WO2019104631A1 - 无人机系统和通信方法 - Google Patents
无人机系统和通信方法 Download PDFInfo
- Publication number
- WO2019104631A1 WO2019104631A1 PCT/CN2017/113919 CN2017113919W WO2019104631A1 WO 2019104631 A1 WO2019104631 A1 WO 2019104631A1 CN 2017113919 W CN2017113919 W CN 2017113919W WO 2019104631 A1 WO2019104631 A1 WO 2019104631A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication system
- drone
- communication
- controller
- control
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 416
- 238000000034 method Methods 0.000 title claims description 49
- 238000004590 computer program Methods 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 14
- 238000012546 transfer Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
- G05D1/0038—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1069—Session establishment or de-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
- H04B7/18504—Aircraft used as relay or high altitude atmospheric platform
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
- G05D1/0022—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/61—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/14—Flying platforms with four distinct rotor axes, e.g. quadcopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/20—UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/20—Remote controls
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Definitions
- the present disclosure relates to the field of data communications, and more particularly, to a drone system and corresponding communication method.
- a drone with one or more cameras can track the desired object and transmit the captured image and/or video to the user in real time in a wireless communication.
- a drone used as a relay drone has two communication systems in which one communication system can communicate with a remote drone, and another communication system can communicate with a remote controller. Thereby, the data transmitted by the remote drone can be relayed to the remote controller of the remote drone.
- two sets of communication systems can work in duplex mode without affecting each other.
- a drone comprising: a first communication system configured to communicate according to a private communication protocol; a second communication system configured to communicate according to a standard communication protocol; and a controller Configuring to control operation of the first communication system and the second communication system such that one of the first communication system and the second communication system communicates with another drone, and the first communication system and the second communication Another communication system in the system communicates with the first remote control.
- an unmanned aerial vehicle system including a drone and a first remote control
- the drone includes: a first communication system configured to communicate according to a private communication protocol; a second communication system configured to communicate according to a standard communication protocol; and a controller configured to control the first communication system and the The operation of the second communication system enables one of the first communication system and the second communication system to communicate with another drone, and the first pass The communication system and another communication system in the second communication system communicate with the first remote controller.
- the first remote is configured to control the drone or to control another drone by communicating with the drone.
- a method performed by a drone comprising a first communication system, a second communication system, and a controller, the method comprising: the first communication system according to a private communication protocol Communicating; the second communication system communicates according to a standard communication protocol; and controls operation of the first communication system and the second communication system by the controller such that one of the first communication system and the second communication system is coupled to another
- the drone communicates, and the other communication system of the first communication system and the second communication system communicates with the first remote controller.
- a method performed by an unmanned aerial vehicle system including a drone and a first remote control comprises: the first communication system of the drone communicates according to a private communication protocol; the second communication system of the drone communicates according to a standard communication protocol; the controller of the drone controls the first communication system and the second communication system The operation of causing one of the first communication system and the second communication system to communicate with another drone, and the other of the first communication system and the second communication system communicates with the first remote controller .
- the first remote controls the drone or controls another drone by communicating with the drone.
- a computer readable storage medium storing a computer program, when executed by at least one processor, causes at least one processor to perform the method described above.
- the relay communication of the drone can be realized by the consumer-grade drone, and the scope and capability of the drone communication are enhanced.
- FIG. 1 is a block diagram showing a drone according to an embodiment of the present disclosure.
- FIG. 2 is a flow chart showing a method performed by a drone in accordance with one embodiment of the present disclosure.
- FIG. 3 is a block diagram showing a drone system in accordance with one embodiment of the present disclosure.
- FIG. 4 is a flow chart showing a method performed by a drone system in accordance with one embodiment of the present disclosure.
- FIG. 5 is a schematic diagram showing a computer readable storage medium in accordance with one embodiment of the present disclosure.
- FIG. 6 is a schematic diagram showing a drone relay communication according to an embodiment of the present disclosure.
- FIG. 7 is a schematic diagram showing a drone relay communication according to an embodiment of the present disclosure.
- FIG. 8 is a schematic diagram showing a drone relay communication according to an embodiment of the present disclosure.
- FIG. 9 is a schematic diagram showing a drone relay communication according to an embodiment of the present disclosure.
- the present disclosure proposes to employ a drone having two sets of communication systems as relay drones, wherein one set of communication systems can communicate according to a private communication protocol and another set of communication systems can communicate according to standard communication protocols.
- the drone has two sets of communication systems: one is a communication system that communicates according to a private map transfer protocol, and the other is a communication system that performs communication according to a WIFI communication protocol.
- FIG. 1 is a block diagram showing a drone according to an embodiment of the present disclosure.
- the drone 10 includes a first communication system 110, a second communication system 120, and a controller 130.
- the first communication system 110 is configured to communicate in accordance with a proprietary communication protocol.
- the first communication system 110 can communicate with a remote controller or other drone according to a private map transfer protocol, Information such as image/video data and/or signaling is transmitted.
- the private map transfer protocol may be an Ocusync image protocol.
- the second communication system 120 is configured to communicate in accordance with a standard communication protocol.
- the second communication system 120 can communicate with a remote control or other drone in accordance with a WIFI communication protocol to transmit information such as image/video data and/or signaling.
- the controller 130 is configured to control operations of the first communication system 110 and the second communication system 120 such that one of the first communication system 110 and the second communication system 120 communicates with another drone, and first Another of the communication system 110 and the second communication system 120 is in communication with the first remote control.
- the "first remote controller” may be configured to control the operation of the drone 10 or to control the operation of another drone by means of (relay) communication with the drone.
- the controller 130 can be configured to control the first communication system 110 to communicate with the first remote control and to control the second communication system 120 to communicate with another drone.
- the drone 10 communicates with the first remote controller through a private communication protocol, and communicates with another drone through a standard communication protocol.
- controller 130 may be further configured to control the first communication system 110 to communicate with the second remote controller such that the first remote controller can control another drone, and the second remote controller can control the drone 10. That is, in this scenario, communication is performed with both the first remote controller and the second remote controller through a private communication protocol.
- the controller 130 can be configured to control the first communication system 110 to communicate with another drone and to control the second communication system 120 to communicate with the first remote control.
- the drone 10 communicates with another drone through a private communication protocol, and communicates with the first remote controller through a standard communication protocol.
- controller 130 may be further configured to control the second communication system 120 to communicate with the second remote controller such that the first remote controller can control another drone and the second remote controller can control the drone 10 . That is, in this scenario, communication is performed with both the first remote controller and the second remote controller through a standard communication protocol.
- the first communication system 110 and the second communication system 120 can operate on different frequency bands in order to achieve mutual interference during duplex communication.
- the first communication system 110 communicates according to the Ocusync private map transfer protocol
- the second communication system 120 communicates according to WIFI communication
- the protocol communicates
- the communication according to the OcuSync private map protocol can use the 5.8 GHz band
- the communication according to the WIFI communication protocol can use the 2.4 GHz band
- the communication according to the OcuSync private map transfer protocol can use the 2.4 GHz band
- the communication according to the WIFI communication protocol can use the 5.8 GHz band, and so on.
- the controller 130 can be configured to control a communication system in the first communication system 110 and the second communication system 120 that is in communication with another drone to receive image information from another drone and control the first
- the communication system in communication system 110 and second communication system 120 communicating with the first remote controller forwards the image information to the first remote controller. That is, at this time, the drone 10 functions as a relay drone of another drone, so that image information acquired by another drone can reach the first remote controller via the drone 10.
- the controller 130 may be further configured to control the communication system of the first communication system 110 and the second communication system 120 that communicates with the first remote controller to forward the image information captured by the drone 10 itself to the first remote controller. That is, in this scenario, image information from the drone 10 can be directly transmitted to the first remote controller, and image information from another drone can also be transmitted to the drone 10 as a relay drone. The first remote control.
- the consumer-class drone can be utilized as the relay drone, and the range and capability of the drone communication are enhanced.
- the above technical solution can solve the communication problem in a scene such as occlusion.
- FIG. 2 is a flow chart showing a method performed by a drone in accordance with one embodiment of the present disclosure.
- the method can be performed by the drone including the first communication system, the second communication system, and the controller shown in FIG.
- the various parts of the method in Fig. 2 are described in detail. It should be noted that the various parts (boxes) of the method are not necessarily performed in the order shown in the figures. Rather, these portions can be performed in a different order, and executed separately and/or in parallel.
- the first communication system of the drone communicates in accordance with a private communication protocol.
- the first communication system can communicate with a remote control or other drone based on the Ocusync private map transfer protocol.
- the second communication system of the drone communicates in accordance with a standard communication protocol.
- the second communication system can communicate with a remote controller or other drone in accordance with the WIFI communication protocol.
- the controller of the drone controls the operations of the first communication system and the second communication system
- the communication system of the first communication system and the second communication system communicates with another drone, and the other communication system of the first communication system and the second communication system communicates with the first remote controller.
- the controller can control the first communication system to communicate with the first remote control and control the second communication system to communicate with another drone.
- the controller can also control the first communication system to communicate with the second remote control such that the first remote control can control another drone and the second remote control can control the drone.
- the controller may control the first communication system to communicate with another drone and control the second communication system to communicate with the first remote control.
- the controller can also control the second communication system to communicate with the second remote control such that the first remote control can control another drone and the second remote control can control the drone.
- the first communication system and the second communication system operate on different frequency bands.
- the first communication system can communicate using the 5.8 GHz band
- the second communication system can communicate using the 2.4 GHz band and vice versa.
- the controller may control the communication system communicating with the other drone in the first communication system and the second communication system to receive image information from another drone, and control the first communication system and the second communication system
- the communication system in communication with the first remote controller forwards the image information to the first remote controller.
- the drone is used as a relay drone of another drone, so that the image information acquired by the other drone can reach the first remote controller via the drone.
- the controller may control the communication system that communicates with the first remote controller in the first communication system and the second communication system to forward the image information captured by the relay drone itself to the first remote controller.
- the image information from the relay drone can be directly transmitted to the first remote controller, and the image information from the other drone can also be transmitted to the first remote controller by means of the relay drone.
- FIG. 3 is a block diagram showing a drone system in accordance with one embodiment of the present disclosure.
- the drone system 30 includes a drone 10 and a first remote controller 310.
- the drone 10 can be the drone 10 shown in FIG.
- the operation of each component in the unmanned aerial vehicle system 30 shown in Fig. 3 will be described in detail.
- the drone 10 can include a first communication system 110, a second communication system 120, and a controller 130, as shown in FIG.
- the first communication system 110 can be configured to communicate in accordance with a proprietary communication protocol (eg, an Ocusync private graphics protocol), and the second communication system 120 can be configured to operate in accordance with a standard communication protocol (eg, a WIFI communication protocol). Communication.
- a proprietary communication protocol eg, an Ocusync private graphics protocol
- a standard communication protocol eg, a WIFI communication protocol
- the controller 130 in the drone 10 may be configured to control the operations of the first communication system 110 and the second communication system 120 such that one of the first communication system 110 and the second communication system 120 is connected to another The machine communicates, and the other communication system of the first communication system 110 and the second communication system 120 communicates with the first remote controller 310.
- the first remote controller 310 may be configured to control the operation of the drone 10 or to control the operation of another drone by means of (relay) communication with the drone 10.
- the controller 130 can be configured to control the first communication system 110 to communicate with the first remote control and to control the second communication system 120 to communicate with another drone. Further, the controller 130 may be further configured to control the first communication system 110 to communicate with a second remote controller (not shown in FIG. 3) such that the first remote controller can control another drone, and the second remote control The device can control the drone 10.
- the controller 130 can be configured to control the first communication system 110 to communicate with another drone and to control the second communication system 120 to communicate with the first remote control. Further, the controller 130 may be further configured to control the second communication system 120 to communicate with a second remote controller (not shown in FIG. 3) such that the first remote controller is capable of controlling another drone, and the second remote control The device can control the drone 10.
- the first communication system 110 and the second communication system 120 of the drone 10 can operate on different frequency bands in order to avoid interference with each other during duplex communication.
- the first communication system 110 can communicate using a frequency band of 5.8 GHz
- the second communication system 120 can communicate using a frequency band of 2.4 GHz, and vice versa.
- the drone 10 can be used as a relay drone for another drone such that image information acquired by another drone can reach the first remote control 310 via the drone 10.
- the image information acquired by the drone 10 itself may be directly transmitted to the first remote controller 310, and the image information from the other drone may also be transmitted to the first by the drone 10 as a relay drone.
- Remote controller 310 the image information acquired by the drone 10 itself may be directly transmitted to the first remote controller 310, and the image information from the other drone may also be transmitted to the first by the drone 10 as a relay drone.
- FIG. 4 is a flow chart showing a method performed by a drone system in accordance with one embodiment of the present disclosure.
- the method can be performed by the drone system including the drone and the first remote controller shown in FIG.
- the various parts of the method in Fig. 4 are described in detail. It should be noted that the various parts (boxes) of the method are not necessarily performed in the order shown in the figures. Rather, these portions can be performed in a different order, and executed separately and/or in parallel.
- the first communication system of the drone communicates in accordance with a proprietary communication protocol.
- the first communication system can communicate with a remote control or other drone based on the Ocusync private map transfer protocol.
- the second communication system of the drone communicates in accordance with a standard communication protocol.
- the second communication system can communicate with a remote controller or other drone in accordance with the WIFI communication protocol.
- the controller of the drone controls the operations of the first communication system and the second communication system such that one of the first communication system and the second communication system communicates with another drone, and Another communication system in the communication system and the second communication system communicates with the first remote controller.
- the first remote control controls the drone or controls another drone by communicating with the drone.
- the controller can control the first communication system to communicate with the first remote control and control the second communication system to communicate with another drone.
- the controller can also control the first communication system to communicate with the second remote control such that the first remote control can control another drone and the second remote control can control the drone.
- the controller may control the first communication system to communicate with another drone and control the second communication system to communicate with the first remote control.
- the controller can also control the second communication system to communicate with the second remote control such that the first remote control can control another drone and the second remote control can control the drone.
- the first communication system and the second communication system can operate on different frequency bands.
- the first communication system can communicate using the 5.8 GHz band
- the second communication system can communicate using the 2.4 GHz band and vice versa.
- the controller may control the communication system in the first communication system and the second communication system to communicate with another drone to receive image information from another drone and control the first pass
- the communication system and the communication system in communication with the first remote controller in the second communication system forward the image information to the first remote controller.
- the drone is used as a relay drone of another drone, so that the image information acquired by the other drone can reach the first remote controller via the drone.
- the controller may control the communication system that communicates with the first remote controller in the first communication system and the second communication system to forward the image information captured by the relay drone itself to the first remote controller.
- the image information from the relay drone can be directly transmitted to the first remote controller, and the image information from the other drone can also be transmitted to the first remote controller by means of the relay drone.
- FIG. 6 is a schematic diagram showing a drone relay communication according to an embodiment of the present disclosure.
- the relay drone e.g., can be implemented using the drone 10 shown in Figure 1
- the remote control and relay drones use the OcuSync communication protocol to establish a connection.
- the 2.4 GHz band can be used for WIFI communication and the 5.8 GHz band for OcuSync communication. Or, use the 2.4 GHz band for OcuSync communication, 5.8 GHz band for WIFI communication, and so on.
- the flight of the relay drone or the remote drone can be controlled by the remote controller, which can be selected by the setting of the remote controller.
- the images taken by the relay drone itself can be sent directly to the remote control via OcuSync communication. Images taken by the remote drone can be relayed to the relay drone via WIFI communication, and then the relay drone is transmitted to the remote via OcuSync communication.
- the relay drone can be configured with the remote control to transmit only images captured by the unit, or to forward only images taken by the remote drone, or to simultaneously transfer images taken by the unit and the remote drone.
- FIG. 7 is a schematic diagram showing a drone relay communication according to an embodiment of the present disclosure.
- the relay drone e.g., can be implemented using the drone 10 shown in Figure 1
- the remote control and the relay drone establish a connection using the WIFI communication protocol.
- the 2.4 GHz band can be used for WIFI communication and the 5.8 GHz band for OcuSync communication. Or, use the 2.4 GHz band for OcuSync communication, 5.8 GHz band for WIFI communication, and so on.
- the flight of the relay drone or the remote drone can be controlled by the remote controller, which can be selected by the setting of the remote controller.
- the images taken by the relay drone itself can be sent directly to the remote control. Images taken by the remote drone can be relayed to the relay drone via OcuSync communication, and then the relay drone is transmitted to the remote via WIFI communication.
- the relay drone can be configured with the remote control to transmit only images captured by the unit, or to forward only images taken by the remote drone, or to simultaneously transfer images taken by the unit and the remote drone.
- FIG. 8 is a schematic diagram showing a drone relay communication according to an embodiment of the present disclosure.
- the relay drone e.g., can be implemented using the drone 10 shown in Figure 1
- a remote controller there are two remote controllers, namely a relay remote controller and a remote remote controller, both of which use the OcuSync communication protocol and the relay drone. establish connection.
- the relay remote control is used to control the flight of the relay drone, and the remote remote control is used to control the flight of the remote drone. That is, the two remote controllers shown in Fig. 8 are used to control the respective drones (so-called dual control mode).
- the 2.4 GHz band can be used for WIFI communication and the 5.8 GHz band for OcuSync communication. Or, use the 2.4 GHz band for OcuSync communication, 5.8 GHz band for WIFI communication, and so on.
- the image taken by the relay drone itself can be directly sent to the relay remote controller through OcuSync communication. Images taken by the remote drone can be relayed to the relay drone via WIFI communication, and then the relay drone transmits it to the remote remote via OcuSync communication. That is, in the scenario shown in FIG. 8, the relay remote controller and the remote remote controller can receive image information taken from the relay drone and the remote drone, respectively.
- the relay drone can be configured to relay only the images captured by the unit, or only forward images taken by the remote drone, or simultaneously transfer images taken by the local and remote drones. .
- FIG. 9 is a schematic diagram showing a drone relay communication according to an embodiment of the present disclosure.
- the relay drone e.g., can be implemented using the drone 10 shown in Figure 1
- the remote controller there are two remote controllers, namely a relay remote controller and a remote remote controller, both of which use a WIFI communication protocol and a relay drone. establish connection.
- the relay remote control is used to control the flight of the relay drone, and the remote remote control is used to control the flight of the remote drone. That is, the two remote controllers shown in Fig. 9 are used to control the respective drones (so-called dual control mode).
- the 2.4 GHz band can be used for WIFI communication and the 5.8 GHz band for OcuSync communication. Or, use the 2.4 GHz band for OcuSync communication, 5.8 GHz band for WIFI communication, and so on.
- the image taken by the relay drone itself can be directly sent to the relay remote controller through WIFI communication. Images taken by the remote drone can be relayed to the relay drone via OcuSync communication, and then the relay drone transmits it to the remote remote via WIFI communication. That is, in the scenario shown in FIG. 9, the relay remote controller and the remote remote controller can receive image information taken from the relay drone and the remote drone, respectively.
- the relay drone can be configured to relay only the images captured by the unit, or only forward images taken by the remote drone, or simultaneously transfer images taken by the local and remote drones. .
- the present disclosure is capable of utilizing a consumer drone having a dual communication system as a relay drone, thereby enhancing the range and capabilities of drone communication.
- embodiments of the present disclosure may be implemented by means of a computer program product.
- the computer program product can be a computer readable storage medium.
- a computer program is stored on a computer readable storage medium, and when executed on a computing device, related operations can be performed to implement the above-described aspects of the present disclosure.
- Figure 5 is a block diagram showing a computer readable storage medium 50 in accordance with one embodiment of the present disclosure.
- computer readable storage medium 50 includes computer program 510.
- the computer program 510 when executed by at least one processor, causes at least one processor to perform various portions of the method, such as described in accordance with FIGS. 2 and 4.
- examples of computer readable storage medium 50 include, but are not limited to, a semiconductor storage medium, an optical storage medium, a magnetic storage medium, or any other form of computer readable storage medium.
- Such an arrangement of the present disclosure is typically provided as software, code, and/or other data structures, such as one or more, that are arranged or encoded on a computer readable medium such as an optical medium (eg, CD-ROM), floppy disk, or hard disk.
- a computer readable medium such as an optical medium (eg, CD-ROM), floppy disk, or hard disk.
- Software or firmware or such a configuration may be installed on the computing device such that one or more processors in the computing device perform the technical solutions described in the embodiments of the present disclosure.
- each functional module or individual feature of the device used in each of the above embodiments may be implemented or executed by circuitry, typically one or more integrated circuits.
- Circuitry designed to perform the various functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs), or others.
- a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
- the above general purpose processor or each circuit may be configured by a digital circuit or may be configured by a logic circuit.
- the present disclosure may also use integrated circuits obtained using the advanced technology.
- the program running on the device may be a program that causes a computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
- the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
- a program for realizing the functions of the embodiments of the present invention can be recorded on a computer readable recording medium.
- the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
- the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Signal Processing (AREA)
- Automation & Control Theory (AREA)
- Multimedia (AREA)
- Astronomy & Astrophysics (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Selective Calling Equipment (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
提供了一种无人机,包括:第一通信系统,被配置为根据私有通信协议进行通信;第二通信系统,被配置为根据标准通信协议进行通信;以及控制器,被配置为控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。还提供了一种无人机系统和相应的方法。采用本公开的技术方案,可以通过消费级的无人机来实现无人机的中继通信,降低了中继通信的成本。
Description
本公开涉及数据通信领域,更具体地,本公开涉及一种无人机系统和相应的通信方法。
当前,具有摄像头的无人机得到了广泛的应用。例如,具有一个或更多个摄像头的无人机可以跟踪拍摄期望的对象,并将所拍摄的图像和/或视频以无线通信的方式实时传送给用户。
然而,无人机在长距离飞行中,如果遇到遮挡环境或特殊使用环境,无线信号会被遮挡,无法直接和遥控器进行通信。
发明内容
本公开提出了一种借助于消费级别的无人机来实现中继通信的技术方案。具体地,用作中继无人机的无人机具有两套通信系统,其中一套通信系统可以和远端无人机进行通信,而另一套通信系统可以和遥控器进行通信。从而,能够将远端无人机传送的数据中继到该远端无人机的遥控器。在中继通信中,两套通信系统可以以双工方式工作而互不影响。
根据本公开的一个方面,提供了一种无人机,包括:第一通信系统,被配置为根据私有通信协议进行通信;第二通信系统,被配置为根据标准通信协议进行通信;以及控制器,被配置为控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。
根据本公开的另一个方面,提供了一种无人机系统,包括无人机和第一遥控器。该无人机包括:第一通信系统,被配置为根据私有通信协议进行通信;第二通信系统,被配置为根据标准通信协议进行通信;以及控制器,被配置为控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通
信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。第一遥控器被配置为控制该无人机,或借助于与该无人机的通信来控制另一个无人机。
根据本公开的另一个方面,提供了一种由无人机执行的方法,该无人机包括第一通信系统、第二通信系统和控制器,该方法包括:第一通信系统根据私有通信协议进行通信;第二通信系统根据标准通信协议进行通信;以及通过控制器来控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。
根据本公开的另一个方面,提供了一种由无人机系统执行的方法,该无人机系统包括无人机和第一遥控器。该方法包括:无人机的第一通信系统根据私有通信协议进行通信;无人机的第二通信系统根据标准通信协议进行通信;无人机的控制器控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。第一遥控器控制该无人机,或借助于与该无人机的通信来控制另一个无人机。
根据本公开的另一个方面,提供了一种计算机可读存储介质,存储有计算机程序,当计算机程序由至少一个处理器运行时,使至少一个处理器执行上文所述的方法。
采用本公开的技术方案,可以通过消费级的无人机来实现无人机的中继通信,增强了无人机通信的范围和能力。
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1是示出了根据本公开一个实施例的无人机的框图。
图2是示出了根据本公开一个实施例的由无人机执行的方法的流程图。
图3是示出了根据本公开一个实施例的无人机系统的框图。
图4是示出了根据本公开一个实施例的由无人机系统执行的方法的流程图。
图5是示出了根据本公开一个实施例的计算机可读存储介质的示意图。
图6是示出了根据本公开一个实施例的无人机中继通信的示意图。
图7是示出了根据本公开一个实施例的无人机中继通信的示意图。
图8是示出了根据本公开一个实施例的无人机中继通信的示意图。
图9是示出了根据本公开一个实施例的无人机中继通信的示意图。
需要注意的是,附图不一定按比例绘制,重点在于示出本文公开的技术的原理。另外,为了清楚起见,贯穿附图中的相似的附图标记指代相似的元素。
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
本公开提出采用具有两套通信系统的无人机作为中继无人机,其中一套通信系统可以根据私有通信协议来通信,而另一套通信系统可以根据标准通信协议来通信。本实施例中,无人机具有两套通信系统:一个是根据私有图传协议进行通信的通信系统,另一个是根据WIFI通信协议进行通信的通信系统。通过使私有通信系统和WIFI通信系统以全双工的方式工作,中继飞机另一个无人机以及相应的遥控器进行中继通信。
需要指出的是,本公开的原理同样可以应用于其他类别的、具有两套或更多套通信系统的无人机/无人机系统。
无人机/无人机系统和相应方法
图1是示出了根据本公开一个实施例的无人机的框图。如图1所示,无人机10包括第一通信系统110、第二通信系统120和控制器130。
第一通信系统110被配置为根据私有通信协议进行通信。例如,第一通信系统110可以根据私有图传协议与遥控器或其他无人机进行通信,以
传输图像/视频数据和/或信令等信息。本实施方式中,所述私有图传协议可以为Ocusync图像协议。
第二通信系统120被配置为根据标准通信协议进行通信。例如,第二通信系统120可以根据WIFI通信协议与遥控器或其他无人机进行通信,以传输图像/视频数据和/或信令等信息。
控制器130被配置为控制第一通信系统110和第二通信系统120的操作,使得第一通信系统110和第二通信系统120中的一个通信系统与另一个无人机进行通信,而第一通信系统110和第二通信系统120中的另一个通信系统与第一遥控器进行通信。这里,“第一遥控器”可以被配置为控制无人机10的操作,或借助于与无人机的(中继)通信来控制另一个无人机的操作。
例如,控制器130可以被配置为控制第一通信系统110与第一遥控器进行通信,并且控制第二通信系统120与另一个无人机进行通信。换句话说,此时无人机10通过私有通信协议与第一遥控器进行通信,而通过标准通信协议与另一个无人机进行通信。
进一步地,控制器130还可以被配置为控制第一通信系统110与第二遥控器进行通信,使得第一遥控器能够控制另一个无人机,并且第二遥控器能够控制无人机10。即,在此场景下,通过私有通信协议与第一遥控器和第二遥控器两者进行通信。
备选地,控制器130可以被配置为控制第一通信系统110与另一个无人机进行通信,并且控制第二通信系统120与第一遥控器进行通信。换句话说,此时无人机10通过私有通信协议与另一个无人机进行通信,而通过标准通信协议与第一遥控器进行通信。
进一步地,控制器130可以还被配置为控制第二通信系统120与第二遥控器进行通信,使得第一遥控器能够控制另一个无人机,并且第二遥控器能够控制无人机10。即,在此场景下,通过标准通信协议与第一遥控器和第二遥控器两者进行通信。
优选地,为了在双工通信过程中做到互不干扰,第一通信系统110和第二通信系统120可以在不同的频段上工作。例如,如果第一通信系统110根据Ocusync私有图传协议进行通信,而第二通信系统120根据WIFI通信
协议进行通信,那么根据OcuSync私有图传协议进行的通信可以使用5.8GHz的频段,而根据WIFI通信协议进行的通信可以使用2.4GHz的频段。或者,根据OcuSync私有图传协议进行的通信可以使用2.4GHz的频段,而根据WIFI通信协议进行的通信可以使用5.8GHz的频段,以此类推。
在一个示例中,控制器130可以被配置为控制第一通信系统110和第二通信系统120中与另一个无人机进行通信的通信系统从另一个无人机接收图像信息,并且控制第一通信系统110和第二通信系统120中与第一遥控器进行通信的通信系统向第一遥控器转发上述图像信息。即,此时无人机10用作另一个无人机的中继无人机,使得另一个无人机获取的图像信息能够经由无人机10到达第一遥控器。
优选地,控制器130还可以被配置为控制第一通信系统110和第二通信系统120中与第一遥控器进行通信的通信系统向第一遥控器转发无人机10自身拍摄的图像信息。即,在此场景下,来自无人机10的图像信息可以直接传输到第一遥控器,而来自另一个无人机的图像信息也可以凭借无人机10作为中继无人机而传输到第一遥控器。
采用本实施例的技术方案,能够利用消费级无人机作为中继无人机,增强了无人机通信的范围和能力。上述技术方案能够解决遮挡等场景下的通信问题。
图2是示出了根据本公开一个实施例的由无人机执行的方法的流程图。例如,该方法可以由图1所示的包括第一通信系统、第二通信系统和控制器的无人机来执行。下面,详细介绍图2中的方法的各个部分。需要指出的是,该方法的各个部分(方框)不一定要按照图中所示的顺序来执行。相反,这些部分可以以不同的顺序来执行,以及单独和/或并行地执行。
在方框S210,无人机的第一通信系统根据私有通信协议进行通信。如上文所述,第一通信系统可以根据Ocusync私有图传协议与遥控器或其他无人机进行通信。
在方框S220,无人机的第二通信系统根据标准通信协议进行通信。如上文所述,第二通信系统可以根据WIFI通信协议与遥控器或其他无人机进行通信。
在方框S230,无人机的控制器控制第一通信系统和第二通信系统的操
作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。
例如,控制器可以控制第一通信系统与第一遥控器进行通信,并且控制第二通信系统与另一个无人机进行通信。在此场景下,控制器还可以控制第一通信系统与第二遥控器进行通信,使得第一遥控器能够控制另一个无人机,并且第二遥控器能够控制上述无人机。
备选地,控制器可以控制第一通信系统与另一个无人机进行通信,并且控制第二通信系统与第一遥控器进行通信。在此场景下,控制器还可以控制第二通信系统与第二遥控器进行通信,使得第一遥控器能够控制另一个无人机,并且第二遥控器能够控制上述无人机。
优选地,第一通信系统和第二通信系统在不同的频段上工作。例如,第一通信系统可以使用5.8GHz的频段来通信,而第二通信系统可以使用2.4GHz的频段来通信,反之亦然。
备选地,控制器可以控制第一通信系统和第二通信系统中与另一个无人机进行通信的通信系统从另一个无人机接收图像信息,并且控制第一通信系统和第二通信系统中与第一遥控器进行通信的通信系统向第一遥控器转发该图像信息。此时,无人机用作另一个无人机的中继无人机,使得另一个无人机获取的图像信息能够经由无人机到达第一遥控器。
优选地,控制器可以控制第一通信系统和第二通信系统中与第一遥控器进行通信的通信系统向第一遥控器转发中继无人机自身拍摄的图像信息。此时,来自中继无人机的图像信息可以直接传输到第一遥控器,而来自另一个无人机的图像信息也可以凭借中继无人机而传输到第一遥控器。
以上,描述了根据本公开的一个实施例的无人机及其执行的方法。下面,对包括该无人机以及相应的遥控器的无人机系统以及该无人机系统执行的方法进行详细描述。
图3是示出了根据本公开一个实施例的无人机系统的框图。如图3所示,无人机系统30包括无人机10和第一遥控器310。其中,无人机10可以是图1所示的无人机10。下面,详细描述图3所示的无人机系统30中的各个组件的操作。
无人机10可以包括第一通信系统110、第二通信系统120和控制器130,如图1所示。如上文所述,第一通信系统110可以被配置为根据私有通信协议(例如Ocusync私有图传协议)进行通信,而第二通信系统120可以被配置为根据标准通信协议(例如WIFI通信协议)进行通信。
无人机10中的控制器130可以被配置为控制第一通信系统110和第二通信系统120的操作,使得第一通信系统110和第二通信系统120中的一个通信系统与另一个无人机进行通信,而第一通信系统110和第二通信系统120中的另一个通信系统与第一遥控器310进行通信。这里,第一遥控器310可以被配置为控制无人机10的操作,或借助于与无人机10的(中继)通信来控制另一个无人机的操作。
例如,控制器130可以被配置为控制第一通信系统110与第一遥控器进行通信,并且控制第二通信系统120与另一个无人机进行通信。进一步地,控制器130还可以被配置为控制第一通信系统110与第二遥控器(图3中未示出)进行通信,使得第一遥控器能够控制另一个无人机,并且第二遥控器能够控制无人机10。
备选地,控制器130可以被配置为控制第一通信系统110与另一个无人机进行通信,并且控制第二通信系统120与第一遥控器进行通信。进一步地,控制器130可以还被配置为控制第二通信系统120与第二遥控器(图3中未示出)进行通信,使得第一遥控器能够控制另一个无人机,并且第二遥控器能够控制无人机10。
优选地,为了在双工通信过程中做到互不干扰,无人机10的第一通信系统110和第二通信系统120可以在不同的频段上工作。例如,第一通信系统110可以使用5.8GHz的频段来通信,而第二通信系统120可以使用2.4GHz的频段来通信,反之亦然。
在一个示例中,无人机10可以用作另一个无人机的中继无人机,使得另一个无人机获取的图像信息能够经由无人机10到达第一遥控器310。优选地,无人机10自身获取的图像信息可以直接传输到第一遥控器310,而来自另一个无人机的图像信息也可以凭借无人机10作为中继无人机而传输到第一遥控器310。
图4是示出了根据本公开一个实施例的由无人机系统执行的方法的流程图。例如,该方法可以由图3所示的包括无人机和第一遥控器的无人机系统来执行。下面,详细介绍图4中的方法的各个部分。需要指出的是,该方法的各个部分(方框)不一定要按照图中所示的顺序来执行。相反,这些部分可以以不同的顺序来执行,以及单独和/或并行地执行。
在方框S410,无人机的第一通信系统根据私有通信协议进行通信。如上文所述,第一通信系统可以根据Ocusync私有图传协议与遥控器或其他无人机进行通信。
在方框S420,无人机的第二通信系统根据标准通信协议进行通信。如上文所述,第二通信系统可以根据WIFI通信协议与遥控器或其他无人机进行通信。
在方框S430,无人机的控制器控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。
在方框S440,第一遥控器控制该无人机,或借助于与该无人机的通信来控制另一个无人机。
例如,控制器可以控制第一通信系统与第一遥控器进行通信,并且控制第二通信系统与另一个无人机进行通信。在此场景下,控制器还可以控制第一通信系统与第二遥控器进行通信,使得第一遥控器能够控制另一个无人机,并且第二遥控器能够控制上述无人机。
备选地,控制器可以控制第一通信系统与另一个无人机进行通信,并且控制第二通信系统与第一遥控器进行通信。在此场景下,控制器还可以控制第二通信系统与第二遥控器进行通信,使得第一遥控器能够控制另一个无人机,并且第二遥控器能够控制上述无人机。
优选地,第一通信系统和第二通信系统可以在不同的频段上工作。例如,第一通信系统可以使用5.8GHz的频段来通信,而第二通信系统可以使用2.4GHz的频段来通信,反之亦然。
备选地,控制器可以控制第一通信系统和第二通信系统中与另一个无人机进行通信的通信系统从另一个无人机接收图像信息,并且控制第一通
信系统和第二通信系统中与第一遥控器进行通信的通信系统向第一遥控器转发该图像信息。此时,无人机用作另一个无人机的中继无人机,使得另一个无人机获取的图像信息能够经由无人机到达第一遥控器。
优选地,控制器可以控制第一通信系统和第二通信系统中与第一遥控器进行通信的通信系统向第一遥控器转发中继无人机自身拍摄的图像信息。此时,来自中继无人机的图像信息可以直接传输到第一遥控器,而来自另一个无人机的图像信息也可以凭借中继无人机而传输到第一遥控器。
示例应用场景
下面,结合附图6-9来描述本公开的技术方案的几个示例应用场景。
图6是示出了根据本公开一个实施例的无人机中继通信的示意图。在图6所示的场景中,中继无人机(例如,可以采用图1所示的无人机10来实现)使用WIFI通信协议和远端无人机(被中继的无人机)建立通信连接。遥控器和中继无人机使用OcuSync通信协议建立连接。
为了保证WIFI和OcuSync在通信过程中互不干扰,可以针对WIFI通信使用2.4GHz频段,针对OcuSync通信使用5.8GHz频段。或者,针对OcuSync通信使用2.4GHz频段,针对WIFI通信使用5.8GHz频段,等等。
在图6中,可以通过遥控器来控制中继无人机或远端无人机的飞行,这可以通过遥控器的设置来进行选择。
从图6可以看出,中继无人机自身拍摄的图像可以通过OcuSync通信直接发送到遥控器。远端无人机拍摄的图像可以通过WIFI通信被中转给中继无人机,然后中继无人机通过OcuSync通信将其传输到遥控器。
可以通过遥控器来配置中继无人机,使其仅传输本机拍摄的图像、或仅转发远端无人机拍摄的图像、或同时传输本机和远端无人机拍摄的图像。
图7是示出了根据本公开一个实施例的无人机中继通信的示意图。在图7所示的场景中,中继无人机(例如,可以采用图1所示的无人机10来实现)使用OcuSync通信协议和远端无人机(被中继的无人机)建立通信连接。遥控器和中继无人机使用WIFI通信协议建立连接。
为了保证WIFI和OcuSync在通信过程中互不干扰,可以针对WIFI通信使用2.4GHz频段,针对OcuSync通信使用5.8GHz频段。或者,针对OcuSync通信使用2.4GHz频段,针对WIFI通信使用5.8GHz频段,等等。
在图7中,可以通过遥控器来控制中继无人机或远端无人机的飞行,这可以通过遥控器的设置来进行选择。
从图7可以看出,中继无人机自身拍摄的图像可以通过直接发送到遥控器。远端无人机拍摄的图像可以通过OcuSync通信被中转给中继无人机,然后中继无人机通过WIFI通信将其传输到遥控器。
可以通过遥控器来配置中继无人机,使其仅传输本机拍摄的图像、或仅转发远端无人机拍摄的图像、或同时传输本机和远端无人机拍摄的图像。
图8是示出了根据本公开一个实施例的无人机中继通信的示意图。在图8所示的场景中,中继无人机(例如,可以采用图1所示的无人机10来实现)使用WIFI通信协议和远端无人机(被中继的无人机)建立通信连接。与图6所示不同的是,在图8的应用场景中,存在两个遥控器,即中继遥控器和远端遥控器,这两个遥控器均使用OcuSync通信协议与中继无人机建立连接。
在图8中,通过中继遥控器来控制中继无人机的飞行,而通过远端遥控器来控制远端无人机的飞行。即,图8所示的两个遥控器分别用于控制相应的无人机(所谓的双控方式)。
同样,为了保证WIFI和OcuSync在通信过程中互不干扰,可以针对WIFI通信使用2.4GHz频段,针对OcuSync通信使用5.8GHz频段。或者,针对OcuSync通信使用2.4GHz频段,针对WIFI通信使用5.8GHz频段,等等。
从图8可以看出,中继无人机自身拍摄的图像可以通过OcuSync通信直接发送到中继遥控器。远端无人机拍摄的图像可以通过WIFI通信被中转给中继无人机,然后中继无人机通过OcuSync通信将其传输到远端遥控器。即,在图8所示的场景中,中继遥控器和远端遥控器可以分别接收来自中继无人机和远端无人机拍摄的图像信息。
可以通过中继遥控器来配置中继无人机,使其仅传输本机拍摄的图像、或仅转发远端无人机拍摄的图像、或同时传输本机和远端无人机拍摄的图像。
图9是示出了根据本公开一个实施例的无人机中继通信的示意图。在图9所示的场景中,中继无人机(例如,可以采用图1所示的无人机10来实现)使用OcuSync通信协议和远端无人机(被中继的无人机)建立通信连接。与图7所示不同的是,在图9的应用场景中,存在两个遥控器,即中继遥控器和远端遥控器,这两个遥控器均使用WIFI通信协议与中继无人机建立连接。
在图9中,通过中继遥控器来控制中继无人机的飞行,而通过远端遥控器来控制远端无人机的飞行。即,图9所示的两个遥控器分别用于控制相应的无人机(所谓的双控方式)。
同样,为了保证WIFI和OcuSync在通信过程中互不干扰,可以针对WIFI通信使用2.4GHz频段,针对OcuSync通信使用5.8GHz频段。或者,针对OcuSync通信使用2.4GHz频段,针对WIFI通信使用5.8GHz频段,等等。
从图9可以看出,中继无人机自身拍摄的图像可以通过WIFI通信直接发送到中继遥控器。远端无人机拍摄的图像可以通过OcuSync通信被中转给中继无人机,然后中继无人机通过WIFI通信将其传输到远端遥控器。即,在图9所示的场景中,中继遥控器和远端遥控器可以分别接收来自中继无人机和远端无人机拍摄的图像信息。
可以通过中继遥控器来配置中继无人机,使其仅传输本机拍摄的图像、或仅转发远端无人机拍摄的图像、或同时传输本机和远端无人机拍摄的图像。
本公开能够利用具有双通信系统的消费级无人机作为中继无人机,从而增强无人机通信的范围和能力。
此外,本公开的实施例可以借助于计算机程序产品来实现。例如,该计算机程序产品可以是计算机可读存储介质。计算机可读存储介质上存储有计算机程序,当在计算设备上执行该计算机程序时,能够执行相关的操作以实现本公开的上述技术方案。
例如,图5是示出了根据本公开一个实施例的计算机可读存储介质50的框图。如图5所示,计算机可读存储介质50包括计算机程序510。计算机程序510在由至少一个处理器运行时,使得至少一个处理器执行例如根据图2和图4所描述的方法的各个部分。本领域技术人员可以理解,计算机可读存储介质50的示例包括但不限于:半导体存储介质、光学存储介质、磁性存储介质、或任何其他形式的计算机可读存储介质。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本公开的方法并不局限于上面示出的方框和顺序。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。本公开的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本公开实施例所描述的技术方案。
此外,上述每个实施例中所使用的设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本公开也可以使用利用该先进技术得到的集成电路。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统
中。用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。
Claims (41)
- 一种无人机,包括:第一通信系统,被配置为根据私有通信协议进行通信;第二通信系统,被配置为根据标准通信协议进行通信;以及控制器,被配置为控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。
- 根据权利要求1所述的无人机,其中,所述控制器被配置为:控制第一通信系统与所述第一遥控器进行通信,并且控制第二通信系统与所述另一个无人机进行通信。
- 根据权利要求1所述的无人机,其中,所述控制器被配置为:控制第一通信系统与所述另一个无人机进行通信,并且控制第二通信系统与所述第一遥控器进行通信。
- 根据权利要求2所述的无人机,其中,所述控制器还被配置为:控制第一通信系统与第二遥控器进行通信,使得所述第一遥控器能够控制所述另一个无人机,并且所述第二遥控器能够控制所述无人机。
- 根据权利要求3所述的无人机,其中,所述控制器还被配置为:控制第二通信系统与第二遥控器进行通信,使得所述第一遥控器能够控制所述另一个无人机,并且所述第二遥控器能够控制所述无人机。
- 根据权利要求1所述的无人机,其中,第一通信系统和第二通信系统在不同的频段上工作。
- 根据权利要求1所述的无人机,其中,所述控制器被配置为:控制第一通信系统和第二通信系统中与所述另一个无人机进行通信的通信系统从所述另一个无人机接收图像信息,并且控制第一通信系统和第二通信系统中与所述第一遥控器进行通信的通信系 统向所述第一遥控器转发所述图像信息。
- 根据权利要求7所述的无人机,其中,所述控制器还被配置为:控制第一通信系统和第二通信系统中与所述第一遥控器进行通信的通信系统向所述第一遥控器转发所述无人机自身拍摄的图像信息。
- 根据权利要求1所述的无人机,其中,所述私有通信协议包括OcuSync通信协议。
- 根据权利要求1所述的无人机,其中,所述标准通信协议包括WiFi通信协议。
- 一种无人机系统,包括无人机和第一遥控器,其中所述无人机包括:第一通信系统,被配置为根据私有通信协议进行通信;第二通信系统,被配置为根据标准通信协议进行通信;以及控制器,被配置为控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与所述第一遥控器进行通信;其中,所述第一遥控器被配置为控制所述无人机,或借助于与所述无人机的通信来控制所述另一个无人机。
- 根据权利要求11所述的无人机系统,其中,所述控制器被配置为:控制第一通信系统与所述第一遥控器进行通信,并且控制第二通信系统与所述另一个无人机进行通信。
- 根据权利要求11所述的无人机系统,其中,所述控制器被配置为:控制第一通信系统与所述另一个无人机进行通信,并且控制第二通信系统与所述第一遥控器进行通信。
- 根据权利要求12所述的无人机系统,其中,所述控制器还被配置为:控制第一通信系统与第二遥控器进行通信,使得所述第一遥控器能够控制所述另一个无人机,并且所述第二遥控器能够控制所述无人机。
- 根据权利要求13所述的无人机系统,其中,所述控制器还被配置为:控制第二通信系统与第二遥控器进行通信,使得所述第一遥控器能够控制所述另一个无人机,并且所述第二遥控器能够控制所述无人机。
- 根据权利要求11所述的无人机系统,其中,第一通信系统和第二通信系统在不同的频段上工作。
- 根据权利要求11所述的无人机系统,其中,所述控制器被配置为:控制第一通信系统和第二通信系统中与所述另一个无人机进行通信的通信系统从所述另一个无人机接收图像信息,并且控制第一通信系统和第二通信系统中与所述第一遥控器进行通信的通信系统向所述第一遥控器转发所述图像信息。
- 根据权利要求17所述的无人机系统,其中,所述控制器还被配置为:控制第一通信系统和第二通信系统中与所述第一遥控器进行通信的通信系统向所述第一遥控器转发所述无人机自身拍摄的图像信息。
- 根据权利要求11所述的无人机系统,其中,所述私有通信协议包括OcuSync通信协议。
- 根据权利要求11所述的无人机系统,其中,所述标准通信协议包括WiFi通信协议。
- 一种由无人机执行的方法,所述无人机包括第一通信系统、第二通信系统和控制器,所述方法包括:第一通信系统根据私有通信协议进行通信;第二通信系统根据标准通信协议进行通信;以及通过控制器来控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通信,而第一通信系统和第二通信系统中的另一个通信系统与第一遥控器进行通信。
- 根据权利要求21所述的方法,其中,通过控制器来控制第一通信系统与所述第一遥控器进行通信,并且控制第二通信系统与所述另一个无人机进行通信。
- 根据权利要求21所述的方法,其中,通过控制器来控制第一通信系统与所述另一个无人机进行通信,并且 控制第二通信系统与所述第一遥控器进行通信。
- 根据权利要求22所述的方法,其中,通过控制器来控制第一通信系统与第二遥控器进行通信,使得所述第一遥控器能够控制所述另一个无人机,并且所述第二遥控器能够控制所述无人机。
- 根据权利要求23所述的方法,其中,通过控制器来控制第二通信系统与第二遥控器进行通信,使得所述第一遥控器能够控制所述另一个无人机,并且所述第二遥控器能够控制所述无人机。
- 根据权利要求21所述的方法,其中,第一通信系统和第二通信系统在不同的频段上工作。
- 根据权利要求21所述的方法,其中,通过控制器来控制第一通信系统和第二通信系统中与所述另一个无人机进行通信的通信系统从所述另一个无人机接收图像信息,并且控制第一通信系统和第二通信系统中与所述第一遥控器进行通信的通信系统向所述第一遥控器转发所述图像信息。
- 根据权利要求27所述的方法,其中,通过控制器来控制第一通信系统和第二通信系统中与所述第一遥控器进行通信的通信系统向所述第一遥控器转发所述无人机自身拍摄的图像信息。
- 根据权利要求21所述的方法,其中,所述私有通信协议包括OcuSync通信协议。
- 根据权利要求21所述的方法,其中,所述标准通信协议包括WiFi通信协议。
- 一种由无人机系统执行的方法,所述无人机系统包括无人机和第一遥控器,所述方法包括:所述无人机的第一通信系统根据私有通信协议进行通信;所述无人机的第二通信系统根据标准通信协议进行通信;所述无人机的控制器控制第一通信系统和第二通信系统的操作,使得第一通信系统和第二通信系统中的一个通信系统与另一个无人机进行通 信,而第一通信系统和第二通信系统中的另一个通信系统与所述第一遥控器进行通信;以及所述第一遥控器控制所述无人机,或借助于与所述无人机的通信来控制所述另一个无人机。
- 根据权利要求31所述的方法,其中,通过控制器来控制第一通信系统与所述第一遥控器进行通信,并且控制第二通信系统与所述另一个无人机进行通信。
- 根据权利要求31所述的方法,其中,通过控制器来控制第一通信系统与所述另一个无人机进行通信,并且控制第二通信系统与所述第一遥控器进行通信。
- 根据权利要求32所述的方法,其中,通过控制器来控制第一通信系统与第二遥控器进行通信,使得所述第一遥控器能够控制所述另一个无人机,并且所述第二遥控器能够控制所述无人机。
- 根据权利要求33所述的方法,其中,通过控制器来控制第二通信系统与第二遥控器进行通信,使得所述第一遥控器能够控制所述另一个无人机,并且所述第二遥控器能够控制所述无人机。
- 根据权利要求31所述的方法,其中,第一通信系统和第二通信系统在不同的频段上工作。
- 根据权利要求31所述的方法,其中,通过控制器来控制第一通信系统和第二通信系统中与所述另一个无人机进行通信的通信系统从所述另一个无人机接收图像信息,并且控制第一通信系统和第二通信系统中与所述第一遥控器进行通信的通信系统向所述第一遥控器转发所述图像信息。
- 根据权利要求37所述的方法,其中,通过控制器来控制第一通信系统和第二通信系统中与所述第一遥控器进行通信的通信系统向所述第一遥控器转发所述无人机自身拍摄的图像信息。
- 根据权利要求31所述的方法,其中,所述私有通信协议包括OcuSync通信协议。
- 根据权利要求31所述的方法,其中,所述标准通信协议包括WiFi通信协议。
- 一种计算机可读存储介质,存储有计算机程序,当所述计算机程序在至少一个处理器上运行时,使所述至少一个处理器执行根据权利要求21-40中的任一项所述的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/113919 WO2019104631A1 (zh) | 2017-11-30 | 2017-11-30 | 无人机系统和通信方法 |
CN201780014652.2A CN108702201A (zh) | 2017-11-30 | 2017-11-30 | 无人机系统和通信方法 |
US16/883,823 US20200285230A1 (en) | 2017-11-30 | 2020-05-26 | Unmanned aerial vehicle system and communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/113919 WO2019104631A1 (zh) | 2017-11-30 | 2017-11-30 | 无人机系统和通信方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/883,823 Continuation US20200285230A1 (en) | 2017-11-30 | 2020-05-26 | Unmanned aerial vehicle system and communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019104631A1 true WO2019104631A1 (zh) | 2019-06-06 |
Family
ID=63844169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/113919 WO2019104631A1 (zh) | 2017-11-30 | 2017-11-30 | 无人机系统和通信方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200285230A1 (zh) |
CN (1) | CN108702201A (zh) |
WO (1) | WO2019104631A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112578815A (zh) * | 2020-12-17 | 2021-03-30 | 中国航空工业集团公司成都飞机设计研究所 | 一种面向多平台异构遥控数据词典的系统及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210080948A1 (en) * | 2019-09-12 | 2021-03-18 | Transportation Ip Holdings, Llc | Vehicle control system |
EP4078322A1 (en) * | 2020-05-04 | 2022-10-26 | Auterion AG | System and method for software-defined drones |
CN114731578B (zh) * | 2020-11-05 | 2025-03-18 | 深圳市大疆创新科技有限公司 | 一种通信方法、无人机及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104898693A (zh) * | 2015-05-12 | 2015-09-09 | 南通新城电力科技有限公司 | 一种无人机巡检系统 |
US20160144959A1 (en) * | 2014-11-21 | 2016-05-26 | Oil & Gas IT, LLC | Systems, Methods and Devices for Collecting Data at Remote Oil and Natural Gas Sites |
CN106774429A (zh) * | 2016-12-05 | 2017-05-31 | 北京邮电大学 | 一种数据传输方法及系统 |
CN106878688A (zh) * | 2017-04-17 | 2017-06-20 | 浙江南瑞飞翼航空技术有限公司 | 无人机图像处理系统 |
CN106941372A (zh) * | 2017-05-04 | 2017-07-11 | 国网浙江省电力公司杭州供电公司 | 一种无人机数据传输系统 |
CN107079365A (zh) * | 2017-01-17 | 2017-08-18 | 深圳市大疆创新科技有限公司 | 无人机、遥控器及其控制方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103687074A (zh) * | 2013-11-11 | 2014-03-26 | 中国航天科技集团公司第五研究院第五一三研究所 | 一种集群飞行器通信系统 |
CN105052203B (zh) * | 2014-02-10 | 2018-09-14 | 深圳市大疆创新科技有限公司 | 自适应通信模式切换 |
US10039114B2 (en) * | 2015-04-14 | 2018-07-31 | Verizon Patent And Licensing Inc. | Radio access network for unmanned aerial vehicles |
CN105007115B (zh) * | 2015-07-24 | 2019-01-18 | 华南理工大学 | 无人直升机中继数据链系统及其控制方法 |
CN106921425B (zh) * | 2015-12-25 | 2020-10-30 | 顺丰科技有限公司 | 一种数据转发方法、装置及设备 |
CN106325298A (zh) * | 2016-09-12 | 2017-01-11 | 珠海市杰理科技有限公司 | 无人机增程控制系统和方法 |
CN106970650B (zh) * | 2017-04-28 | 2023-11-24 | 暨南大学 | 多无人机通信控制系统及控制方法 |
-
2017
- 2017-11-30 CN CN201780014652.2A patent/CN108702201A/zh active Pending
- 2017-11-30 WO PCT/CN2017/113919 patent/WO2019104631A1/zh active Application Filing
-
2020
- 2020-05-26 US US16/883,823 patent/US20200285230A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160144959A1 (en) * | 2014-11-21 | 2016-05-26 | Oil & Gas IT, LLC | Systems, Methods and Devices for Collecting Data at Remote Oil and Natural Gas Sites |
CN104898693A (zh) * | 2015-05-12 | 2015-09-09 | 南通新城电力科技有限公司 | 一种无人机巡检系统 |
CN106774429A (zh) * | 2016-12-05 | 2017-05-31 | 北京邮电大学 | 一种数据传输方法及系统 |
CN107079365A (zh) * | 2017-01-17 | 2017-08-18 | 深圳市大疆创新科技有限公司 | 无人机、遥控器及其控制方法 |
CN106878688A (zh) * | 2017-04-17 | 2017-06-20 | 浙江南瑞飞翼航空技术有限公司 | 无人机图像处理系统 |
CN106941372A (zh) * | 2017-05-04 | 2017-07-11 | 国网浙江省电力公司杭州供电公司 | 一种无人机数据传输系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112578815A (zh) * | 2020-12-17 | 2021-03-30 | 中国航空工业集团公司成都飞机设计研究所 | 一种面向多平台异构遥控数据词典的系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108702201A (zh) | 2018-10-23 |
US20200285230A1 (en) | 2020-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019104631A1 (zh) | 无人机系统和通信方法 | |
US11042168B2 (en) | Drone sourced content authoring using swarm attestation | |
US10936533B2 (en) | GPU remote communication with triggered operations | |
WO2019104633A1 (zh) | 无人机系统和通信方法 | |
US9860189B2 (en) | Systems and methods to enable network communications for management controllers | |
US20210029326A1 (en) | Session description protocol (sdp) based signaling of camera calibration parameters | |
US11246177B2 (en) | Unmanned aerial vehicle system and method | |
WO2020155037A1 (zh) | 多负载多路图传方法、控制系统和终端、无人机和服务器 | |
CN104919762B (zh) | 软件定义网络中的控制方法,控制设备和处理器 | |
US20180181340A1 (en) | Method and apparatus for direct access from non-volatile memory to local memory | |
US11018982B2 (en) | Data flow scheduling between processors | |
US9965406B2 (en) | Setting method, communication device, and master device | |
CN105897623B (zh) | 一种数据的传输方法和装置 | |
US11758267B2 (en) | Device and method for controlling image of vehicle | |
US20180006936A1 (en) | Partially deferred packet access | |
US20170230637A1 (en) | Multiple camera computing system having camera-to-camera communications link | |
JP6193155B2 (ja) | 通信装置、通信システム、通信方法およびプログラム | |
US10423564B2 (en) | Universal serial bus data routing | |
US20130238881A1 (en) | Data transmission device, data transmission method, and computer program product | |
US9811149B2 (en) | Information processing apparatus, non-transitory computer readable medium, and information processing method | |
CN112740648B (zh) | 一种发送装置、数据传输系统和数据传输方法 | |
WO2020107563A1 (zh) | 负载控制电路及可移动平台 | |
WO2020107391A1 (zh) | 负载控制方法、装置及可移动平台 | |
CN116962500A (zh) | 服务器ncsi信号切换控制方法、装置、电子设备及存储介质 | |
US10555238B1 (en) | UAV communication enhancement module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17933195 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17933195 Country of ref document: EP Kind code of ref document: A1 |