[go: up one dir, main page]

WO2019106879A1 - 金属多孔体、燃料電池及び金属多孔体の製造方法 - Google Patents

金属多孔体、燃料電池及び金属多孔体の製造方法 Download PDF

Info

Publication number
WO2019106879A1
WO2019106879A1 PCT/JP2018/027243 JP2018027243W WO2019106879A1 WO 2019106879 A1 WO2019106879 A1 WO 2019106879A1 JP 2018027243 W JP2018027243 W JP 2018027243W WO 2019106879 A1 WO2019106879 A1 WO 2019106879A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
skeleton
porous
porous body
coating film
Prior art date
Application number
PCT/JP2018/027243
Other languages
English (en)
French (fr)
Inventor
昂真 沼田
真嶋 正利
知之 粟津
奥野 一樹
千尋 平岩
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019557004A priority Critical patent/JP7076693B2/ja
Publication of WO2019106879A1 publication Critical patent/WO2019106879A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a porous metal body, a fuel cell, and a method of manufacturing the porous metal body.
  • the present application claims priority based on Japanese Patent Application No. 2017-228595 filed on Nov. 29, 2017. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
  • SOFC solid oxide fuel cell
  • PEFC polymer electrolyte fuel cell
  • PAFC Phosphoric Acid Fuel Cell
  • SOFCs are actively being developed because they have advantages such as high power generation efficiency, no need for expensive catalysts such as platinum, and the ability to use waste heat.
  • the SOFC includes a solid electrolyte layer formed of a solid oxide, and an electrode layer formed on both sides of the solid electrolyte layer.
  • a porous current collector is provided to collect and extract electrons generated at the electrode.
  • the current collector often has a function as a gas diffusion layer in order to diffuse the gas supplied to the electrode and generate power efficiently.
  • a carbon structure or a stainless steel (SUS) structure is used for a gas diffusion layer of a fuel cell.
  • Grooves to be gas flow paths are formed in the carbon structure and the SUS structure.
  • the width of the groove is about 500 ⁇ m, and is in the form of a straight line. Since the grooves are provided in about 1/2 of the area of the surface where the carbon structure and the SUS structure are in contact with the electrolyte, the porosity of the gas diffusion layer is about 50%. Since the gas diffusion layer as described above does not have a very high porosity and also has a large pressure loss, there is a problem in increasing the output while miniaturizing the fuel cell.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-154517
  • Patent Document 1 the surface of the skeleton of a resin molded body is treated to be conductive, an electroplating layer made of metal is formed thereon, and the resin molded body is A method of producing a porous metal body by incineration and removal is described.
  • the metal porous body according to one aspect of the present disclosure is A flat metal porous body having continuous pores, In the skeleton of the porous metal body, a heat resistant coating film is formed on the surface of a nickel alloy, It is a metal porous body.
  • the method for producing a porous metal body according to one aspect of the present disclosure is A method of producing a metal porous body according to one aspect of the present disclosure described above, Preparing a flat porous substrate having continuous pores; A heat-resistant coating film forming step of forming a heat-resistant coating film on the surface of the skeleton of the porous substrate, Have At least the surface of the skeleton of the porous substrate is formed of a nickel alloy, It is a manufacturing method of a metal porous body.
  • the metal porous body according to another aspect of the present disclosure is A metal porous body having a porous body substrate and a heat resistant coating film
  • the porous substrate is A framework having a nickel alloy on the surface, And continuous pores formed by the above skeleton;
  • the heat resistant coating film covers the surface of the upper skeleton,
  • the porous metal body has a flat outer appearance, It is a metal porous body.
  • a method of producing a porous metal body according to another aspect of the present disclosure is It is a method of manufacturing the above-mentioned porous metal body, A preparation step of preparing a porous substrate having the skeleton and the continuous pores formed by the skeleton; A heat-resistant coating film forming step of forming a heat-resistant coating film on the surface of the skeleton in the porous substrate, Have The porous base material has a flat appearance in appearance; The skeleton in the porous substrate has a nickel alloy on its surface, It is a manufacturing method of a metal porous body.
  • FIG. 1 is an enlarged photograph showing the structure of a skeleton of an example of a metal porous body having a skeleton of a three-dimensional network structure.
  • FIG. 2 is an enlarged view schematically illustrating a partial cross section of an example of a metal porous body according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic view showing an example of a state in which areas A to E are defined on the metal porous body in the method of measuring the average film thickness of the heat resistant coating film in the metal porous body.
  • FIG. 4 is a view schematically showing an image when a cross section (a cross section taken along line AA in FIG. 2) of the skeleton in the area A of the metal porous body shown in FIG. 3 is observed with a scanning electron microscope.
  • FIG. 1 is an enlarged photograph showing the structure of a skeleton of an example of a metal porous body having a skeleton of a three-dimensional network structure.
  • FIG. 2 is an enlarged view schematically illustrating a
  • FIG. 5 is a schematic view showing an example of the visual field (i) when the heat-resistant coating film 11 shown in FIG. 4 is enlarged and observed with a scanning electron microscope.
  • FIG. 6 is a schematic view showing an example of a visual field (ii) when the heat-resistant coating film 11 shown in FIG. 4 is enlarged and observed with a scanning electron microscope.
  • FIG. 7 is a schematic view showing an example of a visual field (iii) when the heat-resistant coating film 11 shown in FIG. 4 is enlarged and observed with a scanning electron microscope.
  • FIG. 8 is a view schematically showing a partial cross section of an example of a porous substrate having a three-dimensional network skeleton.
  • FIG. 9 is a view schematically showing a partial cross section of another example of a porous substrate having a three-dimensional network skeleton.
  • FIG. 10 is a photograph of a foamed urethane resin as an example of a resin molded product having a skeleton of a three-dimensional network structure.
  • SOFC is a fuel cell operating at a high temperature of about 800.degree.
  • hydrogen and carbon monoxide are supplied to the negative electrode (fuel electrode), and air (oxygen) is supplied to the positive electrode (air electrode).
  • air oxygen
  • the metal porous body having stability over a long period of time under very severe conditions of a high temperature of about 800 ° C. and an oxidizing atmosphere. It is necessary to use the body.
  • the present inventors have made a keen search to produce a porous metal body that can be used under high temperature oxidation conditions of about 800 ° C.
  • a metal porous body having a skeleton of nickel tungsten or nickel molybdenum was produced. Then, heat treatment was performed in the atmosphere at 800 ° C. for 500 hours.
  • the skeleton is a metal porous body consisting of nickel tungsten or nickel molybdenum, cracks or cracks may occur in part of the skeleton after heat treatment for a long time in a high temperature oxidizing atmosphere at about 800 ° C. It was found.
  • the present disclosure has long-term stability even under high temperature oxidation conditions, and is a porous metal that can be suitably used as a current collector and gas diffusion layer for air electrodes of SOFCs. Intended to provide the body.
  • a metal porous body which has stability for a long time even under high temperature oxidation conditions and can be suitably used as a current collector and gas diffusion layer for air electrode of SOFC. be able to.
  • a porous metal body according to one aspect of the present disclosure is A metal porous body having a porous body substrate and a heat resistant coating film,
  • the porous substrate is A framework having a nickel alloy on the surface, And continuous pores formed by the above skeleton;
  • the heat resistant coating film covers the surface of the upper skeleton,
  • the porous metal body has a flat outer appearance, It is a metal porous body. According to the aspect of the disclosure described in the above (1), it has stability over a long period of time even under high temperature oxidation conditions, and is preferably used also as a current collector and gas diffusion layer for the SOFC air electrode.
  • a possible porous metal body can be provided.
  • the porous metal body described in (1) above is
  • the heat resistant coating film preferably contains silver or cobalt. According to the aspect of the disclosure described in the above (2), it is possible to provide a metal porous body excellent in conductivity even under high temperature oxidation conditions.
  • the porous metal body according to (1) or (2) above is
  • the heat-resistant coating film preferably has an average film thickness of 1 ⁇ m or more. According to the aspect of the disclosure described in the above (3), it is possible to provide a porous metal body that is more excellent in high-temperature oxidation resistance.
  • the porous metal body according to any one of (1) to (3) above The nickel alloy preferably contains an alloy of nickel and at least one metal selected from the group consisting of tungsten, molybdenum, aluminum and titanium as a main component. According to the aspect of the disclosure described in the above (4), it is possible to provide a metal porous body having high corrosion resistance and high strength.
  • the said main component shall mean the thing of the component with most ratio occupied in the said nickel alloy.
  • the porous metal body according to any one of (1) to (7) above It is preferable that the thickness is 500 micrometers or more and 5000 micrometers or less. According to the aspect of the disclosure described in (8) above, it is possible to provide a metal porous body that is lightweight and has high strength. In addition, the thickness of said metal porous body shall mean the space
  • a fuel cell according to one aspect of the present disclosure is It is a fuel cell provided with the metal porous body as described in any one of said (1) to said (8) as a gas diffusion layer. According to the aspect of the disclosure described in the above (9), it is possible to provide a small and lightweight fuel cell with high power generation efficiency.
  • a method of producing a porous metal body according to one aspect of the present disclosure is It is a manufacturing method of the metal porous body as described in any one of said (1) to said (8), Comprising: A preparation step of preparing a porous substrate having the skeleton and the continuous pores formed by the skeleton; A heat-resistant coating film forming step of forming a heat-resistant coating film on the surface of the skeleton in the porous substrate, Have The porous base material has a flat appearance in appearance; The skeleton in the porous substrate has a nickel alloy on its surface, It is a manufacturing method of a metal porous body.
  • the method for producing a porous metal body according to (10) above The preparation step is performed by plating a nickel alloy on the surface of a resin molding having a skeleton and continuous pores formed by the skeleton, It is preferable that the said resin molding has a flat-shaped external appearance. According to the aspect of the disclosure described in the above (10) or (11), it is possible to provide a method for producing a metal porous body capable of producing the metal porous body described in the above (1).
  • the method for producing a porous metal body according to (10) or (11) above The shape of the skeleton of the porous substrate is preferably a three-dimensional network structure. According to the aspect of the disclosure described in the above (12), it is possible to provide a method for producing a metal porous body capable of producing the metal porous body described in the above (5).
  • the metal porous body according to the embodiment of the present disclosure has continuous pores, and has a flat plate shape as a whole.
  • the metal porous body has a porous body substrate and a heat-resistant coating film.
  • the porous substrate has a skeleton and continuous pores formed by the skeleton.
  • the said metal porous body has the shape where the external appearance is flat form.
  • the continuous pores may be formed so as to penetrate at least main surfaces facing each other. In other words, the continuous pores may be formed so as to penetrate the opposing main surfaces in the shape of the metal porous body. From the viewpoint of increasing the surface area of the metal porous body, it is preferable that as many continuous pores as possible be formed.
  • Examples of the shape of the skeleton of the porous metal body include mesh-like shapes such as punching metal and expanded metal and shapes such as a three-dimensional network structure.
  • the “three-dimensional network structure” means a structure in which solid components (for example, metal, resin, etc.) constituting the film are three-dimensionally spread in a network shape.
  • the skeleton itself of the metal porous body or the skeleton itself of the porous substrate to be described later
  • the skeleton itself need not be porous.
  • a heat resistant coating film is formed on the surface of a nickel alloy. That is, a nickel alloy is a base material, and a heat-resistant coating film is formed so as to cover the entire surface.
  • the porous substrate can be grasped as having a skeleton having a nickel alloy on the surface, and a heat-resistant coating film that covers the surface of the skeleton.
  • the metal porous body is 800 When exposed to an oxidizing atmosphere for a long time at a high temperature of about ° C, cracks or cracks may occur in part of the skeleton, which may make it unsuitable for use depending on the use of the porous metal body.
  • a heat resistant coating film is formed on the surface of a nickel alloy (skeleton of porous base material).
  • the metal porous body according to the embodiment of the present disclosure can be suitably used, for example, even when used as a gas diffusion layer of an air electrode of SOFC without the strength of the skeleton being reduced.
  • the metal porous body since the metal porous body has a large surface area, the fuel gas can be diffused more. Therefore, the said metal porous body can improve the contact opportunity of fuel gas and electrolyte, and can provide SOFC with high power generation efficiency.
  • the heat-resistant coating film may be, for example, a metal or alloy stable in a high temperature oxidizing atmosphere, such as silver (Ag), cobalt (Co), gold (Au), platinum (Pt) or the like. From the viewpoint of reducing the production cost of the porous metal body, the heat-resistant coating film is preferably silver or cobalt.
  • the heat-resistant coating film includes, for example, a metal or alloy stable in a high temperature oxidizing atmosphere, such as silver (Ag), cobalt (Co), gold (Au), platinum (Pt) or the like. And may contain silver or cobalt. Silver and gold have very high conductivity, so the conductivity of the porous metal can be increased.
  • the metal porous body according to the embodiment of the present disclosure is good not only as a gas diffusion layer but also as a current collector in a fuel cell.
  • the heat-resistant coating film preferably has an average film thickness of 1 ⁇ m or more.
  • the average film thickness of the heat-resistant coating film is 1 ⁇ m or more, the metal porous body can be stably maintained for a long time even under a high temperature oxidizing atmosphere of about 800 ° C. Heat resistant coatings are generally expensive. Therefore, from the viewpoint of suppressing the production cost of the porous metal body, the average film thickness of the heat-resistant coating film is preferably about 50 ⁇ m or less. From these viewpoints, the average film thickness of the heat-resistant coating film is more preferably 3 ⁇ m or more and 30 ⁇ m or less, and still more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the nickel alloy may contain an alloy of nickel and a metal other than nickel as a main component, and a component other than an alloy of nickel and a metal other than nickel may be intentionally or unavoidably contained.
  • a main component shall mean the thing of the component with most ratio occupied in the said nickel alloy.
  • the main component may be a component having a proportion of 50% or more in the nickel alloy.
  • the nickel alloy is at least one metal selected from the group consisting of nickel, tungsten, molybdenum, aluminum, and titanium from the viewpoint that the nickel alloy is relatively excellent in oxidation resistance and preferably high in strength. It is preferable to have an alloy of That is, the nickel alloy preferably contains nickel tungsten (NiW), nickel molybdenum (NiMo), nickel aluminum (NiAl) or nickel titanium (NiTi) as a main component.
  • the shape of the skeleton of the porous metal body may be a mesh shape, but is more preferably a three-dimensional network structure.
  • the shape of the skeleton is a three-dimensional network structure, the surface area can be larger than that of a skeleton such as punching metal or expanded metal.
  • the shape of the skeleton is more complicated, when used as a gas diffusion layer of a fuel cell, more gas can be diffused.
  • FIG. 1 shows an enlarged photograph of a skeleton of a three-dimensional network structure of an example of a metal porous body according to an embodiment of the present disclosure.
  • FIG. 2 shows an enlarged schematic view in which the cross section of the metal porous body shown in FIG. 1 is enlarged.
  • FIG. 1 is an example of the metal porous body in which the plating film of silver was formed in the surface (surface of the skeleton of a porous-body base material) of silver as a heat-resistant coating film.
  • the interior 14 of the skeleton 13 of the porous metal body 10 is hollow.
  • the surface of the skeleton 13 has a structure in which the heat-resistant coating film 11 is formed so as to cover the surface of the nickel alloy 12 which is the base material (porous body base material).
  • the metal porous body 10 has continuous pores, and the skeleton 13 forms the pore portion 15.
  • the thickness of the heat-resistant coating film 11 is shown to be substantially the same as the thickness of the nickel alloy 12 in FIG. 2, the average film thickness of the heat-resistant coating film 11 is preferably 1 ⁇ m to 50 ⁇ m as described above.
  • the thickness of the heat-resistant coating film 11 is usually thinner than that of the nickel alloy 12.
  • the average film thickness of the heat-resistant coating film 11 refers to what is measured by observing the cross section of the skeleton 13 of the porous metal body 10 with an electron microscope as follows. An outline of a method of measuring the average film thickness of the heat-resistant coating film 11 is shown in FIGS.
  • the metal porous body 10 having a flat outer appearance is arbitrarily divided into areas, and five locations (area A to area E) are selected as measurement locations. Then, at each area, the skeleton 13 of the metal porous body 10 is arbitrarily selected at one place, and an AA line cross section shown in FIG. 2 of the skeleton is observed by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the AA line cross section of the skeleton 13 of the metal porous body 10 has a substantially triangular shape as shown in FIG. In another aspect, the cross section AA of the skeleton of the metal porous body may be circular or square.
  • the interior 14 of the skeleton of the porous metal body 10 is hollow, and a film of the nickel alloy 12 is facing the hollow portion.
  • the heat resistant coating film 11 is formed to cover the outer surface of the nickel alloy 12.
  • the magnification is further increased to confirm the entire thickness direction of the heat-resistant coating film 11 and to make the thickness direction appear larger in one view as much as possible.
  • the maximum thickness and the minimum thickness of the heat-resistant coating film 11 are measured in three fields of view with respect to the AA line cross section of the same skeleton while changing the field of view. In all areas, the maximum thickness and the minimum thickness of the heat-resistant coating film 11 are measured in three fields of view on the AA line cross section of one arbitrary skeleton, and the average of them is the average film thickness of the heat-resistant coating film 11 It is said.
  • FIG. 5 shows a conceptual view of a visual field (i) when an AA line cross section of an arbitrary one skeleton in the area A of the metal porous body 10 shown in FIG. 3 is observed by SEM.
  • FIG. 6 shows a conceptual view of the visual field (ii) of the AA cross section of the same skeleton
  • FIG. 7 shows a conceptual view of the visual field (iii).
  • the thickness of the heat-resistant coating film 11 is maximized in each of the visual field (i) to the visual field (iii) when the heat-resistant coating film 11 in an AA line cross section of any one frame in the area A is observed by SEM. Thickness (maximum thickness A (i), maximum thickness A (ii), maximum thickness A (iii)), and thickness at which the thickness of the heat-resistant coating film 11 becomes minimum (minimum thickness a (i), minimum thickness a (ii) , The minimum thickness a (iii)) is measured.
  • the thickness of the heat resistant coating film 11 refers to the thickness of the heat resistant coating film 11 extending in the vertical direction from the surface of the nickel alloy 12.
  • the thickness of the heat-resistant coating film 11 means the alloy layer and the heat-resistant coating which extend in the vertical direction from the surface of the nickel alloy 12.
  • the total thickness of the film 11 is referred to.
  • the maximum thickness A (i) to the maximum thickness A (iii) of the three visual fields and the minimum thickness a (i) to the minimum thickness a ( iii) decide.
  • the maximum thickness and the minimum thickness of the heat-resistant coating film 11 in three fields of view are also measured for the areas B, C, D, and E in the same manner as the area A, for the AA line cross section of any one frame.
  • the average of the maximum thickness A (i) to the maximum thickness E (iii) and the minimum thickness a (i) to the minimum thickness e (iii) of the heat-resistant coating film 11 measured as described above is It is called average film thickness.
  • the porous metal body according to the embodiment of the present disclosure preferably has a porosity of 60% or more and 98% or less.
  • the porosity of the porous metal body is 60% or more, the porous metal body can be made very lightweight, and furthermore, when the porous metal body is used as a gas diffusion layer of a fuel cell, gas diffusion can be achieved. Can be enhanced.
  • the porosity of the metal porous body is 98% or less, the metal porous body can have sufficient strength. From these viewpoints, the porosity of the metal porous body is more preferably 70% or more and 98% or less, and still more preferably 80% or more and 98% or less.
  • the average pore diameter of the porous metal body is preferably 50 ⁇ m or more and 1000 ⁇ m or less.
  • the strength of the metal porous body can be enhanced, and further, when the metal porous body is used as a gas diffusion layer of a fuel cell, the gas diffusivity can be enhanced.
  • the bendability of a metal porous body can be improved because an average pore diameter is 1000 micrometers or less. From these viewpoints, the average pore diameter of the metal porous body is more preferably 100 ⁇ m or more and 500 ⁇ m or less, and still more preferably 150 ⁇ m or more and 400 ⁇ m or less.
  • the porous metal body having a flat plate shape preferably has a thickness of 500 ⁇ m or more and 5000 ⁇ m or less.
  • the thickness of the metal porous body is 500 ⁇ m or more, the metal porous body can have sufficient strength and can have high gas diffusion performance when used as a gas diffusion layer of a fuel cell.
  • the thickness of the metal porous body is 5000 ⁇ m or less, a lightweight metal porous body can be obtained. From these viewpoints, the thickness of the porous metal body is more preferably 600 ⁇ m or more and 2000 ⁇ m or less, and still more preferably 700 ⁇ m or more and 1500 ⁇ m or less.
  • the fuel cell according to the embodiment of the present disclosure may be provided with the metal porous body according to the above-described embodiment of the present disclosure as a gas diffusion layer, and other configurations adopt the same configuration as the conventional fuel cell.
  • the other configuration for example, a solid electrolyte layer, an electrode layer stacked on both sides sandwiching the solid electrolyte layer, an interconnector subjected to simple gas flow path processing for making gas diffusion more uniform.
  • Etc the metal porous body concerning embodiment of this indication can be made to act not only as a gas diffusion layer but as a collector.
  • the type of fuel cell is not limited, and may be a solid oxide fuel cell (SOFC), a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC).
  • SOFC solid oxide fuel cell
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • SOFC solid oxide fuel cell
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • SOFC solid oxide fuel cell
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • the metal porous body according to the embodiment of the present disclosure is stable for a long time even in a high temperature oxidizing atmosphere at about 800 ° C. Can exist.
  • the porous metal body according to the embodiment of the present disclosure has a high porosity, when used as a gas diffusion layer, the gas can be efficiently diffused.
  • the metal porous body according to the embodiment of the present disclosure has high conductivity, it can exhibit high function as a current collector. Therefore, a fuel cell using the porous metal body according to the embodiment of the present disclosure as a gas diffusion layer and a current collector has high power generation efficiency.
  • the method for producing a porous metal body according to an embodiment of the present disclosure is a method for producing the above-mentioned porous metal body, and a preparation step of preparing a flat porous substrate having continuous pores; And a heat-resistant coating film forming step of forming a heat-resistant coating film on the surface of the skeleton of the material.
  • the method for producing a porous metal body includes a preparing step of preparing a porous substrate having the skeleton and the continuous pores formed by the skeleton, and the skeleton in the porous substrate. Forming a heat-resistant coating film on the surface of the heat-resistant coating film, and the porous substrate has a flat appearance in appearance, and the skeleton of the porous substrate is It has a nickel alloy on the surface.
  • the preparation step is a step of preparing a porous substrate having continuous pores and having a flat plate shape as a whole.
  • the porous base material can be grasped as having the skeleton and the continuous pores formed by the skeleton.
  • the porous substrate is the substrate (porous substrate) in the metal porous body according to the embodiment of the present disclosure, that is, the nickel alloy 12.
  • the porous substrate prepared in this step may have a skeleton of a mesh shape such as punching metal or expanded metal, but is more preferably a shape of a three-dimensional network structure.
  • the porous base may be at least the surface of the skeleton formed of a nickel alloy.
  • the skeleton of the porous substrate may have a hollow structure inside or a structure in which a nickel alloy is formed on the surface of a resin molded body.
  • the nickel alloy may be the same as the nickel alloy in the metal porous body according to the embodiment of the present disclosure described above. That is, the nickel alloy may contain an alloy of nickel and a metal other than nickel as a main component, and a component other than an alloy of nickel and a metal other than nickel may be intentionally or unavoidably contained.
  • the nickel alloy is preferably an alloy of nickel and any one or more metals selected from the group consisting of tungsten, molybdenum, aluminum and titanium.
  • FIG. 8 shows an enlarged schematic view of an enlarged cross section of an example of a porous base having a skeleton of a three-dimensional network structure.
  • the skeleton 83 of the porous substrate 80 is formed of a nickel alloy 82.
  • the porous substrate 80 has a skeleton of a three-dimensional network structure, and the interior 84 of the skeleton 83 is hollow.
  • the porous base material 80 has continuous pores, and the pore portion 85 is formed by the skeleton 83.
  • FIG. 9 shows an enlarged schematic view in which a cross section of another example of a porous base having a skeleton of a three-dimensional network structure is enlarged. As shown in FIG.
  • the skeleton 93 of the porous substrate 90 has a structure in which a nickel alloy 92 is formed so as to cover the surface of the skeleton of the resin molded body 96 having a skeleton of a three-dimensional network structure.
  • the porous substrate 90 has continuous pores, and the skeleton 93 forms the pores 95.
  • the porosity and the average pore diameter of the metal porous body are each a porous body And the average pore diameter of the For this reason, the porosity and the average pore diameter of the porous substrate may be appropriately selected in accordance with the porosity and the average pore diameter of the porous metal body to be produced.
  • the porosity and the average pore size of the porous substrate are defined in the same manner as the porosity and the average pore size of the porous metal body according to the embodiment of the present disclosure described above.
  • the desired porous substrate can not be obtained from the market, it may be produced by the following method.
  • a sheet-like (flat plate-like) resin molded body (hereinafter, also simply referred to as a “resin molded body”) having a skeleton of a three-dimensional network structure is prepared.
  • a polyurethane resin, a melamine resin, etc. can be used as a resin molding.
  • skeleton of a three-dimensional network structure in FIG. 10 is shown.
  • a conductive treatment step of forming a conductive layer on the surface of the skeleton of the resin molded body is performed.
  • the conductive treatment may be, for example, applying a conductive paint containing conductive particles such as carbon and conductive ceramic, forming a layer of a conductive metal such as nickel and copper by electroless plating, or depositing Alternatively, this can be performed by forming a layer of a conductive metal such as aluminum by sputtering.
  • a nickel alloy is plated using the resin molding which formed the conductive layer in the surface of frame
  • the plating of the nickel alloy may be performed by a known method.
  • Nickel tungsten for example, using a plating bath of 0.15 mol / L of nickel sulfate, 0.15 mol / L of sodium tungstate, and 0.3 mol / L of triammonium ammonium, pH 7, bath temperature 40 ° C., current It can be plated at a density of 5 A / dm 2 . The current density is based on the apparent area of the substrate.
  • nickel molybdenum has a pH 7 and a bath temperature of 40 ° C., for example, using a plating bath containing 0.15 mol / L of nickel sulfate, 0.15 mol / L of sodium molybdate, and 0.3 mol / L of triammonium ammonium citrate.
  • Plating at a current density of 5 A / dm 2 is based on the apparent area of the substrate.
  • "apparent area of the substrate” means, for example, the area of the main surface of the substrate having a flat plate shape.
  • a porous substrate 90 shown in FIG. 9 is obtained.
  • the porous resin base 80 shown in FIG. 8 can be obtained by removing the resin molded body by heat treatment or the like.
  • the porosity and the average pore diameter of the porous substrate are substantially equal to the porosity and the average pore diameter of the resin molded product used as the substrate.
  • the porosity and the average pore diameter of the resin molded product may be appropriately selected in accordance with the porosity and the average pore diameter of the porous substrate, which is the production object.
  • the porosity and the average pore size of the resin molded body are defined in the same manner as the porosity and the average pore size of the porous metal body described above.
  • a nickel plating film As another method of forming a plating film of a nickel alloy on the surface of a resin molded body having a conductive layer formed on the surface of a skeleton, first, a nickel plating film is formed, and then a plating film of a metal other than nickel is formed. There is also a method of alloying. For example, in the case of forming a plating film of nickel aluminum or nickel titanium as a nickel alloy, first, a nickel plating film is formed on the surface of the skeleton of the resin molded body, and then an aluminum plating film or a titanium plating film is formed. Good.
  • the formation of the nickel plating film may use either electroless nickel plating or electrolytic nickel plating, but electrolytic plating is preferable because it is more efficient.
  • electrolytic nickel plating it may be performed according to a conventional method.
  • a plating bath used for an electrolytic nickel plating process a well-known or commercially available thing can be used, for example, a watt bath, a chlorination bath, a sulfamic acid bath etc. are mentioned.
  • a conductive resin layer having a conductive layer formed on the surface of the skeleton is immersed in the plating bath, the conductive resin layer is connected to the cathode and the nickel counter electrode plate is connected to the anode, and a direct current or pulse intermittent current is applied to the conductive layer.
  • a nickel plating film can be formed on the surface of
  • the aluminum plating can be performed by electrolysis (molten salt electrolysis) in a molten salt bath so that the resin molded body after the formation of the nickel plating film acts as a cathode.
  • molten salt for example, it is possible to use an electrolytic solution in which an aluminum halide is added to a halide-based molten salt.
  • halide based molten salt for example, a chloride based molten salt or a fluoride based molten salt can be used.
  • chloride-based molten salt for example, KCl, NaCl, CaCl 2 , LiCl, RbCl, CsCl, SrCl 2 , BaCl 2 , MgCl 2 or their eutectic salts can be used.
  • fluoride-based molten salt for example, LiF, NaF, KF, RbF, CsF, MgF 2 , CaF 2 , SrF 2 , BaF 2 or a eutectic salt thereof can be used.
  • a chloride-based molten salt from the viewpoint of efficiency, and it is preferable to use KCl, NaCl and CaCl 2 from the viewpoint of being inexpensive and easy to obtain.
  • an organic molten salt which is a eutectic salt of an organic halide and an aluminum halide
  • a plated film of aluminum can be formed at a low temperature.
  • the organic halide include 1-ethyl-3-methylimidazolium chloride (EMIC) and butyl pyridinium chloride (BPC).
  • the aluminum halides may include, for example, aluminum chloride (AlCl 3).
  • the plating of titanium contains a metal ion of a Group 1 metal, a fluoride ion, and a titanium ion.
  • titanium is further dissolved in a molten salt bath of at least one of lithium fluoride (LiF) and sodium fluoride (NaF) and at least one of lithium chloride (LiCl) and sodium chloride (NaCl); It can carry out by carrying out molten salt electrolysis using the metal porous body which has nickel as a main component as a cathode in the molten salt bath which melt
  • the titanium ion may be Ti 4+ or Ti 3+ .
  • titanium it is necessary to add titanium to the above molten salt bath to cause a leveling reaction of 3Ti 4 + + Ti metal ⁇ 4Ti 3 + in the molten salt bath.
  • the amount of titanium added to the molten salt bath may be an amount exceeding the minimum amount necessary for Ti 4+ in the molten salt bath to become Ti 3+ .
  • the heat resistant coating film forming step is a step of forming a heat resistant coating film on the surface of the skeleton of the porous substrate prepared in the preparation step.
  • the heat-resistant coating film forming step can be grasped as a step of forming a heat-resistant coating film on the surface of the porous substrate prepared in the preparation step.
  • the heat-resistant coating film may be any metal or alloy stable in a high temperature oxidizing atmosphere, such as silver (Ag), cobalt (Co), gold (Au), platinum (Pt) or the like.
  • the heat-resistant coating film is preferably silver or cobalt.
  • the heat-resistant coating film preferably contains silver or cobalt.
  • the silver plating method is not particularly limited, and can be performed by a known method. For example, it is preferred to carry out by electroplating in a silver methanesulfonate plating bath. Moreover, it is preferable to perform silver strike plating before silver plating.
  • the method of plating cobalt is not particularly limited, but, for example, it is preferable to carry out by the following method. That is, an aqueous solution having a composition of 350 g / L of cobalt sulfate, 45 g / L of cobalt chloride, 25 g / L of sodium chloride and 35 g / L of boric acid is prepared as a cobalt plating solution, and the current density is 2 A at room temperature (about 20 ° C.). By setting it as / dm ⁇ 2 >, cobalt can be plated on the surface of the skeleton of the porous substrate.
  • the porous metal body according to the embodiment of the present disclosure can be suitably used, for example, as a gas diffusion layer for a fuel cell or an electrode for hydrogen production by water electrolysis.
  • Hydrogen production methods are roughly classified into [1] alkaline water electrolysis method, [2] PEM (Polymer Electrolyte Membrance) method, and [3] SOEC (Solid Oxide Electrolysis Cell) method.
  • a porous body can be used.
  • the metal porous body has an average pore diameter of 100 ⁇ m when viewed from above (for example, when viewed from the main surface side when the appearance of the metal porous body is flat). The thickness is preferably 5000 ⁇ m or less.
  • the average pore diameter when the porous metal body is viewed from above is 100 ⁇ m or more, the generated hydrogen or oxygen bubbles are clogged in the pores of the porous metal body, and the contact area between water and the electrode decreases. It can be suppressed.
  • the average pore diameter when the metal porous body is viewed from above is 5000 ⁇ m or less, the surface area of the electrode becomes sufficiently large, and the efficiency of water electrolysis can be enhanced.
  • the average pore diameter of the metal porous body as viewed from above is more preferably 400 ⁇ m or more and 4000 ⁇ m or less.
  • the thickness of the metal porous body and the weight per area of the metal may cause deflection or the like if the electrode area becomes large, and may be appropriately selected according to the scale of equipment.
  • the weight of the metal is preferably 200 g / m 2 or more and 2000 g / m 2 or less, more preferably 300 g / m 2 or more and 1200 g / m 2 or less, and more preferably 400 g / m 2 or more and 1000 g It is further preferable that the ratio is about / m 2 or less.
  • a plurality of metal porous bodies having different average pore sizes can be used in combination.
  • the PEM method of the above [2] is a method of electrolyzing water using a solid polymer electrolyte membrane.
  • An anode and a cathode are disposed on both sides of a solid polymer electrolyte membrane, and a voltage is applied while flowing water on the anode side, whereby hydrogen ions generated by the electrolysis of water are made to the cathode side through the solid polymer electrolyte membrane.
  • It is a system which is moved and taken out as hydrogen on the cathode side.
  • the operating temperature is about 100 ° C.
  • a polymer electrolyte fuel cell that generates electric power by hydrogen and oxygen and discharges water is the same as that of the solid polymer fuel cell, and the operation is completely reversed.
  • the anode side and the cathode side are completely separated, there is an advantage that high purity hydrogen can be taken out. Since the anode and the cathode need to be permeating the electrode to pass water and hydrogen gas, the electrode needs a conductive porous body.
  • the metal porous body according to the embodiment of the present disclosure has high porosity and good electrical conductivity, it can be used for PEM type water electrolysis as well as it can be suitably used for a polymer electrolyte fuel cell. It can be used suitably.
  • the porous metal body preferably has an average pore diameter of 150 ⁇ m or more and 1000 ⁇ m or less when viewed from above. When the average pore diameter is 150 ⁇ m or more when the metal porous body is viewed from above, generated hydrogen and oxygen bubbles are clogged in the pores of the metal porous body, and the contact area between water and the solid polymer electrolyte membrane is It can suppress becoming small.
  • the average pore diameter when the metal porous body is viewed from the top is 1000 ⁇ m or less, sufficient water retention can be secured, and water can be prevented from passing through before reacting, which is efficient. Water electrolysis can be performed. From the same viewpoint, the average pore diameter when the metal porous body is viewed from above is more preferably 200 ⁇ m or more and 700 ⁇ m or less, and still more preferably 300 ⁇ m or more and 600 ⁇ m or less.
  • the thickness of the metal porous body and the weight of the metal may be appropriately selected according to the scale of equipment, but if the porosity is too small, the pressure loss for passing water will be large, so the porosity is 30% or more It is preferable to adjust the thickness and the weight of the metal so that In addition, in the PEM method, the conduction between the solid polymer electrolyte membrane and the electrode is crimped, so the amount of attached metal is adjusted so that the increase in electrical resistance due to deformation and creep at the time of pressure is within a practically acceptable range. There is a need.
  • the weight of the metal is preferably 200 g / m 2 or more and 2000 g / m 2 or less, more preferably 300 g / m 2 or more and 1200 g / m 2 or less, and more preferably 400 g / m 2 or more and 1000 g It is further preferable that the ratio is about / m 2 or less.
  • the SOEC method of the above [3] is a method of electrolyzing water using a solid oxide electrolyte membrane, and the configuration differs depending on whether the electrolyte membrane is a proton conductive membrane or an oxygen ion conductive membrane.
  • the oxygen ion conductive film hydrogen is generated on the cathode side supplying water vapor, so the hydrogen purity is lowered. Therefore, from the viewpoint of hydrogen production, it is preferable to use a proton conductive membrane.
  • An anode and a cathode are disposed on both sides of the proton conductive membrane, and a voltage is applied while introducing water vapor on the anode side, whereby hydrogen ions generated by the electrolysis of water are moved to the cathode side through the solid oxide electrolyte membrane , And only hydrogen is taken out on the cathode side.
  • the operating temperature is about 600 ° C. or more and 800 ° C. or less.
  • a solid oxide fuel cell that generates electricity with hydrogen and oxygen and discharges the water, and operates in the completely opposite manner with the same configuration.
  • Both the anode and the cathode need to be permeable to the electrode and pass water vapor and hydrogen gas, so the electrode needs a porous body which is electrically conductive and, in particular, resistant to a high temperature oxidizing atmosphere on the anode side. Since the porous metal body according to the embodiment of the present disclosure has high porosity, good electrical conductivity, high oxidation resistance and heat resistance, it is the same as it can be suitably used for solid oxide fuel cells. In addition, it can be suitably used for SOEC type water electrolysis.
  • the porous metal body preferably has an average pore diameter of 150 ⁇ m or more and 1000 ⁇ m or less when viewed from above.
  • the average pore diameter when the porous metal body is viewed from above is 150 ⁇ m or more, water vapor and generated hydrogen are clogged in the pores of the porous metal body, and the contact area between the water vapor and the solid oxide electrolyte membrane becomes small. Can be suppressed.
  • the metal porous body when the metal porous body is viewed from the top, when the average pore diameter is 1000 ⁇ m or less, it is possible to suppress that the pressure loss becomes too low and the water vapor passes through before sufficiently reacting.
  • the average pore diameter when the metal porous body is viewed from above is more preferably 200 ⁇ m or more and 700 ⁇ m or less, and still more preferably 300 ⁇ m or more and 600 ⁇ m or less.
  • the thickness of the metal porous body and the weight of the metal may be appropriately selected depending on the scale of the equipment, but if the porosity is too small, the pressure loss for introducing water vapor becomes large, so the porosity is 30% or more It is preferable to adjust the thickness and the weight of the metal so that Further, in the SOEC method, since the conduction between the solid oxide electrolyte membrane and the electrode is crimped, it is necessary to adjust the metal basis weight so that the increase in the electrical resistance due to deformation and creep at the time of pressure is practically acceptable. There is.
  • the weight of the metal is preferably 200 g / m 2 or more and 2000 g / m 2 or less, more preferably 300 g / m 2 or more and 1200 g / m 2 or less, and more preferably 400 g / m 2 or more and 1000 g It is further preferable that the ratio is about / m 2 or less.
  • the metal porous body is disposed on both sides of a solid polymer electrolyte membrane, and the solid polymer electrolyte membrane and the metal porous body are brought into contact with each other, and each metal porous body acts as an anode and a cathode. 15. The method for producing hydrogen according to any one of appendices 1 to 8, wherein hydrogen is generated on the cathode side by supplying and electrolyzing the hydrogen. (Supplementary Note 11) The metal porous body is disposed on both sides of a solid oxide electrolyte membrane, and the solid oxide electrolyte membrane and the metal porous body are brought into contact with each other, and each metal porous body acts as an anode and a cathode. 15. The method for producing hydrogen according to any one of appendices 1 to 8, wherein hydrogen is generated on the cathode side by supplying water to electrolyze water.
  • (Supplementary Note 15) The hydrogen according to any one of Appendices 12 to 14, wherein the nickel alloy contains, as a main component, an alloy of nickel and at least one selected from the group consisting of tungsten, molybdenum, aluminum, and titanium. Production equipment. (Supplementary Note 16) 15. The hydrogen production apparatus according to any one of appendices 12 to 15, wherein the shape of the skeleton is a three-dimensional network structure. (Supplementary Note 17) 15. The apparatus for producing hydrogen according to any one of appendixes 12 to 16, wherein the porous metal body has a porosity of 60% to 98%. (Appendix 18) 15.
  • Appendix 19 15. The apparatus for producing hydrogen according to any one of appendixes 12 to 18, wherein the porous metal body has a thickness of 500 ⁇ m or more and 5000 ⁇ m or less.
  • Supplementary Note 20 15. The apparatus for producing hydrogen according to any one of appendices 12 to 19, wherein the water is a strong alkaline aqueous solution.
  • the nickel alloy contains, as a main component, an alloy of nickel and at least one selected from the group consisting of tungsten, molybdenum, aluminum, and titanium.
  • Porous body (Supplementary Note 105) Supplementary note 101 to Supplementary note 104, wherein the shape of the skeleton is a three-dimensional network structure.
  • the metal porous body according to any one of Appendixes 101 to 106 wherein the porous metal body has an average pore diameter of 50 ⁇ m or more and 5000 ⁇ m or less.
  • the metal porous body according to any one of appendixes 101 to 107 wherein the thickness of the porous metal body is 500 ⁇ m or more and 5000 ⁇ m or less.
  • a fuel cell comprising the metal porous body according to any one of appendixes 101 to 108 as a gas diffusion layer.
  • (Supplementary Note 110) A method for producing the porous metal body according to appendix 101, wherein Preparing a flat porous substrate having continuous pores; A heat-resistant coating film forming step of forming a heat-resistant coating film on the surface of the skeleton of the porous substrate, Have At least the surface of the skeleton of the porous substrate is formed of a nickel alloy, Method of manufacturing porous metal body. (Supplementary Note 111) The preparation step is carried out by plating a nickel alloy on the surface of the skeleton of a flat resin molding having continuous pores. The manufacturing method of the metal porous body as described in appendix 110. (Supplementary Note 112) The method for producing a metal porous body according to Appendix 110 or 111, wherein the shape of the skeleton of the porous base material is a three-dimensional network structure.
  • a conductive layer was formed on the surface of the skeleton by subjecting the foamed urethane to a conductive treatment. The conductive treatment was performed by applying and drying a solvent in which carbon was dispersed. A nickel tungsten plating film was formed on the surface of the urethane foam skeleton using the urethane foam after the conductive treatment as a substrate.
  • Nickel tungsten plating is performed using a plating bath containing 0.15 mol / L of nickel sulfate, 0.15 mol / L of sodium tungstate, and 0.3 mol / L of triammonium ammonium, pH 7, bath temperature 40 ° C., current It was performed under the conditions of a density 5A / dm 2. The current density is based on the apparent area of the substrate. As a result, porous substrate No. 1 in which the surface of the skeleton is made of nickel tungsten. 1 was obtained. -Heat-resistant coating film formation process- The porous body substrate No.
  • a silver plating film was formed on the surface of the framework 1 as a heat-resistant coating film, and the resin molding (foamed urethane) was removed by heat treatment.
  • Silver plating uses a silver plating solution having a composition of 2 g / L of silver cyanide and 100 g / L of sodium cyanide, the temperature of the plating solution is 25 ° C., the current density is 2 A / dm 2, and the stainless steel plate is an anode.
  • the current density is based on the apparent area of the porous substrate.
  • a porous metal body No. 1 in which a silver plating film is formed on the surface of nickel tungsten is obtained. 1 was obtained.
  • Example 2 Preparation process-
  • porous base material No. 1 was prepared.
  • -Heat-resistant coating film formation process The porous body substrate No.
  • a plated film of cobalt was formed as a heat-resistant coating film on the surface of the framework 1 and heat treatment was further performed to remove the resin molded product (urethane foam).
  • For cobalt plating prepare a cobalt plating solution with a composition of 350 g / L of cobalt sulfate, 45 g / L of cobalt chloride, 25 g / L of sodium chloride and 35 g / L of boric acid, and use 2A current density at room temperature (about 20 ° C). / was carried out by a dm 2. The current density is based on the apparent area of the porous substrate.
  • a porous metal body No. 1 in which a plated film of cobalt is formed on the surface of nickel tungsten. 2 was obtained.
  • Example 3 Preparation process- First, as a resin molding having a skeleton of a three-dimensional network structure, foamed urethane having a thickness of 1.2 mm and a size of a main surface of 15 cm ⁇ 15 cm was prepared. The porosity of the foamed urethane was 95%, and the average pore diameter was 440 ⁇ m. A conductive layer was formed on the surface of the skeleton by subjecting the foamed urethane to a conductive treatment. The conductive treatment was performed by applying and drying a solvent in which carbon was dispersed.
  • a nickel molybdenum plated film was formed on the surface of the urethane foam skeleton using the urethane foam after the conductive treatment as a substrate.
  • Plating of nickel-molybdenum is performed using a plating bath containing 0.15 mol / L of nickel sulfate, 0.15 mol / L of sodium molybdate, and 0.3 mol / L of triammonium ammonium, pH 7, bath temperature 40 ° C., current It was performed under the conditions of a density 5A / dm 2. The current density is based on the apparent area of the substrate.
  • porous substrate No. 1 in which the surface of the skeleton is made of nickel molybdenum. 2 was obtained.
  • the porous body substrate No. A silver plating film was formed on the surface of the framework 2 as a heat-resistant coating film, and the resin molding (foamed urethane) was removed by heat treatment.
  • the formation of the silver plating film and the heat treatment were performed in the same manner as in Example 1. Thereby, a metal porous body No. 1 in which a silver plating film was formed on the surface of nickel molybdenum. 3 was obtained.
  • Example 4 Preparation process- In the same manner as in Example 3, porous base material No. 2 was prepared. -Heat-resistant coating film formation process- The porous body substrate No. A cobalt plated film was formed on the surface of the framework 2 as a heat-resistant coating film, and the resin molded product (urethane foam) was removed by heat treatment. The formation of the cobalt plating film and the heat treatment were performed in the same manner as in Example 3. As a result, a porous metal body No. 1 in which a plating film of cobalt is formed on the surface of nickel molybdenum. 4 was obtained.
  • porous metal body No. 1 to No. 4 is a porous substrate No. 4; 1 and No. 1 Compared to 2, it showed extremely low resistance even at high temperature of 800 ° C., and it was shown that it can be suitably used also as a collector of SOFC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

本開示は、多孔体基材と、耐熱コーティング膜とを有する金属多孔体であって、上記多孔体基材は、ニッケル合金を表面に有する骨格と、上記骨格によって形成されている連続気孔とを有し、上記耐熱コーティング膜は、上記骨格の表面を被覆し、上記金属多孔体は、その外観が平板状の形状を有する、金属多孔体を提供する。

Description

金属多孔体、燃料電池及び金属多孔体の製造方法
 本開示は、金属多孔体、燃料電池及び金属多孔体の製造方法に関する。本出願は、2017年11月29日に出願した日本特許出願である特願2017-228595号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 各種燃料電池のなかでも、固体酸化物形燃料電池(Solid Oxide Fuel Cell;SOFC、以下「SOFC」とも記載する。)は、固体高分子形燃料電池(Polymer Electrolyte Fuel Cell;PEFC)又はリン酸形燃料電池(Phosphoric Acid Fuel Cell;PAFC)に比べて高温で作動させる必要がある。しかし、SOFCは、発電効率が高い、白金等の高価な触媒を必要としない、排熱を利用できる等の利点を有するため、開発が盛んに進められている。
 上記SOFCは、固体酸化物から形成された固体電解質層と、この固体電解質層を挟んで両側に積層形成された電極層とを備えて構成されている。また、電極で生成される電子を収集して取り出すために多孔質の集電体が設けられている。この集電体は電極に供給されるガスを拡散して効率よく発電させるためにガス拡散層としての機能を備えている場合が多い。
 燃料電池のガス拡散層には、一般に、カーボン構造体又はステンレス鋼(SUS)構造体が利用されている。カーボン構造体及びSUS構造体にはガス流路となる溝が形成されている。溝の幅は約500μm程度であり、一繋がりの線状になっている。溝は、カーボン構造体及びSUS構造体が電解質と接触する面の面積の約1/2程度に設けられているため、ガス拡散層の気孔率は50%程度である。
 上記のようなガス拡散層は気孔率がそれほど高くなく、また、圧力損失も大きいため、燃料電池を小型化しつつ出力を大きくするには問題があった。
 気孔率が高く表面積の大きな金属多孔体の製造方法として、発泡樹脂等の樹脂成形体の表面に金属層を形成する方法が知られている。例えば特開平11-154517号公報(特許文献1)には、樹脂成形体の骨格の表面を導電化処理し、この上に金属からなる電気めっき層を形成し、必要に応じて樹脂成形体を焼却して除去することにより金属多孔体を製造する方法が記載されている。
特開平11-154517号公報
 本開示の一態様に係る金属多孔体は、
 連続気孔を有する平板状の金属多孔体であって、
 前記金属多孔体の骨格は、ニッケル合金の表面に耐熱コーティング膜が形成されている、
金属多孔体、である。
 本開示の一態様に係る金属多孔体の製造方法は、
 上記の本開示の一態様に係る金属多孔体を、製造する方法であって、
 連続気孔を有する平板状の多孔体基材を用意する用意工程と、
 前記多孔体基材の骨格の表面に耐熱コーティング膜を形成する、耐熱コーティング膜形成工程と、
を有し、
 前記多孔体基材は、少なくとも骨格の表面がニッケル合金によって形成されている、
金属多孔体の製造方法、である。
 換言すると、本開示の他の一態様に係る金属多孔体は、
 多孔体基材と、耐熱コーティング膜とを有する金属多孔体であって、
 上記多孔体基材は、
 ニッケル合金を表面に有する骨格と、
 上記骨格によって形成されている連続気孔とを有し、
 上記耐熱コーティング膜は、上骨格の表面を被覆し、
 上記金属多孔体は、その外観が平板状の形状を有する、
金属多孔体である。
 また、本開示の他の一態様に係る金属多孔体の製造方法は、
 上記の金属多孔体の製造方法であって、
 上記骨格と、上記骨格によって形成されている上記連続気孔とを有する多孔体基材を用意する用意工程と、
 上記多孔体基材における上記骨格の表面に耐熱コーティング膜を形成する、耐熱コーティング膜形成工程と、
を有し、
 上記多孔体基材は、その外観が平板状の形状を有し、
 上記多孔体基材における上記骨格は、その表面にニッケル合金を有する、
金属多孔体の製造方法である。
図1は、三次元網目状構造の骨格を有する金属多孔体の一例の、骨格の構造を示す拡大写真である。 図2は、本開示の実施形態に係る金属多孔体の一例の、部分断面の概略を表す拡大図である。 図3は、金属多孔体における耐熱コーティング膜の平均膜厚を測定する方法において、金属多孔体上にエリアA~エリアEを定めた状態の一例を表す概略図である。 図4は、図3に示す金属多孔体のエリアAにおける骨格の断面(図2のA-A線断面)を走査型電子顕微鏡で観察した場合の像の概略を表す図である。 図5は、図4に示す耐熱コーティング膜11を走査型電子顕微鏡で拡大して観察した場合の、視野(i)の一例を表す概略図である。 図6は、図4に示す耐熱コーティング膜11を走査型電子顕微鏡で拡大して観察した場合の、視野(ii)の一例を表す概略図である。 図7は、図4に示す耐熱コーティング膜11を走査型電子顕微鏡で拡大して観察した場合の、視野(iii)の一例を表す概略図である。 図8は、三次元網目状構造の骨格を有する多孔体基材の一例の、部分断面の概略を表す図である。 図9は、三次元網目状構造の骨格を有する多孔体基材の別の一例の、部分断面の概略を表す図である。 図10は、三次元網目状構造の骨格を有する樹脂成形体の一例としての、発泡ウレタン樹脂の写真である。
[本開示が解決しようとする課題]
 本発明者等は、燃料電池の集電体兼ガス拡散層としてカーボン構造体及びSUS構造体の代わりに気孔率が高い金属多孔体を用いることを検討した。
 SOFCは、800℃程度の高温で作動する燃料電池である。SOFCは、負極(燃料極)には水素及び一酸化炭素が、正極(空気極)には空気(酸素)が供給される。このため、SOFCの空気極のガス拡散層として金属多孔体を用いる場合には、800℃程度の高温でかつ酸化性の雰囲気という非常に厳しい条件下においても長期に亘って安定性を有する金属多孔体を用いる必要がある。
 そこで本発明者等は、800℃程度の高温酸化条件下でも使用可能な金属多孔体を作製すべく鋭意探求を重ねた。まず、耐酸化性に優れる合金としてニッケルタングステン(NiW)及びニッケルモリブデン(NiMo)に着目し、骨格がニッケルタングステン又はニッケルモリブデンからなる金属多孔体を作製した。そして、大気中、800℃で500時間という条件で熱処理を行なった。
 その結果、骨格がニッケルタングステン又はニッケルモリブデンからなる金属多孔体であっても、800℃程度の高温酸化雰囲気で長時間熱処理した後では、骨格の一部にヒビ又は割れが発生してしまうことが見出された。
 そこで本開示は上記問題点に鑑み、高温酸化条件下においても長期に亘って安定性を有し、SOFCの空気極用の集電体兼ガス拡散層としても好適に用いることが可能な金属多孔体を提供することを目的とする。
[本開示の効果]
 本開示によれば、高温酸化条件下においても長期に亘って安定性を有し、SOFCの空気極用の集電体兼ガス拡散層としても好適に用いることが可能な金属多孔体を提供することができる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係る金属多孔体は、
 多孔体基材と、耐熱コーティング膜とを有する金属多孔体であって、
 上記多孔体基材は、
 ニッケル合金を表面に有する骨格と、
 上記骨格によって形成されている連続気孔とを有し、
 上記耐熱コーティング膜は、上骨格の表面を被覆し、
 上記金属多孔体は、その外観が平板状の形状を有する、
金属多孔体、である。
 上記(1)に記載の開示の態様によれば、高温酸化条件下においても長期に亘って安定性を有し、SOFCの空気極用の集電体兼ガス拡散層としても好適に用いることが可能な金属多孔体を提供することができる。
(2)上記(1)に記載の金属多孔体は、
 上記耐熱コーティング膜が銀又はコバルトを含むことが好ましい。
 上記(2)に記載の開示の態様によれば、高温酸化条件下においても導電性に優れる金属多孔体を提供することができる。
(3)上記(1)又は上記(2)に記載の金属多孔体は、
 上記耐熱コーティング膜は、その平均膜厚が1μm以上であることが好ましい。
 上記(3)に記載の開示の態様によれば、高温耐酸化性により優れる金属多孔体を提供することができる。
(4)上記(1)から上記(3)のいずれか一項に記載の金属多孔体は、
 上記ニッケル合金が、ニッケルと、タングステン、モリブデン、アルミニウム及びチタンからなる群より選択されるいずれか一種以上の金属との合金を主成分とすることが好ましい。
 上記(4)に記載の開示の態様によれば、耐食性が高く、また高強度の金属多孔体を提供することができる。
 なお、上記主成分とは、上記ニッケル合金において占める割合が最も多い成分のことをいうものとする。
(5)上記(1)から上記(4)のいずれか一項に記載の金属多孔体は、
 上記骨格の形状は、三次元網目状構造であることが好ましい。
(6)上記(1)から上記(5)のいずれか一項に記載の金属多孔体は、
 その気孔率が60%以上、98%以下であることが好ましい。
(7)上記(1)から上記(6)のいずれか一項に記載の金属多孔体は、
 その平均気孔径が50μm以上、5000μm以下であることが好ましい。
 上記(5)から上記(7)のいずれか一項に記載の開示の態様によれば、軽量でかつ表面積が大きい金属多孔体を提供することができる。
(8)上記(1)から上記(7)のいずれか一項に記載の金属多孔体は、
 その厚みが500μm以上、5000μm以下であることが好ましい。
 上記(8)に記載の開示の態様によれば、軽量でかつ強度が高い金属多孔体を提供することができる。
 なお、上記の金属多孔体の厚みとは、平板状の金属多孔体の主面同士の間隔をいうものとする。
(9)本開示の一態様に係る燃料電池は、
 上記(1)から上記(8)のいずれか一項に記載の金属多孔体をガス拡散層として備える、燃料電池である。
 上記(9)に記載の開示の態様によれば、発電効率が高く、小型で軽量な燃料電池を提供することができる。
(10)本開示の一態様に係る金属多孔体の製造方法は、
 上記(1)から上記(8)のいずれか一項に記載の金属多孔体の製造方法であって、
 上記骨格と、上記骨格によって形成されている上記連続気孔とを有する多孔体基材を用意する用意工程と、
 上記多孔体基材における上記骨格の表面に耐熱コーティング膜を形成する、耐熱コーティング膜形成工程と、
を有し、
 上記多孔体基材は、その外観が平板状の形状を有し、
 上記多孔体基材における上記骨格は、その表面にニッケル合金を有する、
金属多孔体の製造方法、である。
(11)上記(10)に記載の金属多孔体の製造方法は、
 上記用意工程は、骨格と上記骨格によって形成されている連続気孔を有する樹脂成形体の表面にニッケル合金をめっきすることによって行ない、
 上記樹脂成形体は、その外観が平板状の形状を有することが好ましい。
 上記(10)又は上記(11)に記載の開示の態様によれば、上記(1)に記載の金属多孔体を製造することが可能な金属多孔体の製造方法を提供することができる。
(12)上記(10)又は上記(11)に記載の金属多孔体の製造方法は、
 上記多孔体基材の骨格の形状は、三次元網目状構造であることが好ましい。
 上記(12)に記載の開示の態様によれば、上記(5)に記載の金属多孔体を製造することが可能な金属多孔体の製造方法を提供することができる。
[本開示の実施態様の詳細]
 本開示の実施態様に係る金属多孔体、燃料電池及び金属多孔体の製造方法の具体例を、以下に、より詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<金属多孔体>
 本開示の実施形態に係る金属多孔体は連続気孔を有し、全体として平板状の形状をしている。本実施形態の一側面において、上記金属多孔体は、多孔体基材と、耐熱コーティング膜とを有する。上記多孔体基材は、骨格と、上記骨格によって形成されている連続気孔とを有する。また、上記金属多孔体は、その外観が平板状の形状を有する。金属多孔体において連続気孔は少なくとも対向する主面同士を貫通するように形成されていればよい。換言すると上記連続気孔は、金属多孔体の上記形状における対向する主面同士を貫通するように形成されていればよい。金属多孔体の表面積を大きくする観点からは、なるべく多くの連続気孔が形成されていることが好ましい。金属多孔体の骨格の形状(多孔体基材の骨格の形状)としては、例えば、パンチングメタル及びエキスパンドメタルのようなメッシュ状の形状及び、三次元網目状構造のような形状が挙げられる。ここで、「三次元網目状構造」とは、構成する固体成分(例えば、金属、樹脂等)が立体的に網目状に広がっている構造を意味する。なお、金属多孔体の骨格それ自体(又は後述する多孔体基材の骨格それ自体)が連続気孔を有している必要はない。言い換えると、当該骨格それ自体が多孔質である必要はない。
 金属多孔体の骨格はニッケル合金の表面に耐熱コーティング膜が形成されている。すなわち、ニッケル合金が基材となっており、その表面全体を覆うように耐熱コーティング膜が形成されている。本実施形態の一側面において、上記多孔体基材は、ニッケル合金を表面に有する骨格と、上記骨格の表面を被覆する耐熱コーティング膜とを有すると把握することもできる。金属多孔体の骨格の表面(多孔体基材の骨格の表面)に耐熱コーティング膜が形成されておらず、ニッケルタングステン又はニッケルモリブデンによって骨格が形成されている場合には、当該金属多孔体が800℃程度の高温下で酸化雰囲気に長時間さらされると、骨格の一部にヒビ又は割れが発生してしまい、金属多孔体の用途によっては使用に適さなくなってしまう場合がある。これに対して本開示の実施形態に係る金属多孔体は、ニッケル合金(多孔体基材の骨格)の表面に耐熱コーティング膜が形成されている。そのため、当該金属多孔体が800℃程度の高温下で酸化雰囲気に曝されたとしても骨格にヒビ又は割れが発生せずに長時間安定して使用することができる。このため、本開示の実施形態に係る金属多孔体は、例えば、SOFCの空気極のガス拡散層として用いたとしても骨格の強度が低下せず、好適に用いることができる。また、金属多孔体は表面積が大きいため燃料ガスをより多く拡散させることができる。そのため当該金属多孔体は、燃料ガスと電解質との接触機会を高めて発電効率が高いSOFCを提供することができる。
 耐熱コーティング膜としては、例えば、銀(Ag)、コバルト(Co)、金(Au)、白金(Pt)等の、高温酸化雰囲気下において安定な金属又は合金であればよい。金属多孔体の製造コストを抑えるという観点からは耐熱コーティング膜は銀又はコバルトであることが好ましい。本実施形態の一側面において耐熱コーティング膜としては、例えば、銀(Ag)、コバルト(Co)、金(Au)、白金(Pt)等の、高温酸化雰囲気下において安定な金属又は合金を含んでいてもよいし、銀又はコバルトを含んでいてもよい。
 銀及び金は、導電性が非常に高いため、金属多孔体の導電率を高くすることができる。また、コバルトは酸素の影響によって表面が酸化コバルトとなる。酸化コバルトは800℃程度の高温環境下で導電性を発揮するようになる。このため、耐熱コーティング膜が銀、金又はコバルトである場合には、本開示の実施形態に係る金属多孔体は燃料電池においてガス拡散層としてだけでなく集電体としての機能も良好になる。
 耐熱コーティング膜は、その平均膜厚が1μm以上であることが好ましい。耐熱コーティング膜の平均膜厚が1μm以上であることにより、800℃程度の高温の酸化雰囲気下でも金属多孔体を長期に亘って安定に保つことができる。耐熱コーティング膜は一般に高価である。そのため、金属多孔体の製造コストを抑える観点からは、耐熱コーティング膜の平均膜厚は50μm以下程度であることが好ましい。これらの観点から、耐熱コーティング膜の平均膜厚は、3μm以上、30μm以下であることがより好ましく、5μm以上、20μm以下であることが更に好ましい。
 ニッケル合金は、ニッケルとニッケル以外の金属との合金を主成分としていればよく、ニッケルとニッケル以外の金属との合金以外の成分が意図的又は不可避的に含まれていても構わない。なお、主成分とは、上記ニッケル合金において占める割合が最も多い成分のことをいうものとする。例えば、上記主成分は、上記ニッケル合金において占める割合が50%以上の成分であってもよい。
 ニッケル合金は、比較的耐酸化性に優れ、かつ、強度の高いものであることが好ましいという観点から、ニッケルと、タングステン、モリブデン、アルミニウム及びチタンからなる群より選択されるいずれか一種以上の金属との合金を主成分とすることが好ましい。すなわち、ニッケル合金は、ニッケルタングステン(NiW)、ニッケルモリブデン(NiMo)、ニッケルアルミ(NiAl)又はニッケルチタン(NiTi)を主成分とすることが好ましい。
 前述のように金属多孔体の骨格の形状(多孔体基材の骨格の形状)はメッシュ状の形状であってもよいが、三次元網目状構造であることがより好ましい。骨格の形状が三次元網目状構造である場合には、パンチングメタル又はエキスパンドメタルのような形状の骨格よりも更に表面積を大きくすることができる。また、骨格の形状がより複雑であるため、燃料電池のガス拡散層として用いた場合に、ガスをより多く拡散させることができる。
 以下では、金属多孔体の骨格の形状が三次元網目状構造である場合を例にして本開示の実施形態に係る金属多孔体をより詳細に説明する。
 図1に、本開示の実施形態に係る金属多孔体の一例の、三次元網目状構造の骨格を写した拡大写真を示す。また、図1に示す金属多孔体の断面を拡大視した拡大模式図を図2に示す。なお、図1は耐熱コーティング膜として銀のめっき膜が骨格の表面(多孔体基材の骨格の表面)に形成された金属多孔体の例である。
 骨格の形状が三次元網目状構造を有する場合には、典型的には図2に示すように、金属多孔体10の骨格13の内部14は中空になっている。そして、骨格13の表面は基材(多孔体基材)となっているニッケル合金12の表面を覆うように耐熱コーティング膜11が形成された構造となっている。また、金属多孔体10は連続気孔を有しており、骨格13によって気孔部15が形成されている。
 なお、図2では耐熱コーティング膜11の厚みをニッケル合金12の厚みと同程度に示しているが、前述のように耐熱コーティング膜11の平均膜厚は1μm以上、50μm以下であることが好ましい。また、耐熱コーティング膜11の厚みは通常はニッケル合金12よりも薄いものである。耐熱コーティング膜11の平均膜厚は、金属多孔体10の骨格13の断面を以下のようにして電子顕微鏡によって観察することにより測定されるものをいうものとする。耐熱コーティング膜11の平均膜厚の測定方法の概略を図3~図7に示す。
 まず、例えば、図3に示すように、外観が平板状の金属多孔体10を任意にエリア分けし、測定箇所として5箇所(エリアA~エリアE)を選択する。そして、各エリアにおいて金属多孔体10の骨格13を任意に1箇所選択し、走査型電子顕微鏡(SEM)によってその骨格の、図2に示すA-A線断面を観察する。金属多孔体10の骨格13のA-A線断面は、図4に示すように、略三角形状をしている。他の側面において、金属多孔体の骨格のA-A線断面は、円形状又は四角形状であってもよい。図4に示す例では、金属多孔体10の骨格の内部14は中空であり、その中空部に面してニッケル合金12の膜が有る。そして、耐熱コーティング膜11はニッケル合金12の外側表面を覆うようにして形成されている。
 SEMによって骨格のA-A線断面全体を観察することができたら倍率を更に上げ、耐熱コーティング膜11の厚み方向の全体が確認でき、かつ、出来得る限り一視野内で厚み方向が大きく見えるように設定する。そして、視野を変えて同じ骨格のA-A線断面について3つの視野で耐熱コーティング膜11の最大厚みと最小厚みを測定する。全てのエリアにおいて、1箇所の任意の骨格のA-A線断面について3つの視野で耐熱コーティング膜11の最大厚みと最小厚みを測定し、それらを平均したものを耐熱コーティング膜11の平均膜厚という。
 例として、図5に、図3に示す金属多孔体10のエリアAにおける任意の1箇所の骨格のA-A線断面をSEMによって観察した場合の視野(i)の概念図を示す。同様に、図6には同じ骨格のA-A線断面の視野(ii)の概念図を、図7には視野(iii)の概念図を示す。
 エリアAにおける任意の1箇所の骨格のA-A線断面における耐熱コーティング膜11をSEMで観察した場合の視野(i)~視野(iii)のそれぞれにおいて、耐熱コーティング膜11の厚みが最大となる厚み(最大厚みA(i)、最大厚みA(ii)、最大厚みA(iii))と、耐熱コーティング膜11の厚みが最小となる厚み(最小厚みa(i)、最小厚みa(ii)、最小厚みa(iii))を測定する。耐熱コーティング膜11の厚みとは、ニッケル合金12の表面から垂直方向に伸びる耐熱コーティング膜11の厚みをいうものとする。
 なお、耐熱コーティング膜11とニッケル合金12との間に合金層が形成されている場合には、前記耐熱コーティング膜11の厚みとは、ニッケル合金12の表面から垂直方向に伸びる合金層と耐熱コーティング膜11の厚みの合計をいうものとする。
 これにより、エリアAにおける任意の1箇所の骨格のA-A線断面について、3つの視野の最大厚みA(i)~最大厚みA(iii)と、最小厚みa(i)~最小厚みa(iii)が決定する。エリアB、C、D、EについてもエリアAと同様にして、任意の1箇所の骨格のA-A線断面について3つの視野における耐熱コーティング膜11の最大厚みと最小厚みを測定する。
 以上のようにして測定された耐熱コーティング膜11の、最大厚みA(i)~最大厚みE(iii)と、最小厚みa(i)~最小厚みe(iii)の平均を耐熱コーティング膜11の平均膜厚という。
 本開示の実施形態に係る金属多孔体は、気孔率が60%以上、98%以下であることが好ましい。金属多孔体の気孔率が60%以上であることにより金属多孔体を非常に軽量なものとすることができ、更には、金属多孔体を燃料電池のガス拡散層として用いた場合にガスの拡散性を高めることができる。また、金属多孔体の気孔率が98%以下であることにより、金属多孔体を十分な強度のものとすることができる。これらの観点から、金属多孔体の気孔率は70%以上、98%以下であることがより好ましく、80%以上、98%以下であることが更に好ましい。
 金属多孔体の気孔率は次式で定義される。
 気孔率=(1-(多孔質材の質量[g]/(多孔質材の見かけ体積[cm]×素材密度[g/cm]))×100[%]
 金属多孔体の平均気孔径は50μm以上、1000μm以下であることが好ましい。平均気孔径が50μm以上であることにより、金属多孔体の強度を高めることができ、更には、金属多孔体を燃料電池のガス拡散層として用いた場合にガスの拡散性を高めることができる。平均気孔径が1000μm以下であることにより、金属多孔体の曲げ性を高めることができる。これらの観点から、金属多孔体の平均気孔径は100μm以上、500μm以下であることがより好ましく、150μm以上、400μm以下であることが更に好ましい。
 金属多孔体の平均気孔径とは、金属多孔体の表面を顕微鏡等で観察し、1インチ(25.4mm)あたりの気孔数をセル数として計数し、平均気孔径=25.4mm/セル数として算出されるものをいうものとする。
 平板状の形状を有する上記金属多孔体は、その厚みが500μm以上、5000μm以下であることが好ましい。金属多孔体の厚みが500μm以上であることにより、十分な強度を有し、また、燃料電池のガス拡散層として用いた場合にガスの拡散性能が高い金属多孔体とすることができる。金属多孔体の厚みが5000μm以下であることにより、軽量な金属多孔体とすることができる。これらの観点から金属多孔体は、その厚みが600μm以上、2000μm以下であることがより好ましく、700μm以上、1500μm以下であることが更に好ましい。
<燃料電池>
 本開示の実施形態に係る燃料電池は、上記の本開示の実施形態に係る金属多孔体をガス拡散層として備えていればよく、他の構成は従来の燃料電池と同様の構成を採用することができる。当該他の構成としては、例えば、固体電解質層、上記固体電解質層を挟んで両側に積層された電極層、ガスの拡散をより均一にするための簡易なガス流路加工が施されたインターコネクタ等が挙げられる。なお、本開示の実施形態に係る金属多孔体はガス拡散層としてだけでなく集電体としても作用させることができる。
 燃料電池の種類は限定的ではなく、固体酸化物形燃料電池(SOFC)をはじめ固体高分子形燃料電池(PEFC)又はリン酸形燃料電池(PAFC)であってもよい。
 一般に固体酸化物形燃料電池は800℃程度の高温で動作するものであり、空気極には酸素を含む空気が供給される。このため、空気極側のガス拡散層として配置される金属多孔体は非常に厳しい条件の高温酸化雰囲気においても安定に存在できるものである必要がある。
 上述の本開示の実施形態に係る金属多孔体は、骨格の表面(多孔体基材の骨格の表面)に耐熱コーティング膜が形成されているため、800℃程度の高温酸化雰囲気においても長期間安定に存在することができる。また、本開示の実施形態に係る金属多孔体は気孔率が高いため、ガス拡散層として用いた場合にガスを効率よく拡散させることができる。更に、本開示の実施形態に係る金属多孔体は導電性も高いため、集電体としても高い機能を発揮することができる。このため本開示の実施形態に係る金属多孔体をガス拡散層及び集電体として用いた燃料電池は発電効率が高いものとなる。
<金属多孔体の製造方法>
 本開示の実施形態に係る金属多孔体の製造方法は、上記の金属多孔体を製造する方法であって、連続気孔を有する平板状の多孔体基材を用意する用意工程と、前記多孔体基材の骨格の表面に耐熱コーティング膜を形成する耐熱コーティング膜形成工程と、を有するものである。他の側面において、上記金属多孔体の製造方法は、上記骨格と、上記骨格によって形成されている上記連続気孔とを有する多孔体基材を用意する用意工程と、上記多孔体基材における上記骨格の表面に耐熱コーティング膜を形成する、耐熱コーティング膜形成工程と、を有し、上記多孔体基材は、その外観が平板状の形状を有し、上記多孔体基材における上記骨格は、その表面にニッケル合金を有する。
以下に各工程を詳述する。
(用意工程)
 用意工程は、連続気孔を有し、全体として平板状の形状をしている多孔体基材を用意する工程である。他の側面において、上記多孔体基材は、上記骨格と、上記骨格によって形成されている上記連続気孔とを有すると把握することもできる。上記多孔体基材は本開示の実施形態に係る金属多孔体における基材(多孔体基材)、すなわちニッケル合金12となるものである。このためこの工程で用意する多孔体基材は、骨格の形状がパンチングメタル又はエキスパンドメタルのようなメッシュ状の形状でもよいが、三次元網目状構造の形状であることがより好ましい。
 上記多孔体基材は、少なくとも骨格の表面がニッケル合金によって形成されているものであればよい。多孔体基材の骨格は、内部が中空の構造であってもよいし、樹脂成形体の表面にニッケル合金が形成された構造であってもよい。
 ニッケル合金は、上記した本開示の実施形態に係る金属多孔体におけるニッケル合金と同じものであればよい。すなわち、ニッケル合金はニッケルとニッケル以外の金属との合金を主成分としていればよく、ニッケルとニッケル以外の金属との合金以外の成分が意図的又は不可避的に含まれていても構わない。ニッケル合金は、ニッケルと、タングステン、モリブデン、アルミニウム及びチタンからなる群より選択されるいずれか一種以上の金属との合金であることが好ましい。
 図8に、三次元網目状構造の骨格を有する多孔体基材の一例の断面を拡大視した拡大模式図を示す。図8に示すように、多孔体基材80の骨格83はニッケル合金82によって形成されている。多孔体基材80は三次元網目状構造の骨格を有し、骨格83の内部84は中空になっている。また、多孔体基材80は連続気孔を有しており、骨格83によって気孔部85が形成されている。
 図9に、三次元網目状構造の骨格を有する多孔体基材の別の一例の断面を拡大視した拡大模式図を示す。図9に示すように、多孔体基材90の骨格93は、三次元網目状構造の骨格を有する樹脂成形体96の骨格の表面を覆うようにニッケル合金92が形成された構造を有する。また、多孔体基材90は連続気孔を有しており、骨格93によって気孔部95が形成されている。
 多孔体基材の骨格の表面に耐熱コーティング膜を形成することで本開示の実施形態に係る金属多孔体が形成されるため、金属多孔体の気孔率及び平均気孔径それぞれは、多孔体基材の気孔率及び平均気孔径と略等しくなる。このため、多孔体基材の気孔率及び平均気孔径は、製造目的である金属多孔体の気孔率及び平均気孔径に応じて適宜選択すればよい。多孔体基材の気孔率及び平均気孔径は、前述の本開示の実施形態に係る金属多孔体の気孔率及び平均気孔径と同様に定義される。
 所望の多孔体基材を市場から入手することが出来ない場合には、以下の方法によって製造してもよい。
 まず、三次元網目状構造の骨格を有するシート状(平板状)の樹脂成形体(以下、単に「樹脂成形体」とも記す。)を用意する。樹脂成形体としては、ポリウレタン樹脂又はメラミン樹脂等を用いることができる。図10に三次元網目状構造の骨格を有する発泡ウレタン樹脂の写真を示す。
 続いて、樹脂成形体の骨格の表面に導電層を形成する導電化処理工程を行なう。導電化処理は、例えば、カーボン及び導電性セラミック等の導電性粒子を含有した導電性塗料を塗布したり、無電解めっき法によってニッケル及び銅等の導電性金属による層を形成したり、蒸着法又はスパッタリング法によってアルミニウム等の導電性金属による層を形成したりすることによって行なうことができる。
 続いて、骨格の表面に導電層を形成した樹脂成形体を基材として用いて、ニッケル合金をめっきする。ニッケル合金のめっきは公知の手法によって行なえばよい。
 ニッケルタングステンは、例えば、硫酸ニッケルが0.15mol/L、タングステン酸ナトリウムが0.15mol/L、クエン酸三アンモニウムが0.3mol/Lのめっき浴を用いて、pH7、浴温度40℃、電流密度5A/dmの条件でめっきすることができる。なお、電流密度は基材の見かけ面積を基準とする。
 また、ニッケルモリブデンは、例えば、硫酸ニッケルが0.15mol/L、モリブデン酸ナトリウムが0.15mol/L、クエン酸三アンモニウムが0.3mol/Lのめっき浴を用いて、pH7、浴温度40℃、電流密度5A/dmの条件でめっきすることができる。なお、電流密度は基材の見かけ面積を基準とする。ここで、「基材の見かけ面積」とは、例えば、平板状の形状を有する基材における主面の面積を意味する。
 上記のようにして樹脂成形体の骨格の表面にニッケル合金のめっき膜を形成することで、図9に示す多孔体基材90が得られる。また、樹脂成形体の骨格の表面にニッケル合金のめっき膜を形成した後に、熱処理等によって樹脂成形体を除去することで、図8に示す多孔体基材80を得ることができる。
 なお、多孔体基材の気孔率及び平均気孔径それぞれは、基材として用いる樹脂成形体の気孔率及び平均気孔径と略等しくなる。このため、製造目的である多孔体基材の気孔率及び平均気孔径に応じて樹脂成形体の気孔率及び平均気孔径を適宜選択すればよい。樹脂成形体の気孔率及び平均気孔径は、前述の金属多孔体の気孔率及び平均気孔径と同様に定義される。
 骨格の表面に導電層を形成した樹脂成形体の表面にニッケル合金によるめっき膜を形成する方法として他には、まず、ニッケルめっき膜を形成し、その後にニッケル以外の金属によるめっき膜を形成し合金化させる方法も挙げられる。
 例えば、ニッケル合金として、ニッケルアルミニウム又はニッケルチタンによるめっき膜を形成する場合には、樹脂成形体の骨格の表面にまずニッケルめっき膜を形成し、続けてアルミニウムめっき膜又はチタンめっき膜を形成すればよい。アルミニウム又はチタンのめっきをする際に高温の溶融塩浴を用いると、アルミニウム又はチタンをめっきすると同時にニッケルとの合金化が進行し、また樹脂成形体も消失する。なお、アルミニウムをめっきする際に低温の溶融塩浴を用いる場合には、アルミニウムめっき膜形成後に熱処理をしてニッケル及びアルミニウムの合金化と、樹脂成形体の除去とを行なえばよい。
 ニッケルめっき膜の形成は無電解ニッケルめっき及び電解ニッケルめっきのどちらを利用しても構わないが、電解めっきの方が、効率が良いため好ましい。電解ニッケルめっきを行う場合は、常法に従って行えばよい。電解ニッケルめっき処理に用いるめっき浴としては、公知又は市販のものを使用することができ、例えば、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。
 骨格の表面に導電層が形成された樹脂成形体を上記めっき浴に浸し、樹脂成形体を陰極に、ニッケル対極板を陽極に接続して、直流又はパルス断続電流を通電させることにより、導電層の表面にニッケルめっき膜を形成することができる。
 アルミニウムのめっきは、溶融塩浴中で、ニッケルめっき膜形成後の樹脂成形体がカソードとして作用するように電気分解(溶融塩電解)することで行なうことができる。
 溶融塩としては、例えば、ハロゲン化物系の溶融塩にアルミニウムハロゲン化物を添加した電解液を用いることが可能である。ハロゲン化物系の溶融塩としては、例えば、塩化物系の溶融塩又はフッ化物系の溶融塩を用いることができる。塩化物系の溶融塩としては、例えばKCl、NaCl、CaCl、LiCl、RbCl、CsCl、SrCl、BaCl、MgCl又は、これらの共晶塩などを用いることができる。またフッ化物系の溶融塩としては、例えばLiF、NaF、KF、RbF、CsF、MgF、CaF、SrF、BaF又は、これらの共晶塩などを用いることができる。上記ハロゲン化物のなかでも、効率の観点から塩化物系の溶融塩を用いることが好ましく、なかでも安価で入手が容易という点からは、KCl、NaCl、CaClを用いることが好ましい。
 また、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩を使用することで、低い温度でアルミニウムのめっき膜を形成することができる。有機系ハロゲン化物としては、例えば、1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)を挙げることができる。アルミニウムハロゲン化物としては、例えば、塩化アルミニウム(AlCl)を挙げることができる。
 有機溶融塩を用いてアルミニウムのめっきを行った場合には、例えば、大気等の酸化性雰囲気下で600℃程度以上に加熱することで、ニッケルとアルミニウムとを合金化させつつ、樹脂成形体を焼却除去することができる。
 チタンのめっきは、第1族金属の金属イオンと、フッ化物イオンと、チタニウムイオンとを含む。例えば、フッ化リチウム(LiF)及びフッ化ナトリウム(NaF)のうち少なくとも一つと、塩化リチウム(LiCl)及び塩化ナトリウム(NaCl)のうち少なくとも一つとの溶融塩浴に更にチタンを溶解し、当該チタンが溶解した溶融塩浴中でニッケルを主成分とする金属多孔体をカソードとして溶融塩電解することで行なうことができる。
 チタニウムイオンは、Ti4+又はTi3+であればよい。
 上記溶融塩浴にチタンを添加して溶融塩浴中で、3Ti4++Ti金属→4Ti3+という均化反応を生じさせる必要がある。溶融塩浴に添加するチタンの量は、溶融塩浴中のTi4+がTi3+となるのに必要最低限な量を超える量とすればよい。溶融塩浴にチタンを予め十分に溶解させておくことで、続いて行なう溶融塩電解時において電析するチタンが溶融塩浴中に溶解しないようにすることができる。
(耐熱コーティング膜形成工程)
 耐熱コーティング膜形成工程は、上記用意工程で用意した多孔体基材の骨格の表面に耐熱コーティング膜を形成する工程である。他の側面において、耐熱コーティング膜形成工程は、上記用意工程で用意した多孔体基材の表面に耐熱コーティング膜を形成する工程と把握することもできる。耐熱コーティング膜を形成する方法は限定されるものではないが、効率よく形成する観点からは、めっきによって形成することが好ましい。
 耐熱コーティング膜は、銀(Ag)、コバルト(Co)、金(Au)、白金(Pt)等の、高温酸化雰囲気下において安定な金属又は合金であればよい。金属多孔体の製造コストの観点からは、上記耐熱コーティング膜は、銀又はコバルトであることが好ましい。他の側面において、上記耐熱コーティング膜は、銀又はコバルトを含むことが好ましい。
-銀めっき-
 銀のめっき方法は特に限定されるものではなく、公知の方法によって行なうことができる。例えば、メタンスルホン酸銀系のめっき浴中で電気めっきすることによって行なうことが好ましい。また、銀めっきの前に銀ストライクめっきを行なうことが好ましい。
-コバルトめっき-
 コバルトのめっき方法は特に限定されるものではないが、例えば、以下のような方法によって行なうことが好ましい。すなわち、コバルトめっき液として、硫酸コバルト350g/L、塩化コバルト45g/L、塩化ナトリウム25g/L、ホウ酸35g/Lの組成の水溶液を用意し、室温(20℃程度)で、電流密度を2A/dmとすることで、多孔体基材の骨格の表面にコバルトをめっきすることができる。
<水素の製造方法、及び水素の製造装置>
 本開示の実施形態に係る金属多孔体は、例えば、燃料電池用のガス拡散層又は、水電解による水素製造用の電極に好適に使用できる。水素の製造方式には、大きく分けて[1]アルカリ水電解方式、[2]PEM(Polymer Electrolyte Membrance)方式、及び[3]SOEC(Solid Oxide Electrolysis Cell)方式があり、いずれの方式にも金属多孔体を用いることができる。
 上記[1]のアルカリ水電解方式では、強アルカリ水溶液に陽極と陰極とを浸漬し、電圧を印加することで水を電気分解する方式である。金属多孔体を電極として使用することで水と電極との接触面積が大きくなり、水の電気分解の効率を高めることができる。
 アルカリ水電解方式による水素の製造方法においては、金属多孔体は上から見た場合(例えば、金属多孔体の外観が平板状であるときの主面側から見た場合)の平均気孔径が100μm以上、5000μm以下であることが好ましい。金属多孔体を上から見た場合の平均気孔径が100μm以上であることにより、発生した水素又は酸素の気泡が金属多孔体の気孔部に詰まって水と電極との接触面積が小さくなることを抑制することができる。また、金属多孔体を上から見た場合の平均気孔径が5000μm以下であることにより電極の表面積が十分に大きくなり、水の電気分解の効率を高めることができる。同様の観点から、金属多孔体を上から見た場合の平均気孔径は400μm以上、4000μm以下であることがより好ましい。
 金属多孔体の厚さ及び金属の目付量は、電極面積が大きくなるとたわみなどの原因となるため、設備の規模によって適宜選択すればよい。金属の目付量としては200g/m以上、2000g/m以下程度であることが好ましく、300g/m以上、1200g/m以下程度であることがより好ましく、400g/m以上、1000g/m以下程度であることが更に好ましい。気泡の抜けと表面積の確保を両立するために、異なる平均気孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。
 上記[2]のPEM方式は、固体高分子電解質膜を用いて水を電気分解する方法である。固体高分子電解質膜の両面に陽極と陰極とを配置し、陽極側に水を流しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体高分子電解質膜を通して陰極側へ移動させ、陰極側で水素として取り出す方式である。動作温度は100℃程度である。水素と酸素で発電して水を排出する固体高分子形燃料電池と、同様の構成で全く逆の動作をさせるものである。陽極側と陰極側とは完全に分離されているため、純度の高い水素を取り出せる利点がある。陽極及び陰極共に電極を透過させて水及び水素ガスを通す必要があるため、電極には導電性の多孔体が必要である。
 本開示の実施形態に係る金属多孔体は高い気孔率と良好な電気伝導性を備えているため、固体高分子形燃料電池に好適に使用できるのと同じように、PEM方式の水電解にも好適に使用できる。PEM方式による水素の製造方法においては、金属多孔体は上から見た場合の平均気孔径が150μm以上、1000μm以下であることが好ましい。金属多孔体を上から見た場合の平均気孔径が150μm以上であることにより、発生した水素及び酸素の気泡が金属多孔体の気孔部に詰まって水と固体高分子電解質膜との接触面積が小さくなってしまうことを抑制することができる。また、金属多孔体を上から見た場合の平均気孔径が1000μm以下であることにより十分な保水性を確保することができ、反応する前に水が通り抜けてしまうことを抑制して、効率よく水の電気分解を行なうことができる。同様の観点から、金属多孔体を上から見た場合の平均気孔径は、200μm以上、700μm以下であることがより好ましく、300μm以上、600μm以下であることが更に好ましい。
 金属多孔体の厚さ及び金属の目付量は、設備の規模によって適宜選択すればよいが、気孔率が小さくなり過ぎると水を通過させるための圧力損失が大きくなるため、気孔率は30%以上となるように厚みと金属の目付量とを調整することが好ましい。また、PEM方式では固体高分子電解質膜と電極の導通は圧着になるため、加圧時の変形及びクリープによる電気抵抗増加が、実用上問題ない範囲になるように金属の目付属量を調節する必要がある。金属の目付量としては200g/m以上、2000g/m以下程度であることが好ましく、300g/m以上、1200g/m以下程度であることがより好ましく、400g/m以上、1000g/m以下程度であることが更に好ましい。他、気孔率の確保と電気的接続の両立のために、異なる平均気孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。
 上記[3]のSOEC方式は、固体酸化物電解質膜を用いて水を電気分解する方法で、電解質膜がプロトン伝導膜か酸素イオン伝導膜かによって構成が異なる。酸素イオン伝導膜では、水蒸気を供給する陰極側で水素が発生するため、水素純度が下がる。そのため、水素製造の観点からはプロトン伝導膜を用いることが好ましい。
 プロトン伝導膜の両側に陽極と陰極とを配置し、陽極側に水蒸気を導入しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体酸化物電解質膜を通して陰極側へ移動させ、陰極側で水素のみを取り出す方式である。動作温度は600℃以上、800℃以下程度である。水素と酸素で発電して水を排出する固体酸化物形燃料電池と、同様の構成で全く逆の動作をさせるものである。
 陽極及び陰極共に電極を透過させて水蒸気及び水素ガスを通す必要があるため、電極には導電性かつ、特に陽極側で高温の酸化雰囲気に耐える多孔体が必要である。本開示の実施形態に係る金属多孔体は高い気孔率と良好な電気伝導性と高い耐酸化性及び耐熱性とを備えているため、固体酸化物形燃料電池に好適に使用できるのと同じように、SOEC方式の水電解にも好適に使用できる。
 SOEC方式による水素の製造方法においては、金属多孔体は上から見た場合の平均気孔径が150μm以上、1000μm以下であることが好ましい。金属多孔体を上から見た場合の平均気孔径が150μm以上であることにより、水蒸気及び発生した水素が金属多孔体の気孔部に詰まって水蒸気と固体酸化物電解質膜との接触面積が小さくなってしまうことを抑制することができる。また、金属多孔体を上から見た場合平均気孔径が1000μm以下であることにより、圧損が低くなりすぎて水蒸気が十分に反応する前に通り抜けてしまうことを抑制することができる。同様の観点から、金属多孔体を上から見た場合の平均気孔径は、200μm以上、700μm以下であることがより好ましく、300μm以上、600μm以下であることが更に好ましい。
 金属多孔体の厚さ及び金属の目付量は、設備の規模によって適宜選択すればよいが、気孔率が小さくなり過ぎると水蒸気を投入するための圧力損失が大きくなるため、気孔率は30%以上となるように厚みと金属の目付量を調整することが好ましい。また、SOEC方式では固体酸化物電解質膜と電極の導通は圧着になるため、加圧時の変形及びクリープによる電気抵抗増加が、実用上問題ない範囲になるように金属の目付量を調節する必要がある。金属の目付量としては200g/m以上、2000g/m以下程度であることが好ましく、300g/m以上、1200g/m以下程度であることがより好ましく、400g/m以上、1000g/m以下程度であることが更に好ましい。他、気孔率の確保と電気的接続の両立のために、異なる平均気孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。
<付記>
 以上の説明は、以下に付記する特徴を含む。
(付記1)
 金属多孔体を電極として用いて、水を電気分解することによって水素を発生させる方法であって、
 前記金属多孔体は連続気孔を有する平板状の金属多孔体であり、
 前記金属多孔体の骨格は、ニッケル合金の表面に耐熱コーティング膜が形成されている、
水素の製造方法。
(付記2)
 前記耐熱コーティング膜は、銀又はコバルトである、付記1に記載の水素の製造方法。
(付記3)
 前記耐熱コーティング膜の平均膜厚は1μm以上である、付記1又は付記2に記載の水素の製造方法。
(付記4)
 前記ニッケル合金は、ニッケルと、タングステン、モリブデン、アルミニウム及びチタンからなる群より選択されるいずれか一種以上と、の合金を主成分とする、付記1から付記3のいずれか一項に記載の水素の製造方法。
(付記5)
 前記骨格の形状が三次元網目状構造である、付記1から付記4のいずれか一項に記載の水素の製造方法。
(付記6)
 前記金属多孔体は、気孔率が60%以上、98%以下である、付記1から付記5のいずれか一項に記載の水素の製造方法。
(付記7)
 前記金属多孔体は、平均気孔径が50μm以上、5000μm以下である、付記1から付記6のいずれか一項に記載の水素の製造方法。
(付記8)
 前記金属多孔体は、厚みが500μm以上、5000μm以下である、付記1から付記7のいずれか一項に記載の水素の製造方法。
(付記9)
 前記水が強アルカリ水溶液である付記1から付記8のいずれか一項に記載の水素の製造方法。
(付記10)
 固体高分子電解質膜の両側に前記金属多孔体を配置して前記固体高分子電解質膜と前記金属多孔体とを接触させ、それぞれの金属多孔体を陽極及び陰極として作用させ、前記陽極側に水を供給して電気分解することによって、前記陰極側に水素を発生させる、付記1から付記8のいずれか一項に記載の水素の製造方法。
(付記11)
 固体酸化物電解質膜の両側に前記金属多孔体を配置して前記固体酸化物電解質膜と前記金属多孔体とを接触させ、それぞれの金属多孔体を陽極及び陰極として作用させ、前記陽極側に水蒸気を供給して水を電気分解することによって、前記陰極側に水素を発生させる、付記1から付記8のいずれか一項に記載の水素の製造方法。
(付記12)
 水を電気分解することによって水素を発生させることが可能な水素の製造装置であって、
 電極として連続気孔を備える平板状の金属多孔体を備え、
 前記金属多孔体の骨格は、ニッケル合金の表面に耐熱コーティング膜が形成されている、
水素の製造装置。
(付記13)
 前記耐熱コーティング膜は、銀又はコバルトである、付記12に記載の水素の製造装置。
(付記14)
 前記耐熱コーティング膜の平均膜厚は1μm以上である、付記12又は付記13に記載の水素の製造装置。
(付記15)
 前記ニッケル合金は、ニッケルと、タングステン、モリブデン、アルミニウム及びチタンからなる群より選択されるいずれか一種以上と、の合金を主成分とする、付記12から付記14のいずれか一項に記載の水素の製造装置。
(付記16)
 前記骨格の形状が三次元網目状構造である、付記12から付記15のいずれか一項に記載の水素の製造装置。
(付記17)
 前記金属多孔体は、気孔率が60%以上、98%以下である、付記12から付記16のいずれか一項に記載の水素の製造装置。
(付記18)
 前記金属多孔体は、平均気孔径が50μm以上、5000μm以下である、付記12から付記17のいずれか一項に記載の水素の製造装置。
(付記19)
 前記金属多孔体は、厚みが500μm以上、5000μm以下である、付記12から付記18のいずれか一項に記載の水素の製造装置。
(付記20)
 前記水が強アルカリ水溶液である、付記12から付記19のいずれか一項に記載の水素の製造装置。
(付記21)
 固体高分子電解質膜の両側に陽極及び陰極を有し、
 前記陽極及び前記陰極は前記固体高分子電解質膜と接触しており、
 前記陽極側に供給された水を電気分解することによって前記陰極側に水素を発生させることが可能な水素の製造装置であって、
 前記陽極及び前記陰極の少なくとも一方に前記金属多孔体を用いる、付記12から付記19のいずれか一項に記載の水素の製造装置。
(付記22)
 固体酸化物電解質膜の両側に陽極及び陰極を有し、
 前記陽極及び前記陰極は前記固体酸化物電解質膜と接触しており、
 前記陽極側に供給された水蒸気を電気分解することによって前記陰極側に水素を発生させることが可能な水素の製造装置であって、
 前記陽極及び前記陰極の少なくとも一方に前記金属多孔体を用いる、付記12から付記19のいずれか一項に記載の水素の製造装置。
(付記101)
 連続気孔を有する平板状の金属多孔体であって、
 前記金属多孔体の骨格は、ニッケル合金の表面に耐熱コーティング膜が形成されている、
金属多孔体。
(付記102)
 前記耐熱コーティング膜は、銀又はコバルトである、付記101に記載の金属多孔体。
(付記103)
 前記耐熱コーティング膜の平均膜厚は1μm以上である、付記101又は付記102に記載の金属多孔体。
(付記104)
 前記ニッケル合金は、ニッケルと、タングステン、モリブデン、アルミニウム及びチタンからなる群より選択されるいずれか一種以上と、の合金を主成分とする、付記101から付記103のいずれか一項に記載の金属多孔体。
(付記105)
 前記骨格の形状が三次元網目状構造である、付記101から付記104のいずれか一項に記載の金属多孔体。
(付記106)
 前記金属多孔体は、気孔率が60%以上、98%以下である、付記101から付記105のいずれか一項に記載の金属多孔体。
(付記107)
 前記金属多孔体は、平均気孔径が50μm以上、5000μm以下である、付記101から付記106のいずれか一項に記載の金属多孔体。
(付記108)
 前記金属多孔体は、厚みが500μm以上、5000μm以下である、付記101から付記107のいずれか一項に記載の金属多孔体。
(付記109)
 付記101から付記108のいずれか一項に記載の金属多孔体をガス拡散層として備える、燃料電池。
(付記110)
 付記101に記載の金属多孔体を製造する方法であって、
 連続気孔を有する平板状の多孔体基材を用意する用意工程と、
 前記多孔体基材の骨格の表面に耐熱コーティング膜を形成する、耐熱コーティング膜形成工程と、
を有し、
 前記多孔体基材は、少なくとも骨格の表面がニッケル合金によって形成されている、
金属多孔体の製造方法。
(付記111)
 前記用意工程は、連続気孔を有する平板状の樹脂成形体の骨格の表面にニッケル合金をめっきすることによって行なう、
付記110に記載の金属多孔体の製造方法。
(付記112)
 前記多孔体基材の骨格の形状が三次元網目状構造である、付記110又は付記111に記載の金属多孔体の製造方法。
 以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明の金属多孔体等はこれらに限定されるものではない。本発明の範囲は特許請求の範囲の記載によって示され、請求の範囲の記載と均等の意味および範囲内でのすべての変更が含まれる。
(実施例1)
-用意工程-
 まず、三次元網目状構造の骨格を有する樹脂成形体として、厚みが1.2mmで、主面の大きさが15cm×15cmの発泡ウレタンを用意した。発泡ウレタンの気孔率は95%であり、平均気孔径は440μmであった。
 前記発泡ウレタンを導電化処理することにより、骨格の表面に導電層を形成した。導電化処理は、カーボンを分散させた溶媒を塗布、乾燥することで行った。
 導電化処理後の発泡ウレタンを基材として用いて、発泡ウレタンの骨格の表面にニッケルタングステンのめっき膜の形成を行った。ニッケルタングステンのめっきは、硫酸ニッケルが0.15mol/L、タングステン酸ナトリウムが0.15mol/L、クエン酸三アンモニウムが0.3mol/Lのめっき浴を用いて、pH7、浴温度40℃、電流密度5A/dmの条件で行なった。なお、電流密度は基材の見かけ面積を基準としたものである。
 これにより、骨格の表面がニッケルタングステンによって構成されている多孔体基材No.1が得られた。
-耐熱コーティング膜形成工程-
 前記多孔体基材No.1の骨格の表面に、耐熱コーティング膜として銀のめっき膜を形成し、更に、熱処理により樹脂成形体(発泡ウレタン)の除去を行った。
 銀のめっきは、シアン化銀カリウム2g/L、シアン化ナトリウム100g/Lの組成の銀めっき液を用い、めっき液の温度を25℃とし、電流密度を2A/dmとし、陽極にステンレス板を用いて20分間通電することにより行なった。なお、電流密度は多孔体基材の見かけ面積を基準としたものである。
 これにより、ニッケルタングステンの表面に銀のめっき膜が形成された金属多孔体No.1が得られた。
(実施例2)
-用意工程-
 実施例1と同様にして多孔体基材No.1を用意した。
-耐熱コーティング膜形成工程-
 前記多孔体基材No.1の骨格の表面に、耐熱コーティング膜としてコバルトのめっき膜を形成し、更に、熱処理により樹脂成形体(発泡ウレタン)の除去を行った。
 コバルトのめっきは、硫酸コバルト350g/L、塩化コバルト45g/L、塩化ナトリウム25g/L、ホウ酸35g/Lの組成のコバルトめっき液を用意し、室温(約20℃)で、電流密度を2A/dmとすることで行なった。なお、電流密度は多孔体基材の見かけ面積を基準としたものである。
 これにより、ニッケルタングステンの表面にコバルトのめっき膜が形成された金属多孔体No.2が得られた。
(実施例3)
-用意工程-
 まず、三次元網目状構造の骨格を有する樹脂成形体として、厚みが1.2mmで、主面の大きさが15cm×15cmの発泡ウレタンを用意した。発泡ウレタンの気孔率は95%であり、平均気孔径は440μmであった。
 前記発泡ウレタンを導電化処理することにより、骨格の表面に導電層を形成した。導電化処理は、カーボンを分散させた溶媒を塗布、乾燥することで行った。
 導電化処理後の発泡ウレタンを基材として用いて、発泡ウレタンの骨格の表面にニッケルモリブデンのめっき膜の形成を行った。ニッケルモリブデンのめっきは、硫酸ニッケルが0.15mol/L、モリブデン酸ナトリウムが0.15mol/L、クエン酸三アンモニウムが0.3mol/Lのめっき浴を用いて、pH7、浴温度40℃、電流密度5A/dmの条件で行なった。なお、電流密度は基材の見かけ面積を基準としたものである。
 これにより、骨格の表面がニッケルモリブデンによって構成されている多孔体基材No.2が得られた。
-耐熱コーティング膜形成工程-
 前記多孔体基材No.2の骨格の表面に、耐熱コーティング膜として銀のめっき膜を形成し、更に、熱処理により樹脂成形体(発泡ウレタン)の除去を行った。
 銀のめっき膜の形成及び熱処理は実施例1と同様にして行った。
 これにより、ニッケルモリブデンの表面に銀のめっき膜が形成された金属多孔体No.3が得られた。
(実施例4)
-用意工程-
 実施例3と同様にして多孔体基材No.2を用意した。
-耐熱コーティング膜形成工程-
 前記多孔体基材No.2の骨格の表面に、耐熱コーティング膜としてコバルトのめっき膜を形成し、更に、熱処理により樹脂成形体(発泡ウレタン)の除去を行った。
 コバルトのめっき膜の形成及び熱処理は実施例3と同様にして行った。
 これにより、ニッケルモリブデンの表面にコバルトのめっき膜が形成された金属多孔体No.4が得られた。
-評価-
 実施例において作製した金属多孔体No.1~No.4について、高温耐酸化性と抵抗を以下のようにして評価した。なお、参考として多孔体基材No.1及びNo.2についても同様に高温耐酸化性と抵抗を評価した。
(外観)
 金属多孔体No.1~No.4の気孔率は94%であり、平均気孔径は430μmであった。
 また、金属多孔体No.1~No.4の骨格の断面をSEMによって観察し、上述のようにして耐熱コーティング膜の平均膜厚を測定した。その結果、金属多孔体No.1の耐熱コーティング膜の平均膜厚は20μmであり、金属多孔体No.2は10μmであり、金属多孔体No.3は20μmであり、金属多孔体No.4は10μmであった。
(高温耐酸化性)
 金属多孔体No.1~No.4及び多孔体基材No.1、No.2を大気下で、800℃、500時間、熱処理した。
 熱処理後の金属多孔体No.1~No.4及び多孔体基材No.1、No.2の骨格を目視により観察した。
 その結果、骨格の表面に耐熱コーティング膜が形成されていない多孔体基材No.1及びNo.2は、骨格の一部にヒビや割れが発生してしまっており、脆くなっていた。これに対し、金属多孔体No.1~No.4は、熱処理後においても骨格に異常はなく、十分な強度を保っていた。
(抵抗測定)
 強度測定を行なった場合と同様にして金属多孔体No.1~No.4及び多孔体基材No.1、No.2を熱処理した。
 熱処理後の金属多孔体No.1~No.4及び多孔体基材No.1、No.2について、電気抵抗の測定を行なった。
 電気抵抗の測定は、試験片の大きさを4cm×4cmとし、四端子法にて、800℃で厚み方向の電気抵抗を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、金属多孔体No.1~No.4は多孔体基材No.1及びNo.2と比べて、800℃の高温下においても極めて低い抵抗値を示し、SOFCの集電体としても好適に用いることができることが示された。
  10 金属多孔体、  11 耐熱コーティング膜、  12 ニッケル合金、  13 骨格、  14 骨格の内部、  15 気孔部、  80 多孔体基材、  82 ニッケル合金、  83 骨格、  84 骨格の内部、  85 気孔部、  90 多孔体基材、  92 ニッケル合金、  93 骨格、  95 気孔部、  96 樹脂成形体。

Claims (12)

  1.  多孔体基材と、耐熱コーティング膜とを有する金属多孔体であって、
     前記多孔体基材は、
     ニッケル合金を表面に有する骨格と、
     前記骨格によって形成されている連続気孔とを有し、
     前記耐熱コーティング膜は、前記骨格の表面を被覆し、
     前記金属多孔体は、その外観が平板状の形状を有する、
    金属多孔体。
  2.  前記耐熱コーティング膜は、銀又はコバルトを含む、請求項1に記載の金属多孔体。
  3.  前記耐熱コーティング膜は、その平均膜厚が1μm以上である、請求項1又は請求項2に記載の金属多孔体。
  4.  前記ニッケル合金は、ニッケルと、タングステン、モリブデン、アルミニウム及びチタンからなる群より選択されるいずれか一種以上の金属との合金を主成分とする、請求項1から請求項3のいずれか一項に記載の金属多孔体。
  5.  前記骨格の形状は、三次元網目状構造である、請求項1から請求項4のいずれか一項に記載の金属多孔体。
  6.  前記金属多孔体は、その気孔率が60%以上、98%以下である、請求項1から請求項5のいずれか一項に記載の金属多孔体。
  7.  前記金属多孔体は、その平均気孔径が50μm以上、1000μm以下である、請求項1から請求項6のいずれか一項に記載の金属多孔体。
  8.  前記金属多孔体は、その厚みが500μm以上、5000μm以下である、請求項1から請求項7のいずれか一項に記載の金属多孔体。
  9.  請求項1から請求項8のいずれか一項に記載の金属多孔体をガス拡散層として備える、燃料電池。
  10.  請求項1から請求項8のいずれか一項に記載の金属多孔体の製造方法であって、
     前記骨格と、前記骨格によって形成されている前記連続気孔とを有する多孔体基材を用意する用意工程と、
     前記多孔体基材における前記骨格の表面に耐熱コーティング膜を形成する、耐熱コーティング膜形成工程と、
    を有し、
     前記多孔体基材は、その外観が平板状の形状を有し、
     前記多孔体基材における前記骨格は、その表面にニッケル合金を有する、
    金属多孔体の製造方法。
  11.  前記用意工程は、骨格と前記骨格によって形成されている連続気孔を有する樹脂成形体の表面にニッケル合金をめっきすることによって行ない、
     前記樹脂成形体は、その外観が平板状の形状を有する、
    請求項10に記載の金属多孔体の製造方法。
  12.  前記多孔体基材の骨格の形状は、三次元網目状構造である、請求項10又は請求項11に記載の金属多孔体の製造方法。
PCT/JP2018/027243 2017-11-29 2018-07-20 金属多孔体、燃料電池及び金属多孔体の製造方法 WO2019106879A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019557004A JP7076693B2 (ja) 2017-11-29 2018-07-20 金属多孔体、燃料電池及び金属多孔体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017228595 2017-11-29
JP2017-228595 2017-11-29

Publications (1)

Publication Number Publication Date
WO2019106879A1 true WO2019106879A1 (ja) 2019-06-06

Family

ID=66663851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027243 WO2019106879A1 (ja) 2017-11-29 2018-07-20 金属多孔体、燃料電池及び金属多孔体の製造方法

Country Status (2)

Country Link
JP (1) JP7076693B2 (ja)
WO (1) WO2019106879A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024201986A1 (ja) * 2023-03-31 2024-10-03 日本碍子株式会社 電気化学セル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285599A (ja) * 2004-03-30 2005-10-13 Masayuki Takashima 燃料電池用集電体及びそれを用いた電解質複合体
JP2008004492A (ja) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp 酸化性環境下に長期間さらされても接触抵抗が増加することの少ない複合層被覆多孔質板
JP2014210285A (ja) * 2013-04-22 2014-11-13 東邦金属株式会社 金属繊維構造物及びその製法
JP2015159021A (ja) * 2014-02-24 2015-09-03 住友電気工業株式会社 多孔質集電体及び電気化学装置
WO2015137102A1 (ja) * 2014-03-12 2015-09-17 住友電気工業株式会社 多孔質集電体、燃料電池及び多孔質集電体の製造方法
WO2017043365A1 (ja) * 2015-09-10 2017-03-16 住友電気工業株式会社 金属多孔体、燃料電池、及び金属多孔体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100912A1 (zh) * 2012-12-24 2014-07-03 北京化工大学 一种气体扩散电极及其制备方法
EP2883632B1 (en) * 2013-12-10 2017-07-05 Alantum Europe GmbH Metallic foam body with controlled grain size on its surface, process for its production and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285599A (ja) * 2004-03-30 2005-10-13 Masayuki Takashima 燃料電池用集電体及びそれを用いた電解質複合体
JP2008004492A (ja) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp 酸化性環境下に長期間さらされても接触抵抗が増加することの少ない複合層被覆多孔質板
JP2014210285A (ja) * 2013-04-22 2014-11-13 東邦金属株式会社 金属繊維構造物及びその製法
JP2015159021A (ja) * 2014-02-24 2015-09-03 住友電気工業株式会社 多孔質集電体及び電気化学装置
WO2015137102A1 (ja) * 2014-03-12 2015-09-17 住友電気工業株式会社 多孔質集電体、燃料電池及び多孔質集電体の製造方法
WO2017043365A1 (ja) * 2015-09-10 2017-03-16 住友電気工業株式会社 金属多孔体、燃料電池、及び金属多孔体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024201986A1 (ja) * 2023-03-31 2024-10-03 日本碍子株式会社 電気化学セル

Also Published As

Publication number Publication date
JP7076693B2 (ja) 2022-05-30
JPWO2019106879A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6960095B2 (ja) 金属多孔体、不溶性陽極、燃料電池用電極、水素の製造装置、生体材料、および金属多孔体の製造方法
JP6960096B2 (ja) 複合金属多孔体、不溶性陽極、燃料電池用電極、水素の製造装置、形状記憶合金、生体材料、および複合金属多孔体の製造方法
JP5691107B2 (ja) 高耐食性を有する金属多孔体及びその製造方法
JP5759169B2 (ja) 高耐食性を有する金属多孔体及びその製造方法
JP6663584B2 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
WO2012077550A1 (ja) 高耐食性を有する金属多孔体及びその製造方法
JP6596747B2 (ja) 燃料電池及び金属多孔体の製造方法
JP6956144B2 (ja) 水電解用複合電極一体型分離板及び水電解スタック
JP7021669B2 (ja) 金属多孔体、固体酸化物型燃料電池及び金属多孔体の製造方法
WO2017022542A1 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
WO2019106879A1 (ja) 金属多孔体、燃料電池及び金属多孔体の製造方法
JP5635382B2 (ja) 高耐食性を有する金属多孔体の製造方法
JP5735265B2 (ja) 高耐食性を有する金属多孔体の製造方法
WO2019012947A1 (ja) 金属多孔体、固体酸化物型燃料電池及び金属多孔体の製造方法
Jang et al. Fabrication of self‐supported catalysts via electrodeposition for proton exchange membrane water electrolysis: Emphasizing on the porous transport layers
JP6812606B1 (ja) 多孔質体、電気化学セル、及び多孔質体の製造方法
JP3167054B2 (ja) 電解槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884270

Country of ref document: EP

Kind code of ref document: A1