立ち上がりが急になり、図4に破線で示したように、負荷が軽くなるほど立ち上がりが緩くなる。このため、共振電流反転前時間Tbh,Tblは、負荷が重くなるほど短くなり、負荷が軽くなるほど長くなる。また、共振電流反転後時間Tah,Talについては、負荷の重さを表すフィードバック信号Dfbによって制御されている。ここで、電圧Visは、半周期ごとに負荷の重さに応じて共振電流反転前時間Tbh,Tblが変化しているため、起動時の場合または負荷がスタンバイ状態と通常動作状態との切り換えを行ったときのように負荷が急変した場合の応答性を改善できる。
次に、デジタル制御回路20の具体的な構成例について説明する。
図5はデジタル制御回路の機能の構成例を示すブロック図、図6は負荷と電流位相比との関係を示す図、図7はデジタル制御回路の動作波形の例を示す図であって、(A)は通常制御時の動作波形であり、(B)は無負荷制御時の動作波形である。
図5はデジタル制御回路の機能の構成例を示すブロック図、図6は負荷と電流位相比との関係を示す図、図7はデジタル制御回路の動作波形の例を示す図であって、(A)は通常制御時の動作波形であり、(B)は無負荷制御時の動作波形である。
デジタル制御回路20は、ハイサイド用では、Tbhカウンタ21、目標値算出部22、Tahカウンタ23、デジタル比較器24、駆動信号生成部25およびデッドタイムカウンタ26を有している。デジタル制御回路20は、また、ローサイド用では、Tblカウンタ27、目標値算出部28、Talカウンタ29、デジタル比較器30、駆動信号生成部31およびデッドタイムカウンタ32を有している。
Tbhカウンタ21およびTblカウンタ27は、それぞれ共振電流反転前時間Tbh,Tblをカウントするものであって、それらのStop端子には、比較器Compの出力端子が接続されている。Tbhカウンタ21のStop端子には、電流反転信号Sinvの立ち上がりエッジに同期した信号が入力され、Tblカウンタ27のStop端子には、電流反転信号Sinvの立ち下がりエッジに同期した信号が入力される。
Tbhカウンタ21およびTblカウンタ27の出力端子は、それぞれ目標値算出部22,28に接続されている。目標値算出部22,28の入力端子は、それぞれアナログ・デジタル変換器ADCの出力端子に接続されている。目標値算出部22,28は、Tbhカウンタ21およびTblカウンタ27がカウント動作を終了したときにフィードバック信号Dfbを基に共振電流反転後時間Tah,Talの長さを表す目標値Tah_t,Tal_tをそれぞれ算出する。
Tbhカウンタ21およびTblカウンタ27の出力端子は、また、Tahカウンタ23およびTalカウンタ29の入力端子にそれぞれ接続されている。Tbhカウンタ21およびTblカウンタ27は、前段のTbhカウンタ21およびTblカウンタ27がカウント動作を終了したときに、共振電流反転後時間Tah,Talのカウント動作を開始する。このTahカウンタ23およびTalカウンタ29は、好ましくは、カウント動作の開始前または次段のデジタル比較器24,30の比較動作終了後にカウンタ値をクリアするのがよい。
目標値算出部22およびTahカウンタ23の出力端子は、デジタル比較器24の入力端子に接続されている。デジタル比較器24は、Tahカウンタ23がカウントしたカウンタ値と目標値算出部22が算出した共振電流反転後時間Tahの長さである目標値Tah_tとを比較し、両者が一致したとき、オフ信号OFF_hを出力する。目標値算出部28およびTalカウンタ29の出力端子は、デジタル比較器30の入力端子に接続されている。デジタル比較器30は、Talカウンタ29がカウントしたカウンタ値と目標値算出部28が算出した共振電流反転後時間Talの長さである目標値Tal_tとを比較し、両者が一致したとき、オフ信号OFF_lを出力する。
ハイサイド用のデジタル比較器24の出力端子は、ローサイド用のTblカウンタ27のStart端子に接続され、ローサイド用のデジタル比較器30の出力端子は、ハイサイド用のTbhカウンタ21のStart端子に接続されている。このため、Tblカウンタ27は、オフ信号OFF_hが入力されると、カウント動作を開始し、Tbhカウンタ21は、オフ信号OFF_lが入力されると、カウント動作を開始する。
ハイサイド用のデジタル比較器24の出力端子は、また、ローサイド用のデッドタイムカウンタ32の入力端子に接続され、ローサイド用のデジタル比較器30の出力端子は、ハイサイド用のデッドタイムカウンタ26の入力端子に接続されている。デッドタイムカウンタ26は、デジタル比較器30からのオフ信号OFF_lが入力されると、デッドタイムのカウント動作を開始し、所定時間後にタイムアップしたとき、オン信号ON_hを出力する。デッドタイムカウンタ32は、デジタル比較器24からのオフ信号OFF_hが入力されると、デッドタイムのカウント動作を開始し、所定時間後にタイムアップしたとき、オン信号ON_lを出力する。
デジタル比較器24およびデッドタイムカウンタ26の出力端子は、駆動信号生成部25の入力端子に接続され、駆動信号生成部25の出力端子は、バッファ回路Buf1の入力端子に接続されている。駆動信号生成部25は、デッドタイムカウンタ26からのオン信号ON_hが入力されると、立ち上がり、デジタル比較器24からのオフ信号OFF_hが入力されると、立ち下がる駆動信号Vhoを出力する。デジタル比較器30およびデッドタイムカウンタ32の出力端子は、駆動信号生成部31の入力端子に接続され、駆動信号生成部31の出力端子は、バッファ回路Buf2の入力端子に接続されている。駆動信号生成部31は、デッドタイムカウンタ32からのオン信号ON_lが入力されると、立ち上がり、デジタル比較器30からのオフ信号OFF_lが入力されると、立ち下がる駆動信号Vloを出力する。
このデジタル制御回路20では、負荷急変時の応答性改善を目的として、FB端子に接続されたコンデンサC6によるVfb電圧の時間平均(時間平均をとる期間は、たとえば半スイッチング周期程度)を用いて、半周期ごとに負荷の重さに応じた制御を行っている。以下、負荷急変にも対応できるデジタル制御回路20による制御について説明する。
まず、負荷の重さは、共振電流Icrの電流位相比Kcprで表される。電流位相比Kcprは、共振電流反転前時間Tbh,Tblと共振電流反転後時間Tah,Talとの時間比である。すなわち、電流位相比Kcprは、
Kcpr=Tah/Tbh=Tal/Tbl ・・(1)
となる。なお、Tah/Tbh=Tal/Tblが成り立つのは定常状態のときであり、負荷急変時は、ハイサイドのスイッチング素子のオン・オフ制御とローサイドのオン・オフ制御が別になって、Tah/Tbh≠Tal/Tblとなることがある。
Kcpr=Tah/Tbh=Tal/Tbl ・・(1)
となる。なお、Tah/Tbh=Tal/Tblが成り立つのは定常状態のときであり、負荷急変時は、ハイサイドのスイッチング素子のオン・オフ制御とローサイドのオン・オフ制御が別になって、Tah/Tbh≠Tal/Tblとなることがある。
前述のように、図4の電圧Visは、負荷が重くなるほど立ち上がりが急になることから、共振電流反転前時間Tbh,Tblは、負荷が重くなるほど短くなり、負荷が軽くなるほど長くなる。これより分かるように、上記の式(1)において、電流位相比Kcprは、負荷の重さを表していて、ハイサイドおよびローサイドの共振電流反転前時間Tbh,Tblが短いほど(共振電流反転後時間Tah,Talが長いほど)負荷が重いことになる。
この、負荷の重さ(Po)と電流位相比Kcprとの関係をグラフ化したのが図6にあるグラフである。このグラフは、無負荷Po_minの点と最大負荷Po_maxに対応する点とを直線で結んだものである。また、負荷の重さPoとVfb電圧とは、比例するとする。なお、負荷の重さPoと電流位相比Kcprの関係は、必ずしも図示のように線形となる保証はないが、概ね線形で近似することができる。同様に、負荷の重さPoとVfb電圧とが完全に比例するという保証はないが、第1近似としては成り立つ。また、負荷の重さPoに対する正確な電流位相比Kcprの値がグラフからずれていたり、負荷の重さPoとVfb電圧との関係が比例からずれていたりしたとしても、その分フィードバックされるVfb電圧が変化して電流位相比Kcprが調整されるので、結局、出力電圧Voは、一定の電圧に整定される。
このときのVfb電圧と電流位相比Kcprとの関係は、
Vfb=Kcpr/A+B ・・(2)
で表される。ここで、A,Bは、定数である。
Vfb=Kcpr/A+B ・・(2)
で表される。ここで、A,Bは、定数である。
ここで、上記の式(1)と式(2)とから、
Tah=(Vfb-B)・A・Tbh ・・(3)
Tal=(Vfb-B)・A・Tbl ・・(4)
が求められる。これらの式(3)および式(4)で求められる共振電流反転後時間Tah,Talは、目標値算出部22,28で算出される目標値Tah_t,Tal_tに等しい。
Tah=(Vfb-B)・A・Tbh ・・(3)
Tal=(Vfb-B)・A・Tbl ・・(4)
が求められる。これらの式(3)および式(4)で求められる共振電流反転後時間Tah,Talは、目標値算出部22,28で算出される目標値Tah_t,Tal_tに等しい。
なお、定数A,Bは、式(2)を満たすように共振電流反転前時間Tbhおよび共振電流反転後時間Tahと共振電流反転前時間Tblおよび共振電流反転後時間Talとから決められる。すなわち、まず、式(3)から、
A・(Vfb-B)=Tah/Tbh ・・(5)
が得られる。また、システム設計(仕様決定)の段階で、Tah/Tbh(=Kcpr)の範囲とそれに対応するVfb電圧の範囲とが決められる。Tah/Tbhの最小値(=Kcpr_min)は、無負荷時であって共振電流Icrが励磁電流のみの場合であるため、1である。Tah/Tbhの最大値は、ここでは、たとえば、10であるとする。次に、Tah/Tbhの最小値および最大値に対応するVfb電圧の最小値Vfb_minと最大値Vfb_maxが決められる。ここでは、この実施の形態の制御IC10にてVF端子に設定されている最小値および最大値で、たとえば、Vfb_min=1V、Vfb_max=3Vである。これらの値を上記の式(5)に代入すると連立方程式が得られるので、この連立方程式を解いて定数A,Bがそれぞれ求められる。なお、ここでは、ハイサイドの場合について説明したが、ローサイドの場合でも同じである。
A・(Vfb-B)=Tah/Tbh ・・(5)
が得られる。また、システム設計(仕様決定)の段階で、Tah/Tbh(=Kcpr)の範囲とそれに対応するVfb電圧の範囲とが決められる。Tah/Tbhの最小値(=Kcpr_min)は、無負荷時であって共振電流Icrが励磁電流のみの場合であるため、1である。Tah/Tbhの最大値は、ここでは、たとえば、10であるとする。次に、Tah/Tbhの最小値および最大値に対応するVfb電圧の最小値Vfb_minと最大値Vfb_maxが決められる。ここでは、この実施の形態の制御IC10にてVF端子に設定されている最小値および最大値で、たとえば、Vfb_min=1V、Vfb_max=3Vである。これらの値を上記の式(5)に代入すると連立方程式が得られるので、この連立方程式を解いて定数A,Bがそれぞれ求められる。なお、ここでは、ハイサイドの場合について説明したが、ローサイドの場合でも同じである。
また、制御の説明をさらに簡単にするために、上記の式(3)および式(4)は、定数A,Bを定数kとすれば、
Tah=k・Vfb・Tbh ・・(6)
Tal=k・Vfb・Tbl ・・(7)
で表される。このことから、共振電流反転後時間Tahは、共振電流反転前時間TbhとVbf電圧との乗算で決められ、共振電流反転後時間Talは、共振電流反転前時間TblとVbf電圧との乗算で決められることになる。
Tah=k・Vfb・Tbh ・・(6)
Tal=k・Vfb・Tbl ・・(7)
で表される。このことから、共振電流反転後時間Tahは、共振電流反転前時間TbhとVbf電圧との乗算で決められ、共振電流反転後時間Talは、共振電流反転前時間TblとVbf電圧との乗算で決められることになる。
次に、図5に示したデジタル制御回路20の通常制御時の動作について、図7(A)を参照して説明する。ここでは、たとえば、ローサイドの駆動信号Vloがスイッチング素子Q2のオンを指示するオン状態にあり、ハイサイドの駆動信号Vhoがスイッチング素子Q1のオフを指示するオフ状態にあるとして説明する。この状態で、時刻t1にて、デジタル比較器30がオフ信号OFF_lを出力し、駆動信号生成部31がスイッチング素子Q2をターンオフさせる駆動信号Vloを出力したとする。この時刻t1のとき、デジタル比較器30がオフ信号OFF_lを出力したことを契機にTbhカウンタ21がカウント動作を開始するとともにデッドタイムカウンタ26もカウント動作を開始する。
時刻t2にて、デッドタイムカウンタ26がタイムアップしてオン信号ON_hを出力すると、駆動信号生成部25が出力する駆動信号Vhoは、オフ状態からオン状態に遷移する。
次に、時刻t3にて共振電流Icrがマイナスからプラスに極性反転したことを表す電流反転信号SinvがTbhカウンタ21に入力されると、Tbhカウンタ21は、カウント動作を終了する。このTbhカウンタ21がカウント動作を終了したことを契機に、目標値算出部22が目標値Tah_tを算出するとともに、Tahカウンタ23がカウント動作を開始する。なお、Tahカウンタ23は、デジタル制御回路20の処理速度が十分に速い場合、目標値算出部22による目標値Tah_tの算出を終了してからカウント動作を開始するようにしてもよい。ただし、デジタル制御回路20の処理速度が遅い場合には、目標値算出部22による目標値Tah_tの算出とTahカウンタ23によるカウント動作を同時に開始して並列処理をするのがよい。
次に、時刻t4にてTahカウンタ23のカウント値が目標値算出部22の目標値Tah_tに達すると、デジタル比較器24は、オフ信号OFF_hを出力する。これにより、駆動信号生成部25は、スイッチング素子Q1をターンオフさせる駆動信号Vhoを出力する。オフ信号OFF_hは、また、ローサイドのTblカウンタ27およびデッドタイムカウンタ32に供給され、Tblカウンタ27がカウントを開始するとともにデッドタイムカウンタ32もカウント動作を開始する。
次の半周期の場合も、ハイサイドの制御動作と同様である。すなわち、時刻t5にてデッドタイムカウンタ32がタイムアップすると、駆動信号Vloがオフ状態からオン状態に遷移し、時刻t6でTblカウンタ27がカウント動作を終了する。このTblカウンタ27がカウント動作を終了したことを契機に、目標値算出部28が目標値Tal_tを算出するとともに、Talカウンタ29がカウント動作を開始する。時刻t7でTalカウンタ29のカウント値が目標値算出部28の目標値Tal_tに達すると、デジタル比較器30がオフ信号OFF_lを出力し、駆動信号生成部31は、スイッチング素子Q2をターンオフさせる駆動信号Vloを出力する。この時刻t7以降では、時刻t1ないし時刻t7の制御が繰り返される。
デジタル制御回路20が無負荷制御のとき、LLC電流共振コンバータの共振電流Icrは、一次側から二次側への電力転送に関わらない励磁電流Imのみとなり、この場合、励磁電流Imは、図7(B)に示したように、直線的に変動する。すなわち、時刻t11にてデジタル比較器30がオフ信号OFF_lを出力し、駆動信号生成部31がターンオフした駆動信号Vloを出力すると、Tbhカウンタ21がカウント動作を開始するとともにデッドタイムカウンタ26もカウント動作を開始する。
時刻t12にてデッドタイムカウンタ26がタイムアップしてオン信号ON_hを出力すると、駆動信号生成部25が出力する駆動信号Vhoは、オフ状態からオン状態に遷移する。
時刻t13にて共振電流Icrが極性反転すると、Tbhカウンタ21は、カウント動作を終了し、目標値算出部22が目標値Tah_tを算出し、Tahカウンタ23がカウント動作を開始する。
時刻t14にてTahカウンタ23のカウント値が目標値算出部22の目標値Tah_tに達すると、デジタル比較器24は、オフ信号OFF_hを出力し、駆動信号生成部25は、スイッチング素子Q1をターンオフさせる駆動信号Vhoを出力する。このt14のタイミングでは、ローサイドのTblカウンタ27がカウント動作を開始するとともにデッドタイムカウンタ32もカウント動作を開始する。
時刻t15にてデッドタイムカウンタ32がタイムアップすると、駆動信号Vloがオフ状態からオン状態に遷移し、時刻t16で共振電流Icrが極性反転すると、Tblカウンタ27がカウント動作を終了する。このとき、目標値算出部28が目標値Tal_tを算出し、Talカウンタ29がカウント動作を開始する。時刻t17でTalカウンタ29のカウント値が目標値算出部28の目標値Tal_tに達すると、デジタル比較器30がオフ信号OFF_lを出力し、駆動信号生成部31は、オフ状態の駆動信号Vloを出力する。この時刻t17以降では、時刻t11ないし時刻t17の制御が繰り返される。
このように、デジタル制御回路20では、このスイッチング電源装置の負荷がたとえば無負荷状態から通常負荷状態に急変した場合に、半周期の単位で図7(B)の状態から図7(A)の状態に制御を瞬時に切り換えることができる。これにより、このデジタル制御回路20は、負荷が変化したときに応答遅れなしに追従制御をすることができる。しかも、FB電圧の動作点は、上記の式(6)および(7)から分かるように、電源の入力電圧および共振回路のLC定数に依存しないので、仕様の異なるスイッチング電源装置ごとに電源定数を設計する必要がなく、電源定数設計の自由度が高いものとなる。
[第2の実施の形態]
第2の実施の形態に係るスイッチング電源装置は、第1の実施の形態に係るスイッチング電源装置と比較して、共振電流反転後時間Tah,Talの求め方を変更している。すなわち、第1の実施の形態に係るスイッチング電源装置では、共振電流反転後時間Tah,Talは、半周期の開始時点からカウントした時間情報としての共振電流反転前時間Tbh,Tblと半周期の開始時に取得したFB電圧との乗算に基づいて算出している。これに対し、第2の実施の形態では、半周期の開始時点からカウントした時間情報として、直近の連続した複数の半周期の時間を平均化した平均時間を用いる。具体的には、第2の実施の形態の共振電流反転後時間Tah,Talは、この平均時間と半周期の開始時に取得したFB電圧との乗算に基づいて算出している。なお、第2の実施の形態に係るスイッチング電源装置は、その全体構成および制御ICの構成については、第1の実施の形態に係るスイッチング電源装置の全体構成(図1)および制御IC10の構成(図2)と同じである。したがって、第2の実施の形態に係るスイッチング電源装置については、制御IC10のデジタル制御回路の動作から説明する。
第2の実施の形態に係るスイッチング電源装置は、第1の実施の形態に係るスイッチング電源装置と比較して、共振電流反転後時間Tah,Talの求め方を変更している。すなわち、第1の実施の形態に係るスイッチング電源装置では、共振電流反転後時間Tah,Talは、半周期の開始時点からカウントした時間情報としての共振電流反転前時間Tbh,Tblと半周期の開始時に取得したFB電圧との乗算に基づいて算出している。これに対し、第2の実施の形態では、半周期の開始時点からカウントした時間情報として、直近の連続した複数の半周期の時間を平均化した平均時間を用いる。具体的には、第2の実施の形態の共振電流反転後時間Tah,Talは、この平均時間と半周期の開始時に取得したFB電圧との乗算に基づいて算出している。なお、第2の実施の形態に係るスイッチング電源装置は、その全体構成および制御ICの構成については、第1の実施の形態に係るスイッチング電源装置の全体構成(図1)および制御IC10の構成(図2)と同じである。したがって、第2の実施の形態に係るスイッチング電源装置については、制御IC10のデジタル制御回路の動作から説明する。
図8は第2の実施の形態におけるデジタル制御回路のスイッチング動作を示すフローチャート、図9は第2の実施の形態の半周期平均値算出動作を示すフローチャート、図10は第2の実施の形態におけるデジタル制御回路の入出力波形の例を示す図である。
デジタル制御回路20aでは、まず、ローサイドの駆動信号Vloがオフされ、ローサイドのスイッチング素子Q2がターンオフされることによりスイッチング動作が開始される(ステップS21)。なお、図10は、スイッチング動作の開始時ではなく、スイッチング動作の開始後のデジタル制御回路20aの入出力波形を示している。このローサイドの駆動信号Vloのオフ動作のとき、デジタル制御回路20aは、フィードバック信号Dfbをサンプリングしてハイサイドの共振電流反転後時間Tahを算出するためのFB電圧Vfbhを求める(ステップS22)。
次に、デジタル制御回路20aは、デッドタイムのカウント動作を開始し(ステップS23)、所定時間後に、デッドタイムのカウント動作を終了する(ステップS24)。カウント動作の終了と同時に、デジタル制御回路20aは、ハイサイドの駆動信号Vhoを、オフを指示する状態に変化させてハイサイドのスイッチング素子Q1をターンオンする(ステップS25)。
次に、デジタル制御回路20aは、電流反転信号Sinvがその極性を負から正に反転したかどうかを判断し(ステップS26)、電流反転信号Sinvが反転していない場合は、反転するまで待つ。
次に、電流反転信号Sinvが反転した場合、デジタル制御回路20aは、ハイサイドの共振電流反転後時間Tahの目標値Tah_tを計算する(ステップS27)。このハイサイドの共振電流反転後時間Tahの目標値Tah_tは、
Tah_t=k・Vfbh・Tco ・・(8)
によって算出される。ここで、kは定数、VfbhはステップS22でサンプリングにより求められたFB電圧、Tcoはこのスイッチング動作と並行して動作する図9の半周期平均値算出動作によって求められる半周期平均値である。次に、デジタル制御回路20aは、ハイサイドの共振電流反転後時間Tahのカウント動作を開始する(ステップS28)。なお、この共振電流反転後時間Tahのカウント動作は、電流反転信号Sinvが反転してから目標値Tah_tの計算と同時に開始してもよい。
Tah_t=k・Vfbh・Tco ・・(8)
によって算出される。ここで、kは定数、VfbhはステップS22でサンプリングにより求められたFB電圧、Tcoはこのスイッチング動作と並行して動作する図9の半周期平均値算出動作によって求められる半周期平均値である。次に、デジタル制御回路20aは、ハイサイドの共振電流反転後時間Tahのカウント動作を開始する(ステップS28)。なお、この共振電流反転後時間Tahのカウント動作は、電流反転信号Sinvが反転してから目標値Tah_tの計算と同時に開始してもよい。
次に、デジタル制御回路20aは、共振電流反転後時間Tahのカウント値がその目標値Tah_tに到達したかどうかを判断する(ステップS29)。共振電流反転後時間Tahのカウント値がその目標値Tah_tに到達しなければ、デジタル制御回路20aは、共振電流反転後時間Tahのカウント値がその目標値Tah_tに到達するまで、ハイサイドの共振電流反転後時間Tahのカウント動作を継続する。
共振電流反転後時間Tahのカウント値がその目標値Tah_tに到達して、
Tah=k・Vfbh・Tco ・・(9)
が求められると、デジタル制御回路20aは、ハイサイドの共振電流反転後時間Tahのカウント動作を終了する(ステップS30)。また、同時にデジタル制御回路20aは、ハイサイドの駆動信号Vhoを、オフを指示する状態に変化させてハイサイドのスイッチング素子Q1をターンオフする(ステップS31)。
Tah=k・Vfbh・Tco ・・(9)
が求められると、デジタル制御回路20aは、ハイサイドの共振電流反転後時間Tahのカウント動作を終了する(ステップS30)。また、同時にデジタル制御回路20aは、ハイサイドの駆動信号Vhoを、オフを指示する状態に変化させてハイサイドのスイッチング素子Q1をターンオフする(ステップS31)。
次に、デジタル制御回路20aは、フィードバック信号Dfbをサンプリングしてローサイドの共振電流反転後時間Talを算出するためのFB電圧Vfblを求める(ステップS32)。
次に、デジタル制御回路20aは、デッドタイムのカウント動作を開始し(ステップS33)、所定時間後に、デッドタイムのカウント動作を終了する(ステップS34)。カウント動作の終了と同時に、デジタル制御回路20aは、ローサイドの駆動信号Vloを、オフを指示する状態に変化させてローサイドのスイッチング素子Q2をターンオンする(ステップS35)。
次に、デジタル制御回路20aは、電流反転信号Sinvがその極性を正から負に反転したかどうかを判断し(ステップS36)、電流反転信号Sinvが反転していない場合は、反転するまで待つ。
次に、電流反転信号Sinvが反転した場合、デジタル制御回路20aは、ローサイドの共振電流反転後時間Talの目標値Tal_tを計算する(ステップS37)。このハイサイドの共振電流反転後時間Talの目標値Tal_tは、
Tal_t=k・Vfbl・Tco ・・(10)
によって算出される。ここで、kは定数、VfblはステップS22でサンプリングにより求められたFB電圧、Tcoは図9の半周期平均値算出動作によって求められる半周期平均値である。次に、デジタル制御回路20aは、ローサイドの共振電流反転後時間Talのカウント動作を開始する(ステップS38)。なお、この共振電流反転後時間Talのカウント動作は、電流反転信号Sinvが反転してから目標値Tal_tの計算と同時に開始してもよい。
Tal_t=k・Vfbl・Tco ・・(10)
によって算出される。ここで、kは定数、VfblはステップS22でサンプリングにより求められたFB電圧、Tcoは図9の半周期平均値算出動作によって求められる半周期平均値である。次に、デジタル制御回路20aは、ローサイドの共振電流反転後時間Talのカウント動作を開始する(ステップS38)。なお、この共振電流反転後時間Talのカウント動作は、電流反転信号Sinvが反転してから目標値Tal_tの計算と同時に開始してもよい。
次に、デジタル制御回路20aは、共振電流反転後時間Talのカウント値がその目標値Tal_tに到達したかどうかを判断する(ステップS39)。共振電流反転後時間Talのカウント値がその目標値Tal_tに到達しなければ、デジタル制御回路20aは、共振電流反転後時間Talのカウント値がその目標値Tal_tに到達するまで、ハイサイドの共振電流反転後時間Talのカウント動作を継続する。
共振電流反転後時間Talのカウント値がその目標値Tal_tに到達して、
Tal=k・Vfbl・Tco ・・(11)
が求められると、デジタル制御回路20aは、ローサイドの共振電流反転後時間Talのカウント動作を終了する(ステップS40)。次に、このスイッチング動作は、ステップS21に戻り、ステップS21~S40の処理を繰り返す。
Tal=k・Vfbl・Tco ・・(11)
が求められると、デジタル制御回路20aは、ローサイドの共振電流反転後時間Talのカウント動作を終了する(ステップS40)。次に、このスイッチング動作は、ステップS21に戻り、ステップS21~S40の処理を繰り返す。
次に、図9に示した半周期平均値Tcoの算出処理について説明する。
デジタル制御回路20aは、まず、スイッチング電源装置の起動時に半周期平均値Tcoの初期値設定を行う(ステップS41)。この初期値設定では、スイッチング電源装置の起動直後から半周期平均値Tcoを求めることができるよう、半周期のカウント値を格納する空のレジスタに半周期の仮のカウント値が設定される。仮のカウント値としては、スイッチング周波数が最大となる最小の半周期の値が設定され、これにより、スイッチング電源装置のソフトスタートを実現している。
デジタル制御回路20aは、まず、スイッチング電源装置の起動時に半周期平均値Tcoの初期値設定を行う(ステップS41)。この初期値設定では、スイッチング電源装置の起動直後から半周期平均値Tcoを求めることができるよう、半周期のカウント値を格納する空のレジスタに半周期の仮のカウント値が設定される。仮のカウント値としては、スイッチング周波数が最大となる最小の半周期の値が設定され、これにより、スイッチング電源装置のソフトスタートを実現している。
次に、デジタル制御回路20aは、ローサイドのスイッチング素子Q2がターンオフされたかどうかを判断する(ステップS42)。ローサイドのスイッチング素子Q2がターンオフされていない場合は、ローサイドのスイッチング素子Q2がターンオフされるまで待つ。
次に、ローサイドのスイッチング素子Q2がターンオフされたと判断されると、デジタル制御回路20aは、ローサイド周期Tclのカウントを終了してそのカウント値を保持する(ステップS43)。また、同時にデジタル制御回路20aは、ハイサイド周期Tchのカウントを開始する(ステップS44)。
次に、デジタル制御回路20aは、ハイサイドのスイッチング素子Q1がターンオフされたかどうかを判断する(ステップS45)。ハイサイドのスイッチング素子Q1がターンオフされていない場合は、ローサイドのスイッチング素子Q2がターンオフされるまで待つ。
次に、ハイサイドのスイッチング素子Q1がターンオフされたと判断されると、デジタル制御回路20aは、ハイサイド周期Tchのカウントを終了してそのカウント値を保持する(ステップS46)。
これで、直近の1周期分のカウント値が得られたので、デジタル制御回路20aは、このカウント値と既に得られていた連続する所定周期のカウント値とからスイッチング動作における半周期の平均値Tcoを算出する(ステップS47)。このローサイドおよびハイサイドの半周期の平均値Tcoは、
次に、デジタル制御回路20aは、ローサイド周期Tclのカウントを開始する(ステップS48)。次に、この半周期平均値Tcoの算出処理は、ステップS42に戻り、ステップS42~S48の処理を繰り返す。
以上のデジタル制御回路20aの処理機能は、制御IC10が有するコンピュータのプロセッサおよびメモリを用いて実施される。または、制御IC10を図8および図9の論理機能を実現するように設計されたFPGAなどで構成することにより、デジタル制御回路20aの処理機能が実施される。
このようにして、デジタル制御回路20aは、スイッチング半周期ごとに、直近の連続した複数の半周期の平均時間をFB電圧Vfbl,Vfbhで制御していることになる。スイッチング半周期ごとにローサイドおよびハイサイドの共振電流反転後時間Tal,Tahを算出していることで、デジタル制御回路20aは、負荷の急変に対する応答性を改善できる。また、共振電流反転後時間Tal,Tahを算出するときにFB電圧Vfbl,Vfbhと乗算される値がそれ自体急変しない平均時間であるため、デジタル制御回路20aは、比較的安定した制御が可能になる。
次に、デジタル制御回路20aの具体的な構成例について説明する。
図11は第2の実施の形態に係るデジタル制御回路の機能の構成例を示すブロック図、図12はFB電圧と負荷との関係を示す図である。
図11は第2の実施の形態に係るデジタル制御回路の機能の構成例を示すブロック図、図12はFB電圧と負荷との関係を示す図である。
デジタル制御回路20aは、ハイサイド用に、Tchカウンタ41、目標値算出部42、Tahカウンタ43、デジタル比較器44、駆動信号生成部45およびデッドタイムカウンタ46を有している。デジタル制御回路20aは、また、ハイサイドおよびローサイド用としてTco算出部47を有している。デジタル制御回路20aは、さらに、ローサイド用にTclカウンタ48、目標値算出部49、Talカウンタ50、デジタル比較器51、駆動信号生成部52およびデッドタイムカウンタ53を有している。
Tchカウンタ41は、ハイサイド周期Tchをカウントするものであって、そのStop端子には、デジタル比較器44の出力端子に接続され、Start端子には、デジタル比較器51の出力端子に接続されている。Tclカウンタ48は、ローサイド周期Tclをカウントするものであって、そのStop端子には、デジタル比較器51の出力端子に接続され、Start端子には、デジタル比較器44の出力端子に接続されている。Tchカウンタ41およびTclカウンタ48の出力端子は、Tco算出部47の入力端子に接続されている。
Tco算出部47は、半周期平均値Tcoを算出するものであって、その出力端子は、目標値算出部42,49の第1の入力端子にそれぞれ接続されている。目標値算出部42,49の第2の入力端子は、フィードバック信号Dfbを入力するようアナログ・デジタル変換器ADCの出力端子に接続されている。目標値算出部42,49は、Tco算出部47からの半周期平均値Tcoとフィードバック信号Dfb(FB電圧)とを入力して目標値Tah_t,Tal_tを出力する。
なお、Tco算出部47は、たとえば、ハイサイドおよびローサイド用にそれぞれN個のレジスタを有し、半周期のデータが算出されるごとに順次保持して常に最新の2N個のデータを保持する構成にしている。半周期平均値Tcoは、最新の2N個のデータを保持されるごとに、それらのデータを加算して2Nで除算することにより求められる移動平均値であり、目標値算出部42,49では、目標値Tah_t,Tal_tの算出に共通して使用される。
また、目標値算出部42,49に入力されるフィードバック信号Dfbは、負荷の重さPoに応じて変化する。すなわち、図12に示したように、Vfb電圧(FB電圧)および負荷の重さPoは、負荷の重さPoが重くなるにつれてVfb電圧(FB電圧)が飽和していくような関係を有している。ここで、この実施の形態では、FB電圧の動作範囲は、1.0~2.0ボルト(V)に設定している。この場合、共振電流反転後時間Taと半周期平均値Tcoとの比Ta/Tcoが0.5~1であるので、式(9)および式(11)から、定数kは、0.5である。
Tahカウンタ43およびTalカウンタ50の入力端子は、電流反転信号Sinvを入力するよう比較器Compの出力端子にそれぞれ接続されている。Tahカウンタ43の出力端子は、デジタル比較器44の第1の入力端子に接続され、Talカウンタ50の出力端子は、デジタル比較器51の第1の入力端子に接続されている。デジタル比較器44の第2の入力端子は、目標値算出部42の出力端子に接続され、デジタル比較器51の第2の入力端子は、目標値算出部49の出力端子に接続されている。
デジタル比較器44は、Tahカウンタ43がカウントしたカウンタ値と目標値算出部42が算出した共振電流反転後時間Tahの長さである目標値Tah_tとを比較し、両者が一致したとき、ハイサイドのオフ信号OFF_hを出力する。デジタル比較器51は、Talカウンタ50がカウントしたカウンタ値と目標値算出部49が算出した共振電流反転後時間Talの長さである目標値Tal_tとを比較し、両者が一致したとき、ローサイドのオフ信号OFF_lを出力する。
ハイサイド用のデジタル比較器44が出力するオフ信号OFF_hは、Tclカウンタ48のカウント動作を開始するのに使用されるとともにTchカウンタ41のカウント動作を停止するのに使用される。ローサイド用のデジタル比較器51が出力するオフ信号OFF_lは、Tchカウンタ41のカウント動作を開始するのに使用されるとともにTclカウンタ48のカウント動作を停止するのに使用される。
ハイサイド用のデジタル比較器44の出力端子は、また、ローサイド用のデッドタイムカウンタ53の入力端子に接続され、ローサイド用のデジタル比較器51の出力端子は、ハイサイド用のデッドタイムカウンタ46の入力端子に接続されている。デッドタイムカウンタ46は、デジタル比較器51からのオフ信号OFF_lが入力されると、デッドタイムのカウント動作を開始し、所定時間後にタイムアップしたとき、オン信号ON_hを出力する。デッドタイムカウンタ53は、デジタル比較器44からのオフ信号OFF_hが入力されると、デッドタイムのカウント動作を開始し、所定時間後にタイムアップしたとき、オン信号ON_lを出力する。
デジタル比較器44およびデッドタイムカウンタ46の出力端子は、駆動信号生成部45の入力端子に接続され、駆動信号生成部45の出力端子は、バッファ回路Buf1の入力端子に接続されている。駆動信号生成部45は、デッドタイムカウンタ46からのオン信号ON_hが入力されると、立ち上がり、デジタル比較器44からのオフ信号OFF_hが入力されると、立ち下がる駆動信号Vhoを出力する。デジタル比較器51およびデッドタイムカウンタ53の出力端子は、駆動信号生成部52の入力端子に接続され、駆動信号生成部52の出力端子は、バッファ回路Buf2の入力端子に接続されている。駆動信号生成部52は、デッドタイムカウンタ53からのオン信号ON_lが入力されると、立ち上がり、デジタル比較器51からのオフ信号OFF_lが入力されると、立ち下がる駆動信号Vloを出力する。
このように、デジタル制御回路20aでは、このスイッチング電源装置の負荷がたとえば無負荷状態から通常負荷状態に急変した場合でも、半周期の単位で制御していることにより、応答遅れなしに追従制御をすることができる。しかも、FB電圧の動作点は、電源の入力電圧および共振回路のLC定数に依存しないので、仕様の異なるスイッチング電源装置ごとに電源定数を設計する必要がなく、電源定数設計の自由度が高いものとなる。なお、上記では、半周期の開始時点からカウントした時間情報として、第1の実施の形態で半周期の開始から共振電流が極性を反転するまでの共振電流反転前時間を、第2の実施の形態で直近の連続した所定数の半周期の時間を平均化した平均時間を用いたが、その他の半周期の開始時点からカウントした時間情報を用いてもよい。また、半周期の開始時点前後からカウントした時間情報を用いてもよい。
上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
10 制御IC
20,20a デジタル制御回路
21 Tbhカウンタ
22 目標値算出部
23 Tahカウンタ
24 デジタル比較器
25 駆動信号生成部
26 デッドタイムカウンタ
27 Tblカウンタ
28 目標値算出部
29 Talカウンタ
30 デジタル比較器
31 駆動信号生成部
32 デッドタイムカウンタ
41 Tchカウンタ
42 目標値算出部
43 Tahカウンタ
44 デジタル比較器
45 駆動信号生成部
46 デッドタイムカウンタ
47 Tco算出部
48 Tclカウンタ
49 目標値算出部
50 Talカウンタ
51 デジタル比較器
52 駆動信号生成部
53 デッドタイムカウンタ
ADC アナログ・デジタル変換器
Buf1,Buf2 バッファ回路
C1 コンデンサ
C2 ブートストラップコンデンサ
C3 コンデンサ
C4 出力コンデンサ
C5,C6 コンデンサ
Cis 分流コンデンサ
Comp 比較器
Cr 共振コンデンサ
D1 ブートストラップダイオード
D2,D3 ダイオード
IN1,IN2 入力端子
OUT1,OUT2 出力端子
P1 1次巻線
PC1 フォトカプラ
Q1,Q2 スイッチング素子
R1,R2,R3,R4,R5,R6,R7,Ris_lvs1,Ris_lvs2 抵抗
Ris 分流抵抗
S1,S2 2次巻線
SR1 シャントレギュレータ
T1 トランス
20,20a デジタル制御回路
21 Tbhカウンタ
22 目標値算出部
23 Tahカウンタ
24 デジタル比較器
25 駆動信号生成部
26 デッドタイムカウンタ
27 Tblカウンタ
28 目標値算出部
29 Talカウンタ
30 デジタル比較器
31 駆動信号生成部
32 デッドタイムカウンタ
41 Tchカウンタ
42 目標値算出部
43 Tahカウンタ
44 デジタル比較器
45 駆動信号生成部
46 デッドタイムカウンタ
47 Tco算出部
48 Tclカウンタ
49 目標値算出部
50 Talカウンタ
51 デジタル比較器
52 駆動信号生成部
53 デッドタイムカウンタ
ADC アナログ・デジタル変換器
Buf1,Buf2 バッファ回路
C1 コンデンサ
C2 ブートストラップコンデンサ
C3 コンデンサ
C4 出力コンデンサ
C5,C6 コンデンサ
Cis 分流コンデンサ
Comp 比較器
Cr 共振コンデンサ
D1 ブートストラップダイオード
D2,D3 ダイオード
IN1,IN2 入力端子
OUT1,OUT2 出力端子
P1 1次巻線
PC1 フォトカプラ
Q1,Q2 スイッチング素子
R1,R2,R3,R4,R5,R6,R7,Ris_lvs1,Ris_lvs2 抵抗
Ris 分流抵抗
S1,S2 2次巻線
SR1 シャントレギュレータ
T1 トランス
Claims (21)
- ハイサイドの第1のスイッチング素子およびローサイドの第2のスイッチング素子を直列に接続して構成したハーフブリッジ回路と、共振インダクタおよび共振コンデンサとを有する共振回路とを備えたスイッチング電源装置の制御方法であって、
前記共振回路の共振電流を検出し、
直流電圧を出力する出力回路から出力電圧とその目標電圧との誤差を表すフィードバック信号を取得し、
前記第1のスイッチング素子および前記第2のスイッチング素子の一方がターンオフしてから前記第1のスイッチング素子および前記第2のスイッチング素子の他方がターンオフするまでの半周期のうちで前記共振電流が極性を反転したときから前記半周期が終了するまでの共振電流反転後時間を、前記半周期の開始時点からカウントした時間情報と前記半周期の開始時に取得した前記フィードバック信号との乗算に基づいて算出し、前記共振電流が極性を反転したときから算出された前記共振電流反転後時間を経過した後に前記第1のスイッチング素子および前記第2のスイッチング素子の他方をターンオフする、スイッチング電源装置の制御方法。 - 前記時間情報は、前記半周期の開始から前記共振電流が極性を反転するまでの共振電流反転前時間である、請求項1記載のスイッチング電源装置の制御方法。
- 前記共振電流反転後時間は、前記共振電流反転前時間を算出し、算出された前記共振電流反転前時間と前記フィードバック信号とから前記共振電流反転後時間の目標値を算出し、前記共振電流が極性を反転したときからカウントしていたカウント値が前記目標値に一致したときの前記カウント値により求められる、請求項2記載のスイッチング電源装置の制御方法。
- 前記時間情報は、直近の連続した所定数の半周期の時間を平均化した平均時間である、請求項1記載のスイッチング電源装置の制御方法。
- 前記共振電流反転後時間は、前記平均時間を算出し、算出された前記平均時間と前記フィードバック信号とから前記共振電流反転後時間の目標値を算出し、前記共振電流が極性を反転したときからカウントしていたカウント値が前記目標値に一致したときの前記カウント値により求められる、請求項4記載のスイッチング電源装置の制御方法。
- 前記平均時間は、前記第1のスイッチング素子および前記第2のスイッチング素子がターンオフするごとに求められた半周期の長さを保持し、保持された所定数の半周期の長さを平均化することにより求められる、請求項5記載のスイッチング電源装置の制御方法。
- 半周期の長さを保持するレジスタは、起動時にスイッチング周波数が最大となる最小の半周期の値により初期設定される、請求項6記載のスイッチング電源装置の制御方法。
- ハイサイドの第1のスイッチング素子およびローサイドの第2のスイッチング素子を直列に接続して構成したハーフブリッジ回路と、共振インダクタおよび共振コンデンサとを有する共振回路と、前記第1のスイッチング素子および前記第2のスイッチング素子を制御する制御回路とを備えたスイッチング電源装置において、
前記制御回路は、
前記第1のスイッチング素子および前記第2のスイッチング素子の一方がターンオフしたことを契機にカウント動作を開始し、前記共振回路を流れる共振電流を検出し、前記共振電流が極性反転したことを契機にカウント動作を停止する第1の電流反転前時間カウンタおよび第2の電流反転前時間カウンタと、
前記第1の電流反転前時間カウンタおよび前記第2の電流反転前時間カウンタのカウント値である共振電流反転前時間と直流電圧を出力する出力回路からフィードバックされた誤差信号とから共振電流反転後時間の長さを表す目標値を算出する第1の目標値算出部および第2の目標値算出部と、
前記第1の電流反転前時間カウンタまたは前記第2の電流反転前時間カウンタがカウント動作を終了したことを契機にカウント動作を開始する第1の電流反転後時間カウンタおよび第2の電流反転後時間カウンタと、
前記第1の電流反転後時間カウンタまたは前記第2の電流反転後時間カウンタのカウント値と前記目標値とを比較して一致したときに前記第1のスイッチング素子および前記第2のスイッチング素子の他方をターンオフする第1の比較器および第2の比較器と、
を有する、スイッチング電源装置。 - ハイサイドの第1のスイッチング素子およびローサイドの第2のスイッチング素子を直列に接続して構成したハーフブリッジ回路と、共振インダクタおよび共振コンデンサとを有する共振回路と、前記第1のスイッチング素子および前記第2のスイッチング素子を制御する制御回路とを備えたスイッチング電源装置において、
前記制御回路は、
前記第1のスイッチング素子がターンオフしたことを契機にカウント動作を開始し、前記第2のスイッチング素子がターンオフしたことを契機にカウント動作を停止する第1のカウンタと、
前記第2のスイッチング素子がターンオフしたことを契機にカウント動作を開始し、前記第1のスイッチング素子がターンオフしたことを契機にカウント動作を停止する第2のカウンタと、
前記第1のカウンタおよび前記第2のカウンタによってカウントされた直近の連続した所定数の半周期の時間を平均化した平均時間を算出する半周期平均値算出部と、
前記半周期平均値算出部が算出した半周期平均値と直流電圧を出力する出力回路からフィードバックされた誤差信号とに基づいて前記共振電流が極性反転してから前記第1のスイッチング素子または前記第2のスイッチング素子がターンオフするまでの共振電流反転後時間の長さを表す目標値を算出する第1の目標値算出部および第2の目標値算出部と、
前記共振電流が極性反転したことを契機にカウント動作を開始する第1の電流反転後時間カウンタおよび第2の電流反転後時間カウンタと、
前記第1のカウンタまたは前記第2のカウンタのカウント値と前記目標値とを比較して一致したときに前記第1のスイッチング素子および前記第2のスイッチング素子の他方をターンオフする第1の比較器および第2の比較器と、
を有する、スイッチング電源装置。 - ハイサイドの第1のスイッチング素子およびローサイドの第2のスイッチング素子を直列に接続して構成したハーフブリッジ回路と、共振インダクタおよび共振コンデンサを有する共振回路とを備えたスイッチング電源装置の制御回路において、
前記第1のスイッチング素子および前記第2のスイッチング素子の一方がターンオフしたことを契機にカウント動作を開始し、前記共振回路を流れる共振電流を検出し、前記共振電流が極性反転したことを契機に停止する第1の電流反転前時間カウンタおよび第2の電流反転前時間カウンタと、
前記第1の電流反転前時間カウンタおよび前記第2の電流反転前時間カウンタのカウント値である共振電流反転前時間と直流電圧を出力する出力回路からフィードバックされた誤差信号とから共振電流反転後時間の長さを表す目標値を算出する第1の目標値算出部および第2の目標値算出部と、
前記第1の電流反転前時間カウンタまたは前記第2の電流反転前時間カウンタがカウント動作を終了したことを契機にカウント動作を開始する第1の電流反転後時間カウンタおよび第2の電流反転後時間カウンタと、
前記第1の電流反転後時間カウンタまたは前記第2の電流反転後時間カウンタのカウント値と前記目標値とを比較して一致したときに前記第1のスイッチング素子および前記第2のスイッチング素子の他方をターンオフする第1の比較器および第2の比較器と、
を備えた、スイッチング電源装置の制御回路。 - 前記共振コンデンサに並列に接続された分流回路により前記共振電流を分流して検出電圧に変換した入力信号を回路内部の基準電圧でプルアップするプルアップ回路と、該プルアップ回路により前記入力信号をプルアップした電圧と前記基準電圧を所定の分圧比で分圧した電圧を比較して前記共振電流が極性反転したことを表す信号を出力する第3の比較器とを備えている、請求項10記載のスイッチング電源装置の制御回路。
- 前記出力回路からフィードバックされた前記誤差信号をデジタル信号に変換して前記第1の目標値算出部および前記第2の目標値算出部へ入力するアナログ・デジタル変換器を備えている、請求項10記載のスイッチング電源装置の制御回路。
- 前記第1の比較器または前記第2の比較器が出力した前記第1のスイッチング素子および前記第2のスイッチング素子の一方のターンオフ信号を受けてデッドタイムをカウントする第1のデッドタイムカウンタおよび第2のデッドタイムカウンタを備えた、請求項10記載のスイッチング電源装置の制御回路。
- 前記第1の比較器または前記第2の比較器が出力した前記第1のスイッチング素子および前記第2のスイッチング素子の他方のターンオフ信号と前記第1のデッドタイムカウンタまたは前記第2のデッドタイムカウンタが出力したターンオン信号とを受けて前記第1のスイッチング素子または前記第2のスイッチング素子を駆動するための駆動信号を出力する第1の駆動信号生成部および第2の駆動信号生成部を備えた、請求項13記載のスイッチング電源装置の制御回路。
- 前記誤差信号は前記出力回路から出力される前記直流電圧が目標値に比べてより大きくなるにつれてより大きくなる信号であり、前記第1の目標値算出部および前記第2の目標値算出部は前記共振電流反転前時間と前記誤差信号から所定の値を差し引いた差分との乗算結果により前記目標値を算出する、請求項10記載のスイッチング電源装置の制御回路。
- ハイサイドの第1のスイッチング素子およびローサイドの第2のスイッチング素子を直列に接続して構成したハーフブリッジ回路と、共振インダクタおよび共振コンデンサを有する共振回路とを備えたスイッチング電源装置の制御回路において、
前記第1のスイッチング素子がターンオフしたことを契機にカウント動作を開始し、前記第2のスイッチング素子がターンオフしたことを契機にカウント動作を停止する第1のカウンタと、
前記第2のスイッチング素子がターンオフしたことを契機にカウント動作を開始し、前記第1のスイッチング素子がターンオフしたことを契機にカウント動作を停止する第2のカウンタと、
前記第1のカウンタおよび前記第2のカウンタによってカウントされた直近の連続した所定数の半周期の時間を平均化した平均時間を算出する半周期平均値算出部と、
前記半周期平均値算出部が算出した半周期平均値と直流電圧を出力する出力回路からフィードバックされた誤差信号とに基づいて前記共振電流が極性反転してから前記第1のスイッチング素子または前記第2のスイッチング素子がターンオフするまでの共振電流反転後時間の長さを表す目標値を算出する第1の目標値算出部および第2の目標値算出部と、
前記共振電流が極性反転したことを契機にカウント動作を開始する第1の電流反転後時間カウンタおよび第2の電流反転後時間カウンタと、
前記第1の電流反転後時間カウンタまたは前記第2の電流反転後時間カウンタのカウント値と前記目標値とを比較して一致したときに前記第1のスイッチング素子および前記第2のスイッチング素子の他方をターンオフする第1の比較器および第2の比較器と、
を備えた、スイッチング電源装置の制御回路。 - 前記共振コンデンサに並列に接続された分流回路により前記共振電流を分流して検出電圧に変換した入力信号を回路内部の基準電圧でプルアップするプルアップ回路と、該プルアップ回路により前記入力信号をプルアップした電圧と前記基準電圧を所定の分圧比で分圧した電圧を比較して前記共振電流が極性反転したことを表す信号を出力する第3の比較器とを備えている、請求項16記載のスイッチング電源装置の制御回路。
- 前記出力回路からフィードバックされた前記誤差信号をデジタル信号に変換して前記第1の目標値算出部および前記第2の目標値算出部へ入力するアナログ・デジタル変換器を備えている、請求項16記載のスイッチング電源装置の制御回路。
- 前記第1の比較器または前記第2の比較器が出力した前記第1のスイッチング素子および前記第2のスイッチング素子の一方のターンオフ信号を受けてデッドタイムをカウントする第1のデッドタイムカウンタおよび第2のデッドタイムカウンタを備えた、請求項16記載のスイッチング電源装置の制御回路。
- 前記第1の比較器または前記第2の比較器が出力した前記第1のスイッチング素子および前記第2のスイッチング素子の他方のターンオフ信号と前記第1のデッドタイムカウンタまたは前記第2のデッドタイムカウンタが出力したターンオン信号とを受けて前記第1のスイッチング素子または前記第2のスイッチング素子を駆動するための駆動信号を出力する第1の駆動信号生成部および第2の駆動信号生成部を備えた、請求項19記載のスイッチング電源装置の制御回路。
- 前記誤差信号は前記出力回路に接続される負荷の重さが重くなるにつれて大きくなる信号であり、前記第1の目標値算出部および前記第2の目標値算出部は前記半周期平均値と前記誤差信号との乗算結果により前記目標値を算出する、請求項16記載のスイッチング電源装置の制御回路。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019558023A JP6787505B2 (ja) | 2017-12-06 | 2018-09-27 | スイッチング電源装置の制御方法および制御回路 |
CN201880035793.7A CN110692187B (zh) | 2017-12-06 | 2018-09-27 | 开关电源装置的控制方法及控制电路 |
US16/699,425 US10892688B2 (en) | 2017-12-06 | 2019-11-29 | Switching power supply apparatus control method and control circuit of switching power supply apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-233888 | 2017-12-06 | ||
JP2017233888 | 2017-12-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/699,425 Continuation US10892688B2 (en) | 2017-12-06 | 2019-11-29 | Switching power supply apparatus control method and control circuit of switching power supply apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019111504A1 true WO2019111504A1 (ja) | 2019-06-13 |
Family
ID=66750143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035934 WO2019111504A1 (ja) | 2017-12-06 | 2018-09-27 | スイッチング電源装置の制御方法、スイッチング電源装置およびその制御回路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10892688B2 (ja) |
JP (1) | JP6787505B2 (ja) |
CN (1) | CN110692187B (ja) |
WO (1) | WO2019111504A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021090264A (ja) * | 2019-12-03 | 2021-06-10 | ローム株式会社 | スイッチング回路のゲート駆動回路および制御回路、スイッチング電源 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6774884B2 (ja) * | 2017-01-27 | 2020-10-28 | 富士通株式会社 | 電源装置及び電源装置の制御方法 |
US11398767B2 (en) * | 2017-12-06 | 2022-07-26 | Nxp B.V. | Power converter for delaying entering burst mode and method thereof |
JP7200727B2 (ja) * | 2019-02-14 | 2023-01-10 | 富士電機株式会社 | スイッチング電源の制御装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005151608A (ja) * | 2003-11-11 | 2005-06-09 | Hitachi Ltd | 共振型コンバータ及びその制御方法 |
JP2014212642A (ja) * | 2013-04-19 | 2014-11-13 | 富士電機株式会社 | スイッチング電源装置 |
JP2016131411A (ja) * | 2015-01-13 | 2016-07-21 | 株式会社日立製作所 | 共振形電源装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159541A (en) * | 1991-10-31 | 1992-10-27 | Northern Telecom Limited | Asymmetrical pulse width modulated resonant DC/DC converter |
US7262981B2 (en) * | 2004-05-25 | 2007-08-28 | General Electric Company | System and method for regulating resonant inverters |
JP5397024B2 (ja) * | 2008-09-16 | 2014-01-22 | 富士電機株式会社 | スイッチング電源装置、スイッチング電源制御回路およびスイッチング電源装置の制御方法 |
JP5729989B2 (ja) * | 2010-11-30 | 2015-06-03 | キヤノン株式会社 | スイッチング電源、及び、スイッチング電源を搭載した画像形成装置 |
JP5761206B2 (ja) * | 2011-02-01 | 2015-08-12 | 富士電機株式会社 | 共振型スイッチング電源装置 |
ITMI20110388A1 (it) * | 2011-03-11 | 2012-09-12 | St Microelectronics Srl | Dispositivo per evitare l'hard-switching nei convertitori risonanti e relativo metodo. |
EP2546968B1 (en) | 2011-07-15 | 2016-05-18 | Nxp B.V. | Resonant converter control |
CN103683918B (zh) * | 2012-09-25 | 2017-09-01 | 富士电机株式会社 | 开关电源装置 |
US9960693B1 (en) * | 2016-10-27 | 2018-05-01 | Infineon Technologies Austria Ag | Control of switching frequency based on difference in phase relations |
-
2018
- 2018-09-27 CN CN201880035793.7A patent/CN110692187B/zh active Active
- 2018-09-27 WO PCT/JP2018/035934 patent/WO2019111504A1/ja active Application Filing
- 2018-09-27 JP JP2019558023A patent/JP6787505B2/ja active Active
-
2019
- 2019-11-29 US US16/699,425 patent/US10892688B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005151608A (ja) * | 2003-11-11 | 2005-06-09 | Hitachi Ltd | 共振型コンバータ及びその制御方法 |
JP2014212642A (ja) * | 2013-04-19 | 2014-11-13 | 富士電機株式会社 | スイッチング電源装置 |
JP2016131411A (ja) * | 2015-01-13 | 2016-07-21 | 株式会社日立製作所 | 共振形電源装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021090264A (ja) * | 2019-12-03 | 2021-06-10 | ローム株式会社 | スイッチング回路のゲート駆動回路および制御回路、スイッチング電源 |
JP7308137B2 (ja) | 2019-12-03 | 2023-07-13 | ローム株式会社 | スイッチング回路のゲート駆動回路および制御回路、スイッチング電源 |
Also Published As
Publication number | Publication date |
---|---|
CN110692187B (zh) | 2021-12-31 |
JP6787505B2 (ja) | 2020-11-18 |
CN110692187A (zh) | 2020-01-14 |
US10892688B2 (en) | 2021-01-12 |
JPWO2019111504A1 (ja) | 2020-04-23 |
US20200099310A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102225011B1 (ko) | 공진형 변환기들에서의 버스트 모드 제어 | |
US10020750B2 (en) | Current-resonant type switching power supply apparatus with burst control | |
US9660519B2 (en) | Switching power supply circuit and power factor correction circuit | |
CN111726006B (zh) | 电源控制装置、开关电源以及电子设备 | |
US20090257258A1 (en) | Power supply apparatus and semiconductor integrated circuit device | |
CN107210676B (zh) | 电源控制用半导体装置 | |
WO2019111504A1 (ja) | スイッチング電源装置の制御方法、スイッチング電源装置およびその制御回路 | |
CN111684697B (zh) | 开关电源装置的控制装置 | |
TW201946351A (zh) | 電源控制用半導體裝置以及開關電源裝置及其設計方法 | |
CN110311567B (zh) | 控制开关谐振转换器 | |
KR20170002326A (ko) | 영전압 스위칭을 위한 제어 회로 및 이를 포함하는 벅 컨버터 | |
US9866128B2 (en) | Semiconductor device and switching power supply device | |
US10924021B2 (en) | Control apparatus for controlling switching power supply | |
JP7095784B2 (ja) | スイッチング電源装置 | |
KR20170120592A (ko) | 전원 제어용 반도체 장치 | |
CN107086793A (zh) | 一种用于同步整流功率变换器的动态补偿控制电路 | |
CN111052580B (zh) | 开关电源装置 | |
US7813151B2 (en) | Variable-mode converter control circuit and half-bridge converter having the same | |
JP5195849B2 (ja) | Dc−dcコンバータ | |
US20210111631A1 (en) | Switching control circuit and power supply circuit | |
JP6478323B2 (ja) | スイッチング電源装置 | |
US12244233B2 (en) | Integrated circuit having switching control and power supply circuit including the same | |
JP7400188B2 (ja) | 制御装置 | |
JP2015050890A (ja) | スイッチング電源装置 | |
JP7291604B2 (ja) | 電源制御装置、および電源回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18886586 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019558023 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18886586 Country of ref document: EP Kind code of ref document: A1 |