[go: up one dir, main page]

WO2019088287A1 - Aggregated pigment particles, pigment-encasing particles, and fluorescent marking material - Google Patents

Aggregated pigment particles, pigment-encasing particles, and fluorescent marking material Download PDF

Info

Publication number
WO2019088287A1
WO2019088287A1 PCT/JP2018/041026 JP2018041026W WO2019088287A1 WO 2019088287 A1 WO2019088287 A1 WO 2019088287A1 JP 2018041026 W JP2018041026 W JP 2018041026W WO 2019088287 A1 WO2019088287 A1 WO 2019088287A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dye
independently
aggregation
particles
Prior art date
Application number
PCT/JP2018/041026
Other languages
French (fr)
Japanese (ja)
Inventor
望月 誠
北 弘志
理枝 櫻木
康生 宮田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019550513A priority Critical patent/JP7226329B2/en
Publication of WO2019088287A1 publication Critical patent/WO2019088287A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances

Definitions

  • the present invention relates to dye-aggregated particles, dye-containing particles, fluorescent labels, and methods for producing them.
  • Molecular imaging is a technology that visualizes the movement of molecules in the living body that could not be visualized so far, and for example, analysis of biomolecules at the molecular level, research on the dynamics of viruses and bacteria that cause disease, drugs It is widely used for various purposes, such as the evaluation of the action of the compound on the living body.
  • fluorescent imaging performed using a fluorescent substance is widely used to detect a trace substance in a living body.
  • Conventional fluorescent labeling materials include, for example, commercially available organic fluorescent dyes and the like, which have high quantum yield but low luminance per molecule bound to a target molecule, and can be used At the time, due to the aggregation of the dye molecules, the functions such as the light emission efficiency, the color forming property, the photosensitivity and the photosensitivity are remarkably reduced, and there is a disadvantage that the inherent properties of the fluorescent dye are limited.
  • Another fluorescent labeling material is a quantum dot which is a nanoparticle having a high quantum yield and a high light resistance (Patent Document 1).
  • the composition of a quantum dot having a relatively high quantum yield has a problem that it can not be used for living cells or living organisms because it is a composition containing Cd having high biotoxicity.
  • the quantum dots are unstable in fluorescence, such as causing an unpredictable flicker phenomenon, and are particles with relatively large specific gravities, they interfere with the dynamics of labeled biological substances and interactions with other substances. For example, there is a drawback that accurate observation and quantification of biomolecules are difficult.
  • pigment aggregation particles have been developed in which aggregation induction light emitting molecules having a characteristic of emitting fluorescence by aggregation of pigment molecules are aggregated (Patent Document 3).
  • the dye-aggregated particles have the advantages of higher brightness than conventional fluorescent labeling materials and lower cytotoxicity.
  • the formation of fine particles in which aggregation induced light emitting molecules are packed at a high density suppresses rotation, vibration, conversion to thermal energy, etc. of partial structures of dye molecules.
  • the mechanism by which excitation light energy is effectively used for the light emission path to improve the quantum yield, and the mechanism by which the quantum yield is improved by packing the regular molecular stacks so that they do not emit excimer light. Etc. are considered.
  • the inventor of the present invention uses the aggregation-induced light emitting molecules constituting the pigment aggregation particles or the dye-containing particles as aggregation-induced light emitting molecules having a specific structure, thereby causing collapse of the pigment aggregation particles or aggregation-induced light emission in the dye-containing particles. It has been found that the outflow of sexual molecules can be suppressed.
  • the present invention provides the following analysis method.
  • [Item 1] Dye-aggregated particles comprising at least one aggregation-induced luminescent molecule represented by the following general formulas (1) to (9).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
  • R 1 , R 2 and R 3 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group, Y is an electron withdrawing group;
  • the open circles represent carbon atoms, and R 1 and R 2 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
  • R and R ′ each independently represent a hydrophilic group, a hydrogen atom, an organic group or an organometallic group
  • X is S, O or N, and when X is O or S, R 4 is absent, Y is an electron withdrawing group or an electron donating group, R 1 , R 2 , R 3 and R 4 each independently represent an organic group or an organic group having an hydrophilic group, or an organic metal group, and R 1 , R 2 , R 3 and R 4 are each bonded to form a ring structure May take;
  • R 1 is a substituted aromatic group or a hydrophilic group other than OH
  • R 2 , R 3 and R 4 are each independently a hydrophilic group, an organic group or an organometallic group
  • a to d are each independently an integer of 0 to 5, and when a is 2 or more, a plurality of R 1 s may be the same or different, and a plurality of R 1 s combine with each other to form a ring May form a
  • plural R 2 's , R 3' s and R 4 's may be the same or different, R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , R 3 and R 1 may be combined to form a ring;
  • R A is independently a hydrophilic group, a hydrogen atom or an organic group
  • a is independently an integer of 1 to 5
  • R B is independently an aromatic ring-containing group having an aromatic ring-containing organic group or a hydrophilic group
  • R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group
  • at least one is a hydrophilic group or an aromatic ring-containing group having a hydrophilic group, wherein a tertiary amino group is not included in the groups constituting R B and R C ;
  • R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
  • a dye-containing particle comprising a binder and at least one aggregation inducing luminescent molecule represented by the following general formulas (1) to (8).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group or a silane coupling agent bonding property Is a group;
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group or a silane coupling agent binding group;
  • R 1 , R 2 and R 3 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organic metal group or a silane coupling agent binding group, Y is an electron withdrawing group;
  • white circles represent carbon atoms, and R 1 and R 2 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group ;
  • R and R ′ each independently represent a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group;
  • X is S, O or N, and when X is O or S, R 4 is absent, Y is an electron withdrawing group or an electron donating group, R 1 , R 2 , R 3 and R 4 each independently represent an organic group or an organic group having an hydrophilic group, an organometallic group, or a silane coupling agent binding group, R 1 , R 2 , R 3 and R 4 may be combined to form a ring structure;
  • R 1 is a substituted aromatic group, a hydrophilic group other than OH, or a silane coupling agent binding group
  • R 2 , R 3 and R 4 are each independently a hydrophilic group, an organic group or an organometallic group
  • a to d are each independently an integer of 0 to 5, and when a is 2 or more, a plurality of R 1 s may be the same or different, and a plurality of R 1 s combine with each other to form a ring May form a
  • plural R 2 's , R 3' s and R 4 's may be the same or different, R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , R 3 and R 1 may be combined to form a ring;
  • R A independently represents a hydrophilic group, a hydrogen atom, an organic group, an organic metal group, or a silane coupling agent binding group
  • a is independently an integer of 1 to 5
  • R B is independently an aromatic ring-containing organic group
  • R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group
  • R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group, an organic metal group, or a silane coupling agent binding group.
  • R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group, an organic metal group, or a silane coupling agent binding group.
  • the pigment aggregation particle according to Item 1 wherein the aggregation-induced light emitting molecule has a hydrophilic group.
  • the dye-containing particle according to Item 2 wherein the aggregation-induced light emitting molecule has a hydrophilic group.
  • the dye-containing particle according to Item 2 or 4 characterized in that the binder and the aggregation light emitting molecule form a covalent bond, and the binder forms a metalloxane bond. Dye-containing particles.
  • [Item 6] A fluorescent labeling material in which a targeting ligand is bound to the surface of the dye-aggregated particle according to Item 1 or 3 via a covalent bond.
  • [Item 7] A fluorescent labeling material in which a targeting ligand is bound to the surface of the dye-containing particle according to Item 2 or 4 via a covalent bond.
  • [Item 8] The item 6 or 7, wherein the targeting ligand is one or more molecules selected from the group consisting of an antibody, an organelle affinity substance, and a protein having a binding property with a sugar chain.
  • [Item 9] A fluorescent label dispersion containing the fluorescent label according to any one of items 6 to 8 and a buffer solution.
  • [Item 10] A method for producing pigment aggregation particles according to Item 1 or 3, comprising the step of bringing a poor solvent into contact with a solution of aggregation-induced luminescent molecules to aggregate the aggregation-induced luminescent molecules.
  • [Item 11] A method for producing dye-containing particles according to Item 2 or 4, comprising the step of dispersing aggregation-induced light emitting molecules in a binder or a precursor of a binder to form particles.
  • the dye-aggregated particles, the dye-containing particles, and the fluorescent labeling material of the present invention are superior in durability to conventional fluorescent labeling materials, and maintain the dyeability unchanged from the time of production even after the process of distribution.
  • the term “aggregation-induced luminescent molecule” means that fluorescence is not emitted or fluorescence emission intensity is weak because the quantum yield is low when each molecule is dissolved or dispersed in a dilute solution.
  • fluorescent substance refers to a fluorescent substance having the property of increasing quantum yield and emitting strong fluorescence or increasing fluorescence intensity by aggregating to form an aggregate.
  • the “pigment-aggregated particle” of the present invention contains at least one aggregation-induced luminescent molecule represented by the following general formulas (1) to (9).
  • the aggregation inducing light emitting molecule contained in the pigment aggregation particle may be one kind or two or more kinds.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organic metal group.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
  • R 1 , R 2 and R 3 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group, Y is an electron withdrawing group.
  • the open circles represent carbon atoms
  • R 1 and R 2 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organic metal group.
  • the compound represented by the formula (4) is a compound having an ortho-carborane skeleton composed of C 2 B 10 .
  • black dots represent BH.
  • BH which can not be illustrated, is omitted from the viewpoint of the three-dimensional structure.
  • R and R ′ each independently represent a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
  • X is S, O or N, and when X is O or S, R 4 is absent, Y is an electron withdrawing group or an electron donating group, R 1 , R 2 , R 3 and R 4 each independently represent an organic group or an organic group having an hydrophilic group, or an organic metal group, and R 1 , R 2 , R 3 and R 4 are each bonded to form a ring structure You may take it.
  • R 1 is a substituted aromatic group or a hydrophilic group other than OH
  • R 2 , R 3 and R 4 are each independently a hydrophilic group, an organic group or an organometallic group
  • a to d are each independently an integer of 0 to 5, and when a is 2 or more, a plurality of R 1 s may be the same or different, and a plurality of R 1 s combine with each other to form a ring May form a
  • plural R 2 's , R 3' s and R 4 's may be the same or different, R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , R 3 and R 1 may be combined to form a ring;
  • R A is independently a hydrophilic group, a hydrogen atom or an organic group
  • a is independently an integer of 1 to 5
  • R B is independently an aromatic ring-containing group having an aromatic ring-containing organic group or a hydrophilic group
  • R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group
  • at least one is a hydrophilic group or an aromatic ring-containing group having a hydrophilic group, wherein a tertiary amino group is not included in the groups constituting R B and R C ;
  • R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
  • the organic group in the formulas (1) to (9) is, for example, a hydrocarbon group having 1 to 20 carbon atoms, and examples thereof include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group and a cycloalkenyl group. And cycloalkynyl groups and aromatic groups.
  • One or more hydrogen atoms at any position in these molecules may be substituted with a hetero atom such as S, N, O or the like.
  • the organometallic group in the formulas (1) to (9) is, for example, a group having a metal atom by covalent bond or coordinate bond to a part of a hydrocarbon group having 1 to 20 carbon atoms, Those containing a covalent bond between a metal atom and an oxygen atom are preferred.
  • the metal atom is not limited, for example, magnesium, calcium, strontium, scandium, yttrium, ruthenium, laurenthium, lanthanum, titanium, zirconium, hafnium, cerium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, ruthenium, Cobalt, rhodium, iridium, nickel, platinum, palladium, copper, silver, gold, zinc, aluminum, gallium, indium, silicon, germanium and tin are preferred, with titanium, zirconium and silicon being preferred.
  • the organometallic group is preferably a metal alkoxide group such as a titanium alkoxide skeleton, a zirconium alkoxide skeleton, a silicon alkoxide skeleton or the like, and when these are hydrolyzed and polycondensed, a strong and stable metalloxane bond (metal atom and oxygen atom) Repeated covalent bonds). Furthermore, it is more preferable that the organometallic group have a silicon alkoxide skeleton, and the aggregation-induced luminescent molecule having such an organometallic group easily controls the reactivity.
  • the organometallic group of the aggregation-induced luminescent molecule is a metal alkoxide and polycondensation of the aggregation-induced luminescent molecule is performed
  • the metal alkoxide group is a binder precursor.
  • a metalloxane bond formed by polycondensation of a metal alkoxide group serves as a binder in the present invention.
  • aggregation-induced luminescent molecules having a metal alkoxide group as an organic metal group may be independently polycondensed as described above to form a stable metalloxane bond.
  • various metal alkoxide monomers may be newly added and subjected to polycondensation.
  • aggregation induction light emitting molecules having metal alkoxide groups and various metal alkoxide monomers may be simultaneously mixed and polycondensed, or aggregation induction having metal alkoxide groups
  • the light-emitting molecule may be first polycondensed and then various metal alkoxide monomers may be added to carry out additional polycondensation to produce dye-containing particles.
  • the aggregation-induced luminescent molecules are in the form of aggregated particles by adjusting the concentration, solvent polarity, etc., and then the polycondensation reaction is performed via the metal alkoxide group.
  • the aggregation-induced luminescent molecules are in the form of dye-encapsulated particles immobilized three-dimensionally with metalloxane bonds while aggregating each other.
  • Dye-containing particles produced by such a method can form strong and stable metalloxane bonds regardless of aggregation-induced light emitting molecules, binders, binders, and aggregation induced light-emitting molecules, and durability such as vibration resistance is achieved. Becomes higher.
  • the electron withdrawing group in the above formulas (3) and (6) means, for example, cyano group, nitro group, methoxy group, tosyl group, mesyl group, halogen, phenyl group, acyl group, keto group, carboxyl group, aldehyde Groups, ethoxycarbonyl group, methoxycarbonyl group, pyridyl group, pyrimidyl group, triazinyl group, triazolyl group, tetrazolyl group, dicyanomethyl group, cyanamide group and the like.
  • Examples of the electron donating group in the above formula (6) include a methoxy group, an alkoxy group, an amino group alkylamino group, a dialkylamino group, a trialkylamino group, an alkyl group and an aromatic group having a methoxy group moiety.
  • the group by which at least one of the hydrogen atoms which the said organic group has was substituted by the said hydrophilic group is mentioned, for example.
  • Examples of the aromatic ring-containing organic group in the formula (8) include phenyl group, 1-naphthyl group, 2-naphthyl group, pyrenyl group, anthracenyl group, anthraquinonyl group, tolyl group, benzyl group, trityl group, and styryl group.
  • a benzylidene group an aniline group, a pyridyl group, a quinolyl group, a tosyl group, a tetraphenylethylene group, a triphenylethylene group, a diphenylethylene group, a triazinyl group, a derivative to which these are linked, and a derivative to which a substituent is added.
  • the aggregation-induced light emitting molecules represented by the above general formulas (1) to (6) all have a heterocyclic skeleton, and the positional relationship between electron-rich N part, S part, O part and B part is specified It was packed to be a cycle of Among them, the molecular skeleton of the aggregation-induced light emitting molecule represented by (1) to (3) and (6) has high periodicity, and hetero atoms can be obtained by arranging N elements, S elements, and O elements in the same plane. Is the optimal arrangement, and it is presumed that a more robust packing is formed.
  • the effect of the boron atom becomes a three-dimensionally delocalized ⁇ -electron delocalized superaromatic molecule, so 3 It becomes a dimensionally strong packing.
  • the maleimide skeleton of the aggregation-induced light emitting molecule represented by (5) it is presumed that the interaction with the adjacent molecule is strengthened by hydrogen bonding of O of the carbonyl group and H of NH.
  • the aggregation inducing luminescent molecule has a hydrophilic group. It is considered that when the aggregation-induced light emitting molecule has a hydrophilic group, the electric double layer becomes thick and the particle form becomes more stable in an aqueous solvent such as a buffer.
  • the aggregation inducing luminescent molecule used for producing the pigment aggregation particle can be selected to emit fluorescence of a desired wavelength (color).
  • a desired wavelength color
  • R 1 and R 2 are each independently selected arbitrarily from the above-mentioned formula (4) -1.
  • the “pigment-containing particle” of the present invention is characterized by comprising a binder and at least one aggregation-induced luminescent molecule represented by the above general formulas (1) to (8).
  • the binder is “one that retains a certain form by including aggregation-induced luminescent molecules” or “one that retains a certain form by connecting aggregation-induced luminescent molecules”.
  • the binder that is “a substance that remains in a certain form by including aggregation-induced light-emitting molecules” include resins, inorganic substances, and the like, and can include aggregation-induced light-emitting molecules.
  • a binder which is "to be in a fixed form by tying aggregation-induced light emitting molecules together in the case of binding to an adjacent aggregation-induced light emitting molecule via a substituent which the aggregation-induced light emitting molecule has.
  • a bonding portion, a linker for binding aggregation-induced light emitting molecules to each other, and the like, and the aggregation-induced light emitting molecules can be fixed to each other to be in a fixed form.
  • the aggregation-induced luminescent molecules contained in the “pigment-containing particles” of the present invention are hydrophilic groups in which R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 in the above formula (1) are each independently.
  • An aggregation-induced light-emitting molecule which is a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent-binding group, R 1 , R 2 , R 3 and R 4 in the formula (2) are each independently Aggregation-induced light emitting molecules which are a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group, R 1 , R 2 and R 3 in the above formula (3) are each independently Aggregation-inducing light-emitting molecule, wherein Y is an electron-withdrawing group, and is a white circle in the formula (4); and a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group represents a carbon atom, hydrophilic group R 1 and R 2 are each independently hydrogen atom, an organic group, Aggregation-induced light emitting molecule which is an organic metal group or a silane coupling
  • R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , and R 3 and R 1 may respectively combine to form a ring
  • R A in the above formula (8) is independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group
  • a is independently an integer of 1 to 5
  • R Among aggregation-induced light-emitting molecules in which B is independently an aromatic ring-containing organic group, and R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organic metal group Includes one or more.
  • the silane coupling agent binding group is not particularly limited.
  • N-hydroxysuccinimide (NHS) ester group maleimide group, isocyanate group, isothiocyanate group, aldehyde group, paranitrophenyl group, diethoxymethyl group , Epoxy group, cyano group, alkoxysilane group, halogen atom and the like.
  • the binder is not particularly limited, but is not particularly limited as long as it is a substance capable of aggregating aggregation-induced light emitting molecules with physical or chemical bonding force, and is preferably a resin or an inorganic substance.
  • the aggregation-induced light emitting molecule has a hydrophilic group
  • electrostatic interaction is caused with a compound such as a resin or an inorganic substance that forms a binder of particles, so that the outflow of the aggregation-induced light emitting molecule can be suppressed.
  • the resin examples include melamine resin, urea resin, benzoguanamine resin, phenol resin, xylene resin, styrene resin, (meth) acrylic resin, polyacrylonitrile, AS resin (acrylonitrile-styrene copolymer), ASA resin (acrylonitrile- Examples include various homopolymers and copolymers prepared using one or more monomers, such as styrene-methyl acrylate copolymer).
  • melamine resins and styrene resins are preferably used because particles containing aggregation-induced light emitting molecules can be easily produced and the emission intensity of the obtained dye-containing particles becomes high.
  • the inorganic substance examples include zirconium oxide, alumina, silica and the like. It is more preferable that it is a silica from a viewpoint of the improvement of the vibration tolerance at the time of normal temperature-ization, and reactivity control. Since silica is generally known to be chemically inert and to be easily modified, the dye-containing (silica) particles of the present invention using silica as a binder are also easily desired. Of molecules can be attached to the surface.
  • the dye-containing particle is preferably hydrophilic.
  • a hydrophilic substance such as a melamine resin is used as a binder to prepare a dye-containing particle, or the surface of the dye-containing particle produced with a hydrophobic substance is modified with a hydrophilic compound to be hydrophilic. Can be obtained.
  • the hydrophilic compound used to hydrophilize the surface of the dye-containing particle is not particularly limited.
  • linear hydrophilic polymers such as polyethylene glycol (PEG) and polypropylene glycol (PPG) are repeatedly used. It is preferable from the ease of adjustment of the molecular length depending on the number of units and easy preparation of a derivative having various functional groups etc. connected to the end or as a product.
  • the aggregation inducing luminescent molecule used for producing the dye-containing particles can be selected to emit fluorescence of a desired wavelength (color).
  • a desired wavelength color
  • the "fluorescent labeling material" of the present invention is characterized in that a targeting ligand is bound to the surface of the dye aggregation particle or the dye-containing particle via a covalent bond.
  • the form of the fluorescent labeling material for example, the form at the time of production, storage, and distribution is not particularly limited, but is preferably in the form of a dispersion using a known buffer such as PBS as a dispersion medium.
  • One embodiment of the present invention is in the form of a dispersion, that is, a fluorescent label dispersion, and the fluorescent label dispersion contains a fluorescent label and a buffer.
  • the targeting ligand used in the “fluorescent labeling material” of the present invention is a substance that specifically recognizes and binds to a target substance, and is a target substance that is a biological substance contained in a tissue or cell collected from an animal or the like, for example.
  • the substance is preferably a substance that specifically recognizes and binds as a target substance.
  • the target biological substance is not particularly limited, and examples include proteins, nucleic acids, sugar chains, lipids and the like.
  • the target biological material is preferably a biological material associated with any disease. Specifically, for example, marker proteins (for example, cancer-specific proteins, vascular endothelial cell-specific proteins, phosphorylated proteins, etc.) specifically expressed in cancer cells, inflammation-related proteins, etc., and immune-related proteins can be mentioned. .
  • the target biological substance when the target biological substance is a protein specifically expressed in a tumor tissue or a cancer cell, antibodies against these are preferably selected as a targeting ligand.
  • a protein for example, lectin
  • a binding property with a sugar chain is preferably selected as the target-directed molecule.
  • target-directed molecules include, for example, organelle compatible substances, peptides and the like.
  • an antibody When an antibody is selected as the targeting ligand, it is usually IgG or IgM, and IgG is preferably used.
  • the antibody may be a natural antibody such as full-length IgG, as long as it has the ability to specifically recognize and bind a target protein or a lower antibody, Fab, Fab ', F (ab' 2 ) It may be a non-naturally occurring antibody such as an artificial antibody which has been multifunctionalized (multivalented or multispecificized) using antibody fragments such as 2 , Fv and scFv, or antibody fragments thereof .
  • a primary antibody that recognizes and binds to a unique epitope on an antigen is preferably used.
  • a secondary antibody which is an antibody which recognizes and binds a unique epitope to a primary antibody as a targeting ligand, a target biological substance to which a primary antibody is bound in advance is used as a target substance.
  • the dye aggregation particle of the present invention preferably includes a step (A) of bringing a poor solvent into contact with a solution of aggregation-induced luminescent molecules to aggregate the aggregation-induced luminescent molecules, wherein the step (A) comprises a core
  • the solution of the aggregation-induced luminescent molecule may be brought into contact with the poor solvent to aggregate the aggregation-induced luminescent molecule.
  • the step other than the step (A) is not particularly limited, and, for example, a step of introducing a hydrophilic group into the aggregation-induced light emitting molecule, a step of introducing a hydrophilic group into the surface of the pigment aggregation particle, and the like are appropriately performed.
  • a step of introducing a hydrophilic group into the aggregation-induced light emitting molecule a step of introducing a hydrophilic group into the surface of the pigment aggregation particle, and the like are appropriately performed.
  • the central core may be premixed in the solution of aggregation-induced luminescent molecules, or may be premixed in the poor solvent.
  • the substance used as the central nucleus is not particularly limited, and for example, fine particles of organic molecules such as polystyrene and latex, and inorganic molecules such as silica are suitably used.
  • the nature and size of the central core can be selected according to the desired particle size of the dye aggregation particles and the nature of the aggregation inducing luminescent molecule used for preparation.
  • As the central nucleus one having an average particle diameter of 1 nm or more and 20 nm or less and a particle diameter variation coefficient of 5% or less is preferable.
  • the pigment aggregation particles in the present invention are prepared by using a solvent (good solvent) capable of dissolving aggregation-induced luminescent molecules and preparing a divided solution of the aggregation-induced luminescent molecules, followed by aggregation into a solution of aggregation-induced luminescent molecules. It can be prepared by the reprecipitation method of precipitating pigment aggregated particles by mixing the induced luminescent molecule with the poor solvent. By using such a reprecipitation method, it is possible to produce particles densely packed with aggregation-induced luminescent molecules.
  • a reprecipitation method using a mixer with a small inner diameter called a micromixer and pumping a good solvent and a poor solvent of aggregation-induced luminescent molecules into the micromixer, both rapidly and uniformly
  • fine-particles are deposited is mentioned by mixing to (1).
  • the inner diameter of the flow path of the mixing section for mixing the minute solution of aggregation-induced luminescent molecules and the poor solvent (when the cross section of the flow path is not circular, the cross-sectional area of the flow path
  • the diameter of the circle having the same area as that of the above is preferably 2 mm or less, and in order to mix the solution and the poor solvent more rapidly, the inner diameter of the flow path is preferably 1 mm or less. Further, in order to prevent the clogging of the flow path by the fine particles and to reduce the pressure loss inside the flow path, the inner diameter of the flow path is preferably 0.05 mm or more.
  • the good solvent of the present invention is not particularly limited as long as it exhibits good solubility in aggregation-induced light emitting molecules, and it is preferable to select one having good compatibility with the poor solvent described later.
  • ether solvents such as tetrahydrofuran and dioxane
  • ketone solvents such as acetone and methyl ethyl ketone
  • amides such as 1-methyl-2-pyrrolidinone, 1,3-dimethylimidazolinone and N, N-dimethylformamide
  • a system solvent, a sulfur-containing solvent such as dimethyl sulfoxide, or a mixed solvent of two or more of these can be suitably used.
  • a good solvent having a boiling point lower than the boiling point of the poor solvent from the viewpoint of preventing redispersion of aggregation-induced light emitting molecules.
  • the poor solvent of the present invention is not particularly limited as long as it has relatively low solubility in the aggregation-induced light emitting molecule, and it is preferable to select one having good compatibility with the above-mentioned good solvent.
  • water or an aqueous solution is preferable, and alcohol solvents such as methanol and ethanol, aliphatic solvents such as pentane, hexane and heptane, aromatic solvents such as benzene and toluene, or mixed solvents of two or more of them are used.
  • alcohol solvents such as methanol and ethanol
  • aliphatic solvents such as pentane, hexane and heptane
  • aromatic solvents such as benzene and toluene
  • mixed solvents of two or more of them are used.
  • the poor solvent has a relatively low boiling point (eg, 40 ° C. to 120 ° C.) as a good solvent.
  • reaction conditions for the reaction time and reaction temperature are not particularly limited as long as the dye aggregation particles satisfying the above conditions are produced, but a short time is required for efficiently forming aggregation-induced luminescent molecules into nanoparticles. It is preferable to mix a minute solution of aggregation-induced luminescent molecules and a poor solution rapidly, for example, under turbulent conditions such that the Reynolds number is 4,000 or more.
  • the present invention relates to a method (eg, JP 2005-238342 A) in which laser ablation is performed on a dispersion in which crystals of relatively coarse aggregation-induced luminescent molecules are dispersed in a poor solvent (particle size variation coefficient) Small agglomerated nanoparticles can be produced.
  • a method eg, JP 2005-238342 A
  • laser ablation is performed on a dispersion in which crystals of relatively coarse aggregation-induced luminescent molecules are dispersed in a poor solvent (particle size variation coefficient) Small agglomerated nanoparticles can be produced.
  • the laser ablation When the laser ablation is performed, various known lasers can be used as the laser, and a YAG laser, an excimer laser, a titanium-sapphire laser or the like is preferably used. As an irradiation laser, it is preferable to apply a pulse wave. Further, in order to prepare aggregated nanoparticles having a more uniform particle size distribution, it is preferable to adjust the concentration of the dispersion before performing laser application to 0.1 mg / L to 500 mg / L.
  • the irradiation power, pulse width, wavelength and irradiation time can be appropriately adjusted according to the type and size of the crystal of the aggregation-induced luminescent dye of interest, and the mixing ratio with the poor solvent, and aggregation nano size more uniform in particle size distribution
  • the power is 0.5 to 500 mJ / cm 2
  • the pulse width is 1 to 100 femtoseconds
  • the pulse width is 0.01 to 500 Hz
  • the irradiation time is 0.5 minutes to 5 hours
  • the poor solvent use may be made of water, alcohol solvents such as methanol and ethanol, aliphatic solvents such as pentane, hexane and heptane, aromatic solvents such as benzene and toluene, or a mixed solvent of two or more of them. But not limited thereto.
  • the laser ablation method can be performed, for example, with an apparatus set up by the method described in The Review of Laser Engineering, 33, 41-46.
  • the pigment-aggregated particles may be purified, if necessary, using a conventional method such as ultrafiltration. By purification, ions and unreacted substances in the reaction solution can be removed, and spherical or nearly spherical pigment aggregation particles can be obtained.
  • the particles having a shape close to spherical are specifically particles having a shape in which the ratio of the major axis to the minor axis is 2 or less.
  • the method for producing the dye-containing particles of the present invention includes the step of dispersing the aggregation-induced light emitting molecule in a binder or a precursor of the binder to form particles.
  • the method for producing the dye-containing particles is 1) A process of dispersing aggregated light emitting molecules in a precursor of a binder 2) It is preferable to include a process of forming a binder from a precursor of a binder by a sol-gel method and forming it into particles.
  • any method may be used as a method for producing the dye-containing particles, as long as it is a configuration of silica particles containing aggregation-induced light emitting molecules. Specifically, it can be obtained, for example, by a method of producing condensation-induced luminescent molecules having an alkoxysilane group and polycondensation.
  • the alkoxysilane group may be a monofunctional alkoxysilane group, a bifunctional alkoxysilane group or a trifunctional alkoxysilane group.
  • the polycondensation can usually be carried out by a sol-gel method.
  • the method for producing the aggregation-induced luminescent molecule having an alkoxysilane group is not particularly limited. For example, a method of directly introducing an alkoxysilane group into a part of the aggregation-induced luminescent dye, aggregation-induced luminescence by a silane coupling agent And a method of introducing an alkoxysilane to a part of the organic molecule.
  • an alkoxysilane group When an alkoxysilane group is directly introduced into the molecule of aggregation-induced light emitting molecule, it can be introduced at any position of the molecular skeleton of the aggregation-induced light emitting molecule, but by introducing an alkoxysilane group into the aromatic ring site Dye-containing particles with high luminous efficiency can be obtained.
  • an active group is introduce
  • an aggregation-induced luminescent molecule having an alkoxysilane group can be obtained.
  • the above-mentioned active group is not particularly limited, but N-hydroxysuccinimide (NHS) ester group, maleimide group, isocyanate group, isothiocyanate group, aldehyde group, paranitrophenyl group, diethoxymethyl group, epoxy group, cyano group, It can be selected from halogen atoms and the like.
  • NHS N-hydroxysuccinimide
  • N-hydroxysuccinimide (NHS) ester group or maleimide group as the active group to be introduced into aggregation-induced light emitting molecule and using a silane coupling agent having an amino group as a silane coupling agent Contained particles can be obtained.
  • the NHS ester group and the amino group of the silane coupling agent having an amino group form an amide bond (-NHCO-) to obtain an aggregation-induced luminescent molecule having an alkoxysilane group. That is, in the aggregation-induced light emitting molecule having the alkoxysilane group, the aggregation-induced light emitting molecule and the silica are bonded via an amide bond.
  • the silane coupling agent having an amino group is not particularly limited, and examples thereof include ⁇ -aminopropyltriethoxysilane (APS), 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane, N And -2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane and the like, and APS is particularly preferable.
  • APS ⁇ -aminopropyltriethoxysilane
  • 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane N And -2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane and the like
  • APS is particularly preferable.
  • the reaction between the aggregation-induced luminescent molecule having the NHS ester group and the silane coupling agent having the amino group is carried out after each of them is dissolved in a solvent such as DMSO (dimethyl sulfoxide) or DMF (N, N-dimethylformamide). It can be carried out by reacting under stirring at room temperature (eg, 25 ° C.).
  • a solvent such as DMSO (dimethyl sulfoxide) or DMF (N, N-dimethylformamide). It can be carried out by reacting under stirring at room temperature (eg, 25 ° C.).
  • the ratio of the aggregation-induced luminescent molecule to the silane coupling agent is not particularly limited, but a ratio of 1: 0.5 to 2 (molar ratio) is preferable, and a ratio of 1: 0.8 to 1.2 (molar ratio) Is more preferred.
  • the dye-containing particles of the present invention are subjected to polycondensation by adding an aggregation-induced light emitting molecule having an alkoxysilane group prepared by the above method polycondensation by itself or by adding one or more silane compounds. It can manufacture by a method.
  • condensation induction light emitting molecule having the alkoxysilane group is independently polycondensed
  • the polycondensation reaction is preferably carried out in the presence of alcohol, water and ammonia.
  • the alcohol include lower alcohols having 1 to 3 carbon atoms such as methanol, ethanol and propanol.
  • the ratio of water to alcohol in such a reaction system is not particularly limited, but preferably 0.5 to 20 parts by volume, more preferably 2 to 16 parts by volume, and still more preferably 4 to 10 parts by volume of alcohol to 1 part by volume of water. It is the range of the capacity part.
  • the amount of ammonia is also not particularly limited, but the concentration of ammonia is preferably 30 to 1000 mM, more preferably 60 to 500 mM, and still more preferably 80 to 200 mM.
  • This reaction can be carried out at room temperature, and is preferably carried out with stirring.
  • the dye-containing particles of the present invention can be prepared by a reaction of several tens minutes to several tens hours.
  • the size (diameter) of the aggregation inducing luminescent molecule having the alkoxysilane group can be appropriately adjusted, for example, the same If the process is repeated several times, larger silica particles can be prepared. Also, if necessary, dye-containing particles in a desired particle size distribution range can be prepared.
  • the silane compound is not particularly limited.
  • the ratio of the aggregation-induced light emitting molecule having an alkoxysilane group to the silane compound is not particularly limited, but a molar ratio of the silane compound to 1 mol of the aggregation-induced light emitting molecule having an alkoxysilane group is preferably 0.05 to 4000. 0.1 to 400 is more preferable, and 0.3 to 40 is more preferable.
  • the reaction of the aggregation inducing luminescent molecule having an alkoxysilane group with the silane compound is preferably carried out in the presence of alcohol, water and ammonia.
  • the alcohol include lower alcohols having 1 to 3 carbon atoms such as methanol, ethanol and propanol.
  • the ratio of water to alcohol in such a reaction system is not particularly limited, but preferably 0.5 to 20 parts by volume, more preferably 2 to 16 parts by volume, and still more preferably 4 to 10 parts by volume of alcohol to 1 part by volume of water. It is the range of the capacity part.
  • the amount of ammonia is also not particularly limited, but the concentration of ammonia is preferably 30 to 1000 mM, more preferably 60 to 500 mM, and still more preferably 80 to 200 mM.
  • This reaction can be carried out at room temperature, and is preferably carried out with stirring.
  • the dye-containing particles of the present invention can be prepared by a reaction of several tens minutes to several tens hours.
  • the size (diameter) of the dye-containing particles to be prepared can be appropriately adjusted by adjusting the concentration of the aggregation inducing luminescent molecule having an alkoxysilane group to be used or adjusting the reaction time.
  • Smaller silica particles can be prepared by reducing the concentration of silane compounds used or by shortening the reaction time (e.g. Blaaderen et al., "Synthesis and Characterization of Monodisperse Collio-Silicate Spheres See, "J. Colloid and Interface Science 156, 1-18. 1993).
  • Blaaderen et al. "Synthesis and Characterization of Monodisperse Collio-Silicate Spheres See, "J. Colloid and Interface Science 156, 1-18. 1993).
  • larger silica particles can be prepared.
  • the particle diameter (diameter) of the obtained dye-containing particles is, for example, in the order of nm to ⁇ m in the desired size, specifically, the dye-containing particles having a minute size such as 3 to 30 nm. It is possible to prepare the particles. Also, if necessary, dye-containing particles in a desired particle size distribution range can be prepared.
  • the dye-containing particle of the present invention is not particularly limited in the production method as long as the function required as a fluorescent label is not impaired.
  • the dye-containing particles of the present invention can be obtained by a production method including the following polymerization step.
  • (A-1) Polymerization step A step of polymerizing a resin raw material to be a raw material of the organic resin in the presence of the aggregation inducing luminescent molecule to produce a resin particle containing the aggregation inducing luminescent molecule can be mentioned. .
  • the resin raw material that can be used in the step (a-1) may be a monomer corresponding to the resin, or may be a prepolymer obtained from such a monomer.
  • Specific examples of such monomers and prepolymers include those described above in the section "Resin”.
  • the dye may be present from the beginning of the polymerization reaction in step (a-1), or may be added during the polymerization reaction.
  • the said polymerization reaction can be performed by conventionally well-known conditions and methods except performing in presence of the said aggregation induction light emission molecule
  • the aggregation inducing light emitting molecule and the antioxidant are encapsulated by adding formic acid to the mixed solution of the aggregation inducing light emitting molecule and the melamine resin and causing a polycondensation reaction.
  • Melamine resin particles can be obtained.
  • the reaction at this time can be performed, for example, in water.
  • the polymerization reaction may be carried out in the presence of a suitable surfactant.
  • thermosetting resin such as melamine resin
  • proton (H + ) is imparted to a functional group such as an amino group contained in the resin or aggregation-induced light emitting molecule to charge it.
  • a polymerization reaction accelerator such as an appropriate acid may be further added to the mixture of the dye and the melamine resin for the purpose of facilitating electrostatic interaction.
  • the conditions (temperature, time, etc.) of the polymerization reaction can be appropriately set in consideration of the type of resin, the composition of the raw material mixture, and the like.
  • the reaction temperature is usually 60 to 200 ° C.
  • the reaction time is usually 20 to 120 minutes.
  • the reaction temperature it is appropriate for the reaction temperature to be a temperature (within the heat resistant temperature range) at which the performance of the aggregation inducing luminescent molecule is not deteriorated.
  • the heating may be divided into a plurality of stages. For example, after reacting at relatively low temperature for a fixed time, the temperature may be raised and reacted at relatively high temperature for a fixed time.
  • impurities such as excess resin raw material, aggregation-induced light emitting molecule, surfactant and the like may be removed from the reaction liquid, and the generated dye-containing particles may be recovered and purified.
  • the reaction solution is centrifuged to remove the supernatant containing impurities, and then ultrapure water is added, and the mixture is irradiated with ultrasonic waves, dispersed again, and washed. It is preferable that these operations be repeated several times until the supernatant does not show absorption and fluorescence derived from the resin and the fluorescent dye.
  • thermoplastic resin such as a styrene resin
  • the thermoplastic resin can be synthesized according to known methods such as radical polymerization and ionic polymerization (anion polymerization, etc.).
  • radical polymerization and ionic polymerization anion polymerization, etc.
  • the resin particles for inclusion type fluorescent labeling using a thermoplastic resin can also be manufactured according to those methods, for example, it is preferable to manufacture by the polymerization process according to the soap free emulsion polymerization method.
  • the reaction mixture containing aggregation-induced light-emitting molecules, the resin raw material, and the polymerization initiator is heated to advance the polymerization reaction of the resin, and the aggregation-induced light-emitting molecules are It becomes the process of generating the resin particle to be included.
  • the polymerization initiator and the conditions (temperature, time, etc.) of the polymerization reaction can be appropriately set in consideration of the type of the resin and the like.
  • the reaction temperature is usually 20 to 150 ° C.
  • the reaction time is usually 10 to 240 minutes.
  • the polymerization initiator known ones such as benzoyl peroxide and azobisisobutyronitrile can be used, but when this polymerization step is carried out according to a soap-free emulsion polymerization method, 2,2'-azobis (A water soluble polymerization initiator such as 2-methyl propionamidine can be used.
  • the resin particle itself including the aggregation-induced light emitting molecule obtained in the step (a-1) described above may be used as the resin particle for fluorescent labeling according to the present invention, or the surface described later
  • resin particles having a functional group capable of forming a bond with another molecule may be used as the dye-containing particle according to the present invention.
  • the dye-containing particles of the present invention when producing the dye-containing particles of the present invention, if necessary, purification may be performed using a conventional method such as an ultrafiltration membrane. By performing purification, ions in the reaction solution and unreacted substances can be removed, and spherical or nearly spherical dye-containing particles can be obtained.
  • the particle having a shape close to a sphere is specifically a shape in which the ratio of the major axis to the minor axis is 2 or less.
  • ultrafiltration with an ultrafiltration membrane such as YM-10 or YM-100 (manufactured by Millipore) is performed to remove particles with large particle diameters. It is also good.
  • the resin constituting the dye-containing particles according to the present invention (the resin is also expressed as an organic resin in the present invention) functions as a container for containing aggregation-induced light emitting molecules described later.
  • the organic resin used in the present invention is not particularly limited as long as it does not impair the function of the aggregation inducing luminescent molecule, and may be a thermosetting resin or a thermoplastic resin.
  • Thermosetting resins that can be used as the organic resin in the present invention include, for example, melamine, urea, guanamines (including benzoguanamine and acetoguanamine), phenols (including phenol, cresol, xylenol and the like), xylene, and the like What contains the structural unit formed from the at least 1 type of monomer chosen from the group which consists of derivatives is mentioned.
  • melamine urea
  • guanamines including benzoguanamine and acetoguanamine
  • phenols including phenol, cresol, xylenol and the like
  • xylene and the like
  • What contains the structural unit formed from the at least 1 type of monomer chosen from the group which consists of derivatives is mentioned.
  • One of these monomers may be used alone, or two or more of these monomers may be used in combination. If desired, one or more comonomers other than the above compounds may be used in combination.
  • thermosetting resin examples include melamine formaldehyde resin, urea formaldehyde resin, benzoguanamine formaldehyde resin, phenol formaldehyde resin and metaxylene formaldehyde resin.
  • a melamine resin represented by a melamine / formaldehyde resin is preferable from the viewpoint of light emission intensity at the time of dye incorporation.
  • thermosetting resins As a raw material of these thermosetting resins, not only monomers as described above, but also prepolymers obtained by reacting in advance a monomer and a compound such as formaldehyde or another crosslinking agent may be used.
  • a monomer such as formaldehyde or another crosslinking agent
  • methylolmelamine which is generally prepared by condensing melamine and formaldehyde under alkaline conditions, is used as a prepolymer, and the compound is further alkyletherified (in water Or the like to improve the solubility in organic solvents, and the like.
  • thermosetting resin at least a part of hydrogen contained in the constituent unit may be replaced by a substituent having a charge or a substituent capable of forming a covalent bond.
  • a thermosetting resin can be synthesized by using, as a raw material, a (derivatized) monomer in which at least one hydrogen is replaced by the above-described substituent by a known method.
  • melamine resin, urea resin, benzoguanamine resin and the like usually have a cation naturally generated from an amino group or a site derived therefrom, and a phenol resin, a xylene resin and the like usually form an anion naturally produced from a hydroxyl group or a site derived therefrom Have.
  • thermosetting resin can be synthesized according to a known method.
  • a melamine / formaldehyde resin can be synthesized by heating and polycondensing methylolmelamine prepared in advance as described above, after adding a reaction accelerator such as an acid as necessary.
  • thermoplastic resin that can be used as the organic resin in the present invention is not particularly limited, but, for example, at least one kind of at least one selected from the group consisting of styrene, (meth) acrylic acid and its alkyl ester, acrylonitrile and derivatives thereof.
  • What contains the structural unit formed from a functional monomer (The group which participates in a polymerization reaction in one molecule, The monomer which has one vinyl group in the above-mentioned example) is mentioned.
  • One of these monomers may be used alone, or two or more of these monomers may be used in combination. If desired, one or more comonomers other than the above compounds may be used in combination.
  • thermoplastic resin examples include polystyrene, styrene-based resin consisting of styrene and other monomers, polymethyl methacrylate, acrylic-based resin consisting of (meth) acrylic acid and its alkyl ester and other monomers, polyacrylonitrile And acrylonitrile-based resins comprising AS resin (acrylonitrile-styrene copolymer), ASA resin (acrylonitrile-styrene-methyl acrylate copolymer), acrylonitrile and other monomers.
  • AS resin acrylonitrile-styrene copolymer
  • ASA resin acrylonitrile-styrene-methyl acrylate copolymer
  • a styrene-based resin is preferable from the viewpoint of the light emission intensity at the time of aggregation-induced light emitting molecule encapsulation.
  • the "styrene-based resin” refers to a resin which is a homopolymer or copolymer of styrene which may or may not have a substituent.
  • thermoplastic resin is, for example, a structural unit formed from a polyfunctional monomer such as divinylbenzene (a group participating in a polymerization reaction in one molecule, a monomer having two or more vinyl groups in the above example), ie, It may contain a crosslinking site.
  • a polyfunctional monomer such as divinylbenzene (a group participating in a polymerization reaction in one molecule, a monomer having two or more vinyl groups in the above example), ie, It may contain a crosslinking site.
  • thermoplastic resin at least a part of hydrogen contained in the constituent unit may be replaced by a substituent having a charge or a substituent capable of forming a covalent bond.
  • a thermoplastic resin can be synthesized by using, as a raw material, a monomer such as 4-aminostyrene in which at least one hydrogen is replaced by the above-described substituent (derivatized).
  • thermoplastic resin may contain a structural unit having a functional group for surface-modifying the resin particle for fluorescent labeling obtained in the step (a-1).
  • a monomer such as glycidyl methacrylate having an epoxy group as a raw material
  • This epoxy group can be converted to an amino group by reacting with excess ammonia water.
  • biomolecules can be introduced to the thus formed amino group according to a known method (through a molecule serving as a linker, if necessary).
  • One embodiment of the present invention is a method for producing a fluorescent labeling material, which comprises a step of binding a targeting ligand to the surface of the dye-aggregated particle or the dye-containing particle.
  • the dye-aggregated particles or the dye-containing particles and the targeting ligand may be directly bound or may be bound via a linker or the like.
  • the method for binding the targeting ligand to the surface of the dye-aggregated particles or the dye-containing particles is not particularly limited, and the following methods (i) to (iii) may be mentioned.
  • the dye-aggregated particle or the dye-containing particle having a thiol group on the surface can be bound to a targeting ligand via a disulfide bond, a thioester bond, or a thiol substitution reaction.
  • the targeting ligand has an amino group
  • the thiol group possessed by the dye aggregation particle or the dye-containing particle and the amino group possessed by the targeting ligand are succinimidyl-trans-4- (N- It may be coupled using a crosslinking agent such as maleimidyl methyl) cyclohexane-1-carboxylate (SMCC), N- (6-maleimidocaproyloxy) succinimide (EMCS) and the like.
  • SMCC maleimidyl methyl
  • EMCS N- (6-maleimidocaproyloxy) succinimide
  • the pigment-aggregated particle having an amino group on the surface or the pigment-containing particle is, as described above, bonded with the amino group and a thiol group possessed by a biomolecule or the like using a crosslinking agent such as SMCC or EMCS. Can.
  • this amino group can be bonded to an amino group possessed by a biomolecule or the like with a crosslinking agent such as glutaraldehyde.
  • biomolecules and the like can be bound to the surface via an amide bond or a thiourea bond.
  • the pigment aggregation particle and the targeting ligand are bound by the biotin-avidin reaction by reacting the pigment aggregation particle bound to biotin in advance and the targeting ligand to which avidin is bound. .
  • the dye-containing particles obtained by the step (a-1) described above may be used as they are for the fluorescent labeling material according to the present invention, but the dye-containing particles of the present invention may be surface-modified as required. It can be performed.
  • the surface modification that can be performed in the present invention is not particularly limited.
  • the dye-containing particles of the present invention when used as a fluorescent labeling material for immunostaining, the dye-containing particles of the present invention can be used in a mode in which a biorelevant binding substance according to the embodiment of immunostaining is linked. Become. Therefore, the surface modification that can be applied to the dye-containing particle of the present invention is preferably performed in the form of introduction of a functional group capable of forming a bond with another molecule.
  • examples of functional groups capable of forming bonds with other molecules include functional groups generally used in the field of biochemistry, and specific examples of such functional groups include a hydroxyl group, an amino group, a carboxyl group, A thiol group, a maleimide group, an aldehyde group etc. are mentioned.
  • a functional group capable of forming a bond with another molecule may also be referred to as a reactive functional group.
  • a silane coupling agent having a functional group capable of forming a bond with another molecule is reacted with the hydroxyl group
  • a functional group capable of forming a bond with the other molecule can be introduced.
  • a dye-containing particle having an amino group can be obtained by reacting a dye-containing particle having a hydroxyl group on the surface with a silane coupling agent having an amino group such as aminopropyltrimethoxysilane.
  • introduction of a functional group capable of forming a bond with another molecule to a dye-containing particle having a hydroxyl group on the surface is a suitable linker molecule having a functional group capable of forming a bond with another molecule. It can also be carried out by reacting with a hydroxyl group.
  • the introduction methods such as these can be suitably applied particularly to dye-containing particles formed by employing a melamine resin as the organic resin.
  • the dye-containing particles obtained by the above-mentioned step (a-1) have an epoxy group on the surface
  • an amino group can be introduced by treating such dye-containing particles with ammonia water.
  • it is possible to form a bond with the epoxy group by reacting an appropriate linker molecule having a functional group having reactivity with the epoxy group and a functional group capable of forming a bond with the other molecule with the epoxy group.
  • Functional groups can also be introduced.
  • the dye-containing particles do not have any reactive functional group on the surface, for example, hydroxyl groups etc. are once introduced on the particle surface by performing appropriate surface treatment such as plasma treatment and conventionally known, and then There are cases where the same method as the introduction of the “functional group capable of forming a bond with another molecule” into “the dye-containing particle” having a hydroxyl group on the surface may be applied. From the above, even when a resin is used as a binder, a targeting ligand can be bound in the same manner as in the case of surface modification of silica particles.
  • a desired molecule may be bound to the surface by introducing an arbitrary acceptor group on the surface of the dye-containing particle.
  • the acceptor group include an amino group, a hydroxyl group, a thiol group, a carboxyl group, a maleimide group, and a succinimidyl ester group.
  • an OH group is present in the silica particle, and this may be used as an acceptor group
  • a silane compound (silane coupling agent) having a desired group By bonding a silane compound (silane coupling agent) having a desired group to the surface, a dye-containing particle having an acceptor group capable of binding to a desired molecule may be formed on the surface.
  • the dye-containing particles are produced by adding one or more silane compounds to the aggregation-induced light emitting molecule having an alkoxysilane group and performing polycondensation, depending on the type of the polycondensed silane compound.
  • a dye-containing particle having an acceptor group capable of binding to a desired molecule on the surface can be obtained.
  • the relationship between the polycondensed silane compound (silane coupling agent) and the acceptor group formed on the surface of the dye-containing particle obtained thereby is shown in Table 1.
  • silane compound silane coupling agent
  • Example 1 Color-aggregated particles (1)
  • a compound 4,4′-Bis (1,2,2-triphenylvinyl) -1,1′-biphenyl (manufactured by Sigma-Aldrich Co., Ltd.) of the following formula (9) was dissolved in tetrahydrofuran so as to be 1 mM.
  • the above solution is sent at a flow rate of 1.0 mL / min using a pump (PU-1580, JASCO Corporation) in a stainless steel T-shaped micro mixer (MT1XCS6, manufactured by Valco) equipped with a flow path with an inner diameter of 0.15 mm.
  • MT1XCS6 stainless steel T-shaped micro mixer
  • the solution is mixed, and the two solutions are mixed in the micromixer by feeding ultrapure water at a flow rate of 74.0 mL / min using another pump (NS-KX-500, Japan Precision Science Co., Ltd.).
  • the pigment aggregation particles were precipitated.
  • the pressure at the time of mixing was 4 to 5 MPa, and blocking of the flow path by the pigment aggregation particles did not occur.
  • the Reynolds number at mixing was calculated to be about 12,000.
  • the mixture was treated with a centrifugal separator at 10000 rpm for 30 minutes to remove the supernatant and washed to obtain pigment aggregated particles (1).
  • Example 2 (Color-aggregated particles (2)) Example 1 and Example 1 except that the compound 4,4 '-(1,2-Diphenylethene-1,2-diyl) dibenzoic acid (manufactured by Sigma Aldrich) of the following formula (10) is used instead of the compound of the formula (9) Dye aggregated particles (2) were obtained in the same manner.
  • Example 3 (Color-aggregated particles (3))
  • Dye aggregated particles (3) were obtained in the same manner as in Example 1 except that a compound of the following formula (11) was used instead of the compound of the formula (9).
  • the compound of the following formula (11) was synthesized by the method described in Adv. Funct. Mater. 2014, 24, 3621.
  • Example 4 Color-aggregated particles (4)
  • 100 mg of 1,1,2,3,4,5-hexaphenyl-1H-silole manufactured by Sigma Aldrich
  • 30 mL of water, 30 mL of ethanol and 0.5 mL of concentrated sulfuric acid were mixed, and the mixture was stirred at 50 ° C. for 3 hours.
  • purification was performed by column chromatography to obtain a compound of the following formula (12).
  • pigment aggregated particles (4) were obtained in the same manner as in Example 1 except that a compound of the following formula (12) was used instead of the compound of the formula (9).
  • Example 5 (Color-aggregated particles (5))
  • the compound of the following formula (13) was synthesized by the synthesis method described in Organometallics, 2016, 35 (14), pp 2327-2332.
  • Dye aggregated particles (5) were obtained in the same manner as in Example 1 except that a compound of the following formula (13) was used instead of the compound of the formula (9).
  • Example 6 (Color-aggregated particles (6)) 5 mL of concentrated sulfuric acid and 5 mL of concentrated nitric acid were added to 0.1 mol of the compound of the formula (13), and the mixture was stirred for 1 hour to perform nitration to an aromatic ring. Subsequently, purification was performed by column chromatography to obtain a compound into which two nitro groups were introduced. Next, 0.1 g of tin powder and 10 mL of concentrated hydrochloric acid were added to a compound into which two 10 g of nitro groups were introduced, and the mixture was stirred for 1 hour.
  • Example 7 (Color-aggregated particles (7)) The compound of the following formula (15) was synthesized by the synthesis method described in Dalton Trans, 2013, 42, 3646-3652. Dye aggregated particles (7) were obtained in the same manner as in Example 1 except that a compound of the following formula (15) was used instead of the compound of the formula (9).
  • Example 8 (Color-aggregated particles (8)) 5 mL of concentrated sulfuric acid and 5 mL of concentrated nitric acid are added to 0.1 mol of the compound of the formula (15), and the mixture is stirred for 1 hour to perform nitration to an aromatic ring, followed by purification by column chromatography, The compound in which two nitro groups were introduce
  • Dye aggregated particles (8) were obtained in the same manner as in Example 1 except that a compound of the following formula (16) was used instead of the compound of the above formula (9).
  • Example 9 (Color-aggregated particles (9))
  • the compound of the following formula (17) was obtained by the synthetic method described in New J. Chem., 2007, 31, 2076-2082.
  • Dye aggregated particles (9) were obtained in the same manner as in Example 1 except that a compound of the following formula (17) was used instead of the compound of the above formula (9).
  • Example 10 (Color-aggregated particles (10)) By obtaining the carborane having a phenyl iodide group by the method described in Macromolecules 2009, 42, 1418-1420, and subsequently hydrogenating the iodine substituent by dehalogenation by the method described in WO 2009087994 A1 , The compound of following formula (18) was obtained.
  • Dye aggregated particles (10) were obtained in the same manner as in Example 1 except that a compound of the following formula (18) was used instead of the compound of the above formula (9).
  • Example 11 (Color-aggregated particles (11)) A compound of the following formula (19) was obtained by using 4-aminophenylacetylene instead of phenylacetylene in the method described in Macromolecules 2009, 42, 1418-1420.
  • Dye aggregated particles (11) were obtained in the same manner as in Example 1 except that a compound of the following formula (19) was used instead of the compound of the above formula (9).
  • Example 12 (Color-aggregated particles (12)) Chem. Lett. 2012, 41, 1445-1447, a compound of the following formula (20) was obtained.
  • Dye aggregated particles (12) were obtained in the same manner as in Example 1 except that a compound of the following formula (20) was used instead of the compound of the above formula (9).
  • Example 13 (Color-aggregated particles (13)) In the method described in Chem. Eur. J, 2013, 19, 4506-4512, a compound of the following formula (21) was obtained. Dye aggregated particles (13) were obtained in the same manner as in Example 1 except that a compound of the following formula (21) was used instead of the compound of the above formula (9).
  • Example 14 (Color-aggregated particles (14)) 100 mg of the compound of the above formula (21), 30 mL of water, 30 mL of ethanol, and 0.5 mL of concentrated sulfuric acid were mixed, and stirred at 50 ° C. for 3 hours. Subsequently, purification was performed by column chromatography to obtain a compound of the following formula (22). Dye aggregated particles (14) were obtained in the same manner as in Example 1 except that a compound of the following formula (22) was used instead of the compound of the above formula (9).
  • Example 15 (Color-containing particles (15)) 10 mg of iron powder, 10 mg of sodium acetate and 100 mL of THF are added to 100 mg of the compound of the above formula (13), stirred at room temperature for 1 hour under chlorine gas bubbling, and liquid separation purification with water / toluene The chlorinated compound which Cl group was introduce
  • the reaction solution was ultrafiltered with YM-100 (trade name, manufactured by Millipore).
  • the dye-incorporated silica particle dispersion liquid that has passed through the filter is recovered, and this is subjected to ultrafiltration with YM-1 (trade name, manufactured by Millipore) until the dye-incorporated silica particle dispersion liquid is reduced to one tenth of the total amount.
  • YM-1 trade name, manufactured by Millipore
  • the concentrated solution was diluted with distilled water and subjected to ultrafiltration again with YM-1. After concentration, dilution with distilled water and ultrafiltration were repeated four times to remove unreacted starting materials, ammonia and the like contained in the dye-incorporated silica particle dispersion, thereby obtaining dye-incorporated particles (15).
  • Example 16 (Color-containing particles (16)) The same as Example 15, except that the compound of the following formula (24) is synthesized using the compound of the above formula (15) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (16) were obtained by the following method.
  • Example 17 (Dye-containing particles (17)) The same as Example 15, except that the compound of the following formula (25) is synthesized using the compound of the above formula (17) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (17) were obtained by the following method.
  • Example 18 (Color-containing particles (18)) The same as Example 15, except that the compound of the following formula (26) is synthesized using the compound of the above formula (18) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (18) were obtained by the method of
  • Example 19 (Color-containing particles (19)) The same as Example 15, except that the compound of the following formula (27) is synthesized using the compound of the above formula (20) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (19) were obtained by the method of
  • Example 20 (Color-containing particles (20)) The same as Example 15, except that the compound of the following formula (28) is synthesized using the compound of the above formula (21) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (20) were obtained by the following method.
  • Example 21 (Dye-containing particles (21)) 10 mg of iron powder, 10 mg of sodium acetate, 10 mg of bromine and 100 mL of THF are added to 100 mg of the compound of the above formula (13), stirred at room temperature for 1 hour, and separated by water / toluene to obtain a compound of the above formula (13) The bromo compound which introduce
  • the fluorescent silica particle dispersion liquid that has passed through the filter is collected, and this is subjected to ultrafiltration with YM-1 (trade name, manufactured by Millipore), and the fluorescent silica particle dispersion liquid is concentrated to one tenth of the total amount. did.
  • the concentrated solution was diluted with distilled water and subjected to ultrafiltration again with YM-1. After concentration, the mixture was diluted with distilled water and subjected to ultrafiltration four times to remove unreacted APS, ammonia and the like to obtain dye-containing particles (21).
  • Example 22 (Dye-containing particles (22)) The same as Example 21, except that the compound of the following formula (30) is synthesized using the compound of the above formula (15) instead of synthesizing the compound of the above formula (29) using the compound of the above formula (13) Dye-containing particles (22) were obtained by the following method.
  • Example 23 (Color-containing particles (23)) The same as Example 21 except that the compound of the following formula (31) is synthesized using the compound of the above formula (17) instead of synthesizing the compound of the above formula (29) using the compound of the above formula (13) Dye-containing particles (23) were obtained by the method of
  • Example 24 (Color-containing particles (24)) The same as Example 21 except that the compound of the following formula (32) is synthesized using the compound of the above formula (18) instead of synthesizing the compound of the above formula (29) using the compound of the above formula (13) Dye-containing particles (24) were obtained by the following method.
  • Example 25 (Color-containing particles (25)) Instead of synthesizing the compound of the formula (29) using the compound of the formula (13), Example 21 is used except that a compound of the following formula (33) is synthesized using the compound of the formula (20) Dye-containing particles (25) were obtained in the same manner.
  • Example 26 (Color-containing particles (26)) Instead of synthesizing the compound of the formula (29) using the compound of the formula (13), Example 21 is used except that a compound of the formula (34) is synthesized using the compound of the formula (21) Dye-containing particles (26) were obtained in the same manner.
  • Example 27 ⁇ Fluorescent labeling material 1> The fluorescent dye was produced by labeling the dye-aggregated particles and dye-containing particles obtained in Examples 1 to 26 with streptavidin.
  • the treated aggregated nanoparticles are prepared into a 3 nM dispersion using PBS containing 2 mM EDTA, and SM (PEG) 12 (succinimidyl-[(N-maleimidopropionamido)] to a final concentration of 10 mM.
  • SM PEG 12
  • -dodecaneethylene glycol ester Thermo Scientific Inc.
  • the dispersion was centrifuged at 10,000 rpm for 20 minutes and then the supernatant was removed, and then PBS containing 2 mM EDTA was added to wash the precipitate three times to disperse the precipitate, whereby maleimide was applied to the particle surface.
  • Dye aggregated particles in which groups were introduced were obtained.
  • streptavidin manufactured by Wako Pure Chemical Industries, Ltd.
  • streptavidin adjusted to 1 mg / mL
  • borate buffer 210 ⁇ L
  • 2-iminothiolane hydrochloride manufactured by Sigma Aldrich
  • a thiol group was introduced into the amino group of streptavidin by reacting at room temperature for 1 hour, and this was desalted with a gel filtration column (Zaba Spin Desalting Columuns, Funakoshi).
  • Example 28 ⁇ Fluorescent labeling material 2> The fluorescent dye 2 was produced by labeling the dye-aggregated particles obtained in Examples 6, 8, 9, 11, 12 and 14 with an anti-PD-L1 antibody. (Pharmaceutical particle-modified antibody) Dye aggregated particles in which a maleimide group was introduced to the surface of each particle were obtained in the same manner as in Example 27.
  • Example 29 ⁇ Color-containing melamine particles (28) to (32)> 20.3 mg of the pigment aggregated particles (6) was added to 22 mL of water and dissolved. Thereafter, 2 mL of a 5% aqueous solution of an emulsifier for emulsion polymerization "Emulgen" (registered trademark) 430 (polyoxyethylene oleyl ether, manufactured by Kao Corporation) was added to this solution. The solution was heated to 70 ° C. while being stirred on a hot stirrer, and then 0.81 g of a melamine resin raw material “Nicalac MX-035” (manufactured by Nippon Carbide Industries Co., Ltd.) was added to the solution.
  • Emulgen registered trademark
  • dye-containing particles 0.1 mg are dispersed in 1.5 mL of ethanol, 2 ⁇ l of aminopropyltrimethoxysilane (LS-3150, manufactured by Shin-Etsu Chemical Co., Ltd.) is added, and the mixture is reacted for 8 hours to exist on the surface of dye-containing particles. The resulting hydroxyl group was converted to an amino group.
  • LS-3150 aminopropyltrimethoxysilane
  • the concentration of the dye-containing particles is adjusted to 3 nM with phosphate buffer saline (PBS) containing 2 mM ethylenediaminetetraacetic acid (EDTA) to give a final concentration of 10 mM, SM (PEG) 12 (Succinimidyl-[(N-maleimidopropionamide) -dodecaethylene glycol] ester, manufactured by Thermo Scientific Co., Ltd.) is mixed, reacted at 20 ° C.
  • PBS phosphate buffer saline
  • EDTA ethylenediaminetetraacetic acid
  • Dye-containing polystyrene particles (33) to (44) were produced by the soap-free emulsion polymerization method as follows.
  • Each compound is coupled to styrene by mixing each of the compounds of the above formulas (10) and (12) to (22) with 4-aminostyrene (manufactured by Tokyo Chemical Industry Co., Ltd.) at room temperature for 1 hour, dye bonding Styrene was made.
  • dye bonding Styrene was made.
  • 0.18 g of glycidyl methacrylate manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • 0.05 g of styrene manufactured by Wako Pure Chemical Industries, Ltd.
  • 0.05 g of divinylbenzene 0.005 g of the above dye-bound styrene to 5 mL of pure water which has been subjected to argon bubbling.
  • the temperature was raised to 70 ° C. while stirring, 0.012 g of a water-soluble azo polymerization initiator V-50 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and reaction was performed for 12 hours.
  • the reaction solution was centrifuged at 10000 G for 20 minutes to recover particles. The collected particles were dispersed in pure water and again collected by centrifugation to perform purification to obtain dye-containing polystyrene particles (33) to (44).
  • the concentration of the dye-containing polystyrene particles was adjusted to 3 nM using phosphate buffered saline (PBS) containing 2 mM ethylenediaminetetraacetic acid (EDTA).
  • PBS phosphate buffered saline
  • EDTA ethylenediaminetetraacetic acid
  • SM (PEG) 12 succinimidyl-[(N-maleimidopropionamide) -dodecaethylene glycol] ester, Thermo Scientific Co., Ltd. to a final concentration of 10 mM for a dispersion of dye-containing polystyrene particles adjusted in concentration C.) and allowed to react at 20.degree. C. for 1 hour to obtain a mixed solution containing dye-containing polystyrene particles having a maleimide group introduced on the particle surface.
  • the mixture was centrifuged at 10000 G for 20 minutes, and after removing the supernatant, PBS containing 2 mM EDTA was added to disperse the precipitate, and centrifugation was performed again. After performing the above washing three times according to the same procedure, the dye-containing polystyrene particles modified with a maleimide group were recovered.
  • a thiol group-added streptavidin was prepared in the same manner as described in Example 27.
  • the dye-containing polystyrene resin particles were treated with anti-PD-L1 rabbit monoclonal in the same manner as in Example 27 except that dye-containing polystyrene particles having a maleimide group introduced on the particle surface and thiolated anti-PD-L1 rabbit monoclonal antibody were used. Obtained antibody-modified fluorescent labeling material 5
  • Comparative Example 1 (Color aggregate particles)
  • the compound of the following formula 35 was synthesized by the synthesis method described in US2013 / 089 889.
  • a dye aggregate was obtained by crystallizing the compound of the following formula 35 in a methanol / THF solution.
  • Comparative Example 2 Dissolve 5.6 mg of Y550-NHS ester (trade name, manufactured by Dyomics GmbH), which is a derivative of fluorescent dye Y550 which is not aggregation-induced luminescent molecule, in 1 ml of dimethyl sulfoxide (DMSO) and add 1.3 ⁇ l of APS The reaction was performed at room temperature (25 ° C.) for 1 hour.
  • DMSO dimethyl sulfoxide
  • Streptavidin-maleimide 0.5 mg (manufactured by Sigma) was added to 2 mg / mL ⁇ 1.5 mL of colloidal silica particles which were thiol-modified in the same manner as in Example 26, and a reaction was carried out at room temperature for 2 hours. After the reaction, unreacted streptavidin-maleimide was removed by dialysis in a conventional manner to obtain a fluorescent labeling material which is a streptavidin-modified colloidal silica particle.
  • Vibration resistance evaluation (refrigerated) A dispersion is prepared by dispersing the fluorescent labeling materials 1 to 5 and the dye aggregate of Comparative Example 1 and the colloidal silica particle dye of Comparative Example 2 in PBS so as to be 5 wt / wt%, and the respective luminances are measured. did. Subsequently, the dispersion liquid of each particle was subjected to vibration processing by reciprocating Tokyo-Fukuoka by Cool courier service (registered trademark) at 5 ° C., and the luminance after the vibration processing was measured. From the measured values of the initial brightness and the brightness after vibration treatment, vibration tolerance evaluation (refrigeration) was performed according to the following criteria.
  • AA luminance after vibration processing
  • BB luminance after vibration processing
  • CC luminance after vibration processing
  • DD luminance after vibration processing
  • Vibration resistance evaluation room temperature was performed according to the same procedures and evaluation criteria as in Example 31 except that Tokyo-Fukuoka was reciprocated by TA-Q-BIN (registered trademark) at room temperature instead of Cool TA-Q-BIN (registered trademark) at 5 ° C.
  • TA-Q-BIN registered trademark
  • Cool TA-Q-BIN registered trademark

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Materials Engineering (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention aims to provide aggregated pigment particles, pigment-encasing particles, and a fluorescent marking material that have high brightness and high vibration resistance. The present invention is capable of obtaining aggregated pigment particles, pigment-encasing particles, and a fluorescent marking material that: include aggregation-inducing luminescent molecules having a specific structure; and have high vibration resistance.

Description

色素凝集粒子、色素内包粒子、および蛍光標識材Dye-aggregated particles, dye-containing particles, and fluorescent labeling material
 本発明は、色素凝集粒子、色素内包粒子、蛍光標識材、およびそれらの製造方法に関する。 The present invention relates to dye-aggregated particles, dye-containing particles, fluorescent labels, and methods for producing them.
 近年、臨床分野や基礎研究において、分子イメージング技術が高い注目を集めている。分子イメージングは、これまで可視化できなかった生体内での分子の動きを可視化する技術であり、例えば、生体分子の分子レベルでの解析、疾病の原因となるウイルスや細菌の動態についての研究、薬物が生体に与える作用等の評価など、様々な目的について広く用いられている。特にその優れた検出感度や操作性等から、生体中の微量物質の検出には、蛍光物質を用いて行う蛍光イメージングが広く用いられる。 In recent years, molecular imaging technology has attracted high attention in the clinical field and basic research. Molecular imaging is a technology that visualizes the movement of molecules in the living body that could not be visualized so far, and for example, analysis of biomolecules at the molecular level, research on the dynamics of viruses and bacteria that cause disease, drugs It is widely used for various purposes, such as the evaluation of the action of the compound on the living body. In particular, due to its excellent detection sensitivity and operability, fluorescent imaging performed using a fluorescent substance is widely used to detect a trace substance in a living body.
 蛍光イメージングを用いた診断や研究においては、蛍光性の物質を標識試薬として検出したい生体物質に結合させ、所定の励起光を照射することによって標識試薬の蛍光を高感度に検出する手法が提案されている。このような蛍光イメージングにより得られる蛍光シグナルにより、生体分子相互作用の定量化、長期間におよぶ生体分子の動態観察、超高感度観察などを行うため、「高輝度」および「高耐光性」の二つの特性をあわせもつ蛍光標識材が求められている。 In diagnosis and research using fluorescence imaging, a method has been proposed in which a fluorescent substance is bound to a biological substance to be detected as a labeling reagent and the fluorescence of the labeling reagent is detected with high sensitivity by irradiating a predetermined excitation light. ing. With the fluorescence signal obtained by such fluorescence imaging, quantification of biomolecular interactions, long-term dynamic observation of biomolecules, ultra-high sensitivity observation, etc. There is a need for a fluorescent labeling material that combines two properties.
 従来用いられてきた蛍光標識材としては、例えば市販の有機系蛍光色素等が挙げられるが、これは量子収率は高くても標的分子に結合した1分子あたりの輝度は低く、また、使用の際に色素分子同士が凝集することで発光効率、発色性、光感受性や光増感性などの機能が著しく低下し、蛍光色素本来の特性を制限してしまうという欠点があった。 Conventional fluorescent labeling materials include, for example, commercially available organic fluorescent dyes and the like, which have high quantum yield but low luminance per molecule bound to a target molecule, and can be used At the time, due to the aggregation of the dye molecules, the functions such as the light emission efficiency, the color forming property, the photosensitivity and the photosensitivity are remarkably reduced, and there is a disadvantage that the inherent properties of the fluorescent dye are limited.
 他の蛍光標識材としては、量子収率が高く、また耐光性が高いナノ粒子である量子ドットがある(特許文献1)。しかしながら、量子収率の比較的高い量子ドットの組成は生体毒性が高いCdを含む組成であることから生細胞や生体に対して用いることができないという問題がある。また、量子ドットは予測不可能な明滅現象を引き起こす等蛍光が安定せず、また比較的比重の大きい粒子であるため、標識した生体物質の動態や他の物質との相互作用へ干渉してしまうなど、生体分子の正確な観察や定量が難しいという欠点があった。 Another fluorescent labeling material is a quantum dot which is a nanoparticle having a high quantum yield and a high light resistance (Patent Document 1). However, the composition of a quantum dot having a relatively high quantum yield has a problem that it can not be used for living cells or living organisms because it is a composition containing Cd having high biotoxicity. In addition, since the quantum dots are unstable in fluorescence, such as causing an unpredictable flicker phenomenon, and are particles with relatively large specific gravities, they interfere with the dynamics of labeled biological substances and interactions with other substances. For example, there is a drawback that accurate observation and quantification of biomolecules are difficult.
 上述のような問題点を解消するため、蛍光色素化合物が分散したコロイドシリカ粒子があり、これは従来の蛍光色素よりも自己消光を起こしにくく、また多くの蛍光色素化合物をシリカ粒子内に固定させることで高い輝度を得られる(特許文献2)。 In order to solve the problems as described above, there is a colloidal silica particle in which a fluorescent dye compound is dispersed, which is less prone to self-quenching than conventional fluorescent dyes, and fixes many fluorescent dye compounds in silica particles. Thus, high luminance can be obtained (Patent Document 2).
 さらに、近年では色素分子同士が凝集することによって蛍光を発するという特性を有する凝集誘起発光性分子を凝集させた、色素凝集粒子が開発されている(特許文献3)。この色素凝集粒子は従来の蛍光標識材よりも高輝度であり、さらに細胞毒性が低いという利点がある。凝集発光性色素の高い輝度の発生は諸説あるが、凝集誘起発光性分子が高密度にパッキングされた微粒子となることで色素分子の部分構造の回転や振動や熱エネルギーへの変換等が抑制されて励起光エネルギーが効果的に発光パスに利用され量子収率が向上するメカニズム、また規則的な分子の積層状態がエキシマー発光しないような配置でパッキングされるために量子収率が向上するというメカニズムなどが考えられている。 Furthermore, in recent years, pigment aggregation particles have been developed in which aggregation induction light emitting molecules having a characteristic of emitting fluorescence by aggregation of pigment molecules are aggregated (Patent Document 3). The dye-aggregated particles have the advantages of higher brightness than conventional fluorescent labeling materials and lower cytotoxicity. Although there are various explanations for the generation of high luminance of aggregated light emitting dyes, the formation of fine particles in which aggregation induced light emitting molecules are packed at a high density suppresses rotation, vibration, conversion to thermal energy, etc. of partial structures of dye molecules. The mechanism by which excitation light energy is effectively used for the light emission path to improve the quantum yield, and the mechanism by which the quantum yield is improved by packing the regular molecular stacks so that they do not emit excimer light. Etc. are considered.
特表2011-530187号公報JP 2011-530187 gazette 特開2010-112957号公報JP, 2010-112957, A 米国特許出願公開第2013/089889号明細書US Patent Application Publication No. 2013/089889
 しかしながら、上記特許文献2に記載の粒子については、流通過程などの振動で粒子の母体であるシリカと結合できなかった蛍光色素や、シリカと弱い結合しかしていない蛍光色素が粒子から流出することで、その結果染色に用いた際の蛍光強度が損なわれるという問題があった。さらに上記特許文献3に記載の色素凝集粒子についても、本発明者らが追試実験をしたところ、振動過程後に粒子の崩壊が進んでおり、また染色に用いた際に輝度ムラが発生するという問題があることが判明した。 However, with regard to the particles described in Patent Document 2, a fluorescent dye that can not be bonded to the silica, which is the matrix of the particle, or a fluorescent dye that is only weakly bonded to the silica, flows out of the particles. As a result, there is a problem that the fluorescence intensity when used for staining is impaired. Furthermore, when the inventors conducted an additional experiment on the pigment-aggregated particles described in Patent Document 3 described above, the particle disintegration progressed after the vibration process, and there was a problem that uneven brightness occurred when used for dyeing. It turned out that there was.
 本発明者は、色素凝集粒子や色素内包粒子を構成する凝集誘起発光性分子を、特定の構造を有する凝集誘起発光性分子とすることで、色素凝集粒子の崩壊や色素内包粒子における凝集誘起発光性分子の流出が抑制できることを見出した。 The inventor of the present invention uses the aggregation-induced light emitting molecules constituting the pigment aggregation particles or the dye-containing particles as aggregation-induced light emitting molecules having a specific structure, thereby causing collapse of the pigment aggregation particles or aggregation-induced light emission in the dye-containing particles. It has been found that the outflow of sexual molecules can be suppressed.
 すなわち、本発明は次のような解析方法を提供する。
[項1]  下記一般式(1)~(9)で表される少なくとも一種の凝集誘起発光性分子を含む、色素凝集粒子。
That is, the present invention provides the following analysis method.
[Item 1] Dye-aggregated particles comprising at least one aggregation-induced luminescent molecule represented by the following general formulas (1) to (9).
Figure JPOXMLDOC01-appb-C000019
 前記式(1)中、R1、R2、R3、R4、R5、およびR6はそれぞれ独立に、親水基、水素原子、有機基または有機金属基である;
Figure JPOXMLDOC01-appb-C000019
In the above formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
Figure JPOXMLDOC01-appb-C000020
 前記式(2)中、R1、R2、R3、およびR4はそれぞれ独立に、親水基、 水素原子、有機基または有機金属基である;
Figure JPOXMLDOC01-appb-C000020
In the above formula (2), R 1 , R 2 , R 3 and R 4 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
Figure JPOXMLDOC01-appb-C000021
 前記式(3)中、R1、R2、およびR3はそれぞれ独立して親水基、水素原子、有機基または有機金属基であり、
 Yは電子吸引性基である;
Figure JPOXMLDOC01-appb-C000021
In the above formula (3), R 1 , R 2 and R 3 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group,
Y is an electron withdrawing group;
Figure JPOXMLDOC01-appb-C000022
 前記式(4)中、白抜きの丸は炭素原子を示し、R1およびR2はそれぞれ独立して親水基、水素原子、有機基または有機金属基である;
Figure JPOXMLDOC01-appb-C000022
In the above formula (4), the open circles represent carbon atoms, and R 1 and R 2 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
Figure JPOXMLDOC01-appb-C000023
 前記式(5)中、RおよびR'はそれぞれ独立して親水基、水素原子、有機基または有機金属基である;
Figure JPOXMLDOC01-appb-C000023
In the above formula (5), R and R ′ each independently represent a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
Figure JPOXMLDOC01-appb-C000024
 前記式(6)中、XはS、OまたはNであり、ここでXがOまたはSのときR4は存在せず、
 Yは電子吸引性基または電子供与性基であり、
 R1、R2、R3およびR4はそれぞれ独立に有機基または親水基を有する有機基、有機金属基を表し、R1、R2、R3およびR4はそれぞれ結合して環構造を取っても良い;
Figure JPOXMLDOC01-appb-C000024
In the above formula (6), X is S, O or N, and when X is O or S, R 4 is absent,
Y is an electron withdrawing group or an electron donating group,
R 1 , R 2 , R 3 and R 4 each independently represent an organic group or an organic group having an hydrophilic group, or an organic metal group, and R 1 , R 2 , R 3 and R 4 are each bonded to form a ring structure May take;
Figure JPOXMLDOC01-appb-C000025
 前記式(7)中、R1は置換芳香族基または、OHを除く親水基であり、
 R2、R3、およびR4はそれぞれ独立して親水基、有機基または有機金属基であり、
 a~dはそれぞれ独立して、0~5の整数であり、aが2以上の場合、複数のR1は同一であっても異なっていてもよく、複数のR1が互いに結合して環を形成していてもよく、
 b~dが2以上の場合、複数のR2、R3、およびR4はそれぞれ同一であっても異なっていてもよく、
 R1とR2、R2とR4、R3とR4、R3とR1はそれぞれ結合して環を形成していてもよい;
Figure JPOXMLDOC01-appb-C000025
In the above formula (7), R 1 is a substituted aromatic group or a hydrophilic group other than OH,
R 2 , R 3 and R 4 are each independently a hydrophilic group, an organic group or an organometallic group,
a to d are each independently an integer of 0 to 5, and when a is 2 or more, a plurality of R 1 s may be the same or different, and a plurality of R 1 s combine with each other to form a ring May form a
When b to d are 2 or more, plural R 2 's , R 3' s and R 4 's may be the same or different,
R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , R 3 and R 1 may be combined to form a ring;
Figure JPOXMLDOC01-appb-C000026
 前記式(8)中、RAは独立に、親水基、水素原子または有機基であり、
 aは独立に1~5の整数であり、
 RBは独立に芳香環含有有機基または親水基を有する芳香環含有基であり、
 RCは独立に親水基、水素原子、有機基または有機金属基であり、
 RA、RBおよびRCの内、少なくとも一つが親水基または親水基を有する芳香環含有基であり、ここでRBおよびRCを構成する基の中に3級アミノ基は含まず;
Figure JPOXMLDOC01-appb-C000026
In the above formula (8), R A is independently a hydrophilic group, a hydrogen atom or an organic group,
a is independently an integer of 1 to 5,
R B is independently an aromatic ring-containing group having an aromatic ring-containing organic group or a hydrophilic group,
R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group,
Among R A , R B and R C , at least one is a hydrophilic group or an aromatic ring-containing group having a hydrophilic group, wherein a tertiary amino group is not included in the groups constituting R B and R C ;
Figure JPOXMLDOC01-appb-C000027
 前記式(9)中、R、R'およびR’’はそれぞれ独立して親水基、水素原子、有機基または有機金属基である。
[項2]  バインダと、下記一般式(1)~(8)で表される少なくとも一種の凝集誘起発光性分子とからなる、色素内包粒子。
Figure JPOXMLDOC01-appb-C000027
In the above formula (9), R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
[Item 2] A dye-containing particle comprising a binder and at least one aggregation inducing luminescent molecule represented by the following general formulas (1) to (8).
Figure JPOXMLDOC01-appb-C000028
 前記式(1)中、R1、R2、R3、R4、R5、およびR6はそれぞれ独立に、親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である;
Figure JPOXMLDOC01-appb-C000028
In the above formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group or a silane coupling agent bonding property Is a group;
Figure JPOXMLDOC01-appb-C000029
 前記式(2)中、R1、R2、R3、およびR4はそれぞれ独立に、親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である;
Figure JPOXMLDOC01-appb-C000029
In the above formula (2), R 1 , R 2 , R 3 and R 4 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group or a silane coupling agent binding group;
Figure JPOXMLDOC01-appb-C000030
 前記式(3)中、R1、R2、およびR3はそれぞれ独立して親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基であり、
 Yは電子吸引性基である;
Figure JPOXMLDOC01-appb-C000030
In the above formula (3), R 1 , R 2 and R 3 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organic metal group or a silane coupling agent binding group,
Y is an electron withdrawing group;
Figure JPOXMLDOC01-appb-C000031
 前記式(4)中、白抜きの丸は炭素原子を示し、R1およびR2はそれぞれ独立して親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である;
Figure JPOXMLDOC01-appb-C000031
In the above formula (4), white circles represent carbon atoms, and R 1 and R 2 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group ;
Figure JPOXMLDOC01-appb-C000032
 前記式(5)中、RおよびR'はそれぞれ独立して親水基, 水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である;
Figure JPOXMLDOC01-appb-C000032
In the above formula (5), R and R ′ each independently represent a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group;
Figure JPOXMLDOC01-appb-C000033
 前記式(6)中、XはS、OまたはNであり、ここでXがOまたはSのときR4は存在せず、
 Yは電子吸引性基または電子供与性基であり、
 R1、R2、R3およびR4はそれぞれ独立に有機基または親水基を有する有機基、有機金属基、またはシランカップリング剤結合性基を表し、R1、R2、R3およびR4はそれぞれ結合して環構造を取っても良い;
Figure JPOXMLDOC01-appb-C000033
In the above formula (6), X is S, O or N, and when X is O or S, R 4 is absent,
Y is an electron withdrawing group or an electron donating group,
R 1 , R 2 , R 3 and R 4 each independently represent an organic group or an organic group having an hydrophilic group, an organometallic group, or a silane coupling agent binding group, R 1 , R 2 , R 3 and R 4 may be combined to form a ring structure;
Figure JPOXMLDOC01-appb-C000034
 前記式(7)中、R1は置換芳香族基、OHを除く親水基、またはシランカップリング剤結合性基であり、
 R2、R3、およびR4はそれぞれ独立して、親水基、有機基または有機金属基であり、
 a~dはそれぞれ独立して、0~5の整数であり、aが2以上の場合、複数のR1は同一であっても異なっていてもよく、複数のR1が互いに結合して環を形成していてもよく、
 b~dが2以上の場合、複数のR2、R3、およびR4はそれぞれ同一であっても異なっていてもよく、
 R1とR2、R2とR4、R3とR4、R3とR1はそれぞれ結合して環を形成していてもよい;
Figure JPOXMLDOC01-appb-C000034
In the above formula (7), R 1 is a substituted aromatic group, a hydrophilic group other than OH, or a silane coupling agent binding group,
R 2 , R 3 and R 4 are each independently a hydrophilic group, an organic group or an organometallic group,
a to d are each independently an integer of 0 to 5, and when a is 2 or more, a plurality of R 1 s may be the same or different, and a plurality of R 1 s combine with each other to form a ring May form a
When b to d are 2 or more, plural R 2 's , R 3' s and R 4 's may be the same or different,
R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , R 3 and R 1 may be combined to form a ring;
Figure JPOXMLDOC01-appb-C000035
 前記式(8)中、RAは独立に、親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基であり、
 aは独立に1~5の整数であり、
 RBは独立に芳香環含有有機基であり、
 RCは独立に親水基、水素原子、有機基または有機金属基である;
Figure JPOXMLDOC01-appb-C000035
In the above formula (8), R A independently represents a hydrophilic group, a hydrogen atom, an organic group, an organic metal group, or a silane coupling agent binding group,
a is independently an integer of 1 to 5,
R B is independently an aromatic ring-containing organic group,
R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
Figure JPOXMLDOC01-appb-C000036
  前記式(9)中、R、R'およびR’’はそれぞれ独立して親水基, 水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である。
[項3]  前記凝集誘起発光性分子が親水基を有する、項1に記載の色素凝集粒子。
[項4]  前記凝集誘起発光性分子が親水基を有する、項2に記載の色素内包粒子。
[項5]  項2または4に記載の色素内包粒子であって、前記バインダと凝集発光性分子とが共有結合を形成しており、前記バインダがメタロキサン結合を形成していることを特徴とした色素内包粒子。
[項6]  項1または3に記載の色素凝集粒子の表面に標的指向性リガンドが共有結合を介して結合している蛍光標識材。
[項7]  項2または4に記載の色素内包粒子の表面に標的指向性リガンドが共有結合を介して結合している蛍光標識材。
[項8]  前記標的指向性リガンドが、抗体、細胞小器官親和性物質、および、糖鎖と結合性を有するタンパク質からなる群から選択される1種以上の分子である、項6または7に記載の蛍光標識材。
[項9]  項6~8のいずれか一項に記載の蛍光標識材と、緩衝液とを含む蛍光標識材分散液。
[項10]  凝集誘起発光性分子の溶液に、貧溶媒を接触させ、凝集誘起発光性分子を凝集させる工程を含む、項1または3に記載の色素凝集粒子の製造方法。
[項11]  凝集誘起発光性分子をバインダまたはバインダの前駆体中に分散させ、粒子化させる工程を含む、項2または4に記載の色素内包粒子の製造方法。
[項12]  項2または4に記載の色素内包粒子を製造する方法であり、
 1)凝集発光性分子をバインダの前駆体中に分散させる工程
 2)ゾルゲル法によりバインダの前駆体からバインダを形成し、かつ粒子化させる工程を含む、項11に記載の色素内包粒子の製造方法。
Figure JPOXMLDOC01-appb-C000036
In the above formula (9), R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group, an organic metal group, or a silane coupling agent binding group.
[Item 3] The pigment aggregation particle according to Item 1, wherein the aggregation-induced light emitting molecule has a hydrophilic group.
[Item 4] The dye-containing particle according to Item 2, wherein the aggregation-induced light emitting molecule has a hydrophilic group.
[Item 5] The dye-containing particle according to Item 2 or 4, characterized in that the binder and the aggregation light emitting molecule form a covalent bond, and the binder forms a metalloxane bond. Dye-containing particles.
[Item 6] A fluorescent labeling material in which a targeting ligand is bound to the surface of the dye-aggregated particle according to Item 1 or 3 via a covalent bond.
[Item 7] A fluorescent labeling material in which a targeting ligand is bound to the surface of the dye-containing particle according to Item 2 or 4 via a covalent bond.
[Item 8] The item 6 or 7, wherein the targeting ligand is one or more molecules selected from the group consisting of an antibody, an organelle affinity substance, and a protein having a binding property with a sugar chain. The fluorescent labeling material described.
[Item 9] A fluorescent label dispersion containing the fluorescent label according to any one of items 6 to 8 and a buffer solution.
[Item 10] A method for producing pigment aggregation particles according to Item 1 or 3, comprising the step of bringing a poor solvent into contact with a solution of aggregation-induced luminescent molecules to aggregate the aggregation-induced luminescent molecules.
[Item 11] A method for producing dye-containing particles according to Item 2 or 4, comprising the step of dispersing aggregation-induced light emitting molecules in a binder or a precursor of a binder to form particles.
[Item 12] A method for producing the dye-containing particle according to Item 2 or 4,
1) A process of dispersing aggregated light emitting molecules in a precursor of a binder 2) A method of producing dye-containing particles according to item 11, comprising forming a binder from a precursor of the binder by a sol-gel method and forming into a particle .
 本発明の色素凝集粒子、色素内包粒子、および蛍光標識材は、従来の蛍光標識材に比べ、耐久性に優れ、物流の過程を経た後も製造時と変わらない染色性を維持する。 The dye-aggregated particles, the dye-containing particles, and the fluorescent labeling material of the present invention are superior in durability to conventional fluorescent labeling materials, and maintain the dyeability unchanged from the time of production even after the process of distribution.
 本明細書において用いられる「凝集誘起発光性分子」とは、希薄溶液中で各分子が溶解あるいは分散している状態では量子収率が低いために蛍光を発さないか蛍光の発光強度が弱いが、凝集して集合体を形成することで量子収率が上がり強い蛍光を発するか蛍光強度を増すという性質を有する蛍光物質を指す。
<色素凝集粒子>
 本発明の「色素凝集粒子」は、下記一般式(1)~(9)で表される少なくとも一種の凝集誘起発光性分子を含む。色素凝集粒子に含まれる凝集誘起発光性分子は、1種でも2種以上でもよい。なお、本明細書中においては、1つの式中にある同じ符号が2つ以上存在する場合には、それらは互いに同一であっても異なっていてもよい。
<凝集誘起発光性分子>
 一般式(1)~(8)で表される凝集誘起発光性分子について説明する。
As used herein, the term "aggregation-induced luminescent molecule" means that fluorescence is not emitted or fluorescence emission intensity is weak because the quantum yield is low when each molecule is dissolved or dispersed in a dilute solution. However, the term “fluorescent substance” refers to a fluorescent substance having the property of increasing quantum yield and emitting strong fluorescence or increasing fluorescence intensity by aggregating to form an aggregate.
<Pigmented particles>
The “pigment-aggregated particle” of the present invention contains at least one aggregation-induced luminescent molecule represented by the following general formulas (1) to (9). The aggregation inducing light emitting molecule contained in the pigment aggregation particle may be one kind or two or more kinds. In the present specification, when two or more same symbols in one formula exist, they may be the same as or different from each other.
<Aggregation-induced luminescent molecule>
The aggregation inducing luminescent molecules represented by the general formulas (1) to (8) will be described.
Figure JPOXMLDOC01-appb-C000037
 前記式(1)中、R1、R2、R3、R4、R5、およびR6はそれぞれ独立に、親水基、水素原子、有機基または有機金属基である。
Figure JPOXMLDOC01-appb-C000037
In Formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organic metal group.
Figure JPOXMLDOC01-appb-C000038
 前記式(2)中、R1、R2、R3、およびR4はそれぞれ独立に、親水基、 水素原子、有機基または有機金属基である。
Figure JPOXMLDOC01-appb-C000038
In the above formula (2), R 1 , R 2 , R 3 and R 4 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
Figure JPOXMLDOC01-appb-C000039
 前記式(3)中、R1、R2、およびR3はそれぞれ独立して親水基、水素原子、有機基または有機金属基であり、
 Yは電子吸引性基である。
Figure JPOXMLDOC01-appb-C000039
In the above formula (3), R 1 , R 2 and R 3 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group,
Y is an electron withdrawing group.
Figure JPOXMLDOC01-appb-C000040
 前記式(4)中、白抜きの丸は炭素原子を示し、R1およびR2はそれぞれ独立して親水基、水素原子、有機基または有機金属基である。
Figure JPOXMLDOC01-appb-C000040
In the above formula (4), the open circles represent carbon atoms, and R 1 and R 2 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organic metal group.
 式(4)で表される化合物は、C210で構成されるortho-カルボラン骨格を有する化合物である。なお、式(4)において、黒い点はBHを表す。また、立体構造の観点から図示できないBHは省略されている。 The compound represented by the formula (4) is a compound having an ortho-carborane skeleton composed of C 2 B 10 . In the formula (4), black dots represent BH. Further, BH, which can not be illustrated, is omitted from the viewpoint of the three-dimensional structure.
Figure JPOXMLDOC01-appb-C000041
 前記式(5)中、RおよびR'はそれぞれ独立して親水基、水素原子、有機基または有機金属基である。
Figure JPOXMLDOC01-appb-C000041
In the formula (5), R and R ′ each independently represent a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
Figure JPOXMLDOC01-appb-C000042
 前記式(6)中、XはS、OまたはNであり、ここでXがOまたはSのときR4は存在せず、
 Yは電子吸引性基または電子供与性基であり、
 R1、R2、R3およびR4はそれぞれ独立に有機基または親水基を有する有機基、有機金属基を表し、R1、R2、R3およびR4はそれぞれ結合して環構造を取っても良い。
Figure JPOXMLDOC01-appb-C000042
In the above formula (6), X is S, O or N, and when X is O or S, R 4 is absent,
Y is an electron withdrawing group or an electron donating group,
R 1 , R 2 , R 3 and R 4 each independently represent an organic group or an organic group having an hydrophilic group, or an organic metal group, and R 1 , R 2 , R 3 and R 4 are each bonded to form a ring structure You may take it.
Figure JPOXMLDOC01-appb-C000043
 前記式(7)中、R1は置換芳香族基または、OHを除く親水基であり、
 R2、R3、およびR4はそれぞれ独立して親水基、有機基または有機金属基であり、
 a~dはそれぞれ独立して、0~5の整数であり、aが2以上の場合、複数のR1は同一であっても異なっていてもよく、複数のR1が互いに結合して環を形成していてもよく、
 b~dが2以上の場合、複数のR2、R3、およびR4はそれぞれ同一であっても異なっていてもよく、
 R1とR2、R2とR4、R3とR4、R3とR1はそれぞれ結合して環を形成していてもよい;
Figure JPOXMLDOC01-appb-C000043
In the above formula (7), R 1 is a substituted aromatic group or a hydrophilic group other than OH,
R 2 , R 3 and R 4 are each independently a hydrophilic group, an organic group or an organometallic group,
a to d are each independently an integer of 0 to 5, and when a is 2 or more, a plurality of R 1 s may be the same or different, and a plurality of R 1 s combine with each other to form a ring May form a
When b to d are 2 or more, plural R 2 's , R 3' s and R 4 's may be the same or different,
R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , R 3 and R 1 may be combined to form a ring;
Figure JPOXMLDOC01-appb-C000044
 前記式(8)中、RAは独立に、親水基、水素原子または有機基であり、
 aは独立に1~5の整数であり、
 RBは独立に芳香環含有有機基または親水基を有する芳香環含有基であり、
 RCは独立に親水基、水素原子、有機基または有機金属基であり、
 RA、RBおよびRCの内、少なくとも一つが親水基または親水基を有する芳香環含有基であり、ここでRBおよびRCを構成する基の中に3級アミノ基は含まず;
Figure JPOXMLDOC01-appb-C000044
In the above formula (8), R A is independently a hydrophilic group, a hydrogen atom or an organic group,
a is independently an integer of 1 to 5,
R B is independently an aromatic ring-containing group having an aromatic ring-containing organic group or a hydrophilic group,
R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group,
Among R A , R B and R C , at least one is a hydrophilic group or an aromatic ring-containing group having a hydrophilic group, wherein a tertiary amino group is not included in the groups constituting R B and R C ;
Figure JPOXMLDOC01-appb-C000045
前記式(9)中、R、R'およびR’’はそれぞれ独立して親水基、水素原子、有機基または有機金属基である。
Figure JPOXMLDOC01-appb-C000045
In the above formula (9), R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
 前記式(1)~(9)中における前記親水基の種類は特に限定されないが、例えば-OH、-SH、-COOH、-S(=O)2OH、-S(=O)NH2、-S(=O)2NH2、-P(=O)(OH)3、-P(=O)R(OH)2、-P(=O)R2(OH)、-P(OH)3、-P(=O)(NH23、-P(=O)R(NH22、-P(=O)R2(NH2)、-P(NH23、-O(C=O)OH、-NH2、-NHR、-NHCONH2、-NHCONHR、-NHCOOH、-Si(OH)3、-Si(R)(OH)2、-Si(R)2OH、-Ge(OH)3、-Ge(R)(OH)2、-Ge(R)2OH、-Ti(OH)3、-Ti(R)(OH)2、-Ti(R)2OH、-Si(NH23、-Si(R)(NH22、-B(OH)2、-O-B(OH)2、-B(NH22、-NHB(OH)2等が挙げられる。なお、前記Rはそれぞれ独立に水素または炭素数1~20のアルキル基を示す。他にも、NHS基、マレイミド基等も親水性を示す親水基として挙げられる。 Types of the hydrophilic group in the formula (1) to (9) in is not particularly limited, for example -OH, -SH, -COOH, -S ( = O) 2 OH, -S (= O) NH 2, -S (= O) 2 NH 2 , -P (= O) (OH) 3, -P (= O) R (OH) 2, -P (= O) R 2 (OH), - P (OH) 3, -P (= O) ( NH 2) 3, -P (= O) R (NH 2) 2, -P (= O) R 2 (NH 2), - P (NH 2) 3, -O (C = O) OH, -NH 2, -NHR, -NHCONH 2, -NHCONHR, -NHCOOH, -Si (OH) 3, -Si (R) (OH) 2, -Si (R) 2 OH, - Ge (OH) 3, -Ge ( R) (OH) 2, -Ge (R) 2 OH, -Ti (OH) 3, -Ti (R) (OH) 2, -Ti (R) 2 OH, - Si (NH 2) 3, -Si (R) NH 2) 2, -B (OH ) 2, -O-B (OH) 2, -B (NH 2) 2, -NHB (OH) 2 and the like. Each of R's independently represents hydrogen or an alkyl group having 1 to 20 carbon atoms. Besides, an NHS group, a maleimide group and the like can also be mentioned as a hydrophilic group exhibiting hydrophilicity.
 前記式(1)~(9)中における前記有機基とは、例えば、炭素数が1~20の炭化水素基であり、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、芳香族基等が挙げられる。これら分子中の任意の位置の水素原子の一つまたは複数が、S、N、O等のヘテロ原子で置換されていても良い。 The organic group in the formulas (1) to (9) is, for example, a hydrocarbon group having 1 to 20 carbon atoms, and examples thereof include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group and a cycloalkenyl group. And cycloalkynyl groups and aromatic groups. One or more hydrogen atoms at any position in these molecules may be substituted with a hetero atom such as S, N, O or the like.
 前記式(1)~(9)中における前記有機金属基とは、例えば、炭素数が1~20の炭化水素基の一部に共有結合または配位結合で金属原子を有する基であり、特に金属原子と酸素原子との共有結合を含むものが好ましい。前記金属原子は限定されないが、例えば、マグネシウム、カルシウム、ストロンチウム、スカンジウム、イットリウム、ルテニウム、ローレンシウム、ランタン、チタン、ジルコニウム、ハフニウム、セリウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、白金、パラジウム、銅、銀、金、亜鉛、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウムおよびスズが挙げられ、チタン、ジルコニウム、ケイ素であることが好ましい。 The organometallic group in the formulas (1) to (9) is, for example, a group having a metal atom by covalent bond or coordinate bond to a part of a hydrocarbon group having 1 to 20 carbon atoms, Those containing a covalent bond between a metal atom and an oxygen atom are preferred. Although the metal atom is not limited, for example, magnesium, calcium, strontium, scandium, yttrium, ruthenium, laurenthium, lanthanum, titanium, zirconium, hafnium, cerium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, ruthenium, Cobalt, rhodium, iridium, nickel, platinum, palladium, copper, silver, gold, zinc, aluminum, gallium, indium, silicon, germanium and tin are preferred, with titanium, zirconium and silicon being preferred.
 特に前記有機金属基は、チタンアルコキシド骨格、ジルコニウムアルコキシド骨格、ケイ素アルコキシド骨格等の金属アルコキシド基であることが好ましく、これらは加水分解して重縮合すると強固で安定なメタロキサン結合(金属原子と酸素原子による繰り返しの共有結合)を形成できる。さらに、前記有機金属基は、ケイ素アルコキシド骨格を有することがより好ましく、このような有機金属基を有する凝集誘起発光性分子は反応性を制御しやすい。本発明において、前記凝集誘起発光性分子が有する有機金属基が金属アルコキシドであり、凝集誘起発光性分子の重縮合を行う場合、前記金属アルコキシド基はバインダ前駆体となる。また、金属アルコキシド基が重縮合することにより形成されたメタロキサン結合は、本発明においてはバインダとなる。 In particular, the organometallic group is preferably a metal alkoxide group such as a titanium alkoxide skeleton, a zirconium alkoxide skeleton, a silicon alkoxide skeleton or the like, and when these are hydrolyzed and polycondensed, a strong and stable metalloxane bond (metal atom and oxygen atom) Repeated covalent bonds). Furthermore, it is more preferable that the organometallic group have a silicon alkoxide skeleton, and the aggregation-induced luminescent molecule having such an organometallic group easily controls the reactivity. In the present invention, when the organometallic group of the aggregation-induced luminescent molecule is a metal alkoxide and polycondensation of the aggregation-induced luminescent molecule is performed, the metal alkoxide group is a binder precursor. In addition, a metalloxane bond formed by polycondensation of a metal alkoxide group serves as a binder in the present invention.
 また、色素内包粒子を製造するときは、前述のように有機金属基として金属アルコキシド基を有する凝集誘起発光性分子を、前述のように単独で重縮合させて安定なメタロキサン結合を形成させてもよいし、各種金属アルコキシドモノマーを新たに加えて重縮合させてもよい。各種金属アルコキシドモノマーを新たに加えて重縮合させる場合、金属アルコキシド基を有する凝集誘起発光性分子と各種金属アルコキシドモノマーとを同時に混合して重縮合させてもよいし、金属アルコキシド基を有する凝集誘起発光性分子を先に重縮合させてから各種金属アルコキシドモノマーを加えて追加の重縮合を行って色素内包粒子を製造してもよい。 In addition, when producing dye-containing particles, as described above, aggregation-induced luminescent molecules having a metal alkoxide group as an organic metal group may be independently polycondensed as described above to form a stable metalloxane bond. Alternatively, various metal alkoxide monomers may be newly added and subjected to polycondensation. When various metal alkoxide monomers are newly added and polycondensed, aggregation induction light emitting molecules having metal alkoxide groups and various metal alkoxide monomers may be simultaneously mixed and polycondensed, or aggregation induction having metal alkoxide groups The light-emitting molecule may be first polycondensed and then various metal alkoxide monomers may be added to carry out additional polycondensation to produce dye-containing particles.
 金属アルコキシド基を有する凝集誘起発光性分子を単独で重縮合させる場合、凝集誘起発光性分子は濃度や溶媒極性等の調整により凝集粒子形態となり、続いて金属アルコキシド基を介しての重縮合反応を行うことで、凝集誘起発光性分子同士が凝集しながら3次元的にメタロキサン結合で固定化された色素内包粒子の形態をとる。 When condensation-induced luminescent molecules having a metal alkoxide group are independently polycondensed, the aggregation-induced luminescent molecules are in the form of aggregated particles by adjusting the concentration, solvent polarity, etc., and then the polycondensation reaction is performed via the metal alkoxide group. In this way, the aggregation-induced luminescent molecules are in the form of dye-encapsulated particles immobilized three-dimensionally with metalloxane bonds while aggregating each other.
 金属アルコキシド基を有する凝集誘起発光性分子を先に重縮合させてから各種金属アルコキシドモノマーを加えて追加の重縮合を行って色素内包粒子を製造する場合も凝集誘起発光性分子同士が凝集しながら3次元的にメタロキサン結合で固定化された部位を有する色素内包粒子の形態をとる。 Even when aggregation-induced light emitting molecules having a metal alkoxide group are polycondensed first and then various metal alkoxide monomers are added to carry out additional polycondensation to produce dye-containing particles, while aggregation induced light-emitting molecules are aggregated together It takes the form of a dye-containing particle having a site immobilized three-dimensionally with metalloxane bonds.
 このような方法で製造した色素内包粒子は、凝集誘起発光性分子同士、バインダ同士、バインダと凝集誘起発光性分子同士いずれの場合においても強固で安定なメタロキサン結合を形成でき、振動耐性といった耐久性が高くなる。 Dye-containing particles produced by such a method can form strong and stable metalloxane bonds regardless of aggregation-induced light emitting molecules, binders, binders, and aggregation induced light-emitting molecules, and durability such as vibration resistance is achieved. Becomes higher.
 前記式(3)、(6)中における前記電子吸引性基とは、例えばシアノ基、ニトロ基、メトキシ基、トシル基、メシル基、ハロゲン、フェニル基、アシル基、ケト基、カルボキシル基、アルデヒド基、エトキシカルボニル基、メトキシカルボニル基、ピリジル基、ピリミジル基、トリアジニル基、トリアゾリル基、テトラゾリル基、ジシアノメチル基、シアナミド基などが挙げられる。 The electron withdrawing group in the above formulas (3) and (6) means, for example, cyano group, nitro group, methoxy group, tosyl group, mesyl group, halogen, phenyl group, acyl group, keto group, carboxyl group, aldehyde Groups, ethoxycarbonyl group, methoxycarbonyl group, pyridyl group, pyrimidyl group, triazinyl group, triazolyl group, tetrazolyl group, dicyanomethyl group, cyanamide group and the like.
 前記式(6)中における前記電子供与性基としては、例えばメトキシ基、アルコキシ基、アミノ基アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、アルキル基、メトキシ基部位を有する芳香族基が挙げられる。 Examples of the electron donating group in the above formula (6) include a methoxy group, an alkoxy group, an amino group alkylamino group, a dialkylamino group, a trialkylamino group, an alkyl group and an aromatic group having a methoxy group moiety. Be
 前記式(6)中における前記親水基を有する有機基としては、例えば前記有機基が有する水素原子の少なくとも一つが、前記親水基で置換された基が挙げられる。 As an organic group which has the said hydrophilic group in said Formula (6), the group by which at least one of the hydrogen atoms which the said organic group has was substituted by the said hydrophilic group is mentioned, for example.
 前記式(8)中における前記芳香環含有有機基としては、例えばフェニル基、1-ナフチル基、2-ナフチル基、ピレニル基、アントラセニル基、アントラキノニル基、トリル基、ベンジル基、トリチル基、スチリル基、ベンジリデン基、アニリン基、ビリジル基、キノリル基、トシル基、テトラフェニルエチレン基、トリフェニルエチレン基、ジフェニルエチレン基、トリアジニル基およびこれらが結合した誘導体や、置換基が加わった誘導体が挙げられる。 Examples of the aromatic ring-containing organic group in the formula (8) include phenyl group, 1-naphthyl group, 2-naphthyl group, pyrenyl group, anthracenyl group, anthraquinonyl group, tolyl group, benzyl group, trityl group, and styryl group. And a benzylidene group, an aniline group, a pyridyl group, a quinolyl group, a tosyl group, a tetraphenylethylene group, a triphenylethylene group, a diphenylethylene group, a triazinyl group, a derivative to which these are linked, and a derivative to which a substituent is added.
<凝集誘起発光性分子(1)~(6)および(9)>
 上記一般式(1)~(6)および(9)で表される凝集誘起発光性分子について、単結晶構造解析で分析すると、分子同士のパッキング性(パッキングの緻密さや強固さ等)は、凝集誘起発光性分子の分子骨格による影響を大きく受けることがわかった。上記一般式(1)~(6)で表される凝集誘起発光性分子はいずれも複素環骨格を有しており、電子リッチなN部、S部、O部、B部の位置関係が特定の周期となるようにパッキングされていた。中でも、(1)~(3)および(6)で表される凝集誘起発光性分子の分子骨格は周期性が高く、N元素、S元素、O元素が同一面内に配置することでヘテロ原子が最適な配置となっており、より強固なパッキングを形成していることが推定される。
Aggregation-Induced Luminescent Molecules (1) to (6) and (9)>
When the aggregation-induced light emitting molecules represented by the above general formulas (1) to (6) and (9) are analyzed by single crystal structure analysis, the packing properties of the molecules (density and rigidity of the packing, etc.) It was found that it is greatly influenced by the molecular skeleton of the induced luminescent molecule. The aggregation-induced light emitting molecules represented by the above general formulas (1) to (6) all have a heterocyclic skeleton, and the positional relationship between electron-rich N part, S part, O part and B part is specified It was packed to be a cycle of Among them, the molecular skeleton of the aggregation-induced light emitting molecule represented by (1) to (3) and (6) has high periodicity, and hetero atoms can be obtained by arranging N elements, S elements, and O elements in the same plane. Is the optimal arrangement, and it is presumed that a more robust packing is formed.
 また、(4)で表される凝集誘起発光性分子が有するカルボラン骨格においては、ホウ素原子の効果によりπ電子が3次元的に非局在化した超芳香族性の分子となることから、3次元的に強固なパッキングとなる。また、(5)で表される凝集誘起発光性分子が有するマレイミド骨格においては、カルボニル基のOとNHのHとが水素結合することにより、隣接分子との相互作用が強まると推測される。 Moreover, in the carborane skeleton of the aggregation-induced light emitting molecule represented by (4), the effect of the boron atom becomes a three-dimensionally delocalized π-electron delocalized superaromatic molecule, so 3 It becomes a dimensionally strong packing. In addition, in the maleimide skeleton of the aggregation-induced light emitting molecule represented by (5), it is presumed that the interaction with the adjacent molecule is strengthened by hydrogen bonding of O of the carbonyl group and H of NH.
<凝集誘起発光性分子(7)および(8)>
 前記式(7)および(8)で表される凝集誘起発光性分子について単結晶構造解析で分析すると、分子同士のパッキング性(パッキングの緻密さや強固さ等)は、凝集誘起発光性分子の分子骨格による影響を大きく受けることがわかった。一般式(7)において、置換基R1に置換芳香族が導入された場合、置換芳香族基部分が隣接分子に入り組む形態で積層することで、より強固なパッキングとなることが確認された。また、置換基R1にOH以外の親水基が導入された場合、親水基部分が徐々にずれ、隣接分子に入り組む形で凝集誘起発光性分子が積層することで緻密で強固なパッキングとなることが確認された。このような緻密で強固な凝集誘起発光性分子同士のパッキングにより凝集誘起発光性分子の流出が抑制されると考えられる。
Aggregation-Induced Luminescent Molecules (7) and (8)>
When single-crystal structural analysis is performed on the aggregation-induced luminescent molecules represented by the formulas (7) and (8), the packing properties of the molecules (such as the density and rigidity of the packing) indicate the molecules of the aggregation-induced luminescent molecules. It turned out that it is greatly affected by the skeleton. In the general formula (7), when a substituted aromatic group is introduced into the substituent R 1 , it was confirmed that more robust packing can be obtained by laminating the substituted aromatic group portion in a form in which adjacent aromatic molecules are intermingled. . In addition, when a hydrophilic group other than OH is introduced into the substituent R 1 , the hydrophilic group portion is gradually displaced, and aggregation-induced luminescent molecules are laminated in a form in which adjacent molecules are intermingled, resulting in a dense and strong packing. That was confirmed. It is considered that the flow of aggregation-induced luminescent molecules is suppressed by the packing of such compact and strong aggregation-induced luminescent molecules.
 振動耐性の向上という観点から、前記凝集誘起発光性分子が親水基を有することが好ましい。凝集誘起発光性分子に親水基があると電気二重層が厚くなり、バッファなどの水系溶媒中で粒子形態がより安定となると考えられる。 From the viewpoint of improving the vibration resistance, it is preferable that the aggregation inducing luminescent molecule has a hydrophilic group. It is considered that when the aggregation-induced light emitting molecule has a hydrophilic group, the electric double layer becomes thick and the particle form becomes more stable in an aqueous solvent such as a buffer.
 前記色素凝集粒子の作製に用いられる凝集誘起発光性分子は、所望の波長(色)の蛍光を発するものを選択することができる。2種類以上の凝集誘起発光性分子を用いる場合は、それぞれ異なる波長の蛍光を発する凝集誘起発光性分子の組み合わせを選択して色素凝集粒子を作製すればよい。そのような2種類以上の凝集誘起発光性分子を用いる場合は、発光波長のピークが互いに100nm以上離れているものを選択することが好ましい。 The aggregation inducing luminescent molecule used for producing the pigment aggregation particle can be selected to emit fluorescence of a desired wavelength (color). In the case of using two or more types of aggregation-induced light emitting molecules, it is sufficient to select a combination of aggregation-induced light emitting molecules that respectively emit fluorescence of different wavelengths to produce dye aggregation particles. When using such two or more types of aggregation-induced light-emitting molecules, it is preferable to select one having the emission wavelength peaks separated by 100 nm or more.
 以下、本発明に用いることが可能な一般式(1)~(8)で表される凝集誘起発光性分子の具体例を示す。 Hereinafter, specific examples of the aggregation-induced luminescent molecules represented by the general formulas (1) to (8) which can be used in the present invention will be shown.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 R1およびR2は上記の式(4)‐1の中からそれぞれ独立に任意に選択される。
Figure JPOXMLDOC01-appb-C000059
R 1 and R 2 are each independently selected arbitrarily from the above-mentioned formula (4) -1.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
<色素内包粒子>
 本発明の「色素内包粒子」は、バインダと、上記一般式(1)~(8)で表される少なくとも一種の凝集誘起発光性分子とからなることを特徴とする。
Figure JPOXMLDOC01-appb-C000066
Dye-containing particles
The “pigment-containing particle” of the present invention is characterized by comprising a binder and at least one aggregation-induced luminescent molecule represented by the above general formulas (1) to (8).
 なお、本発明においてバインダとは、「凝集誘起発光性分子を包摂することで一定の形態にとどめるもの」または「凝集誘起発光性分子同士を繋ぎとめることで一定の形態にとどめるもの」である。「凝集誘起発光性分子を包摂することで一定の形態にとどめるもの」であるバインダとしては、樹脂や無機物等であり、凝集誘起発光性分子を内包することができる。また、「凝集誘起発光性分子同士を繋ぎとめることで一定の形態にとどめるもの」であるバインダとしては、凝集誘起発光性分子が有する置換基を介して隣接凝集誘起発光性分子と結合する場合の結合部や、凝集誘起発光性分子同士を結合させるリンカー等であり、凝集誘起発光性分子同士を繋ぎとめることで一定の形態にとどめることができる。 In the present invention, the binder is “one that retains a certain form by including aggregation-induced luminescent molecules” or “one that retains a certain form by connecting aggregation-induced luminescent molecules”. Examples of the binder that is “a substance that remains in a certain form by including aggregation-induced light-emitting molecules” include resins, inorganic substances, and the like, and can include aggregation-induced light-emitting molecules. In addition, as a binder which is "to be in a fixed form by tying aggregation-induced light emitting molecules together", in the case of binding to an adjacent aggregation-induced light emitting molecule via a substituent which the aggregation-induced light emitting molecule has. A bonding portion, a linker for binding aggregation-induced light emitting molecules to each other, and the like, and the aggregation-induced light emitting molecules can be fixed to each other to be in a fixed form.
 本発明の「色素内包粒子」に含まれる凝集誘起発光性分子は、前記式(1)中のR1、R2、R3、R4、R5、およびR6がそれぞれ独立に、親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である凝集誘起発光性分子、前記式(2)中のR1、R2、R3、およびR4がそれぞれ独立に、親水基、 水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である凝集誘起発光性分子、前記式(3)中のR1,R2、およびR3がそれぞれ独立して親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基であり、Yが電子吸引性基である凝集誘起発光性分子、前記式(4)中の白抜きの丸は炭素原子を示し、R1およびR2がそれぞれ独立して親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である凝集誘起発光性分子、前記式(5)および(9)中のR、R'およびR’’がそれぞれ独立して親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である凝集誘起発光性分子、前記式(6)中のXがS、OまたはNであり、ここでXがOまたはSのときR4は存在せず、Yが電子吸引性基または電子供与性基であり、R1、R2、R3およびR4がそれぞれ独立に有機基または親水基を有する有機基、有機金属基、またはシランカップリング剤結合性基を表し、R1~R4がそれぞれ結合して環構造を取っても良い、凝集誘起発光性分子、前記式(7)中のR1が置換芳香族基、OHを除く親水基、またはシランカップリング剤結合性基であり、R2~R4がそれぞれ独立して親水基、有機基または有機金属基であり、a~dがそれぞれ独立して、0~5の整数であり、aが2以上の場合、複数のR1が同一であっても異なっていてもよく、複数のR1が互いに結合して環を形成していてもよく、b~dが2以上の場合、複数のR2、R3、およびR4はそれぞれ同一であっても異なっていてもよく、R1とR2、R2とR4、R3とR4、R3とR1がそれぞれ結合して環を形成していてもよい凝集誘起発光性分子、または前記式(8)中のRAが独立に、親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基であり、aは独立に1~5の整数であり、RBが独立に芳香環含有有機基であり、RCは独立に親水基、水素原子、有機基または有機金属基である凝集誘起発光性分子、のうち1以上を含む。 The aggregation-induced luminescent molecules contained in the “pigment-containing particles” of the present invention are hydrophilic groups in which R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 in the above formula (1) are each independently. , An aggregation-induced light-emitting molecule which is a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent-binding group, R 1 , R 2 , R 3 and R 4 in the formula (2) are each independently Aggregation-induced light emitting molecules which are a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group, R 1 , R 2 and R 3 in the above formula (3) are each independently Aggregation-inducing light-emitting molecule, wherein Y is an electron-withdrawing group, and is a white circle in the formula (4); and a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group represents a carbon atom, hydrophilic group R 1 and R 2 are each independently hydrogen atom, an organic group, Aggregation-induced light emitting molecule which is an organic metal group or a silane coupling agent binding group, R, R ′ and R ′ ′ in the formulas (5) and (9) are each independently a hydrophilic group, a hydrogen atom, Aggregation-induced light-emitting molecules that are organic groups, organometallic groups, or silane coupling agent binding groups, and when X in the above formula (6) is S, O or N, where X is O or S, R is 4 is absent, Y is an electron withdrawing group or an electron donating group, and R 1 , R 2 , R 3 and R 4 each independently has an organic group or a hydrophilic group, an organic group, an organometallic group, or Represents a silane coupling agent-binding group, and R 1 to R 4 may be bonded to each other to form a ring structure; aggregation induced light emitting molecule, R 1 in the above formula (7) is a substituted aromatic group, OH R 2 to R 4 are each a hydrophilic group other than or a silane coupling agent binding group Are independently a hydrophilic group, an organic group or an organic metal group, and a to d are each independently an integer of 0 to 5, and when a is 2 or more, even if a plurality of R 1 are identical And R 1 s may be different from each other or R 1 s may be bonded to each other to form a ring, and when b to d are 2 or more, R 2 s , R 3 s and R 4 s may be the same. And an aggregation-induced light-emitting molecule in which R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , and R 3 and R 1 may respectively combine to form a ring, or R A in the above formula (8) is independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group, a is independently an integer of 1 to 5, and R Among aggregation-induced light-emitting molecules in which B is independently an aromatic ring-containing organic group, and R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organic metal group Includes one or more.
 前記シランカップリング剤結合性基はとくに限定されないが、例えば、N-ヒドロキシスクシンイミド(NHS)エステル基、マレイミド基、イソシアナート基、イソチオシアナート基、アルデヒド基、パラニトロフェニル基、ジエトキシメチル基、エポキシ基、シアノ基、アルコキシシラン基、ハロゲン原子等が挙げられる。 The silane coupling agent binding group is not particularly limited. For example, N-hydroxysuccinimide (NHS) ester group, maleimide group, isocyanate group, isothiocyanate group, aldehyde group, paranitrophenyl group, diethoxymethyl group , Epoxy group, cyano group, alkoxysilane group, halogen atom and the like.
 前記バインダは、特に限定されないが、物理的または化学的な結合力でもって凝集誘起発光性分子を集積化することのできる物質であれば特に限定されず、樹脂または無機物であることが好ましい。 The binder is not particularly limited, but is not particularly limited as long as it is a substance capable of aggregating aggregation-induced light emitting molecules with physical or chemical bonding force, and is preferably a resin or an inorganic substance.
 本発明の色素内包粒子をSTEM-EELS観察した結果、粒子内で凝集誘起発光性分子が凝集・偏在していることが確認された。このように粒子内で凝集誘起発光性分子が凝集することで、粒子外への凝集誘起発光性分子流出が抑制されると考えられる。また、粒子内で凝集・偏在している凝集誘起発光性分子について単結晶構造解析で分析すると、色素凝集粒子と同様の仕組みにより凝集誘起発光性分子同士が強固にパッキングしていることが確認された。 As a result of STEM-EELS observation of the dye-containing particles of the present invention, it was confirmed that aggregation-induced light emitting molecules are aggregated and localized in the particles. Thus, aggregation of the aggregation-induced luminescent molecule in the particle is considered to suppress aggregation-induced emission of the molecule out of the particle. In addition, when single-crystal structure analysis is performed on aggregation-induced luminescent molecules that are aggregated and localized in particles, it is confirmed that aggregation-induced luminescent molecules are tightly packed by the same mechanism as dye-aggregated particles. The
 さらに、凝集誘起発光性分子に親水基があることにより、粒子のバインダを形成する樹脂や無機物等の化合物との間で静電相互作用を生じるため、凝集誘起発光性分子の流出が抑制され得る。 Furthermore, when the aggregation-induced light emitting molecule has a hydrophilic group, electrostatic interaction is caused with a compound such as a resin or an inorganic substance that forms a binder of particles, so that the outflow of the aggregation-induced light emitting molecule can be suppressed. .
 前記樹脂としては、例えば、メラミン樹脂、尿素樹脂、ベンゾグアナミン樹脂、フェノール樹脂、キシレン樹脂、スチレン樹脂、(メタ)アクリル樹脂、ポリアクリロニトリル、AS樹脂(アクリロニトリル-スチレン共重合体)、ASA樹脂(アクリロニトリル-スチレン-アクリル酸メチル共重合体)など、1種類または2種類以上のモノマーを用いて作製される各種の単独重合体および共重合体が挙げられる。中でも、メラミン樹脂やスチレン樹脂は、凝集誘起発光性分子を内包した粒子を作製しやすく、また得られた色素内包粒子の発光強度が高くなることから好適に用いられる。 Examples of the resin include melamine resin, urea resin, benzoguanamine resin, phenol resin, xylene resin, styrene resin, (meth) acrylic resin, polyacrylonitrile, AS resin (acrylonitrile-styrene copolymer), ASA resin (acrylonitrile- Examples include various homopolymers and copolymers prepared using one or more monomers, such as styrene-methyl acrylate copolymer). Among them, melamine resins and styrene resins are preferably used because particles containing aggregation-induced light emitting molecules can be easily produced and the emission intensity of the obtained dye-containing particles becomes high.
 前記無機物としては、例えば、酸化ジルコニウム、アルミナ、シリカ等が挙げられ、
常温化における振動耐性の向上および反応性制御という観点から、シリカであることがより好ましい。シリカは、一般に、化学的に不活性であると共に、その修飾が容易であることが知られていることから、バインダとしてシリカを用いた本発明の色素内包(シリカ)粒子もまた、容易に所望の分子を表面に結合させることが可能である。
Examples of the inorganic substance include zirconium oxide, alumina, silica and the like.
It is more preferable that it is a silica from a viewpoint of the improvement of the vibration tolerance at the time of normal temperature-ization, and reactivity control. Since silica is generally known to be chemically inert and to be easily modified, the dye-containing (silica) particles of the present invention using silica as a binder are also easily desired. Of molecules can be attached to the surface.
 さらに、疎水結合による非特異的吸着を抑制する等の観点から、色素内包粒子は親水性であることが好ましい。例えば、メラミン樹脂のように親水性の物質をバインダとして用いて色素内包粒子を作製したり、疎水性の物質で製造した色素内包粒子の表面を親水性化合物で修飾したりすることにより、親水性の色素内包粒子を得ることができる。 Furthermore, from the viewpoint of suppressing nonspecific adsorption due to hydrophobic binding, etc., the dye-containing particle is preferably hydrophilic. For example, a hydrophilic substance such as a melamine resin is used as a binder to prepare a dye-containing particle, or the surface of the dye-containing particle produced with a hydrophobic substance is modified with a hydrophilic compound to be hydrophilic. Can be obtained.
 色素内包粒子の表面を親水化するために用いる親水性化合物は、特に限定されるものではないが、例えばポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)等の直鎖状親水性高分子が、繰り返し単位数により分子長の調整が容易であることや、末端に種々の官能基等が連結された誘導体を調製したり製品として入手したりすることが容易なことなどから好ましい。 The hydrophilic compound used to hydrophilize the surface of the dye-containing particle is not particularly limited. For example, linear hydrophilic polymers such as polyethylene glycol (PEG) and polypropylene glycol (PPG) are repeatedly used. It is preferable from the ease of adjustment of the molecular length depending on the number of units and easy preparation of a derivative having various functional groups etc. connected to the end or as a product.
 色素内包粒子の作製に用いられる凝集誘起発光性分子は、所望の波長(色)の蛍光を発するものを選択することができる。2種類以上の凝集誘起発光性分子を用いる場合は、それぞれ異なる波長の蛍光を発する凝集誘起発光性分子の組み合わせを選択して色素内包粒子を作製すればよい。そのような2種類以上の凝集誘起発光性分子を用いる場合は、発光波長のピークが互いに100nm以上離れているものを選択することが好ましい。 The aggregation inducing luminescent molecule used for producing the dye-containing particles can be selected to emit fluorescence of a desired wavelength (color). When two or more types of aggregation inducing luminescent molecules are used, it is sufficient to select a combination of aggregation inducing luminescent molecules that emit fluorescence of different wavelengths, respectively, to prepare the dye-containing particles. When using such two or more types of aggregation-induced light-emitting molecules, it is preferable to select one having the emission wavelength peaks separated by 100 nm or more.
<蛍光標識材>
 本発明の「蛍光標識材」は、前記色素凝集粒子または前記色素内包粒子の表面に標的指向性リガンドが共有結合を介して結合していることを特徴とする。蛍光標識材の形態、例えば、製造時、保存時、流通時の形態としては、特に限定されないが、例えばPBS等の公知の緩衝液を分散媒とする分散液の形態であることが好ましい。本発明の一態様は、分散液の形態、すなわち、蛍光標識材分散液であり、該蛍光標識材分散液は、蛍光標識材と、緩衝液とを含む。
<Fluorescent labeling material>
The "fluorescent labeling material" of the present invention is characterized in that a targeting ligand is bound to the surface of the dye aggregation particle or the dye-containing particle via a covalent bond. The form of the fluorescent labeling material, for example, the form at the time of production, storage, and distribution is not particularly limited, but is preferably in the form of a dispersion using a known buffer such as PBS as a dispersion medium. One embodiment of the present invention is in the form of a dispersion, that is, a fluorescent label dispersion, and the fluorescent label dispersion contains a fluorescent label and a buffer.
<標的指向性リガンド>
 本発明の「蛍光標識材」において用いられる標的指向性リガンドは、標的物質を特異的に認識して結合する物質であり、例えば動物等から採取した組織や細胞に含まれる生体物質である目的生体物質を標的物質として、特異的に認識して結合する物質であることが好ましい。前記目的生体物質は特に限定されないが、例えばタンパク質、核酸、糖鎖、脂質等が挙げられる。目的生体物質は任意の疾患に関連している生体物質であることが好ましい。具体的には、例えばがん細胞特異的に発現するマーカータンパク質(例えば、がん特異的タンパク質、血管内皮細胞特異的タンパク質、リン酸化タンパク質など)、炎症誘発性タンパク質等、免疫関連タンパク質が挙げられる。
<Targeting ligand>
The targeting ligand used in the “fluorescent labeling material” of the present invention is a substance that specifically recognizes and binds to a target substance, and is a target substance that is a biological substance contained in a tissue or cell collected from an animal or the like, for example. The substance is preferably a substance that specifically recognizes and binds as a target substance. The target biological substance is not particularly limited, and examples include proteins, nucleic acids, sugar chains, lipids and the like. The target biological material is preferably a biological material associated with any disease. Specifically, for example, marker proteins (for example, cancer-specific proteins, vascular endothelial cell-specific proteins, phosphorylated proteins, etc.) specifically expressed in cancer cells, inflammation-related proteins, etc., and immune-related proteins can be mentioned. .
 例えば、目的生体物質が腫瘍組織やがん細胞において特異的に発現するタンパク質である場合、標的指向性リガンドとしてはこれらに対する抗体が好ましく選択される。目的生体物質が糖タンパク質の場合には、標的指向性分子としては、糖鎖と結合性を有するタンパク質(例えば、レクチン)などが好ましく選択される。 For example, when the target biological substance is a protein specifically expressed in a tumor tissue or a cancer cell, antibodies against these are preferably selected as a targeting ligand. When the target biological substance is a glycoprotein, a protein (for example, lectin) having a binding property with a sugar chain is preferably selected as the target-directed molecule.
 その他の標的指向性分子としては、例えば、細胞小器官親和性物質、ペプチドなどが挙げられる。 Other target-directed molecules include, for example, organelle compatible substances, peptides and the like.
 上記標的指向性リガンドとして抗体を選択する場合、通常はIgGまたはIgMであり、IgGが好ましく用いられる。抗体は、目的タンパク質または低次抗体を特異的に認識して結合する能力を有する限り、完全長のIgGのような天然型の抗体であってもよいし、Fab、Fab'、F(ab')2、Fv、scFvなどの抗体断片、あるいはそれらの抗体断片を用いて多機能化(多価化または多重特異性化)された人工抗体のような、非天然型の抗体であってもよい。抗原にユニークなエピトープを認識して結合する一次抗体が好ましく用いられる。標的指向性リガンドとして、一次抗体にユニークなエピトープを認識して結合する抗体である二次抗体を用いる場合にはあらかじめ目的生体物質に一次抗体を結合させたものを標的物質として用いる。 When an antibody is selected as the targeting ligand, it is usually IgG or IgM, and IgG is preferably used. The antibody may be a natural antibody such as full-length IgG, as long as it has the ability to specifically recognize and bind a target protein or a lower antibody, Fab, Fab ', F (ab' 2 ) It may be a non-naturally occurring antibody such as an artificial antibody which has been multifunctionalized (multivalented or multispecificized) using antibody fragments such as 2 , Fv and scFv, or antibody fragments thereof . A primary antibody that recognizes and binds to a unique epitope on an antigen is preferably used. In the case of using a secondary antibody which is an antibody which recognizes and binds a unique epitope to a primary antibody as a targeting ligand, a target biological substance to which a primary antibody is bound in advance is used as a target substance.
<色素凝集粒子の製造方法>
 本発明の色素凝集粒子は、凝集誘起発光性分子の溶液に、貧溶媒を接触させ、凝集誘起発光性分子を凝集させる工程(A)を含むことが好ましく、前記工程(A)が、中心核存在下で、凝集誘起発光性分子の溶液に、貧溶媒を接触させ、凝集誘起発光性分子を凝集させる工程であってもよい。前記工程(A)以外の工程としては特に限定は無く、例えば凝集誘起発光性分子に親水基を導入する工程や、色素凝集粒子表面に親水基を導入する工程等が適宜行われる。中心核存在下で工程(A)を行うことにより、色素凝集粒子の粒径変動係数や平均粒径をコントロールすることが容易になるため好ましい。中心核は、凝集誘起発光性分子の溶液中に予め混合されていてもよく、貧溶媒中に予め混合されていてもよい。
<Method of producing pigment aggregated particles>
The dye aggregation particle of the present invention preferably includes a step (A) of bringing a poor solvent into contact with a solution of aggregation-induced luminescent molecules to aggregate the aggregation-induced luminescent molecules, wherein the step (A) comprises a core In the presence of the aggregation-induced luminescent molecule, the solution of the aggregation-induced luminescent molecule may be brought into contact with the poor solvent to aggregate the aggregation-induced luminescent molecule. The step other than the step (A) is not particularly limited, and, for example, a step of introducing a hydrophilic group into the aggregation-induced light emitting molecule, a step of introducing a hydrophilic group into the surface of the pigment aggregation particle, and the like are appropriately performed. By performing the step (A) in the presence of the central nucleus, it is preferable to control the particle size variation coefficient and the average particle size of the pigment-aggregated particles. The central core may be premixed in the solution of aggregation-induced luminescent molecules, or may be premixed in the poor solvent.
 中心核として用いられる物質は、特に限定されず、例えばポリスチレン、ラテックス等の有機分子や、シリカ等の無機分子からなる微粒子が好適に用いられる。中心核の性質および大きさは、所望の色素凝集粒子の粒径や作製に用いられる凝集誘起発光性分子の性質にしたがって選択することができる。中心核としては、平均粒径が1nm以上20nm以下であり、粒径変動係数が、5%以下のものが好ましい。 The substance used as the central nucleus is not particularly limited, and for example, fine particles of organic molecules such as polystyrene and latex, and inorganic molecules such as silica are suitably used. The nature and size of the central core can be selected according to the desired particle size of the dye aggregation particles and the nature of the aggregation inducing luminescent molecule used for preparation. As the central nucleus, one having an average particle diameter of 1 nm or more and 20 nm or less and a particle diameter variation coefficient of 5% or less is preferable.
 本発明における色素凝集粒子は、凝集誘起発光性分子を溶解させることができる溶媒(良溶媒)を用い、凝集誘起発光性分子の分溶液を調製した後に、凝集誘起発光性分子の溶液に、凝集誘起発光性分子の貧溶媒と混合することで色素凝集粒子を析出させる再沈殿法により調製することができる。このような再沈殿法を利用することで、凝集誘起発光性分子がより高密度に充填された粒子を作製することができる。具体的には、例えば、マイクロミキサーと呼ばれる内径の小さなミキサーを用いた再沈殿法であって、マイクロミキサーに凝集誘起発光性分子の良溶媒と貧溶媒とをポンプで送り込み、両者を急速かつ均一に混合することにより、微粒子を析出させる方法(流通法)が挙げられる。 The pigment aggregation particles in the present invention are prepared by using a solvent (good solvent) capable of dissolving aggregation-induced luminescent molecules and preparing a divided solution of the aggregation-induced luminescent molecules, followed by aggregation into a solution of aggregation-induced luminescent molecules. It can be prepared by the reprecipitation method of precipitating pigment aggregated particles by mixing the induced luminescent molecule with the poor solvent. By using such a reprecipitation method, it is possible to produce particles densely packed with aggregation-induced luminescent molecules. Specifically, for example, a reprecipitation method using a mixer with a small inner diameter called a micromixer, and pumping a good solvent and a poor solvent of aggregation-induced luminescent molecules into the micromixer, both rapidly and uniformly The method (flow-through method) to which microparticles | fine-particles are deposited is mentioned by mixing to (1).
 好適に用いることができるマイクロミキサーとしては、凝集誘起発光性分子の分溶液と貧溶媒とを混合する混合部の流路の内径(流路の断面が円形でない場合は、当該流路の断面積と同じ面積をもつ円の直径)が2mm以下であることが好ましく、溶液と貧溶媒をより急速に混合するためには、流路の内径が1mm以下であることが好ましい。また、微粒子による流路の閉塞を防止するため、および流路内部での圧力損失を低減するためには、流路の内径が0.05mm以上であることが好ましい。 As a micromixer that can be suitably used, the inner diameter of the flow path of the mixing section for mixing the minute solution of aggregation-induced luminescent molecules and the poor solvent (when the cross section of the flow path is not circular, the cross-sectional area of the flow path The diameter of the circle having the same area as that of the above is preferably 2 mm or less, and in order to mix the solution and the poor solvent more rapidly, the inner diameter of the flow path is preferably 1 mm or less. Further, in order to prevent the clogging of the flow path by the fine particles and to reduce the pressure loss inside the flow path, the inner diameter of the flow path is preferably 0.05 mm or more.
 本発明の良溶媒としては、凝集誘起発光性分子に対して良好な溶解性を示すものであれば特に限定されず、後述の貧溶媒との混合性がよいものを選択することが好ましい。具体的には、例えば、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、1-メチル-2-ピロリジノン、1,3-ジメチルイミダゾリノン、N,N-ジメチルホルムアミドなどのアミド系溶媒、ジメチルスルホキシドなどの含硫黄系溶媒、またはこれら2種以上の混合溶媒を好適に使用することができる。また、凝集誘起発光性分子の再分散を防ぐという観点から、貧溶媒の沸点よりも低い沸点を有する良溶媒を使用することが好ましい。また、必要に応じて無機化合物や分散剤などを良溶媒に溶解させてもよい。 The good solvent of the present invention is not particularly limited as long as it exhibits good solubility in aggregation-induced light emitting molecules, and it is preferable to select one having good compatibility with the poor solvent described later. Specifically, for example, ether solvents such as tetrahydrofuran and dioxane, ketone solvents such as acetone and methyl ethyl ketone, and amides such as 1-methyl-2-pyrrolidinone, 1,3-dimethylimidazolinone and N, N-dimethylformamide A system solvent, a sulfur-containing solvent such as dimethyl sulfoxide, or a mixed solvent of two or more of these can be suitably used. Moreover, it is preferable to use a good solvent having a boiling point lower than the boiling point of the poor solvent from the viewpoint of preventing redispersion of aggregation-induced light emitting molecules. Moreover, you may dissolve an inorganic compound, a dispersing agent, etc. in a good solvent as needed.
 本発明の貧溶媒としては、凝集誘起発光性分子に対して比較的溶解性が低いものであれば特に限定されず、前述の良溶媒との混合性がよいものを選択することが好ましい。例えば、水または水溶液が好ましく、メタノール、エタノールなどのアルコール系溶媒、ペンタン、ヘキサン、ヘプタンなどの脂肪族系溶媒、ベンゼン、トルエンなどの芳香族系溶媒、またはこれら2種以上の混合溶媒を使用することができるが、これらには限定されない。除去を容易にする観点から、貧溶媒は、沸点が良溶媒と比較的低い(例えば40℃~120℃)ものが好ましい。また、必要に応じて、無機化合物などを貧溶媒に溶解させてもよい。 The poor solvent of the present invention is not particularly limited as long as it has relatively low solubility in the aggregation-induced light emitting molecule, and it is preferable to select one having good compatibility with the above-mentioned good solvent. For example, water or an aqueous solution is preferable, and alcohol solvents such as methanol and ethanol, aliphatic solvents such as pentane, hexane and heptane, aromatic solvents such as benzene and toluene, or mixed solvents of two or more of them are used. Although it can be, it is not limited to these. From the viewpoint of facilitating removal, it is preferable that the poor solvent has a relatively low boiling point (eg, 40 ° C. to 120 ° C.) as a good solvent. Moreover, you may dissolve an inorganic compound etc. in a poor solvent as needed.
 反応時間、反応温度の反応条件は、上述した条件を満たす色素凝集粒子が製造されるような条件であれば特に限定されないが、凝集誘起発光性分子を効率よくナノ粒子化するためには短時間内に急速に、凝集誘起発光性分子の分溶液と貧溶液とを混合することが好ましく、例えば、レイノルズ数が4,000以上であるような乱流条件であることが好ましい。 The reaction conditions for the reaction time and reaction temperature are not particularly limited as long as the dye aggregation particles satisfying the above conditions are produced, but a short time is required for efficiently forming aggregation-induced luminescent molecules into nanoparticles. It is preferable to mix a minute solution of aggregation-induced luminescent molecules and a poor solution rapidly, for example, under turbulent conditions such that the Reynolds number is 4,000 or more.
 また、本発明は比較的粗大な凝集誘起発光性分子の結晶を貧溶媒中に分散させた分散液に対してレーザーアブレーションを行う方法(特開2005-238342号公報)等で、粒径変動係数の小さい凝集ナノ粒子を製造することができる。 Furthermore, the present invention relates to a method (eg, JP 2005-238342 A) in which laser ablation is performed on a dispersion in which crystals of relatively coarse aggregation-induced luminescent molecules are dispersed in a poor solvent (particle size variation coefficient) Small agglomerated nanoparticles can be produced.
 前記レーザーアブレーションを行う場合、レーザーとしては公知の各種レーザーを用いることができ、YAGレーザー、エキシマーレーザー、チタン-サファイヤレーザーなどが好ましく用いられる。照射レーザーとしては、パルス波を当てるのがよい。またより粒度分布のそろった凝集ナノ粒子を調製するためには、レーザーアプレーションを行う前の分散液の濃度を、0.1mg/L~500mg/Lに調整しておくことが好ましい。照射するパワー、パルス幅、波長、照射時間は、対象の凝集誘起発光性色素の結晶の種類や大きさ、貧溶媒との混合比により適宜調整することができ、より粒度分布のそろった凝集ナノ粒子を調製するためには、例えば、パワーは0.5~500mJ/cm2、パルス幅は1~100フェムト秒、パルス幅は0.01~500Hz、照射時間は0.5分~5時間、の範囲で選択してレーザーを照射することが好ましい。 When the laser ablation is performed, various known lasers can be used as the laser, and a YAG laser, an excimer laser, a titanium-sapphire laser or the like is preferably used. As an irradiation laser, it is preferable to apply a pulse wave. Further, in order to prepare aggregated nanoparticles having a more uniform particle size distribution, it is preferable to adjust the concentration of the dispersion before performing laser application to 0.1 mg / L to 500 mg / L. The irradiation power, pulse width, wavelength and irradiation time can be appropriately adjusted according to the type and size of the crystal of the aggregation-induced luminescent dye of interest, and the mixing ratio with the poor solvent, and aggregation nano size more uniform in particle size distribution For preparing the particles, for example, the power is 0.5 to 500 mJ / cm 2 , the pulse width is 1 to 100 femtoseconds, the pulse width is 0.01 to 500 Hz, the irradiation time is 0.5 minutes to 5 hours, It is preferable to select in the range of and irradiate a laser.
 前記貧溶媒としては水、メタノール、エタノールなどのアルコール系溶媒、ペンタン、ヘキサン、ヘプタンなどの脂肪族系溶媒、ベンゼン、トルエンなどの芳香族系溶媒、またはこれら2種以上の混合溶媒を使用することができるが、これらには限定されない。前記レーザーアブレーション法は例えば、The Review of Laser Engineering, 33, 41-46に記載の方法でセットアップした装置で行うことができる。 As the poor solvent, use may be made of water, alcohol solvents such as methanol and ethanol, aliphatic solvents such as pentane, hexane and heptane, aromatic solvents such as benzene and toluene, or a mixed solvent of two or more of them. But not limited thereto. The laser ablation method can be performed, for example, with an apparatus set up by the method described in The Review of Laser Engineering, 33, 41-46.
 色素凝集粒子は、必要に応じて、限外ろ過膜などの常法を利用して精製してもよい。精製を行うことにより、反応液中のイオンや未反応の物質を除くことができ、また球状もしくは球状に近い色素凝集粒子を得ることができる。ここで、球状に近い微粒子とは、具体的には長軸と短軸の比が2以下の形状の微粒子である。 The pigment-aggregated particles may be purified, if necessary, using a conventional method such as ultrafiltration. By purification, ions and unreacted substances in the reaction solution can be removed, and spherical or nearly spherical pigment aggregation particles can be obtained. Here, the particles having a shape close to spherical are specifically particles having a shape in which the ratio of the major axis to the minor axis is 2 or less.
 さらに所望の平均粒径の色素凝集粒子を得るためには、YM-10、YM-100(ミリポア社製)等の限外ろ過膜による限外ろ過を行い、粒径が大きい粒子を除去してもよい。
<色素内包粒子の製造方法>
 本発明の色素内包粒子の製造方法は、前記凝集誘起発光性分子をバインダまたはバインダの前駆体中に分散させ、粒子化させる工程を含むことが好ましい。
Furthermore, in order to obtain pigment aggregate particles of a desired average particle diameter, ultrafiltration with an ultrafiltration membrane such as YM-10, YM-100 (manufactured by Millipore) is performed to remove particles with large particle diameters. It is also good.
<Method for producing dye-containing particles>
It is preferable that the method for producing the dye-containing particles of the present invention includes the step of dispersing the aggregation-induced light emitting molecule in a binder or a precursor of the binder to form particles.
 また、色素内包粒子を製造する際にバインダとしてゾルゲル法により重縮合可能なバインダの前駆体を用いる場合、前記色素内包粒子の製造方法は、
 1)凝集発光性分子をバインダの前駆体中に分散させる工程
 2)ゾルゲル法によりバインダの前駆体からバインダを形成し、かつ粒子化させる工程
を含むことが好ましい。
In addition, in the case of using a precursor of a binder that can be polycondensed by a sol-gel method as a binder when producing dye-containing particles, the method for producing the dye-containing particles is
1) A process of dispersing aggregated light emitting molecules in a precursor of a binder 2) It is preferable to include a process of forming a binder from a precursor of a binder by a sol-gel method and forming it into particles.
 バインダとしてシリカを用いる場合、色素内包粒子の作製法としては凝集誘起発光性分子を内包したシリカ粒子の構成となるものであればどの手法をとっても良い。具体的には、例えば、アルコキシシラン基を有する凝集誘起発光性分子を作製して重縮合させる方法により得ることができる。前記アルコキシシラン基は、1官能アルコキシシラン基、2官能アルコキシシラン基または3官能アルコキシシラン基を用いることができる。なお重縮合は、通常はゾルゲル法により行うことができる。 When silica is used as the binder, any method may be used as a method for producing the dye-containing particles, as long as it is a configuration of silica particles containing aggregation-induced light emitting molecules. Specifically, it can be obtained, for example, by a method of producing condensation-induced luminescent molecules having an alkoxysilane group and polycondensation. The alkoxysilane group may be a monofunctional alkoxysilane group, a bifunctional alkoxysilane group or a trifunctional alkoxysilane group. The polycondensation can usually be carried out by a sol-gel method.
 アルコキシシラン基を有する凝集誘起発光性分子の作製法は、特に限定されないが、例えば、凝集誘起発光性色素の分子の一部にアルコキシシラン基を直接導入する方法、シランカップリング剤により凝集誘起発光性分子の一部にアルコキシシランを導入する方法等が挙げられる。 The method for producing the aggregation-induced luminescent molecule having an alkoxysilane group is not particularly limited. For example, a method of directly introducing an alkoxysilane group into a part of the aggregation-induced luminescent dye, aggregation-induced luminescence by a silane coupling agent And a method of introducing an alkoxysilane to a part of the organic molecule.
 アルコキシシラン基を直接凝集誘起発光性分子の分子に導入する場合、凝集誘起発光性分子の分子骨格の任意の位置に導入することができるが、芳香環部位にアルコキシシラン基を導入することでより発光効率の高い色素内包粒子を得ることができる。 When an alkoxysilane group is directly introduced into the molecule of aggregation-induced light emitting molecule, it can be introduced at any position of the molecular skeleton of the aggregation-induced light emitting molecule, but by introducing an alkoxysilane group into the aromatic ring site Dye-containing particles with high luminous efficiency can be obtained.
 また、シランカップリング剤により凝集誘起発光性分子の一部にアルコキシシランを導入する場合、まず前記凝集誘起発光性分子に活性基を導入し、続いて、それら活性基に反応する置換基を有するシランカップリング剤とを反応させ、共有結合させることでアルコキシシラン基を有する凝集誘起発光性分子を得ることができる。 Moreover, when introducing an alkoxysilane to a part of aggregation induction light emission molecule by a silane coupling agent, first, an active group is introduce | transduced into the said aggregation induction light emission molecule, and it has a substituent which reacts to those activation groups subsequently By causing a reaction with a silane coupling agent and covalently bonding, an aggregation-induced luminescent molecule having an alkoxysilane group can be obtained.
 前記活性基はとくに限定されないが、N-ヒドロキシスクシンイミド(NHS)エステル基、マレイミド基、イソシアナート基、イソチオシアナート基、アルデヒド基、パラニトロフェニル基、ジエトキシメチル基、エポキシ基、シアノ基、ハロゲン原子等から選択することができる。 The above-mentioned active group is not particularly limited, but N-hydroxysuccinimide (NHS) ester group, maleimide group, isocyanate group, isothiocyanate group, aldehyde group, paranitrophenyl group, diethoxymethyl group, epoxy group, cyano group, It can be selected from halogen atoms and the like.
 凝集誘起発光性分子に導入する活性基としてN-ヒドロキシスクシンイミド(NHS)エステル基またはマレイミド基を選択し、シランカップリング剤としてアミノ基を有するシランカップリング剤を用いることでより発光効率の高い色素内包粒子を得ることができる。この場合、NHSエステル基と、アミノ基を有するシランカップリング剤のアミノ基とが、アミド結合(-NHCO-)することで、アルコキシシラン基を有する凝集誘起発光性分子が得られる。すなわち、前記アルコキシシラン基を有する凝集誘起発光性分子は、アミド結合を介して凝集誘起発光性分子とシリカが結合している。 Dyes with higher luminous efficiency by selecting N-hydroxysuccinimide (NHS) ester group or maleimide group as the active group to be introduced into aggregation-induced light emitting molecule and using a silane coupling agent having an amino group as a silane coupling agent Contained particles can be obtained. In this case, the NHS ester group and the amino group of the silane coupling agent having an amino group form an amide bond (-NHCO-) to obtain an aggregation-induced luminescent molecule having an alkoxysilane group. That is, in the aggregation-induced light emitting molecule having the alkoxysilane group, the aggregation-induced light emitting molecule and the silica are bonded via an amide bond.
 前記アミノ基を有するシランカップリング剤は特に限定されないが、例えば、γ-アミノプロピルトリエトキシシラン(APS)、3-[2-(2-アミノエチルアミノ)エチルアミノ]プロピル-トリエトキシシラン、N-2(アミノエチル)3- アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン等が挙げられ、特にAPSが好ましい。 The silane coupling agent having an amino group is not particularly limited, and examples thereof include γ-aminopropyltriethoxysilane (APS), 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane, N And -2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane and the like, and APS is particularly preferable.
 前記NHSエステル基を有する凝集誘起発光性分子と前記アミノ基を有するシランカップリング剤との反応は、DMSO(ジメチルスルホキシド)やDMF(N,N- ジメチルホルムアミド)等の溶媒にそれぞれを溶解した後、室温(例えば、25℃)条件下で攪拌しながら反応させることによって行うことができる。凝集誘起発光性分子とシランカップリング剤との割合は特に制限されないが、1:0.5~2(モル比)の割合が好ましく、1:0.8~1.2(モル比)の割合がより好ましい。 The reaction between the aggregation-induced luminescent molecule having the NHS ester group and the silane coupling agent having the amino group is carried out after each of them is dissolved in a solvent such as DMSO (dimethyl sulfoxide) or DMF (N, N-dimethylformamide). It can be carried out by reacting under stirring at room temperature (eg, 25 ° C.). The ratio of the aggregation-induced luminescent molecule to the silane coupling agent is not particularly limited, but a ratio of 1: 0.5 to 2 (molar ratio) is preferable, and a ratio of 1: 0.8 to 1.2 (molar ratio) Is more preferred.
 本発明の色素内包粒子は、上述の方法で作製したアルコキシシラン基を有する凝集誘起発光性分子を『単独で重縮合させる方法』または『1又は2種以上のシラン化合物を追加して重縮合させる方法』により製造することができる。 The dye-containing particles of the present invention are subjected to polycondensation by adding an aggregation-induced light emitting molecule having an alkoxysilane group prepared by the above method polycondensation by itself or by adding one or more silane compounds. It can manufacture by a method.
 前記アルコキシシラン基を有する凝集誘起発光性分子を単独で重縮合させる場合、特に制限されないが、凝集誘起発光性色素の分子の一部にアルコキシシラン基が直接1つ以上結合した分子を用いるのが好ましく、アルコキシシラン基が直接2つ以上結合した分子を用いるのがより好ましい。 When the condensation induction light emitting molecule having the alkoxysilane group is independently polycondensed, there is no particular limitation, but it is possible to use a molecule in which one or more alkoxysilane groups are directly bonded to a part of the aggregation induction light emitting dye Preferably, it is more preferable to use a molecule in which two or more alkoxysilane groups are directly bonded.
 また、この重縮合反応はアルコール、水及びアンモニアの存在下で行うのが好ましい。ここでアルコールとしてはメタノール、エタノール、プロパノール等の炭素数1~3の低級アルコールを挙げることができる。かかる反応系における水とアルコールの割合は、特に制限されないが、好ましくは水1容量部に対してアルコールを0.5~20容量部、より好ましくは2~16容量部、さらに好ましくは4~10容量部の範囲である。アンモニアの量も特に制限されないが、アンモニアの濃度が30~1000mMが好ましく、60~500mMがより好ましく、80~200mMがさらに好ましい。この反応は室温で行うことができ、また攪拌しながら行うことが好ましく、通常、数十分~数十時間の反応で、本発明の色素内包粒子を調製することができる。 The polycondensation reaction is preferably carried out in the presence of alcohol, water and ammonia. Here, examples of the alcohol include lower alcohols having 1 to 3 carbon atoms such as methanol, ethanol and propanol. The ratio of water to alcohol in such a reaction system is not particularly limited, but preferably 0.5 to 20 parts by volume, more preferably 2 to 16 parts by volume, and still more preferably 4 to 10 parts by volume of alcohol to 1 part by volume of water. It is the range of the capacity part. The amount of ammonia is also not particularly limited, but the concentration of ammonia is preferably 30 to 1000 mM, more preferably 60 to 500 mM, and still more preferably 80 to 200 mM. This reaction can be carried out at room temperature, and is preferably carried out with stirring. Usually, the dye-containing particles of the present invention can be prepared by a reaction of several tens minutes to several tens hours.
 使用するアルコキシシラン基を有する凝集誘起発光性分子の濃度や反応時間を調整することにより、アルコキシシラン基を有する凝集誘起発光性分子の大きさ(直径)を適宜調節することができ、例えば同一の工程を複数回、繰り返し行えば、より大きなシリカ粒子を調製することができる。また必要に応じて、所望の粒子径分布範囲にある色素内包粒子を調製することができる。 By adjusting the concentration and reaction time of the aggregation inducing luminescent molecule having the alkoxysilane group to be used, the size (diameter) of the aggregation inducing luminescent molecule having the alkoxysilane group can be appropriately adjusted, for example, the same If the process is repeated several times, larger silica particles can be prepared. Also, if necessary, dye-containing particles in a desired particle size distribution range can be prepared.
 前記アルコキシシラン基を有する凝集誘起発光性分子に、1又は2種以上のシラン化合物を追加して重縮合させて色素内包粒子を製造する場合、前記シラン化合物は特に限定されないが、例えば、テトラメトキシシラン、テトラエトキシシラン(TEOS)、γ-メルカプトプロピルトリメトキシシラン(MPS)、γ-メルカプトプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン(APS)、3-チオシアナトプロピルトリエトキシシラン、3-グリシジルオキシプロピル トリエトキシシラン、3-イソシアナトプロピルトリエトキシシラン、及び3-[2-( 2-アミノエチルアミノ)エチルアミノ]プロピル-トリエトキシシラン等を挙げることができ、特にTEOS、MPSまたはAPSが好ましい。アルコキシシラン基を有する凝集誘起発光性分子とシラン化合物の割合は、特に制限はないが、アルコキシシラン基を有する凝集誘起発光性分子1モルに対するシラン化合物のモル比として、0.05~4000が好ましく、0.1~400がより好ましく、0.3~40がさらに好ましい。 In the case of producing a dye-containing particle by adding one or two or more kinds of silane compounds to the aggregation-induced light emitting molecule having the alkoxysilane group and performing polycondensation to produce a dye-containing particle, the silane compound is not particularly limited. Silane, tetraethoxysilane (TEOS), γ-mercaptopropyltrimethoxysilane (MPS), γ-mercaptopropyltriethoxysilane, γ-aminopropyltriethoxysilane (APS), 3-thiocyanatopropyltriethoxysilane, 3 And glycidyl oxypropyl triethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane etc., and in particular TEOS, MPS or APS is preferred. The ratio of the aggregation-induced light emitting molecule having an alkoxysilane group to the silane compound is not particularly limited, but a molar ratio of the silane compound to 1 mol of the aggregation-induced light emitting molecule having an alkoxysilane group is preferably 0.05 to 4000. 0.1 to 400 is more preferable, and 0.3 to 40 is more preferable.
 アルコキシシラン基を有する凝集誘起発光性分子とシラン化合物との反応は、アルコール、水及びアンモニアの存在下で行うのが好ましい。ここでアルコールとしてはメタノール、エタノール、プロパノール等の炭素数1~3の低級アルコールを挙げることができる。かかる反応系における水とアルコールの割合は、特に制限されないが、好ましくは水1容量部に対してアルコールを0.5~20容量部、より好ましくは2~16容量部、さらに好ましくは4~10容量部の範囲である。アンモニアの量も特に制限されないが、アンモニアの濃度が30~1000mMが好ましく、60~500mMがより好ましく、80 ~200mMがさらに好ましい。この反応は室温で行うことができ、また攪拌しながら行うことが好ましく、通常、数十分~数十時間の反応で、本発明の色素内包粒子を調製することができる。 The reaction of the aggregation inducing luminescent molecule having an alkoxysilane group with the silane compound is preferably carried out in the presence of alcohol, water and ammonia. Here, examples of the alcohol include lower alcohols having 1 to 3 carbon atoms such as methanol, ethanol and propanol. The ratio of water to alcohol in such a reaction system is not particularly limited, but preferably 0.5 to 20 parts by volume, more preferably 2 to 16 parts by volume, and still more preferably 4 to 10 parts by volume of alcohol to 1 part by volume of water. It is the range of the capacity part. The amount of ammonia is also not particularly limited, but the concentration of ammonia is preferably 30 to 1000 mM, more preferably 60 to 500 mM, and still more preferably 80 to 200 mM. This reaction can be carried out at room temperature, and is preferably carried out with stirring. Usually, the dye-containing particles of the present invention can be prepared by a reaction of several tens minutes to several tens hours.
 使用するアルコキシシラン基を有する凝集誘起発光性分子の濃度を調整したり、反応時間を調整することにより、調製する色素内包粒子の大きさ(直径)を適宜調節すること ができる。使用するシラン化合物の濃度を低くしたり、また反応時間を短くすることにより、より小さなシリカ粒子を調製することができる(例えば、Blaaderen et al.,"Synthesis and Characterization of Monodisperse Colloidal Organo-silica S pheres",J. Colloid and Interface Science  156,1-18.1993参照)。一方、同じ工程を複数回、繰り返し行えば、より大きなシリカ粒子を調製することができる。このように、得られる色素内包粒子の粒径(直径)を、所望の大きさに、例えばnmオーダーからμmオーダーの大きさ、具体的には、3~30nmといった微小な大きさを有する色素内包粒子を調製することが可能である。また必要に応じて、所望の粒子径分布範囲にある色素内包粒子を調製することができる。 The size (diameter) of the dye-containing particles to be prepared can be appropriately adjusted by adjusting the concentration of the aggregation inducing luminescent molecule having an alkoxysilane group to be used or adjusting the reaction time. Smaller silica particles can be prepared by reducing the concentration of silane compounds used or by shortening the reaction time (e.g. Blaaderen et al., "Synthesis and Characterization of Monodisperse Collio-Silicate Spheres See, "J. Colloid and Interface Science 156, 1-18. 1993). On the other hand, if the same process is repeated several times, larger silica particles can be prepared. Thus, the particle diameter (diameter) of the obtained dye-containing particles is, for example, in the order of nm to μm in the desired size, specifically, the dye-containing particles having a minute size such as 3 to 30 nm. It is possible to prepare the particles. Also, if necessary, dye-containing particles in a desired particle size distribution range can be prepared.
 また、本発明の色素内包粒子は、蛍光標識として必要な機能が損なわれない限り、特に製造方法に限定はない。ただ、典型的な態様において、本発明の色素内包粒子は、下記重合工程を含む製造方法により得ることができる。 Moreover, the dye-containing particle of the present invention is not particularly limited in the production method as long as the function required as a fluorescent label is not impaired. However, in a typical aspect, the dye-containing particles of the present invention can be obtained by a production method including the following polymerization step.
 (重合工程)
 本発明の色素内包粒子の製造方法で行われる重合工程として、
 (a-1)重合工程:上記有機樹脂の原料となる樹脂原料を、上記凝集誘起発光性分子の存在下で重合させて、凝集誘起発光性分子を内包した樹脂粒子を製造する工程が挙げられる。
(Polymerization process)
As a polymerization step carried out in the method for producing dye-containing particles of the present invention,
(A-1) Polymerization step: A step of polymerizing a resin raw material to be a raw material of the organic resin in the presence of the aggregation inducing luminescent molecule to produce a resin particle containing the aggregation inducing luminescent molecule can be mentioned. .
 ここで、上記工程(a-1)で用いることのできる樹脂原料は、上記樹脂に対応するモノマーであっても良く、あるいは、そのようなモノマーから得られるプレポリマーであっても良い。このようなモノマーおよびプレポリマーの具体例として、上記「樹脂」の項で上述したものが挙げられる。 Here, the resin raw material that can be used in the step (a-1) may be a monomer corresponding to the resin, or may be a prepolymer obtained from such a monomer. Specific examples of such monomers and prepolymers include those described above in the section "Resin".
 上記色素は、工程(a-1)における重合反応の当初から存在していても良く、あるいは、この重合反応の途中から加えられても良い。 The dye may be present from the beginning of the polymerization reaction in step (a-1), or may be added during the polymerization reaction.
 なお、上記重合反応は、上記凝集誘起発光性分子の存在下で行うことを除いては、従来公知の条件および手法により行うことができる。 In addition, the said polymerization reaction can be performed by conventionally well-known conditions and methods except performing in presence of the said aggregation induction light emission molecule | numerator.
 例えば、有機樹脂としてメラミン樹脂が用いられる場合、上記凝集誘起発光性分子とメラミン樹脂との混合液にギ酸を加えて重縮合反応させることにより、凝集誘起発光性分子と酸化防止剤とを内包したメラミン樹脂粒子を得ることができる。このときの反応は、例えば、水中で行うことができる。また、必要に応じて、適当な界面活性剤存在下で重合反応を行ってもよい。さらに、メラミン樹脂等の熱硬化性樹脂の重縮合反応を促進するとともに、当該樹脂または凝集誘起発光性分子に含まれるアミノ基のような官能基にプロトン(H+)を付与して荷電させ、静電的相互作用を起こしやすくすることを目的として、上記色素とメラミン樹脂との混合液に対し、適当な酸などの重合反応促進剤をさらに添加しても良い。 For example, when a melamine resin is used as the organic resin, the aggregation inducing light emitting molecule and the antioxidant are encapsulated by adding formic acid to the mixed solution of the aggregation inducing light emitting molecule and the melamine resin and causing a polycondensation reaction. Melamine resin particles can be obtained. The reaction at this time can be performed, for example, in water. Also, if necessary, the polymerization reaction may be carried out in the presence of a suitable surfactant. Furthermore, while promoting the polycondensation reaction of a thermosetting resin such as melamine resin, proton (H + ) is imparted to a functional group such as an amino group contained in the resin or aggregation-induced light emitting molecule to charge it. A polymerization reaction accelerator such as an appropriate acid may be further added to the mixture of the dye and the melamine resin for the purpose of facilitating electrostatic interaction.
 重合反応の条件(温度、時間等)は、樹脂の種類、原料混合物の組成などを考慮しながら適切に設定することができる。メラミン樹脂等の熱硬化性樹脂の合成については、反応温度は通常60~200℃、反応時間は通常20~120分間である。なお、反応温度は凝集誘起発光性分子の性能が低下しない温度(耐熱温度範囲内)とすることが適切である。加熱は複数の段階に分けて行ってもよく、例えば、相対的に低温で一定時間反応させた後、昇温して相対的に高温で一定時間反応させるようにしてもよい。 The conditions (temperature, time, etc.) of the polymerization reaction can be appropriately set in consideration of the type of resin, the composition of the raw material mixture, and the like. For the synthesis of thermosetting resins such as melamine resins, the reaction temperature is usually 60 to 200 ° C., and the reaction time is usually 20 to 120 minutes. In addition, it is appropriate for the reaction temperature to be a temperature (within the heat resistant temperature range) at which the performance of the aggregation inducing luminescent molecule is not deteriorated. The heating may be divided into a plurality of stages. For example, after reacting at relatively low temperature for a fixed time, the temperature may be raised and reacted at relatively high temperature for a fixed time.
 重合反応の終了後は、反応液から余剰の樹脂原料、凝集誘起発光性分子、界面活性剤等の不純物を除去し、生成した色素内包粒子を回収して精製すればよい。例えば、反応液を遠心分離にかけ、不純物が含まれている上澄みを除去した後、超純水を加えて超音波照射して再度分散させて洗浄する。これらの操作は、上澄みに樹脂や蛍光色素に由来する吸光、蛍光が見られなくなるまで複数回繰り返し行うことが好ましい。 After completion of the polymerization reaction, impurities such as excess resin raw material, aggregation-induced light emitting molecule, surfactant and the like may be removed from the reaction liquid, and the generated dye-containing particles may be recovered and purified. For example, the reaction solution is centrifuged to remove the supernatant containing impurities, and then ultrapure water is added, and the mixture is irradiated with ultrasonic waves, dispersed again, and washed. It is preferable that these operations be repeated several times until the supernatant does not show absorption and fluorescence derived from the resin and the fluorescent dye.
 一方、有機樹脂として、スチレン系樹脂等の熱可塑性樹脂が用いられる場合、熱可塑性樹脂は、ラジカル重合、イオン重合(アニオン重合、他)など、公知の手法に従って合成することができる。熱可塑性樹脂を用いた内包型の蛍光標識用樹脂粒子もそれらの手法に準じて製造することができるが、例えば、ソープフリー乳化重合法に従った重合工程により製造することが好ましい。 On the other hand, when a thermoplastic resin such as a styrene resin is used as the organic resin, the thermoplastic resin can be synthesized according to known methods such as radical polymerization and ionic polymerization (anion polymerization, etc.). Although the resin particles for inclusion type fluorescent labeling using a thermoplastic resin can also be manufactured according to those methods, for example, it is preferable to manufacture by the polymerization process according to the soap free emulsion polymerization method.
 この場合の重合工程は、典型的には、凝集誘起発光性分子と、樹脂原料と、重合開始剤とを含有する反応混合物を加熱して樹脂の重合反応を進行させ、凝集誘起発光性分子を内包する樹脂粒子を生成させる工程となる。 In the polymerization step in this case, typically, the reaction mixture containing aggregation-induced light-emitting molecules, the resin raw material, and the polymerization initiator is heated to advance the polymerization reaction of the resin, and the aggregation-induced light-emitting molecules are It becomes the process of generating the resin particle to be included.
 重合開始剤、重合反応の条件(温度、時間等)は、樹脂の種類などを考慮しながら適宜設定することができる。熱可塑性樹脂の合成については、反応温度は通常20~150℃、反応時間は通常10~240分間である。ここで、重合開始剤として、過酸化ベンゾイル、アゾビスイソブチロニトリルなどの公知のものを用いることができるが、この重合工程がソープフリー乳化重合法に従って行われる場合、2,2'-アゾビス(2-メチルプロピオンアミジンなど水溶性の重合開始剤を用いることができる。 The polymerization initiator and the conditions (temperature, time, etc.) of the polymerization reaction can be appropriately set in consideration of the type of the resin and the like. For the synthesis of a thermoplastic resin, the reaction temperature is usually 20 to 150 ° C., and the reaction time is usually 10 to 240 minutes. Here, as the polymerization initiator, known ones such as benzoyl peroxide and azobisisobutyronitrile can be used, but when this polymerization step is carried out according to a soap-free emulsion polymerization method, 2,2'-azobis (A water soluble polymerization initiator such as 2-methyl propionamidine can be used.
 本発明では、上述した工程(a-1)により得られる凝集誘起発光性分子を内包した樹脂粒子それ自体を、本発明に係る蛍光標識用樹脂粒子として用いてもよいし、あるいは、後述する表面修飾をさらに行うことにより、他の分子と結合を形成可能な官能基をさらに有する樹脂粒子としたものを、本発明に係る色素内包粒子として用いることもできる。 In the present invention, the resin particle itself including the aggregation-induced light emitting molecule obtained in the step (a-1) described above may be used as the resin particle for fluorescent labeling according to the present invention, or the surface described later By further performing modification, resin particles having a functional group capable of forming a bond with another molecule may be used as the dye-containing particle according to the present invention.
 バインダの種類を問わず、本発明の色素内包粒子を製造する際には、必要に応じて、限外ろ過膜などの常法を利用して精製してもよい。精製を行うことにより、反応液中のイオンや未反応の物質を除くことができ、また球状もしくは球状に近い色素内包粒子を得ることができる。ここで、球状に近い微粒子とは、具体的には長軸と短軸の比が2以下の形状である。 Regardless of the type of binder, when producing the dye-containing particles of the present invention, if necessary, purification may be performed using a conventional method such as an ultrafiltration membrane. By performing purification, ions in the reaction solution and unreacted substances can be removed, and spherical or nearly spherical dye-containing particles can be obtained. Here, the particle having a shape close to a sphere is specifically a shape in which the ratio of the major axis to the minor axis is 2 or less.
 さらに所望の平均粒径の色素内包粒子を得るためには、YM-10、YM-100(ミリポア社製)等の限外ろ過膜による限外ろ過を行い、粒径が大きい粒子を除去してもよい。 Furthermore, in order to obtain dye-containing particles having a desired average particle diameter, ultrafiltration with an ultrafiltration membrane such as YM-10 or YM-100 (manufactured by Millipore) is performed to remove particles with large particle diameters. It is also good.
<樹脂>
 本発明に係る色素内包粒子を構成する樹脂(本発明で樹脂は有機樹脂とも表現する)は、後述する凝集誘起発光性分子を内包するためのコンテナーとして機能する。本発明で用いられる有機樹脂は、凝集誘起発光性分子の機能を損なうものでない限り、特に限定はなく、熱硬化性樹脂であっても、熱可塑性樹脂であってもよい。
<Resin>
The resin constituting the dye-containing particles according to the present invention (the resin is also expressed as an organic resin in the present invention) functions as a container for containing aggregation-induced light emitting molecules described later. The organic resin used in the present invention is not particularly limited as long as it does not impair the function of the aggregation inducing luminescent molecule, and may be a thermosetting resin or a thermoplastic resin.
(熱硬化性樹脂)
 本発明において有機樹脂として用いうる熱硬化性樹脂として、例えば、メラミン、尿素、グアナミン類(ベンゾグアナミン、アセトグアナミンなどを含む)、フェノール類(フェノール、クレゾール、キシレノールなどを含む)、キシレン、およびこれらの誘導体からなる群より選ばれる少なくとも一種のモノマーから形成される構成単位を含むものが挙げられる。これらのモノマーは、何れか一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。所望によりさらに、一種または二種以上の上記化合物以外のコモノマーを併用してもよい。
(Thermosetting resin)
Thermosetting resins that can be used as the organic resin in the present invention include, for example, melamine, urea, guanamines (including benzoguanamine and acetoguanamine), phenols (including phenol, cresol, xylenol and the like), xylene, and the like What contains the structural unit formed from the at least 1 type of monomer chosen from the group which consists of derivatives is mentioned. One of these monomers may be used alone, or two or more of these monomers may be used in combination. If desired, one or more comonomers other than the above compounds may be used in combination.
 熱硬化性樹脂の具体例としては、メラミン・ホルムアルデヒド樹脂、尿素・ホルムアルデヒド樹脂、ベンゾグアナミン・ホルムアルデヒド樹脂、フェノール・ホルムアルデヒド樹脂、メタキシレン・ホルムアルデヒド樹脂が挙げられる。本発明においては、色素内包時の発光強度の観点から、メラミン・ホルムアルデヒド樹脂に代表されるメラミン樹脂が好ましい。 Specific examples of the thermosetting resin include melamine formaldehyde resin, urea formaldehyde resin, benzoguanamine formaldehyde resin, phenol formaldehyde resin and metaxylene formaldehyde resin. In the present invention, a melamine resin represented by a melamine / formaldehyde resin is preferable from the viewpoint of light emission intensity at the time of dye incorporation.
 これらの熱硬化性樹脂の原料としては、上述したようなモノマーそのもののみならず、モノマーとホルムアルデヒドやその他の架橋剤等の化合物とをあらかじめ反応させて得られるプレポリマーを用いてもよい。例えば、メラミン・ホルムアルデヒド樹脂の製造においては一般的に、メラミンとホルムアルデヒドとをアルカリ条件下で縮合して調製されるメチロールメラミンがプレポリマーとして用いられており、当該化合物はさらにアルキルエーテル化(水中での安定性を向上させるためのメチル化、有機溶媒中での溶解性を向上させるためのブチル化等)されたものであってもよい。 As a raw material of these thermosetting resins, not only monomers as described above, but also prepolymers obtained by reacting in advance a monomer and a compound such as formaldehyde or another crosslinking agent may be used. For example, in the production of melamine-formaldehyde resin, methylolmelamine, which is generally prepared by condensing melamine and formaldehyde under alkaline conditions, is used as a prepolymer, and the compound is further alkyletherified (in water Or the like to improve the solubility in organic solvents, and the like.
 また、上記の熱硬化性樹脂は、その構成単位に含まれる水素の少なくとも一部が、電荷を持つ置換基、または共有結合を形成しうる置換基に置き換えられたものでもよい。このような熱硬化性樹脂は、公知の手法により少なくとも一つの水素が上記の置換基に置き換えられた(誘導体化された)モノマーを原料として用いることにより合成することができる。なお、メラミン樹脂、尿素樹脂、ベンゾグアナミン樹脂などは通常自ずとアミノ基またはこれに由来する部位から生成するカチオンを有し、フェノール樹脂、キシレン樹脂などは通常自ずと水酸基またはこれに由来する部位から生成するアニオンを有する。 In the above thermosetting resin, at least a part of hydrogen contained in the constituent unit may be replaced by a substituent having a charge or a substituent capable of forming a covalent bond. Such a thermosetting resin can be synthesized by using, as a raw material, a (derivatized) monomer in which at least one hydrogen is replaced by the above-described substituent by a known method. In addition, melamine resin, urea resin, benzoguanamine resin and the like usually have a cation naturally generated from an amino group or a site derived therefrom, and a phenol resin, a xylene resin and the like usually form an anion naturally produced from a hydroxyl group or a site derived therefrom Have.
 このような熱硬化性樹脂は、公知の手法に従って合成することができる。例えば、メラミン・ホルムアルデヒド樹脂は、前述したようにしてあらかじめ調製されたメチロールメラミンを、必要に応じて酸等の反応促進剤を添加した上で加熱して重縮合させることにより合成することができる。 Such a thermosetting resin can be synthesized according to a known method. For example, a melamine / formaldehyde resin can be synthesized by heating and polycondensing methylolmelamine prepared in advance as described above, after adding a reaction accelerator such as an acid as necessary.
(熱可塑性樹脂)
 本発明において有機樹脂として用いうる熱可塑性樹脂は、特に限定はされないものの、例ええば、スチレン、(メタ)アクリル酸およびそのアルキルエステル、アクリロニトリル、ならびにこれらの誘導体からなる群より選ばれる少なくとも一種の単官能モノマー(一分子中に重合反応に関与する基、上記の例ではビニル基を一個持つモノマー)から形成される構成単位を含むものが挙げられる。これらのモノマーは、何れか一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。所望によりさらに、一種または二種以上の上記化合物以外のコモノマーを併用してもよい。
(Thermoplastic resin)
The thermoplastic resin that can be used as the organic resin in the present invention is not particularly limited, but, for example, at least one kind of at least one selected from the group consisting of styrene, (meth) acrylic acid and its alkyl ester, acrylonitrile and derivatives thereof. What contains the structural unit formed from a functional monomer (The group which participates in a polymerization reaction in one molecule, The monomer which has one vinyl group in the above-mentioned example) is mentioned. One of these monomers may be used alone, or two or more of these monomers may be used in combination. If desired, one or more comonomers other than the above compounds may be used in combination.
 熱可塑性樹脂の具体例としては、ポリスチレン、スチレンとその他のモノマーとからなるスチレン系樹脂、ポリメタクリル酸メチル、(メタ)アクリル酸およびそのアルキルエステルとその他のモノマーとからなるアクリル系樹脂、ポリアクリロニトリル、AS樹脂(アクリロニトリル-スチレン共重合体)、ASA樹脂(アクリロニトリル-スチレン-アクリル酸メチル共重合体)、アクリロニトリルおよびその他のモノマーとからなるアクリロニトリル系樹脂が挙げられる。 Specific examples of the thermoplastic resin include polystyrene, styrene-based resin consisting of styrene and other monomers, polymethyl methacrylate, acrylic-based resin consisting of (meth) acrylic acid and its alkyl ester and other monomers, polyacrylonitrile And acrylonitrile-based resins comprising AS resin (acrylonitrile-styrene copolymer), ASA resin (acrylonitrile-styrene-methyl acrylate copolymer), acrylonitrile and other monomers.
 ただ、本発明においては、凝集誘起発光性分子内包時の発光強度の観点から、スチレン系樹脂が好ましい。ここで、本発明において「スチレン系樹脂」とは、置換基を有していても有していなくてもよいスチレンの単独重合体または共重合体である樹脂を指す。 However, in the present invention, a styrene-based resin is preferable from the viewpoint of the light emission intensity at the time of aggregation-induced light emitting molecule encapsulation. Here, in the present invention, the "styrene-based resin" refers to a resin which is a homopolymer or copolymer of styrene which may or may not have a substituent.
 上記の熱可塑性樹脂は、例えば、ジビニルベンゼンのような多官能モノマー(一分子中に重合反応に関与する基、上記の例ではビニル基を二個以上持つモノマー)から形成される構成単位、つまり架橋部位を含んでいてもよい。 The above-mentioned thermoplastic resin is, for example, a structural unit formed from a polyfunctional monomer such as divinylbenzene (a group participating in a polymerization reaction in one molecule, a monomer having two or more vinyl groups in the above example), ie, It may contain a crosslinking site.
 また、上記の熱可塑性樹脂は、その構成単位に含まれる水素の少なくとも一部が、電荷を持つ置換基、または共有結合を形成しうる置換基に置き換えられたものでもよい。このような熱可塑性樹脂は、例えば4-アミノスチレンのように、少なくとも一つの水素が上記の置換基に置き換えられた(誘導体化された)モノマーを原料として用いることにより合成することができる。 In the above-mentioned thermoplastic resin, at least a part of hydrogen contained in the constituent unit may be replaced by a substituent having a charge or a substituent capable of forming a covalent bond. Such a thermoplastic resin can be synthesized by using, as a raw material, a monomer such as 4-aminostyrene in which at least one hydrogen is replaced by the above-described substituent (derivatized).
 さらに、上記の熱可塑性樹脂は、前記工程(a-1)により得られた蛍光標識用樹脂粒子を表面修飾するための官能基を有する構成単位を含んでいてもよい。例えば、エポキシ基を有するメタクリル酸グリシジルのようなモノマーを原料とすることにより、エポキシ基が表面に配向した蛍光標識用樹脂粒子を調製することができる。このエポキシ基は、過剰のアンモニア水と反応させることによりアミノ基に変換することができる。このようにして形成されるアミノ基には、公知の手法に従って(必要に応じてリンカーとなる分子を介して)、各種の生体分子を導入することができる。 Further, the above-mentioned thermoplastic resin may contain a structural unit having a functional group for surface-modifying the resin particle for fluorescent labeling obtained in the step (a-1). For example, by using a monomer such as glycidyl methacrylate having an epoxy group as a raw material, it is possible to prepare a resin particle for fluorescent labeling in which the epoxy group is oriented on the surface. This epoxy group can be converted to an amino group by reacting with excess ammonia water. Various biomolecules can be introduced to the thus formed amino group according to a known method (through a molecule serving as a linker, if necessary).
<蛍光標識材の製造方法>
 本発明の一実施形態としては、前記色素凝集粒子または前記色素内包粒子の表面に標的指向性リガンドを結合させる工程を含む、蛍光標識材の製造方法が挙げられる。前記色素凝集粒子または前記色素内包粒子と標的指向性リガンドとは、直接結合させてもよいし、リンカー等を介して結合させてもよい。
<Method for producing fluorescent labeling material>
One embodiment of the present invention is a method for producing a fluorescent labeling material, which comprises a step of binding a targeting ligand to the surface of the dye-aggregated particle or the dye-containing particle. The dye-aggregated particles or the dye-containing particles and the targeting ligand may be directly bound or may be bound via a linker or the like.
 前記色素凝集粒子または前記色素内包粒子の表面に標的指向性リガンドを結合させる方法は特に限定されないが、下記(i)~(iii)の方法が挙げられる。 The method for binding the targeting ligand to the surface of the dye-aggregated particles or the dye-containing particles is not particularly limited, and the following methods (i) to (iii) may be mentioned.
 (i)チオール基を表面に有する前記色素凝集粒子または前記色素内包粒子は、ジスルフィド結合、チオエステル結合、またはチオール置換反応を介して標的指向性リガンドと結合させることができる。特に標的指向性リガンドがアミノ基を有する場合には、前記色素凝集粒子または前記色素内包粒子が有するチオール基と、前記標的指向性リガンドが有するアミノ基とを、スクシンイミジル-トランス-4-(N-マレイミジルメチル)シクロヘキサン-1-カルボキシレート(SMCC)、N-(6-マレイミドカプロイルオキシ)スクシンイミド(EMCS)等の架橋剤を用いて結合させてもよい。 (I) The dye-aggregated particle or the dye-containing particle having a thiol group on the surface can be bound to a targeting ligand via a disulfide bond, a thioester bond, or a thiol substitution reaction. In particular, when the targeting ligand has an amino group, the thiol group possessed by the dye aggregation particle or the dye-containing particle and the amino group possessed by the targeting ligand are succinimidyl-trans-4- (N- It may be coupled using a crosslinking agent such as maleimidyl methyl) cyclohexane-1-carboxylate (SMCC), N- (6-maleimidocaproyloxy) succinimide (EMCS) and the like.
 (ii)アミノ基を表面に有する色素凝集粒子または前記色素内包粒子は、前述と同様に、このアミノ基と生体分子等が有するチオール基とをSMCC、EMCS等の架橋剤を用いて結合させることができる。また、このアミノ基と生体分子等が有するアミノ基とをグルタルアルデヒド等の架橋剤で結合させることもできる。さらに、アミド結合やチオウレア結合を介して、その表面に生体分子等を結合させることもできる。 (Ii) The pigment-aggregated particle having an amino group on the surface or the pigment-containing particle is, as described above, bonded with the amino group and a thiol group possessed by a biomolecule or the like using a crosslinking agent such as SMCC or EMCS. Can. In addition, this amino group can be bonded to an amino group possessed by a biomolecule or the like with a crosslinking agent such as glutaraldehyde. Furthermore, biomolecules and the like can be bound to the surface via an amide bond or a thiourea bond.
 (iii)抗原-抗体反応、ビオチン-アビジン反応、塩基配列の相補性を利用したハイブリダイゼーション等による特異的結合を介して、色素凝集粒子または色素内包粒子と標的指向性リガンドとを結合させることもできる。具体的には、例えば、あらかじめビオチンと結合させた色素凝集粒子と、アビジンと結合させた標的指向性リガンドとを反応させることで色素凝集粒子と標的指向性リガンドとがビオチン-アビジン反応により結合する。 (Iii) binding a dye aggregation particle or dye-containing particle to a targeting ligand via specific binding by antigen-antibody reaction, biotin-avidin reaction, hybridization utilizing complementarity of base sequences, etc. it can. Specifically, for example, the pigment aggregation particle and the targeting ligand are bound by the biotin-avidin reaction by reacting the pigment aggregation particle bound to biotin in advance and the targeting ligand to which avidin is bound. .
(色素内包粒子の表面修飾)
 本発明では、上述した工程(a-1)により得られる色素内包粒子を、そのまま本発明に係る蛍光標識材に用いてもよいが、本発明の色素内包粒子には、所要に応じて表面修飾を行うことができる。
(Surface modification of dye-containing particles)
In the present invention, the dye-containing particles obtained by the step (a-1) described above may be used as they are for the fluorescent labeling material according to the present invention, but the dye-containing particles of the present invention may be surface-modified as required. It can be performed.
 ここで、本発明において行いうる表面修飾は、特に限定はされない。ただし、本発明の色素内包粒子を免疫染色用蛍光標識材として用いる場合、本発明の色素内包粒子は、免疫染色の実施形態に応じた生体関連結合性物質を連結させた態様で用いられることになる。したがって、本発明の色素内包粒子に施しうる表面修飾は、他の分子と結合を形成可能な官能基の導入の形で行われることが好ましい。 Here, the surface modification that can be performed in the present invention is not particularly limited. However, when the dye-containing particles of the present invention are used as a fluorescent labeling material for immunostaining, the dye-containing particles of the present invention can be used in a mode in which a biorelevant binding substance according to the embodiment of immunostaining is linked. Become. Therefore, the surface modification that can be applied to the dye-containing particle of the present invention is preferably performed in the form of introduction of a functional group capable of forming a bond with another molecule.
 ここで、他の分子と結合を形成可能な官能基として、生化学の分野において一般的に用いられる官能基が挙げられ、そのような官能基の具体例として、水酸基、アミノ基、カルボキシル基、チオール基、マレイミド基、アルデヒド基などが挙げられる。なお、本明細書における以下の記載において、他の分子と結合を形成可能な官能基は、反応性官能基とも呼ばれる場合がある。 Here, examples of functional groups capable of forming bonds with other molecules include functional groups generally used in the field of biochemistry, and specific examples of such functional groups include a hydroxyl group, an amino group, a carboxyl group, A thiol group, a maleimide group, an aldehyde group etc. are mentioned. In the following description in the present specification, a functional group capable of forming a bond with another molecule may also be referred to as a reactive functional group.
 他の分子と結合を形成可能な官能基の導入方法としては、種々の従来公知の手法を用いることができる。 As a method of introducing a functional group capable of forming a bond with another molecule, various conventionally known methods can be used.
 例えば、上述した工程(a-1)により得られる色素内包粒子が表面に水酸基を有する場合、他の分子と結合を形成可能な官能基を有するシランカップリング剤を当該水酸基と反応させることにより、当該他の分子と結合を形成可能な官能基を導入することができる。例えば、表面に水酸基を有する色素内包粒子を、アミノプロピルトリメトキシシランなどアミノ基を有するシランカップリング剤と反応させることにより、アミノ基を有する色素内包粒子を得ることができる。また、表面に水酸基を有する色素内包粒子への他の分子と結合を形成可能な官能基の導入は、活性エステルと他の分子と結合を形成可能な官能基とを有する適当なリンカー分子を当該水酸基と反応させることによって行うこともできる。これらのような導入方法は、特に、有機樹脂としてメラミン樹脂を採用してなる色素内包粒子に好適に適用しうる。 For example, when the dye-containing particle obtained by the step (a-1) described above has a hydroxyl group on the surface, a silane coupling agent having a functional group capable of forming a bond with another molecule is reacted with the hydroxyl group A functional group capable of forming a bond with the other molecule can be introduced. For example, a dye-containing particle having an amino group can be obtained by reacting a dye-containing particle having a hydroxyl group on the surface with a silane coupling agent having an amino group such as aminopropyltrimethoxysilane. In addition, introduction of a functional group capable of forming a bond with another molecule to a dye-containing particle having a hydroxyl group on the surface is a suitable linker molecule having a functional group capable of forming a bond with another molecule. It can also be carried out by reacting with a hydroxyl group. The introduction methods such as these can be suitably applied particularly to dye-containing particles formed by employing a melamine resin as the organic resin.
 また、上述した工程(a-1)により得られる色素内包粒子が表面にエポキシ基を有する場合、例えば、このような色素内包粒子をアンモニア水で処理することにより、アミノ基を導入することができる。また、エポキシ基と反応性を有する官能基と、他の分子と結合を形成可能な官能基とを有する適当なリンカー分子を当該エポキシ基と反応させることによって、当該他の分子と結合を形成可能な官能基を導入することもできる。 Moreover, when the dye-containing particles obtained by the above-mentioned step (a-1) have an epoxy group on the surface, for example, an amino group can be introduced by treating such dye-containing particles with ammonia water. . In addition, it is possible to form a bond with the epoxy group by reacting an appropriate linker molecule having a functional group having reactivity with the epoxy group and a functional group capable of forming a bond with the other molecule with the epoxy group. Functional groups can also be introduced.
 また、色素内包粒子が表面に反応性官能基を何ら有していない場合であっても、例えばプラズマ処理等従来公知の適当な表面処理を施すことで一旦粒子表面に水酸基等を導入し、その後、表面に水酸基を有する「色素内包粒子」への「他の分子と結合を形成可能な官能基」の導入と同様の方法を適用しうる場合がある。以上より、バインダとして樹脂を用いた場合もシリカ粒子の表面修飾の場合と同様にして標的指向性リガンドを結合させることができる。 In addition, even when the dye-containing particles do not have any reactive functional group on the surface, for example, hydroxyl groups etc. are once introduced on the particle surface by performing appropriate surface treatment such as plasma treatment and conventionally known, and then There are cases where the same method as the introduction of the “functional group capable of forming a bond with another molecule” into “the dye-containing particle” having a hydroxyl group on the surface may be applied. From the above, even when a resin is used as a binder, a targeting ligand can be bound in the same manner as in the case of surface modification of silica particles.
 また、本発明の蛍光標識材の製造方法においては、色素内包粒子の表面に任意のアクセプター基を導入することにより、所望の分子を表面に結合させてもよい。前記アクセプター基として、アミノ基、水酸基、チオール基、カルボキシル基、マレイミド基、スクシンイミジルエステル基等が挙げられる。 In the method for producing a fluorescent labeling material of the present invention, a desired molecule may be bound to the surface by introducing an arbitrary acceptor group on the surface of the dye-containing particle. Examples of the acceptor group include an amino group, a hydroxyl group, a thiol group, a carboxyl group, a maleimide group, and a succinimidyl ester group.
 例えば、アルコキシシラン基を有する凝集誘起発光性分子を単独で重縮合させて色素内包粒子を製造した場合、シリカ粒子にはOH基が存在するため、これをアクセプター基としてもよく、さらに追加で粒子表面に所望の基を有するシラン化合物(シランカップリング剤)を結合させることにより、所望の分子と結合可能なアクセプター基を表面に有する色素内包粒子としてもよい。 For example, when an aggregation-induced light emitting molecule having an alkoxysilane group is polycondensed alone to produce a dye-containing particle, an OH group is present in the silica particle, and this may be used as an acceptor group, By bonding a silane compound (silane coupling agent) having a desired group to the surface, a dye-containing particle having an acceptor group capable of binding to a desired molecule may be formed on the surface.
 また、アルコキシシラン基を有する凝集誘起発光性分子に、1又は2種以上のシラン化合物を追加して重縮合させることで色素内包粒子を製造した場合、重縮合させたシラン化合物の種類に応じて、所望の分子と結合可能なアクセプター基を表面に有する色素内包粒子とすることができる。重縮合させたシラン化合物(シランカップリング剤)と、それによって得られる色素内包粒子の表面に形成されるアクセプター基との関係を表1に示す。 In addition, when the dye-containing particles are produced by adding one or more silane compounds to the aggregation-induced light emitting molecule having an alkoxysilane group and performing polycondensation, depending on the type of the polycondensed silane compound. A dye-containing particle having an acceptor group capable of binding to a desired molecule on the surface can be obtained. The relationship between the polycondensed silane compound (silane coupling agent) and the acceptor group formed on the surface of the dye-containing particle obtained thereby is shown in Table 1.
Figure JPOXMLDOC01-appb-T000067
 重縮合させたシラン化合物によって表面に導入されるアクセプター基とは異なるアクセプター基を導入したい場合には、追加で粒子表面に所望の基を有するシラン化合物(シランカップリング剤)を結合させることにより達成することができる。
Figure JPOXMLDOC01-appb-T000067
When it is desired to introduce an acceptor group different from the acceptor group introduced on the surface by the polycondensed silane compound, this is achieved by additionally bonding a silane compound (silane coupling agent) having a desired group to the particle surface. can do.
 以下、実施例に基づいて本発明の好適な態様をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。
[実施例1]
 (色素凝集粒子(1))
 下記式(9)の化合物4,4′-Bis(1,2,2-triphenylvinyl)-1,1′-biphenyl(シグマアルドリッチ社製)を1mMになるようにテトラヒドロフランに溶解したものを調整した。内径0.15mmの流路を備えるステンレス製T字型マイクロミキサー(MT1XCS6、Valco社製)に、ポンプ(PU-1580、日本分光株式会社)を用いて流速1.0mL/minで前記溶液を送液し、さらに別のポンプ(NS-KX-500、日本精密科学株式会社)を用いて、流速74.0mL/minで超純水を送液することで、マイクロミキサー内で両液を混合して色素凝集粒子を析出させた。混合時の圧力は4~5MPaであり、色素凝集粒子による流路の閉塞は生じなかった。混合時のレイノルズ数は、約12,000と計算された。
Hereinafter, preferred embodiments of the present invention will be more specifically described based on examples, but the present invention is not limited to these examples.
Example 1
(Color-aggregated particles (1))
A compound 4,4′-Bis (1,2,2-triphenylvinyl) -1,1′-biphenyl (manufactured by Sigma-Aldrich Co., Ltd.) of the following formula (9) was dissolved in tetrahydrofuran so as to be 1 mM. The above solution is sent at a flow rate of 1.0 mL / min using a pump (PU-1580, JASCO Corporation) in a stainless steel T-shaped micro mixer (MT1XCS6, manufactured by Valco) equipped with a flow path with an inner diameter of 0.15 mm. The solution is mixed, and the two solutions are mixed in the micromixer by feeding ultrapure water at a flow rate of 74.0 mL / min using another pump (NS-KX-500, Japan Precision Science Co., Ltd.). The pigment aggregation particles were precipitated. The pressure at the time of mixing was 4 to 5 MPa, and blocking of the flow path by the pigment aggregation particles did not occur. The Reynolds number at mixing was calculated to be about 12,000.
 得られた色素凝集粒子0.1gと硫酸10mLを混合し、50℃で1時間攪拌して粒子表面のSO3基導入を行った。 0.1 g of the obtained pigment aggregate particles and 10 mL of sulfuric acid were mixed, and stirred at 50 ° C. for 1 hour to introduce SO 3 groups on the particle surface.
 続いて、ナトリウムアミドによる芳香族スルホン酸塩のアミノ化反応(日本化学会誌1974,(8),P・1522, 奈良ら)を参考に色素凝集粒子を100mg、ナトリウムアミドを30mg、28wt%アンモニア水を0.5mL、水を5mL加え、60℃で4時間反応させることで、粒子表面のスルホン酸基をアミノ基に置換した。 Subsequently, referring to the amination reaction of aromatic sulfonate with sodium amide (Japan Chemical Society Journal 1974, (8), P. 1522, Nara et al.), 100 mg of pigment aggregate particles, 30 mg of sodium amide, 28 wt% ammonia water The sulfonic acid groups on the particle surface were substituted with amino groups by adding 0.5 mL of H 2 O, 5 mL of water, and reacting at 60 ° C. for 4 hours.
 続いて遠心分離機を用いて10000rpmで30分処理して上澄みを除去して洗浄することで色素凝集粒子(1)を得た。 Subsequently, the mixture was treated with a centrifugal separator at 10000 rpm for 30 minutes to remove the supernatant and washed to obtain pigment aggregated particles (1).
Figure JPOXMLDOC01-appb-C000068
[実施例2]
 (色素凝集粒子(2))
 式(9)の化合物の代わりに下記式(10)の化合物4,4′-(1,2-Diphenylethene-1,2-diyl)dibenzoic acid(シグマアルドリッチ社製)を用いる以外は実施例1と同様の手法で色素凝集粒子(2)を得た。
Figure JPOXMLDOC01-appb-C000068
Example 2
(Color-aggregated particles (2))
Example 1 and Example 1 except that the compound 4,4 '-(1,2-Diphenylethene-1,2-diyl) dibenzoic acid (manufactured by Sigma Aldrich) of the following formula (10) is used instead of the compound of the formula (9) Dye aggregated particles (2) were obtained in the same manner.
Figure JPOXMLDOC01-appb-C000069
[実施例3]
 (色素凝集粒子(3))
 式(9)の化合物の代わりに下記式(11)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(3)を得た。下記式(11)の化合物はAdv. Funct. Mater. 2014, 24, 3621.に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000069
[Example 3]
(Color-aggregated particles (3))
Dye aggregated particles (3) were obtained in the same manner as in Example 1 except that a compound of the following formula (11) was used instead of the compound of the formula (9). The compound of the following formula (11) was synthesized by the method described in Adv. Funct. Mater. 2014, 24, 3621.
Figure JPOXMLDOC01-appb-C000070
[実施例4]
 (色素凝集粒子(4))
 1,1,2,3,4,5-Hexaphenyl-1H-silole(シグマアルドリッチ社製)100mg、水30mL、エタノール30mL、濃硫酸0.5mLを混合し、50℃で3時間撹拌した。続いて、カラムクロマトグラフィで精製を行い、下記式(12)の化合物を得た。続いて、式(9)の化合物の代わりに下記式(12)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(4)を得た。
Figure JPOXMLDOC01-appb-C000070
Example 4
(Color-aggregated particles (4))
100 mg of 1,1,2,3,4,5-hexaphenyl-1H-silole (manufactured by Sigma Aldrich), 30 mL of water, 30 mL of ethanol and 0.5 mL of concentrated sulfuric acid were mixed, and the mixture was stirred at 50 ° C. for 3 hours. Subsequently, purification was performed by column chromatography to obtain a compound of the following formula (12). Subsequently, pigment aggregated particles (4) were obtained in the same manner as in Example 1 except that a compound of the following formula (12) was used instead of the compound of the formula (9).
Figure JPOXMLDOC01-appb-C000071
[実施例5]
 (色素凝集粒子(5))
 Organometallics, 2016, 35 (14), pp 2327-2332に記載の合成法により下記式(13)の化合物を合成した。式(9)の化合物の代わりに下記式(13)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(5)を得た。
Figure JPOXMLDOC01-appb-C000071
[Example 5]
(Color-aggregated particles (5))
The compound of the following formula (13) was synthesized by the synthesis method described in Organometallics, 2016, 35 (14), pp 2327-2332. Dye aggregated particles (5) were obtained in the same manner as in Example 1 except that a compound of the following formula (13) was used instead of the compound of the formula (9).
Figure JPOXMLDOC01-appb-C000072
[実施例6]
(色素凝集粒子(6))
 前記式(13)の化合物0.1モルに対し、濃硫酸5mL、濃硝酸5mLを加え、1時間撹拌することで芳香環へのニトロ化を行った。続いて、カラムクロマトグラフィで精製することにより、ニトロ基が2つ導入された化合物を得た。次に、10gのニトロ基が2つ導入された化合物に対して、スズ粉末0.1gおよび濃塩酸10mLを加えて1時間撹拌した。続いて、水/酢酸エチルで分液精製し、減圧乾燥させることで、下記式(14)の化合物を得た。前記式(9)の化合物の代わりに下記式(14)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(6)を得た。
Figure JPOXMLDOC01-appb-C000072
[Example 6]
(Color-aggregated particles (6))
5 mL of concentrated sulfuric acid and 5 mL of concentrated nitric acid were added to 0.1 mol of the compound of the formula (13), and the mixture was stirred for 1 hour to perform nitration to an aromatic ring. Subsequently, purification was performed by column chromatography to obtain a compound into which two nitro groups were introduced. Next, 0.1 g of tin powder and 10 mL of concentrated hydrochloric acid were added to a compound into which two 10 g of nitro groups were introduced, and the mixture was stirred for 1 hour. Subsequently, liquid separation purification was performed with water / ethyl acetate, and drying under reduced pressure was performed to obtain a compound of the following formula (14). Dye aggregated particles (6) were obtained in the same manner as in Example 1 except that a compound of the following formula (14) was used instead of the compound of the above formula (9).
Figure JPOXMLDOC01-appb-C000073
[実施例7]
 (色素凝集粒子(7))
 Dalton Trans, 2013, 42, 3646-3652に記載の合成法により下記式(15)の化合物を合成した。式(9)の化合物の代わりに下記式(15)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(7)を得た。
Figure JPOXMLDOC01-appb-C000073
[Example 7]
(Color-aggregated particles (7))
The compound of the following formula (15) was synthesized by the synthesis method described in Dalton Trans, 2013, 42, 3646-3652. Dye aggregated particles (7) were obtained in the same manner as in Example 1 except that a compound of the following formula (15) was used instead of the compound of the formula (9).
Figure JPOXMLDOC01-appb-C000074
[実施例8]
(色素凝集粒子(8))
 前記式(15)の化合物0.1モルに対し、濃硫酸5mL、濃硝酸5mLを加え、1時間撹拌することで芳香環へのニトロ化を行ない、続いて、カラムクロマトグラフィで精製することにより、ニトロ基が2つ導入された化合物を得た。次に、10gのニトロ基が2つ導入された化合物に対して、スズ粉末0.1gおよび濃塩酸10mLを加えて1時間撹拌した。続いて、水/酢酸エチルで分液精製し、減圧乾燥させることで、下記式(16)の化合物を得た。前記式(9)の化合物の代わりに下記式(16)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(8)を得た。
Figure JPOXMLDOC01-appb-C000074
[Example 8]
(Color-aggregated particles (8))
5 mL of concentrated sulfuric acid and 5 mL of concentrated nitric acid are added to 0.1 mol of the compound of the formula (15), and the mixture is stirred for 1 hour to perform nitration to an aromatic ring, followed by purification by column chromatography, The compound in which two nitro groups were introduce | transduced was obtained. Next, 0.1 g of tin powder and 10 mL of concentrated hydrochloric acid were added to a compound into which two 10 g of nitro groups were introduced, and the mixture was stirred for 1 hour. Subsequently, liquid separation purification was performed with water / ethyl acetate, and drying under reduced pressure was performed to obtain a compound of the following formula (16). Dye aggregated particles (8) were obtained in the same manner as in Example 1 except that a compound of the following formula (16) was used instead of the compound of the above formula (9).
Figure JPOXMLDOC01-appb-C000075
[実施例9]
(色素凝集粒子(9))
 New J. Chem., 2007, 31, 2076?2082に記載の合成法により下記式(17)の化合物を得た。前記式(9)の化合物の代わりに下記式(17)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(9)を得た。
Figure JPOXMLDOC01-appb-C000075
[Example 9]
(Color-aggregated particles (9))
The compound of the following formula (17) was obtained by the synthetic method described in New J. Chem., 2007, 31, 2076-2082. Dye aggregated particles (9) were obtained in the same manner as in Example 1 except that a compound of the following formula (17) was used instead of the compound of the above formula (9).
Figure JPOXMLDOC01-appb-C000076
[実施例10]
(色素凝集粒子(10))
 Macromolecules 2009, 42, 1418-1420に記載の方法でヨウ化フェニル基を有するカルボランを取得し、続いて、WO 2009087994 A1に記載の方法で脱ハロゲン化することによりヨウ素置換基を水素化することで、下記式(18)の化合物を得た。前記式(9)の化合物の代わりに下記式(18)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(10)を得た。
Figure JPOXMLDOC01-appb-C000076
[Example 10]
(Color-aggregated particles (10))
By obtaining the carborane having a phenyl iodide group by the method described in Macromolecules 2009, 42, 1418-1420, and subsequently hydrogenating the iodine substituent by dehalogenation by the method described in WO 2009087994 A1 , The compound of following formula (18) was obtained. Dye aggregated particles (10) were obtained in the same manner as in Example 1 except that a compound of the following formula (18) was used instead of the compound of the above formula (9).
Figure JPOXMLDOC01-appb-C000077
[実施例11]
(色素凝集粒子(11))
 Macromolecules 2009, 42, 1418-1420に記載の方法において、フェニルアセチレンの代わりに4-アミノフェニルアセチレンを用いることで、下記式(19)の化合物を得た。
Figure JPOXMLDOC01-appb-C000077
[Example 11]
(Color-aggregated particles (11))
A compound of the following formula (19) was obtained by using 4-aminophenylacetylene instead of phenylacetylene in the method described in Macromolecules 2009, 42, 1418-1420.
 前記式(9)の化合物の代わりに下記式(19)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(11)を得た。 Dye aggregated particles (11) were obtained in the same manner as in Example 1 except that a compound of the following formula (19) was used instead of the compound of the above formula (9).
Figure JPOXMLDOC01-appb-C000078
[実施例12]
(色素凝集粒子(12))
 Chem.Lett.2012, 41, 1445-1447に記載の方法において、下記式(20)の化合物を得た。前記式(9)の化合物の代わりに下記式(20)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(12)を得た。
Figure JPOXMLDOC01-appb-C000078
[Example 12]
(Color-aggregated particles (12))
Chem. Lett. 2012, 41, 1445-1447, a compound of the following formula (20) was obtained. Dye aggregated particles (12) were obtained in the same manner as in Example 1 except that a compound of the following formula (20) was used instead of the compound of the above formula (9).
Figure JPOXMLDOC01-appb-C000079
[実施例13]
(色素凝集粒子(13))
 Chem. Eur. J, 2013, 19, 4506-4512に記載の方法において、下記式(21)の化合物を得た。前記式(9)の化合物の代わりに下記式(21)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(13)を得た。
Figure JPOXMLDOC01-appb-C000079
[Example 13]
(Color-aggregated particles (13))
In the method described in Chem. Eur. J, 2013, 19, 4506-4512, a compound of the following formula (21) was obtained. Dye aggregated particles (13) were obtained in the same manner as in Example 1 except that a compound of the following formula (21) was used instead of the compound of the above formula (9).
Figure JPOXMLDOC01-appb-C000080
[実施例14]
(色素凝集粒子(14))
 前記式(21)の化合物100mg、水30mL、エタノール30mL、濃硫酸0.5mLを混合し、50℃で3時間撹拌した。続いて、カラムクロマトグラフィで精製を行い、下記式(22)の化合物を得た。前記式(9)の化合物の代わりに下記式(22)の化合物を用いる以外は実施例1と同様の手法で色素凝集粒子(14)を得た。
Figure JPOXMLDOC01-appb-C000080
Example 14
(Color-aggregated particles (14))
100 mg of the compound of the above formula (21), 30 mL of water, 30 mL of ethanol, and 0.5 mL of concentrated sulfuric acid were mixed, and stirred at 50 ° C. for 3 hours. Subsequently, purification was performed by column chromatography to obtain a compound of the following formula (22). Dye aggregated particles (14) were obtained in the same manner as in Example 1 except that a compound of the following formula (22) was used instead of the compound of the above formula (9).
Figure JPOXMLDOC01-appb-C000081
[実施例15]
(色素内包粒子(15))
 前記式(13)の化合物100mgに対して鉄粉末10mg、酢酸ナトリウム10mg、THF100mLを加え塩素ガスバブリング下、室温で1時間撹拌し、水/トルエンで分液精製することで上記式(13)の化合物の芳香環にCl基が導入されたクロロ化化合物を得た。温度計、攪拌機、および還流冷却管を備えた100mLの四つ口フラスコに,マグネシウム5.35mg(0.22mmol)およびテトラヒドロフラン20gを仕込み,窒素気流下攪拌しながら1,2-ジブロモエタン3.76g(0.02モル)を加えて活性化した。ここに、前記クロロ化化合物101.6mg(0.2mmol)をテトラヒドロフラン20gに溶解した液を55℃で滴下して対応するグリニャール試薬を調製した。このグリニャール試薬をテトラメトキシシラン91.3g(0.6モル)中に滴下した。生成した塩をろ過し、減圧蒸留することで、下記式(23)の化合物を得た。
Figure JPOXMLDOC01-appb-C000081
[Example 15]
(Color-containing particles (15))
10 mg of iron powder, 10 mg of sodium acetate and 100 mL of THF are added to 100 mg of the compound of the above formula (13), stirred at room temperature for 1 hour under chlorine gas bubbling, and liquid separation purification with water / toluene The chlorinated compound which Cl group was introduce | transduced to the aromatic ring of the compound was obtained. 5.35 mg (0.22 mmol) of magnesium and 20 g of tetrahydrofuran are charged in a 100 mL four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, and 3.76 g of 1,2-dibromoethane while stirring under a nitrogen stream. (0.02 mol) was added to activate. A solution of 101.6 mg (0.2 mmol) of the chlorinated compound dissolved in 20 g of tetrahydrofuran was added dropwise thereto at 55 ° C. to prepare a corresponding Grignard reagent. This Grignard reagent was dropped into 91.3 g (0.6 mol) of tetramethoxysilane. The salt formed was filtered and distilled under reduced pressure to obtain a compound of the following formula (23).
 下記式(23)の化合物10mgを1mlのジメチルスルホキシド(DMSO)に溶解し、室温(25℃)で1時間撹拌を行った。続いて反応液にエタノール5ml、蒸留水1.5ml、28質量%アンモニア水100μlを加え室温で24時間反応を行った。 10 mg of a compound of the following formula (23) was dissolved in 1 ml of dimethyl sulfoxide (DMSO), and stirred at room temperature (25 ° C.) for 1 hour. Subsequently, 5 ml of ethanol, 1.5 ml of distilled water and 100 μl of 28% by mass ammonia water were added to the reaction solution, and the reaction was allowed to proceed at room temperature for 24 hours.
 反応液をYM-100(商品名、ミリポア社製)で限外ろ過した。フィルターを透過した色素内包シリカ粒子分散液を回収し、今度はYM-1(商品名、ミリポア社製)で限外ろ過を行い、全量の10分の1量になるまで色素内包シリカ粒子分散液を濃縮した。濃縮した液を蒸留水で希釈して再度YM-1で限外ろ過を行った。濃縮後蒸留水で希釈し限外ろ過を行う操作を4回繰り返して行い、色素内包シリカ粒子分散液に含まれる未反応の原料やアンモニア等を除去し、色素内包粒子(15)を得た。 The reaction solution was ultrafiltered with YM-100 (trade name, manufactured by Millipore). The dye-incorporated silica particle dispersion liquid that has passed through the filter is recovered, and this is subjected to ultrafiltration with YM-1 (trade name, manufactured by Millipore) until the dye-incorporated silica particle dispersion liquid is reduced to one tenth of the total amount. Was concentrated. The concentrated solution was diluted with distilled water and subjected to ultrafiltration again with YM-1. After concentration, dilution with distilled water and ultrafiltration were repeated four times to remove unreacted starting materials, ammonia and the like contained in the dye-incorporated silica particle dispersion, thereby obtaining dye-incorporated particles (15).
Figure JPOXMLDOC01-appb-C000082
[実施例16]
(色素内包粒子(16))
 前記式(13)の化合物を用いて前記式(23)の化合物を合成する代わりに、前記式(15)の化合物を用いて下記式(24)の化合物を合成する以外は実施例15と同様の手法で色素内包粒子(16)を得た。
Figure JPOXMLDOC01-appb-C000082
[Example 16]
(Color-containing particles (16))
The same as Example 15, except that the compound of the following formula (24) is synthesized using the compound of the above formula (15) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (16) were obtained by the following method.
Figure JPOXMLDOC01-appb-C000083
[実施例17]
(色素内包粒子(17))
 前記式(13)の化合物を用いて前記式(23)の化合物を合成する代わりに、前記式(17)の化合物を用いて下記式(25)の化合物を合成する以外は実施例15と同様の手法で色素内包粒子(17)を得た。
Figure JPOXMLDOC01-appb-C000083
[Example 17]
(Dye-containing particles (17))
The same as Example 15, except that the compound of the following formula (25) is synthesized using the compound of the above formula (17) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (17) were obtained by the following method.
Figure JPOXMLDOC01-appb-C000084
[実施例18]
(色素内包粒子(18))
 前記式(13)の化合物を用いて前記式(23)の化合物を合成する代わりに、前記式(18)の化合物を用いて下記式(26)の化合物を合成する以外は実施例15と同様の手法で色素内包粒子(18)を得た。
Figure JPOXMLDOC01-appb-C000084
[Example 18]
(Color-containing particles (18))
The same as Example 15, except that the compound of the following formula (26) is synthesized using the compound of the above formula (18) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (18) were obtained by the method of
Figure JPOXMLDOC01-appb-C000085
[実施例19]
(色素内包粒子(19))
 前記式(13)の化合物を用いて前記式(23)の化合物を合成する代わりに、前記式(20)の化合物を用いて下記式(27)の化合物を合成する以外は実施例15と同様の手法で色素内包粒子(19)を得た。
Figure JPOXMLDOC01-appb-C000085
[Example 19]
(Color-containing particles (19))
The same as Example 15, except that the compound of the following formula (27) is synthesized using the compound of the above formula (20) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (19) were obtained by the method of
Figure JPOXMLDOC01-appb-C000086
[実施例20]
(色素内包粒子(20))
 前記式(13)の化合物を用いて前記式(23)の化合物を合成する代わりに、前記式(21)の化合物を用いて下記式(28)の化合物を合成する以外は実施例15と同様の手法で色素内包粒子(20)を得た。
Figure JPOXMLDOC01-appb-C000086
[Example 20]
(Color-containing particles (20))
The same as Example 15, except that the compound of the following formula (28) is synthesized using the compound of the above formula (21) instead of synthesizing the compound of the above formula (23) using the compound of the above formula (13) Dye-containing particles (20) were obtained by the following method.
Figure JPOXMLDOC01-appb-C000087
[実施例21]
(色素内包粒子(21))
 前記式(13)の化合物100mgに対して鉄粉末10mg、酢酸ナトリウム10mg、臭素10mg、THF100mLを加え、室温で1時間撹拌し、水/トルエンで分液精製することで前記式(13)の化合物の芳香環にBr基を導入したブロモ化合物を得た。
Figure JPOXMLDOC01-appb-C000087
[Example 21]
(Dye-containing particles (21))
10 mg of iron powder, 10 mg of sodium acetate, 10 mg of bromine and 100 mL of THF are added to 100 mg of the compound of the above formula (13), stirred at room temperature for 1 hour, and separated by water / toluene to obtain a compound of the above formula (13) The bromo compound which introduce | transduced Br group into the aromatic ring of was obtained.
 酢酸パラジウム(3mmol%、分子量224.51)とキサントホス(3mmol%、分子量578.63)を20mL耐圧試験管に入れ、窒素置換した。ギ酸(0.035mmol、分子量46.03)と前記ブロモ化合物119.2mg(0.2mmol)をDMF5mLに溶解した溶液を添加した。試験管を密封し、100℃で20時間加熱した。TLCで反応終了を確認後、反応混合物をろ過し、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーで精製することで式(29)の化合物を得た(J. Org. Chem., 2017, 82 (18), pp 9710-9714, Palladium-Catalyzed Carbonylative Transformation of Organic Halides with Formic Acid as the Coupling Partner and CO Source: Synthesis of Carboxylic Acids)。 Palladium acetate (3 mmol%, molecular weight 224.51) and xanthophos (3 mmol%, molecular weight 578.63) were placed in a 20 mL pressure test tube and purged with nitrogen. A solution of formic acid (0.035 mmol, molecular weight 46.03) and 119.2 mg (0.2 mmol) of the above bromo compound in 5 mL of DMF was added. The test tube was sealed and heated at 100 ° C. for 20 hours. After confirming the completion of the reaction by TLC, the reaction mixture was filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to obtain the compound of formula (29) (J. Org. Chem., 2017, 82 (18), pp 9710-9714, Palladium-Catalyzed Carbonylative Transformation of Organic Halides with Formic Acid as a Coupling Partner and CO Source: Synthesis of Carboxylic Acids.
Figure JPOXMLDOC01-appb-C000088
(NHS基を導入した凝集発光性分子の重縮合化)
 前記式(29)の化合物5.6mgを1mlのジメチルスルホキシド(DMSO)に溶解した。ここに1.3μlのAPSを加え、室温(25℃)で1時間反応を行った。得られた反応液50μlにエタノール3.95ml、MPS20μl、蒸留水1ml、28質量%アンモニア水100μlを加え室温で24時間反応を行った。反応液をYM-100(商品名、ミリポア社製)で限外ろ過した。フィルターを透過した蛍光シリカ粒子分散液を回収し、今度はYM-1(商品名、ミリポア社製)で限外ろ過を行い、全量の10分の1量になるまで蛍光シリカ粒子分散液を濃縮した。濃縮した液を蒸留水で希釈して再度YM-1で限外ろ過を行った。濃縮後蒸留水で希釈し限外ろ過を行う操作を4回繰り返して行うことで未反応のAPSやアンモニア等を除去することで色素内包粒子(21)を得た。
[実施例22]
(色素内包粒子(22))
 前記式(13)の化合物を用いて前記式(29)の化合物を合成する代わりに、前記式(15)の化合物を用いて下記式(30)の化合物を合成する以外は実施例21と同様の手法で色素内包粒子(22)を得た。
Figure JPOXMLDOC01-appb-C000088
(Polycondensation of aggregated luminescent molecule introduced with NHS group)
5.6 mg of the compound of the formula (29) was dissolved in 1 ml of dimethyl sulfoxide (DMSO). To this was added 1.3 μl of APS, and the reaction was carried out at room temperature (25 ° C.) for 1 hour. To 50 μl of the reaction solution obtained, 3.95 ml of ethanol, 20 μl of MPS, 1 ml of distilled water and 100 μl of 28% by mass ammonia water were added and reacted at room temperature for 24 hours. The reaction solution was ultrafiltered with YM-100 (trade name, manufactured by Millipore). The fluorescent silica particle dispersion liquid that has passed through the filter is collected, and this is subjected to ultrafiltration with YM-1 (trade name, manufactured by Millipore), and the fluorescent silica particle dispersion liquid is concentrated to one tenth of the total amount. did. The concentrated solution was diluted with distilled water and subjected to ultrafiltration again with YM-1. After concentration, the mixture was diluted with distilled water and subjected to ultrafiltration four times to remove unreacted APS, ammonia and the like to obtain dye-containing particles (21).
Example 22
(Dye-containing particles (22))
The same as Example 21, except that the compound of the following formula (30) is synthesized using the compound of the above formula (15) instead of synthesizing the compound of the above formula (29) using the compound of the above formula (13) Dye-containing particles (22) were obtained by the following method.
Figure JPOXMLDOC01-appb-C000089
[実施例23]
(色素内包粒子(23))
 前記式(13)の化合物を用いて前記式(29)の化合物を合成する代わりに、前記式(17)の化合物を用いて下記式(31)の化合物を合成する以外は実施例21と同様の手法で色素内包粒子(23)を得た。
Figure JPOXMLDOC01-appb-C000089
[Example 23]
(Color-containing particles (23))
The same as Example 21 except that the compound of the following formula (31) is synthesized using the compound of the above formula (17) instead of synthesizing the compound of the above formula (29) using the compound of the above formula (13) Dye-containing particles (23) were obtained by the method of
Figure JPOXMLDOC01-appb-C000090
[実施例24]
(色素内包粒子(24))
 前記式(13)の化合物を用いて前記式(29)の化合物を合成する代わりに、前記式(18)の化合物を用いて下記式(32)の化合物を合成する以外は実施例21と同様の手法で色素内包粒子(24)を得た。
Figure JPOXMLDOC01-appb-C000090
[Example 24]
(Color-containing particles (24))
The same as Example 21 except that the compound of the following formula (32) is synthesized using the compound of the above formula (18) instead of synthesizing the compound of the above formula (29) using the compound of the above formula (13) Dye-containing particles (24) were obtained by the following method.
Figure JPOXMLDOC01-appb-C000091
[実施例25]
(色素内包粒子(25))
 前記式(13)の化合物を用いて前記式(29)の化合物を合成する代わりに、前記式(20)の化合物を用いて下記式(33)の化合物を合成する以外は、実施例21と同様の手法で色素内包粒子(25)を得た。
Figure JPOXMLDOC01-appb-C000091
[Example 25]
(Color-containing particles (25))
Instead of synthesizing the compound of the formula (29) using the compound of the formula (13), Example 21 is used except that a compound of the following formula (33) is synthesized using the compound of the formula (20) Dye-containing particles (25) were obtained in the same manner.
Figure JPOXMLDOC01-appb-C000092
[実施例26]
(色素内包粒子(26))
 前記式(13)の化合物を用いて前記式(29)の化合物を合成する代わりに、前記式(21)の化合物を用いて下記式(34)の化合物を合成する以外は、実施例21と同様の手法で色素内包粒子(26)を得た。
Figure JPOXMLDOC01-appb-C000092
[Example 26]
(Color-containing particles (26))
Instead of synthesizing the compound of the formula (29) using the compound of the formula (13), Example 21 is used except that a compound of the formula (34) is synthesized using the compound of the formula (21) Dye-containing particles (26) were obtained in the same manner.
Figure JPOXMLDOC01-appb-C000093
[実施例27]
<蛍光標識材1>
 実施例1~26で得られた色素凝集粒子および色素内包粒子をストレプトアビジンで標識することで蛍光標識材を作製した。
Figure JPOXMLDOC01-appb-C000093
[Example 27]
<Fluorescent labeling material 1>
The fluorescent dye was produced by labeling the dye-aggregated particles and dye-containing particles obtained in Examples 1 to 26 with streptavidin.
(色素凝集粒子のストレプトアビジン修飾)
 ナトリウムアミドによる芳香族スルホン酸塩のアミノ化反応(日本化学会誌1974,(8),P・1522,奈良ら)により、色素凝集粒子を100mg、ナトリウムアミドを30mg、28wt%アンモニア水を0.5mL、水を5mL加え、60℃で4時間反応させることで、粒子表面のスルホン酸基をアミノ基に置換した。続いて純水を用いてYM-100(ミリポア社製)を用いて限外ろ過で精製を行った。
(Streptavidin modification of pigment aggregation particles)
100 mg of pigment aggregate particles, 30 mg of sodium amide, 0.5 mL of 28 wt% aqueous ammonia according to the amination reaction of aromatic sulfonate with sodium amide (Japan Chemical Society Journal 1974, (8), P. 1522, Nara et al.) By adding 5 mL of water and reacting at 60 ° C. for 4 hours, the sulfonic acid group on the particle surface was substituted with an amino group. Subsequently, purification was performed by ultrafiltration using pure water and YM-100 (manufactured by Millipore).
 続いて前記処理を行った凝集ナノ粒子を、EDTAを2mM含むPBSを用いて3nMの分散液に調製し、最終濃度が10mMとなるようにSM(PEG)12(succinimidyl-[(N-maleimidopropionamido)-dodecanethyleneglycol]ester;サーモサイエンティフィック社)を混合し、5℃で1時間反応させた。 Subsequently, the treated aggregated nanoparticles are prepared into a 3 nM dispersion using PBS containing 2 mM EDTA, and SM (PEG) 12 (succinimidyl-[(N-maleimidopropionamido)] to a final concentration of 10 mM. -dodecaneethylene glycol ester (Thermo Scientific Inc.) was mixed and reacted at 5 ° C. for 1 hour.
 この分散液について、10000rpmで20分間遠心分離処理を行った後に上澄みを除去した後、2mMのEDTAを含有したPBSを加えて沈降物を分散させる洗浄を3回行ったことで、粒子表面にマレイミド基を導入した色素凝集粒子を得た。 The dispersion was centrifuged at 10,000 rpm for 20 minutes and then the supernatant was removed, and then PBS containing 2 mM EDTA was added to wash the precipitate three times to disperse the precipitate, whereby maleimide was applied to the particle surface. Dye aggregated particles in which groups were introduced were obtained.
 一方、1mg/mLに調整したストレプトアビジン(和光純薬工業社製)40μLを210μLのボレートバッファに加えた後、64mg/mLに調整した2-イミノチオラン塩酸塩(シグマアルドリッチ社製)70μLを加え、室温で1時間反応させることで、ストレプトアビジンのアミノ基にチオール基を導入し、これをゲルろ過カラム(Zaba Spin Desalting Columuns、フナコシ社)により脱塩した。 On the other hand, 40 μL of streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to 1 mg / mL is added to 210 μL of borate buffer, and then 70 μL of 2-iminothiolane hydrochloride (manufactured by Sigma Aldrich) adjusted to 64 mg / mL is added. A thiol group was introduced into the amino group of streptavidin by reacting at room temperature for 1 hour, and this was desalted with a gel filtration column (Zaba Spin Desalting Columuns, Funakoshi).
 上記チオール基を付加したストレプトアビジン0.04mgと0.67nMに調整した粒子表面にマレイミド基を導入した色素凝集粒子740μLとを、EDTAとを2mM含有したPBS中で混合し、室温で1時間反応させた。その後10mMメルカプトエタノールを添加して反応を停止させ、得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムで未反応のストレプトアビジン等を除去し、色素凝集粒子をストレプトアビジンで修飾した蛍光標識材1を得た。 The above 0.04 mg of streptavidin having a thiol group added thereto and 740 μL of dye aggregated particles having a maleimide group introduced to the particle surface adjusted to 0.67 nM are mixed with PBS containing 2 mM of EDTA and reacted for 1 hour at room temperature I did. After that, the reaction is stopped by adding 10 mM mercaptoethanol, and the obtained solution is concentrated by a centrifugal filter, and unreacted streptavidin and the like are removed by a gel filtration column for purification, and the pigment aggregation particle is fluorescence modified with streptavidin. Label 1 was obtained.
[実施例28]
<蛍光標識材2>
 実施例6、8、9、11、12、14で得られた色素凝集粒子を抗PD-L1抗体で標識することで蛍光標識材2を作製した。
(色素凝集粒子-抗体修飾)
 実施例27と同様の手法でそれぞれの粒子表面にマレイミド基を導入した色素凝集粒子を得た。
[Example 28]
<Fluorescent labeling material 2>
The fluorescent dye 2 was produced by labeling the dye-aggregated particles obtained in Examples 6, 8, 9, 11, 12 and 14 with an anti-PD-L1 antibody.
(Pharmaceutical particle-modified antibody)
Dye aggregated particles in which a maleimide group was introduced to the surface of each particle were obtained in the same manner as in Example 27.
 一方、抗PD-L1ウサギモノクローナル抗体(Cell signaling Technology社;No.E1L3N)100μgをPBS100μLに溶解させた。この抗体溶液に1Mの2-メルカプトエタノールを0.002mL(0.2×10-5モル)添加して、pH8.5、室温で30分間反応させた反応液をゲル濾過カラムに通し、過剰の2-メルカプトエタノールを除去することで、チオール化した抗PD-L1ウサギモノクローナル抗体の溶液を得た。 On the other hand, 100 μg of anti-PD-L1 rabbit monoclonal antibody (Cell signaling Technology, Inc .; No. E1L3N) was dissolved in 100 μL of PBS. To this antibody solution, 0.002 mL (0.2 × 10 -5 mol) of 1 M 2-mercaptoethanol was added, and the reaction solution reacted at pH 8.5 and room temperature for 30 minutes was passed through a gel filtration column and excess Removal of 2-mercaptoethanol gave a solution of thiolated anti-PD-L1 rabbit monoclonal antibody.
 チオール基を付加したストレプトアビジンの代わりにチオール化した抗PD-L1ウサギモノクローナル抗体を用いる以外は実施例27と同様の手法で色素凝集粒子を抗PD-L1ウサギモノクローナル抗体で修飾した蛍光標識材2を得た。 Fluorescent labeling material 2 in which dye aggregate particles are modified with anti-PD-L1 rabbit monoclonal antibody by the same method as in Example 27 except that thiolated anti-PD-L1 rabbit monoclonal antibody is used instead of streptavidin having a thiol group added I got
[実施例29]
<色素内包メラミン粒子(28)~(32)>
 前記色素凝集粒子(6)20.3mgを水22mLに加えて溶解した。その後、この溶液に乳化重合用乳化剤「エマルゲン」(登録商標)430(ポリオキシエチレンオレイルエーテル、花王株式会社製)の5%水溶液を2mL加えた。この溶液をホットスターラー上で撹拌しながら70℃まで昇温させた後、この溶液にメラミン樹脂原料「ニカラックMX-035」(日本カーバイド工業社製)を0.81g加えた。さらに、この溶液に界面活性剤としてドデシルベンゼンスルホン酸(関東化学株式会社製)の10%水溶液を1000μL加え、70℃で50分間加熱撹拌した。その後、90℃に昇温して20分間加熱撹拌した。
[Example 29]
<Color-containing melamine particles (28) to (32)>
20.3 mg of the pigment aggregated particles (6) was added to 22 mL of water and dissolved. Thereafter, 2 mL of a 5% aqueous solution of an emulsifier for emulsion polymerization "Emulgen" (registered trademark) 430 (polyoxyethylene oleyl ether, manufactured by Kao Corporation) was added to this solution. The solution was heated to 70 ° C. while being stirred on a hot stirrer, and then 0.81 g of a melamine resin raw material “Nicalac MX-035” (manufactured by Nippon Carbide Industries Co., Ltd.) was added to the solution. Furthermore, 1000 μL of a 10% aqueous solution of dodecylbenzenesulfonic acid (manufactured by Kanto Chemical Co., Ltd.) as a surfactant was added to this solution, and the mixture was heated and stirred at 70 ° C. for 50 minutes. Thereafter, the temperature was raised to 90 ° C., and heating and stirring were performed for 20 minutes.
 得られた色素凝集粒子(6)のメラミン樹脂分散液から、余剰の樹脂原料や不純物を除くため、遠心分離機「マイクロ冷却遠心機3740」(久保田商事株式会社製)にて20000Gで15分間、遠心分離することで洗浄を行い、超純水を加えて超音波照射して再分散する工程を5回繰り返し、色素内包メラミン粒子(27)を得た。 In order to remove excess resin raw material and impurities from the resulting melamine resin dispersion of pigment aggregated particles (6), centrifuge for 15 minutes at 20000 G with a micro-cooling centrifuge 3740 (manufactured by Kubota Corporation). The steps of washing by centrifugation, adding ultrapure water, and applying ultrasonic waves for redispersion were repeated five times to obtain dye-containing melamine particles (27).
 前記色素凝集粒子(6)を色素凝集粒子(8)、(9)、(11)、(12)、(14)にそれぞれ代える以外は同じ手法で、色素内包メラミン粒子(28)~(32)を得た。
[実施例30]
<蛍光標識材3>
 実施例29で作製した色素内包メラミン粒子(27)~(32)について、以下の方法でそれぞれの粒子表面にマレイミド基を導入した。
Dye-incorporated melamine particles (28) to (32) in the same manner except that the pigment aggregation particles (6) are replaced with pigment aggregation particles (8), (9), (11), (12) and (14) respectively. I got
[Example 30]
<Fluorescent labeling material 3>
With respect to the dye-containing melamine particles (27) to (32) produced in Example 29, a maleimide group was introduced to the surface of each particle by the following method.
 色素内包粒子0.1mgをエタノール1.5mL中に分散し、アミノプロピルトリメトキシシラン(LS-3150、信越化学工業社製)2μLを加え、8時間反応させることにより、色素内包粒子の表面に存在するヒドロキシル基をアミノ基に変換した。 0.1 mg of dye-containing particles are dispersed in 1.5 mL of ethanol, 2 μl of aminopropyltrimethoxysilane (LS-3150, manufactured by Shin-Etsu Chemical Co., Ltd.) is added, and the mixture is reacted for 8 hours to exist on the surface of dye-containing particles. The resulting hydroxyl group was converted to an amino group.
 2mMのエチレンジアミン四酢酸(EDTA)を含有したリン酸緩衝液生理的食塩水(PBS)を用いて、上記色素内包粒子の濃度を3nMに調整し、終濃度10mMとなるように、SM(PEG)12(スクシンイミジル-[(N-マレイミドプロピオンアミド)-ドデカエチレングリコール]エステル、サーモサイエンティフィック社製)を混合し、20℃で1時間反応させ、10000Gで20分間遠心分離を行い、上澄みを除去した後、2mMのEDTAを含有したPBSを加えて沈降物を分散させる洗浄を3回行うことで、粒子表面にマレイミド基を導入した色素内包粒子を得た。 The concentration of the dye-containing particles is adjusted to 3 nM with phosphate buffer saline (PBS) containing 2 mM ethylenediaminetetraacetic acid (EDTA) to give a final concentration of 10 mM, SM (PEG) 12 (Succinimidyl-[(N-maleimidopropionamide) -dodecaethylene glycol] ester, manufactured by Thermo Scientific Co., Ltd.) is mixed, reacted at 20 ° C. for 1 hour, centrifuged at 10000 G for 20 minutes, and the supernatant removed Then, PBS containing 2 mM EDTA was added and washing was performed three times to disperse the precipitate, thereby obtaining dye-containing particles in which a maleimide group was introduced to the particle surface.
 一方、ストレプトアビジン(和光純薬工業社製)とN-スクシミジル-S-アセチルチオ酢酸(SATA)を用いて、ストレプトアビジンに対してチオール基の付加処理を行った後、ゲル濾過した。 On the other hand, after adding a thiol group to streptavidin using a streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) and N-succimidyl-S-acetylthioacetic acid (SATA), gel filtration was performed.
 上記のマレイミド修飾を行った色素内包粒子とチオール基を付加したストレプトアビジンとを、2mMのEDTAを含有したPBS中で混合し、室温で1時間反応させることで、それぞれのマレイミド基とチオール基を結合させた。その後、10mMメルカプトエタノールを添加して反応を停止させ、φ=0.65μmの遠心フィルターで濃縮した後、精製用ゲル濾過カラムを用いて未反応のストレプトアビジン等を除去することで、色素内包メラミン粒子をストレプトアビジンで修飾した蛍光標識材3を得た。 The maleimide-modified dye-containing particles described above and streptavidin-containing thiol group are mixed in PBS containing 2 mM EDTA, and allowed to react at room temperature for 1 hour, whereby each maleimide group and thiol group are reacted. It was combined. After that, the reaction is stopped by adding 10 mM mercaptoethanol, concentrated with a centrifugal filter with φ = 0.65 μm, and then unreacted streptavidin is removed using a gel filtration column for purification, whereby the dye-containing melamine is eliminated. The particles were modified with streptavidin to obtain a fluorescent labeling material 3.
[実施例31]
<色素内包ポリスチレン粒子(33)~(44)>
 色素内包ポリスチレン粒子(33)~(44)をソープフリー乳化重合法により以下のようにして作製した。
[Example 31]
<Dye-containing polystyrene particles (33) to (44)>
Dye-containing polystyrene particles (33) to (44) were produced by the soap-free emulsion polymerization method as follows.
 前記式(10)、(12)~(22)の化合物をそれぞれ4-アミノスチレン(東京化成工業社製)と室温条件で1時間混合することでスチレンにそれぞれの化合物を結合させた、色素結合スチレンを作製した。アルゴンバブリングした純水中5mLにグリシジルメタクリレート(東京化成工業社製)0.18gとスチレン(和光純薬社製)0.05g、ジビニルベンゼン0.05g、上記色素結合スチレン0.005gを加え、さらに撹拌しながら70℃に昇温し、水溶性アゾ重合開始剤であるV-50(和光純薬社製)を0.012g加え、12時間反応した。反応液を10000Gで20分遠心分離し、粒子を回収した。回収した粒子を純水に分散し再度遠心分離で回収する事で精製を行うことで、色素内包ポリスチレン粒子(33)~(44)を得た。 Each compound is coupled to styrene by mixing each of the compounds of the above formulas (10) and (12) to (22) with 4-aminostyrene (manufactured by Tokyo Chemical Industry Co., Ltd.) at room temperature for 1 hour, dye bonding Styrene was made. Add 0.18 g of glycidyl methacrylate (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 0.05 g of styrene (manufactured by Wako Pure Chemical Industries, Ltd.), 0.05 g of divinylbenzene, and 0.005 g of the above dye-bound styrene to 5 mL of pure water which has been subjected to argon bubbling. The temperature was raised to 70 ° C. while stirring, 0.012 g of a water-soluble azo polymerization initiator V-50 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and reaction was performed for 12 hours. The reaction solution was centrifuged at 10000 G for 20 minutes to recover particles. The collected particles were dispersed in pure water and again collected by centrifugation to perform purification to obtain dye-containing polystyrene particles (33) to (44).
[実施例32]
<蛍光標識材4>
 色素内包ポリスチレン粒子(33)~(44)の粒子表面の、4-アミノスチレンに由来するアミノ基を介してストレプトアビジン修飾した。
[Example 32]
<Fluorescent labeling material 4>
Streptavidin modification was carried out via the amino group derived from 4-aminostyrene on the surface of the dye-containing polystyrene particles (33) to (44).
 2mMのエチレンジアミン四酢酸(EDTA)を含有したリン酸緩衝液生理的食塩水(PBS)を用いて、上記色素内包ポリスチレン粒子の濃度を3nMに調整した。濃度調整した色素内包ポリスチレン粒子の分散液に対して、終濃度10mMとなるように、SM(PEG)12(スクシンイミジル-[(N-マレイミドプロピオンアミド)-ドデカエチレングリコール]エステル、サーモサイエンティフィック社製)を混合し、20℃で1時間反応させることにより、粒子表面にマレイミド基を導入した色素内包ポリスチレン粒子を含む混合液を得た。 The concentration of the dye-containing polystyrene particles was adjusted to 3 nM using phosphate buffered saline (PBS) containing 2 mM ethylenediaminetetraacetic acid (EDTA). SM (PEG) 12 (succinimidyl-[(N-maleimidopropionamide) -dodecaethylene glycol] ester, Thermo Scientific Co., Ltd. to a final concentration of 10 mM for a dispersion of dye-containing polystyrene particles adjusted in concentration C.) and allowed to react at 20.degree. C. for 1 hour to obtain a mixed solution containing dye-containing polystyrene particles having a maleimide group introduced on the particle surface.
 この混合液を10000Gで20分間遠心分離を行い、上澄みを除去した後、2mMのEDTAを含有したPBSを加えて沈降物を分散させ、再度遠心分離を行った。同様の手順による上記洗浄を3回行った後、マレイミド基で修飾された色素内包ポリスチレン粒子を回収した。 The mixture was centrifuged at 10000 G for 20 minutes, and after removing the supernatant, PBS containing 2 mM EDTA was added to disperse the precipitate, and centrifugation was performed again. After performing the above washing three times according to the same procedure, the dye-containing polystyrene particles modified with a maleimide group were recovered.
 実施例27に記載の方法と同様の手法でチオール基を付加したストレプトアビジンを作製した。 A thiol group-added streptavidin was prepared in the same manner as described in Example 27.
 上記のマレイミド修飾を行った色素内包粒子とチオール基を付加したストレプトアビジンとを、実施例27に記載の方法と同様の手法で反応させることにより、色素内包ポリスチレン樹脂粒子をストレプトアビジンで修飾した蛍光標識材4を得た。 The above-described maleimide-modified dye-containing particle and a thiol group-added streptavidin are reacted in the same manner as described in Example 27 to obtain a fluorescent resin in which the dye-containing polystyrene resin particle is modified with streptavidin Label 4 was obtained.
[実施例33]
<蛍光標識材5>
 色素内包ポリスチレン粒子(33)~(44)を過剰のアンモニア水に加え、粒子表面のエポキシ基をアミノ基へと変換した。得られた粒子をPBSで3nMに調整し、この溶液に最終濃度10mMとなるようにSM(PEG)12(スクシンイミジル-[(N-マレイミドプロピオンアミド)-ドデカエチレングリコール]エステル、サーモサイエンティフィック社製)を混合し、120℃で1時間反応させ、10000Gで20分間遠心分離を行い、上澄みを除去した後、2mMのEDTAを含有したPBSを加えて沈降物を分散させる洗浄を3回行うことで、粒子表面にマレイミド基を導入した色素内包ポリスチレン粒子を得た。
[Example 33]
<Fluorescent labeling material 5>
The dye-containing polystyrene particles (33) to (44) were added to excess ammonia water to convert the epoxy groups on the particle surface into amino groups. The obtained particles are adjusted to 3 nM with PBS, and SM (PEG) 12 (succinimidyl-[(N-maleimidopropionamide) -dodecaethylene glycol] ester, Thermo Scientific Co., Ltd. to a final concentration of 10 mM. (1), react at 120 ° C. for 1 hour, centrifuge at 10000 G for 20 minutes, remove the supernatant, and wash the dispersion with PBS containing 2 mM EDTA to disperse the precipitate three times. Thus, dye-containing polystyrene particles having a maleimide group introduced on the particle surface were obtained.
 抗PD-L1ウサギモノクローナル抗体(Cell signaling Technology社;No.E1L3N)100μgをPBS100μLに溶解させた。この抗体溶液に1Mの2-メルカプトエタノールを0.002mL(0.2×10-5モル)添加して、pH8.5、室温で30分間反応させた反応液をゲル濾過カラムに通し、過剰の2-メルカプトエタノールを除去することで、チオール化した抗PD-L1ウサギモノクローナル抗体の溶液を得た。 One hundred μg of anti-PD-L1 rabbit monoclonal antibody (Cell signaling Technology, Inc .; No. E1L3N) was dissolved in 100 μL of PBS. To this antibody solution, 0.002 mL (0.2 × 10 -5 mol) of 1 M 2-mercaptoethanol was added, and the reaction solution reacted at pH 8.5 and room temperature for 30 minutes was passed through a gel filtration column and excess Removal of 2-mercaptoethanol gave a solution of thiolated anti-PD-L1 rabbit monoclonal antibody.
 前記粒子表面にマレイミド基を導入した色素内包ポリスチレン粒子とチオール化した抗PD-L1ウサギモノクローナル抗体とを用いる以外は、実施例27と同様の手法で色素内包ポリスチレン樹脂粒子を抗PD-L1ウサギモノクローナル抗体で修飾した蛍光標識材5を得た The dye-containing polystyrene resin particles were treated with anti-PD-L1 rabbit monoclonal in the same manner as in Example 27 except that dye-containing polystyrene particles having a maleimide group introduced on the particle surface and thiolated anti-PD-L1 rabbit monoclonal antibody were used. Obtained antibody-modified fluorescent labeling material 5
[比較例1]
(色素凝集体粒子)
 US2013/089889に記載の合成法により下記式35の化合物を合成した。下記式35の化合物をメタノール/ THF溶液中で結晶化させることで色素凝集体を得た。
Comparative Example 1
(Color aggregate particles)
The compound of the following formula 35 was synthesized by the synthesis method described in US2013 / 089 889. A dye aggregate was obtained by crystallizing the compound of the following formula 35 in a methanol / THF solution.
Figure JPOXMLDOC01-appb-C000094
[比較例2]
 凝集誘起発光性分子ではない蛍光色素Y550の誘導体である、Y550-NHSエステル(商品名、Dyomics  GmbH社製)5.6mgを1mlのジメチルスルホキシド(DMSO)に溶解し、1.3μlのAPSを加え、室温(25℃)で1時間反応を行った。得られた反応液50μlにエタノール3.95ml、MPS20μl、蒸留水1ml、28質量%アンモニア水100μlを加え室温で24時間反応させたものをYM-100(ミリポア社製)で限外ろ過して回収した色素内包粒子の分散液をYM-1(ミリポア社製)で限外ろ過することで、全量の10分の1量になるまで濃縮した。濃縮後蒸留水で希釈しYM-1で限外ろ過を行う操作を4回繰り返して行い、色素内包粒子分散液に含まれる未反応のAPSやアンモニア等を除去することで、コロイドシリカ粒子を得た。
Figure JPOXMLDOC01-appb-C000094
Comparative Example 2
Dissolve 5.6 mg of Y550-NHS ester (trade name, manufactured by Dyomics GmbH), which is a derivative of fluorescent dye Y550 which is not aggregation-induced luminescent molecule, in 1 ml of dimethyl sulfoxide (DMSO) and add 1.3 μl of APS The reaction was performed at room temperature (25 ° C.) for 1 hour. 3.95 ml of ethanol, 20 μl of MPS, 1 ml of distilled water, 100 μl of 28% by mass ammonia water were added to 50 μl of the reaction solution, reacted at room temperature for 24 hours, and collected by ultrafiltration with YM-100 (manufactured by Millipore) The dispersion of the dye-containing particles was concentrated by ultrafiltration with YM-1 (manufactured by Millipore) to a concentration of 1/10 of the total amount. After concentration, dilution with distilled water and ultrafiltration with YM-1 are repeated four times to remove unreacted APS, ammonia, etc. contained in the dye-containing particle dispersion, thereby obtaining colloidal silica particles. The
 実施例26と同様の手法でチオール修飾したコロイドシリカ粒子2mg/mL×1.5mLにストレプトアビジン-マレイミド0.5mg(シグマ社製)を加え室温で2時間反応を行った。反応後、未反応のストレプトアビジン-マレイミドを常法により透析して除去し、ストレプトアビジン修飾されたコロイドシリカ粒子である蛍光標識材を得た。
[実施例34]
<振動耐性評価(冷蔵)>
 前記蛍光標識材1~5、ならびに比較例1の色素凝集体および比較例2のコロイドシリカ粒子色素を5wt/wt%となるようにPBSに分散させた分散液を調製し、それぞれの輝度を測定した。続いて、各粒子の分散液を5℃のクール宅急便(登録商標)で東京―福岡間を往復させることで振動処理を行い、振動処理後の輝度を測定した。初期輝度と振動処理後の輝度の測定値から、次の基準で振動耐性評価(冷蔵)を行った。
AA:(振動処理後の輝度)/(初期の輝度)が0.95以上
BB:(振動処理後の輝度)/(初期の輝度)が0.85以上、0.95未満
CC:(振動処理後の輝度)/(初期の輝度)が0.75以上、0.85未満
DD:(振動処理後の輝度)/(初期の輝度)が0.75未満
Streptavidin-maleimide 0.5 mg (manufactured by Sigma) was added to 2 mg / mL × 1.5 mL of colloidal silica particles which were thiol-modified in the same manner as in Example 26, and a reaction was carried out at room temperature for 2 hours. After the reaction, unreacted streptavidin-maleimide was removed by dialysis in a conventional manner to obtain a fluorescent labeling material which is a streptavidin-modified colloidal silica particle.
[Example 34]
Vibration resistance evaluation (refrigerated)
A dispersion is prepared by dispersing the fluorescent labeling materials 1 to 5 and the dye aggregate of Comparative Example 1 and the colloidal silica particle dye of Comparative Example 2 in PBS so as to be 5 wt / wt%, and the respective luminances are measured. did. Subsequently, the dispersion liquid of each particle was subjected to vibration processing by reciprocating Tokyo-Fukuoka by Cool courier service (registered trademark) at 5 ° C., and the luminance after the vibration processing was measured. From the measured values of the initial brightness and the brightness after vibration treatment, vibration tolerance evaluation (refrigeration) was performed according to the following criteria.
AA: (luminance after vibration processing) / (initial luminance) is 0.95 or more BB: (luminance after vibration processing) / (initial luminance) is 0.85 or more and less than 0.95 CC: (vibration processing Later luminance) / (initial luminance) is 0.75 or more and less than 0.85 DD: (luminance after vibration processing) / (initial luminance) is less than 0.75
[実施例35]
<振動耐性評価(室温)>
 5℃のクール宅急便(登録商標)に代えて、室温下の宅急便(登録商標)で東京―福岡間を往復させる以外は実施例31と同様の手順および評価基準で振動耐性評価(室温)を行った。
[Example 35]
<Vibration tolerance evaluation (room temperature)>
Vibration resistance evaluation (room temperature) was performed according to the same procedures and evaluation criteria as in Example 31 except that Tokyo-Fukuoka was reciprocated by TA-Q-BIN (registered trademark) at room temperature instead of Cool TA-Q-BIN (registered trademark) at 5 ° C. The
 上記実施例34、35の結果を下記表2‐1および表2‐2に示す。 The results of the above Examples 34 and 35 are shown in Tables 2-1 and 2-2 below.
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000096

Claims (12)

  1.  下記一般式(1)~(9)で表される少なくとも一種の凝集誘起発光性分子を含む、色素凝集粒子。
    Figure JPOXMLDOC01-appb-C000001
     前記式(1)中、R1、R2、R3、R4、R5、およびR6はそれぞれ独立に、親水基、水素原子、有機基または有機金属基である;
    Figure JPOXMLDOC01-appb-C000002
     前記式(2)中、R1、R2、R3、およびR4はそれぞれ独立に、親水基、 水素原子、有機基または有機金属基である;
    Figure JPOXMLDOC01-appb-C000003
     前記式(3)中、R1、R2、およびR3はそれぞれ独立して親水基、水素原子、有機基または有機金属基であり、
     Yは電子吸引性基である;
    Figure JPOXMLDOC01-appb-C000004
     前記式(4)中、白抜きの丸は炭素原子を示し、R1およびR2はそれぞれ独立して親水基、水素原子、有機基または有機金属基である;
    Figure JPOXMLDOC01-appb-C000005
     前記式(5)中、RおよびR'はそれぞれ独立して親水基、水素原子、有機基または有機金属基である;
    Figure JPOXMLDOC01-appb-C000006
     前記式(6)中、XはS、OまたはNであり、ここでXがOまたはSのときR4は存在せず、
     Yは電子吸引性基または電子供与性基であり、
     R1、R2、R3、R4はそれぞれ独立に有機基または親水基を有する有機基、有機金属基を表し、R1、R2、R3、R4はそれぞれ結合して環構造を取っても良い;
    Figure JPOXMLDOC01-appb-C000007
     前記式(7)中、R1は置換芳香族基または、OHを除く親水基であり、
     R2、R3、およびR4はそれぞれ独立して親水基、有機基または有機金属基であり、
     a~dはそれぞれ独立して、0~5の整数であり、aが2以上の場合、複数のR1は同一であっても異なっていてもよく、複数のR1が互いに結合して環を形成していてもよく、
     b~dが2以上の場合、複数のR2、R3、およびR4はそれぞれ同一であっても異なっていてもよく、
     R1とR2、R2とR4、R3とR4、R3とR1はそれぞれ結合して環を形成していてもよい;
    Figure JPOXMLDOC01-appb-C000008
     前記式(8)中、RAは独立に、親水基、水素原子または有機基であり、
     aは独立に1~5の整数であり、
     RBは独立に芳香環含有有機基または親水基を有する芳香環含有基であり、
     RCは独立に親水基、水素原子、有機基または有機金属基であり、
     RA、RB、RCの内、少なくとも一つが親水基または親水基を有する芳香環含有基であり、ここでRB、RCを構成する基の中に3級アミノ基は含まない;
    Figure JPOXMLDOC01-appb-C000009
     前記式(9)中、R、R'およびR’’はそれぞれ独立して親水基、水素原子、有機基または有機金属基である。
    Dye aggregated particles comprising at least one aggregation inducing luminescent molecule represented by the following general formulas (1) to (9).
    Figure JPOXMLDOC01-appb-C000001
    In the above formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
    Figure JPOXMLDOC01-appb-C000002
    In the above formula (2), R 1 , R 2 , R 3 and R 4 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
    Figure JPOXMLDOC01-appb-C000003
    In the above formula (3), R 1 , R 2 and R 3 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group,
    Y is an electron withdrawing group;
    Figure JPOXMLDOC01-appb-C000004
    In the above formula (4), the open circles represent carbon atoms, and R 1 and R 2 are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
    Figure JPOXMLDOC01-appb-C000005
    In the above formula (5), R and R ′ each independently represent a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
    Figure JPOXMLDOC01-appb-C000006
    In the above formula (6), X is S, O or N, and when X is O or S, R 4 is absent,
    Y is an electron withdrawing group or an electron donating group,
    R 1 , R 2 , R 3 and R 4 each independently represent an organic group or an organic group having an organic group or a hydrophilic group, or an organic metal group, and R 1 , R 2 , R 3 and R 4 are each bonded to form a ring structure May take;
    Figure JPOXMLDOC01-appb-C000007
    In the above formula (7), R 1 is a substituted aromatic group or a hydrophilic group other than OH,
    R 2 , R 3 and R 4 are each independently a hydrophilic group, an organic group or an organometallic group,
    a to d are each independently an integer of 0 to 5, and when a is 2 or more, a plurality of R 1 s may be the same or different, and a plurality of R 1 s combine with each other to form a ring May form a
    When b to d are 2 or more, plural R 2 's , R 3' s and R 4 's may be the same or different,
    R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , R 3 and R 1 may be combined to form a ring;
    Figure JPOXMLDOC01-appb-C000008
    In the above formula (8), R A is independently a hydrophilic group, a hydrogen atom or an organic group,
    a is independently an integer of 1 to 5,
    R B is independently an aromatic ring-containing group having an aromatic ring-containing organic group or a hydrophilic group,
    R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group,
    At least one of R A , R B and R C is a hydrophilic group or an aromatic ring-containing group having a hydrophilic group, wherein a tertiary amino group is not included in the groups constituting R B and R C ;
    Figure JPOXMLDOC01-appb-C000009
    In the above formula (9), R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group.
  2.  バインダと、下記一般式(1)~(9)で表される少なくとも一種の凝集誘起発光性分子とからなる、色素内包粒子。
    Figure JPOXMLDOC01-appb-C000010
     前記式(1)中、R1、R2、R3、R4、R5、およびR6はそれぞれ独立に、親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である;
    Figure JPOXMLDOC01-appb-C000011
     前記式(2)中、R1、R2、R3、およびR4はそれぞれ独立に、親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である;
    Figure JPOXMLDOC01-appb-C000012
     前記式(3)中、R1、R2、およびR3はそれぞれ独立して親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基であり、
     Yは電子吸引性基である;
    Figure JPOXMLDOC01-appb-C000013
     前記式(4)中、白抜きの丸は炭素原子を示し、R1およびR2はそれぞれ独立して親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である;
    Figure JPOXMLDOC01-appb-C000014
     前記式(5)中、RおよびR'はそれぞれ独立して親水基, 水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である;
    Figure JPOXMLDOC01-appb-C000015
     前記式(6)中、XはS、OまたはNであり、ここでXがOまたはSのときR4は存在せず、
     Yは電子吸引性基または電子供与性基であり、
     R1、R2、R3、R4はそれぞれ独立に有機基または親水基を有する有機基、有機金属基、またはシランカップリング剤結合性基を表し、R1、R2、R3、R4はそれぞれ結合して環構造を取っても良い;
    Figure JPOXMLDOC01-appb-C000016
     前記式(7)中、R1は置換芳香族基、OHを除く親水基、またはシランカップリング剤結合性基であり、
     R2、R3、およびR4はそれぞれ独立して、親水基、有機基または有機金属基であり、
     a~dはそれぞれ独立して、0~5の整数であり、aが2以上の場合、複数のR1は同一であっても異なっていてもよく、複数のR1が互いに結合して環を形成していてもよく、
     b~dが2以上の場合、複数のR2、R3、およびR4はそれぞれ同一であっても異なっていてもよく、
     R1とR2、R2とR4、R3とR4、R3とR1はそれぞれ結合して環を形成していてもよい;
    Figure JPOXMLDOC01-appb-C000017
     前記式(8)中、RAは独立に、親水基、水素原子、有機基、有機金属基、またはシランカップリング剤結合性基であり、
     aは独立に1~5の整数であり、
     RBは独立に芳香環含有有機基であり、
     RCは独立に親水基、水素原子、有機基または有機金属基である;
    Figure JPOXMLDOC01-appb-C000018
     前記式(9)中、R、R'およびおよびR’’はそれぞれ独立して親水基, 水素原子、有機基、有機金属基、またはシランカップリング剤結合性基である。
    Dye-containing particles comprising a binder and at least one aggregation-induced luminescent molecule represented by the following general formulas (1) to (9).
    Figure JPOXMLDOC01-appb-C000010
    In the above formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group or a silane coupling agent bonding property Is a group;
    Figure JPOXMLDOC01-appb-C000011
    In the above formula (2), R 1 , R 2 , R 3 and R 4 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group or a silane coupling agent binding group;
    Figure JPOXMLDOC01-appb-C000012
    In the above formula (3), R 1 , R 2 and R 3 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organic metal group or a silane coupling agent binding group,
    Y is an electron withdrawing group;
    Figure JPOXMLDOC01-appb-C000013
    In the above formula (4), white circles represent carbon atoms, and R 1 and R 2 are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group ;
    Figure JPOXMLDOC01-appb-C000014
    In the above formula (5), R and R ′ each independently represent a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group;
    Figure JPOXMLDOC01-appb-C000015
    In the above formula (6), X is S, O or N, and when X is O or S, R 4 is absent,
    Y is an electron withdrawing group or an electron donating group,
    R 1 , R 2 , R 3 and R 4 each independently represent an organic group or an organic group having an hydrophilic group, an organic metal group, or a silane coupling agent binding group, and R 1 , R 2 , R 3 , R 4 may be combined to form a ring structure;
    Figure JPOXMLDOC01-appb-C000016
    In the above formula (7), R 1 is a substituted aromatic group, a hydrophilic group other than OH, or a silane coupling agent binding group,
    R 2 , R 3 and R 4 are each independently a hydrophilic group, an organic group or an organometallic group,
    a to d are each independently an integer of 0 to 5, and when a is 2 or more, a plurality of R 1 s may be the same or different, and a plurality of R 1 s combine with each other to form a ring May form a
    When b to d are 2 or more, plural R 2 's , R 3' s and R 4 's may be the same or different,
    R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , R 3 and R 1 may be combined to form a ring;
    Figure JPOXMLDOC01-appb-C000017
    In the above formula (8), R A independently represents a hydrophilic group, a hydrogen atom, an organic group, an organic metal group, or a silane coupling agent binding group,
    a is independently an integer of 1 to 5,
    R B is independently an aromatic ring-containing organic group,
    R C is independently a hydrophilic group, a hydrogen atom, an organic group or an organometallic group;
    Figure JPOXMLDOC01-appb-C000018
    In the above formula (9), R, R ′ and R ′ ′ are each independently a hydrophilic group, a hydrogen atom, an organic group, an organometallic group, or a silane coupling agent binding group.
  3.  前記凝集誘起発光性分子が親水基を有する、請求項1に記載の色素凝集粒子。 The pigment aggregation particle according to claim 1, wherein the aggregation inducing luminescent molecule has a hydrophilic group.
  4.  前記凝集誘起発光性分子が親水基を有する、請求項2に記載の色素内包粒子。 The dye-containing particle according to claim 2, wherein the aggregation-induced light emitting molecule has a hydrophilic group.
  5.  請求項2または4に記載の色素内包粒子であって、前記バインダと凝集発光性分子とが共有結合を形成しており、前記バインダがメタロキサン結合を形成していることを特徴とした色素内包粒子。 The dye-containing particle according to claim 2 or 4, wherein the binder and the aggregation light emitting molecule form a covalent bond, and the binder forms a metalloxane bond. .
  6.  請求項1または3に記載の色素凝集粒子の表面に標的指向性リガンドが共有結合を介して結合している蛍光標識材。 A fluorescent labeling material in which a targeting ligand is covalently bonded to the surface of the dye-aggregated particle according to claim 1 or 3.
  7.  請求項2または4に記載の色素内包粒子の表面に標的指向性リガンドが共有結合を介して結合している蛍光標識材。 A fluorescent labeling material in which a targeting ligand is covalently bonded to the surface of the dye-containing particle according to claim 2 or 4.
  8.  前記標的指向性リガンドが、抗体、細胞小器官親和性物質、および、糖鎖と結合性を有するタンパク質からなる群から選択される1種以上の分子である、請求項6または7に記載の蛍光標識材。 The fluorescence according to claim 6 or 7, wherein the targeting ligand is one or more molecules selected from the group consisting of an antibody, an organelle affinity substance, and a protein having a binding property with a sugar chain. Signs.
  9.  請求項6~8のいずれか一項に記載の蛍光標識材と、緩衝液とを含む蛍光標識材分散液。 A fluorescent labeling material dispersion comprising the fluorescent labeling material according to any one of claims 6 to 8 and a buffer solution.
  10.  凝集誘起発光性分子の溶液に、貧溶媒を接触させ、凝集誘起発光性分子を凝集させる工程を含む、請求項1または3に記載の色素凝集粒子の製造方法。 The method for producing dye-aggregated particles according to claim 1 or 3, comprising the step of bringing a solution of aggregation-induced luminescent molecules into contact with a poor solvent to aggregate the aggregation-induced luminescent molecules.
  11.  凝集誘起発光性分子をバインダまたはバインダの前駆体中に分散させ、粒子化させる工程を含む、請求項2または4に記載の色素内包粒子の製造方法。 The method for producing dye-containing particles according to claim 2 or 4, comprising the step of dispersing the aggregation-induced light-emitting molecule in a binder or a precursor of the binder to form particles.
  12.  請求項2または4に記載の色素内包粒子を製造する方法であり、
     1)凝集発光性分子をバインダの前駆体中に分散させる工程
     2)ゾルゲル法によりバインダの前駆体からバインダを形成し、かつ粒子化させる工程
     を含む、請求項11に記載の色素内包粒子の製造方法。
    A method for producing the dye-containing particle according to claim 2 or 4,
    1) A process of dispersing aggregated light emitting molecules in a precursor of a binder 2) A process of forming a binder from a precursor of a binder by a sol-gel method and making it into particles The production of dye-encapsulated particles according to claim 11 Method.
PCT/JP2018/041026 2017-11-06 2018-11-05 Aggregated pigment particles, pigment-encasing particles, and fluorescent marking material WO2019088287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550513A JP7226329B2 (en) 2017-11-06 2018-11-05 Dye Aggregate Particles, Dye Encapsulating Particles, and Fluorescent Labeling Materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-214202 2017-11-06
JP2017214202 2017-11-06

Publications (1)

Publication Number Publication Date
WO2019088287A1 true WO2019088287A1 (en) 2019-05-09

Family

ID=66332544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041026 WO2019088287A1 (en) 2017-11-06 2018-11-05 Aggregated pigment particles, pigment-encasing particles, and fluorescent marking material

Country Status (2)

Country Link
JP (1) JP7226329B2 (en)
WO (1) WO2019088287A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021193909A1 (en) * 2020-03-26 2021-09-30
JPWO2021261398A1 (en) * 2020-06-25 2021-12-30
JP2022059418A (en) * 2020-10-01 2022-04-13 積水化学工業株式会社 Polymers, test agents, analytical concentration measuring methods, and analytical concentration measuring devices
US20220153695A1 (en) * 2020-11-18 2022-05-19 Southern Research Institute Compounds for the Treatment Of Acute and Chronic Kidney Disease
JP2022546707A (en) * 2019-08-30 2022-11-07 アラン、 マーク クラインフェルド、 Single-step method, kit, and system for determination of concentration of unbound bilirubin in biological fluids
US11945781B2 (en) 2020-11-18 2024-04-02 Southern Research Institute Compounds for the treatment of acute and chronic kidney disease
CN118033124A (en) * 2024-02-01 2024-05-14 广东省大湾区华南理工大学聚集诱导发光高等研究院 Dual-wavelength aggregation-induced emission magnetic coding microsphere and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170186977A1 (en) * 2015-12-29 2017-06-29 Universal Display Corporation Organic Electroluminescent Materials and Devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088266A1 (en) 2017-11-06 2019-05-09 コニカミノルタ株式会社 Aggregated nanoparticles and fluorescent labeling material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170186977A1 (en) * 2015-12-29 2017-06-29 Universal Display Corporation Organic Electroluminescent Materials and Devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OHSHITA JOJI ET AL.: "Synthesis of Siloles Condensed with Benzothiophene and Indole Rings", ORGANOMETALLICS, vol. 23, 2004, pages 5622 - 5625, XP055613016 *
ZHAN XIAOWEI ET AL.: "Substituent effects on the electronic structure of siloles", CHEMICAL COMMUNICATIONS, 2009, pages 1948 - 1955, XP055613023 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022546707A (en) * 2019-08-30 2022-11-07 アラン、 マーク クラインフェルド、 Single-step method, kit, and system for determination of concentration of unbound bilirubin in biological fluids
JPWO2021193909A1 (en) * 2020-03-26 2021-09-30
WO2021193909A1 (en) * 2020-03-26 2021-09-30 積水化学工業株式会社 Polymer, test agent, analyte concentration measuring method, and analyte concentration measuring instrument
JPWO2021261398A1 (en) * 2020-06-25 2021-12-30
WO2021261398A1 (en) * 2020-06-25 2021-12-30 コニカミノルタ株式会社 Light-emitting nanoparticles and light-emitting labeling material for pathological diagnosis
JP2022059418A (en) * 2020-10-01 2022-04-13 積水化学工業株式会社 Polymers, test agents, analytical concentration measuring methods, and analytical concentration measuring devices
US20220153695A1 (en) * 2020-11-18 2022-05-19 Southern Research Institute Compounds for the Treatment Of Acute and Chronic Kidney Disease
US11753374B2 (en) * 2020-11-18 2023-09-12 Southern Reserach Institute Compounds for the treatment of acute and chronic kidney disease
US11945781B2 (en) 2020-11-18 2024-04-02 Southern Research Institute Compounds for the treatment of acute and chronic kidney disease
CN118033124A (en) * 2024-02-01 2024-05-14 广东省大湾区华南理工大学聚集诱导发光高等研究院 Dual-wavelength aggregation-induced emission magnetic coding microsphere and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2019088287A1 (en) 2020-12-17
JP7226329B2 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
JP7226329B2 (en) Dye Aggregate Particles, Dye Encapsulating Particles, and Fluorescent Labeling Materials
Gao et al. Interfacial assembly of mesoporous silica‐based optical heterostructures for sensing applications
Leng et al. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection
JP6595974B2 (en) Chromophore polymer dot
Guo et al. Poly (N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres: preparation, characterization, and biomedical applications
Liu et al. pH-mediated fluorescent polymer particles and gel from hyperbranched polyethylenimine and the mechanism of intrinsic fluorescence
CN101787163B (en) Magnetic fluorescent microspheres and preparation method thereof
CN102313725B (en) A kind of preparation method of lysozyme molecularly imprinted-quantum dot nano fluorescent probe
Shikha et al. Upconversion nanoparticles-encoded hydrogel microbeads-based multiplexed protein detection
JP6354754B2 (en) Fluorescent nanoparticles for biomolecule staining and method for producing the same
WO2007074722A1 (en) Fluorescent silica nano-particle, fluorescent nano-material, biochip using the material, and assay method
Liu et al. Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay
Xiao et al. Fluorescent nanomaterials combined with molecular imprinting polymer: synthesis, analytical applications, and challenges
KR101749805B1 (en) Method to prepare nontoxic fluorescent nano-particles coated hydrophilic silicon containing polymers complexed with Lanthanide
JP7192783B2 (en) Aggregated nanoparticles and fluorescent labels
Generalova et al. Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays
CN104707544A (en) Preparation method of polygenetic upconversion magnetic coding microspheres for screening pathogenic bacteria
TWI242645B (en) Biochemical labeling materials and manufacturing method
Zhang et al. Multifunctional microspheres encoded with upconverting nanocrystals and magnetic nanoparticles for rapid separation and immunoassays
He et al. Dual-mode fluorescence and magnetic resonance imaging nanoprobe based on aromatic amphiphilic copolymer encapsulated CdSe@ CdS and Fe3O4
Nakahara et al. Synthesis of silica nanoparticles with physical encapsulation of near-infrared fluorescent dyes and their tannic acid coating
JP2016060832A (en) Fluorescent silica particle and method for producing the same, and labelling reagent and inspection kit comprising the same
WO2006070582A1 (en) Method of preparing silica sphere containing labeled molecule
CN1948383A (en) Magnetic fluorescent composite material, its preparation method and application
CN1869692A (en) Three-function nano-ball

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873636

Country of ref document: EP

Kind code of ref document: A1