[go: up one dir, main page]

WO2019104621A1 - 光学分波装置 - Google Patents

光学分波装置 Download PDF

Info

Publication number
WO2019104621A1
WO2019104621A1 PCT/CN2017/113888 CN2017113888W WO2019104621A1 WO 2019104621 A1 WO2019104621 A1 WO 2019104621A1 CN 2017113888 W CN2017113888 W CN 2017113888W WO 2019104621 A1 WO2019104621 A1 WO 2019104621A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
output beam
grating
demultiplexing device
Prior art date
Application number
PCT/CN2017/113888
Other languages
English (en)
French (fr)
Inventor
柯正浩
Original Assignee
柯正浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 柯正浩 filed Critical 柯正浩
Priority to KR1020187027569A priority Critical patent/KR102720779B1/ko
Priority to EP17898350.8A priority patent/EP3518009A4/en
Priority to JP2018553905A priority patent/JP7241543B2/ja
Priority to CN201780001792.6A priority patent/CN110392853A/zh
Priority to PCT/CN2017/113888 priority patent/WO2019104621A1/zh
Publication of WO2019104621A1 publication Critical patent/WO2019104621A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
    • G02B6/29328Diffractive elements operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
    • G02B6/29326Diffractive elements having focusing properties, e.g. curved gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers

Definitions

  • the invention relates to an optical demultiplexing device, in particular to an optical demultiplexing device capable of reducing volume and improving spectroscopic accuracy.
  • LIGA Lithography, Electroplating, and Molding
  • LIGA is a micro-manufacturing program that combines lithography, electroplating and molding to make the microstructure highly accurate in manufacturing and to make the microstructure
  • the height can reach hundreds or even thousands of microns. Due to the small spacing of the grating structure, the yield and spectral accuracy of the demolding process of LIGA (Lithography, Electroplating, and Molding) is insufficient to manufacture vertical gratings.
  • One of the objects of the present invention is to disclose an optical demultiplexing device for the purpose of reducing the volume and improving the spectral accuracy.
  • the present invention provides an optical demultiplexing device, wherein the optical demultiplexing device comprises:
  • the waveguide unit comprises a first substrate; an input unit is formed on the first substrate and has a slit for receiving an optical signal; a grating is formed on the first An output beam is generated on the substrate by splitting the optical signal; a mirror is formed on the first substrate for reflecting the output beam; and a second substrate is disposed on the input unit, Raster with this Forming a waveguide space between the mirror and the first substrate; and
  • An adjustable reflective unit is disposed outside the waveguide unit for changing an exit angle of the output beam and adjusting a focal length of the output beam.
  • the input unit, the grating and the mirror are formed by exposing a photoresist layer by using a high-energy light source, and the high-energy light source has a wavelength ranging from 0.01 nm to 100 nm. .
  • the grating has a concave, convex or planar profile, and its surface exhibits a continuous sheet, zigzag, flame, sinusoidal or combination of the above.
  • the waveguide unit and the adjustable reflective unit are covered by an outer casing.
  • a sliding slot is disposed on a bottom surface of the outer casing, and a sliding member is disposed in the sliding slot, and the adjustable reflecting unit is coupled to the sliding member for Adjust the focal length of the output beam.
  • an optical demultiplexing device comprising:
  • the waveguide unit comprises a first substrate; an input unit is formed on the first substrate and has a slit for receiving an optical signal; a grating is formed on the first On the substrate, the optical signal can be demultiplexed to generate an output beam; and a second substrate is disposed on the input unit, the grating and the mirror, and a waveguide space is formed between the substrate and the first substrate; a mirror disposed outside the waveguide unit for reflecting the output beam; and
  • An adjustable reflective unit is disposed outside the waveguide unit for changing an exit angle of the output beam and adjusting a focal length of the output beam.
  • the input unit and the grating are formed by exposing a photoresist layer by using a high-energy light source, and the high-energy light source has a wavelength ranging from 0.01 nm to 100 nm.
  • the grating has a concave, convex or planar profile, and the surface thereof exhibits a continuous lamellar pattern, a sawtooth pattern, a flamed state, a sinusoidal aspect or a combination thereof.
  • the waveguide unit and the adjustable reflective unit are covered by an outer casing.
  • the bottom surface of the outer casing is provided with a sliding slot, and a rear surface is disposed therein.
  • the sliding member slides in the sliding slot, and the adjustable reflecting unit is coupled with the sliding member for adjusting the focal length of the output beam.
  • FIG. 1 is a schematic diagram of an optical demultiplexing device in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an optical demultiplexing device in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optical demultiplexing device in accordance with a preferred embodiment of the present invention.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the element The number can be multiple, and the term “a” cannot be construed as limiting the quantity.
  • an optical demultiplexing device As shown in FIG. 1, an optical demultiplexing device according to the present invention is illustrated, wherein the optical demultiplexing device 10 is mainly composed of a waveguide unit 11 and a tunable reflecting unit 12, and the waveguide unit 11 and the The modulating reflection unit 12 is covered by an outer casing 13 and a cover plate 14.
  • the waveguide unit 11 has a first substrate 111, an input unit 112, a grating 113, a mirror 114, and a second substrate 116.
  • the input unit 112 is formed on the first substrate 111 and receives an optical signal through the slit 115, and the slit 115 has a width of between 5 micrometers ( ⁇ m) and 500 micrometers.
  • the grating 113 is formed on the first substrate 111, and generates a first beam (defocused focus beam) according to the optical signal, that is, the effect of splitting is achieved, and is formed on the first substrate.
  • Mirror 114 the input unit 112 and the grating 113 and a mirror 114 are formed on the first substrate by exposing a photoresist layer through a high-energy light source.
  • the high-energy light source described above is any one of X-ray, soft X-ray or ultra-ultraviolet light.
  • the X-ray has a wavelength of 0.01 nm to 1 nm; the soft X-ray has a wavelength of 0.1 nm to 10 nm; and the ultra-ultraviolet light has a wavelength of 10 nm to 120 nm.
  • the first substrate 111 and the second substrate 116 are any of a semiconductor substrate, a glass substrate, a metal substrate, or a plastic substrate.
  • the wavelength of the high-energy light source is between 0.1 nm and 1 nm, which is more suitable than 1 nm to 100 nm.
  • the material of the photoresist layer is SU-8 or PMMA (polymethyl methacrylate).
  • the grating 113 has a concave, convex or planar profile, and its surface exhibits a continuous sheet state, a sawtooth pattern, a flame state, a sinusoidal aspect or a combination thereof.
  • the grating 113 is used to increase the diffraction efficiency of a particular diffraction level, and the most suitable optical signal wavelength is between about 200 nanometers (nm) and 2000 nanometers.
  • the design of the mirror 114 in the above embodiment allows The first light beam is secondarily reflected by the waveguide unit 11 such that the waveguide unit 11 reduces the volume of the light splitting means on the premise that the optical path distance is the same.
  • FIGS. 2 and 3 are diagrams illustrating another embodiment of an optical demultiplexing device in accordance with the present invention, wherein the optical demultiplexing device is a component of a mirror 114, wherein the mirror 114 is disposed outside the waveguide unit 11,
  • another adjustable reflective unit 12 is configured to output the first beam (defocused focused beam) from the mirror 114 and to change the exit angle of the first beam.
  • An image sensor 151 can receive the first light beam from the adjustable reflection unit 12 for subsequent processing.
  • the first substrate 111 is covered by the input unit 112, the grating 113, and the mirror 114. Therefore, the first substrate 111 and the second substrate 116 are connected to the second substrate 116.
  • the space between them can be regarded as a waveguide unit 11 for receiving and transmitting optical signals.
  • the input unit 112 and the grating 113 are formed on the first substrate 111 by exposing a photoresist layer via a high-energy light source.
  • the high-energy light source is any one of X-ray, soft X-ray or ultra-ultraviolet light.
  • the X-ray has a wavelength of 0.01 nm to 1 nm; the soft X-ray has a wavelength of 0.1 nm to 10 nm; and the ultra-ultraviolet light has a wavelength of 10 nm to 120 nm.
  • the first substrate 111 and the second substrate 116 are any of a semiconductor substrate, a glass substrate, a metal substrate, or a plastic substrate.
  • the wavelength of the high-energy light source is between 0.1 nm and 1 nm, which is more suitable than 1 nm to 100 nm.
  • the material of the photoresist layer is SU-8 or PMMA (polymethyl methacrylate).
  • an image sensor 151 can be placed on the optical demultiplexing according to the user's needs. Any direction and position of the device 10 (especially above or below) to reduce the overall volume.
  • the cover 14 is disposed with an opening 141 corresponding to the adjustable reflection unit 12 to facilitate the The output of the first beam.
  • the cover 14 is disposed with a circuit carrier 15
  • the image sensor 151 is disposed on the circuit carrier 15 corresponding to the position of the opening 141 for receiving the first light beam. Subsequent analysis is used.
  • the image sensor 151 is combined with the optical demultiplexing device 10 of the present invention, which greatly reduces the volume of the entire system.
  • the bottom surface of the outer casing 13 is provided with a sliding slot 131, which is further disposed with a sliding member 132 therein, which can be moved in the required position in the sliding slot 131.
  • the adjustable reflective unit 12 is coupled to the slider 132 for adjusting the focal length of the output beam. That is, when the first beam output is out of focus, the user can adjust the position of the adjustable reflection unit 12 through the slider 132 to change the distance of the entire optical path to achieve the purpose of adjusting the focal length of the output beam.
  • the optical demultiplexing device 10 of the present invention is a structure in which the waveguide unit 11 and the reflection unit 12 are covered by the outer casing 13 and the cover 14 through the outer casing.
  • the protection of the cover plate 13 and the cover 14 can prevent the waveguide unit 11 and the reflection unit 12 from directly contacting external forces, thereby ensuring the stability of the overall structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种光学分波装置,主要由一波导单元(11)与一可调式反射单元(12)所组成,该波导单元(11)系具有一第一基板(111)、一输入单元(112)、一光栅(113)、一反射镜(114)以及一第二基板(116),输入单元(112)形成于第一基板(111)上,并具有一狭缝(115)以接收一光学讯号;光栅(113)形成于第一基板(111)上,可对光学讯号分波后产生一输出光束;反射镜(114)形成于该第一基板(111)上,用以反射输出光束;第二基板(116)系配置于输入单元(112)、光栅(113)与反射镜(114)上,其与第一基板(111)之间形成一波导空间,可调式反射单元(12)则配置于波导单元(11)外部,用以改变输出光束的出射角度与调整该输出光束的焦距。

Description

光学分波装置 技术领域
本发明涉及光学分波装置,尤指一种可缩小体积与提升分光精确度之光学分波装置。
背景技术
传统的光谱仪通常是采用棱镜、光栅或干涉组件等分光器以实现色散效果,但必须在整体体积与光谱解析能力之间互相妥协。因此,传统的高分辨率光谱仪因为其光学系统庞大、复杂而较为昂贵。
为求缩小光谱仪之体积,LIGA(Lithography,Electroplating,and Molding),乃一种结合微影、电镀以及制模的微制造程序,可令微结构于制造时具有高精确度,并令微结构的高度可达到数百甚至数千微米的厚度。由于光栅结构具有小间距的原因,故LIGA(Lithography,Electroplating,and Molding)的脱模过程良率与分光精确度是不足以满足制造垂直光栅的。
进一步的,由于制程参数问题将导致分光器对光线聚焦时出现偏移,使分光器的精确度降低,因此,如何实现可缩小体积与提升分光精确度之光学分波装置,实为一具有意义的思考方向。
发明内容
本发明的目的之一在于揭露一光学分波装置,用以达到缩小体积与提升分光精确度之目的。
为了实现上述发明目的,本发明提供了一种光学分波装置,其中所述光学分波装置包括:
一波导单元,其中所述波导单元包括一第一基板;一输入单元,系形成于该第一基板上,并具有一狭缝,用以接收一光学讯号;一光栅,系形成于该第一基板上,可对该光学讯号分波后产生一输出光束;一反射镜,系形成于该第一基板上,用以反射该输出光束;以及一第二基板,系配置于该输入单元、该光栅与该 反射镜上,其与该第一基板之间形成一波导空间;和
一可调式反射单元,系配置于该波导单元外部,用以改变该输出光束的出射角度与调整该输出光束的焦距。
根据本发明的一个实施例,进一步该输入单元、光栅及反射镜系利用高能量光源对一光阻层进行曝光所形成,且该高能量光源的波长范围介于系0.01纳米至100纳米之间。
根据本发明的一个实施例,该光栅具有凹面、凸面或平面的轮廓,且其表面呈现连续薄片态样、锯齿态样、火焰态样、正弦曲线态样或上述之组合态样。
根据本发明的一个实施例,该波导单元与该可调式反射单元系由一外壳体所包覆。
根据本发明的一个实施例,该外壳体底面系配置有一滑槽,其内配置有一可于该滑槽内滑移之滑动件,且该可调式反射单元系与该滑动件连动,用以调整该输出光束的焦距。
为了实现上述发明目的,根据本发明的另一方面,提供了一种光学分波装置,其中所述光学分波装置包括:
一波导单元,其中所述波导单元包括一第一基板;一输入单元,系形成于该第一基板上,并具有一狭缝,用以接收一光学讯号;一光栅,系形成于该第一基板上,可对该光学讯号分波后产生一输出光束;以及一第二基板,系配置于该输入单元、该光栅与该反射镜上,其与该第一基板之间形成一波导空间;一反射镜,系配置于该波导单元外部,用以反射该输出光束;和
一可调式反射单元所组成,系配置于该波导单元外部,用以改变该输出光束的出射角度与调整该输出光束的焦距。
根据本发明的一实施例,进一步该输入单元及光栅系利用高能量光源对一光阻层进行曝光所形成,且该高能量光源的波长范围介于系0.01纳米至100纳米之间。
根据本发明的一实施例,该光栅具有凹面、凸面或平面的轮廓,且其表面呈现连续薄片态样、锯齿态样、火焰态样、正弦曲线态样或上述之组合态样。
根据本发明的一实施例,该波导单元与该可调式反射单元系由一外壳体所包覆。
根据本发明的一实施例,该外壳体底面系配置有一滑槽,其内配置有一可于 该滑槽内滑移之滑动件,且该可调式反射单元系与该滑动件连动,用以调整该输出光束的焦距。
附图说明
图1是根据本发明的一较佳实施例的一光学分波装置的示意图。
图2是根据本发明的一较佳实施例的一光学分波装置的示意图。
图3是根据本发明的一较佳实施例的一光学分波装置的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
在说明书及后续的申请专利范围当中使用了某些词汇来指称特定的组件。所属领域中具有通常知识者应可理解,硬件制造商可能会用不同的名词来称呼同一个组件。本说明书及后续的申请专利范围并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。在通篇说明书及后续的请求项当中所提及的「包含」系为一开放式的用语,故应解释成「包含但不限定于」。
如附图1所示,根据本发明的一光学分波装置被阐明,其中该光学分波装置10主要由一波导单元11与一可调式反射单元12所组成,该波导单元11与该可 调式反射单元12由一外壳体13与一盖板14所包覆。该波导单元11系具有一第一基板111、一输入单元112、一光栅113、一反射镜114以及一第二基板116。该输入单元112形成于该第一基板111上,并可经由该狭缝115接收一光学讯号,且该狭缝115的宽度介于5微米(μm)至500微米之间。该光栅113形成于该第一基板111上,可根据该光学讯号产生输出之一第一光束(散焦聚焦光束),意即达到分光的效果,并将其射入形成于该第一基板上的反射镜114。此外,上述该输入单元112与该光栅113及一反射镜114系形成于该第一基板上经由一高能量光源对一光阻层曝光而形成的。上述该高能量光源系为X光、软X光或超紫外光中之任一者。X光的波长为0.01纳米至1纳米;软X光的波长为0.1纳米至10纳米;超紫外光的波长则为10纳米至120纳米。该第一基板111与该第二基板116系为半导体基板、玻璃基板、金属基板或塑料基板中之任一者。再者,于光学电信以区域光学通讯领域中,会因为表面粗糙度限制的关系,故该高能量光源的波长介于0.1纳米至1纳米会比1纳米至100纳米来的恰当,而上述该光阻层的材质系为SU-8或PMMA(聚甲基丙烯酸甲酯)。
接续上述该光栅113具有凹面、凸面或平面的轮廓,且其表面呈现连续薄片态样、锯齿态样、火焰态样、正弦曲线态样或上述之组合态样。一般来说,光栅113系用来增加特定绕射层级的绕射效率,最适当的光学讯号波长大约介于200纳米(nm)至2000纳米之间。
由于光学讯号从狭缝115进入波导单元11到输出所行经的总路程是精算后固定的,路程过长或过短都将影响像差,因此上述实施例中该反射镜114的设计,可以让上述该第一光束于波导单元11进行二次反射,使得波导单元11在光路距离相同的前提下,使其分光装置缩小体积。
附图2和3是根据本发明的另一关于光学分波装置的实施例被阐明,其中该光学分波装置的组件一反射镜114,其中该反射镜114系配置于该波导单元11外部,用以反射该输出光束,另一可调式反射单元12系用以输出来自该反射镜114的该第一光束(散焦聚焦光束),并且可改变该第一光束的出射角度。而一影像传感器151则可接收来自于该可调式反射单元12的该第一光束,以进行后续处理。
接续上述实施例,如图2中所示,其中该第二基板116系覆盖于该输入单元112、该光栅113以及该反射镜114上,因此,该第一基板111与该第二基板116 之间的空间即可视为一波导单元11,用以接收与传送光学讯号。
此外,接续上述实施例,其中该输入单元112与该光栅113形成于该第一基板上111上系经由一高能量光源对一光阻层曝光而形成的。而上述该高能量光源系为X光、软X光或超紫外光中之任一者。X光的波长为0.01纳米至1纳米;软X光的波长为0.1纳米至10纳米;超紫外光的波长则为10纳米至120纳米。该第一基板111与该第二基板116系为半导体基板、玻璃基板、金属基板或塑料基板中之任一者。再者,于光学电信以区域光学通讯领域中,会因为表面粗糙度限制的关系,故该高能量光源的波长介于0.1纳米至1纳米会比1纳米至100纳米来的恰当,而上述该光阻层的材质系为SU-8或PMMA(聚甲基丙烯酸甲酯)。
接续上述实施例,由于上述该可调式反射单元12系用以改变来自于反射镜114的第一光束输出角度与位置,故一影像传感器151就能根据使用者的需求而放置于该光学分波装置10的任何方向与位置(尤指上方或下方),以缩小整体的体积。
此外,如图2及图3中所示,由于上述可调式反射单元12改变了第一光束的出射角度,故该盖板14系对应该可调式反射单元12而配置有一开口141,以利该第一光束的输出。以本发明的实施例来说,该盖板14上配置有一电路载板15,而影像传感器151则对应开口141的位置而配置于该电路载板15上,用以接收该第一光束,以利后续的分析使用。如此将影像传感器151与本发明之光学分波装置10结合,更大幅缩小了整个系统的体积。
进一步,如图2中所示,该外壳体13底面系配置有一滑槽131,其进一步在内配置有一滑动件132,可在于该滑槽131内滑移所需要的位置。该可调式反射单元12系与该滑动件132连动,用以调整该输出光束的焦距。意即,当该第一光束输出失焦时,则使用者可以透过该滑动件132来调整该可调式反射单元12的位置,以改变整体光路的距离,达到调整输出光束焦距的目的。
再接续上述实施例,如图3中所示由于本发明之光学分波装置10系为利用外壳体13与盖板14将波导单元11与反射单元12包覆于内的架构,透过外壳体13与盖板14的保护,可避免波导单元11与该反射单元12直接与外力接触,确保整体结构的稳固性。当光学讯号透过光输入单元16(通常为光纤缆线)经由该狭缝115进入波导单元11内时,即展开分光的流程。
在详细说明上述本发明的各项较佳实施例之后,熟悉该项技术人士可清楚 的了解,在不脱离下述申请专利范围与精神下可进行各种变化与改变,如限位单元的各种实施态样等等,亦不受限于说明书之实施例的实施方式。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (10)

  1. 一种光学分波装置,其特征在于,包含:
    一波导单元,其中所述波导单元包括:
    一第一基板;
    一输入单元,系形成于该第一基板上,并具有一狭缝,用以接收一光学讯号;
    一光栅,系形成于该第一基板上,可对该光学讯号分波后产生一输出光束;
    一反射镜,系形成于该第一基板上,用以反射该输出光束;以及
    一第二基板,系配置于该输入单元、该光栅与该反射镜上,其与该第一基板之间形成一波导空间;和
    一可调式反射单元,系配置于该波导单元外部,用以改变该输出光束的出射角度与调整该输出光束的焦距。
  2. 根据权利要求1所述的光学分波装置,其中进一步该输入单元、光栅及反射镜系利用高能量光源对一光阻层进行曝光所形成,且该高能量光源的波长范围介于系0.01纳米至100纳米之间。
  3. 根据权利要求1所述的光学分波装置,其中该光栅具有凹面、凸面或平面的轮廓,且其表面呈现连续薄片态样、锯齿态样、火焰态样、正弦曲线态样或上述之组合态样。
  4. 根据权利要求1所述的光学分波装置,其中该波导单元与该可调式反射单元系由一外壳体所包覆。
  5. 根据权利要求4所述的光学分波装置,其中该外壳体底面系配置有一滑槽,其内配置有一可于该滑槽内滑移之滑动件,且该可调式反射单元系与该滑动件连动,用以调整该输出光束的焦距。
  6. 一种光学分波装置,其特征在于,包括:
    一波导单元,其中所述波导单元包括:
    一第一基板;
    一输入单元,系形成于该第一基板上,并具有一狭缝,用以接收一光学讯号;
    一光栅,系形成于该第一基板上,可对该光学讯号分波后产生一输出光束;以及
    一第二基板,系配置于该输入单元、该光栅与该反射镜上,其与该第一基板之间形成一波导空间;
    一反射镜,系配置于该波导单元外部,用以反射该输出光束;和
    一可调式反射单元所组成,系配置于该波导单元外部,用以改变该输出光束的出射角度与调整该输出光束的焦距。
  7. 根据权利要求6所述的光学分波装置,其中进一步该输入单元及光栅系利用高能量光源对一光阻层进行曝光所形成,且该高能量光源的波长范围介于系0.01纳米至100纳米之间。
  8. 根据权利要求6所述的光学分波装置,其中该光栅具有凹面、凸面或平面的轮廓,且其表面呈现连续薄片态样、锯齿态样、火焰态样、正弦曲线态样或上述之组合态样。
  9. 根据权利要求6所述的光学分波装置,其中该波导单元与该可调式反射单元系由一外壳体所包覆。
  10. 根据权利要求9所述的光学分波装置,其中该外壳体底面系配置有一滑槽,其内配置有一可于该滑槽内滑移之滑动件,且该可调式反射单元系与该滑动件连动,用以调整该输出光束的焦距。
PCT/CN2017/113888 2017-11-30 2017-11-30 光学分波装置 WO2019104621A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187027569A KR102720779B1 (ko) 2017-11-30 2017-11-30 광학 분파 장치
EP17898350.8A EP3518009A4 (en) 2017-11-30 2017-11-30 DEVICE FOR SEPARATING OPTICAL WAVES
JP2018553905A JP7241543B2 (ja) 2017-11-30 2017-11-30 光学分波装置
CN201780001792.6A CN110392853A (zh) 2017-11-30 2017-11-30 光学分波装置
PCT/CN2017/113888 WO2019104621A1 (zh) 2017-11-30 2017-11-30 光学分波装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113888 WO2019104621A1 (zh) 2017-11-30 2017-11-30 光学分波装置

Publications (1)

Publication Number Publication Date
WO2019104621A1 true WO2019104621A1 (zh) 2019-06-06

Family

ID=66663718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113888 WO2019104621A1 (zh) 2017-11-30 2017-11-30 光学分波装置

Country Status (5)

Country Link
EP (1) EP3518009A4 (zh)
JP (1) JP7241543B2 (zh)
KR (1) KR102720779B1 (zh)
CN (1) CN110392853A (zh)
WO (1) WO2019104621A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036271A (zh) * 1988-06-01 1989-10-11 射家宇 一种彩色立体影象助拍器和体视眼镜及其滤色片的制作方法
CN1779498A (zh) * 2004-11-26 2006-05-31 鸿富锦精密工业(深圳)有限公司 变焦装置及方法
WO2012105943A1 (en) * 2011-01-31 2012-08-09 Hewlett-Packard Development Company, L.P. Broadband optical beam splitters
CN103459995A (zh) * 2011-11-08 2013-12-18 柯正浩 光学波长分光装置及其制造方法
CN103782208A (zh) * 2011-11-25 2014-05-07 柯正浩 光学波长分光装置及其制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670095A (ja) * 1992-08-20 1994-03-11 Nikon Corp 画像読み取り装置
JP2003139611A (ja) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd 分光光度計
JP3852409B2 (ja) * 2003-02-04 2006-11-29 富士通株式会社 光機能デバイス
JP4489678B2 (ja) * 2005-09-30 2010-06-23 富士通株式会社 波長選択光スイッチおよび分光機能を備えた光デバイス
US20070160321A1 (en) * 2005-12-01 2007-07-12 The Regents Of The University Of California Monolithic mems-based wavelength-selective switches and cross connects
US7889991B2 (en) * 2007-02-12 2011-02-15 Jds Uniphase Corporation Planar lightwave circuit based tunable 3 port filter
KR101018135B1 (ko) * 2008-08-04 2011-02-25 삼성전기주식회사 자율주행체의 공간 스캔 장치
US9110232B2 (en) * 2011-06-03 2015-08-18 Neophotonics Corporation Thermally compensated arrayed waveguide grating assemblies
CN102359949A (zh) * 2011-09-20 2012-02-22 重庆大学 一种基于mems扫描微镜的高分辨率微型红外光谱仪
CN103235396A (zh) * 2013-04-07 2013-08-07 西安交通大学 多自由度光路调节系统
US9482862B2 (en) * 2013-07-26 2016-11-01 Neophotonics Corporation Adjustable grid tracking transmitters and receivers
CN106537200A (zh) * 2014-03-07 2017-03-22 瓦里奥管理有限合伙 基于反射镜的微机电系统和方法
CN104486550B (zh) * 2014-12-29 2017-09-12 中国科学院长春光学精密机械与物理研究所 航空相机图像检焦装置及方法
CN105530418B (zh) * 2015-02-13 2019-09-27 福州瑞芯微电子股份有限公司 便携式电子设备,及其中的摄像结构
US10324297B2 (en) * 2015-11-30 2019-06-18 Magna Electronics Inc. Heads up display system for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036271A (zh) * 1988-06-01 1989-10-11 射家宇 一种彩色立体影象助拍器和体视眼镜及其滤色片的制作方法
CN1779498A (zh) * 2004-11-26 2006-05-31 鸿富锦精密工业(深圳)有限公司 变焦装置及方法
WO2012105943A1 (en) * 2011-01-31 2012-08-09 Hewlett-Packard Development Company, L.P. Broadband optical beam splitters
CN103459995A (zh) * 2011-11-08 2013-12-18 柯正浩 光学波长分光装置及其制造方法
CN103782208A (zh) * 2011-11-25 2014-05-07 柯正浩 光学波长分光装置及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3518009A4 *

Also Published As

Publication number Publication date
JP7241543B2 (ja) 2023-03-17
CN110392853A (zh) 2019-10-29
EP3518009A4 (en) 2019-12-11
EP3518009A1 (en) 2019-07-31
KR102720779B1 (ko) 2024-10-23
JP2021510195A (ja) 2021-04-15
KR20200093715A (ko) 2020-08-06

Similar Documents

Publication Publication Date Title
US6741349B1 (en) Optical microspectrometer
US20200363323A1 (en) Spectrometer
JP6966285B2 (ja) クロマティック共焦点距離センサー
CN205537958U (zh) 一种基于蚀刻衍射光栅的成像光谱仪
CN105547478B (zh) 基于蚀刻衍射光栅的成像光谱仪
JP2002214533A (ja) 共焦点顕微鏡
US11086057B2 (en) Optical wavelength device
WO2019104621A1 (zh) 光学分波装置
US8717561B2 (en) Miniature spectrometer with stray light filtering structure
TWI653479B (zh) Optical demultiplexer
CN208887786U (zh) 一种高分辨率光谱仪
US8515223B2 (en) Lens
CN114877825B (zh) 一种基于超表面分光的用于三维面型测量的线形光谱共焦系统
TW201135196A (en) Micro spectrometer with stray light filtering structure
WO2019095133A1 (en) Waveguide array module and receiver optical sub-assembly
WO2019104623A1 (zh) 光学分波装置及其制造方法
US10620445B2 (en) Optical wavelength dispersion device and manufacturing method therefor
TWI644135B (zh) Optical demultiplexing device and method of manufacturing same
ITTO980305A1 (it) Reticolo di bragg in fibra ottica con piano equivalente spostato e pro cedimento per la sua realizzazione.
EP2896941B1 (en) Miniature spectrometer comprising dispersive body
CN105866940B (zh) 一带宽及波长可调的光滤波器
CN104729995B (zh) 基于可编程微镜阵列菲涅尔波带片的微型光谱仪
JP2001027509A (ja) マイケルソン干渉計
JP4701581B2 (ja) 蛍光顕微鏡
US12019272B2 (en) Optical spectrometer with high-efficiency optical coupling

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017898350

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018553905

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017898350

Country of ref document: EP

Effective date: 20180907

NENP Non-entry into the national phase

Ref country code: DE