WO2019098969A2 - Dry powder compositions for inhalation - Google Patents
Dry powder compositions for inhalation Download PDFInfo
- Publication number
- WO2019098969A2 WO2019098969A2 PCT/TR2018/050437 TR2018050437W WO2019098969A2 WO 2019098969 A2 WO2019098969 A2 WO 2019098969A2 TR 2018050437 W TR2018050437 W TR 2018050437W WO 2019098969 A2 WO2019098969 A2 WO 2019098969A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dry powder
- powder composition
- mannitol
- inhalation according
- range
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 79
- 239000000203 mixture Substances 0.000 title claims description 120
- 208000023504 respiratory system disease Diseases 0.000 claims abstract description 8
- 238000011282 treatment Methods 0.000 claims abstract description 8
- 230000000414 obstructive effect Effects 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 83
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 47
- 229930195725 Mannitol Natural products 0.000 claims description 46
- 239000000594 mannitol Substances 0.000 claims description 46
- 235000010355 mannitol Nutrition 0.000 claims description 46
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 43
- 239000008101 lactose Substances 0.000 claims description 43
- 229960001375 lactose Drugs 0.000 claims description 26
- 229940110339 Long-acting muscarinic antagonist Drugs 0.000 claims description 18
- 239000002775 capsule Substances 0.000 claims description 14
- 239000003246 corticosteroid Substances 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 13
- 239000000969 carrier Substances 0.000 claims description 12
- 229960001469 fluticasone furoate Drugs 0.000 claims description 11
- 239000000048 adrenergic agonist Substances 0.000 claims description 10
- 229940112141 dry powder inhaler Drugs 0.000 claims description 10
- XTULMSXFIHGYFS-VLSRWLAYSA-N fluticasone furoate Chemical group O([C@]1([C@@]2(C)C[C@H](O)[C@]3(F)[C@@]4(C)C=CC(=O)C=C4[C@@H](F)C[C@H]3[C@@H]2C[C@H]1C)C(=O)SCF)C(=O)C1=CC=CO1 XTULMSXFIHGYFS-VLSRWLAYSA-N 0.000 claims description 10
- 229960004541 umeclidinium bromide Drugs 0.000 claims description 10
- PEJHHXHHNGORMP-AVADPIKZSA-M umeclidinium bromide Chemical group [Br-].C=1C=CC=CC=1C([C@@]12CC[N@@+](CCOCC=3C=CC=CC=3)(CC1)CC2)(O)C1=CC=CC=C1 PEJHHXHHNGORMP-AVADPIKZSA-M 0.000 claims description 9
- DAFYYTQWSAWIGS-DEOSSOPVSA-N vilanterol Chemical compound C1=C(O)C(CO)=CC([C@@H](O)CNCCCCCCOCCOCC=2C(=CC=CC=2Cl)Cl)=C1 DAFYYTQWSAWIGS-DEOSSOPVSA-N 0.000 claims description 9
- 229960002282 vilanterol trifenatate Drugs 0.000 claims description 9
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 8
- -1 cortivasole Chemical compound 0.000 claims description 8
- 239000002552 dosage form Substances 0.000 claims description 8
- MGNNYOODZCAHBA-GQKYHHCASA-N fluticasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(O)[C@@]2(C)C[C@@H]1O MGNNYOODZCAHBA-GQKYHHCASA-N 0.000 claims description 8
- 229960004026 vilanterol Drugs 0.000 claims description 8
- KLOLZALDXGTNQE-JIDHJSLPSA-N vilanterol trifenate Chemical group C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)O)C1=CC=CC=C1.C1=C(O)C(CO)=CC([C@@H](O)CNCCCCCCOCCOCC=2C(=CC=CC=2Cl)Cl)=C1 KLOLZALDXGTNQE-JIDHJSLPSA-N 0.000 claims description 8
- FVTWTVQXNAJTQP-UHFFFAOYSA-N diphenyl-[1-(2-phenylmethoxyethyl)-1-azoniabicyclo[2.2.2]octan-4-yl]methanol Chemical compound C=1C=CC=CC=1C(C12CC[N+](CCOCC=3C=CC=CC=3)(CC1)CC2)(O)C1=CC=CC=C1 FVTWTVQXNAJTQP-UHFFFAOYSA-N 0.000 claims description 7
- 229960002714 fluticasone Drugs 0.000 claims description 7
- 229960004258 umeclidinium Drugs 0.000 claims description 6
- 150000001413 amino acids Chemical class 0.000 claims description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 claims description 4
- 238000007873 sieving Methods 0.000 claims description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 3
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 claims description 2
- NBMKJKDGKREAPL-CXSFZGCWSA-N (8s,9r,10s,11s,13s,14s,16r,17r)-9-chloro-11,17-dihydroxy-17-(2-hydroxyacetyl)-10,13,16-trimethyl-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-3-one Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-CXSFZGCWSA-N 0.000 claims description 2
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 claims description 2
- ZESRJSPZRDMNHY-YFWFAHHUSA-N 11-deoxycorticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 ZESRJSPZRDMNHY-YFWFAHHUSA-N 0.000 claims description 2
- BKLAJZNVMHLXAP-VKGMXUHCSA-N 3-[(1r,5s)-8,8-dimethyl-8-azoniabicyclo[3.2.1]octan-3-yl]-2,2-diphenylpropanenitrile Chemical compound C([C@H]1CC[C@@H](C2)[N+]1(C)C)C2CC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 BKLAJZNVMHLXAP-VKGMXUHCSA-N 0.000 claims description 2
- IHOXNOQMRZISPV-YJYMSZOUSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-methoxyphenyl)propan-2-yl]azaniumyl]ethyl]-2-oxo-1h-quinolin-8-olate Chemical compound C1=CC(OC)=CC=C1C[C@@H](C)NC[C@H](O)C1=CC=C(O)C2=C1C=CC(=O)N2 IHOXNOQMRZISPV-YJYMSZOUSA-N 0.000 claims description 2
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 claims description 2
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 claims description 2
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 claims description 2
- LUKZNWIVRBCLON-GXOBDPJESA-N Ciclesonide Chemical compound C1([C@H]2O[C@@]3([C@H](O2)C[C@@H]2[C@@]3(C[C@H](O)[C@@H]3[C@@]4(C)C=CC(=O)C=C4CC[C@H]32)C)C(=O)COC(=O)C(C)C)CCCCC1 LUKZNWIVRBCLON-GXOBDPJESA-N 0.000 claims description 2
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 claims description 2
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- 239000004386 Erythritol Substances 0.000 claims description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 claims description 2
- POPFMWWJOGLOIF-XWCQMRHXSA-N Flurandrenolide Chemical compound C1([C@@H](F)C2)=CC(=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O POPFMWWJOGLOIF-XWCQMRHXSA-N 0.000 claims description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 claims description 2
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 claims description 2
- MKPDWECBUAZOHP-AFYJWTTESA-N Paramethasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]2(C)C[C@@H]1O MKPDWECBUAZOHP-AFYJWTTESA-N 0.000 claims description 2
- BPZSYCZIITTYBL-YJYMSZOUSA-N R-Formoterol Chemical compound C1=CC(OC)=CC=C1C[C@@H](C)NC[C@H](O)C1=CC=C(O)C(NC=O)=C1 BPZSYCZIITTYBL-YJYMSZOUSA-N 0.000 claims description 2
- GIIZNNXWQWCKIB-UHFFFAOYSA-N Serevent Chemical compound C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1 GIIZNNXWQWCKIB-UHFFFAOYSA-N 0.000 claims description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 2
- ASMXXROZKSBQIH-VITNCHFBSA-N aclidinium Chemical compound C([C@@H](C(CC1)CC2)OC(=O)C(O)(C=3SC=CC=3)C=3SC=CC=3)[N+]21CCCOC1=CC=CC=C1 ASMXXROZKSBQIH-VITNCHFBSA-N 0.000 claims description 2
- 229940019903 aclidinium Drugs 0.000 claims description 2
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 claims description 2
- 229960002478 aldosterone Drugs 0.000 claims description 2
- 229960001692 arformoterol Drugs 0.000 claims description 2
- 229960003060 bambuterol Drugs 0.000 claims description 2
- ANZXOIAKUNOVQU-UHFFFAOYSA-N bambuterol Chemical compound CN(C)C(=O)OC1=CC(OC(=O)N(C)C)=CC(C(O)CNC(C)(C)C)=C1 ANZXOIAKUNOVQU-UHFFFAOYSA-N 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims description 2
- 229960004436 budesonide Drugs 0.000 claims description 2
- 229950010713 carmoterol Drugs 0.000 claims description 2
- 229960003728 ciclesonide Drugs 0.000 claims description 2
- 229960001117 clenbuterol Drugs 0.000 claims description 2
- STJMRWALKKWQGH-UHFFFAOYSA-N clenbuterol Chemical compound CC(C)(C)NCC(O)C1=CC(Cl)=C(N)C(Cl)=C1 STJMRWALKKWQGH-UHFFFAOYSA-N 0.000 claims description 2
- 229960004544 cortisone Drugs 0.000 claims description 2
- WBGKWQHBNHJJPZ-LECWWXJVSA-N desonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O WBGKWQHBNHJJPZ-LECWWXJVSA-N 0.000 claims description 2
- 229960003662 desonide Drugs 0.000 claims description 2
- 229960002593 desoximetasone Drugs 0.000 claims description 2
- VWVSBHGCDBMOOT-IIEHVVJPSA-N desoximetasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@H](C(=O)CO)[C@@]1(C)C[C@@H]2O VWVSBHGCDBMOOT-IIEHVVJPSA-N 0.000 claims description 2
- 229960003654 desoxycortone Drugs 0.000 claims description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 claims description 2
- 235000019414 erythritol Nutrition 0.000 claims description 2
- 229940009714 erythritol Drugs 0.000 claims description 2
- 229960004511 fludroxycortide Drugs 0.000 claims description 2
- 229960003469 flumetasone Drugs 0.000 claims description 2
- WXURHACBFYSXBI-GQKYHHCASA-N flumethasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]2(C)C[C@@H]1O WXURHACBFYSXBI-GQKYHHCASA-N 0.000 claims description 2
- 229960000676 flunisolide Drugs 0.000 claims description 2
- GAKMQHDJQHZUTJ-ULHLPKEOSA-N fluocortolone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)CO)[C@@]2(C)C[C@@H]1O GAKMQHDJQHZUTJ-ULHLPKEOSA-N 0.000 claims description 2
- 229960002848 formoterol Drugs 0.000 claims description 2
- BPZSYCZIITTYBL-UHFFFAOYSA-N formoterol Chemical compound C1=CC(OC)=CC=C1CC(C)NCC(O)C1=CC=C(O)C(NC=O)=C1 BPZSYCZIITTYBL-UHFFFAOYSA-N 0.000 claims description 2
- 229960000890 hydrocortisone Drugs 0.000 claims description 2
- 229960004078 indacaterol Drugs 0.000 claims description 2
- QZZUEBNBZAPZLX-QFIPXVFZSA-N indacaterol Chemical compound N1C(=O)C=CC2=C1C(O)=CC=C2[C@@H](O)CNC1CC(C=C(C(=C2)CC)CC)=C2C1 QZZUEBNBZAPZLX-QFIPXVFZSA-N 0.000 claims description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 claims description 2
- 229960000367 inositol Drugs 0.000 claims description 2
- OEXHQOGQTVQTAT-JRNQLAHRSA-N ipratropium Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 OEXHQOGQTVQTAT-JRNQLAHRSA-N 0.000 claims description 2
- 229960001888 ipratropium Drugs 0.000 claims description 2
- 239000000832 lactitol Substances 0.000 claims description 2
- 235000010448 lactitol Nutrition 0.000 claims description 2
- 229960003451 lactitol Drugs 0.000 claims description 2
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 claims description 2
- 239000000845 maltitol Substances 0.000 claims description 2
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 claims description 2
- 235000010449 maltitol Nutrition 0.000 claims description 2
- 229940035436 maltitol Drugs 0.000 claims description 2
- 229960001855 mannitol Drugs 0.000 claims description 2
- 229960001810 meprednisone Drugs 0.000 claims description 2
- PIDANAQULIKBQS-RNUIGHNZSA-N meprednisone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)CC2=O PIDANAQULIKBQS-RNUIGHNZSA-N 0.000 claims description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 2
- LMOINURANNBYCM-UHFFFAOYSA-N metaproterenol Chemical compound CC(C)NCC(O)C1=CC(O)=CC(O)=C1 LMOINURANNBYCM-UHFFFAOYSA-N 0.000 claims description 2
- 229960004584 methylprednisolone Drugs 0.000 claims description 2
- 229960001664 mometasone Drugs 0.000 claims description 2
- QLIIKPVHVRXHRI-CXSFZGCWSA-N mometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O QLIIKPVHVRXHRI-CXSFZGCWSA-N 0.000 claims description 2
- 229960004286 olodaterol Drugs 0.000 claims description 2
- COUYJEVMBVSIHV-SFHVURJKSA-N olodaterol Chemical compound C1=CC(OC)=CC=C1CC(C)(C)NC[C@H](O)C1=CC(O)=CC2=C1OCC(=O)N2 COUYJEVMBVSIHV-SFHVURJKSA-N 0.000 claims description 2
- 229960002657 orciprenaline Drugs 0.000 claims description 2
- 229960002858 paramethasone Drugs 0.000 claims description 2
- 229960005205 prednisolone Drugs 0.000 claims description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 claims description 2
- 229960004618 prednisone Drugs 0.000 claims description 2
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 claims description 2
- MIXMJCQRHVAJIO-TZHJZOAOSA-N qk4dys664x Chemical compound O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O MIXMJCQRHVAJIO-TZHJZOAOSA-N 0.000 claims description 2
- 229960002052 salbutamol Drugs 0.000 claims description 2
- 229960004017 salmeterol Drugs 0.000 claims description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 229960002920 sorbitol Drugs 0.000 claims description 2
- 229960000195 terbutaline Drugs 0.000 claims description 2
- LERNTVKEWCAPOY-DZZGSBJMSA-N tiotropium Chemical compound O([C@H]1C[C@@H]2[N+]([C@H](C1)[C@@H]1[C@H]2O1)(C)C)C(=O)C(O)(C=1SC=CC=1)C1=CC=CS1 LERNTVKEWCAPOY-DZZGSBJMSA-N 0.000 claims description 2
- 229940110309 tiotropium Drugs 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000000811 xylitol Substances 0.000 claims description 2
- 235000010447 xylitol Nutrition 0.000 claims description 2
- 229960002675 xylitol Drugs 0.000 claims description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 abstract description 8
- 208000006673 asthma Diseases 0.000 abstract description 8
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 5
- 239000013543 active substance Substances 0.000 description 22
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 22
- 238000009472 formulation Methods 0.000 description 17
- 210000004072 lung Anatomy 0.000 description 15
- 229940079593 drug Drugs 0.000 description 14
- 239000003814 drug Substances 0.000 description 14
- 235000019359 magnesium stearate Nutrition 0.000 description 11
- 239000000546 pharmaceutical excipient Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229940125389 long-acting beta agonist Drugs 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- 229960001334 corticosteroids Drugs 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000011418 maintenance treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 2
- 206010006458 Bronchitis chronic Diseases 0.000 description 2
- 206010014561 Emphysema Diseases 0.000 description 2
- 206010061876 Obstruction Diseases 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 206010006451 bronchitis Diseases 0.000 description 2
- 208000007451 chronic bronchitis Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229960001021 lactose monohydrate Drugs 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 229940127211 short-acting beta 2 agonist Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- IVFHIIPWLILHCX-KVXXQBCDSA-N 4-[(1r)-2-[6-[2-[(2,6-dichlorophenyl)methoxy]ethoxy]hexylamino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol;[(6s,9r,10s,11s,13s,14s,16r,17r)-6,9-difluoro-17-(fluoromethylsulfanylcarbonyl)-11-hydroxy-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclo Chemical compound C1=C(O)C(CO)=CC([C@@H](O)CNCCCCCCOCCOCC=2C(=CC=CC=2Cl)Cl)=C1.O([C@]1([C@@]2(C)C[C@H](O)[C@]3(F)[C@@]4(C)C=CC(=O)C=C4[C@@H](F)CC3[C@@H]2C[C@H]1C)C(=O)SCF)C(=O)C1=CC=CO1 IVFHIIPWLILHCX-KVXXQBCDSA-N 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- 108010043222 Exubera Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 201000010538 Lactose Intolerance Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000234295 Musa Species 0.000 description 1
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 1
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 1
- 208000027771 Obstructive airways disease Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- PEJHHXHHNGORMP-UHFFFAOYSA-M Umeclidinium bromide Chemical compound [Br-].C=1C=CC=CC=1C(C12CC[N+](CCOCC=3C=CC=CC=3)(CC1)CC2)(O)C1=CC=CC=C1 PEJHHXHHNGORMP-UHFFFAOYSA-M 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 210000005091 airway smooth muscle Anatomy 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 1
- 229940127098 breo ellipta Drugs 0.000 description 1
- 230000007885 bronchoconstriction Effects 0.000 description 1
- 230000007883 bronchodilation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000013066 combination product Substances 0.000 description 1
- 229940127555 combination product Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 1
- 229940012151 exubera Drugs 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229940125369 inhaled corticosteroids Drugs 0.000 description 1
- 230000003434 inspiratory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229940127212 long-acting beta 2 agonist Drugs 0.000 description 1
- 230000004199 lung function Effects 0.000 description 1
- 229940071648 metered dose inhaler Drugs 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229940035289 tobi Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/0075—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/138—Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/439—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/58—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/145—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/08—Bronchodilators
Definitions
- the invention relates to dry powder pharmaceutical compositions and inhalers comprising them which are used in the treatment of chronic obstructive pulmonary disease (COPD), asthma and other obstructive airway diseases.
- COPD chronic obstructive pulmonary disease
- COPD chronic obstructive pulmonary disease
- DPIs dry powder inhalers
- these goals can be met with a suitable powder formulation, an efficient metering system, and a carefully selected device. Dry powder inhalers are well known devices for administering pharmaceutically active agents to the respiratory tract to treat respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
- COPD chronic obstructive pulmonary disease
- compositions for inhalation used in the treatment of obstructive airway diseases can comprise various active agents such as long acting muscarinic antagonists (LAMA), long acting beta agonists (LABA), short acting beta-2 agonists (SABA) and corticosteroids.
- LAMA long acting muscarinic antagonists
- LABA long acting beta agonists
- SABA short acting beta-2 agonists
- corticosteroids corticosteroids
- Inhaled corticosteroids reduce inflammation in the airways that carry air to the lungs (bronchial tubes) and reduce the mucus made by the bronchial tubes which makes easier to breathe.
- Fluticasone is the most commonly used corticosteroid in the dry powder formulations for inhalation.
- Fluticasone furoate which is a salt of fluticasone, is a synthetic trifluorinated corticosteroid with potent anti-inflammatory activity.
- Fluticasone furoate is available as a combination product with vilanterol, under the tradename Breo Ellipta®. Its use is indicated for the long-term, once-daily maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and emphysema.
- Beta2-agonists are used only in combination with a corticosteroid to treat asthma. They are used in a metered-dose or dry powder inhaler. They relax the smooth muscles lining the airways that carry air to the lungs (bronchial tubes). This allows the tubes to stay open longer and makes breathing easier.
- Vilanterol is a selective long-acting beta2-adrenergic agonist (LABA) with inherent 24-hour activity for once daily treatment of COPD and asthma.
- VAA beta2-adrenergic agonist
- Vilanterol is also approved for use in combination with umeclidinium bromide as Anoro Ellipta®. It is indicated for the long term, once-daily maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and emphysema. It is also indicated for once-daily maintenance treatment of asthma in patients aged 18 or older with reversible obstructive airways disease.
- muscarinic antagonists formerly known as anticholinergics, cause bronchodilation with a duration of action of over 24 hours and are used once daily.
- Umeclidinium which is a long-acting muscarinic antagonist (LAMA), blocks the M3 muscarinic receptor which is highly expressed in airway smooth muscle of the lungs, inhibits the binding of acetylcholine and thereby opens up the airways by preventing bronchoconstriction. Its use has been shown to provide clinically significant, sustained improvements in lung function.
- LAMA long-acting muscarinic antagonist
- DPI formulations consist of micronized drug blended with larger carrier particles, which enhance flow, reduce aggregation, and aid in dispersion.
- a combination of intrinsic physicochemical properties, particle size, shape, surface area, and morphology affects the forces of interaction and aerodynamic properties, which in turn determine fluidization, dispersion, delivery to the lungs, and deposition in the peripheral airways.
- Small drug particles are likely to agglomerate. Said coagulation can be prevented by employing suitable carrier or carrier mixtures. It also assists in controlling the fluidity of the drug coming out of the carrier device and ensuring that the active ingredient reaching to lungs is accurate and consistent.
- difference of the particle sizes between the carrier and the drug is important in order to optimize the cohesive forces and also to ensure the content uniformity.
- mannitol is also suggested as carrier instead of lactose.
- the patent application numbered EP2682097A2 reveals disadvantages rising with the excess use of lactose in inhalation formulations and highlights the use of a carrier other than lactose, namely mannitol.
- lactose cannot be used for compounds that interact with the reducing sugar function of the lactose.
- Such drugs are the ones having amine groups, as described above, especially the ones having primary or secondary amine.
- the use of mannitol seems reasonable; however, mannitol also has its own disadvantages in case of misuse or overuse.
- EP2682108A2 the use of a tertiary material such as magnesium stearate, stearic acid, sodium lauryl sulphate, sodium stearyl fumarate, stearyl alcohol, sodium benzoate or their mixtures to provide stability; especially magnesium stearate is suggested to improve the moisture resistance of the powder formulation.
- a tertiary material such as magnesium stearate, stearic acid, sodium lauryl sulphate, sodium stearyl fumarate, stearyl alcohol, sodium benzoate or their mixtures to provide stability; especially magnesium stearate is suggested to improve the moisture resistance of the powder formulation.
- Moisture in the air is one of the challenges while improving DPIs since it causes the dry powder to clump together and clog the inhaler. This is a potential problem especially for capsule and blister based DPI products, where any moisture ingress occurring during storage may change the chemical behavior and influence the long-term performance of the product. It can also lead to other crucial problems such as the failure in the dosage accuracy present in each cavity or capsule and the decrease in the stability and in the effectiveness of the treatment.
- the selection of the active agents, suitable carriers and probable other excipients for these active agents, and also their ratios in the formulation has a significant effect on the hygroscopic behavior of the total powder mixture.
- the prior art has not put any emphasis on these alternative solutions.
- DPI formulation comprising a ternary combination of active agents selected from the group comprising corticosteroids, long-acting beta2-adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs), which is free of magnesium stearate and which also ensure high stability, fluidity, content uniformity and dosage accuracy.
- active agents selected from the group comprising corticosteroids, long-acting beta2-adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs), which is free of magnesium stearate and which also ensure high stability, fluidity, content uniformity and dosage accuracy.
- the main object of the present invention is to obtain dry powder inhalation combinations applicable in obstructive airway diseases, comprising active agents selected from the group comprising corticosteroids, long-acting beta2-adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs), which eliminate all aforesaid problems and bring additional advantages to the relevant prior art.
- active agents selected from the group comprising corticosteroids, long-acting beta2-adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs), which eliminate all aforesaid problems and bring additional advantages to the relevant prior art.
- Another object of the present invention is to obtain inhalation combinations comprising active agents which are hygroscopically convenient.
- Another object of the present invention is to obtain inhalation combinations comprising fluticasone or a pharmaceutically acceptable salt thereof, vilanterol or a pharmaceutically acceptable salt thereof and umeclidinium or a pharmaceutically acceptable salt thereof.
- Another object of the present invention is to obtain inhalation combinations comprising two types of carrier.
- Another object of the present invention is to obtain inhalation combinations comprising lactose and mannitol as carriers. Another object of the present invention is to obtain inhalation combinations comprising lactose having fine particles and mannitol having coarse particles as carriers.
- Another object of the present invention is to obtain inhalation combinations free of stearates and amino acids.
- Another object of the present invention is to obtain inhalation combinations having appropriate carrier particle size ratios and carrier weight ratios ensuring improved moisture resistance, high stability and high fluidity.
- Another object of the present invention is to obtain inhalation combinations facilitating filling process into the blister pack or the capsule and accordingly enhancing filling rate.
- Another object of the present invention is to obtain inhalation combinations having appropriate particle size and ratios of both carriers and active agents ensuring content uniformity and dosage accuracy in each blister or capsule.
- Another object of the present invention is to obtain inhalation combinations having appropriate particle size and ratios of both carriers and active agents ensuring that effective doses of active agents reach the alveoli.
- a further object of the present invention is to obtain inhalation combinations which can be administered in blister pack or in capsule with an inhaler (inhalation device).
- a further object of the present invention is to obtain a blister pack filled with the above mentioned dry powder inhalation combinations.
- a further object of the present invention is to obtain a capsule filled with the above mentioned dry powder inhalation combinations.
- a further object of the present invention is to obtain an inhaler which is applicable with the above-mentioned blister pack or the above-mentioned capsule.
- the present invention relates to dry powder compositions for inhalation, which are used in the treatment of chronic obstructive pulmonary disease and asthma in mammals especially in humans, comprising a corticosteroid or pharmaceutically acceptable salt thereof, a long-acting beta2-adrenergic agonist (LABA) or pharmaceutically acceptable salt thereof and a long-acting muscarinic antagonist (LAMA) or pharmaceutically acceptable salt thereof in combination.
- a corticosteroid or pharmaceutically acceptable salt thereof a long-acting beta2-adrenergic agonist (LABA) or pharmaceutically acceptable salt thereof and a long-acting muscarinic antagonist (LAMA) or pharmaceutically acceptable salt thereof in combination.
- LAMA long-acting muscarinic antagonist
- said corticosteroid is selected from the group comprising ciclesonide, budesonide, fluticasone, aldosterone, beklometazone, betametazone, chloprednol, cortisone, cortivasole, deoxycortone, desonide, desoxymetasone, dexametasone, difluorocortolone, fluchlorolone, flumetasone, flunisolide, fluquinolone, fluquinonide, flurocortisone, fluorocortolone, flurometolone, flurandrenolone, halcynonide, hydrocortisone, icometasone, meprednisone, methylprednisolone, mometasone, paramethasone, prednisolone, prednisone, tixocortole, triamcynolondane or mixtures thereof.
- the said corticosteroid is fluticasone.
- the said fluticasone salt is fluticasone furoate.
- the said long-acting beta-2-adrenergic agonist is selected from the group comprising salmeterol, formoterol, arformoterol, salbutamol, indacaterol, terbutaline, metaproterenol, vilanterol, carmoterol, olodaterol, bambuterol, clenbuterol or mixtures thereof.
- the said long-acting beta-2-adrenergic agonist is vilanterol.
- the said vilanterol salt is vilanterol trifenatate.
- the said long-acting muscarinic antagonist is selected from the group comprising tiotropium, aclidinium, darotropium, umeclidinium, glycopyronium, ipratropium or mixtures thereof.
- the said long-acting muscarinic antagonist is umeclidinium.
- the said umeclidinium salt is umeclidinium bromide.
- the dry powder composition comprises;
- ternary active agent combination is not randomly formulated; on the contrary, they are specifically selected considering their hygroscopic behaviors. They are all non- hygroscopic powders which is essential for the composition subjected to the invention to provide high moisture resistance and stability, fluidity, content uniformity, accordingly.
- fluticasone furoate is present in an amount of 0.01 to 1 mg, more preferably 0.05 to 0.5 mg in the total composition.
- the amount of fluticasone furoate is between 0.1 -10%, preferably 0.2-5%, more preferably 0.3-3% by weight of the total composition.
- vilanterol trifenatate is present in an amount of 0.005 to 0.5 mg, more preferably 0.01 to 0.1 mg in the total composition.
- the amount of vilanterol trifenatate is between 0.01 -5%, preferably 0.05-3%, more preferably 0.1 -2% by weight of the total composition.
- umeclidinium bromide is present in an amount of 0.005 to 0.5 mg, more preferably 0.01 to 0.15 mg in the total composition.
- the amount of umeclidinium bromide is between 0.05-10%, preferably 0.1 -5%, more preferably 0.2-3% by weight of the total composition.
- the dry powder composition further comprises at least one carrier selected from the group comprising lactose, mannitol, sorbitol, inositol, xylitol, erythritol, lactitol and maltitol to provide the fluidity of the composition coming out of an inhaler device and to ensure that the active ingredients accurately and consistently reaches the lungs.
- at least one carrier selected from the group comprising lactose, mannitol, sorbitol, inositol, xylitol, erythritol, lactitol and maltitol to provide the fluidity of the composition coming out of an inhaler device and to ensure that the active ingredients accurately and consistently reaches the lungs.
- the composition comprises two different carriers in specified ratios.
- these two carriers are lactose and mannitol.
- the composition is free of all types of amino acids such as leucine and all types of stearates such as magnesium stearate. It means that required moisture resistance, stability, fluidity, content uniformity and dosage accuracy are ensured even in absence of a further excipient apart from carrier. It is significantly important considering the prior art and scientific observations in which the use of an amino acid or stearate, especially magnesium stearate, is shown as indispensable to ensure these qualifications.
- surprisingly high stability and fluidity are provided by the synergistic effect of selectively combined non-hygroscopic active agents, specified weight ratio and specified particle size ratio of selected two carriers which are lactose and mannitol.
- particle size distribution means the cumulative volume size distribution as tested by any conventionally accepted method such as the laser diffraction method (Malvern analysis).
- Laser diffraction measures particle size distributions by measuring the angular variation in intensity of light scattered as a laser beam passes through a dispersed particulate sample. Large particles scatter light at small angles relative to the laser beam and small particles scatter light at large angles. The angular scattering intensity data is then analyzed to calculate the size of the particles responsible for creating the scattering. The particle size is reported as a volume equivalent sphere diameter.
- the d50 value is the size in microns that splits the distribution with half above and half below this diameter. Similarly, 90% of the distribution lies below the D90 value, and 10% of the distribution lies below the D10 value.
- lactose is present in the composition as the carrier having fine particle size, which means the mean particle size (d50 value) of lactose is in the range of 2-10 pm.
- mannitol is present in the composition as the carrier having coarse particle size, which means the mean particle size (d50 value) of mannitol is in the range of 75-200 pm.
- Coarse carrier particles namely mannitol particles, are used to prevent agglomeration of the active agent particles having mean particle size lower than 10 pm.
- shape and surface roughness of the carrier particles are especially important. Particles having smooth surface will be separated much easier from the active agents compared to the particles in the same size but having high porosity.
- Active agent particles will tend to concentrate on the regions having higher energy as the surface energy does not dissipate on the coarse carrier particles evenly. This might prevent separation of the active agent particles from the coarse carrier after pulmonary administration, especially in low dose formulations.
- fine carrier particles namely lactose particles
- the active agent particles will be attaching to low energy regions; thus, the amount of active agent particles detached from the coarse carrier particles will potentially increase.
- the amount of the lactose with fine particles is in the range of 1 -15%, more preferably 3-10% by weight of the total composition.
- the amount of the mannitol with coarse particles is in the range of 85-99%, more preferably 90-97% by weight of the total composition.
- d50 value of lactose particles is ranging between 4 and 7 pm.
- d10 value of lactose particles is in the range of 0.5-5 pm, preferably 1 -4 pm.
- d90 value of lactose particles is in the range of 5-30 pm, preferably 7-15 pm.
- d50 value of mannitol particles is ranging between 100 and 150 pm.
- d10 value of mannitol particles is in the range of 2-30 pm, preferably 3-25 pm.
- d90 value of mannitol particles is in the range of 100-400 pm, preferably 150-350 pm.
- the d10 value ratio of lactose particles to mannitol particles is in the range of 1 :15 to 1 :100, preferably 1 :20 to 1 :50.
- the d50 value ratio of lactose particles to mannitol particles is in the range of 1 : 10 to 1 :50, preferably 1 : 15 to 1 :40.
- the d90 value ratio of lactose particles to mannitol particles is in the range of 1 : 10 to 1 :50, preferably 1 :10 to 1 :30.
- the weight ratio of lactose to mannitol is in the range of 1 :5 to 1 :100 and preferably 1 :10 to 1 :50. In the most preferred embodiment, this range is 1 :15 to 1 :25.
- This preferred selection of carriers and their ranges eliminates agglomeration of active agent particles and assures the enhanced stability, moisture resistance, fluidity, content uniformity and dosage accuracy.
- the dry powder composition subjected to the invention comprises;
- Example 1 Dry powder composition for inhalation
- Example 2 Dry powder composition for inhalation
- Example 3 Dry powder composition for inhalation
- Example 4 Dry powder composition for inhalation
- compositions subjected to the invention are prepared by these steps:
- the dry powder composition subjected to the invention is suitable for administration in dosage forms such as capsules, cartridges or blister packs.
- the one unit dose of the composition in the dosage form is ranging between 2 to 50 mg.
- the dry powder composition is presented in one dose capsule.
- the said capsule may be a gelatin or a natural or synthetic pharmaceutically acceptable polymer such as hydroxypropyl methylcellulose and it is arranged for use in a dry powder inhaler and the composition is configured to be delivered to the lungs by the respiratory flow of the patient via the said inhaler.
- one dose capsule contains 25 mg dry powder composition.
- one dose capsule contains 12.5 mg dry powder composition.
- the dry powder composition subjected is suitable for administration in a multi-dose system, more preferably in a multi-dose blister pack which has more than one blister with air and moisture barrier property.
- the said blister pack comprises an aluminum material covering them to prevent moisture intake.
- Each blister is further encapsulated with a material resistant to moisture. By this means, blisters prevent water penetration and moisture intake from outside into the composition.
- Each blister contains the same amount of active agent and carrier which is provided via content uniformity and dosage accuracy of the composition. For this invention, it is ensured by the specific selection of carriers, their amounts and their mean particle sizes. In a preferred embodiment, a blister contains 5 mg dry powder composition.
- the said blister pack is arranged to be loaded in a dry powder inhaler and the composition subjected to the invention is configured to be delivered to the lungs via the said inhaler.
- the inhaler has means to open the blister and to provide respective delivery of each unit dose.
- the said dry powder inhaler further comprises a lid and a lock mechanism connected to the lid which is arranged to maintain the inhaler locked in both positions in which it is ready for inhalation and the lid is closed.
- the inhaler also ensures to be automatically re-set once the lid is closed.
- compositions subjected to the invention are used in the treatment of the respiratory diseases selected from asthma and chronic obstructive pulmonary disease and other obstructive respiratory diseases.
- the dry powder composition is administered once a day by the said inhaler.
- the dry powder composition is administered twice a day by the said inhaler.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pulmonology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Otolaryngology (AREA)
- Emergency Medicine (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The invention relates to dry powder pharmaceutical compositions and their administration by means of inhalers in the treatment of chronic obstructive pulmonary disease (COPD), asthma and other obstructive airway diseases.
Description
DRY POWDER COMPOSITIONS FOR INHALATION
Technical Field
The invention relates to dry powder pharmaceutical compositions and inhalers comprising them which are used in the treatment of chronic obstructive pulmonary disease (COPD), asthma and other obstructive airway diseases.
Background of the Invention
Drugs combines pharmacologic activity with pharmaceutical properties. Desirable performance characteristics expected form them are physical and chemical stability, ease of processing, accurate and reproducible delivery to the target organ, and availability at the site of action. For the dry powder inhalers (DPIs), these goals can be met with a suitable powder formulation, an efficient metering system, and a carefully selected device. Dry powder inhalers are well known devices for administering pharmaceutically active agents to the respiratory tract to treat respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Pharmaceutical compositions for inhalation used in the treatment of obstructive airway diseases can comprise various active agents such as long acting muscarinic antagonists (LAMA), long acting beta agonists (LABA), short acting beta-2 agonists (SABA) and corticosteroids.
Inhaled corticosteroids reduce inflammation in the airways that carry air to the lungs (bronchial tubes) and reduce the mucus made by the bronchial tubes which makes easier to breathe.
Fluticasone is the most commonly used corticosteroid in the dry powder formulations for inhalation. Fluticasone furoate, which is a salt of fluticasone, is a synthetic trifluorinated corticosteroid with potent anti-inflammatory activity. Fluticasone furoate is available as a combination product with vilanterol, under the tradename Breo Ellipta®. Its use is indicated for the long-term, once-daily maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and emphysema.
Long-acting beta2-agonists are used only in combination with a corticosteroid to treat asthma. They are used in a metered-dose or dry powder inhaler. They relax the smooth
muscles lining the airways that carry air to the lungs (bronchial tubes). This allows the tubes to stay open longer and makes breathing easier.
Vilanterol is a selective long-acting beta2-adrenergic agonist (LABA) with inherent 24-hour activity for once daily treatment of COPD and asthma. Vilanterol is also approved for use in combination with umeclidinium bromide as Anoro Ellipta®. It is indicated for the long term, once-daily maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and emphysema. It is also indicated for once-daily maintenance treatment of asthma in patients aged 18 or older with reversible obstructive airways disease.
Long-acting muscarinic antagonists, formerly known as anticholinergics, cause bronchodilation with a duration of action of over 24 hours and are used once daily.
Umeclidinium, which is a long-acting muscarinic antagonist (LAMA), blocks the M3 muscarinic receptor which is highly expressed in airway smooth muscle of the lungs, inhibits the binding of acetylcholine and thereby opens up the airways by preventing bronchoconstriction. Its use has been shown to provide clinically significant, sustained improvements in lung function.
Most DPI formulations consist of micronized drug blended with larger carrier particles, which enhance flow, reduce aggregation, and aid in dispersion. A combination of intrinsic physicochemical properties, particle size, shape, surface area, and morphology affects the forces of interaction and aerodynamic properties, which in turn determine fluidization, dispersion, delivery to the lungs, and deposition in the peripheral airways.
Small drug particles are likely to agglomerate. Said coagulation can be prevented by employing suitable carrier or carrier mixtures. It also assists in controlling the fluidity of the drug coming out of the carrier device and ensuring that the active ingredient reaching to lungs is accurate and consistent.
Changes in the particle size of the powder, is known to significantly affect its deposition to the lungs and therefore, affect the efficacy. The drug particles and carrier particles are entrained in this air stream together, but only the fine drug particles enter the deep recesses of the lung (which is the site of action of the drug). The inert excipient is deposited either in the mouth or in the upper region of the lungs. Likewise, the cohesive
forces between drug and carrier particles play a significant role in this delivery process. If the cohesion is too strong, the shear of the airflow may not be sufficient to separate the drug from the carrier particles, which results in low deposition efficiency. On the other hand, if the cohesion is undesirably weak, a considerable amount of drug particles inherently may stick within the mouth or within the upper lungs, which also causes low deposition efficiency.
Thus, difference of the particle sizes between the carrier and the drug is important in order to optimize the cohesive forces and also to ensure the content uniformity.
The modern era of drug delivery to the lungs using DPIs essentially began in the 1940's with the appearance of the first approved commercial DPI product, namely the Abbott Aerohaler®. This product was used to deliver penicillin and norethisderone and contains many features which would be recognisable today, in that it uses a small capsule reservoir (also described as a‘sifter’) containing a lactose based formulation, designed to be used in a device which utilizes the patient generated inspiratory airflow to disperse the therapeutic particles in an airstream.
Nowadays, many commercialized DPI products have been developed based on using a single excipient in the formulation. The vast majority of these products contain lactose monohydrate which is used as carrier to aid the dosing of the drug and to modify the cohesive nature of micronized drug substances.
On the other hand, the use of a single excipient may not be capable of achieving the required performance efficiency, manufacturability. The use of multiple excipients in DPI products has been realised with the approval of Exubera®, and more recently, TOBI®Podhaler®, but perhaps the most notable and more broadly applied new excipient platform strategy for the development of DPIs used to date is the‘dual excipient platform’ (DEP) where lactose monohydrate is used in conjunction with a second excipient, namely magnesium stearate.
Recently, mannitol is also suggested as carrier instead of lactose. For instance, the patent application numbered EP2682097A2 reveals disadvantages rising with the excess use of lactose in inhalation formulations and highlights the use of a carrier other than lactose, namely mannitol. It is a known fact that lactose cannot be used for compounds that interact with the reducing sugar function of the lactose. Such drugs are the ones having
amine groups, as described above, especially the ones having primary or secondary amine. Besides, it can be inconvenient for patients with lactose intolerance, since its ratio in the formulation can reach to over 99% by weight. Considering these facts, the use of mannitol seems reasonable; however, mannitol also has its own disadvantages in case of misuse or overuse.
Scientific observations show that mannitol can increase tendency of the dry powder for inhalation to agglomerate due to its micronized particle size and the moisture in the air. Thus, its ratio in the formulation and its particle size are two essential points to be considered in order to eliminate these risky cases. The prior art does not mention this agglomeration problem caused by mannitol use, accordingly it does not give any clue about the technical solution.
Scientific literature claiming that the addition of tertiary materials, such as magnesium stearate, has been elaborating the fine particle dose performance characteristics of DPI formulations ( Brambilla et at., 2003; Chiesi et at., 2001; Musa et at., 2003; Staniforth, 1997; Zhou and Moreton, 2012). Thus, many patent applications have appeared describing the use of excipient combinations, with these applications typically describing formulations containing dual excipient mixtures of carrier and a tertiary material, including magnesium stearate. It has been reported that the presence of magnesium stearate in DPI formulations results in not only the generation of a higher, but more stable fine particle mass, which was explained in terms of the functional ability of magnesium stearate to protect the formulation from moisture, representing yet another possible stabilizing role for tertiary materials in DPI products ( Guchardi et a!., 2008; Keller and Muller-Walz, 2001).
In another patent application numbered EP2682108A2, the use of a tertiary material such as magnesium stearate, stearic acid, sodium lauryl sulphate, sodium stearyl fumarate, stearyl alcohol, sodium benzoate or their mixtures to provide stability; especially magnesium stearate is suggested to improve the moisture resistance of the powder formulation.
Moisture in the air is one of the challenges while improving DPIs since it causes the dry powder to clump together and clog the inhaler. This is a potential problem especially for capsule and blister based DPI products, where any moisture ingress occurring during storage may change the chemical behavior and influence the long-term performance of
the product. It can also lead to other crucial problems such as the failure in the dosage accuracy present in each cavity or capsule and the decrease in the stability and in the effectiveness of the treatment.
Nevertheless, magnesium stearate use shouldn’t be the first solution come to mind considering its toxic effect for the lungs. The selection of the active agents, suitable carriers and probable other excipients for these active agents, and also their ratios in the formulation has a significant effect on the hygroscopic behavior of the total powder mixture. However, the prior art has not put any emphasis on these alternative solutions.
Thus, there is still a need for a DPI formulation, comprising a ternary combination of active agents selected from the group comprising corticosteroids, long-acting beta2-adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs), which is free of magnesium stearate and which also ensure high stability, fluidity, content uniformity and dosage accuracy.
Objects and Brief Description of the Invention
The main object of the present invention is to obtain dry powder inhalation combinations applicable in obstructive airway diseases, comprising active agents selected from the group comprising corticosteroids, long-acting beta2-adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs), which eliminate all aforesaid problems and bring additional advantages to the relevant prior art.
Another object of the present invention is to obtain inhalation combinations comprising active agents which are hygroscopically convenient.
Another object of the present invention is to obtain inhalation combinations comprising fluticasone or a pharmaceutically acceptable salt thereof, vilanterol or a pharmaceutically acceptable salt thereof and umeclidinium or a pharmaceutically acceptable salt thereof.
Another object of the present invention is to obtain inhalation combinations comprising two types of carrier.
Another object of the present invention is to obtain inhalation combinations comprising lactose and mannitol as carriers.
Another object of the present invention is to obtain inhalation combinations comprising lactose having fine particles and mannitol having coarse particles as carriers.
Another object of the present invention is to obtain inhalation combinations free of stearates and amino acids.
Another object of the present invention is to obtain inhalation combinations having appropriate carrier particle size ratios and carrier weight ratios ensuring improved moisture resistance, high stability and high fluidity.
Another object of the present invention is to obtain inhalation combinations facilitating filling process into the blister pack or the capsule and accordingly enhancing filling rate.
Another object of the present invention is to obtain inhalation combinations having appropriate particle size and ratios of both carriers and active agents ensuring content uniformity and dosage accuracy in each blister or capsule.
Another object of the present invention is to obtain inhalation combinations having appropriate particle size and ratios of both carriers and active agents ensuring that effective doses of active agents reach the alveoli.
A further object of the present invention is to obtain inhalation combinations which can be administered in blister pack or in capsule with an inhaler (inhalation device).
A further object of the present invention is to obtain a blister pack filled with the above mentioned dry powder inhalation combinations.
A further object of the present invention is to obtain a capsule filled with the above mentioned dry powder inhalation combinations.
A further object of the present invention is to obtain an inhaler which is applicable with the above-mentioned blister pack or the above-mentioned capsule.
Detailed Description of Invention
In accordance with the objects outlined above, detailed features of the present invention are given herein.
The present invention relates to dry powder compositions for inhalation, which are used in the treatment of chronic obstructive pulmonary disease and asthma in mammals especially in humans, comprising a corticosteroid or pharmaceutically acceptable salt thereof, a long-acting beta2-adrenergic agonist (LABA) or pharmaceutically acceptable salt thereof and a long-acting muscarinic antagonist (LAMA) or pharmaceutically acceptable salt thereof in combination.
In a preferred embodiment of the invention, said corticosteroid is selected from the group comprising ciclesonide, budesonide, fluticasone, aldosterone, beklometazone, betametazone, chloprednol, cortisone, cortivasole, deoxycortone, desonide, desoxymetasone, dexametasone, difluorocortolone, fluchlorolone, flumetasone, flunisolide, fluquinolone, fluquinonide, flurocortisone, fluorocortolone, flurometolone, flurandrenolone, halcynonide, hydrocortisone, icometasone, meprednisone, methylprednisolone, mometasone, paramethasone, prednisolone, prednisone, tixocortole, triamcynolondane or mixtures thereof.
According to the preferred embodiment, the said corticosteroid is fluticasone. According to this preferred embodiment, the said fluticasone salt is fluticasone furoate.
In a preferred embodiment of the invention, the said long-acting beta-2-adrenergic agonist is selected from the group comprising salmeterol, formoterol, arformoterol, salbutamol, indacaterol, terbutaline, metaproterenol, vilanterol, carmoterol, olodaterol, bambuterol, clenbuterol or mixtures thereof.
According to the preferred embodiment, the said long-acting beta-2-adrenergic agonist is vilanterol. According to this preferred embodiment, the said vilanterol salt is vilanterol trifenatate.
In a preferred embodiment of the invention, the said long-acting muscarinic antagonist is selected from the group comprising tiotropium, aclidinium, darotropium, umeclidinium, glycopyronium, ipratropium or mixtures thereof.
According to the preferred embodiment, the said long-acting muscarinic antagonist is umeclidinium. According to this preferred embodiment, the said umeclidinium salt is umeclidinium bromide.
According to a preferred embodiment, the dry powder composition comprises;
- fluticasone furoate
- vilanterol trifenatate
- umeclidinium bromide
These ternary active agent combination is not randomly formulated; on the contrary, they are specifically selected considering their hygroscopic behaviors. They are all non- hygroscopic powders which is essential for the composition subjected to the invention to provide high moisture resistance and stability, fluidity, content uniformity, accordingly.
According to the preferred embodiment, fluticasone furoate is present in an amount of 0.01 to 1 mg, more preferably 0.05 to 0.5 mg in the total composition.
According to this embodiment, the amount of fluticasone furoate is between 0.1 -10%, preferably 0.2-5%, more preferably 0.3-3% by weight of the total composition.
According to the preferred embodiment, vilanterol trifenatate is present in an amount of 0.005 to 0.5 mg, more preferably 0.01 to 0.1 mg in the total composition.
According to this embodiment, the amount of vilanterol trifenatate is between 0.01 -5%, preferably 0.05-3%, more preferably 0.1 -2% by weight of the total composition.
According to the preferred embodiment, umeclidinium bromide is present in an amount of 0.005 to 0.5 mg, more preferably 0.01 to 0.15 mg in the total composition.
According to an embodiment, the amount of umeclidinium bromide is between 0.05-10%, preferably 0.1 -5%, more preferably 0.2-3% by weight of the total composition.
In a preferred embodiment, the dry powder composition further comprises at least one carrier selected from the group comprising lactose, mannitol, sorbitol, inositol, xylitol, erythritol, lactitol and maltitol to provide the fluidity of the composition coming out of an
inhaler device and to ensure that the active ingredients accurately and consistently reaches the lungs.
According to an embodiment, the composition comprises two different carriers in specified ratios. Preferably, these two carriers are lactose and mannitol.
According to the most preferred embodiment, the composition is free of all types of amino acids such as leucine and all types of stearates such as magnesium stearate. It means that required moisture resistance, stability, fluidity, content uniformity and dosage accuracy are ensured even in absence of a further excipient apart from carrier. It is significantly important considering the prior art and scientific observations in which the use of an amino acid or stearate, especially magnesium stearate, is shown as indispensable to ensure these qualifications.
In this invention, surprisingly high stability and fluidity are provided by the synergistic effect of selectively combined non-hygroscopic active agents, specified weight ratio and specified particle size ratio of selected two carriers which are lactose and mannitol.
Particle size distributions of these carriers play a crucial role for the qualification of the composition subjected to the invention. As used herein,‘particle size distribution’ means the cumulative volume size distribution as tested by any conventionally accepted method such as the laser diffraction method (Malvern analysis).
Laser diffraction measures particle size distributions by measuring the angular variation in intensity of light scattered as a laser beam passes through a dispersed particulate sample. Large particles scatter light at small angles relative to the laser beam and small particles scatter light at large angles. The angular scattering intensity data is then analyzed to calculate the size of the particles responsible for creating the scattering. The particle size is reported as a volume equivalent sphere diameter.
According to this measuring method, the d50 value is the size in microns that splits the distribution with half above and half below this diameter. Similarly, 90% of the distribution lies below the D90 value, and 10% of the distribution lies below the D10 value.
In the preferred embodiment of the invention, lactose is present in the composition as the carrier having fine particle size, which means the mean particle size (d50 value) of lactose
is in the range of 2-10 pm. In this preferred embodiment, mannitol is present in the composition as the carrier having coarse particle size, which means the mean particle size (d50 value) of mannitol is in the range of 75-200 pm.
Coarse carrier particles, namely mannitol particles, are used to prevent agglomeration of the active agent particles having mean particle size lower than 10 pm. During inhalation, as the active agent and the carrier particles need to be separated from each other, shape and surface roughness of the carrier particles are especially important. Particles having smooth surface will be separated much easier from the active agents compared to the particles in the same size but having high porosity.
Active agent particles will tend to concentrate on the regions having higher energy as the surface energy does not dissipate on the coarse carrier particles evenly. This might prevent separation of the active agent particles from the coarse carrier after pulmonary administration, especially in low dose formulations. In this sense, fine carrier particles, namely lactose particles, are used to help the active agents to reach to the lungs easier and in high doses. As the high-energy regions of coarse carrier particles will be covered by fine carrier particles, the active agent particles will be attaching to low energy regions; thus, the amount of active agent particles detached from the coarse carrier particles will potentially increase.
According to the preferred embodiment, the amount of the lactose with fine particles is in the range of 1 -15%, more preferably 3-10% by weight of the total composition.
According to this preferred embodiment, the amount of the mannitol with coarse particles is in the range of 85-99%, more preferably 90-97% by weight of the total composition.
In the most preferred embodiment of the invention, d50 value of lactose particles is ranging between 4 and 7 pm.
According to this preferred embodiment, d10 value of lactose particles is in the range of 0.5-5 pm, preferably 1 -4 pm.
According to these preferred embodiment, d90 value of lactose particles is in the range of 5-30 pm, preferably 7-15 pm.
In the most preferred embodiment of the invention, d50 value of mannitol particles is ranging between 100 and 150 pm.
According to this preferred embodiment, d10 value of mannitol particles is in the range of 2-30 pm, preferably 3-25 pm.
According to these preferred embodiment, d90 value of mannitol particles is in the range of 100-400 pm, preferably 150-350 pm.
The d10 value ratio of lactose particles to mannitol particles is in the range of 1 :15 to 1 :100, preferably 1 :20 to 1 :50.
The d50 value ratio of lactose particles to mannitol particles is in the range of 1 : 10 to 1 :50, preferably 1 : 15 to 1 :40.
The d90 value ratio of lactose particles to mannitol particles is in the range of 1 : 10 to 1 :50, preferably 1 :10 to 1 :30.
The weight ratio of lactose to mannitol is in the range of 1 :5 to 1 :100 and preferably 1 :10 to 1 :50. In the most preferred embodiment, this range is 1 :15 to 1 :25.
This preferred selection of carriers and their ranges eliminates agglomeration of active agent particles and assures the enhanced stability, moisture resistance, fluidity, content uniformity and dosage accuracy.
According to one preferred embodiment, the dry powder composition subjected to the invention comprises;
- 0.1 -10% by weight of fluticasone furoate,
- 0.01 -5% by weight of vilanterol trifenatate,
- 0.05-10% by weight of umeclidinium bromide,
- 1 -15% by weight of lactose
- 85-99% by weight of mannitol
According to all these embodiments, the below given formulations can be used for the dry powder composition subjected to the invention. These examples are not limiting the scope
of the present invention and should be considered under the light of the foregoing detailed disclosure.
Example 1 : Dry powder composition for inhalation
Example 2: Dry powder composition for inhalation
Example 3: Dry powder composition for inhalation
The pharmaceutical compositions subjected to the invention are prepared by these steps:
- Plastering the inner wall of a container with one fifth of mannitol
- Adding fluticasone furoate, vilanterol trifenatate, umeclidinium bromide and lactose into the plastered container and mixing them to prepare a powder mixture
- Adding one fifth of mannitol to the powder mixture and mixing
- Repeating the previous step for 2 times more
- Sieving the mixture through a 500 pm mesh
- Washing the sieved mixture with one fifth of mannitol to compose a final powder mixture
- Mixing and sieving the final powder mixture through a 500 pm mesh
The dry powder composition subjected to the invention is suitable for administration in dosage forms such as capsules, cartridges or blister packs. The one unit dose of the composition in the dosage form is ranging between 2 to 50 mg.
In an embodiment, the dry powder composition is presented in one dose capsule. The said capsule may be a gelatin or a natural or synthetic pharmaceutically acceptable polymer such as hydroxypropyl methylcellulose and it is arranged for use in a dry powder inhaler and the composition is configured to be delivered to the lungs by the respiratory flow of the patient via the said inhaler. In a preferred embodiment, one dose capsule contains 25 mg dry powder composition. In another preferred embodiment, one dose capsule contains 12.5 mg dry powder composition.
In the preferred embodiment, the dry powder composition subjected is suitable for administration in a multi-dose system, more preferably in a multi-dose blister pack which has more than one blister with air and moisture barrier property.
The said blister pack comprises an aluminum material covering them to prevent moisture intake. Each blister is further encapsulated with a material resistant to moisture. By this means, blisters prevent water penetration and moisture intake from outside into the composition.
Each blister contains the same amount of active agent and carrier which is provided via content uniformity and dosage accuracy of the composition. For this invention, it is ensured by the specific selection of carriers, their amounts and their mean particle sizes. In a preferred embodiment, a blister contains 5 mg dry powder composition.
In the most preferred embodiment, the said blister pack is arranged to be loaded in a dry powder inhaler and the composition subjected to the invention is configured to be delivered to the lungs via the said inhaler. The inhaler has means to open the blister and to provide respective delivery of each unit dose.
In a preferred embodiment, the said dry powder inhaler further comprises a lid and a lock mechanism connected to the lid which is arranged to maintain the inhaler locked in both positions in which it is ready for inhalation and the lid is closed. According to this embodiment, the inhaler also ensures to be automatically re-set once the lid is closed.
Subsequent to opening of the device cap, a force is exerted to the device cock by the user. Afterwards, the cock is bolted by being guided by the tracks within the body of the device and the tracks on itself. Mechanism is assured to function via this action. In the end of bolting, cock is locked upon clamping and single dose drug come out of the blister is enabled to be administered. Pushing of the cock by the user completely until the locking position ensures the blister to be completely peeled off and the dosage amount to be accurately administered. As a result of this locking cock is immobilized and is disabled for a short time. This pushing action further causes the spring inside the mechanism to be compressed between the cock and the inner body of the device. Said device becomes ready to re-use following the closing of the cap by the user after the administration of the powder composition, without needing to be set again, thanks to the mechanism involved.
According to a preferred embodiment, pharmaceutical compositions subjected to the invention are used in the treatment of the respiratory diseases selected from asthma and chronic obstructive pulmonary disease and other obstructive respiratory diseases.
In an embodiment of the invention, the dry powder composition is administered once a day by the said inhaler. In another embodiment of the invention, the dry powder composition is administered twice a day by the said inhaler.
Claims
1. A dry powder composition for inhalation comprising;
- a corticosteroid or pharmaceutically acceptable salt thereof,
- a long-acting beta2-adrenergic agonist or pharmaceutically acceptable salt thereof,
- a long-acting muscarinic antagonist (LAMA) or pharmaceutically acceptable salt thereof;
wherein the composition is free of all types of amino acids and stearates.
2. The dry powder composition for inhalation according to claim 1 , wherein the said corticosteroid is selected from the group comprising ciclesonide, budesonide, fluticasone, aldosterone, beklometazone, betametazone, chloprednol, cortisone, cortivasole, deoxycortone, desonide, desoxymetasone, dexametasone, difluorocortolone, fluchlorolone, flumetasone, flunisolide, fluquinolone, fluquinonide, flurocortisone, fluorocortolone, flurometolone, flurandrenolone, halcynonide, hydrocortisone, icometasone, meprednisone, methylprednisolone, mometasone, paramethasone, prednisolone, prednisone, tixocortole and triamcynolondane or mixtures thereof.
3. The dry powder composition for inhalation according to claim 2, wherein the said corticosteroid is fluticasone.
4. The dry powder composition for inhalation according to claim 3, wherein the said corticosteroid salt is fluticasone furoate.
5. The dry powder composition for inhalation according to claim 1 , wherein the said long- acting beta-2-adrenergic agonist is selected from the group comprising salmeterol, formoterol, arformoterol, salbutamol, indacaterol, terbutaline, metaproterenol, vilanterol, carmoterol, olodaterol, bambuterol, clenbuterol or mixtures thereof.
6. The dry powder composition for inhalation according to claim 5, wherein the said long- acting beta-2-adrenergic agonist is vilanterol.
7. The dry powder composition for inhalation according to claim 6, wherein the said long- acting beta-2-adrenergic agonist salt is vilanterol trifenatate.
8. The dry powder composition for inhalation according to claim 1 , wherein the said long- acting muscarinic antagonist is selected from the group comprising tiotropium, aclidinium, darotropium, umeclidinium, glycopyronium, ipratropium or mixtures thereof.
9. The dry powder composition for inhalation according to claim 8, wherein the said long- acting muscarinic antagonist is umeclidinium.
10. The dry powder composition for inhalation according to claim 9, wherein the said long- acting muscarinic antagonist salt is umeclidinium bromide.
11. The dry powder composition for inhalation according to any one of the preceding claims, wherein the composition further comprises at least one carrier selected from the group comprising lactose, mannitol, sorbitol, inositol, xylitol, erythritol, lactitol and maltitol.
12. The dry powder composition for inhalation according to claim 1 1 , wherein the composition comprises two carriers which are lactose and mannitol.
13. The dry powder composition for inhalation according to claim 12, wherein the mean particle size (d50) of lactose is in the range of 2-10 pm.
14. The dry powder composition for inhalation according to claim 13, wherein the mean particle size (d50) of lactose is in the range of 4-7 pm.
15. The dry powder composition for inhalation according to claim 12, wherein the mean particle size (d50) of mannitol is in the range of 75-200 pm.
16. The dry powder composition for inhalation according to claim 15, wherein the mean particle size (d50) of mannitol is in the range of 100 and150 pm.
17. The dry powder composition for inhalation according to claim 12, wherein the d10 value of lactose particles is in the range of 0.5-5 pm.
18. The dry powder composition for inhalation according to claim 17, wherein the d10 value of lactose particles is in the range of 1 -4 pm.
19. The dry powder composition for inhalation according to claim 12, wherein the d90 value of lactose particles is in the range of 5-30 pm.
20. The dry powder composition for inhalation according to claim 19, wherein the d90 value of lactose particles is in the range of 7-15 pm.
21. The dry powder composition for inhalation according to claim 12, wherein the d10 value of mannitol particles is in the range of 2-30 pm.
22. The dry powder composition for inhalation according to claim 21 , wherein the d10 value of mannitol particles is in the range of 3-25 pm.
23. The dry powder composition for inhalation according to claim 12, wherein the d90 value of mannitol particles is in the range of 100-400 pm.
24. The dry powder composition for inhalation according to claim 23, wherein the d90 value of mannitol particles is in the range of 150-350 pm.
25. The dry powder composition for inhalation according to claim 12, wherein the d10 value ratio of lactose particles to mannitol particles is in the range of 1 : 15 to 1 :100.
26. The dry powder composition for inhalation according to claim 25, wherein the d10 value ratio of lactose particles to mannitol particles is in the range of 1 :20 to 1 :50.
27. The dry powder composition for inhalation according to claim 12, wherein the d50 value ratio of lactose particles to mannitol particles is in the range of 1 : 10 to 1 :50.
28. The dry powder composition for inhalation according to claim 27, wherein the d50 value ratio of lactose particles to mannitol particles is in the range of 1 : 15 to 1 :40.
29. The dry powder composition for inhalation according to claim 12, wherein the d90 value ratio of lactose particles to mannitol particles is in the range of 1 : 10 to 1 :50.
30. The dry powder composition for inhalation according to claim 29, wherein the d90 value ratio of lactose particles to mannitol particles is in the range of 1 : 10 to 1 :30.
31. The dry powder composition for inhalation according to claim 12, wherein the weight ratio of lactose to mannitol is in the range of 1 :5 to 1 :100.
32. The dry powder composition for inhalation according to claim 31 , wherein the weight ratio of lactose to mannitol is in the range of 1 : 10 to 1 :50.
33. The dry powder composition for inhalation according to claim 32, wherein the weight ratio of lactose to mannitol is in the range of 1 : 15 to 1 :25.
34. The dry powder composition for inhalation according to any preceding claims, wherein the composition comprises;
- 0.1 -10% by weight of fluticasone furoate,
- 0.01 -5% by weight of vilanterol trifenatate,
- 0.05-10% by weight of umeclidinium bromide,
- 1 -15% by weight of lactose
- 85-99% by weight of mannitol
35. A process for preparing the dry powder composition for inhalation according to claim 34, comprising the following steps:
- Plastering the inner wall of the container with one fifth of mannitol
- Adding fluticasone furoate, vilanterol trifenatate, umeclidinium bromide and lactose into the plastered container and mixing them to prepare a powder mixture
- Adding one fifth of mannitol to the powder mixture and mixing
- Repeating the previous step for 2 times more
- Sieving the mixture
- Washing the sieved mixture with one fifth of mannitol to compose a final powder mixture
- Mixing and sieving the final powder mixture
36. A dosage form for administration of the dry powder composition according to any one of the claims 1 to 34; wherein the dosage form is capsule, catridge or blister pack.
37. A dosage form according to claim 36; wherein one-unit dose of the dry powder composition in the dosage form is ranging between 2 to 50 mg.
38. A dosage form according to claim 36; wherein the dosage form is a multi-dose blister pack.
39. Use of a multi-dose blister pack according to claim 38 in a dry powder inhaler; wherein the blister pack comprises more than one unit-dose blister having moisture barrier property.
40. A dry powder inhaler according to claim 39, wherein the dry powder inhaler comprises means to open a blister and to enable respective delivery of each unit dose.
41. A dry powder inhaler according to claim 40 for use in the treatment of obstructive airway diseases.
42. A dry powder inhaler according to claim 41 wherein administered once a day.
43. Use of a dry powder inhaler according to claim 41 wherein administered twice a day.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18869456.6A EP3672574A2 (en) | 2017-08-21 | 2018-08-17 | Dry powder compositions for inhalation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2017/12424 | 2017-08-21 | ||
TR2017/12424A TR201712424A2 (en) | 2017-08-21 | 2017-08-21 | DRY POWDER INHALATION COMPOSITIONS |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2019098969A2 true WO2019098969A2 (en) | 2019-05-23 |
WO2019098969A3 WO2019098969A3 (en) | 2019-08-08 |
Family
ID=66218398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/TR2018/050437 WO2019098969A2 (en) | 2017-08-21 | 2018-08-17 | Dry powder compositions for inhalation |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3672574A2 (en) |
TR (1) | TR201712424A2 (en) |
WO (1) | WO2019098969A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022045995A1 (en) * | 2020-08-28 | 2022-03-03 | Arven Ilac Sanayi Ve Ticaret Anonim Sirketi | A process for the preparation of dry powder compositions for inhalation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2682097A2 (en) | 2012-07-05 | 2014-01-08 | Arven Ilac Sanayi Ve Ticaret A.S. | Dry Powder Inhalers Comprising A Carrier Other Than Lactose |
EP2682108A2 (en) | 2012-07-05 | 2014-01-08 | Arven Ilac Sanayi Ve Ticaret A.S. | Dry Powder Inhalers Comprising a Carrier Other Than Lactose and a Ternary Component |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2329861A1 (en) * | 2002-08-29 | 2011-06-08 | Cipla Ltd. | Pharmaceutical products and compositions comprising formoterol, budesonide and ipratropium |
EP1894568A1 (en) * | 2006-08-31 | 2008-03-05 | Novartis AG | Pharmaceutical compositions for the treatment of inflammatory or obstructive airway diseases |
TR201000680A2 (en) * | 2010-01-29 | 2011-08-22 | B�Lg�� Mahmut | Pharmaceutical compositions containing tiotropium, formoterol and budesonide |
TR201000623A2 (en) * | 2010-01-28 | 2011-08-22 | B�Lg�� Mahmut | New tiotropium combination. |
AU2011315315B2 (en) * | 2010-10-12 | 2016-08-18 | Cipla Limited | Pharmaceutical composition |
WO2012168161A1 (en) * | 2011-06-08 | 2012-12-13 | Glaxo Group Limited | Combination comprising umeclidinium and a corticosteroid |
EP2836204B1 (en) * | 2012-04-13 | 2020-07-08 | GlaxoSmithKline Intellectual Property Development Limited | Aggregate particles |
US10111957B2 (en) * | 2012-07-05 | 2018-10-30 | Arven Ilac Snayi ve Ticaret A.S. | Inhalation compositions comprising glucose anhydrous |
WO2014007770A2 (en) * | 2012-07-05 | 2014-01-09 | Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi | Inhalation compositions comprising corticosteroid and sorbitol |
UA115989C2 (en) * | 2012-07-05 | 2018-01-25 | Арвен Айлак Санайі Ве Тіджарет А.С. | Dry powder inhaler compositions comprising long acting muscorinic antagonists |
WO2014007769A1 (en) * | 2012-07-05 | 2014-01-09 | Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi | Compositions comprising muscarinic receptor antagonist and glucose anhydrous |
EP4252742A3 (en) * | 2014-05-28 | 2023-12-27 | GlaxoSmithKline Intellectual Property Development Ltd | Fluticasone furoate in the treatment of copd |
-
2017
- 2017-08-21 TR TR2017/12424A patent/TR201712424A2/en unknown
-
2018
- 2018-08-17 EP EP18869456.6A patent/EP3672574A2/en not_active Withdrawn
- 2018-08-17 WO PCT/TR2018/050437 patent/WO2019098969A2/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2682097A2 (en) | 2012-07-05 | 2014-01-08 | Arven Ilac Sanayi Ve Ticaret A.S. | Dry Powder Inhalers Comprising A Carrier Other Than Lactose |
EP2682108A2 (en) | 2012-07-05 | 2014-01-08 | Arven Ilac Sanayi Ve Ticaret A.S. | Dry Powder Inhalers Comprising a Carrier Other Than Lactose and a Ternary Component |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022045995A1 (en) * | 2020-08-28 | 2022-03-03 | Arven Ilac Sanayi Ve Ticaret Anonim Sirketi | A process for the preparation of dry powder compositions for inhalation |
Also Published As
Publication number | Publication date |
---|---|
WO2019098969A3 (en) | 2019-08-08 |
TR201712424A2 (en) | 2019-03-21 |
EP3672574A2 (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PT2265258E (en) | Inhalation composition containing aclidinium for treatment of asthma | |
JP2015519394A (en) | Dry powder for inhalation preparation containing salmeterol xinafoate, fluticasone propionate and tiotropium bromide, and method for producing the same | |
EP2682101B1 (en) | Inhalation Compositions Comprising Glucose Anhydrous | |
EP2682098B1 (en) | Inhalation Compositions | |
US9987229B2 (en) | Process for preparing a medicament | |
EP2682102A2 (en) | Inhalation Compositions Comprising Corticosteroid and Sorbitol | |
KR20150010757A (en) | Novel dosage and formulation | |
JP7015549B2 (en) | Dry powder inhaler composition of 7-azonia bicyclo [2.2.1] heptane derivative | |
WO2019098969A2 (en) | Dry powder compositions for inhalation | |
EA036153B1 (en) | Pharmaceutical composition for inhalation, packed dosage form, capsule, method of treating obstructive airway diseases and pharmaceutical kit | |
WO2022045995A1 (en) | A process for the preparation of dry powder compositions for inhalation | |
CN107213141A (en) | Pharmaceutical composition for suction | |
WO2023128916A1 (en) | An apparatus with a grid (10) for the preparation of dry powder compositions for inhalation | |
WO2023128918A1 (en) | A process including a feeding gas system for preparing dry powder inhalation compositions | |
WO2022146254A1 (en) | A process for the preparation of dry powder compositions for inhalation | |
WO2021080531A1 (en) | A process for the preparation of dry powder compositions for inhalation | |
WO2022045993A1 (en) | A production method of dry powder compositions for inhalation | |
WO2024010539A1 (en) | A process for the preparation of dry powder compositions for inhalation using different mixers | |
WO2024010538A1 (en) | A process for the preparation of dry powder compositions for inhalation using different mixers | |
WO2022146257A1 (en) | A process for the preparation of dry powder compositions for inhalation | |
WO2022045994A1 (en) | A process for the preparation of dry powder compositions for inhalation | |
TR2023002207T2 (en) | PRODUCTION METHOD OF DRY POWDER COMPOSITIONS FOR INHALATION | |
TR2022002655T2 (en) | A PROCESS FOR PREPARING DRY POWDER COMPOSITIONS FOR INHALATION | |
TR2023002209T2 (en) | A METHOD FOR PREPARING DRY POWDER INHAAL COMPOSITIONS | |
WO2022146255A1 (en) | A process for the preparation of dry powder compositions for inhalation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018869456 Country of ref document: EP Effective date: 20200323 |