[go: up one dir, main page]

WO2019090455A1 - 一种生物质-低阶煤共热溶制备无灰煤的方法 - Google Patents

一种生物质-低阶煤共热溶制备无灰煤的方法 Download PDF

Info

Publication number
WO2019090455A1
WO2019090455A1 PCT/CN2017/109652 CN2017109652W WO2019090455A1 WO 2019090455 A1 WO2019090455 A1 WO 2019090455A1 CN 2017109652 W CN2017109652 W CN 2017109652W WO 2019090455 A1 WO2019090455 A1 WO 2019090455A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
biomass
low
heat
ashless coal
Prior art date
Application number
PCT/CN2017/109652
Other languages
English (en)
French (fr)
Inventor
李显
Original Assignee
摩科瑞环保技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩科瑞环保技术(苏州)有限公司 filed Critical 摩科瑞环保技术(苏州)有限公司
Priority to CN201780001785.6A priority Critical patent/CN108064259B/zh
Priority to PCT/CN2017/109652 priority patent/WO2019090455A1/zh
Publication of WO2019090455A1 publication Critical patent/WO2019090455A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention belongs to the technical field of coal chemical industry, and mainly relates to a method for preparing ashless coal by biomass-low-rank coal co-heat solution.
  • Ashless coal can be used as a coking additive or directly injected into a gas turbine for combustion.
  • the use of organic solvent hot extraction method to separate organic matter from coal to produce ashless coal is an important clean coal technology that has emerged in Japan in recent years. For example, it has been reported that by thoroughly mixing coal with organic solvents, in the 400- A process in which the slurry is extracted at a temperature of 420 ° C, and then separated into a liquid portion and a non-liquid portion, and then the liquid portion is separated into a solvent to obtain an extract.
  • the raw materials used in the preparation of ashless coal are still limited to coal, and biomass can be used as a source of energy for a wide range of sources, and can also be used for the preparation of ashless coal.
  • biomass has a low energy density, a large storage volume, and high transportation costs, making it difficult to use it alone as a raw material for ashless coal.
  • an object of the present invention is to provide a method for preparing ashless coal by biomass-low rank coal co-heat solution.
  • a method for preparing ashless coal by biomass-low-rank coal co-heat solution comprising the following steps:
  • the extract After hot-dissolving, the extract is obtained by hot extraction, and after cooling, the solvent in the extract is separated to obtain ash-free coal.
  • the biomass-low rank coal is co-heat-melted to produce ashless coal
  • the aromatic hydrocarbon is selected from the group consisting of 1-methylnaphthalene, tetrahydronaphthalene or a combination thereof.
  • the biomass-low rank coal is co-heat-melted to produce ashless coal, wherein the temperature during the hot extraction is controlled at 250-350 °C.
  • the biomass-low rank coal is co-heat-melted to prepare ashless coal, wherein the extraction time is controlled to be 0.5-1 hour.
  • the biomass-low rank coal is co-heat-melted to produce ashless coal, wherein the aromatic hydrocarbon comprises 1-methylnaphthalene and tetrahydronaphthalene, 1-methylnaphthalene and tetrahydronaphthalene.
  • the mass ratio is 1.2-3.3:5.
  • the biomass-low rank coal is co-heat-dissolved to prepare ashless coal, wherein the mass ratio of 1-methylnaphthalene to tetrahydronaphthalene is 2.4-2.8:5.
  • the biomass-low rank coal is co-heat-melted to produce ashless coal, wherein the low rank coal is selected from the group consisting of lignite, long flame coal, non-stick coal or a combination thereof.
  • the biomass-low rank coal is co-heat-melted to produce ashless coal, wherein the biomass is selected from the group consisting of rice straw, wheat straw, chaff, wood chips, or a combination thereof.
  • the raw materials used in the present invention are low rank coal and biomass, which expands the range of raw materials used for preparing ashless coal, can effectively reduce the cost of raw materials, and has the industrial prospect of realizing large quantities of ashless coal.
  • the invention is further illustrated by the following examples of laboratory preparation of ashless coal by biomass-low rank coal co-heat dissolution, but does not limit the invention accordingly.
  • the cooled extraction solution was separated by distillation under reduced pressure to remove the solvent to obtain 2.52 g of ashless coal, and the yield of dry ashless base was 21%.
  • the cooled extraction solution was separated by distillation under reduced pressure to remove the solvent, and 6 g of ashless coal was obtained by extraction, and the yield of dry ashless base was 35%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

本案涉及一种生物质-低阶煤共热溶制备无灰煤的方法,其包括以下步骤:1)以生物质和低阶煤为原料,混合后采用芳香烃作为溶剂进行热溶;2)热溶后趁热萃取获得萃取液,冷却后分离脱除萃取液中的溶剂,从而获得无灰煤。本发明所用原料为低阶煤和生物质,扩大了制备无灰煤所用原料范围,可以有效降低原料成本,具有实现大量制备无灰煤的工业前景。

Description

一种生物质-低阶煤共热溶制备无灰煤的方法 技术领域
本发明属于煤化工技术领域,主要涉及一种生物质-低阶煤共热溶制备无灰煤的方法。
背景技术
无灰煤可以用作炼焦添加剂或直接喷入燃气轮机燃烧发电。使用有机溶剂热抽提的方法从煤中分离有机质制得无灰煤的是近年由日本兴起的一项重要洁净煤技术,例如有报道,通过将煤与有机溶剂充分混合制浆,在400-420℃的温度下对料浆进行提取,然后将其分离为液体部和非液体部的,然后将液体部分分离溶剂,从而获得萃取物的工艺。目前无灰煤的制备所用原料仍局限于煤炭,生物质作为一种来源广泛的能源原料,亦可用作制备无灰煤。但生物质的能源密度较低,存储体积大,运输成本高昂,使其很难单独用作无灰煤原料。
发明内容
针对现有技术中的不足之处,本发明的目的是提供一种生物质-低阶煤共热溶制备无灰煤的方法。
本发明采用的技术方案是:
一种生物质-低阶煤共热溶制备无灰煤的方法,其包括以下步骤:
1)以生物质和低阶煤为原料,混合后采用芳香烃作为溶剂进行热溶;
2)热溶后趁热萃取获得萃取液,冷却后分离脱除萃取液中的溶剂,从而获得无灰煤。
优选的是,所述的生物质-低阶煤共热溶制备无灰煤的方法,其中,所述芳香烃选自:1-甲基萘、四氢萘或其组合。
优选的是,所述的生物质-低阶煤共热溶制备无灰煤的方法,其中,趁热萃取时的温度控制在250-350℃。
优选的是,所述的生物质-低阶煤共热溶制备无灰煤的方法,其中,萃取时间控制在0.5-1小时。
优选的是,所述的生物质-低阶煤共热溶制备无灰煤的方法,其中,所述芳香烃包括1-甲基萘和四氢萘,1-甲基萘和四氢萘的质量比为1.2-3.3∶5。
优选的是,所述的生物质-低阶煤共热溶制备无灰煤的方法,其中,1-甲基萘和四氢萘的质量比为2.4-2.8∶5。
优选的是,所述的生物质-低阶煤共热溶制备无灰煤的方法,其中,所述低阶煤选自褐煤、长焰煤、不粘煤或其组合。
优选的是,所述的生物质-低阶煤共热溶制备无灰煤的方法,其中,所述生物质选自稻杆、麦秆、谷壳、木屑或其组合。
与现有技术相比,本发明所用原料为低阶煤和生物质,扩大了制备无灰煤所用原料范围,可以有效降低原料成本,具有实现大量制备无灰煤的工业前景。
具体实施方式
下面以实验室使用生物质-低阶煤共热溶制备无灰煤的实施例,对本发明予以进一步说明,但不因此而限制本发明。
实施例1
1.分别称取10g(干基)泰国褐煤煤样和10g(干基)木屑样品混合均匀,在350℃的条件下使用间歇式反应釜进行共热溶处理,溶剂采用1-甲基萘,加入量为300ml,在搅拌的条件下中热溶抽提1小时,趁热过滤分离萃取溶液和热溶残渣。
2.将冷却后的萃取溶液减压蒸馏分离脱除溶剂,获得无灰煤4.2g,干燥无灰基收率为35%。
3.工业分析显示所获得无灰煤干基灰份含量为0.08%,元素分析显示碳含量为80%。
实施例2
1.分别称取10g(干基)泰国褐煤煤样和10g(干基)稻杆样品混合均匀,在350℃的条件下使用间歇式反应釜进行共热溶处理,溶剂采用四氢萘,加入量为300ml,在搅拌的条件下中热溶抽提1小时。
2.将冷却后的萃取溶液减压蒸馏分离脱除溶剂,获得无灰煤2.52g,干燥无灰基收率为21%。
3.工业分析显示所获得无灰煤干基灰份含量为0.4%,元素分析显示碳含量为79%。
实施例3
1.分别称取10g(干基)澳大利亚褐煤煤样和10g(干基)木屑样品混合均匀,在350℃的条件下使用间歇式反应釜进行共热溶处理,溶剂采用1-甲基萘,加入量为300ml,在搅拌的条件下中热溶抽提1小时,趁热过滤分离萃取溶液和热溶残渣。
2.将冷却后的萃取溶液减压蒸馏分离脱除溶剂,获得无灰煤5.1g,干燥无灰基收率为32%。
3.工业分析显示所获得无灰煤干基灰份含量为0.15%,元素分析显示碳含量为81%。
实施例4
1.分别称取10g(干基)澳大利亚褐煤煤样和10g(干基)稻杆样品混合均匀,在350℃的条件下使用间歇式反应釜进行共热溶处理,溶剂采用1-甲基萘,加入量为300ml,在搅拌的条件下中热溶抽提1小时,趁热过滤分离萃取溶液和热溶残渣。
2.将冷却后的萃取溶液减压蒸馏分离脱除溶剂,萃取获得无灰煤6g,干燥无灰基收率为35%。
3.工业分析显示所获得无灰煤干基灰份含量为0.05%,元素分析显示碳含量为83%。
实施例5
1.分别称取10g(干基)澳大利亚褐煤煤样和10g(干基)稻杆样品混合均匀,在350℃的条件下使用间歇式反应釜进行共热溶处理,溶剂采用1-甲基萘和四氢萘的组合,1-甲基萘和四氢萘的质量比为1.2∶5,溶剂加入总量为300ml,在搅拌的条件下中热溶抽提1小时,趁热过滤分离萃取溶液和热溶残渣。
2.将冷却后的萃取溶液减压蒸馏分离脱除溶剂,萃取获得无灰煤6.2g,干燥无灰基收率为36%。
3.工业分析显示所获得无灰煤干基灰份含量为0.04%,元素分析显示碳含量为85%。
实施例6
1.分别称取10g(干基)澳大利亚褐煤煤样和10g(干基)稻杆样品混合均匀,在350℃的条件下使用间歇式反应釜进行共热溶处理,溶剂采用1-甲基萘和四氢萘的组合,1-甲基萘和四氢萘的质量比为3.3∶5,溶剂加入总量为300ml,在搅拌的条件下中热溶抽提1小时,趁热过滤分离萃取溶液和热溶残渣。
2.将冷却后的萃取溶液减压蒸馏分离脱除溶剂,萃取获得无灰煤6.1g,干燥无灰基收率为36%。
3.工业分析显示所获得无灰煤干基灰份含量为0.05%,元素分析显示碳含量为84%。
实施例7
1.分别称取10g(干基)澳大利亚褐煤煤样和10g(干基)稻杆样品混合 均匀,在350℃的条件下使用间歇式反应釜进行共热溶处理,溶剂采用1-甲基萘和四氢萘的组合,1-甲基萘和四氢萘的质量比为2.4∶5,溶剂加入总量为300ml,在搅拌的条件下中热溶抽提1小时,趁热过滤分离萃取溶液和热溶残渣。
2.将冷却后的萃取溶液减压蒸馏分离脱除溶剂,萃取获得无灰煤6.2g,干燥无灰基收率为37%。
3.工业分析显示所获得无灰煤干基灰份含量为0.03%,元素分析显示碳含量为86%。
实施例8
1.分别称取10g(干基)澳大利亚褐煤煤样和10g(干基)稻杆样品混合均匀,在350℃的条件下使用间歇式反应釜进行共热溶处理,溶剂采用1-甲基萘和四氢萘的组合,1-甲基萘和四氢萘的质量比为2.8∶5,溶剂加入总量为300ml,在搅拌的条件下中热溶抽提1小时,趁热过滤分离萃取溶液和热溶残渣。
2.将冷却后的萃取溶液减压蒸馏分离脱除溶剂,萃取获得无灰煤6.25g,干燥无灰基收率为37%。
3.工业分析显示所获得无灰煤干基灰份含量为0.03%,元素分析显示碳含量为87%。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种生物质-低阶煤共热溶制备无灰煤的方法,其特征在于,包括以下步骤:
    1)以生物质和低阶煤为原料,混合后采用芳香烃作为溶剂进行热溶;
    2)热溶后趁热萃取获得萃取液,冷却后分离脱除萃取液中的溶剂,从而获得无灰煤。
  2. 如权利要求1所述的生物质-低阶煤共热溶制备无灰煤的方法,其特征在于,所述芳香烃选自:1-甲基萘、四氢萘或其组合。
  3. 如权利要求1所述的生物质-低阶煤共热溶制备无灰煤的方法,其特征在于,趁热萃取时的温度控制在250-350℃。
  4. 如权利要求1所述的生物质-低阶煤共热溶制备无灰煤的方法,其特征在于,萃取时间控制在0.5-1小时。
  5. 如权利要求2所述的生物质-低阶煤共热溶制备无灰煤的方法,其特征在于,所述芳香烃包括1-甲基萘和四氢萘,1-甲基萘和四氢萘的质量比为1.2-3.3∶5。
  6. 如权利要求5所述的生物质-低阶煤共热溶制备无灰煤的方法,其特征在于,1-甲基萘和四氢萘的质量比为2.4-2.8∶5。
  7. 如权利要求1所述的生物质-低阶煤共热溶制备无灰煤的方法,其特征在于,所述低阶煤选自褐煤、长焰煤、不粘煤或其组合。
  8. 如权利要求1所述的生物质-低阶煤共热溶制备无灰煤的方法,其特征在于,所述生物质选自稻杆、麦秆、谷壳、木屑或其组合。
PCT/CN2017/109652 2017-11-07 2017-11-07 一种生物质-低阶煤共热溶制备无灰煤的方法 WO2019090455A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780001785.6A CN108064259B (zh) 2017-11-07 2017-11-07 一种生物质-低阶煤共热溶制备无灰煤的方法
PCT/CN2017/109652 WO2019090455A1 (zh) 2017-11-07 2017-11-07 一种生物质-低阶煤共热溶制备无灰煤的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109652 WO2019090455A1 (zh) 2017-11-07 2017-11-07 一种生物质-低阶煤共热溶制备无灰煤的方法

Publications (1)

Publication Number Publication Date
WO2019090455A1 true WO2019090455A1 (zh) 2019-05-16

Family

ID=62142017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109652 WO2019090455A1 (zh) 2017-11-07 2017-11-07 一种生物质-低阶煤共热溶制备无灰煤的方法

Country Status (2)

Country Link
CN (1) CN108064259B (zh)
WO (1) WO2019090455A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108865311A (zh) * 2018-06-01 2018-11-23 北京科技大学 一种生物质/低阶煤制备固体燃料的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191095A (zh) * 2010-04-09 2011-09-21 神华集团有限责任公司 一种制备生物质型煤的方法
CN102337167A (zh) * 2011-09-02 2012-02-01 李柏荣 一种粉状褐煤的处理工艺
JP2013076070A (ja) * 2011-09-16 2013-04-25 Nippon Steel & Sumitomo Metal Corp バイオマスの改質方法、バイオマス及び褐炭の改質方法、コークス及び焼結鉱の製造方法並びに高炉の操業方法
CN104011189A (zh) * 2011-12-15 2014-08-27 株式会社神户制钢所 无灰煤的制造方法
CN104673346A (zh) * 2015-02-13 2015-06-03 华中科技大学 一种将生物质萃取产物作为添加剂应用于配煤炼焦的方法
CN105419902A (zh) * 2015-12-07 2016-03-23 章亮庄 一种污泥制固体燃料的方法
CN105482844A (zh) * 2016-01-20 2016-04-13 华中科技大学 一种气煤及其制备方法
KR20170007889A (ko) * 2015-07-13 2017-01-23 한국에너지기술연구원 무회분 석탄의 제조 및 용매 회수 방법
CN106929049A (zh) * 2015-12-30 2017-07-07 北京三聚环保新材料股份有限公司 一种对含有低阶煤和生物质颗粒的型煤进行焦化并回收煤沥青的工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101543515B1 (ko) * 2013-11-12 2015-08-11 한국에너지기술연구원 반응성이 증가된 무회분 복합탄의 제조방법, 이에 의한 무회분 복합탄
CN107075388A (zh) * 2014-05-23 2017-08-18 Lp雅米纳有限责任公司 通过煤的催化温和温度热解制造烃和改质煤的系统和方法
US20160298046A1 (en) * 2014-06-16 2016-10-13 Biomass Energy Enhancements Llc Aggregates of Coal and Beneficiated Organic-Carbon-Containing Feedstock
CN106281527A (zh) * 2015-05-22 2017-01-04 华东理工大学 改质褐煤、其水煤浆、水煤浆原料组合物及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191095A (zh) * 2010-04-09 2011-09-21 神华集团有限责任公司 一种制备生物质型煤的方法
CN102337167A (zh) * 2011-09-02 2012-02-01 李柏荣 一种粉状褐煤的处理工艺
JP2013076070A (ja) * 2011-09-16 2013-04-25 Nippon Steel & Sumitomo Metal Corp バイオマスの改質方法、バイオマス及び褐炭の改質方法、コークス及び焼結鉱の製造方法並びに高炉の操業方法
CN104011189A (zh) * 2011-12-15 2014-08-27 株式会社神户制钢所 无灰煤的制造方法
CN104673346A (zh) * 2015-02-13 2015-06-03 华中科技大学 一种将生物质萃取产物作为添加剂应用于配煤炼焦的方法
KR20170007889A (ko) * 2015-07-13 2017-01-23 한국에너지기술연구원 무회분 석탄의 제조 및 용매 회수 방법
CN105419902A (zh) * 2015-12-07 2016-03-23 章亮庄 一种污泥制固体燃料的方法
CN106929049A (zh) * 2015-12-30 2017-07-07 北京三聚环保新材料股份有限公司 一种对含有低阶煤和生物质颗粒的型煤进行焦化并回收煤沥青的工艺
CN105482844A (zh) * 2016-01-20 2016-04-13 华中科技大学 一种气煤及其制备方法

Also Published As

Publication number Publication date
CN108064259B (zh) 2020-11-13
CN108064259A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
Wang et al. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste
CN110257575B (zh) 一种基于水热反应处理农林废弃物制备炭化物用于高炉喷煤的工艺
Dandamudi et al. Hydrothermal liquefaction of Cyanidioschyzon merolae and Salicornia bigelovii Torr.: The interaction effect on product distribution and chemistry
Lu et al. Improved production and quality of biocrude oil from low-lipid high-ash macroalgae Enteromorpha prolifera via addition of crude glycerol
CN103194250B (zh) 一种高硫肥煤改质处理的方法及其在炼焦配煤中的应用
CN103555357B (zh) 一种煤温和液化的工艺方法
CN105419848A (zh) 一种藻类和废弃橡胶共热解催化加氢制备生物油的方法
CN102250633A (zh) 一种用外热式回转炉进行褐煤提质的方法
CN103756700B (zh) 一种提高煤热解低温焦油品质的方法
CN109022057A (zh) 一种厨余垃圾与微藻混合水热分解制油的方法及装置
Tian et al. Hydrothermal liquefaction (HTL): A promising pathway for biorefinery of algae
CN109233879A (zh) 一种生物质秸秆热裂解的处理方法
US10208255B2 (en) Method for producing light oil through liquefying biomass
WO2019090455A1 (zh) 一种生物质-低阶煤共热溶制备无灰煤的方法
CN104987873A (zh) 一种劣质褐煤的梯级利用方法
CN104046373B (zh) 由生物质制备生物质油和合成气的方法
Xu et al. Fast pyrolysis of tea waste under a hydrogen-rich atmosphere: a study on nitrogen evolution and green ammonia production
CN209759383U (zh) 一种厨余与微藻混合水热液化制取液体燃料的反应系统
CN108998139B (zh) 一种秸秆成型燃料的制备方法
JP6000887B2 (ja) 無灰炭の製造方法
Czarnocka The use of microwave pyrolysis for biomass processing
CN108865311A (zh) 一种生物质/低阶煤制备固体燃料的方法
CN102504856A (zh) 一种木粉常压液化制备燃料油的方法
CN104479766A (zh) 一锅法制备藻类绿色柴油的新方法
CN105482844B (zh) 一种气煤及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17931395

Country of ref document: EP

Kind code of ref document: A1