[go: up one dir, main page]

WO2019095410A1 - Dopo衍生物阻燃剂及其制备方法和应用 - Google Patents

Dopo衍生物阻燃剂及其制备方法和应用 Download PDF

Info

Publication number
WO2019095410A1
WO2019095410A1 PCT/CN2017/112275 CN2017112275W WO2019095410A1 WO 2019095410 A1 WO2019095410 A1 WO 2019095410A1 CN 2017112275 W CN2017112275 W CN 2017112275W WO 2019095410 A1 WO2019095410 A1 WO 2019095410A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
dopo
unit
group
derivative
Prior art date
Application number
PCT/CN2017/112275
Other languages
English (en)
French (fr)
Inventor
张道海
魏柯
何敏
秦舒浩
于杰
Original Assignee
贵州省材料产业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州省材料产业技术研究院 filed Critical 贵州省材料产业技术研究院
Publication of WO2019095410A1 publication Critical patent/WO2019095410A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657172Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and one oxygen atom being part of a (thio)phosphinic acid ester: (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the invention relates to a flame retardant and a preparation method thereof, in particular to a DOPO derivative flame retardant and a preparation method thereof.
  • the flame retardant used in the market is mainly a halogenated flame retardant, but the halogen flame retardant releases toxic smoke and gas during use, which is harmful to the environment and human health. Therefore, the development of halogen-free flame retardants is a very important direction.
  • Phosphorus-based flame retardants are very important halogen-free flame retardants.
  • phosphorus-based flame retardants phosphorous phenanthrene flame retardants are an important direction of current development.
  • phosphorus phenanthrene flame retardants are on the market.
  • the agent includes 9,10-dihydro-9oxa-10-phosphaphenanthrene-10-oxide (DOPO for short) and its derivatives, and the pyrophenanthrene flame retardant is not only better than the specific structure of the molecule
  • DOPO 9,10-dihydro-9oxa-10-phosphaphenanthrene-10-oxide
  • the pyrophenanthrene flame retardant is not only better than the specific structure of the molecule
  • the uncyclic organic phosphate has good thermal stability and chemical stability, and also has the advantages of low phosphorus content, no halogen, low smoke, no toxicity, no migration, and long lasting flame retardancy.
  • DOPO-based flame retardants also have their shortcomings.
  • the carbon layer of this kind of flame retardant after combustion is poor in structural strength and compactness, and has weak oxygen barrier heat insulation ability; moreover, this kind of flame retardant and polymer matrix or reinforcing material The compatibility between them is poor, so that the mechanical properties of the flame retardant are lowered when used.
  • the technical problem existing in the prior art is that the addition of the existing DOPO flame retardant leads to a decrease in the mechanical and mechanical properties of the flame retardant composite material, which is disadvantageous to the high performance of the flame retardant composite material, and the carbon layer of the flame retardant to form a carbon.
  • the compactness is poor, the strength of the carbon layer is poor, and the flame retardant properties of the flame retardant composite material need to be improved.
  • the present invention designs a flame retardant having a reactive functional group, which reacts with both the polymer matrix and the reinforcing body, and can further effectively improve the flame retardancy of the flame retardant, and the present invention also introduces nitrogen to synthesize
  • the P element in the flame retardant and the N element produce synergistic flame retardant, further improving the flame retardant performance of the synthetic flame retardant; and the reactive functional group can also enhance the flame retardant and the polymer matrix, and between the flame retardant and the reinforcement
  • the interface compatibility enhances the adhesion between the interfaces, thereby improving the mechanical properties of the flame retardant composite.
  • the present invention proposes the following technical solutions:
  • the present invention provides a DOPO derivative flame retardant comprising a structure in which a basic unit AMB and an additional unit are connected, the additional unit being an MA unit, an MB unit, a DOPO derivative unit, a nitrile-substituted DOPO derivative unit, and / or a DOPS derivative unit, provided that A is a terminal unit and B is an amine-substituted DOPO derivative unit;
  • A is a 1,3-diketo-isobenzofuran-5-yl-formyloxy monovalent group represented by the following structural formula (I):
  • B is a divalent amine group represented by the following structural formula (II) or (III):
  • R 1 , R 2 are independently hydrogen, C 1 -C 15 alkyl or C 6 -C 12 aryl, each m being independently 1, 2, 3 or 4;
  • M represents a direct linkage or a C 6 -C 12 aryl group.
  • the above derivative flame retardant wherein the additional unit is n M units, n MA units, n MB units, n DOPO derivative units, n nitrile groups, n nitrile groups a DOPO derivative unit and/or n DOPS derivative units, each n being independently an integer, And each n is independently greater than or equal to 1, less than or equal to 3.
  • the above-mentioned derivative flame retardant wherein the DOPO derivative unit is a phosphaphenanthrene monovalent group D represented by the following structural formula (IV) and/or a phosphaphenanthrene sulfide represented by the structural formula (V) Monovalent group E:
  • R 3 , R 4 are independently hydrogen, C 1 -C 15 alkyl or C 6 -C 12 aryl, each m being independently 1, 2, 3 or 4.
  • the above derivative flame retardant wherein the basic unit A-M-B is a monovalent group represented by the following structural formula (i):
  • the above-mentioned derivative flame retardant wherein the derivative flame retardant has any one of the following structural formulae (1) to (5):
  • the invention also provides a preparation method of a DOPO derivative flame retardant, comprising the following steps:
  • the Schiff base a is a structure represented by the formula (ii)
  • the Schiff base is a monovalent group represented by the formula (ii), a substituted or unsubstituted alkyl group, a substituted or unsubstituted phenyl group; a substituted or unsubstituted phenol group or a substituted or unsubstituted nitrile group or acetonitrile group,
  • Step 2 synthesizing compound d by reacting compound b and/or compound c with Schiff base a obtained in step 1,
  • compound b is Compound c is R 1 , R 2 are independently hydrogen, C 1 -C 15 alkyl or C 6 -C 12 aryl, each m being independently 1, 2, 3 or 4;
  • Step 3 esterification step d obtained by the compound d, to obtain a compound e;
  • Step 4 The compound e obtained in the step 3 is subjected to transesterification to obtain a functionalized DOPO derivative flame retardant.
  • the starting material for synthesizing the Schiff base a comprises an amino group-containing compound, and a compound having a hydroxyl group and a reactive carbonyl group; preferably, the amino group-containing compound is selected from the group consisting of p-aminophenol.
  • the compound is selected from the group consisting of p-hydroxybenzaldehyde, 3-hydroxybenzaldehyde and/or 2-hydroxybenzaldehyde; further preferably, the molar ratio of amino group to active carbonyl group in the starting material is from 1:1 to 1:1.2, preferably in molar ratio 1:1.
  • the step 1 comprises the steps of: adding a solvent methanol, ethanol, N,N'-dimethylformamide and/or tetrahydrofuran to the raw material, and reacting in an inert atmosphere; preferably The reaction temperature is 50 ° C - 70 ° C.
  • R 1 is H
  • R 2 is H
  • m 1.
  • the step 2 comprises the step of dissolving the Schiff base a, and the compound b and/or the compound c in a solvent
  • the solvent is tetrahydrofuran, N, N' - dimethylformamide, dichloromethane and/or chloroform, preferably at a reaction temperature of from 60 ° C to 80 ° C;
  • the obtained product compound d is tetrahydrofuran, N,N'-dimethylformamide, two Methyl chloride and/or chloroform are washed several times or recrystallized.
  • the above method wherein the esterification of the step 3 is an esterification reaction by acetic anhydride and/or acetic acid.
  • the step 3 comprises the steps of: adding the reactant to water in a molar ratio of hydroxyl group to anhydride of 1:1, and reacting in an inert atmosphere; preferably, the reaction temperature is 60 ° C - 80 ° C; more preferably, compound e is recrystallized from an aqueous ethanol solution, preferably a volume ratio of ethanol to water in the aqueous ethanol solution is from 7 to 9:2.
  • step 4 is carried out by a transesterification reaction with trimellitic anhydride.
  • the step 4 comprises the step of reacting the reactant in an inert atmosphere at a molar ratio of the ester group to the acid anhydride of 1:1, preferably, the reaction temperature is from 200 ° C to 210 ° C. More preferably, the product DOPO derivative is refluxed in a toluene solution of N,N'-dimethylformamide to remove by-products from the reaction.
  • the present invention also provides a DOPO derivative flame retardant prepared by the above method.
  • the present invention also provides a composite material comprising the DOPO derivative flame retardant of the present invention.
  • the composite material described above wherein the composite material comprises a polyester, polysulfone, polyimide, polyamide, polyolefin, polyacrylate, polyetheretherketone, ABS, polyurethane, polystyrene.
  • the above DOPO derivative flame retardant or the composite material of the present invention is used in the field of flame retardancy.
  • Fig. 1 is an infrared spectrum chart of Schiff base 2 prepared in Example 2 of the present invention.
  • Figure 3 is an infrared spectrum of DOPO-containing phenol derivative 2 (P-PPD-Ph) prepared in Example 2 of the present invention.
  • Figure 4 is a nuclear magnetic resonance spectrum of a DOPO-containing phenol derivative 2 prepared in Example 2 of the present invention.
  • Figure 5 is a nuclear magnetic phosphorus spectrum of a DOPO-containing phenol derivative 2 prepared in Example 2 of the present invention.
  • Figure 6-1 shows the structural formula I contained in the flame retardant of the DOPO derivative prepared by the present invention.
  • Figure 6-2 shows the structural formula II of the DOPO derivative flame retardant prepared by the present invention.
  • Figure 6-3 shows the structural formula III of the DOPO derivative flame retardant prepared by the present invention.
  • the object of the present invention is to design a DOPO flame retardant having a reactive functional group, enhance the interfacial compatibility between the flame retardant and the polymer matrix, and the flame retardant and the reinforcement, and further effectively improve the flame retardancy.
  • the flame retardancy of the agent is to design a DOPO flame retardant having a reactive functional group, enhance the interfacial compatibility between the flame retardant and the polymer matrix, and the flame retardant and the reinforcement, and further effectively improve the flame retardancy.
  • the flame retardancy of the agent is to design a DOPO flame retardant having a reactive functional group
  • a preferred method for preparing the DOPO derivative of the present invention comprises the following steps:
  • the functionalized DOPO derivative is prepared by reacting trimellitic anhydride, 1,2,4-trichlorobenzene and tetraphenylphosphonium bromide with compound e obtained in step 3.
  • the DOPO derivative flame retardant of the present invention the composite material prepared by using the flame retardant of the present invention, and the properties of the flame retardant and the composite material are described below by way of specific examples.
  • DOPO derivative 1# of structural formula (1) which has 1 DOPO residue in the DOPO derivative:
  • the DOPO derivative 1# synthetic route is as follows:
  • the DOPO derivative 1# synthesis method is as follows:
  • the DOPO-containing phenol derivative 1 and acetic anhydride were placed in a three-necked flask at a molar ratio of 1:2, and distilled under reflux for 16 hours under nitrogen at 60 ° C under a nitrogen atmosphere. Then, it was recrystallized from an aqueous ethanol solution having a volume ratio of ethanol to distilled water of 8:2, and the product was dried in a vacuum oven for 24 hours to obtain phenol acetate 1 containing DOPO.
  • DOPO-containing phenol acetate 1 0.1 mol of DOPO-containing phenol acetate 1, 0.2 mol of trimellitic anhydride, 120 g of 1,2,4-trichlorobenzene and 0.42 g of tetraphenylphosphonium bromide were added with a stirrer, a thermometer, a distillation condenser, The four-necked flask of the nitrogen gas introduction tube was refluxed at 210 ° C for 8 hours, and the reaction was filtered to obtain a crude product. The crude product was further refluxed in a toluene solution of 10% N,N'-dimethylformamide (DMF) for 1 hour to remove impurities, and toluene containing 10% of N,N'-dimethylformamide. The solution was washed, cooled and filtered to obtain the final product, which was dried at 180 ° C to obtain DOPO derivative 1#, which was analyzed by infrared and nuclear magnetic analysis, and its structural formula was (1).
  • DOPO derivative 2# of formula (2) which has 2 DOPO residues in the DOPO derivative:
  • DOPO derivative 2# The synthesis method of DOPO derivative 2# is as follows:
  • the DOPO-containing phenol derivative 2 and acetic anhydride were placed in a three-necked flask at a molar ratio of 1:2, and distilled under reflux for 13 hours under nitrogen at 80 ° C under a nitrogen atmosphere. Then, it was recrystallized from an aqueous ethanol solution having a volume ratio of ethanol to distilled water of 8:2, and the product was dried in a vacuum oven for 24 hours to obtain a phenol ester derivative 2 containing DOPO.
  • the DOPO derivative 3# synthetic route is as follows:
  • the DOPO derivative 3# synthesis method is as follows:
  • DOPO and dicyandiamide (DICY) were added to the reaction vessel at a molar ratio of 1:1, and heated to 175 ° C for 6 hours to obtain DOPO-DICY;
  • the aromatic group-containing Schiff base 3 and DOPO were added to a three-necked flask at a molar ratio of 1:2 (0.01 mol and 0.02 mol, respectively), and 100 ml of N,N'-dimethylformamide was added as a Solvent. Nitrogen gas was introduced and reacted at 80 ° C for 12 hours. The obtained solid product was filtered, washed with a solvent N,N'-dimethylformamide, and finally dried in a vacuum oven.
  • the Mannich-type base containing DOPO and acetic anhydride were placed in a three-necked flask at a molar ratio of 1:2, and distilled under reflux of nitrogen gas for 70 hours at 70 ° C for 13 hours. Then, it was recrystallized from an aqueous ethanol solution having a volume ratio of ethanol to distilled water of 8:2, and the product was dried in a vacuum oven for 24 hours to obtain an acetylated DOPO-containing Mannich-type base.
  • the DOPO derivative 4# synthetic route is as follows:
  • the DOPO derivative 4# synthesis method is as follows:
  • DOPO (0.15 mol) and 4,4-diaminoxyl ketone (DABP) (0.025 mol) were mixed and added to a three-necked flask, heated to 180 ° C, and stirred for 3 hours, and the mixture became thick. After cooling to 100 ° C, 150 ml of toluene was added to the mixture, and the precipitate was filtered and washed with toluene. The resulting crude product was recrystallized from THF, as a white solid m-2DOPO-2Ph-2NH 2 .
  • DABP 4,4-diaminoxyl ketone
  • the double DOPO Schiff base 4 and DOPO were added to a three-necked flask at a ratio of 1:2, and N,N'-dimethylformamide (DMF) having a total mass of 20 times of the raw material was added to a three-necked flask as a solvent.
  • the mixture was subjected to nitrogen gas protection, and reacted at 80 ° C for 12 hours.
  • the obtained crude product was filtered, washed with a solvent, and finally dried in a vacuum drying oven to obtain a Mannich-type base containing tetraDOPO.
  • a Mannich-type base containing four DOPO: acetic anhydride was added to a three-necked flask at a ratio of 1:2, and distilled water was used as a solvent under reflux for 13 hours under nitrogen at 80 °C. Then, it was recrystallized from an aqueous ethanol solution having a volume ratio of ethanol to distilled water of 8:2, and the product was dried in a vacuum oven for 24 hours to obtain an acetylated tetra-DOPO-containing Mannich-type base.
  • the crude product was further refluxed with a 10% solution of N,N'-dimethylformamide in toluene for 1 hour, washed with a toluene solution containing 10% of N,N'-dimethylformamide, and filtered.
  • the final product was dried at 180 ° C to obtain DOPO derivative 4#, which was confirmed to be (4) by infrared and NMR.
  • the DOPO derivative 5# synthetic route is as follows:
  • the DOPO derivative 5# synthesis method is as follows:
  • the melamine: p-hydroxybenzaldehyde was added to a three-necked flask at a molar ratio of 1:3, and DMF was added as a solvent, and the amount of the solvent was 10 times the total mass of the raw material. An inert gas was introduced and reacted at 70 ° C for 5 hours to obtain Schiff base 5. Further, DOPO was added in the same molar amount as p-hydroxybenzaldehyde in the pre-sequence step, and reacted at the same temperature for 8 hours. The crude product obtained after the completion of the reaction was washed with a solvent to obtain 3DOPO-[(melamine)-p-hydroxybenzaldehyde] Mannich-type base.
  • 3DOPO-[(melamine)-p-hydroxybenzaldehyde]Mannich type base and acetic anhydride were placed in a three-necked flask at a molar ratio of 1:2, and distilled under reflux for 16 hours under nitrogen at 60 ° C under a nitrogen atmosphere. Then recrystallized from an aqueous ethanol solution having a volume ratio of ethanol to distilled water of 8:2. The product was dried in a vacuum oven for 24 hours to give an acetylated 3-dopo-[(melamine)-p-hydroxybenzaldehyde] Mannich base.
  • the crude product was further refluxed with a 10% solution of N,N'-dimethylformamide in toluene for 1 hour, washed with a toluene solution containing 10% of N,N'-dimethylformamide, and filtered.
  • the final product was dried at 180 ° C to obtain DOPO derivative 5#, which was confirmed to be (5) by infrared and NMR.
  • Preparation method of flame retardant material in terms of parts by weight, including 75 parts of PBT, 20 parts of glass fiber, and 6 parts of DOPO derivative 2#.
  • PBT, DOPO derivative 2# was dried at 80 ° C for 4 h, and PBT, DOPO derivative 2#, and glass fiber were mixed according to the above mass parts, and then used in a twin-screw extruder (the screw speed of the extruder was 220 r). /min, the speed of the feeder is 15r/min, and the six-stage temperature is set to 195°C, 205°C, 215°C, 220°C, 230°C, 225°C) for extrusion, and then cooled and pelletized to obtain flame retardant.
  • Main performance test The produced products are made into standard test samples according to the standard, and each test is carried out.
  • each group of tests must have at least 5 splines.
  • the flame retardant grade that is, the property of the material or the material that has been treated to delay the spread of flame, and the grade system according to this, the flame retardant grade is gradually increased from V2, V1 to V0: V0 is the sample twice. After 10 seconds of burning test, the flame is extinguished within 30 seconds, no burning matter can fall; V1 is the flame test in 60 seconds after two 10 seconds of burning test on the sample, no burning matter falls, V2 After two 10 second burn tests on the sample, the flame is extinguished within 60 seconds and there is a burning off.
  • the notched impact strength was opened with a gap of 4 mm using a notch sampler, and tested according to GB/T1043-2008.
  • the flame retardant composite prepared by the DOPO derivative 2# synthesized by the present invention has the best mechanical properties such as tensile strength, bending strength and cantilever notched impact strength, which is due to the synthesis of DOPO derivatives.
  • the flame retardant not only flame-retards the composite material, but also the DOPO derivative 2# compatible functional group improves the bonding strength with the surface of the glass fiber, and enhances the relationship between the flame retardant and the glass fiber.
  • the DOPO derivative 2# compatible functional group also enhances the interfacial reaction ability between the flame retardant and the PBT matrix, and improves the interfacial compatibilization effect between the flame retardant and the matrix resin, thereby making the DOPO derivative
  • the flame retardant composite prepared by 2# has the best mechanical properties.
  • Comparative Example 1, and Comparative Example 2 when the amount of the flame retardant was 6 parts, only the functional group DOPO derivative 2# flame retardant composite material had a flame retardant grade of V0, and the char formation rate was the highest.
  • DOPO derivative 2# with compatible functional groups burns the flame-retardant composite material in the flame-retardant composite material, and the flame-retardant composite material is mainly flame-retardant, and its condensed phase is enhanced by flame retardant, so that the carbonation rate of the flame-retardant composite material Increased, the carbon layer is more dense, the effect of heat insulation and oxygen barrier is better, and the DOPO derivative 2# flame retardant also introduces nitrogen element, which makes the P element and the N element in the flame retardant produce synergistic flame retardant, further improve The flame retardant properties of the flame retardant composite.
  • the modified and functionalized DOPO flame retardant was not used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

涉及一种DOPO衍生物阻燃剂及其制备方法和应用。该DOPO衍生物阻燃剂含有基本单元A-M-B和附加单元连接而成的结构,所述附加单元为M单元、M-A单元、M-B单元、DOPO衍生物单元、腈基、腈基取代DOPO衍生物单元和/或DOPS衍生物单元,其条件是A为末端单元,B为胺基取代DOPO衍生物单元; A为具有结构式(I)表示的1,3-二酮基-异苯并呋喃-5-基-甲酰氧基一价基团: B为结构式(Ⅱ)或(Ⅲ)表示的二价胺基团; R 1,R 2独立地为氢、C 1-C 15烷基或C 6-C 12芳基,每个m独立地为1、2、3或4; M表示直接连接或C 6-C 12芳基。该DOPO衍生物新型阻燃剂带有与有机聚合体相容的官能团,提高了含有该阻燃剂的复合材料的力学性能和阻燃效果。

Description

DOPO衍生物阻燃剂及其制备方法和应用
本申请要求享有在先申请的申请日为2017年11月14日,申请号为201711125311.0,名称为“DOPO衍生物阻燃剂及其制备方法和应用”的中国发明专利申请的优先权。
技术领域
本发明涉阻燃剂及其制备方法,特别涉及DOPO衍生物阻燃剂及其制备方法。
背景技术
目前,市场上采用的阻燃剂主要是有卤阻燃剂,但是有卤阻燃剂在使用过程中释放出有毒的烟和气体,危害环境和人类的健康。因此,发展无卤阻燃剂是非常重要的方向。而磷系阻燃剂是非常重要的一种无卤阻燃剂,在磷系阻燃剂中,磷杂菲类阻燃又是目前发展的重要方向,目前市场上的磷杂菲类阻燃剂包括9,10-二氢-9氧杂-10-磷杂菲-10-氧化物(简称DOPO)及其衍生物,该类磷杂菲阻燃剂由于分子的特殊结构,使它不仅比一般未成环的有机磷酸酯热稳定性和化学稳定性好,还具有低含磷量、无卤、低烟、无毒、不迁移和阻燃持久等优点。但是DOPO类阻燃剂也有其不足,该类阻燃剂在燃烧后成炭的炭层结构强度和致密性差,隔氧隔热能力弱;而且,该类阻燃剂与聚合物基体或增强材料之间的相容性差,从而使该类阻燃剂在使用时其机械力学性能下降。
Wu,C.S等(Wu,C.S.,Y.L.Liu and Y.Chiu,Synthesis and characterization of new organosoluble polyaspartimides containing phosphorus.2002.43(6):p.1773-1779.)公开了利用DOPO等合成含磷的聚天冬亚酰胺,该聚合物具有有机溶解性和热稳定性。
梁兵等(《新型含磷阻燃剂BPAODOPE的合成与表征》,功能材料,2011增刊Ⅲ(42),474-476;CN102070770B)公开了以DOPE的衍生物10-(2,5-二羟基苯基-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)和1,2,4-偏 苯三甲酸酐酰氯(TMAC)为原料,合成了新型含磷阻燃剂BPAODOPE,并通过红外光谱、1H核磁共振谱对该化合物进行了结构表征。随后,该作者(CN106188143A)公开了一种一种含磷、氮阻燃剂及其制备方法,其通过将3-氨基酚与戊二醛在溶剂中反应生成含-C=N-结构的中间体(席夫碱),再利用中间体与DOPO合成阻燃剂。
发明内容
目前现有技术中存在的技术问题是,现有DOPO阻燃剂的加入导致阻燃剂复合材料机械力学性能下降,不利于阻燃复合材料的高性能化,而且阻燃剂成炭的炭层致密性较差,炭层强度差,其阻燃复合材料的阻燃性能有待提高。
因此,本发明设计一种具有反应官能团的阻燃剂,其与聚合物基体和增强体都能发生反应,能进一步有效提高阻燃剂的阻燃性,而且本发明还引入氮元素,使合成阻燃剂中的P元素与N元素产生协效阻燃,进一步提高合成阻燃剂的阻燃性能;同时反应官能团还能增强阻燃剂与聚合物基体、以及阻燃剂与增强体之间的界面相容性,增强界面间的粘结力,从而提高了阻燃复合材料的力学性能。
具体来说,本发明提出了如下技术方案:
本发明提供了一种DOPO衍生物阻燃剂,含有基本单元A-M-B和附加单元连接而成的结构,所述附加单元为M-A单元、M-B单元、DOPO衍生物单元、腈基取代DOPO衍生物单元和/或DOPS衍生物单元,其条件是A为末端单元,B为胺基取代DOPO衍生物单元;
其中,
A为具有如下结构式(I)表示的1,3-二酮基-异苯并呋喃-5-基-甲酰氧基一价基团:
Figure PCTCN2017112275-appb-000001
B为如下结构式(Ⅱ)或(Ⅲ)表示的二价胺基团:
Figure PCTCN2017112275-appb-000002
Figure PCTCN2017112275-appb-000003
R1,R2独立地为氢、C1-C15烷基或C6-C12芳基,每个m独立地为1、2、3或4;
M表示直接连接或C6-C12芳基。
优选的是,上述衍生物阻燃剂,其中,所述附加单元为n个M单元、n个M-A单元、n个M-B单元、n个DOPO衍生物单元、n个腈基、n个腈基取代DOPO衍生物单元和/或n个DOPS衍生物单元,每个n独立地为整数, 且每个n独立地大于等于1、小于等于3。
优选的是,上述衍生物阻燃剂,其中,所述DOPO衍生物单元为如下结构式(IV)表示的磷杂菲氧化物一价基团D和/或结构式(V)表示的磷杂菲硫化物一价基团E:
Figure PCTCN2017112275-appb-000004
Figure PCTCN2017112275-appb-000005
R3,R4独立地为氢、C1-C15烷基或C6-C12芳基,每个m独立地为1、2、3或4。
优选的是,上述衍生物阻燃剂,其中,所述基本单元A-M-B为如下结构式(i)表示的一价基团:
Figure PCTCN2017112275-appb-000006
优选的是,上述衍生物阻燃剂,其中,所述衍生物阻燃剂具有如下结构式(1)-(5)中的任一种:
Figure PCTCN2017112275-appb-000007
Figure PCTCN2017112275-appb-000008
本发明还提供了一种DOPO衍生物阻燃剂的制备方法,包括以下步骤:
步骤1合成席夫碱a,所述席夫碱a具有结构式HO-CH=N-表示的一价基团的碱性化合物或具有下述结构式(ii)表示的一价基团
Figure PCTCN2017112275-appb-000009
的化合物;当席夫碱a为含有结构式(ii)表示的结构时,该席夫碱为结构式(ii)表示的一价基团连接取代或未取代的烷基、取代或未取代的苯基、取代或未取代的苯酚基、或者取代或未取代的腈基或乙腈基,
步骤2利用化合物b和/或化合物c与步骤1得到的席夫碱a反应合成化合物d,
其中化合物b为
Figure PCTCN2017112275-appb-000010
化合物c为
Figure PCTCN2017112275-appb-000011
R1,R2独立地为氢、C1-C15烷基或C6-C12芳基,每个m独立地为1、2、3或4;
步骤3酯化步骤2得到的化合d,得到化合物e;
步骤4将步骤3得到的化合物e通过酯交换,得到官能化的DOPO衍生物阻燃剂。
优选的是,上述方法,其中,所述步骤1合成席夫碱a所用原料包括含氨基的化合物、以及含羟基和活性羰基的化合物;优选的是,所述含氨基的化合物选自对氨基酚,乙二胺,对苯二胺,邻苯二胺,1,3-苯二胺,2-氨基苯酚、3-氨基苯酚和/或三聚氰胺;更优选的是,所述含羟基和活性羰基的化合物选自对羟基苯甲醛,3-羟基苯甲醛和/或2-羟基苯甲醛;进一步优选的是,所述原料中氨基和活性羰基摩尔比为1:1-1:1.2,优选摩尔比为1:1。
优选的是,上述方法,其中,所述步骤1包括以下工序:向原料中加入溶剂甲醇、乙醇、N,N’-二甲基甲酰胺和/或四氢呋喃,在惰性气氛中反应;优选的是,反应温度为50℃-70℃。
优选的是,上述方法,其中,所述步骤2中,R1为H,R2为H,m=1。
优选的是,上述方法,其中,所述步骤2包括以下工序:将所述席夫碱a、以及所述化合物b和/或化合物c溶于溶剂进行反应,优选溶剂为四氢呋喃、N,N’-二甲基甲酰胺、二氯甲烷和/或氯仿,优选反应温度为60℃-80℃;进一步优选的,将得到的产物化合物d用四氢呋喃、N,N’-二甲基甲酰胺、二氯甲烷和/或氯仿洗涤数次或者重结晶。
优选的是,上述方法,其中,所述步骤3的酯化为通过乙酸酐和/或乙酸进行酯化反应。
优选的是,上述方法,其中,所述步骤3包括以下工序:将反应物按羟基和酸酐的摩尔比为1:1加入水中,在惰性气氛中反应;优选的是,反应温度为60℃-80℃;更优选的,将化合物e在乙醇水溶液中重结晶,优选乙醇水溶液中乙醇和水的体积比为7~9:2。
优选的是,上述方法,其中,所述步骤4通过偏苯三酸酐进行酯交换反应。
优选的是,上述方法,其中,所述步骤4包括以下工序:将反应物按酯基和酸酐的摩尔比为1:1在惰性气氛中反应,优选的是,反应温度为200℃-210℃;更优选的,将产物DOPO衍生物在N,N’-二甲基甲酰胺的甲苯溶液中回流来去除反应产生的副产物。
另一方面,本发明还提供上述方法制备的DOPO衍生物阻燃剂。
另一方面,本发明还提供一种复合材料,含有本发明的DOPO衍生物阻燃剂。
优选的是,上述复合材料,其中,所述复合材料含有选自聚酯、聚砜、聚酰亚胺、聚酰胺、聚烯烃、聚丙烯酸酯、聚醚醚酮、ABS、聚氨酯、聚苯乙烯、聚碳酸酯、聚苯醚、不饱和聚酯树脂和酚醛树脂组成的组中的物质。
优选的是,上述DOPO衍生物阻燃剂或本发明的复合材料在阻燃领域的应用。
本发明的有益效果包括:
(1)设计新型阻燃剂带有相容官能团,在阻燃复合材料燃烧时,生成致密的炭层结构,隔氧隔热能力增强,从而提高了该阻燃剂在阻燃复合材料中的阻燃效果。
(2)设计新型阻燃剂中引入N元素,在阻燃复合材料中,在燃烧过程中,阻燃剂中P元素与N元素产生协效阻燃,进一步提高合成阻燃剂的阻燃性能;
(3)设计新型阻燃剂带有相容官能团,使阻燃剂与基体,阻燃与增强剂之间的相容性增强,能够有效提高阻燃剂与聚合物基体、增强体等的界面粘结力,从而使该阻燃复合材料在具有优异阻燃性能的同时,还提高阻燃复合材料的机械力学性能。
下面结合附图和各个具体实施方式,对本发明及其有益技术效果进行详细说明,其中:
附图说明
图1是本发明实施例2制备的席夫碱2的红外光谱图。
图2是本发明实施例2制备的席夫碱2的核磁氢谱图。
图3是本发明实施例2制备的含DOPO的苯酚衍生物2(P-PPD-Ph)的红外光谱图。
图4是本发明实施例2制备的含DOPO的苯酚衍生物2的核磁氢谱图。
图5是本发明实施例2制备的含DOPO的苯酚衍生物2的核磁磷谱图。
图6-1为本发明制备的DOPO衍生物阻燃剂含有的结构式I。
图6-2为本发明制备的DOPO衍生物阻燃剂含有的结构式Ⅱ。
图6-3为本发明制备的DOPO衍生物阻燃剂含有的结构式Ⅲ。
具体实施方式
如上所述,本发明的目的在于设计一种具有反应官能团的DOPO阻燃剂,增强阻燃剂与聚合物基体、以及阻燃剂与增强体之间的界面相容性,进一步有效提高阻燃剂的阻燃性。
由于苯环可以提高阻燃性能和碳残量,优选的制备本发明DOPO衍生物的方法,包括以下步骤:
1合成制备含芳香基团的席夫碱
利用含氨基的化合物与含醛基的化合物反应制备得到含有芳香基团的席 夫碱a;
2将DOPO加成到步骤1制备的席夫碱上,制备得到化合物d;
3.乙酰化步骤2得到的化合物d
利用乙酸酐、乙酸等与步骤2得到的化合物d反应,得到化合物e;
4.制备官能化的DOPO衍生物
利用偏苯三酸酐,1,2,4-三氯苯和四苯基溴化磷与步骤3得到的化合物e反应,制备得到官能化的DOPO衍生物。
下面通过具体实施例来说明本发明的DOPO衍生物阻燃剂,利用本发明阻燃剂制备的复合材料,并对阻燃剂和复合材料性能进行检测。
下面实施例中所用到各试剂和仪器来源如下:
表1 实施例所用试剂和仪器
Figure PCTCN2017112275-appb-000012
Figure PCTCN2017112275-appb-000013
实施例1
制备结构式(1)的DOPO衍生物1#,该DOPO衍生物中有1个DOPO残基:
Figure PCTCN2017112275-appb-000014
DOPO衍生物1#合成路线如下:
Figure PCTCN2017112275-appb-000015
DOPO衍生物1#合成方法如下:
步骤1制备含DOPO的苯酚衍生物1
将12.2g的对羟基苯甲醛和10.9g的对氨基酚加入装有磁力搅拌器的三颈圆底烧瓶中,再加入100ml甲醇作为溶剂。在N2氛围中将混合物50℃下反应6小时。将得到的含芳香基团的席夫碱1(10.65g)和21.6g的DOPO溶于100ml的四氢呋喃(THF)中,然后在N2保护条件下,加热至60℃并搅拌12小时,得到沉淀。将所得沉淀过滤并用室温下的THF洗涤数次,然后在 真空干燥箱中干燥。得到白色产物为含DOPO的苯酚衍生物1。
步骤2制备含DOPO的乙酸苯酚酯1
将含DOPO的苯酚衍生物1和乙酸酐按照摩尔比为1:2的比例加入三口烧瓶,以蒸馏水为溶剂,在氮气条件下在60℃回流反应13个小时。然后在乙醇与蒸馏水的体积比为8:2的乙醇水溶液中重结晶,所的产物在真空烘箱中干燥24小时,得到含DOPO的乙酸苯酚酯1。
步骤3DOPO衍生物的合成
将0.1mol的含DOPO的乙酸苯酚酯1、0.2mol的偏苯三酸酐、120g的1,2,4-三氯苯和0.42g的四苯基溴化磷加入带有搅拌器、温度计、蒸馏冷凝管、氮气导入管的的四口烧瓶中,在210℃下回流8小时,反应结束过滤得粗产物。再将粗产物再含有10%的N,N’-二甲基甲酰胺(DMF)的甲苯溶液中回流1小时以除去杂质,经含有10%的N,N’-二甲基甲酰胺的甲苯溶液洗涤、冷却过滤得最后产物,在180℃下干燥,得到DOPO衍生物1#,经红外和核磁检测分析,其结构式为(1)。
实施例2
制备结构式(2)的DOPO衍生物2#,该DOPO衍生物中有2个DOPO残基:
Figure PCTCN2017112275-appb-000016
DOPO衍生物2#的合成路线如下:
Figure PCTCN2017112275-appb-000017
Figure PCTCN2017112275-appb-000018
含芳香基团的席夫碱2
Figure PCTCN2017112275-appb-000019
含DOPO的苯酚衍生物2
Figure PCTCN2017112275-appb-000020
含DOPO的苯酚酯衍生物2
Figure PCTCN2017112275-appb-000021
DOPO衍生物2#
DOPO衍生物2#的合成方法如下:
步骤1含DOPO的苯酚衍生物2制备
将对羟基苯甲醛和对苯二胺按照摩尔比为2:1(分别为24.4g和10.8g)的比例加入装有磁力搅拌器的三颈圆底烧瓶中,再加入300ml甲醇作为溶剂。在N2氛围中将混合物在60℃下反应6小时,将所得沉淀过滤,洗涤。在烘箱中烘干得含芳香基团的席夫碱2。将得到的产物(31.6g)、43.2g的DOPO和250ml的四氢呋喃混合物加热至60℃并搅拌12小时,得到白色沉淀。将所得白色沉淀过滤并用冷THF洗涤数次,然后在真空干燥箱中干燥。所得白色产物为1含DOPO的苯酚衍生物2。
步骤2含DOPO的苯酚酯衍生物2
将含DOPO的苯酚衍生物2和乙酸酐按照摩尔比1:2的比例加入三口烧瓶,以蒸馏水为溶剂,在氮气条件下80℃回流反应13个小时。然后在乙醇与蒸馏水的体积比为8:2的乙醇水溶液中重结晶,所的产物在真空烘箱中干燥24小时,得到含DOPO的苯酚酯衍生物2。
步骤3DOPO衍生物2#的合成
将0.1mol的含DOPO的苯酚酯衍生物2、0.2mol的偏苯三酸酐、120g的1,2,4-三氯苯和0.42g的四苯基溴化磷加入带有搅拌器、温度计、蒸馏冷凝管、氮气导入管的的四口烧瓶中,在210℃下回流8小时,反应结束过滤得 粗产物。再将粗产物再含有10%的N,N’-二甲基甲酰胺的甲苯溶液中回流1小时,经含有10%的N,N’-二甲基甲酰胺的甲苯溶液洗涤、冷却过滤得最后产物,在180℃下干燥,得到DOPO衍生物2#。
步骤1中得到的含有芳香基团的席夫碱2和含DOPO的苯酚衍生物2进行红外光谱分析和核磁共振分析的结果如图1-图5所示。席夫碱2的测试结果如图1和图2所示,图1中,3276对应的是Ph-OH的伸缩振动峰,3027对应的是-CH的伸缩振动峰,1663对应的是-C=N的伸缩振动峰。图2中,1H HMR(400MHz,DMSO),δ=10.14(s,1H),8.52(s,1H),7.79(d,J=8.7Hz,2H),7.27(s,2H),6.89(d,J=8.6Hz,2H);含DOPO的苯酚衍生物2的测试结果如图3、图4和图5所示,3434对应的是Ph-OH的伸缩振动峰,3297和1594对应的是N-H的伸缩振动峰,1475和1232对应的是P-Ph的伸缩振动峰,1044对应的是P-O-C的伸缩振动峰,924对应的是P-O-Ph的伸缩振动峰。图4氢谱中,1H HMR(400MHz,DMSO),δ=9.40(OH),9.45(OH’),8.14(s,2H),8.03-8.07(s,1H),7.71(s,1H),7.54(s,1H),7.42(s,1H),7.29(s,1H),7.20(s,2H),7.04(s,1H),6.67-6.73(s,2H),6.36-6.45(s,2H),5.89(NH),5.47(NH),5.16(CH),4.78(CH)。图5磷谱中,31P NMR(400MHz,DMSO),δ=28.56,31.76,核磁分析的化学位移与结构式吻合。
实施例3
制备结构式(3)的DOPO衍生物3#,该DOPO衍生物中有3个DOPO残基:
Figure PCTCN2017112275-appb-000022
DOPO衍生物3#合成路线如下:
Figure PCTCN2017112275-appb-000023
Figure PCTCN2017112275-appb-000024
含芳香基团的席夫碱3
Figure PCTCN2017112275-appb-000025
含DOPO的Mannich型碱
Figure PCTCN2017112275-appb-000026
Figure PCTCN2017112275-appb-000027
乙酰化的含DOPO的Mannich型碱
Figure PCTCN2017112275-appb-000028
DOPO衍生物3#
DOPO衍生物3#合成方法如下:
步骤1DOPO-DICY的合成
将DOPO和双氰胺(DICY)按照摩尔比1:1的比例加入反应容器中,加热到175℃反应6个小时,得到DOPO-DICY;
步骤2制备含DOPO的Mannich型碱
将0.01mol的DOPO-DICY、0.02mol的对羟基苯甲醛和100mlTHF加入三口烧瓶,通入氮气,在50℃条件下反应6小时,有固体析出。过滤所的固体,用THF洗涤后在真空干燥箱中烘干,得到含芳香基团的席夫碱3。
将含芳香基团的席夫碱3和DOPO按照摩尔比为1:2的比例(分别为0.01mol和0.02mol)加入到三口烧瓶中,加入100ml的N,N’—二甲基甲酰胺作为溶剂。通入氮气,在80℃的条件下反应12小时。将所得固体产物过滤,用溶剂N,N’—二甲基甲酰胺洗涤,最后在真空干燥箱中干燥。
步骤3制备乙酰化的含DOPO的Mannich型碱
将含DOPO的Mannich型碱和乙酸酐按照摩尔比为1:2的比例加入三口烧瓶,以蒸馏水为溶剂,在氮气条件下70℃回流反应13个小时。然后在乙醇与蒸馏水的体积比为8:2的乙醇水溶液中重结晶,所的产物在真空烘箱中干燥24小时,得到乙酰化的含DOPO的Mannich型碱。
步骤4DOPO衍生物3#的合成
将0.1mol的乙酰化的含DOPO的Mannich型碱、0.2mol的偏苯三酸酐、120g的1,2,4-三氯苯和0.42g的四苯基溴化磷加入带有搅拌器、温度计、蒸馏冷凝管、氮气导入管的的四口烧瓶中,在210℃下回流8小时,反应结束过滤得粗产物。再将粗产物再含有10%的N,N’-二甲基甲酰胺的甲苯溶液中回流1小时,经含有10%的N,N’-二甲基甲酰胺的甲苯溶液洗涤、冷却过滤得最后产物,在180℃下干燥,得到DOPO衍生物3#,通过红外和核磁确认其结构式为(3)。
实施例4
制备结构式(4)的DOPO衍生物4#,该DOPO衍生物中有4个DOPO残基:
Figure PCTCN2017112275-appb-000029
DOPO衍生物4#合成路线如下:
Figure PCTCN2017112275-appb-000030
Figure PCTCN2017112275-appb-000031
含双DOPO的席夫碱4
Figure PCTCN2017112275-appb-000032
含四DOPO的Mannich型碱
Figure PCTCN2017112275-appb-000033
Figure PCTCN2017112275-appb-000034
乙酰化的含四DOPO的Mannich型碱
Figure PCTCN2017112275-appb-000035
DOPO衍生物4#
DOPO衍生物4#合成方法如下:
步骤1m-2DOPO-2Ph-2NH2的合成
将DOPO(0.15mol)和4,4-二氨基二甲苯酮(DABP)(0.025mol)混合加入三口烧瓶,加热到180℃,搅拌3小时,混合物变稠。冷却到100℃,再在混合物中加入150ml甲苯,过滤沉淀并用甲苯洗涤。将所得粗产物用THF重结晶,得白色固体m-2DOPO-2Ph-2NH2
步骤2含双DOPO席夫碱4的合成
将m-2DOPO-2Ph-2NH2和对羟基苯甲醛按照1:2的比例加入到三口烧瓶中,再将m-2DOPO-2Ph-2NH2和对羟基苯甲醛总质量20倍的THF加入到三口烧瓶中作为溶剂,通入氮气,在50℃条件下反应8小时。将所得产物过 滤,再用THF进行洗涤。最后放入真空干燥箱烘干,得到双DOPO席夫碱4。
步骤3含四DOPO的Mannich型碱的合成
将双DOPO席夫碱4和DOPO按照1:2的比例加入到三口烧瓶中,再将原料总质量20倍的N,N’-二甲基甲酰胺(DMF)加入到三口烧瓶中作为溶剂。通入氮气保护,在80℃条件下反应12小时,将所得粗产品过滤,用溶剂洗涤,最后放入真空干燥箱烘干,得到含四DOPO的Mannich型碱。
步骤4乙酰化的含四DOPO的Mannich型碱的合成
将含四DOPO的Mannich型碱:乙酸酐按照1:2的比例加入三口烧瓶,以蒸馏水为溶剂,在氮气条件下80℃回流反应13个小时。然后在乙醇与蒸馏水的体积比为8:2的乙醇水溶液中重结晶,所的产物在真空烘箱中干燥24小时,得到乙酰化的含四DOPO的Mannich型碱。
步骤5DOPO衍生物4#的合成
将0.1mol的乙酰化的含四DOPO的Mannich型碱、0.2mol的偏苯三酸酐、120g的1,2,4-三氯苯和0.42g的四苯基溴化磷加入带有搅拌器、温度计、蒸馏冷凝管、氮气导入管的的四口烧瓶中,在210℃下回流8小时,过滤得粗产物。再将粗产物再含有10%的N,N’-二甲基甲酰胺的甲苯溶液中回流1小时,经含有10%的N,N’-二甲基甲酰胺的甲苯溶液洗涤、冷却过滤得最后产物,在180℃下干燥,得到DOPO衍生物4#,通过红外和核磁确认其结构式为(4)。
实施例5
制备结构式(5)的DOPO衍生物5#,该DOPO衍生物中有3个DOPO残基:
Figure PCTCN2017112275-appb-000036
DOPO衍生物5#合成路线如下:
Figure PCTCN2017112275-appb-000037
3DOPO-[(三聚氰胺)-对羟基苯甲醛]Mannich型碱
Figure PCTCN2017112275-appb-000038
乙酰化的3DOPO-[(三聚氰胺)-对羟基苯甲醛]Mannich型碱
Figure PCTCN2017112275-appb-000039
Figure PCTCN2017112275-appb-000040
DOPO衍生物5#
DOPO衍生物5#合成方法如下:
步骤1 3DOPO-[(三聚氰胺)-对羟基苯甲醛]Mannich型碱的合成
将三聚氰胺:对羟基苯甲醛按照1:3的摩尔比加入到三口烧瓶中,再加入DMF作为溶剂,溶剂的量为原料总质量的10倍。通入惰性气体,在70℃条件下反应5个小时,得到席夫碱5。再加入与前序步骤中的对羟基苯甲醛相同摩尔数的DOPO,在相同的温度下反应8小时。反应结束后得到的粗产物用溶剂洗涤得到3DOPO-[(三聚氰胺)-对羟基苯甲醛]Mannich型碱。
步骤2 乙酰化的3-dopo-[(三聚氰胺)-对羟基苯甲醛]Mannich型碱的合成
将3DOPO-[(三聚氰胺)-对羟基苯甲醛]Mannich型碱和乙酸酐按照摩尔比1:2的比例加入三口烧瓶,以蒸馏水为溶剂,在氮气条件下60℃回流反应13个小时。然后在乙醇与蒸馏水的体积比为8:2的乙醇水溶液中重结晶,所 的产物在真空烘箱中干燥24小时,得到乙酰化的3-dopo-[(三聚氰胺)-对羟基苯甲醛]Mannich型碱。
步骤3 DOPO衍生物5#的合成
将0.1mol的乙酰化的3DOPO-[(三聚氰胺)-对羟基苯甲醛]Mannich型碱、0.2mol的偏苯三酸酐、120g的1,2,4-三氯苯和0.42g的四苯基溴化磷加入带有搅拌器、温度计、蒸馏冷凝管、氮气导入管的的四口烧瓶中,在210℃下回流8小时,过滤得粗产物。再将粗产物再含有10%的N,N’-二甲基甲酰胺的甲苯溶液中回流1小时,经含有10%的N,N’-二甲基甲酰胺的甲苯溶液洗涤、冷却过滤得最后产物,在180℃下干燥,得到DOPO衍生物5#,通过红外和核磁确认其结构式为(5)。
实施例6阻燃复合材料
实施例2制备的DOPO衍生物2#与聚对苯二甲酸丁二醇酯(PBT)树脂制备的阻燃复合材料
阻燃材料的制备方法:按重量份数计算,包括75份PBT,20份玻璃纤维,6份DOPO衍生物2#。
将PBT、DOPO衍生物2#在80℃下干燥4h,将PBT、DOPO衍生物2#、玻纤按照上述质量份数混合均有后用双螺杆挤出机(挤出机的螺杆转速为220r/min,喂料机的转速为15r/min,六段温度依次设置为195℃、205℃、215℃、220℃、230℃、225℃)进行挤出,然后经过冷却、切粒获得阻燃复合材料粒料,将阻燃复合材料粒料干燥后,注塑成标准样条进行测试。
对比例1阻燃复合材料
实施例2制备的含DOPO的苯酚衍生物2与聚对苯二甲酸丁二醇酯(PBT)树脂制备的阻燃复合材料
按重量份数计算,包括75份聚对苯二甲酸丁二醇酯,20份玻璃纤维,6份含DOPO的苯酚衍生物2。复合材料的制备方法与实施例6相同。
对比例2阻燃复合材料
DOPO与聚对苯二甲酸丁二醇酯(PBT)树脂制备的阻燃复合材料
按重量份数计算,包括75份聚对苯二甲酸丁二醇酯,20份玻璃纤维,6份DOPO。复合材料的制备方法与实施例6相同。
对比例3阻燃复合材料
DOPO与聚对苯二甲酸丁二醇酯(PBT)树脂制备的阻燃复合材料
按重量份数计算,包括75份聚对苯二甲酸丁二醇酯,20份玻璃纤维,14份DOPO。
主要性能测试:生产出的产品按照标准制成标准测试样条,进行各项测试。
垂直燃烧性能:按GB/T2408-1996中的垂直法进行测试,每组测试至少要5根样条。
阻燃等级,即物质具有的或材料经处理后具有的明显推迟火焰蔓延的性质,并以此划分的等级制度,阻燃等级由V2,V1向V0逐级递增:V0为对样品进行两次10秒的燃烧测试后,火焰在30秒内熄灭,不能有燃烧物掉下;V1为对样品进行两次10秒的燃烧测试后,火焰在60秒内熄灭,不能有燃烧物掉下,V2为对样品进行两次10秒的燃烧测试后,火焰在60秒内熄灭,可以有燃烧物掉下。
力学性能的测试:每组测试样条为10根,结果取10个测试值的平均值;拉伸强度按照GB/T1040-2006进行测试,弯曲强度按照GB/T9341-2000进行测试;
缺口冲击强度用缺口制样机开4mm的缺口,按照GB/T1043-2008进行测试。
其性能测试结果如表2所示。
表2 复合材料性能测试
Figure PCTCN2017112275-appb-000041
Figure PCTCN2017112275-appb-000042
根据表2可以得知,采用本发明合成的DOPO衍生物2#制备的阻燃复合材料的拉伸强度、弯曲强度、悬臂梁缺口冲击强度等力学性能最好,这是由于合成的DOPO衍生物2#带有相容官能团,该阻燃剂不仅对复合材料进行阻燃,而且DOPO衍生物2#相容官能团提高了与玻纤表面的粘接强度,增强阻燃剂与玻纤之间的界面结合力;同时DOPO衍生物2#相容官能团还增强了阻燃剂与PBT基体之间的界面反应能力,改善了阻燃剂与基体树脂之间的界面增容效果,从而使DOPO衍生物2#制备的阻燃复合材料具有最优的机械力学性能。实施例6、对比例1、对比例2中,阻燃剂用量都为6份的时候,只有带官能团的DOPO衍生物2#阻燃复合材料阻燃等级达到V0级,而且成炭率最高,这是由于DOPO衍生物2#带有相容官能团在阻燃复合材料燃烧时,使阻燃复合材料以气相阻燃为主,同时其凝聚相阻燃增强,使阻燃复合材料的成炭率增加,炭层更致密,隔热隔氧能力效果更好,而且DOPO衍生物2#阻燃剂还引入了氮元素,使阻燃剂中的P元素与N元素产生协效阻燃,进一步提高了阻燃复合材料的阻燃性能。对比例3中没有进行改性、官能化DOPO阻燃剂,直接作为阻燃剂使用需要添加14份才能达到V0级,此时,阻燃剂用量的增加,阻燃复合材料的力学性能下降幅度太大,使阻燃材料的性能达不到高性能要求,因此,对阻燃剂的设计进行官能化设计,且对阻燃剂进行相容官能化的设计对于阻燃材料的阻燃性能和机械力学性能具有很大的提高,为以后新型阻燃剂的设计合成提供一条更好的途径。

Claims (18)

  1. 一种DOPO衍生物阻燃剂,其特征在于,含有基本单元A-M-B和附加单元连接而成的结构,所述附加单元为M单元、M-A单元、M-B单元、DOPO衍生物单元、腈基、腈基取代DOPO衍生物单元和/或DOPS衍生物单元,其条件是A为末端单元,B为胺基取代DOPO衍生物单元;
    其中,
    A为具有如下结构式(I)表示的1,3-二酮基-异苯并呋喃-5-基-甲酰氧基一价基团:
    Figure PCTCN2017112275-appb-100001
    B为如下结构式(Ⅱ)或(Ⅲ)表示的二价胺基团:
    Figure PCTCN2017112275-appb-100002
    Figure PCTCN2017112275-appb-100003
    R1,R2独立地为氢、C1-C15烷基或C6-C12芳基,每个m独立地为1、2、3或4;
    M表示直接连接或C6-C12芳基。
  2. 根据权利要求1所述的衍生物阻燃剂,其中,所述所述附加单元为n个M单元、n个M-A单元、n个M-B单元、n个DOPO衍生物单元、n个腈基、n个腈基取代DOPO衍生物单元和/或n个DOPS衍生物单元,每个n独立地为整数,且每个n独立地大于等于1、小于等于3。
  3. 根据权利要求1或2所述的衍生物阻燃剂,其中,所述DOPO衍生物单元为如下结构式(IV)表示的磷杂菲氧化物一价基团D和/或结构式(V)表示的磷杂菲硫化物一价基团E:
    Figure PCTCN2017112275-appb-100004
    Figure PCTCN2017112275-appb-100005
    R3,R4独立地为氢、C1-C15烷基或C6-C12芳基,每个m独立地为1、2、3或4。
  4. 根据权利要求1-3任一项所述的衍生物阻燃剂,其中,所述基本单元A-M-B为如下结构式(i)表示的一价基团:
    Figure PCTCN2017112275-appb-100006
  5. 根据权利要求1-4任一项所述的衍生物阻燃剂,其中,所述衍生物阻燃剂具有如下结构式(1)-(5)中的任一种:
    Figure PCTCN2017112275-appb-100007
    Figure PCTCN2017112275-appb-100008
  6. 权利要求1-5任一项所述的DOPO衍生物阻燃剂的制备方法,包括以下步骤:
    步骤1合成席夫碱a,所述席夫碱a具有结构式HO-CH=N-表示的一价基团的碱性化合物或具有下述结构式(ii)表示的一价基团
    Figure PCTCN2017112275-appb-100009
    的化合物;
    步骤2利用化合物b和/或化合物c与步骤1得到的席夫碱a反应合成化合物d,
    其中化合物b为
    Figure PCTCN2017112275-appb-100010
    化合物c为
    Figure PCTCN2017112275-appb-100011
    R1,R2独立地为氢、C1-C15烷基或C6-C12芳基,每个m独立地为1、2、3或4;
    步骤3酯化步骤2得到的化合d,得到化合物e;
    步骤4将步骤3得到的化合物e通过酯交换,得到官能化的DOPO衍生物阻燃剂。
  7. 根据权利要求6所述的方法,其中,所述步骤1合成席夫碱a所用原料包括含氨基的化合物、以及含羟基和活性羰基的化合物;优选的是,所述含氨基的化合物选自对氨基酚,乙二胺,对苯二胺,邻苯二胺,1,3-苯二胺,2-氨基苯酚、3-氨基苯酚和/或三聚氰胺;更优选的是,所述含羟基和活性羰基的化合物选自对羟基苯甲醛,3-羟基苯甲醛和/或2-羟基苯甲醛;进一步优选的是,所述原料中氨基和活性羰基摩尔比为1:1-1:1.2,优选摩尔比为1:1。
  8. 根据权利要求7所述的方法,其中,所述步骤1包括以下工序:向原料中加入溶剂甲醇、乙醇、N,N’-二甲基甲酰胺和/或四氢呋喃,在惰性气氛中反应;优选的是,反应温度为50℃-70℃。
  9. 根据权利要求6-8任一项所述的方法,其中,所述步骤2中,R1为H,R2为H,m=1。
  10. 根据权利要求6-9任一项所述的方法,其中,所述步骤2包括以下工序:将所述席夫碱a、以及所述化合物b和/或化合物c溶于溶剂进行反应,优选溶剂为四氢呋喃、N,N’-二甲基甲酰胺、二氯甲烷和/或氯仿,优选反应温度为60℃-80℃;进一步优选的,将得到的产物化合物d用四氢呋喃、N,N’-二甲基甲酰胺、二氯甲烷和/或氯仿洗涤数次或者重结晶。
  11. 根据权利要求6-10任一项所述的方法,其中,所述步骤3的酯化为通过乙酸酐和/或乙酸进行酯化反应。
  12. 根据权利要求6-11任一项所述的方法,其中,所述步骤3包括以下工序:将反应物按羟基和酸酐的摩尔比为1:1加入水中,在惰性气氛中反应;优选的是,反应温度为60℃-80℃;更优选的,将化合物e在乙醇水溶液中重结晶,优选乙醇水溶液中乙醇和水的体积比为7~9:2。
  13. 根据权利要求6-12任一项所述的方法,其中,所述步骤4通过偏苯三酸酐进行酯交换反应。
  14. 根据权利要求6-13任一项所述的方法,其中,所述步骤4包括以下工序:将反应物按酯基和酸酐的摩尔比为1:1在惰性气氛中反应,优选的是,反应温度为200℃-210℃;更优选的,将产物DOPO衍生物在N,N’-二甲基甲酰胺的甲苯溶液中回流来去除反应产生的副产物。
  15. 权利要求6-14任一项所述的方法制备的DOPO衍生物阻燃剂。
  16. 一种复合材料,其特征在于,含有权利要求1-5或权利要求15任一项所述DOPO衍生物阻燃剂。
  17. 根据权利要求16所述的复合材料,其中,所述复合材料含有选自聚酯、聚砜、聚酰亚胺、聚酰胺、聚烯烃、聚丙烯酸酯、聚醚醚酮、ABS、聚氨酯、聚苯乙烯、聚碳酸酯、聚苯醚、不饱和聚酯树脂和酚醛树脂组成的组中的物质。
  18. 权利要求1-5或权利要求15任一项所述DOPO衍生物阻燃剂或权利要求16或17所述复合材料在阻燃领域的应用。
PCT/CN2017/112275 2017-11-14 2017-11-22 Dopo衍生物阻燃剂及其制备方法和应用 WO2019095410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711125311.0 2017-11-14
CN201711125311.0A CN107739453B (zh) 2017-11-14 2017-11-14 Dopo衍生物阻燃剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019095410A1 true WO2019095410A1 (zh) 2019-05-23

Family

ID=61234693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112275 WO2019095410A1 (zh) 2017-11-14 2017-11-22 Dopo衍生物阻燃剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN107739453B (zh)
WO (1) WO2019095410A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645983A (zh) * 2020-12-19 2021-04-13 中国民用航空飞行学院 一种添加型可交联阻燃剂及其制备方法
CN116653373A (zh) * 2023-07-28 2023-08-29 浙江葆润应用材料有限公司 一种具有防火功能的隔热材料、制备方法及其应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997613A (zh) * 2018-09-12 2018-12-14 北京工商大学 一种接入磷杂菲基团的多组分复合无卤阻燃硬质聚氨酯泡沫
CN109225085B (zh) * 2018-09-18 2020-07-31 四川大学 一种阻燃型相变微胶囊及其制备方法
CN110511431B (zh) * 2019-09-03 2021-08-27 武汉工程大学 一种含苯代三聚氰胺结构的氮-磷系高效阻燃剂的应用
CN110527100A (zh) * 2019-09-12 2019-12-03 贵州省材料产业技术研究院 聚磷酰胺阻燃剂及其制备方法和应用
CN111116661A (zh) * 2019-12-02 2020-05-08 厦门大学 一种含磷氮硼阻燃剂的制备方法及其应用
CN114836005A (zh) * 2022-06-16 2022-08-02 南京工业大学 一种对氨基苯腈衍生物阻燃环氧树脂复合材料的制备方法
CN117209754B (zh) * 2023-10-31 2025-03-21 中国科学院化学研究所 一种dopo基无卤本征阻燃尼龙66及其制备方法
CN117364479A (zh) * 2023-10-31 2024-01-09 苏州大学 一种阻燃聚酰胺织物及其制备方法
CN118271770B (zh) * 2024-05-31 2024-09-27 万敬新材料(上海)有限公司 一种耐冲击改性聚丙烯酸树脂和制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663374A (zh) * 2007-04-03 2010-03-03 巴斯夫欧洲公司 Dopo阻燃剂组合物
US20100130698A1 (en) * 2008-11-24 2010-05-27 Wen-Chiung Su Development of a novel cross-linked epoxy resin with flame-retardant properties
CN102391545A (zh) * 2011-08-05 2012-03-28 清华大学深圳研究生院 含氮磷的阻燃剂及其制备方法与应用
US20120157589A1 (en) * 2010-12-16 2012-06-21 Basf Se Glow-wire resistant polyamides
CN105017723A (zh) * 2015-06-26 2015-11-04 四川东材科技集团股份有限公司 一种特高压直流输变电用绝缘受力件及其制备方法
CN106854222A (zh) * 2016-12-06 2017-06-16 沈阳化工大学 一种磷、氮型阻燃剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191953A (ja) * 1998-12-24 2000-07-11 Sumitomo Durez Co Ltd 難燃性エポキシ樹脂粉体塗料
DE102008009298B4 (de) * 2008-02-15 2011-04-14 Schill + Seilacher "Struktol" Aktiengesellschaft Härtbare Epoxidharzformulierungen mit Polyester-Flammschutzmittel
CN102070770B (zh) * 2010-11-23 2012-11-28 沈阳化工大学 一种含磷环氧树脂固化剂及其制备方法
CN102134304B (zh) * 2011-03-03 2012-08-29 沈阳化工大学 一种反应型含磷环氧树脂阻燃剂及其制备方法
CN104017172B (zh) * 2014-05-29 2017-01-04 华南理工大学 一种含磷杂菲均三嗪酸酐环氧固化剂及其制备方法
US9546262B1 (en) * 2015-11-04 2017-01-17 Chang Chun Plastics Co. Ltd. Phosphorous containing compounds and process for synthesis
CN106188143A (zh) * 2016-07-13 2016-12-07 沈阳化工大学 一种含磷、氮阻燃剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663374A (zh) * 2007-04-03 2010-03-03 巴斯夫欧洲公司 Dopo阻燃剂组合物
US20100130698A1 (en) * 2008-11-24 2010-05-27 Wen-Chiung Su Development of a novel cross-linked epoxy resin with flame-retardant properties
US20120157589A1 (en) * 2010-12-16 2012-06-21 Basf Se Glow-wire resistant polyamides
CN102391545A (zh) * 2011-08-05 2012-03-28 清华大学深圳研究生院 含氮磷的阻燃剂及其制备方法与应用
CN105017723A (zh) * 2015-06-26 2015-11-04 四川东材科技集团股份有限公司 一种特高压直流输变电用绝缘受力件及其制备方法
CN106854222A (zh) * 2016-12-06 2017-06-16 沈阳化工大学 一种磷、氮型阻燃剂及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645983A (zh) * 2020-12-19 2021-04-13 中国民用航空飞行学院 一种添加型可交联阻燃剂及其制备方法
CN112645983B (zh) * 2020-12-19 2023-02-24 中国民用航空飞行学院 一种添加型可交联阻燃剂及其制备方法
CN116653373A (zh) * 2023-07-28 2023-08-29 浙江葆润应用材料有限公司 一种具有防火功能的隔热材料、制备方法及其应用
CN116653373B (zh) * 2023-07-28 2023-10-03 浙江葆润应用材料有限公司 一种具有防火功能的隔热材料、制备方法及其应用

Also Published As

Publication number Publication date
CN107739453A (zh) 2018-02-27
CN107739453B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2019095410A1 (zh) Dopo衍生物阻燃剂及其制备方法和应用
CN104774343B (zh) 一种含dopo的磷酸苯酯阻燃剂,制备方法及其应用
CN105669760B (zh) 一种有机磷杂菲衍生物及其制备方法与应用
WO2017071161A1 (zh) 含酰亚胺结构的环三磷腈无卤阻燃剂、制备方法及用途
CN106750526A (zh) 一类dopo衍生物及包含其的阻燃剂和阻燃材料
CN110183727B (zh) 含双dopo单元的苯并噻唑氮磷硫三元协效阻燃剂,制备方法及其应用
CN110746646B (zh) 生物质基阻燃剂及其制备方法
CN104231309B (zh) 一种氧杂膦菲阻燃剂、氧杂膦菲阻燃剂的制备方法及其应用
CN115746481B (zh) 一种抗冲击阻燃耐火电缆及其生产工艺
CN107383103B (zh) 一种化合物及其制备方法、用途和阻燃材料
CN102617645B (zh) 具有阻燃作用的1-氧代-4-羟甲基-1-磷杂-2,6,7-三氧杂双环[2,2,2]辛烷衍生物及其制备
CN108586803A (zh) 一种含dopo及苯并恶嗪的螺环磷酸酯阻燃剂制备方法及其应用
CN108440598A (zh) 一种硫-氮-磷复合型阻燃剂的制备方法及其应用
CN113248789B (zh) 含无机有机杂化磷氮阻燃剂及其制备方法和改性环氧树脂
CN107501326A (zh) 一种化合物及其制备方法、用途和阻燃材料
CN114133415B (zh) 一种磷杂菲改性磺酸盐及其制备方法和作为阻燃剂的应用
JPS60252487A (ja) シロキサンイミドジオ−ルおよびこれから得られるシロキサンイミド有機ブロツクポリマ−
CN119613447A (zh) 一种含席夫碱结构的无卤阻燃剂及其制备方法和应用
CN109265479A (zh) 一种二氨基二苯砜衍生物阻燃剂及其制备方法和应用
CN110078715B (zh) 一种阻燃耐高温含杂萘联苯结构二官能度环氧树脂及合成方法
CN113337004A (zh) 一种新型磷氮dopo衍生物阻燃剂及其合成方法和应用
CN114478634B (zh) 一种芳香希夫碱磷腈双基结构阻燃剂及其制备方法与应用
CN106995535A (zh) 一种含环三磷腈的双磷酸苯酯磷氮协同阻燃剂的制备方法及其应用
CN108570073A (zh) 一种含金刚烷环的新型磷硅阻燃剂制备方法及其应用
CN113429629A (zh) Schiff-HCCP阻燃剂及其制备方法和改性环氧树脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932513

Country of ref document: EP

Kind code of ref document: A1