WO2019078323A1 - Brain wave measurement system, brain wave measurement method, program, and non-transitory recording medium - Google Patents
Brain wave measurement system, brain wave measurement method, program, and non-transitory recording medium Download PDFInfo
- Publication number
- WO2019078323A1 WO2019078323A1 PCT/JP2018/038926 JP2018038926W WO2019078323A1 WO 2019078323 A1 WO2019078323 A1 WO 2019078323A1 JP 2018038926 W JP2018038926 W JP 2018038926W WO 2019078323 A1 WO2019078323 A1 WO 2019078323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- brain wave
- electroencephalogram
- wave information
- information
- Prior art date
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 213
- 238000005259 measurement Methods 0.000 title claims abstract description 213
- 238000000691 measurement method Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 217
- 230000008569 process Effects 0.000 claims abstract description 200
- 238000012545 processing Methods 0.000 claims abstract description 109
- 238000004458 analytical method Methods 0.000 claims description 40
- 238000012217 deletion Methods 0.000 claims description 10
- 230000037430 deletion Effects 0.000 claims description 10
- 230000009467 reduction Effects 0.000 abstract description 5
- 238000012549 training Methods 0.000 description 68
- 210000003811 finger Anatomy 0.000 description 67
- 230000002747 voluntary effect Effects 0.000 description 63
- 230000004913 activation Effects 0.000 description 60
- 230000010365 information processing Effects 0.000 description 53
- 238000004364 calculation method Methods 0.000 description 44
- 210000003128 head Anatomy 0.000 description 40
- 238000004891 communication Methods 0.000 description 37
- 230000033001 locomotion Effects 0.000 description 35
- 230000000284 resting effect Effects 0.000 description 33
- 230000008859 change Effects 0.000 description 25
- 230000006870 function Effects 0.000 description 24
- 230000000638 stimulation Effects 0.000 description 22
- 230000007423 decrease Effects 0.000 description 20
- 238000010079 rubber tapping Methods 0.000 description 16
- 230000021542 voluntary musculoskeletal movement Effects 0.000 description 15
- 238000001514 detection method Methods 0.000 description 14
- 230000007704 transition Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 5
- 230000007177 brain activity Effects 0.000 description 5
- 238000009207 exercise therapy Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 210000004761 scalp Anatomy 0.000 description 5
- 230000036982 action potential Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- 210000003813 thumb Anatomy 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 210000000624 ear auricle Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004424 eye movement Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000000337 motor cortex Anatomy 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/377—Electroencephalography [EEG] using evoked responses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
Definitions
- the present disclosure relates generally to an electroencephalogram measurement system, an electroencephalogram measurement method, a program, and a non-temporary recording medium. More specifically, an electroencephalogram measurement system for acquiring electroencephalogram information representing an electroencephalogram collected by an electrode unit disposed at a measurement location which is a part of the subject's head, an electroencephalogram measurement method, a program, and nontemporary It relates to a recording medium.
- Patent Document 1 discloses a technique for estimating the listening experience of a music piece based on an electroencephalogram measured at the time of listening to the music piece in a subject (subject).
- the brain waves of a subject who is listening to music whose presence or absence of listening experience is unknown are measured to acquire brain wave information (subject brain wave data), and the first feature obtained from the brain wave information is The result of comparison with the model electroencephalogram pattern is used to estimate the presence or absence of music listening experience.
- parameters (model electroencephalogram patterns) used for analysis of electroencephalogram information are average powers calculated from the subject's brain waves at the time of listening to the known music and averages calculated from the subject's brain waves at the time of listening to the unknown music. It is determined based on the difference with the power.
- Patent Document 1 when any brain wave information used to determine a parameter includes, for example, an artifact (noise), a relatively large error occurs in the parameter, and the result is In some cases, the measurement accuracy of the electroencephalogram may be reduced.
- an artifact noise
- the present disclosure has been made in view of the above, and it is an object of the present invention to provide an electroencephalogram measurement system, an electroencephalogram measurement method, a program, and a non-temporary recording medium capable of suppressing a decrease in the accuracy of electroencephalogram measurement.
- An electroencephalogram measurement system includes an acquisition unit, a storage unit, an input unit, and a processing unit.
- the acquisition unit acquires electroencephalogram information representing an electroencephalogram collected by an electrode unit disposed at a measurement location that is a part of the subject's head.
- the storage unit stores a plurality of the brain wave information acquired by the acquisition unit.
- the input unit receives, from the operation unit, a designation signal that designates one or more brain wave information items out of the plurality of brain wave information items stored in the storage unit.
- the processing unit executes a calibration process for determining a parameter used for analysis of the brain wave information based on the one or more brain wave information specified by the designation signal.
- An electroencephalogram measurement method acquires electroencephalogram information representing an electroencephalogram collected by an electrode unit disposed at a measurement location that is a part of the head of a subject, and stores a plurality of Store brain wave information. Furthermore, in the electroencephalogram measurement method, a designation signal for designating one or more pieces of brain wave information from among the plurality of pieces of brain wave information stored in the storage unit is received from the operation unit. Furthermore, in this electroencephalogram measurement method, calibration processing for determining parameters used for analysis of the electroencephalogram information is executed based on the one or more electroencephalogram information designated by the designation signal.
- a program according to an aspect of the present disclosure is a program for causing a computer system to execute the electroencephalogram measurement method.
- the non-temporary recording medium is a computer system-readable non-temporary recording medium in which a program for causing the computer system to execute the electroencephalogram measurement method is recorded.
- An electroencephalogram measurement system includes a display control unit, an input unit, and a processing unit.
- the display control unit causes the display unit to display a plurality of brain wave information.
- the input unit receives, from the operation unit, a designation signal that designates one or more pieces of brain wave information from among the plurality of pieces of brain wave information.
- the processing unit executes a calibration process for determining a parameter used for analysis of the brain wave information based on the one or more brain wave information specified by the designation signal.
- FIG. 1 is a schematic view showing a state of use of an electroencephalogram measurement system according to a first embodiment and a rehabilitation support system including the same.
- FIG. 2 is a schematic front view showing the use state of the headset of the above-mentioned electroencephalogram measurement system.
- FIG. 3 is a block diagram showing the configuration of the above-mentioned electroencephalogram measurement system and rehabilitation support system.
- FIG. 4 is an explanatory view showing an example of a training screen of the above-mentioned electroencephalogram measurement system.
- FIG. 5 is an explanatory view showing an example of a setting screen of the above-mentioned electroencephalogram measurement system.
- FIG. 1 is a schematic view showing a state of use of an electroencephalogram measurement system according to a first embodiment and a rehabilitation support system including the same.
- FIG. 2 is a schematic front view showing the use state of the headset of the above-mentioned electroencephalogram measurement system.
- FIG. 3 is a block diagram
- FIG. 6 is a graph for explaining the method of determining the threshold for the activation level of the above-mentioned electroencephalogram measurement system.
- FIG. 7 is an explanatory view showing an example of a calibration screen of the above-mentioned electroencephalogram measurement system.
- FIG. 8 is an explanatory view showing an example of a selection screen of the above-mentioned electroencephalogram measurement system.
- FIG. 9 is an explanatory view showing an example of a calibration result screen of the above-mentioned electroencephalogram measurement system.
- FIG. 10 is a flowchart showing a calibration process of the above-mentioned electroencephalogram measurement system.
- the electroencephalogram measurement system 10 is a system for measuring the electroencephalogram of the subject 5, and the electrode unit 11 disposed at a measurement point 51 which is a part of the head 52 of the subject 5 Brain wave information representing the collected brain waves is acquired.
- the term “electroencephalogram (EEG)” as referred to in the present disclosure means a waveform obtained by extruding an electrical signal (action potential) emitted from a cerebral nerve cell (group) and recording it.
- an on-scalp electroencephalogram that records general action potentials of a large number of neuron groups (neural networks) in the cerebral cortex using the electrode unit 11 attached to the body surface. Is called "brain wave”.
- the electroencephalogram measurement system 10 includes a headset 1 having an electrode unit 11 and an information processing device 2.
- the headset 1 is mounted on the head 52 of the subject 5 with the electrode unit 11 in contact with the surface (scalp) of the head 52 of the subject 5.
- the electrode unit 11 contacts the surface of the head 52 by being placed on the paste (electrode paste) applied to the surface of the head 52.
- the electrode unit 11 contacts the surface of the head 52 without the hair by scraping the hair.
- the electrode unit 11 may be in direct contact with the surface of the head 52 without applying a paste.
- contacting the electrode unit 11 with the surface of the head 52 refers to bringing the electrode unit 11 into contact with the surface of the head 52 directly or through an intermediate. Indirect contact with the surface of the head 52 is also included.
- the intermediate is not limited to the paste, and may be, for example, a gel having conductivity.
- the headset 1 measures the brain waves of the subject 5 by measuring the action potential of the brain of the subject 5 with the electrode unit 11, and generates brain wave information representing the brain waves.
- the headset 1 transmits brain wave information to the information processing apparatus 2 by wireless communication, for example.
- the information processing apparatus 2 performs various processes on the electroencephalogram information acquired from the headset 1 and displays the electroencephalogram information.
- the rehabilitation support system 100 includes the electroencephalogram measurement system 10 according to the present embodiment.
- the rehabilitation support system 100 further includes an exercise assisting device 3 and a control device 4.
- the exercise assisting device 3 is a device that assists the exercise of the subject 5 by adding at least one of a mechanical stimulation and an electrical stimulation to the subject 5.
- the control device 4 controls the exercise assistance device 3 based on the electroencephalogram information acquired by the electroencephalogram measurement system 10.
- the rehabilitation support system 100 supports rehabilitation by exercise therapy, with a person who has exercise paralysis or a decrease in motor function or the like in a part of the body as a subject 5, for example, by a brain disease such as a stroke or an accident.
- a voluntary movement which is a movement performed by the subject 5 based on the intention or intention of the subject 5, may not be satisfactory due to the inability or the deterioration of its function.
- the “exercise therapy” referred to in the present disclosure is a disorder caused by exercising the inability part of such a voluntary exercise or a part where a decrease in function has occurred (hereinafter referred to as “disability site”) in the body of the subject 5 It means a method to restore the function of voluntary movement for the part.
- the rehabilitation support system 100 is used for rehabilitation of the left finger 53 (left finger) of the subject 5 . That is, in the target person 5 in this case, the left finger is the failure site.
- the present invention is not limited to this example, and the rehabilitation support system 100 may be used, for example, for rehabilitation of the right finger of the subject 5.
- the rehabilitation support system 100 when the subject 5 performs a voluntary exercise with the left finger 53, mechanical stimulation and electricity are applied to the left hand of the subject 5 with the exercise assisting device 3 attached to the left hand of the subject 5.
- Support voluntary exercise by adding at least one of
- the rehabilitation support system 100 performs voluntary exercise Assistance of Therefore, according to the rehabilitation support system 100, as in the case where the medical staff assists, rehabilitation by exercise therapy can be realized more effectively than when the subject 5 performs voluntary exercise alone.
- the rehabilitation support system 100 can support the voluntary exercise of the subject 5 with the exercise assisting device 3 when the subject 5 tries to do voluntary exercise. desirable.
- the rehabilitation support system 100 links the exercise assistance device 3 to the brain waves (brain wave information) of the subject 5 measured by the brain wave measurement system 10, thereby providing exercise assistance when the subject 5 performs voluntary exercise.
- the assistance of the voluntary movement in the device 3 is realized.
- the rehabilitation support system 100 uses a brain-machine interface (BMI) technology to operate a machine (exercise assistance device 3) using brain activity (brain waves) to exercise Realize rehabilitation by therapy.
- BMI brain-machine interface
- characteristic changes in the electroencephalogram may occur. That is, when the subject 5 intends to perform voluntary exercise, activation of a brain region corresponding to a site targeted for voluntary exercise may occur.
- An example of such a brain region is the somatosensory motor cortex.
- a more effective rehabilitation can be expected if the exercise assist device 3 assists the voluntary exercise of the subject 5 according to the timing at which such activation of the brain region occurs. Such activation of the brain region can be detected as a characteristic change of the electroencephalogram.
- the rehabilitation support system 100 executes the assistance of the voluntary exercise of the subject 5 with the exercise assistance device 3 in accordance with the timing at which this characteristic change occurs in the electroencephalogram of the subject 5.
- Such characteristic changes of the electroencephalogram may occur when the subject 5 images voluntary exercise (that is, while attempting to exercise) even if the voluntary exercise is not actually performed. That is, such characteristic changes of the electroencephalogram can be activated if the corresponding brain region is activated by the intention of the subject 5 to perform the voluntary exercise, even though the voluntary movement is not actually performed. It can occur. Therefore, even for the subject 5 in a state in which voluntary exercise is impossible, the rehabilitation support system 100 can support voluntary exercise.
- the rehabilitation support system 100 having such a configuration, it is possible to realize effective rehabilitation by exercise therapy in the target person 5 while reducing the burden on the medical staff. Moreover, according to the rehabilitation support system 100, for example, there is no variation in the timing of assisting voluntary exercise due to human factors such as the skill of the medical staff who assists the voluntary exercise of the subject 5, and the variation of the effect of rehabilitation Is reduced. In particular, in the rehabilitation support system 100, the voluntary movement of the subject 5 can be assisted at the timing at which the characteristic change in the electroencephalogram (that is, the timing at which the brain region was actually activated). As described above, in the rehabilitation support system 100, since training can be performed according to the timing of brain activity, contribution to learning and establishment of correct brain activity can be expected. In particular, it is difficult for the subject 5 and the medical staff alone to determine whether or not a characteristic change has occurred in the electroencephalogram. Therefore, by using the rehabilitation support system 100, effective rehabilitation that is difficult to realize only by the target person 5 or the medical staff is possible.
- the target person 5 uses the rehabilitation support system 100
- medical staff such as a physical therapist or occupational therapist accompany the target person 5
- the medical staff performs the operation of the rehabilitation support system 100, etc.
- the target person 5 or a family of the target person 5 may operate the rehabilitation support system 100.
- the electroencephalogram measurement system 10 occurs in the rehabilitation support system 100 described above when the subject 5 performs a voluntary exercise (that is, may occur when the subject 5 intends to perform a voluntary exercise) ) It is used to detect electroencephalograms that contain characteristic changes.
- the electroencephalogram measurement system 10 changes in intensity of a specific frequency band that occurs in the electroencephalogram due to occurrence of event-related desynchronization (ERD).
- EPD event-related desynchronization
- the “event-related desynchronization” in the present disclosure means a phenomenon in which the power of a specific frequency band decreases in an electroencephalogram measured in the vicinity of the motor area during voluntary exercise (including recall of voluntary exercise).
- “at the time of voluntary exercise” means a process from the intention of the subject 5 to voluntary exercise (recollection) to the success or failure of the voluntary exercise.
- the "event-related desynchronization” can occur at the time of this voluntary movement, triggered by the intention (recollection) of the voluntary movement.
- Frequency bands in which the power decreases due to event-related desynchronization are mainly ⁇ waves (for example, a frequency band of 8 Hz to less than 13 Hz) and ⁇ waves (for example, a frequency band of 13 Hz to less than 30 Hz).
- the frequency band in which the power decreases due to event-related desynchronization, and the amount of reduction of power are not uniform, and, for example, the attributes of the subject 5 (such as age and gender), the failure site, the status of the failure, and individual differences It fluctuates with the like. Therefore, the electroencephalogram to be detected by the electroencephalogram measurement system 10 (an electroencephalogram including characteristic changes that may occur when the subject 5 intends to perform a voluntary exercise) is not uniformly determined, and various subjects 5 vary. It can take a form. Therefore, the electroencephalogram measurement system 10 is configured to perform analysis of electroencephalogram information, that is, calibration processing for determining various parameters used to detect an electroencephalogram to be detected.
- an artifact in the electroencephalogram information, a reduction in measurement accuracy of the electroencephalogram may occur.
- the “artifact” in the present disclosure means a phenomenon other than the electroencephalogram mixed in the electroencephalogram information acquired by the electroencephalogram measurement system 10 and is a noise component to the electroencephalogram.
- Examples of artifacts mixed in brain wave information include components resulting from eye movement such as blinks, and components resulting from body movement such as tooth biting or neck movement, and expression muscle movement. If calibration processing is performed using electroencephalogram information mixed with this type of artifact, calibration processing will be performed in a state in which the measurement accuracy of the electroencephalogram is lowered due to the artifact, and the accuracy of the parameter is lowered. Do. Therefore, in order to determine the parameters with high accuracy, it is preferable that the electroencephalogram measurement system 10 execute the calibration process using the electroencephalogram information that does not include an artifact.
- the electroencephalogram measurement system 10 has a function of determining the presence or absence of an artifact based on the electroencephalogram information acquired from the electrode unit 11 and outputting the determination result.
- Examples of the output mode of the determination result include display, voice output, printout (printing), writing to a non-temporary recording medium, and transmission to an information terminal. Therefore, the presence or absence of an artifact can be determined based on the output determination result. For example, by excluding the brain wave information mixed with the artifact, it is possible to suppress a decrease in the accuracy of the brain wave measurement due to the artifact.
- the rehabilitation support system 100 includes an electroencephalogram measurement system 10, an exercise assisting device 3, and a control device 4.
- the electroencephalogram measurement system 10 includes the headset 1 and the information processing device 2.
- the headset 1 is mounted on the head 52 of the subject 5 as shown in FIG.
- the headset 1 has an electrode portion 11.
- the electrode unit 11 is disposed at a measurement point 51 which is a part of the head 52 of the subject 5. Specifically, in the state in which the electrode unit 11 is in contact with the measurement portion 51 set on a part of the surface (scalp) of the head 52 of the subject 5, the headset 1 5. Measure the electroencephalogram of 5 and generate electroencephalogram information representing the electroencephalogram.
- the information processing apparatus 2 mainly includes, for example, a computer system such as a personal computer.
- the information processing device 2 receives brain wave information from the headset 1 by wireless communication, for example, and executes various processes on the brain wave information.
- the information processing apparatus 2 performs detection of an electroencephalogram including a characteristic change that may occur when the subject 5 intends to perform voluntary exercise (remembering), a calibration process, and the like.
- the electroencephalogram measurement system 10 measures an electroencephalogram collected from the vicinity of the motor area corresponding to the injury site that is the target of rehabilitation.
- the motor area corresponding to the left finger is on the right side of the brain, and the motor area corresponding to the right finger is on the left side of the brain.
- an electroencephalogram acquired by the electrode unit 11 brought into contact with the right side of the head 52 of the subject 5 is It becomes the measurement object in the electroencephalogram measurement system 10. That is, the electrode part 11 is arrange
- the measurement site consisting of a part of the left surface of the head 52 of the subject 5, for example, the electrode symbol "C3" in the international 10-20 method
- the electrode part 11 is arrange
- the electroencephalogram measurement system 10 outputs a control signal for controlling the exercise assisting device 3 when it detects an electroencephalogram including a characteristic change that may occur when the subject 5 intends to perform a voluntary exercise. That is, the rehabilitation support system 100 is triggered by the detection of an electroencephalogram including characteristic changes that may occur when the subject 5 intends to perform voluntary exercise, as a trigger for the exercise assisting device 3. A control signal for control is generated. Thereby, in the rehabilitation support system 100, it is possible to assist the voluntary exercise of the subject 5 with the exercise assisting device 3 in accordance with the voluntary exercise of the subject 5.
- the electroencephalogram measurement system 10 will be described in detail in the section “(3) electroencephalogram measurement system”.
- the exercise assisting device 3 is a device that assists the exercise of the subject 5 by adding at least one of a mechanical stimulation and an electrical stimulation to the subject 5.
- the rehabilitation support system 100 is used for rehabilitation of the left finger of the subject 5
- the exercise assisting apparatus 3 is mounted on the left hand of the subject 5 as shown in FIG.
- the rehabilitation support system 100 is used for the rehabilitation of the grasping motion and the extension motion by the left finger of the subject 5 is exemplified.
- the “gripping operation” in the present disclosure means an operation of holding an object. That is, in the subject 5, the left finger is the injury site, and the rehabilitation support system 100 is used for the rehabilitation of the voluntary movement of the grasping motion and the extension motion by the left finger.
- the rehabilitation support system 100 indirectly assists in the rehabilitation of the grasping motion by assisting the extension motion of the finger of the subject 5, instead of directly assisting the grasping motion of the subject 5. Do.
- extension operation in the present disclosure is a state in which the hand is held open by the extension of four fingers 53 (second to fifth fingers) except the first finger (thumb), that is, in a state of being grasped by a grasping operation. It means the action of releasing the "thing".
- the exercise assisting device 3 when the subject 5 performs the extension motion as a voluntary exercise, the exercise assisting device 3 attached to the left hand of the subject 5 mechanically stimulates the left finger 53 of the subject 5 And at least one of electrical stimulation and electrical stimulation to assist voluntary movement.
- the exercise assisting device 3 includes a finger driving device 31 and an electrical stimulation generating device 32.
- the finger driving device 31 holds four fingers 53 (second to fifth fingers) except the first finger (thumb) and applies mechanical stimulation (external force) to the four fingers 53. , Is a device to move the four fingers 53.
- the finger driving device 31 includes, for example, a power source such as a motor or a solenoid, and moves the four fingers 53 by transmitting the force generated by the power source to the four fingers 53.
- a power source such as a motor or a solenoid
- Two types of operations are possible: a closing operation.
- the opening operation of the finger driving device 31 assists the extension operation of the subject 5, and the closing operation of the finger driving device 31 assists the gripping operation of the subject 5.
- the electrical stimulation generator 32 is a device that applies an electrical stimulation to a site for moving the finger 53 of the subject 5.
- the site for moving the finger 53 of the subject 5 includes a site corresponding to at least one of the muscle and the nerve of the finger 53 of the subject 5.
- the part for moving the finger 53 of the subject 5 is a part of the arm of the subject 5.
- the electrical stimulation generator 32 includes, for example, a pad attached to the body (for example, an arm) of the subject 5.
- the electrical stimulation generator 32 stimulates a site for moving the finger 53 by applying an electrical stimulation (electric current) to the body of the subject 5 from the pad.
- the control device 4 controls the exercise assistance device 3 based on the electroencephalogram information acquired by the electroencephalogram measurement system 10.
- the control device 4 is electrically connected to the information processing device 2 of the electroencephalogram measurement system 10 and the exercise assisting device 3.
- the control device 4 is connected to a power cable for supplying operation power for the exercise assisting device 3 and the control device 4.
- the control device 4 includes a drive circuit for driving the finger drive device 31 of the exercise assisting device 3 and an oscillation circuit for driving the electrical stimulation generator 32.
- the control device 4 receives a control signal from the information processing device 2 by, for example, wired communication.
- the drive circuit drives the finger drive device 31 of the exercise assisting device 3 and the finger drive device 31 performs an “open operation”. Control the exercise assisting device 3; Further, when the control device 4 receives the second control signal from the information processing device 2, the drive circuit drives the finger drive device 31 of the exercise assisting device 3 and the finger drive device 31 performs the “closing operation”. Control the exercise assistance device 3 to be controlled. In addition, when the control device 4 receives the third control signal from the information processing device 2, the control device 4 drives the electric stimulation generator 32 of the exercise assisting device 3 by the oscillation circuit, and the body of the subject 5 is electrically stimulated. The exercise assist device 3 is controlled to be given.
- control device 4 controls the exercise assistance device 3 based on the control signal output from the electroencephalogram measurement system 10 to thereby provide the exercise assistance device based on the electroencephalogram information acquired by the electroencephalogram measurement system 10. It is possible to control three.
- control device 4 controls the exercise assisting device 3 so that the “opening operation” and the “closing operation” are performed by the finger drive device 31 according to the operation of the operation switch provided in the control device 4 You can also.
- the subject 5 wears the headset 1 on the head 52 and wears the exercise assisting device 3 on the left hand.
- the headset 1 is attached to the head 52 of the subject 5 so that at least the electrode portion 11 is in contact with a part of the right side surface of the head 52 of the subject 5 to be the measurement point 51.
- the exercise assisting device 3 holds at least four fingers 53 (second to fifth fingers) except the first finger (thumb) of the left hand of the subject 5 and sticks the pad to the arm of the subject 5 It is worn on the subject 5 in a state of
- the headset 1 and the exercise assisting device 3 are appropriately fixed so as not to be displaced or detached during rehabilitation.
- the four fingers 53 of the object person 5 are held by the finger driving device 31 of the exercise assisting device 3, whereby the posture in which the object person 5 holds the peg 101 with the left hand finger is maintained.
- the work of attaching the headset 1 and the exercise assisting device 3 to the subject 5 may be performed by the subject 5 itself or by medical staff.
- electroencephalogram information generated by the headset 1 can be acquired by the information processing apparatus 2. That is, the electroencephalogram measurement system 10 acquires electroencephalogram information representing an electroencephalogram collected by the electrode unit 11 disposed at the measurement location 51 which is a part of the head 52 of the subject 5 by the information processing apparatus 2. be able to.
- the information processing apparatus 2 stores (accumulates) the acquired electroencephalogram information in the memory 22 (see FIG. 3) in time series. Furthermore, the information processing device 2 generates a power spectrum of an electroencephalogram, for example, by performing time frequency analysis on the stored electroencephalogram information.
- the electroencephalogram measurement system 10 is capable of detecting electroencephalograms including characteristic changes that may occur when the subject 5 tries to perform voluntary exercise by constantly monitoring power spectrum data in the information processing apparatus 2. Become.
- the electroencephalogram measurement system 10 executes a calibration process for determining various parameters used for detection of the electroencephalogram to be detected. As a result, the electroencephalogram measurement system 10 improves the detection accuracy of the electroencephalogram to be detected, taking into consideration the frequency band in which the power decreases due to event-related desynchronization and the variation for each subject 5 such as the power reduction amount. Can be The calibration process will be described in detail in the section "(3) electroencephalogram measurement system".
- the rehabilitation support system 100 After completing the preparation process including the calibration process, the rehabilitation support system 100 starts a training process to support the rehabilitation of the subject 5.
- rehabilitation of the subject 5 is supported based on the electroencephalogram measured by the electroencephalogram measurement system 10 during the training time.
- the training time is divided into a resting period and an exercise period, and the subject 5 performs rehabilitation according to the instruction of the rehabilitation support system 100 in each of the resting period and the exercise period.
- the training time is "10 seconds"
- the first half "5 seconds" when the training time is equally divided is the resting period and the second half "5 seconds" is the exercise period. Do.
- the subject 5 puts the body in a resting state, that is, does not intend to perform voluntary exercise (reminding), and maintains a relaxed state.
- the electroencephalogram measurement system 10 does not detect an electroencephalogram including a characteristic change due to event-related desynchronization which may occur when the subject 5 intends to perform voluntary exercise.
- the electroencephalogram measurement system 10 can detect an electroencephalogram including a characteristic change due to event-related desynchronization that can occur when the subject 5 intends to perform a voluntary exercise.
- the characteristic change of the electroencephalogram is detected by comparing the activation level with the threshold and detecting whether the activation level exceeds the threshold.
- the “activation level” in the present disclosure is a value representing a decrease in power (power spectrum) of a specific frequency band. Since the activation level exceeds the threshold by the occurrence of event-related desynchronization and the power of the specific frequency band decreases, the electroencephalogram measurement system 10 changes the characteristic of the electroencephalogram by the activation level exceeding the threshold.
- a control signal for controlling the exercise assisting device 3 is generated, triggered by detection of an electroencephalogram including such characteristic changes. Therefore, in the rehabilitation support system 100, when the subject 5 intends to perform a voluntary exercise, the exercise assisting device is adjusted to the timing at which the activation of the brain region corresponding to the region targeted for the voluntary exercise actually occurs. At 3, it is possible to assist the subject 5's voluntary movement.
- electroencephalogram measurement system 10 in the training process will be described in detail in the section “(3) electroencephalogram measurement system”.
- Electroencephalogram Measurement System (3.1) Configuration
- the electroencephalogram measurement system 10 according to the present embodiment will be described in more detail.
- the electroencephalogram measurement system 10 includes a headset 1 mounted on the head 52 of the subject 5 and an information processing apparatus 2 mainly composed of a computer system such as a personal computer. .
- the headset 1 includes an electrode unit 11, a signal processing unit 12, and a first communication unit 13.
- the headset 1 is, for example, battery-powered, and power for operation of the signal processing unit 12 and the first communication unit 13 is supplied from the battery.
- the electrode unit 11 is an electrode for collecting the brain wave (brain wave signal) of the subject 5 and is, for example, a silver-silver chloride electrode.
- the electrode portion 11 may be gold, silver, platinum or the like.
- the electrode unit 11 has a first electrode 111 and a second electrode 112.
- the measurement point 51 set on the surface of the head 52 of the subject 5 includes a first measurement point 511 and a second measurement point 512.
- the first electrode 111 is an electrode corresponding to the first measurement point 511, and is disposed on the first measurement point 511.
- the second electrode 112 is an electrode corresponding to the second measurement point 512, and is disposed on the second measurement point 512.
- the first measurement point 511 and the second measurement point 512 are the first measurement point 511, the second measurement point 511 from the middle center side (upper side) on the line connecting the middle center of the head 52 and the right ear.
- the measurement points 512 are arranged in order.
- the headset 1 further includes the reference electrode 113 and the ground electrode 114.
- the reference electrode 113 is an electrode for measuring a reference potential of an electroencephalogram signal measured by each of the first electrode 111 and the second electrode 112.
- the reference electrode 113 is disposed at a rear position of either the right ear or the left ear on the head 52. Specifically, the reference electrode 113 is disposed at the head 52 at a position behind the ear on which the first electrode 111 and the second electrode 112 are disposed. In the present embodiment, since the first electrode 111 and the second electrode 112 are disposed on the right surface of the head 52, the reference electrode 113 is disposed at the rear position of the right ear.
- the earth electrode 114 is disposed at the rear of the right ear or the left ear of the head 52 where the reference electrode 113 is not disposed. In the present embodiment, since the reference electrode 113 is disposed at the rear position of the right ear, the ground electrode 114 is disposed at the rear position of the left ear. Each of the reference electrode 113 and the ground electrode 114 is electrically connected to the main body 15 of the headset 1 by the electric wire 16 (see FIG. 2), and is attached to the surface (scalp) of the head 52. The position where the reference electrode 113 and the ground electrode 114 are disposed may be the earlobe instead of the position behind the ear as described above.
- the posterior position of the ear and the earlobe are places in the head that are less susceptible to biopotentials from brain activity. That is, it is preferable that the reference electrode 113 and the ground electrode 114 be disposed at a position on the head that is not easily influenced by bioelectric potential derived from brain activity.
- the signal processing unit 12 is electrically connected to the electrode unit 11, the reference electrode 113, and the earth electrode 114, and performs signal processing on an electroencephalogram signal (electric signal) input from the electrode unit 11, Generate That is, the headset 1 measures the brain waves of the subject 5 by measuring the action potential of the brain of the subject 5 by the electrode unit 11, and generates the brain wave information representing the brain waves by the signal processing unit 12.
- the signal processing unit 12 includes at least an amplifier for amplifying an electroencephalogram signal and an A / D converter for A / D conversion, and outputs an electroencephalogram signal in digital form after amplification as electroencephalogram information.
- the first communication unit 13 has a communication function with the information processing device 2.
- the first communication unit 13 transmits at least the electroencephalogram information generated by the signal processing unit 12 to the information processing device 2.
- the first communication unit 13 can communicate bi-directionally with the information processing apparatus 2.
- the communication method of the first communication unit 13 is, for example, wireless communication compliant with Bluetooth (registered trademark) or the like. From the first communication unit 13, electroencephalogram information is transmitted to the information processing device 2 as needed.
- the information processing apparatus 2 mainly includes a computer system including a processor 21 and a memory 22.
- the information processing apparatus 2 further includes a second communication unit 23, an operation unit 24, a third communication unit 25, and a display unit 26.
- the second communication unit 23 has a communication function with the headset 1 (first communication unit 13).
- the second communication unit 23 receives at least brain wave information from the headset 1.
- the second communication unit 23 can communicate bi-directionally with the headset 1.
- the second communication unit 23 receives brain wave information sampled at a sampling frequency of about 200 Hz from the headset 1 as needed.
- the third communication unit 25 has a communication function with the control device 4.
- the third communication unit 25 transmits at least a control signal to the control device 4.
- the communication method of the third communication unit 25 is, for example, wired communication conforming to USB (Universal Serial Bus).
- the information processing apparatus 2 includes a touch panel display, and the touch panel display functions as the operation unit 24 and the display unit 26. Therefore, in the information processing apparatus 2, when the operation unit 24 detects an operation (tap, swipe, drag, etc.) of an object such as a button on each screen displayed on the display unit 26, an object such as a button is displayed. Judge that it has been operated. That is, in addition to various displays, the operation unit 24 and the display unit 26 function as a user interface that receives operation input from the subject 5 or medical staff.
- the operation unit 24 is not limited to the touch panel display, and may be, for example, a keyboard, a pointing device, or a mechanical switch.
- the processor 21 has functions of an acquisition unit 211, an analysis unit 212, a detection unit 213, a determination unit 214, a processing unit 215, an input unit 216, an output unit 217, a display control unit 218, a selection unit 219, a presentation unit 220, and a deletion unit 221. have.
- the processor 21 executes the program stored in the memory 22 to obtain the acquisition unit 211, the analysis unit 212, the detection unit 213, the determination unit 214, the processing unit 215, the input unit 216, the output unit 217, and the display control unit 218. Function is realized.
- the processor 21 executes the program stored in the memory 22, the functions of the selection unit 219, the presentation unit 220, and the deletion unit 221 are realized.
- the acquisition unit 211 acquires electroencephalogram information representing an electroencephalogram collected by the electrode unit 11 disposed at the measurement point 51 which is a part of the head 52 of the subject 5. That is, the acquisition unit 211 acquires brain wave information representing brain waves collected by the electrode unit 11 of the headset 1 from the headset 1 via the second communication unit 23. Here, the acquisition unit 211 acquires first brain wave information representing the brain waves collected by the first electrode 111 and second brain wave information representing the brain waves collected by the second electrode 112.
- the electrode unit 11 since the electrode unit 11 includes the first electrode 111 and the second electrode 112, in the acquisition unit 211, the electroencephalogram information collected by the first electrode 111 is the first electroencephalogram information, the second electrode The brain wave information collected at 112 is distinguished as second brain wave information.
- the acquisition unit 211 acquires brain wave information in digital form, and stores the acquired brain wave information in the memory 22.
- the memory 22 stores time-series data of electroencephalogram information measured by the electroencephalogram measurement system 10 from the start to the end of the training time.
- the memory 22 can store a plurality of brain wave information. That is, the memory 22 functions as a storage unit that stores a plurality of brain wave information acquired by the acquisition unit 211.
- the analysis unit 212 analyzes the electroencephalogram information acquired by the acquisition unit 211.
- the analysis unit 212 performs frequency analysis of brain wave information stored in the memory 22 and generates spectrum data indicating signal strength for each frequency band.
- the analysis unit 212 reads out the electroencephalogram information stored in the memory 22 for a predetermined time, and performs frequency analysis such as short-time Fourier transform (STFT), for example. Thereby, power of each frequency band is calculated for an electroencephalogram signal that changes with time.
- STFT short-time Fourier transform
- Power in the present disclosure is an integrated value of intensities (spectral intensities) for each frequency band.
- the detection unit 213 detects an electroencephalogram including a characteristic change that may occur when the subject 5 intends to perform a voluntary exercise based on the power of each frequency band analyzed by the analysis unit 212. Specifically, the detection unit 213 determines the presence or absence of an electroencephalogram including a characteristic change depending on whether the power of the specific frequency band is in the resting range or the motion range.
- the “resting area” referred to in the present disclosure is the brain wave of the subject 5 when the subject 5 is in a resting state, that is, does not intend to perform voluntary exercise (remembering) and maintains a relaxed state. It means the range that the power of the specific frequency band of can take.
- the “movement range” in the present disclosure means a range in which the power of a specific frequency band of the electroencephalogram can be taken when the subject 5 intends to perform a voluntary exercise. That is, the detection unit 213 generates an electroencephalogram including a characteristic change that may occur when the subject 5 intends to perform voluntary exercise when the power of the specific frequency band transitions from the resting range to the exercise range. I will judge.
- the detection unit 213 first calculates an activation level representing a decrease in power of a specific frequency band from the power of each frequency band analyzed by the analysis unit 212. Then, the detection unit 213 compares the calculated activation level with the threshold stored in the memory 22, and determines that the characteristic change of the electroencephalogram has occurred when the activation level exceeds the threshold. That is, the threshold for the activation level is a value corresponding to the boundary line (straight line Lth1) between the resting range A1 and the motion range A2 in the graph representing the power of the specific frequency band (see FIG. 6).
- the determination unit 214 determines the presence or absence of an artifact based on the brain wave information acquired by the acquisition unit 211. Since the artifact is a noise component to the electroencephalogram as described above, when the determination unit 214 determines that the artifact is included, the measurement accuracy of the electroencephalogram may be degraded. The operation of the determination unit 214 will be described in detail in the section “(3.3) Calibration process”.
- the processing unit 215 executes a calibration process for determining parameters used for analysis of electroencephalogram information. That is, in the processing unit 215, calibration processing for determining various parameters including at least a threshold for the activation level is performed. The calibration process by the processing unit 215 is performed prior to the training process. The processing unit 215 stores various parameters determined in the calibration process in the memory 22.
- the input unit 216 receives, from the operation unit 24, a designation signal for designating one or more brain wave information to be used for the calibration process among the plurality of brain wave information stored in the memory 22. That is, in the calibration process, one or more brain wave information designated by the designation signal among the plurality of brain wave information stored in the memory 22 is used.
- the designation signal received by the input unit 216 from the operation unit 24 is a signal for designating one or more brain wave information to be used for calibration processing among a plurality of brain wave information stored in the memory 22. is there.
- the input unit 216 has a function of executing a re-designation process of accepting a designation signal after the processing unit 215 executes the calibration process. Then, the processing unit 215 has a function to execute the calibration processing again based on the one or more brain wave information designated by the designation signal received by the input unit 216 in the redesignation processing. That is, the processing unit 215 is configured to be able to repeatedly execute the calibration process a plurality of times. The input unit 216 is configured to be able to receive the designation signal in the re-designating process before the start of the “N + 1” -th calibration process after the “N” -th calibration process ends (N is a natural number) .
- the re-designation process will be described in detail in the section “(3.4) Re-designation process”.
- the acquisition unit 211 performs additional processing to further acquire brain wave information and add it to the memory 22 in a period from when the processing unit 215 executes calibration processing until the input unit 216 executes re-designation processing. It has a function to execute. That is, when the processing unit 215 repeatedly executes the calibration process a plurality of times, the acquiring unit 211 additionally acquires brain wave information and adds it to the memory 22 before the input unit 216 executes the re-designating process. Processing is configured to be executable.
- the brain wave information is added to the memory 22 by the additional process of the acquisition unit 211, and then the input unit 216 A designation signal can be received in the re-designation process of.
- the addition process will be described in detail in the section “(3.3) Calibration process”.
- the output unit 217 outputs the determination result of the determination unit 214. That is, when the determination unit 214 determines the presence or absence of an artifact, the determination result is output from the output unit 217. Examples of the output mode of the determination result by the output unit 217 include display, voice output, printout (printing), writing to a non-temporary recording medium, and transmission to an information terminal. In the present embodiment, the output unit 217 outputs the determination result to the display control unit 218 so that the determination result is displayed on the display unit 26.
- the display control unit 218 causes the display unit 26 to display a plurality of brain wave information stored in the memory 22. Further, the display control unit 218 causes the display unit 26 to display the determination result output by the output unit 217.
- the display control unit 218 has a function of controlling the display unit 26, and can display various contents on the display unit 26.
- the display control unit 218 causes the display unit 26 to display at least the plurality of brain wave information stored in the memory 22 and the determination result of the determination unit 214.
- the selection unit 219 receives a selection signal from the operation unit 24 after the processing unit 215 executes the calibration process until the input unit 216 executes the re-designation process.
- the “selection signal” in the present disclosure is a signal for selecting whether or not to execute the additional process by the acquisition unit 211. That is, the acquisition unit 211 does not necessarily execute the addition process before the execution of the re-designation process, and whether or not the acquisition unit 211 performs the addition process can be selected by the selection signal. Therefore, only when the execution of the additional processing is selected in the selection processing, the additional processing by the acquiring unit 211 is executed before the execution of the re-designation processing.
- the presentation unit 220 presents the result of the calibration process. That is, when the calibration process is performed in the processing unit 215, the result is presented from the presentation unit 220. Examples of modes of presentation by the presentation unit 220 include display, audio output, printout (printing), writing to a non-temporary recording medium, and transmission to an information terminal. In the present embodiment, the presentation unit 220 outputs the result of the calibration process to the display control unit 218 such that the result of the calibration process is displayed on the display unit 26.
- the deletion unit 221 deletes at least one brain wave information from among the plurality of brain wave information stored in the memory 22. Specifically, the deletion unit 221 deletes (deletes) at least one electroencephalogram information not designated by the designation signal received by the input unit 216 from the storage area of the electroencephalogram information in the memory 22.
- the operation mode of the rehabilitation support system 100 is a training mode. If the operation mode of the rehabilitation support system 100 is in the training mode, for example, a training screen 200 as shown in FIG. 4 is displayed on the display unit 26 of the information processing device 2.
- a training screen 200 as shown in FIG. 4 is displayed on the display unit 26 of the information processing device 2.
- the dashed-dotted line indicating the region and the reference numeral are only shown for the sake of explanation, and in fact, the dashed-dotted line and the reference numeral are not displayed on the display unit 26.
- the training screen 200 includes an activation level display area G1, an electroencephalogram display area G2, a training start button G3, a brace operation button G4, a count display area G5, a sensing state display area G6, an apparatus state display area G7, a status display area G8 and an end. It has a button G9.
- the training screen 200 further includes an operation guide area G10, a check box G11, a training information output button G12, a history button G13, and a setting button G14.
- the activation level display area G1 is an area for displaying a graph of the activation level.
- the activation level graph displays a waveform representing a time change of the activation level, with the horizontal axis representing time (seconds) and the vertical axis representing the activation level.
- a straight line L1 represents a threshold (a set value).
- a band of judgment marks M1 is displayed above the graph of the activation level.
- the background color of the activation level graph may be different between the resting period (0-5 seconds period) in the first half of the training time and the exercise period (5-10 seconds period) in the second half of the training time preferable.
- the electroencephalogram display area G2 is an area for displaying the electroencephalogram measured by the headset 1.
- the brain waves in the brain wave display area G2 are displayed in real time according to the brain wave information transmitted from the headset 1 to the information processing device 2.
- the graph of the electroencephalogram has a horizontal axis representing time (seconds) and a vertical axis representing potential, and displays a waveform representing time change of the electroencephalogram.
- the training start button G3 is a button for starting training. By the training start button G3 being tapped, the training by the rehabilitation support system 100 is started, and the measurement of the electroencephalogram in the electroencephalogram measurement system 10 is started.
- the brace operation button G4 is a button for operating the exercise assisting device 3. By tapping the device operation button G4, a control signal is output from the electroencephalogram measurement system 10, and the closing operation or the opening operation of the exercise assisting apparatus 3 is performed. Here, text information such as “apparatus closed” or “apparatus open” is displayed on the appliance operation button G4.
- the brace operation button G4 is tapped in a state in which "the brace is closed”
- the closing operation of the exercise assisting device 3 is performed
- the brace operation button G4 is tapped in a state in which "the brace is opened” Then, the opening operation of the exercise assisting device 3 is performed.
- the number display area G5 is an area for displaying the number of successes and the number of trials.
- the “number of successes” refers to an exercise period of training time in which an electroencephalogram measurement system 10 includes characteristic changes due to event-related desynchronization that may occur when the subject 5 intends to perform voluntary exercise. This is the number of times detected inside.
- the “number of trials” in the present disclosure is the number of times training is performed by the rehabilitation support system 100.
- the sensing state display area G6 is an area for displaying the sensing state of the electroencephalogram.
- the electroencephalogram measurement system 10 measures, for each of the first electrode 111 and the second electrode 112, an impedance value with respect to the body (scalp) of the subject 5 according to the measured impedance value. It is judged whether the sensing state is good or bad.
- a text display of an impedance value (“80 or more in FIG. 4”) and a marker display indicating the quality of the sensing state of each of the first electrode 111 and the second electrode 112 are displayed in the sensing state display area G6.
- Has been done Specifically, depending on whether the sensing state of each of the first electrode 111 and the second electrode 112 is good or bad, for example, the color of the marker on the illustration imitating the head of a person changes.
- the device state display area G7 is an area for displaying the state of each device in the rehabilitation support system 100.
- the state of connection of the information processing device 2 to the headset 1, the state of the remaining battery capacity of the headset 1, and the like are displayed as icons such as “o” or “x”.
- the status display area G8 is an area for displaying the identification information (subject ID) and name of the subject 5 and the identification information (examiner ID) and name of the medical staff. Further, in the status display area G8, a target icon G81 indicating “rehabilitation target”, that is, whether the target of rehabilitation is “left hand” or “right hand” is further displayed. In the example of FIG. 4, the target icon G ⁇ b> 81 indicates in text information that the target of rehabilitation is the “left hand”.
- the end button G9 is a button for ending the training. By tapping the end button G9, the training by the rehabilitation support system 100 ends, and the measurement of the electroencephalogram in the electroencephalogram measurement system 10 ends.
- the operation guide area G10 is an area for displaying text information for guiding the operation of the rehabilitation support system 100.
- text information “Please press the [Start training] button to start trial” is displayed in the operation guide area G10.
- the display content of the operation guide area G10 changes in accordance with the operation state of the rehabilitation support system 100.
- the check box G11 is an icon for switching whether to display an electroencephalogram in the electroencephalogram display area G2. By tapping the check box G11, a state in which an electroencephalogram is displayed in the electroencephalogram display area G2 and a state in which the electroencephalogram is not displayed are alternately switched. In the state where the display of the check box G11 is active, the electroencephalogram is displayed in the electroencephalogram display area G2.
- the training information output button G12 is a button for outputting training information including the result of rehabilitation. By tapping the training information output button G12, training information is output in a desired manner. Examples of the output mode of the training information include display, voice output, printout (printing), writing to a non-temporary recording medium, and transmission to an information terminal.
- the history button G13 is a button for referring to the history of training information including the result of rehabilitation. By tapping the history button G13, the screen displayed on the display unit 26 of the information processing device 2 changes from the training screen 200 to the history reference screen.
- the history reference screen displays at least the result of rehabilitation performed by the subject 5 in the past.
- the setting button G14 is a button for shifting the operation mode of the rehabilitation support system 100 to a setting mode for performing various settings regarding the rehabilitation support system 100.
- the screen displayed on the display unit 26 of the information processing device 2 changes from the training screen 200 to a setting screen 201 described later (see FIG. 5).
- the subject person 5 performs rehabilitation. That is, when the training start button G3 is tapped, training by the rehabilitation support system 100 is started.
- the electroencephalogram measurement system 10 measures the brain waves of the subject 5. Then, in a resting period (a period of 0 to 5 seconds) in the first half of the training time, the subject 5 puts the body in a resting state in accordance with the display of the operation guide area G10 or the instruction of the medical staff. At this time, the activation level and the electroencephalogram are displayed on the training screen 200 in real time. However, in the resting period, the electroencephalogram measurement system 10 does not compare the activation level with the threshold, and does not detect the electroencephalogram including the characteristic change due to the event-related desynchronization.
- the subject 5 performs the extension operation of the fingers 53, that is, the voluntary exercise according to the display of the operation guide region G10 or the instruction of the medical staff. Make an attempt (remembering) to try.
- the activation level and the electroencephalogram are displayed on the training screen 200 in real time.
- the electroencephalogram measurement system 10 compares the activation level with the threshold to detect an electroencephalogram including a characteristic change due to event-related desynchronization.
- the activation level exceeds the threshold (see the straight line L1 in FIG. 4) due to the occurrence of event-related desynchronization, a band-shaped judgment mark M1 is displayed above the graph of the activation level in the training screen 200. .
- the electroencephalogram measurement system 10 analyzes the electroencephalogram information acquired by the acquisition unit 211 at an analysis unit 212 as needed. Furthermore, the electroencephalogram measurement system 10 calculates the activation level in the detection unit 213 based on the power of each frequency band analyzed by the analysis unit 212, and compares the activation level with the threshold. In the electroencephalogram measurement system 10, it is determined that the activation level exceeds the threshold when the event related desynchronization occurs and the power of the specific frequency band decreases and the power of the specific frequency band transitions from the resting range to the exercise range Be done.
- the specific frequency band may be a single frequency band (as an example, a band of ⁇ waves or a band of ⁇ waves), or a plurality of frequency bands (as an example, a band of ⁇ waves and a band of ⁇ waves) It may be If the specific frequency band is, for example, two frequency bands, the activation level exceeds the threshold value when the coordinate value defined by the power of these two frequency bands transitions from the resting range to the motion range .
- the electroencephalogram measurement system 10 has a function of measuring the duration of the state in which the activation level exceeds the threshold.
- the length of the determination mark M1 corresponds to the length of the duration.
- the electroencephalogram measurement system 10 transmits a third control signal to the exercise assistance device 3 when the activation level rises (changes) to a value exceeding the threshold value from the value below the threshold value.
- the duration time reaches a prescribed time (for example, “1 second”), the electroencephalogram measurement system 10 transmits a first control signal to the exercise assistance device 3.
- the electrical stimulation generator 32 of the motion assist device 3 is driven, and the motion assist device 3 applies an electrical stimulus to the body of the subject 5,
- the voluntary movement (extension movement) of the subject 5 is assisted.
- the finger drive device 31 of the exercise assisting device 3 is driven, and the movement assisting device 3 performs the “opening operation” of the finger drive device 31.
- the voluntary movement (extension movement) of the subject 5 is assisted.
- the setting screen 201 as shown in FIG. 5 is displayed on the display unit 26 of the information processing device 2.
- the dashed-dotted line indicating the region and the reference numeral are only shown for the sake of explanation, and in fact, the dashed-dotted line and the reference numeral are not displayed on the display unit 26.
- the setting screen 201 includes first to fifth setting areas G21 to G25 and an update button G26 in addition to the sensing state display area G6, the apparatus state display area G7, the status display area G8 and the end button G9 similar to the training screen 200. It contains.
- a slide bar for adjusting the intensity (neurostimulation level) of the electrical stimulation by the electrical stimulation generator 32 is displayed.
- a slide bar for adjusting the volume is displayed.
- a slide bar for adjusting a threshold for the activation level is displayed.
- an upper slide bar G27 for adjusting the operation speed of the finger drive device 31 and a lower slide bar G28 for adjusting the movable range of the finger drive device 31 are displayed.
- the “specified time” referred to in the present disclosure is a time for determining whether or not the extension operation of the subject 5 is assisted by the opening operation of the finger drive device 31 and is 1.0 seconds by default as an example. It is set.
- the electroencephalogram measurement system 10 outputs the first control signal to drive the finger drive device 31 when the activation level exceeds the threshold value for a prescribed time period.
- the lower slide bar G28 includes a first slider G281 for adjusting the opening angle and a second slider G282 for adjusting the closing angle.
- the display color for example, light blue
- the illustration indicating the action of the opening operation and the text information indicating the opening angle is set so that the movable range of the finger drive 31 can be sensibly adjusted. It is unified.
- the display color for example, red
- the update button G26 is a button for shifting the operation mode of the rehabilitation support system 100 to the training mode. By tapping the update button G26, the screen displayed on the display unit 26 of the information processing device 2 changes from the setting screen 201 to the training screen 200. At this time, various setting values set on the setting screen 201 are written to the memory 22, and the setting values are updated.
- the calibration process is performed when the operation mode of the rehabilitation support system 100 is the calibration mode.
- the calibration process is a process for determining various parameters including at least a threshold for the activation level. That is, as described above, the frequency band in which the power decreases due to event-related desynchronization, and the reduction amount of the power are, for example, the attributes of the subject 5 (such as age and gender), the failure site, the failure status, and the individual. It fluctuates by the difference etc. Therefore, in the electroencephalogram measurement system 10, in order to enhance the detection accuracy of the electroencephalogram to be detected, various parameters used for analysis of the electroencephalogram information are determined for each subject 5 in the calibration process.
- the calibration process is performed by the electroencephalogram measurement system 10 according to the measurement process of actually measuring the electroencephalogram of the subject 5 in the same procedure as the training course, and various kinds of adjustment based on the measured electroencephalogram. Calculation processing in which the parameter is determined.
- a calibration time divided into a resting period and an exercise period is set, and an electroencephalogram is measured by the electroencephalogram measurement system 10 during this calibration time.
- the subject 5 performs rehabilitation according to the instruction of the rehabilitation support system 100 in each of the resting period and the exercise period in the calibration time.
- the calibration time is "10 seconds"
- the first half "5 seconds” when the calibration time is divided into two is the resting period
- the second half "5 seconds” is the exercise period.
- the electroencephalogram measurement system 10 measures the brain waves of the subject 5 in both the resting period and the exercise period.
- the electroencephalogram measurement system 10 stores the electroencephalogram information measured during the calibration time (rest period and exercise period) in the memory 22 as a record. That is, the “record” in the present disclosure is time-series data of electroencephalogram information measured by the electroencephalogram measurement system 10 during the measurement process from the start to the end of the calibration time.
- the electroencephalogram measurement system 10 does not perform the process of detecting the characteristic change of the electroencephalogram.
- the electroencephalogram measurement system 10 can perform the above-described measurement process multiple times in the calibration process.
- the memory 22 can store a plurality of records with a predetermined number (for example, “30”) as an upper limit.
- the memory 22 stores one or more records representing the electroencephalogram of the subject 5 in the resting period and the exercise period.
- various parameters tailored to the object person 5 are determined using one or more records stored in the memory 22 in one or more measurement processes.
- the electroencephalogram measurement system 10 analyzes the electroencephalogram information acquired by the acquisition unit 211 at any time by the analysis unit 212, and based on the power for each frequency band analyzed by the analysis unit 212, various parameters Decide.
- the parameters determined at this time include at least a threshold for the activation level, and frequency bands of each of the alpha wave and the beta wave.
- one or more records stored in the memory 22 be all used to determine various parameters.
- the input unit 216 uses the operation unit 24 to designate a designation signal that designates one or more brain wave information (record) from among the plurality of brain wave information stored in the memory 22.
- the processing unit 215 executes calibration processing for determining a parameter used for analysis of brain wave information based on one or more brain wave information (record) specified by the designation signal.
- which one of the one or more records stored in the memory 22 is used for the calculation process is specified by the subject 5 or the medical staff.
- FIG. 6 is a graph in which the powers of the resting period and the exercise period are plotted for a plurality of (five in this example) records, focusing on two frequency bands of ⁇ wave and ⁇ wave.
- the horizontal axis represents the power of the alpha wave
- the vertical axis represents the power of the beta wave
- representative values (for example, average values) of power in the resting period are indicated by "o".
- the average value is indicated by "x" mark.
- FIG. 6 it is assumed that the frequency bands of the alpha wave and the beta wave in the subject 5 have already been determined.
- the range in which the “o” mark exists is the resting range A1 and the range in which the “x” mark exists corresponds to the movement range A2 for the two frequency bands of the ⁇ wave and the ⁇ wave.
- the electroencephalogram measurement system 10 includes an electroencephalogram including a characteristic change that may occur when the subject 5 tries to perform voluntary exercise when the power of a specific frequency band transitions from the resting range to the exercise range. It is judged that Therefore, the boundary line (straight line Lth1) between the resting range A1 and the motion range A2 in FIG. 6 corresponds to the threshold value for the activation level.
- the threshold for the activation level can be determined based on one or more records measured in the measurement process.
- the rehabilitation support system 100 uses various parameters determined in the calibration process. Further, in the third setting area G23 of the setting screen 201 (see FIG. 5), as described above, it is possible to adjust the threshold with respect to the activation level with the slide bar. However, on the setting screen 201, the threshold determined in the calibration processing is only adjusted to shift in the positive direction or the negative direction, and the threshold serving as the reference is determined in the calibration processing.
- the method of determining the threshold is not limited to the method described above, and various methods such as Linear Discriminant Analysis (LDA) or Support Vector Machine (SVM) can be applied.
- LDA Linear Discriminant Analysis
- SVM Support Vector Machine
- a calibration screen 202 as shown in, for example, FIG. 7 is displayed on the display unit 26 of the information processing device 2.
- a selection screen 203 as shown in FIG. 8 is displayed on the display unit 26 of the information processing device 2.
- a record to be used for the calculation process is selected.
- a calibration result screen 204 as shown in FIG. 9, for example is displayed on the display unit 26 of the information processing device 2.
- the calibration screen 202 is, as shown in FIG. 7, an activation level display area G1, an electroencephalogram display area G2, a frequency display area G5, a sensing state display area G6, an apparatus state display area G7, and a status display similar to the training screen 200.
- a region G8 and an end button G9 are included.
- the calibration screen 202 includes a measurement start button G31, a transition button G32, and a back button G33 in addition to the operation guide area G10 and the check box G11 similar to the training screen 200.
- the activation level display area G1 of the calibration screen 202 is basically the same as the training screen 200, but differs from the training screen 200 in that the respective graphs of the alpha wave and the beta wave are displayed.
- count display area G5 of the calibration screen 202 is fundamentally the same as the training screen 200, it differs from the training screen 200 by the point in which "the number of successes" is not displayed.
- the activation level display area G1 of the calibration screen 202 a graph of the activation level for the alpha wave and a graph of the activation level for the beta wave are simultaneously displayed.
- the display mode for example, display color
- the activation level display area G1 does not display the straight line L1 representing the threshold (set value), and the graph above the activation level is displayed.
- the judgment mark M1 is not displayed either.
- the background color of the activation level graph may be different between the resting period (0-5 seconds period) in the first half of the calibration time and the resting period (5-10 seconds period) in the second half of the calibration time preferable.
- the measurement start button G31 is a button for starting the measurement process. Measurement of the electroencephalogram in the electroencephalogram measurement system 10 is started by tapping the measurement start button G31.
- the transition button G32 is a button for shifting to calculation processing. By tapping the transition button G32, the electroencephalogram measurement system 10 ends the measurement processing, and the screen displayed on the display unit 26 of the information processing device 2 changes from the calibration screen 202 to the selection screen 203 (see FIG. 8). Transition.
- the return button G33 is a button for returning the electroencephalogram measurement system 10 to the state before the start of the calibration process. By tapping the back button G33, the electroencephalogram measurement system 10 ends the calibration process, and returns to the state before the start of the calibration process.
- the selection screen 203 includes a record display area G41, an operation guide area G42, a legend display area G43, a follow button G44, a selection number display area G45, and a calculation button G46.
- the record display area G41 is an area for displaying an electroencephalogram stored in the memory 22 as a record.
- the horizontal axis represents time (seconds) and the vertical axis represents potential, and a waveform representing time change of the electroencephalogram is displayed.
- electroencephalograms are vertically arranged and displayed for a plurality of (two in this case) records stored in the memory 22.
- a check box G411 is displayed on the right side of the electroencephalogram of each record in association with the record.
- the check box G411 is an icon for selecting a record used for the calculation process. By tapping the check box G411, the state where the corresponding record is used for the calculation process and the state where it is not used are alternately switched. In the state where the display of the check box G411 is active, the corresponding record is used for the calculation process.
- the records displayed in the record display area G41 can be scrolled in the vertical direction. As a result, a large number of records can be displayed in the record display area G41 beyond the number that can be displayed in a list in the record display area G41.
- a band-shaped artifact mark M2 is displayed corresponding to each record.
- the artifact mark M2 is displayed only in a period in which it is determined that brain wave information includes an artifact.
- the determination result in the determination unit 214 is an artifact mark It will be reflected in M2.
- an artifact is included in the brain wave information in a period in which the artifact mark M2 is displayed for certain brain wave information, and an artifact is included in the brain wave information in a period in which the artifact mark M2 is not displayed.
- an artifact mark M2 is displayed for certain brain wave information
- an artifact is included in the brain wave information in a period in which the artifact mark M2 is not displayed.
- the electroencephalogram measurement system 10 by displaying such an artifact mark M2 in the record display area G41, it is possible to easily select a record to be used for calculation processing from among records not including an artifact. Become.
- the target person 5 or the medical staff receives from the operation unit 24 a designation signal representing the record selected in the check box G411. That is, the target person 5 or the medical staff selects the record to be used for the calculation process in the check box G411, and is used for the calibration process (calculation process) from among the plurality of electroencephalogram information acquired by the acquisition unit 211.
- One or more brain wave information is specified.
- the operation guide area G42 is an area for displaying text information for guiding the operation of the electroencephalogram measurement system 10.
- select “Select the waveform to be used for analysis. Select two or more and press” Calculation "to display the calculation result here.
- the waveform which has been deselected can be redone. If you want to try again, the text information "Please try again” is displayed.
- the display content of the operation guide area G42 changes in accordance with the operation state of the electroencephalogram measurement system 10.
- the legend display area G43 is an area for displaying the description of the display mode of the artifact mark M2.
- the electroencephalogram measurement system 10 according to the present embodiment has a function of further determining the type of artifact if it is determined that there is an artifact as well as the presence or absence of an artifact. Then, the display mode of the artifact mark M2 differs depending on the type of the determined artifact.
- the types of artifacts include at least an artifact caused by eye movement (hereinafter also referred to as "eye-derived artifact”) and an artifact caused by body movement / expression muscle movement (hereinafter referred to as "body movement-derived artifact”
- eye-derived artifact an artifact caused by eye movement
- body movement-derived artifact There are two types: The display aspect (for example, display color) of artifact mark M2 differs in the artifact derived from eyeballs and the artifact derived from body movement. Therefore, in the legend display area G43, these two types of display modes are displayed together with their respective descriptions.
- the retry button G44 is a button for starting a retry.
- the “retry” in the present disclosure is a process of adding a record by performing the measurement process again. That is, each time the retrial is performed, the measurement process is performed again, and the acquisition unit 211 performs an additional process of further acquiring brain wave information and adding it to the memory 22. By tapping the retry button G44, the transition from the selection screen 203 to the calibration screen 202 is made.
- the selection number display area G45 is an area for displaying the number of records (waveforms) selected on the selection screen 203. Specifically, the number of records displayed in the record display area G41 (that is, the number of records stored in the memory 22) is used as a denominator, and the number of records selected as records used for the calculation process is a numerator. The number of records is displayed in fractional notation. For example, as shown in FIG. 8, when all of the two records displayed in the record display area G41 are selected (that is, the display of the check box G411 is active), the number of selections is displayed. In the area G45, "2/2" is displayed.
- the calculation button G46 is a button for starting the calculation process. By tapping the calculation button G46, the electroencephalogram measurement system 10 starts the calculation process using the record selected on the selection screen 203 at that time.
- the calibration result screen 204 includes, as shown in FIG. 9, a record display area G41 similar to the selection screen 203, a legend display area G43, a retrial button G44, a selection number display area G45, and a calculation button G46.
- the calibration result screen 204 further includes a time frequency map G51, an information display area G52, an analysis result display area G53, and an end button G54.
- the time frequency map G51 is a graph representing the tendency of change in power of a specific frequency band at the calibration time used in the calculation process.
- the power of each coordinate position is represented by "color" in a two-dimensional map in which the horizontal axis is a time axis and the vertical axis is a frequency. That is, according to the time frequency map G51, the frequency band in which the change of power occurs from the resting period to the exercise period is visually displayed.
- straight lines G511 and G512 indicating the respective frequency bands of the ⁇ wave and the ⁇ wave calculated by the calculation process are displayed.
- the straight line G511 represents the lower limit value and the upper limit value of the frequency band (range) of the ⁇ wave
- the straight line G512 represents the lower limit value and the upper limit value of the frequency band (range) of the ⁇ wave.
- the information display area G52 is an area for displaying information related to measurement processing.
- text information representing the number of times of measurement processing execution (the number of analysis trials), the length of time of a resting period (relaxation period), and the length of time of an exercise period (image period) It is displayed.
- the analysis result display area G53 is an area for displaying the analysis result in the calculation process.
- the text information representing H is displayed in the analysis result display area G53.
- the end button G54 is a button for ending the calibration process.
- the electroencephalogram measurement system 10 ends the calibration process by tapping the end button G54.
- the electroencephalogram measurement system 10 displays a calibration screen 202 (see FIG. 7) on the display unit 26 of the information processing device 2 (S1). Measurement of an electroencephalogram in the electroencephalogram measurement system 10, that is, measurement processing is started by tapping the measurement start button G31 on the calibration screen 202 (S2). Thereby, the electroencephalogram information in the acquisition unit 211 is acquired, and the acquired electroencephalogram information is stored as a record in the memory 22 (S3).
- the electroencephalogram measurement system 10 displays the selection screen 203 (see FIG. 8) on the display unit 26 of the information processing device 2 (S4).
- a designation signal for designating one or more brain wave information from among a plurality of brain wave information (records) stored in the memory 22 is received (S5).
- the input unit 216 receives, from the operation unit 24, a specification signal indicating the record selected by the subject 5 or the medical staff in the check box G411 of the record display area G41.
- the electroencephalogram measurement system 10 returns to step S1. Therefore, the screen of the display unit 26 is switched from the selection screen 203 to the calibration screen 202. That is, when the follow-up button G44 is tapped on the selection screen 203 (S7: Yes), the measurement process (S2) is performed again, and the acquisition unit 211 further acquires brain wave information and adds it to the memory 22. An additional process is to be performed (S3).
- the display control unit 218 causes the display unit 26 to display a plurality of brain wave information stored in the memory 22, the brain wave information is added to the memory 22, and the display control unit 218 executes additional processing. It will be done.
- the addition process performed by the display control unit 218 is a process of adding another brain wave information to the plurality of brain wave information to be displayed on the display unit 26.
- calculation processing for determining various parameters used for analysis of electroencephalogram information is executed (S8).
- various parameters used for analysis of the electroencephalogram information are determined using the electroencephalogram information designated by the designation signal in step S5. .
- the electroencephalogram measurement system 10 displays the calibration result screen 204 (see FIG. 9) on the display unit 26 of the information processing device 2 (S9). That is, on the calibration result screen 204, the presentation unit 220 presents (displays) the result of the calibration process.
- a record display area G41 similar to the selection screen 203 is displayed, and designation for designating one or more brain wave information from among a plurality of brain wave information (records) stored in the memory 22.
- a signal is received (S10).
- the input unit 216 receives, from the operation unit 24, a specification signal indicating the record selected by the subject 5 or the medical staff in the check box G411 of the record display area G41.
- the electroencephalogram measurement system 10 ends the calibration process. At this time, in practice, the electroencephalogram measurement system 10 ends the calibration process by tapping the end button G54 as described above.
- the electroencephalogram measurement system 10 returns to step S1. Therefore, the screen of the display unit 26 is switched from the calibration result screen 204 to the calibration screen 202. That is, when the follow-up button G44 is tapped on the calibration result screen 204 (S12: Yes), the measurement process (S2) is performed again, and the acquiring unit 211 further acquires brain wave information and the memory 22. An additional process to be added to is executed (S3).
- calculation processing for determining various parameters used for analysis of brain wave information is executed again (S8) .
- various parameters used for analysis of the electroencephalogram information are determined using the electroencephalogram information designated by the designation signal in step S10. .
- the brain wave information (record) not designated by the designation signal is deleted by the deletion unit 221. It is deleted from the memory 22.
- the follow-up button G44 is tapped, the display of the check box G411 is inactive, that is, the electroencephalogram information (record) whose check box G411 is unchecked is deleted. Therefore, after the retry button G44 is tapped and the addition process is executed, the electroencephalogram information deleted from the memory 22 by the deletion unit 221 will deviate from the options of the electroencephalogram information specified by the specification signal. .
- step S5 after passing through step S10 or step S11 and step S12, after the processing unit 215 performs the calibration process, the re-designation process of accepting the designation signal is performed.
- the selection unit 219 receives, from the operation unit 24, a selection signal indicating which of the calculation button G46 and the follow-up button G44 has been operated on the calibration result screen 204. That is, when the calculation button G46 of the calibration result screen 204 is tapped (S11: Yes), after the calculation process (S8), the re-designating process in step S10 is performed without performing the additional process. Be done. On the other hand, when the follow-up button G44 of the calibration result screen 204 is tapped (S12: Yes), after the addition process (S3) is executed after the calculation process (S8), re-designation in step S5 Processing is performed.
- Embodiment 1 is only one of various embodiments of the present disclosure.
- the first embodiment can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved.
- the same function as that of the electroencephalogram measurement system 10 may be embodied by an electroencephalogram measurement method, a (computer) program, or a non-temporary recording medium recording the program.
- the electroencephalogram measurement method acquires brain wave information representing an electroencephalogram collected by the electrode unit 11 disposed at the measurement point 51 which is a part of the head 52 of the subject 5, and stores the memory unit (memory 22) store a plurality of electroencephalogram information.
- a designation signal for designating one or more pieces of brain wave information from among a plurality of pieces of brain wave information stored in the storage unit (memory 22) is received from the operation unit 24. Furthermore, in the electroencephalogram measurement method, calibration processing for determining parameters used for analysis of electroencephalogram information is executed based on one or more electroencephalogram information designated by the designation signal.
- a (computer) program according to an aspect is a program for causing a computer system to execute the above-described electroencephalogram measurement method.
- the electroencephalogram measurement system 10 in the present disclosure includes a computer system.
- the computer system mainly includes a processor and memory as hardware.
- the processor executes the program stored in the memory of the computer system to implement the function as the electroencephalogram measurement system 10 in the present disclosure.
- the program may be pre-recorded in the memory of the computer system, may be provided through a telecommunication line, and recorded in a non-transitory recording medium such as a computer system-readable memory card, an optical disc, a hard disk drive, etc. It may be provided.
- a processor of a computer system is configured of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
- IC semiconductor integrated circuit
- LSI large scale integrated circuit
- integrated circuit such as IC or LSI
- IC integrated circuit
- LSI very large scale integration
- ULSI ultra large scale integration
- FPGA field-programmable gate array
- the plurality of electronic circuits may be integrated into one chip or may be distributed to a plurality of chips.
- the plurality of chips may be integrated into one device or may be distributed to a plurality of devices.
- the electroencephalogram measurement system 10 it is not an essential configuration for the electroencephalogram measurement system 10 that a plurality of components of the information processing device 2 are integrated in one case, and a plurality of components of the information processing device 2 are a plurality of It may be provided separately in the case. Even when a plurality of components are distributed in a plurality of cases, for example, the plurality of components are connected via a network such as the Internet to realize the electroencephalogram measurement system 10 in cooperation. can do. Furthermore, at least a part of the functions of the electroencephalogram measurement system 10 may be realized by, for example, a server or a cloud (cloud computing).
- the functions distributed to a plurality of devices are one case together with other components of the electroencephalogram measurement system 10 as a part of the electroencephalogram measurement system 10. It may be integrated in the body.
- the electrode part 11 is not limited to the structure which contacts the surface (scalp) of the head 52 of the subject 5, for example, the electrode part 11 is comprised so that the electrode part 11 may contact the surface (brain surface) of a brain. It may be done.
- the rehabilitation support system 100 is not limited to the rehabilitation of the fingers of the subject 5, but is used for rehabilitation of any part of the body of the subject 5, such as the shoulder, elbow, upper arm, waist, lower extremity, or upper extremity. It is also good.
- the manner of characteristic changes of the electroencephalogram that may occur when the subject 5 intends to perform voluntary exercise may differ depending on the target site of rehabilitation, exercise content and the like. For example, if event-related synchronization (ERS) occurs when the subject 5 intends to perform a voluntary exercise, in the electroencephalogram measured in the vicinity of the motor area at the time of voluntary exercise, a specific frequency band Power increases. In this case, the electroencephalogram measurement system 10 detects the characteristic change of the electroencephalogram by the increase of the power of the specific frequency band.
- ERS event-related synchronization
- the rehabilitation support system 100 is not limited to the configuration that gives the subject 5 electrical or mechanical (mechanical) stimulation, and for example, the configuration that gives the subject 5 a visual stimulus by displaying an image. It may be In this case, for example, when the subject 5 intends to perform a voluntary exercise, the rehabilitation support system 100 is timed to the timing at which the activation of the brain region corresponding to the target area of the voluntary exercise actually occurs. The subject 5 is shown an image in which the failure site is moving normally. Even in this way, the rehabilitation support system 100 can assist the voluntary exercise of the subject 5.
- the movement assistance device 3 and the control device 4 are not limited to separate bodies, and for example, the movement assistance device 3 and the control device 4 may be accommodated and integrated in one case.
- the communication method between the headset 1 and the information processing apparatus 2 is wireless communication in the first embodiment, but the present invention is not limited to this example.
- wired communication may be used.
- a communication method may be used.
- the communication method between the control device 4 and the information processing device 2 is wired communication in the first embodiment, but the present invention is not limited to this example.
- wireless communication may be used, and communication via relays etc. It may be a method.
- the headset 1 is not limited to the battery drive type, and the operation power of the signal processing unit 12 and the first communication unit 13 may be supplied from, for example, the information processing apparatus 2.
- the information processing apparatus 2 is not limited to the configuration for acquiring brain wave information from the dedicated headset 1, and may be configured to acquire brain wave information from, for example, a general-purpose electroencephalograph.
- the determination result of the artifact may be output in the training process.
- the subject 5 and the medical staff can easily confirm the state of the artifact in the training process.
- the subject 5 or medical staff selects the electroencephalogram information to be used for the calibration process with reference to the determination result of the artifact, but the present invention is not limited to this example.
- EEG information may be automatically selected. That is, when the output unit 217 outputs the determination result of the artifact to, for example, the processing unit 215, the processing unit 215 automatically selects the electroencephalogram information to be used for the calibration process based on the determination result of the artifact. It is also good. In this case, it is preferable that the processing unit 215 select, for example, only brain wave information determined not to contain an artifact.
- the storage unit that stores a plurality of brain wave information acquired by the acquisition unit 211 is not limited to the memory 22 of the information processing device 2, for example, a non-temporary recording medium accessible by the information processing device 2, a server, or a cloud (Cloud computing) may be realized.
- the configuration in which the electroencephalogram information stored in the memory 22 is displayed as a record in the record display area G41 when the input unit 216 receives a designation signal from the operation unit 24 is not an essential configuration of the electroencephalogram measurement system 10.
- the brain wave information stored in the memory 22 is presented to the subject 5 or medical staff in a mode such as voice output, printout (writing), writing to a non-temporary recording medium, and transmission to an information terminal. It may be done.
- the deletion unit 221 is not limited to the configuration in which the brain wave information not designated by the designation signal is deleted from the memory 22.
- the memory 102 automatically stores old brain wave information by leaving the latest predetermined number of records (brain wave information). You may delete it from 22.
- the electroencephalogram measurement system (10) includes the acquisition unit (211), the storage unit (memory 22), the input unit (216), and the processing unit (215).
- An acquisition unit (211) acquires brain wave information.
- the electroencephalogram information is information representing an electroencephalogram collected by the electrode unit (11).
- the electrode unit (11) is disposed at a measurement point (51) which is a part of the head (52) of the subject (5).
- the storage unit stores a plurality of brain wave information acquired by the acquisition unit (211).
- the input unit (216) receives, from the operation unit (24), a designation signal for designating one or more pieces of brain wave information from among the plurality of pieces of brain wave information stored in the storage unit.
- the processing unit (215) executes a calibration process for determining a parameter used for analysis of brain wave information, based on the one or more brain wave information specified by the designation signal.
- the calibration process it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
- the electroencephalogram measurement system (10) is, in the first aspect, a display control part (218) that causes the display part (26) to display a plurality of electroencephalogram information stored in the storage part (memory 22). Further comprising
- the input unit (216) re-specifies the designation signal to be accepted after the processing unit (215) executes the calibration processing. Execute the process The processing unit (215) executes the calibration processing again based on the one or more brain wave information designated by the designation signal received by the input unit (216) in the re-designation processing.
- the calibration process can be executed again in the state where one or more brain wave information used for the calibration process is redesignated by the re-designation process. Therefore, compared with the case where the acquired electroencephalogram information is discarded and retried from acquisition of the electroencephalogram information by the acquisition unit (211), the time required for the calibration process again can be shortened, and the target person (5) and medical staff It is possible to reduce the burden of
- the acquisition unit (211) executes an additional process.
- brain wave information is further acquired and stored in the storage unit (memory 22) in a period from when the processing unit (215) executes calibration processing until the input unit (216) executes re-designation processing. It is a process to add.
- the re-designation process can be executed in a state where the choice of the electroencephalogram information is increased by the addition process. Therefore, compared with the case where the acquired electroencephalogram information is discarded and retried from acquisition of the electroencephalogram information by the acquisition unit (211), the time required for the calibration process again can be shortened, and the target person (5) and medical staff It is possible to reduce the burden of
- the electroencephalogram measurement system (10) further includes a selection unit (219) in the fourth aspect.
- the selection unit (219) performs additional processing by the acquisition unit (211) from when the processing unit (215) executes calibration processing until the input unit (216) executes re-designation processing.
- a selection signal for selecting whether or not to be received is received from the operation unit (24).
- the time required for the calibration process again can be shortened, and the subject (5) and The burden on medical staff etc. can be reduced.
- the electroencephalogram measurement system (10) according to the sixth aspect further includes a presentation unit (220) for presenting the result of the calibration process in any of the first to fifth aspects.
- the calibration process is retried so that the result of the calibration process presented by the presentation unit (220) satisfies a certain standard, thereby lowering the accuracy of the electroencephalogram measurement. It can be further suppressed.
- At least one electroencephalogram information is deleted from the plurality of electroencephalogram information stored in the storage unit (memory 22). And a deletion unit (221).
- the brain wave information inappropriate for the brain wave information used in the calibration process is deleted from the choice of the brain wave information according to the designation signal, thereby specifying the brain wave information used in the calibration process. (Selection) work is relatively easy.
- a rehabilitation support system (100) includes an electroencephalogram measurement system (10), an exercise support device (3), and a control device (4).
- the exercise assisting device (3) applies at least one of mechanical stimulation and electrical stimulation to the subject (5).
- the control device (4) controls the exercise assistance device (3) based on the brain wave information acquired by the acquisition unit (211).
- the calibration process it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
- An electroencephalogram measurement method is an electroencephalogram representing an electroencephalogram collected by an electrode unit (11) disposed at a measurement location (51) which is a part of a head (52) of a subject (5). Information is acquired, and a plurality of brain wave information is stored in the storage unit (memory 22). Furthermore, in this electroencephalogram measurement method, a designation signal for designating one or more brain wave information from among a plurality of brain wave information stored in the storage unit is received from the operation unit (24). Furthermore, in this electroencephalogram measurement method, calibration processing for determining parameters used for analysis of electroencephalogram information is executed based on one or more electroencephalogram information designated by the designation signal.
- the calibration process it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
- a program according to a tenth aspect is a program for causing a computer system to execute the electroencephalogram measurement method according to the ninth aspect.
- the calibration process it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
- the non-temporary recording medium according to the eleventh aspect is a non-transitory recording medium readable by a computer system in which a program for causing a computer system to execute the electroencephalogram measurement method according to the ninth aspect is recorded.
- the calibration process it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
- various configurations (including modified examples) of the electroencephalogram measurement system (10) according to the first embodiment may be an electroencephalogram measurement method, a (computer) program, or a non-temporary recording medium recording the program. It can be embodied.
- An electroencephalogram measurement system (10) includes a display control unit (218), an input unit (216), and a processing unit (215).
- the display control unit (218) causes the display unit (26) to display a plurality of brain wave information.
- the input unit (216) receives, from the operation unit (24), a designation signal for designating one or more pieces of brain wave information from among a plurality of pieces of brain wave information.
- the processing unit (215) executes a calibration process for determining a parameter used for analysis of brain wave information, based on the one or more brain wave information specified by the designation signal.
- the calibration process it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information. Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
- the input unit (216) performs re-designation processing for accepting a designation signal after the processing unit (215) executes calibration processing. Run.
- the processing unit (215) executes the calibration processing again based on the one or more brain wave information designated by the designation signal received by the input unit (216) in the re-designation processing.
- the calibration process can be executed again in the state where one or more brain wave information used for the calibration process is redesignated by the re-designation process. Therefore, compared to the case where the acquired brain wave information is discarded and the brain wave information is acquired again, the time required for the calibration process again can be shortened, and the burden on the subject (5) and medical staff can be reduced. .
- the display control unit (218) executes an additional process.
- the addition process is different from the plurality of electroencephalogram information to be displayed on the display unit (26) after the processing unit (215) performs the calibration process and the input unit (216) performs the re-designation process. Processing to add brain wave information of
- the re-designation process can be executed in a state where the choice of the electroencephalogram information is increased by the addition process. Therefore, compared to the case where the acquired brain wave information is discarded and the brain wave information is acquired again, the time required for the calibration process again can be shortened, and the burden on the subject (5) and medical staff can be reduced. .
- the configurations according to the second to seventh, thirteenth, and fourteenth aspects are not essential components of the electroencephalogram measurement system (10), and can be omitted as appropriate.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Psychology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Psychiatry (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Rehabilitation Tools (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Provided are a brain wave measurement system, a brain wave measurement method, a program, and a non-transitory recording medium in which it is possible to suppress a reduction in the precision of brain wave measurement. This brain wave measurement system (10) comprises an acquisition unit (211), a memory (22), an input unit (216), and a processing unit (215). The acquisition unit (211) acquires brain wave information showing brain waves obtained by an electrode part (11) disposed in a measurement location, which is on a portion of the head (52) of a subject (5). The memory (22) stores a plurality of the brain wave information acquired by the acquisition unit (211). The input unit (216) receives, from an operation unit (24), a designation signal that designates one or more pieces of the brain wave information from among the plurality of brain wave information stored in the memory (22). The processing unit (215) executes a calibration process for determining a parameter for use in analyzing the brain wave information on the basis of the one or more pieces of brain wave information designated by the designation signal.
Description
本開示は、一般に脳波測定システム、脳波測定方法、プログラム、及び非一時的記録媒体に関する。より詳細には、対象者の頭部の一部である測定箇所に配置される電極部にて採取される脳波を表す脳波情報を取得する脳波測定システム、脳波測定方法、プログラム、及び非一時的記録媒体に関する。
The present disclosure relates generally to an electroencephalogram measurement system, an electroencephalogram measurement method, a program, and a non-temporary recording medium. More specifically, an electroencephalogram measurement system for acquiring electroencephalogram information representing an electroencephalogram collected by an electrode unit disposed at a measurement location which is a part of the subject's head, an electroencephalogram measurement method, a program, and nontemporary It relates to a recording medium.
従来、対象者の脳波情報を利用する技術が提案されている。
Conventionally, techniques have been proposed that use brain wave information of a subject.
一例として、特許文献1には、対象者(被験者)における楽曲の聴取時に計測した脳波に基づき、その楽曲の聴取経験を推定する技術が開示されている。特許文献1に記載の技術では、聴取経験の有無が不明な楽曲を聴取している被験者の脳波を計測して脳波情報(被験者脳波データ)を取得し、脳波情報から取得される第1特徴をモデル脳波パターンと照合した結果を用いて、楽曲の聴取経験の有無が推定される。
As an example, Patent Document 1 discloses a technique for estimating the listening experience of a music piece based on an electroencephalogram measured at the time of listening to the music piece in a subject (subject). In the technology described in Patent Document 1, the brain waves of a subject who is listening to music whose presence or absence of listening experience is unknown are measured to acquire brain wave information (subject brain wave data), and the first feature obtained from the brain wave information is The result of comparison with the model electroencephalogram pattern is used to estimate the presence or absence of music listening experience.
特許文献1では、脳波情報の解析に用いるパラメータ(モデル脳波パターン)が、既知楽曲の聴取時の被験者の脳波から算出される平均パワーと、未知楽曲の聴取時の被験者の脳波から算出される平均パワーとの差分に基づいて決定される。
In Patent Document 1, parameters (model electroencephalogram patterns) used for analysis of electroencephalogram information are average powers calculated from the subject's brain waves at the time of listening to the known music and averages calculated from the subject's brain waves at the time of listening to the unknown music. It is determined based on the difference with the power.
しかし、特許文献1においては、パラメータを決定するために用いられるいずれかの脳波情報に、例えば、アーチファクト(ノイズ)が含まれているような場合には、パラメータに比較的大きな誤差が生じ、結果的に、脳波の測定精度の低下が生じ得る。
However, in Patent Document 1, when any brain wave information used to determine a parameter includes, for example, an artifact (noise), a relatively large error occurs in the parameter, and the result is In some cases, the measurement accuracy of the electroencephalogram may be reduced.
本開示は上記事由に鑑みてなされており、脳波測定の精度の低下を抑制できる脳波測定システム、脳波測定方法、プログラム、及び非一時的記録媒体を提供することを目的とする。
The present disclosure has been made in view of the above, and it is an object of the present invention to provide an electroencephalogram measurement system, an electroencephalogram measurement method, a program, and a non-temporary recording medium capable of suppressing a decrease in the accuracy of electroencephalogram measurement.
本開示の一態様に係る脳波測定システムは、取得部と、記憶部と、入力部と、処理部と、を備える。前記取得部は、対象者の頭部の一部である測定箇所に配置される電極部にて採取される脳波を表す脳波情報を取得する。前記記憶部は、前記取得部で取得された前記脳波情報を複数記憶する。前記入力部は、前記記憶部に記憶されている前記複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部より受け付ける。前記処理部は、前記指定信号にて指定される前記1以上の脳波情報に基づいて、前記脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。
An electroencephalogram measurement system according to an aspect of the present disclosure includes an acquisition unit, a storage unit, an input unit, and a processing unit. The acquisition unit acquires electroencephalogram information representing an electroencephalogram collected by an electrode unit disposed at a measurement location that is a part of the subject's head. The storage unit stores a plurality of the brain wave information acquired by the acquisition unit. The input unit receives, from the operation unit, a designation signal that designates one or more brain wave information items out of the plurality of brain wave information items stored in the storage unit. The processing unit executes a calibration process for determining a parameter used for analysis of the brain wave information based on the one or more brain wave information specified by the designation signal.
本開示の一態様に係る脳波測定方法は、対象者の頭部の一部である測定箇所に配置される電極部にて採取される脳波を表す脳波情報を取得して、記憶部に複数の脳波情報を記憶する。さらに、この脳波測定方法では、前記記憶部に記憶されている前記複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部より受け付ける。さらに、この脳波測定方法では、前記指定信号にて指定される前記1以上の脳波情報に基づいて、前記脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。
An electroencephalogram measurement method according to an aspect of the present disclosure acquires electroencephalogram information representing an electroencephalogram collected by an electrode unit disposed at a measurement location that is a part of the head of a subject, and stores a plurality of Store brain wave information. Furthermore, in the electroencephalogram measurement method, a designation signal for designating one or more pieces of brain wave information from among the plurality of pieces of brain wave information stored in the storage unit is received from the operation unit. Furthermore, in this electroencephalogram measurement method, calibration processing for determining parameters used for analysis of the electroencephalogram information is executed based on the one or more electroencephalogram information designated by the designation signal.
本開示の一態様に係るプログラムは、コンピュータシステムに、前記脳波測定方法を実行させるためのプログラムである。
A program according to an aspect of the present disclosure is a program for causing a computer system to execute the electroencephalogram measurement method.
本開示の一態様に係る非一時的記録媒体は、コンピュータシステムに、前記脳波測定方法を実行させるためのプログラムを記録した、コンピュータシステムで読取可能な非一時的記録媒体である。
The non-temporary recording medium according to an aspect of the present disclosure is a computer system-readable non-temporary recording medium in which a program for causing the computer system to execute the electroencephalogram measurement method is recorded.
本開示の一態様に係る脳波測定システムは、表示制御部と、入力部と、処理部と、を備える。前記表示制御部は、複数の脳波情報を表示部に表示させる。前記入力部は、前記複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部より受け付ける。前記処理部は、前記指定信号にて指定される前記1以上の脳波情報に基づいて、前記脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。
An electroencephalogram measurement system according to an aspect of the present disclosure includes a display control unit, an input unit, and a processing unit. The display control unit causes the display unit to display a plurality of brain wave information. The input unit receives, from the operation unit, a designation signal that designates one or more pieces of brain wave information from among the plurality of pieces of brain wave information. The processing unit executes a calibration process for determining a parameter used for analysis of the brain wave information based on the one or more brain wave information specified by the designation signal.
(実施形態1)
(1)概要
本実施形態に係る脳波測定システム10の概要について、図1及び図2を参照して説明する。 (Embodiment 1)
(1) Overview An overview of anelectroencephalogram measurement system 10 according to the present embodiment will be described with reference to FIGS. 1 and 2.
(1)概要
本実施形態に係る脳波測定システム10の概要について、図1及び図2を参照して説明する。 (Embodiment 1)
(1) Overview An overview of an
本実施形態に係る脳波測定システム10は、対象者5の脳波を測定するためのシステムであって、対象者5の頭部52の一部である測定箇所51に配置される電極部11にて採取される脳波を表す脳波情報を取得する。本開示でいう「脳波」(Electroencephalogram:EEG)とは、大脳の神経細胞(群)の発する電気信号(活動電位)を体外に導出し、記録した波形を意味する。本開示においては、特に断りが無い限り、大脳皮質の多数のニューロン群(神経網)の総括的な活動電位を対象として、これを体表に装着した電極部11を用いて記録する頭皮上脳波を「脳波」という。
The electroencephalogram measurement system 10 according to the present embodiment is a system for measuring the electroencephalogram of the subject 5, and the electrode unit 11 disposed at a measurement point 51 which is a part of the head 52 of the subject 5 Brain wave information representing the collected brain waves is acquired. The term “electroencephalogram (EEG)” as referred to in the present disclosure means a waveform obtained by extruding an electrical signal (action potential) emitted from a cerebral nerve cell (group) and recording it. In the present disclosure, unless otherwise noted, an on-scalp electroencephalogram that records general action potentials of a large number of neuron groups (neural networks) in the cerebral cortex using the electrode unit 11 attached to the body surface. Is called "brain wave".
脳波測定システム10は、電極部11を有するヘッドセット1と、情報処理装置2と、を備えている。ヘッドセット1は、対象者5の頭部52の表面(頭皮)に電極部11を接触させた状態で、対象者5の頭部52に装着される。本開示では、電極部11は、頭部52の表面に塗布されたペースト(電極糊)上に載せられることで、頭部52の表面に接触する。このとき、電極部11は、毛髪をかき分けることにより、毛髪を介さずに頭部52の表面に接触する。もちろん、電極部11は、ペーストを塗布することなく、頭部52の表面に直接、接触してもよい。つまり、本開示では、「電極部11を頭部52の表面に接触させる」とは、電極部11を直接、頭部52の表面に接触させることの他、中間物を介して電極部11を間接的に頭部52の表面に接触させることも含む。中間物は、ペーストに限定されず、例えば導電性を有するゲルであってもよい。
The electroencephalogram measurement system 10 includes a headset 1 having an electrode unit 11 and an information processing device 2. The headset 1 is mounted on the head 52 of the subject 5 with the electrode unit 11 in contact with the surface (scalp) of the head 52 of the subject 5. In the present disclosure, the electrode unit 11 contacts the surface of the head 52 by being placed on the paste (electrode paste) applied to the surface of the head 52. At this time, the electrode unit 11 contacts the surface of the head 52 without the hair by scraping the hair. Of course, the electrode unit 11 may be in direct contact with the surface of the head 52 without applying a paste. That is, in the present disclosure, “contacting the electrode unit 11 with the surface of the head 52” refers to bringing the electrode unit 11 into contact with the surface of the head 52 directly or through an intermediate. Indirect contact with the surface of the head 52 is also included. The intermediate is not limited to the paste, and may be, for example, a gel having conductivity.
ヘッドセット1は、電極部11にて対象者5の脳の活動電位を測定することで対象者5の脳波を測定し、脳波を表す脳波情報を生成する。ヘッドセット1は、例えば、無線通信により、脳波情報を情報処理装置2に送信する。情報処理装置2は、ヘッドセット1から取得した脳波情報に対して、種々の処理を施したり、脳波情報を表示したりする。
The headset 1 measures the brain waves of the subject 5 by measuring the action potential of the brain of the subject 5 with the electrode unit 11, and generates brain wave information representing the brain waves. The headset 1 transmits brain wave information to the information processing apparatus 2 by wireless communication, for example. The information processing apparatus 2 performs various processes on the electroencephalogram information acquired from the headset 1 and displays the electroencephalogram information.
本実施形態では、脳波測定システム10が、対象者5のリハビリテーションを支援するためのリハビリテーション支援システム100に用いられる場合について説明する。すなわち、リハビリテーション支援システム100は、本実施形態に係る脳波測定システム10を備えている。リハビリテーション支援システム100は、運動補助装置3と、制御装置4と、を更に備えている。運動補助装置3は、対象者5に機械的な刺激と電気的な刺激との少なくとも一方を加えて、対象者5の運動を補助する装置である。制御装置4は、脳波測定システム10にて取得された脳波情報に基づいて、運動補助装置3を制御する。
In the present embodiment, a case where the electroencephalogram measurement system 10 is used for a rehabilitation support system 100 for supporting the rehabilitation of the subject 5 will be described. That is, the rehabilitation support system 100 includes the electroencephalogram measurement system 10 according to the present embodiment. The rehabilitation support system 100 further includes an exercise assisting device 3 and a control device 4. The exercise assisting device 3 is a device that assists the exercise of the subject 5 by adding at least one of a mechanical stimulation and an electrical stimulation to the subject 5. The control device 4 controls the exercise assistance device 3 based on the electroencephalogram information acquired by the electroencephalogram measurement system 10.
このリハビリテーション支援システム100は、例えば、脳卒中等の脳疾患又は事故等によって、身体の一部に運動麻痺又は運動機能の低下等が生じた人を対象者5として、運動療法によるリハビリテーションを支援する。このような対象者5においては、対象者5が自己の意思又は意図に基づいて行う運動である随意運動(voluntary movement)が、不能又はその機能の低下により満足にできないことがある。本開示でいう「運動療法」は、対象者5の身体のうち、このような随意運動の不能部位又は機能の低下が生じた部位(以下、「障害部位」という)を運動させることにより、障害部位について随意運動の機能の回復を図る方法を意味する。
The rehabilitation support system 100 supports rehabilitation by exercise therapy, with a person who has exercise paralysis or a decrease in motor function or the like in a part of the body as a subject 5, for example, by a brain disease such as a stroke or an accident. In such a subject 5, a voluntary movement (voluntary movement), which is a movement performed by the subject 5 based on the intention or intention of the subject 5, may not be satisfactory due to the inability or the deterioration of its function. The “exercise therapy” referred to in the present disclosure is a disorder caused by exercising the inability part of such a voluntary exercise or a part where a decrease in function has occurred (hereinafter referred to as “disability site”) in the body of the subject 5 It means a method to restore the function of voluntary movement for the part.
本実施形態では、対象者5の左の手指53(左手指)のリハビリテーションに、リハビリテーション支援システム100が用いられる場合を例示する。つまり、この場合の対象者5においては左手指が障害部位である。ただし、この例に限らず、リハビリテーション支援システム100は、例えば、対象者5の右手指のリハビリテーションに用いられてもよい。
In the present embodiment, a case where the rehabilitation support system 100 is used for rehabilitation of the left finger 53 (left finger) of the subject 5 is exemplified. That is, in the target person 5 in this case, the left finger is the failure site. However, the present invention is not limited to this example, and the rehabilitation support system 100 may be used, for example, for rehabilitation of the right finger of the subject 5.
リハビリテーション支援システム100は、対象者5が左の手指53による随意運動を行う際に、対象者5の左手に装着された運動補助装置3にて、対象者5の左手に機械的な刺激と電気的な刺激との少なくとも一方を加えて、随意運動を補助する。これにより、例えば、理学療法士又は作業療法士等の医療スタッフが、対象者5の手指53を持って対象者5の随意運動を補助する場合と同様に、リハビリテーション支援システム100にて、随意運動の補助が可能になる。そのため、リハビリテーション支援システム100によれば、医療スタッフが補助する場合と同様に、対象者5が単独で随意運動を行う場合に比べて効果的な、運動療法によるリハビリテーションを実現可能となる。
In the rehabilitation support system 100, when the subject 5 performs a voluntary exercise with the left finger 53, mechanical stimulation and electricity are applied to the left hand of the subject 5 with the exercise assisting device 3 attached to the left hand of the subject 5. Support voluntary exercise by adding at least one of Thus, for example, in the same manner as in the case where a medical staff such as a physical therapist or occupational therapist holds the finger 53 of the subject 5 to assist the voluntary exercise of the subject 5, the rehabilitation support system 100 performs voluntary exercise Assistance of Therefore, according to the rehabilitation support system 100, as in the case where the medical staff assists, rehabilitation by exercise therapy can be realized more effectively than when the subject 5 performs voluntary exercise alone.
ところで、上述のようなリハビリテーションを支援するためには、リハビリテーション支援システム100は、対象者5が随意運動を行おうとする場合に、運動補助装置3にて対象者5の随意運動を補助することが望ましい。リハビリテーション支援システム100は、脳波測定システム10にて測定された対象者5の脳波(脳波情報)に、運動補助装置3を連動させることにより、対象者5が随意運動を行おうとする場合に運動補助装置3での随意運動の補助を実現する。言い換えれば、リハビリテーション支援システム100は、脳活動(脳波)を利用して機械(運動補助装置3)を操作する、ブレイン・マシン・インタフェース(Brain-machine Interface:BMI)の技術を利用して、運動療法によるリハビリテーションを実現する。
By the way, in order to support the above-mentioned rehabilitation, the rehabilitation support system 100 can support the voluntary exercise of the subject 5 with the exercise assisting device 3 when the subject 5 tries to do voluntary exercise. desirable. The rehabilitation support system 100 links the exercise assistance device 3 to the brain waves (brain wave information) of the subject 5 measured by the brain wave measurement system 10, thereby providing exercise assistance when the subject 5 performs voluntary exercise. The assistance of the voluntary movement in the device 3 is realized. In other words, the rehabilitation support system 100 uses a brain-machine interface (BMI) technology to operate a machine (exercise assistance device 3) using brain activity (brain waves) to exercise Realize rehabilitation by therapy.
対象者5が随意運動を行う際には(つまり、対象者5が随意運動を行う過程で)、脳波に特徴的な変化が生じ得る。つまり、対象者5が随意運動を行おうと企図(想起)した際には、随意運動の対象となる部位に対応する脳領域の活性化が起き得る。このような脳領域の例としては、体性感覚運動皮質が挙げられる。このような脳領域の活性化が起こるタイミングに合わせて、運動補助装置3にて対象者5の随意運動を補助すると、より効果的なリハビリテーションが期待できる。このような脳領域の活性化は、脳波の特徴的な変化として検出され得る。そのため、リハビリテーション支援システム100は、対象者5の脳波にこの特徴的な変化が発生するタイミングに合わせて、運動補助装置3にて対象者5の随意運動の補助を実行する。このような脳波の特徴的な変化は、随意運動が実際に行われなくても、対象者5が随意運動を想起(image)した際(つまり運動企図中)に生じ得る。つまり、このような脳波の特徴的な変化は、随意運動が実際に行われなくても、対象者5が随意運動を行おうと企図(想起)したことによって対応する脳領域が活性化すれば、生じ得る。そのため、随意運動が不能な状態の対象者5についても、リハビリテーション支援システム100による随意運動の補助が可能である。
When the subject 5 performs a voluntary exercise (that is, in the process of the subject 5 performing a voluntary exercise), characteristic changes in the electroencephalogram may occur. That is, when the subject 5 intends to perform voluntary exercise, activation of a brain region corresponding to a site targeted for voluntary exercise may occur. An example of such a brain region is the somatosensory motor cortex. A more effective rehabilitation can be expected if the exercise assist device 3 assists the voluntary exercise of the subject 5 according to the timing at which such activation of the brain region occurs. Such activation of the brain region can be detected as a characteristic change of the electroencephalogram. Therefore, the rehabilitation support system 100 executes the assistance of the voluntary exercise of the subject 5 with the exercise assistance device 3 in accordance with the timing at which this characteristic change occurs in the electroencephalogram of the subject 5. Such characteristic changes of the electroencephalogram may occur when the subject 5 images voluntary exercise (that is, while attempting to exercise) even if the voluntary exercise is not actually performed. That is, such characteristic changes of the electroencephalogram can be activated if the corresponding brain region is activated by the intention of the subject 5 to perform the voluntary exercise, even though the voluntary movement is not actually performed. It can occur. Therefore, even for the subject 5 in a state in which voluntary exercise is impossible, the rehabilitation support system 100 can support voluntary exercise.
このような構成のリハビリテーション支援システム100によれば、医療スタッフの負担を軽減しながらも、対象者5においては、効果的な、運動療法によるリハビリテーションを実現可能となる。また、リハビリテーション支援システム100によれば、例えば、対象者5の随意運動の補助を行う医療スタッフの熟練度等の人的要因によって随意運動の補助のタイミングがばらつくことがなく、リハビリテーションの効果のばらつきが低減される。特に、リハビリテーション支援システム100では、脳波に特徴的な変化が生じたタイミング(つまり、脳領域が実際に活性化したタイミング)で、対象者5の随意運動を補助することができる。このように、リハビリテーション支援システム100では、脳活動のタイミングに合わせた訓練が可能となるから、正しい脳活動の学習及び定着への貢献が期待できる。特に、脳波に特徴的な変化が起きたかどうかは、対象者5及び医療スタッフだけでは判別が困難である。したがって、リハビリテーション支援システム100を用いることで、対象者5又は医療スタッフだけでは実現が難しい効果的なリハビリテーションが可能となる。
According to the rehabilitation support system 100 having such a configuration, it is possible to realize effective rehabilitation by exercise therapy in the target person 5 while reducing the burden on the medical staff. Moreover, according to the rehabilitation support system 100, for example, there is no variation in the timing of assisting voluntary exercise due to human factors such as the skill of the medical staff who assists the voluntary exercise of the subject 5, and the variation of the effect of rehabilitation Is reduced. In particular, in the rehabilitation support system 100, the voluntary movement of the subject 5 can be assisted at the timing at which the characteristic change in the electroencephalogram (that is, the timing at which the brain region was actually activated). As described above, in the rehabilitation support system 100, since training can be performed according to the timing of brain activity, contribution to learning and establishment of correct brain activity can be expected. In particular, it is difficult for the subject 5 and the medical staff alone to determine whether or not a characteristic change has occurred in the electroencephalogram. Therefore, by using the rehabilitation support system 100, effective rehabilitation that is difficult to realize only by the target person 5 or the medical staff is possible.
本実施形態では、対象者5がリハビリテーション支援システム100を利用する際に、理学療法士又は作業療法士等の医療スタッフが対象者5に付き添い、リハビリテーション支援システム100の操作等については医療スタッフが行うことと仮定する。ただし、リハビリテーション支援システム100を利用する対象者5に医療スタッフが付き添うことは必須ではなく、例えば、リハビリテーション支援システム100の操作等を対象者5、又は対象者5の家族等が行ってもよい。
In the present embodiment, when the target person 5 uses the rehabilitation support system 100, medical staff such as a physical therapist or occupational therapist accompany the target person 5, and the medical staff performs the operation of the rehabilitation support system 100, etc. Suppose that. However, it is not essential for the medical staff to accompany the target person 5 who uses the rehabilitation support system 100. For example, the target person 5 or a family of the target person 5 may operate the rehabilitation support system 100.
ところで、本実施形態に係る脳波測定システム10は、上述したリハビリテーション支援システム100において、対象者5が随意運動を行う際に生じる(つまり、対象者5が随意運動を行おうと企図した際に生じ得る)特徴的な変化を含む脳波を検出するために用いられる。詳しくは「(2)リハビリテーション支援システム」の欄で説明するが、脳波測定システム10は、事象関連脱同期(Event-Related Desynchronization:ERD)が生じることで脳波に生じる特定の周波数帯域の強度変化を、特徴的な変化として検出する。本開示でいう「事象関連脱同期」は、随意運動時(随意運動の想起時を含む)に運動野付近で測定される脳波において、特定の周波数帯域のパワーが減少する現象を意味する。本開示でいう、「随意運動時」は、対象者5が随意運動の企図(想起)をしてから随意運動が成功又は失敗するまでの過程を意味する。「事象関連脱同期」は、この随意運動時に、随意運動の企図(想起)をトリガとして、生じ得る。事象関連脱同期によりパワーが減少する周波数帯域は、主としてα波(一例として8Hz以上13Hz未満の周波数帯域)及びβ波(一例として13Hz以上30Hz未満の周波数帯域)である。
By the way, the electroencephalogram measurement system 10 according to the present embodiment occurs in the rehabilitation support system 100 described above when the subject 5 performs a voluntary exercise (that is, may occur when the subject 5 intends to perform a voluntary exercise) ) It is used to detect electroencephalograms that contain characteristic changes. Specifically, the electroencephalogram measurement system 10, as described in the section "(2) Rehabilitation support system", changes in intensity of a specific frequency band that occurs in the electroencephalogram due to occurrence of event-related desynchronization (ERD). , As a characteristic change. The “event-related desynchronization” in the present disclosure means a phenomenon in which the power of a specific frequency band decreases in an electroencephalogram measured in the vicinity of the motor area during voluntary exercise (including recall of voluntary exercise). In the present disclosure, “at the time of voluntary exercise” means a process from the intention of the subject 5 to voluntary exercise (recollection) to the success or failure of the voluntary exercise. The "event-related desynchronization" can occur at the time of this voluntary movement, triggered by the intention (recollection) of the voluntary movement. Frequency bands in which the power decreases due to event-related desynchronization are mainly α waves (for example, a frequency band of 8 Hz to less than 13 Hz) and β waves (for example, a frequency band of 13 Hz to less than 30 Hz).
ただし、事象関連脱同期によりパワーが減少する周波数帯域、及びパワーの減少量等は、一律ではなく、例えば、対象者5の属性(年齢及び性別等)、障害部位、障害の状態、及び個人差等によってばらつく。そのため、脳波測定システム10の検出対象となる脳波(対象者5が随意運動を行おうと企図した際に生じ得る特徴的な変化を含む脳波)は、一律には定まらず、対象者5によって様々な形態をとり得る。そこで、脳波測定システム10は、脳波情報の解析、つまり検出対象となる脳波の検出に用いる各種のパラメータを決定するためのキャリブレーション(calibration)処理を実行するように構成されている。
However, the frequency band in which the power decreases due to event-related desynchronization, and the amount of reduction of power are not uniform, and, for example, the attributes of the subject 5 (such as age and gender), the failure site, the status of the failure, and individual differences It fluctuates with the like. Therefore, the electroencephalogram to be detected by the electroencephalogram measurement system 10 (an electroencephalogram including characteristic changes that may occur when the subject 5 intends to perform a voluntary exercise) is not uniformly determined, and various subjects 5 vary. It can take a form. Therefore, the electroencephalogram measurement system 10 is configured to perform analysis of electroencephalogram information, that is, calibration processing for determining various parameters used to detect an electroencephalogram to be detected.
ここにおいて、脳波情報にアーチファクト(artifact)が含まれていると、脳波の測定精度の低下が生じ得る。本開示でいう「アーチファクト」は、脳波測定システム10にて取得される脳波情報に混入する、脳波以外の現象を意味し、脳波に対して雑音(noise)成分となる。脳波情報に混入するアーチファクトの例としては、まばたき等の眼球運動に起因して生じる成分、並びに歯噛み又は首の動き等の体動・表情筋運動に起因して生じる成分がある。この種のアーチファクトが混入した脳波情報を用いてキャリブレーション処理が実行されると、アーチファクトに起因して脳波の測定精度が低下した状態でキャリブレーション処理が行われることになり、パラメータの精度が低下する。そこで、パラメータを精度よく決定するためには、脳波測定システム10は、アーチファクトが含まれていない脳波情報を用いて、キャリブレーション処理を実行することが好ましい。
Here, if an artifact is included in the electroencephalogram information, a reduction in measurement accuracy of the electroencephalogram may occur. The “artifact” in the present disclosure means a phenomenon other than the electroencephalogram mixed in the electroencephalogram information acquired by the electroencephalogram measurement system 10 and is a noise component to the electroencephalogram. Examples of artifacts mixed in brain wave information include components resulting from eye movement such as blinks, and components resulting from body movement such as tooth biting or neck movement, and expression muscle movement. If calibration processing is performed using electroencephalogram information mixed with this type of artifact, calibration processing will be performed in a state in which the measurement accuracy of the electroencephalogram is lowered due to the artifact, and the accuracy of the parameter is lowered. Do. Therefore, in order to determine the parameters with high accuracy, it is preferable that the electroencephalogram measurement system 10 execute the calibration process using the electroencephalogram information that does not include an artifact.
本実施形態に係る脳波測定システム10は、電極部11から取得した脳波情報に基づいて、アーチファクトの有無を判定し、判定結果を出力する機能を有している。判定結果の出力の態様としては、例えば、表示、音声出力、プリントアウト(印刷)、非一時的記録媒体への書き込み、及び情報端末への送信等がある。したがって、出力される判定結果にて、アーチファクトの有無が判断可能となるため、例えば、アーチファクトが混入した脳波情報を除外することで、アーチファクトによる脳波測定の精度の低下を抑制できる。このように、脳波測定システム10では、アーチファクトの有無の判定結果が出力されることにより、アーチファクトが含まれていない脳波情報のみを用いた、キャリブレーション処理が可能になる。これにより、脳波測定システム10では、キャリブレーション処理を実行する処理部215の処理負荷の低減を図ることができる。
The electroencephalogram measurement system 10 according to the present embodiment has a function of determining the presence or absence of an artifact based on the electroencephalogram information acquired from the electrode unit 11 and outputting the determination result. Examples of the output mode of the determination result include display, voice output, printout (printing), writing to a non-temporary recording medium, and transmission to an information terminal. Therefore, the presence or absence of an artifact can be determined based on the output determination result. For example, by excluding the brain wave information mixed with the artifact, it is possible to suppress a decrease in the accuracy of the brain wave measurement due to the artifact. As described above, in the electroencephalogram measurement system 10, a calibration process using only electroencephalogram information not including an artifact becomes possible by outputting a determination result of the presence or absence of an artifact. Thereby, in the electroencephalogram measurement system 10, the processing load of the processing unit 215 that executes the calibration processing can be reduced.
(2)リハビリテーション支援システム
以下、本実施形態に係るリハビリテーション支援システム100について更に詳しく説明する。 (2) Rehabilitation Support System Hereinafter, therehabilitation support system 100 according to the present embodiment will be described in more detail.
以下、本実施形態に係るリハビリテーション支援システム100について更に詳しく説明する。 (2) Rehabilitation Support System Hereinafter, the
リハビリテーション支援システム100は、図1に示すように、脳波測定システム10と、運動補助装置3と、制御装置4と、を備えている。
As shown in FIG. 1, the rehabilitation support system 100 includes an electroencephalogram measurement system 10, an exercise assisting device 3, and a control device 4.
上述したように、本実施形態では、脳波測定システム10は、ヘッドセット1と、情報処理装置2と、を備えている。
As described above, in the present embodiment, the electroencephalogram measurement system 10 includes the headset 1 and the information processing device 2.
ヘッドセット1は、図2に示すように、対象者5の頭部52に装着される。ヘッドセット1は、電極部11を有している。電極部11は、対象者5の頭部52の一部である測定箇所51に配置される。具体的には、ヘッドセット1は、対象者5の頭部52の表面(頭皮)の一部に設定された測定箇所51に電極部11を接触させた状態で、電極部11にて対象者5の脳波を測定し、脳波を表す脳波情報を生成する。
The headset 1 is mounted on the head 52 of the subject 5 as shown in FIG. The headset 1 has an electrode portion 11. The electrode unit 11 is disposed at a measurement point 51 which is a part of the head 52 of the subject 5. Specifically, in the state in which the electrode unit 11 is in contact with the measurement portion 51 set on a part of the surface (scalp) of the head 52 of the subject 5, the headset 1 5. Measure the electroencephalogram of 5 and generate electroencephalogram information representing the electroencephalogram.
情報処理装置2は、例えば、パーソナルコンピュータ等のコンピュータシステムを主構成とする。情報処理装置2は、例えば、無線通信により、ヘッドセット1からの脳波情報を受信し、脳波情報に対する種々の処理を実行する。本実施形態では、対象者5が随意運動を行おうと企図(想起)した際に生じ得る特徴的な変化を含む脳波の検出、及びキャリブレーション処理等は、情報処理装置2にて行われる。
The information processing apparatus 2 mainly includes, for example, a computer system such as a personal computer. The information processing device 2 receives brain wave information from the headset 1 by wireless communication, for example, and executes various processes on the brain wave information. In the present embodiment, the information processing apparatus 2 performs detection of an electroencephalogram including a characteristic change that may occur when the subject 5 intends to perform voluntary exercise (remembering), a calibration process, and the like.
対象者5が随意運動を行おうと企図(想起)した際には、通常、身体の随意運動を行う部位に対応する運動野にて、特徴的な変化を含む脳波が発生する。そこで、脳波測定システム10は、リハビリテーションの対象である障害部位に対応する運動野付近から採取される脳波を測定対象とする。ここで、左手指に対応する運動野は脳の右側にあり、右手指に対応する運動野は脳の左側にある。そのため、本実施形態のように対象者5の左の手指53をリハビリテーションの対象とする場合には、対象者5の頭部52の右側に接触させた電極部11にて取得される脳波が、脳波測定システム10での測定対象となる。すなわち、電極部11は、図2に示すように、対象者5の頭部52の右側表面の一部からなる測定箇所51上に配置される。一例として、国際10-20法において電極記号「C4」で表される位置に電極部11が配置される。対象者5の右の手指をリハビリテーションの対象とする場合には、対象者5の頭部52の左側表面の一部からなる測定箇所、一例として、国際10-20法において電極記号「C3」で表される位置に電極部11が配置される。
When the subject 5 intends to perform a voluntary exercise (remembering), an electroencephalogram including a characteristic change is usually generated in an exercise area corresponding to a site where the voluntary exercise of the body is to be performed. Therefore, the electroencephalogram measurement system 10 measures an electroencephalogram collected from the vicinity of the motor area corresponding to the injury site that is the target of rehabilitation. Here, the motor area corresponding to the left finger is on the right side of the brain, and the motor area corresponding to the right finger is on the left side of the brain. Therefore, in the case where the left finger 53 of the subject 5 is targeted for rehabilitation as in the present embodiment, an electroencephalogram acquired by the electrode unit 11 brought into contact with the right side of the head 52 of the subject 5 is It becomes the measurement object in the electroencephalogram measurement system 10. That is, the electrode part 11 is arrange | positioned on the measurement location 51 which consists of a part of right side surface of the head 52 of the subject 5 as shown in FIG. As an example, the electrode portion 11 is disposed at a position represented by the electrode symbol "C4" in the international 10-20 method. When the right finger of the subject 5 is targeted for rehabilitation, the measurement site consisting of a part of the left surface of the head 52 of the subject 5, for example, the electrode symbol "C3" in the international 10-20 method The electrode part 11 is arrange | positioned in the position represented.
脳波測定システム10は、対象者5が随意運動を行おうと企図した際に生じ得る特徴的な変化を含む脳波を検出すると、運動補助装置3を制御するための制御信号を出力する。すなわち、リハビリテーション支援システム100では、対象者5が随意運動を行おうと企図した際に生じ得る特徴的な変化を含む脳波を脳波測定システム10にて検出することをトリガにして、運動補助装置3を制御するための制御信号が発生する。これにより、リハビリテーション支援システム100では、対象者5の随意運動に合わせて、運動補助装置3にて対象者5の随意運動を補助することが可能である。脳波測定システム10について詳しくは「(3)脳波測定システム」の欄で説明する。
The electroencephalogram measurement system 10 outputs a control signal for controlling the exercise assisting device 3 when it detects an electroencephalogram including a characteristic change that may occur when the subject 5 intends to perform a voluntary exercise. That is, the rehabilitation support system 100 is triggered by the detection of an electroencephalogram including characteristic changes that may occur when the subject 5 intends to perform voluntary exercise, as a trigger for the exercise assisting device 3. A control signal for control is generated. Thereby, in the rehabilitation support system 100, it is possible to assist the voluntary exercise of the subject 5 with the exercise assisting device 3 in accordance with the voluntary exercise of the subject 5. The electroencephalogram measurement system 10 will be described in detail in the section “(3) electroencephalogram measurement system”.
運動補助装置3は、対象者5に機械的な刺激と電気的な刺激との少なくとも一方を加えて、対象者5の運動を補助する装置である。本実施形態では、対象者5の左手指のリハビリテーションにリハビリテーション支援システム100が用いられるので、図1に示すように、運動補助装置3は、対象者5の左手に装着される。
The exercise assisting device 3 is a device that assists the exercise of the subject 5 by adding at least one of a mechanical stimulation and an electrical stimulation to the subject 5. In the present embodiment, since the rehabilitation support system 100 is used for rehabilitation of the left finger of the subject 5, the exercise assisting apparatus 3 is mounted on the left hand of the subject 5 as shown in FIG.
本実施形態では、対象者5の左手指による把持動作及び伸展動作のリハビリテーションに、リハビリテーション支援システム100が用いられる場合を例示する。本開示でいう「把持動作」は、物をつかむ動作のことを意味する。つまり、この対象者5においては左手指が障害部位であって、リハビリテーション支援システム100は、左手指による把持動作及び伸展動作という随意運動についてのリハビリテーションに用いられる。ただし、実際には、リハビリテーション支援システム100は、対象者5の把持動作を直接的に補助するのではなく、対象者5の手指の伸展動作を補助することで、間接的に把持動作のリハビリテーションを行う。本開示でいう「伸展動作」は、第1指(親指)を除く4本の手指53(第2指~第5指)の伸展により、手を開く動作、つまり把持動作によりつかんでいる状態の「物」を放す動作のことを意味する。
In the present embodiment, a case where the rehabilitation support system 100 is used for the rehabilitation of the grasping motion and the extension motion by the left finger of the subject 5 is exemplified. The “gripping operation” in the present disclosure means an operation of holding an object. That is, in the subject 5, the left finger is the injury site, and the rehabilitation support system 100 is used for the rehabilitation of the voluntary movement of the grasping motion and the extension motion by the left finger. However, in reality, the rehabilitation support system 100 indirectly assists in the rehabilitation of the grasping motion by assisting the extension motion of the finger of the subject 5, instead of directly assisting the grasping motion of the subject 5. Do. The “extension operation” in the present disclosure is a state in which the hand is held open by the extension of four fingers 53 (second to fifth fingers) except the first finger (thumb), that is, in a state of being grasped by a grasping operation. It means the action of releasing the "thing".
そのため、リハビリテーション支援システム100では、対象者5が随意運動として伸展動作を行う際に、対象者5の左手に装着された運動補助装置3が、対象者5の左の手指53に機械的な刺激と電気的な刺激との少なくとも一方を加えて、随意運動を補助する。具体的には、運動補助装置3は、図3に示すように、手指駆動装置31と、電気刺激発生装置32と、を有している。
Therefore, in the rehabilitation support system 100, when the subject 5 performs the extension motion as a voluntary exercise, the exercise assisting device 3 attached to the left hand of the subject 5 mechanically stimulates the left finger 53 of the subject 5 And at least one of electrical stimulation and electrical stimulation to assist voluntary movement. Specifically, as shown in FIG. 3, the exercise assisting device 3 includes a finger driving device 31 and an electrical stimulation generating device 32.
手指駆動装置31は、第1指(親指)を除く4本の手指53(第2指~第5指)を保持し、これら4本の手指53に機械的な刺激(外力)を与えることによって、4本の手指53を動かす装置である。手指駆動装置31は、例えば、モータ又はソレノイド等の動力源を含み、動力源で発生した力を4本の手指53に伝えることによって、4本の手指53を動かす。手指駆動装置31では、保持した4本の手指53を、第1指から離れる向きに移動(つまり伸展動作)させる「開動作」と、第1指に近づく向きに移動(つまり把持動作)させる「閉動作」と、の2種類の動作が可能である。手指駆動装置31の開動作により対象者5の伸展動作が補助され、手指駆動装置31の閉動作により対象者5の把持動作が補助される。
The finger driving device 31 holds four fingers 53 (second to fifth fingers) except the first finger (thumb) and applies mechanical stimulation (external force) to the four fingers 53. , Is a device to move the four fingers 53. The finger driving device 31 includes, for example, a power source such as a motor or a solenoid, and moves the four fingers 53 by transmitting the force generated by the power source to the four fingers 53. In the finger driving device 31, an “opening operation” for moving the held four fingers 53 in a direction away from the first finger (that is, extending operation) and a movement (in other words, a gripping operation) for approaching the first finger “ Two types of operations are possible: a closing operation. The opening operation of the finger driving device 31 assists the extension operation of the subject 5, and the closing operation of the finger driving device 31 assists the gripping operation of the subject 5.
電気刺激発生装置32は、対象者5の手指53を動かすための部位に、電気的な刺激を与える装置である。ここで、対象者5の手指53を動かすための部位は、対象者5の手指53の筋肉と神経との少なくとも一方に対応する部位を含む。例えば、対象者5の手指53を動かすための部位は、対象者5の腕の一部である。電気刺激発生装置32は、例えば、対象者5の身体(例えば腕)に貼り付けられるパッドを含む。電気刺激発生装置32は、パッドから対象者5の身体に電気的な刺激(電流)を与えることによって、手指53を動かすための部位へ刺激を与える。
The electrical stimulation generator 32 is a device that applies an electrical stimulation to a site for moving the finger 53 of the subject 5. Here, the site for moving the finger 53 of the subject 5 includes a site corresponding to at least one of the muscle and the nerve of the finger 53 of the subject 5. For example, the part for moving the finger 53 of the subject 5 is a part of the arm of the subject 5. The electrical stimulation generator 32 includes, for example, a pad attached to the body (for example, an arm) of the subject 5. The electrical stimulation generator 32 stimulates a site for moving the finger 53 by applying an electrical stimulation (electric current) to the body of the subject 5 from the pad.
制御装置4は、脳波測定システム10にて取得された脳波情報に基づいて、運動補助装置3を制御する。本実施形態では、制御装置4は、脳波測定システム10の情報処理装置2、及び運動補助装置3に対して電気的に接続されている。制御装置4には、運動補助装置3及び制御装置4の動作用電力を供給するための電源ケーブルが接続されている。制御装置4は、運動補助装置3の手指駆動装置31を駆動するための駆動回路、及び電気刺激発生装置32を駆動するための発振回路を含んでいる。制御装置4は、例えば、有線通信により、情報処理装置2から制御信号を受信する。
The control device 4 controls the exercise assistance device 3 based on the electroencephalogram information acquired by the electroencephalogram measurement system 10. In the present embodiment, the control device 4 is electrically connected to the information processing device 2 of the electroencephalogram measurement system 10 and the exercise assisting device 3. The control device 4 is connected to a power cable for supplying operation power for the exercise assisting device 3 and the control device 4. The control device 4 includes a drive circuit for driving the finger drive device 31 of the exercise assisting device 3 and an oscillation circuit for driving the electrical stimulation generator 32. The control device 4 receives a control signal from the information processing device 2 by, for example, wired communication.
制御装置4は、情報処理装置2から第1の制御信号を受信すると、駆動回路にて運動補助装置3の手指駆動装置31を駆動し、手指駆動装置31にて「開動作」が行われるように運動補助装置3を制御する。また、制御装置4は、情報処理装置2から第2の制御信号を受信すると、駆動回路にて運動補助装置3の手指駆動装置31を駆動し、手指駆動装置31にて「閉動作」が行われるように運動補助装置3を制御する。また、制御装置4は、情報処理装置2から第3の制御信号を受信すると、発振回路にて運動補助装置3の電気刺激発生装置32を駆動し、対象者5の身体に電気的な刺激が与えられるように運動補助装置3を制御する。
When the control device 4 receives the first control signal from the information processing device 2, the drive circuit drives the finger drive device 31 of the exercise assisting device 3 and the finger drive device 31 performs an “open operation”. Control the exercise assisting device 3; Further, when the control device 4 receives the second control signal from the information processing device 2, the drive circuit drives the finger drive device 31 of the exercise assisting device 3 and the finger drive device 31 performs the “closing operation”. Control the exercise assistance device 3 to be controlled. In addition, when the control device 4 receives the third control signal from the information processing device 2, the control device 4 drives the electric stimulation generator 32 of the exercise assisting device 3 by the oscillation circuit, and the body of the subject 5 is electrically stimulated. The exercise assist device 3 is controlled to be given.
このように、制御装置4は、脳波測定システム10から出力される制御信号に基づいて、運動補助装置3を制御することによって、脳波測定システム10にて取得された脳波情報に基づいて運動補助装置3を制御することが可能である。また、制御装置4は、制御装置4に備えられた操作スイッチの操作に応じて、手指駆動装置31にて「開動作」及び「閉動作」が行われるように運動補助装置3を制御することもできる。
As described above, the control device 4 controls the exercise assistance device 3 based on the control signal output from the electroencephalogram measurement system 10 to thereby provide the exercise assistance device based on the electroencephalogram information acquired by the electroencephalogram measurement system 10. It is possible to control three. In addition, the control device 4 controls the exercise assisting device 3 so that the “opening operation” and the “closing operation” are performed by the finger drive device 31 according to the operation of the operation switch provided in the control device 4 You can also.
次に、リハビリテーション支援システム100の使用方法について説明する。本実施形態では、対象者5が、ペグ101(図1参照)を左手指でつかんだ姿勢から、手指53の伸展動作によりペグ101を放す際の随意運動(伸展動作)を、リハビリテーション支援システム100にて補助する場合について説明する。
Next, how to use the rehabilitation support system 100 will be described. In the present embodiment, from the posture in which the subject 5 holds the peg 101 (see FIG. 1) with the left finger, the voluntary movement (extension movement) at the time of releasing the peg 101 by the extension movement of the fingers 53 is shown in FIG. The case where assistance is given by will be described.
まず、準備過程として、対象者5は、ヘッドセット1を頭部52に装着し、運動補助装置3を左手に装着する。このとき、ヘッドセット1は、少なくとも電極部11を測定箇所51となる対象者5の頭部52の右側表面の一部に接触させるように、対象者5の頭部52に装着される。運動補助装置3は、少なくとも対象者5の左手の第1指(親指)を除く4本の手指53(第2指~第5指)を保持し、かつパッドを対象者5の腕に貼り付けた状態で、対象者5に装着される。ヘッドセット1及び運動補助装置3は、リハビリテーション中にずれたり外れたりしないように適宜固定される。準備過程では、運動補助装置3の手指駆動装置31にて対象者5の4本の手指53が保持されることにより、対象者5については、ペグ101を左手指でつかんだ姿勢が維持される。ヘッドセット1及び運動補助装置3を対象者5に装着する作業は、対象者5自身が行ってもよいし、医療スタッフが行ってもよい。
First, as a preparation process, the subject 5 wears the headset 1 on the head 52 and wears the exercise assisting device 3 on the left hand. At this time, the headset 1 is attached to the head 52 of the subject 5 so that at least the electrode portion 11 is in contact with a part of the right side surface of the head 52 of the subject 5 to be the measurement point 51. The exercise assisting device 3 holds at least four fingers 53 (second to fifth fingers) except the first finger (thumb) of the left hand of the subject 5 and sticks the pad to the arm of the subject 5 It is worn on the subject 5 in a state of The headset 1 and the exercise assisting device 3 are appropriately fixed so as not to be displaced or detached during rehabilitation. In the preparation process, the four fingers 53 of the object person 5 are held by the finger driving device 31 of the exercise assisting device 3, whereby the posture in which the object person 5 holds the peg 101 with the left hand finger is maintained. . The work of attaching the headset 1 and the exercise assisting device 3 to the subject 5 may be performed by the subject 5 itself or by medical staff.
準備が完了し、かつヘッドセット1と情報処理装置2とが通信可能な状態になると、ヘッドセット1にて生成された脳波情報が、情報処理装置2にて取得可能となる。つまり、脳波測定システム10は、情報処理装置2にて、対象者5の頭部52の一部である測定箇所51に配置される電極部11にて採取される脳波を表す脳波情報を取得することができる。詳しくは「(3)脳波測定システム」の欄で説明するが、情報処理装置2は、取得した脳波情報を時系列に沿ってメモリ22(図3参照)に記憶(蓄積)する。さらに、情報処理装置2は、例えば、記憶した脳波情報について時間周波数解析(Time Frequency Analysis)を行うことにより、脳波のパワースペクトルを生成する。脳波測定システム10は、情報処理装置2にて、パワースペクトルのデータを常時監視することにより、対象者5が随意運動を行おうとした際に生じ得る特徴的な変化を含む脳波の検出が可能となる。
When the preparation is completed and the headset 1 and the information processing apparatus 2 can communicate with each other, electroencephalogram information generated by the headset 1 can be acquired by the information processing apparatus 2. That is, the electroencephalogram measurement system 10 acquires electroencephalogram information representing an electroencephalogram collected by the electrode unit 11 disposed at the measurement location 51 which is a part of the head 52 of the subject 5 by the information processing apparatus 2. be able to. Although described in detail in the section “(3) Electroencephalogram measurement system”, the information processing apparatus 2 stores (accumulates) the acquired electroencephalogram information in the memory 22 (see FIG. 3) in time series. Furthermore, the information processing device 2 generates a power spectrum of an electroencephalogram, for example, by performing time frequency analysis on the stored electroencephalogram information. The electroencephalogram measurement system 10 is capable of detecting electroencephalograms including characteristic changes that may occur when the subject 5 tries to perform voluntary exercise by constantly monitoring power spectrum data in the information processing apparatus 2. Become.
ここで、対象者5がリハビリテーションを開始する前に、脳波測定システム10は、検出対象となる脳波の検出に用いる各種のパラメータを決定するためのキャリブレーション処理を実行する。これにより、脳波測定システム10は、事象関連脱同期によりパワーが減少する周波数帯域、及びパワーの減少量等の対象者5ごとのばらつきを加味して、検出対象となる脳波の検出精度の向上を図ることができる。キャリブレーション処理について詳しくは「(3)脳波測定システム」の欄で説明する。
Here, before the subject 5 starts the rehabilitation, the electroencephalogram measurement system 10 executes a calibration process for determining various parameters used for detection of the electroencephalogram to be detected. As a result, the electroencephalogram measurement system 10 improves the detection accuracy of the electroencephalogram to be detected, taking into consideration the frequency band in which the power decreases due to event-related desynchronization and the variation for each subject 5 such as the power reduction amount. Can be The calibration process will be described in detail in the section "(3) electroencephalogram measurement system".
キャリブレーション処理を含む準備過程の完了後、リハビリテーション支援システム100は、対象者5のリハビリテーションを支援する訓練過程を開始する。訓練過程においては、訓練時間中に脳波測定システム10で測定される脳波に基づいて、対象者5のリハビリテーションが支援される。具体的には、訓練時間は安静期間と運動期間とに2分されており、対象者5は、安静期間及び運動期間の各々において、リハビリテーション支援システム100の指示に従ってリハビリテーションを実施する。本実施形態では一例として、訓練時間は「10秒間」であって、訓練時間を2等分した場合の前半の「5秒間」が安静期間、後半の「5秒間」が運動期間であると仮定する。
After completing the preparation process including the calibration process, the rehabilitation support system 100 starts a training process to support the rehabilitation of the subject 5. In the training process, rehabilitation of the subject 5 is supported based on the electroencephalogram measured by the electroencephalogram measurement system 10 during the training time. Specifically, the training time is divided into a resting period and an exercise period, and the subject 5 performs rehabilitation according to the instruction of the rehabilitation support system 100 in each of the resting period and the exercise period. In this embodiment, as an example, it is assumed that the training time is "10 seconds", and the first half "5 seconds" when the training time is equally divided is the resting period and the second half "5 seconds" is the exercise period. Do.
安静期間においては、対象者5は、身体を安静状態とし、つまり随意運動を行おうと企図(想起)せず、リラックスした状態を維持する。このとき、脳波測定システム10では、対象者5が随意運動を行おうと企図した際に生じ得る事象関連脱同期による特徴的な変化を含む脳波は検出されない。
During the resting period, the subject 5 puts the body in a resting state, that is, does not intend to perform voluntary exercise (reminding), and maintains a relaxed state. At this time, the electroencephalogram measurement system 10 does not detect an electroencephalogram including a characteristic change due to event-related desynchronization which may occur when the subject 5 intends to perform voluntary exercise.
一方、運動期間においては、対象者5は、手指53の伸展動作、つまり随意運動を行おうと企図(想起)する。このとき、脳波測定システム10では、対象者5が随意運動を行おうと企図した際に生じ得る事象関連脱同期による特徴的な変化を含む脳波が検出され得る。本実施形態では脳波の、特徴的な変化を、活性化レベルと閾値とを比較し、活性化レベルが閾値を超えるか否かによって検出する。本開示でいう「活性化レベル」は、特定の周波数帯域のパワー(パワースペクトル)の減少量を表す値である。事象関連脱同期が生じて特定の周波数帯域のパワーが減少することで、活性化レベルが閾値を超えるため、脳波測定システム10は、活性化レベルが閾値を超えることをもって、脳波の特徴的な変化を検出する。
On the other hand, in the exercise period, the subject 5 intends to perform extension movement of the fingers 53, that is, to perform a voluntary exercise. At this time, the electroencephalogram measurement system 10 can detect an electroencephalogram including a characteristic change due to event-related desynchronization that can occur when the subject 5 intends to perform a voluntary exercise. In the present embodiment, the characteristic change of the electroencephalogram is detected by comparing the activation level with the threshold and detecting whether the activation level exceeds the threshold. The “activation level” in the present disclosure is a value representing a decrease in power (power spectrum) of a specific frequency band. Since the activation level exceeds the threshold by the occurrence of event-related desynchronization and the power of the specific frequency band decreases, the electroencephalogram measurement system 10 changes the characteristic of the electroencephalogram by the activation level exceeding the threshold. To detect
脳波測定システム10では、このような特徴的な変化を含む脳波を検出することをトリガにして、運動補助装置3を制御するための制御信号が発生する。そのため、リハビリテーション支援システム100では、対象者5が随意運動を行おうと企図した際に、随意運動の対象となる部位に対応する脳領域の活性化が実際に起きたタイミングに合わせて、運動補助装置3にて対象者5の随意運動を補助することが可能である。
In the electroencephalogram measurement system 10, a control signal for controlling the exercise assisting device 3 is generated, triggered by detection of an electroencephalogram including such characteristic changes. Therefore, in the rehabilitation support system 100, when the subject 5 intends to perform a voluntary exercise, the exercise assisting device is adjusted to the timing at which the activation of the brain region corresponding to the region targeted for the voluntary exercise actually occurs. At 3, it is possible to assist the subject 5's voluntary movement.
訓練過程における脳波測定システム10の動作について詳しくは「(3)脳波測定システム」の欄で説明する。
The operation of the electroencephalogram measurement system 10 in the training process will be described in detail in the section “(3) electroencephalogram measurement system”.
(3)脳波測定システム
(3.1)構成
以下、本実施形態に係る脳波測定システム10について更に詳しく説明する。 (3) Electroencephalogram Measurement System (3.1) Configuration Hereinafter, theelectroencephalogram measurement system 10 according to the present embodiment will be described in more detail.
(3.1)構成
以下、本実施形態に係る脳波測定システム10について更に詳しく説明する。 (3) Electroencephalogram Measurement System (3.1) Configuration Hereinafter, the
脳波測定システム10は、図3に示すように、対象者5の頭部52に装着されるヘッドセット1と、パーソナルコンピュータ等のコンピュータシステムを主構成とする情報処理装置2と、を備えている。
As shown in FIG. 3, the electroencephalogram measurement system 10 includes a headset 1 mounted on the head 52 of the subject 5 and an information processing apparatus 2 mainly composed of a computer system such as a personal computer. .
ヘッドセット1は、電極部11と、信号処理部12と、第1通信部13と、を有している。ヘッドセット1は、例えば、電池駆動式であって、信号処理部12及び第1通信部13等の動作用電力が電池から供給される。
The headset 1 includes an electrode unit 11, a signal processing unit 12, and a first communication unit 13. The headset 1 is, for example, battery-powered, and power for operation of the signal processing unit 12 and the first communication unit 13 is supplied from the battery.
電極部11は、対象者5の脳波(脳波信号)を採取するための電極であって、例えば、銀-塩化銀電極である。電極部11は金、銀、白金等でもよい。電極部11は、第1電極111と、第2電極112と、を有している。本実施形態では、図2に示すように、対象者5の頭部52の表面に設定された測定箇所51は、第1測定箇所511及び第2測定箇所512を含んでいる。第1電極111は、第1測定箇所511に対応する電極であって、第1測定箇所511上に配置される。第2電極112は、第2測定箇所512に対応する電極であって、第2測定箇所512上に配置される。具体的には、第1測定箇所511及び第2測定箇所512は、頭部52の正中中心部と右耳とを結ぶ線上に、正中中心部側(上側)から第1測定箇所511、第2測定箇所512の順に並んで配置されている。
The electrode unit 11 is an electrode for collecting the brain wave (brain wave signal) of the subject 5 and is, for example, a silver-silver chloride electrode. The electrode portion 11 may be gold, silver, platinum or the like. The electrode unit 11 has a first electrode 111 and a second electrode 112. In the present embodiment, as shown in FIG. 2, the measurement point 51 set on the surface of the head 52 of the subject 5 includes a first measurement point 511 and a second measurement point 512. The first electrode 111 is an electrode corresponding to the first measurement point 511, and is disposed on the first measurement point 511. The second electrode 112 is an electrode corresponding to the second measurement point 512, and is disposed on the second measurement point 512. Specifically, the first measurement point 511 and the second measurement point 512 are the first measurement point 511, the second measurement point 511 from the middle center side (upper side) on the line connecting the middle center of the head 52 and the right ear. The measurement points 512 are arranged in order.
また、本実施形態では、ヘッドセット1は、参照電極113と、アース電極114と、を更に備えている。参照電極113は、第1電極111及び第2電極112の各々で測定される脳波信号の基準電位を測定するための電極である。参照電極113は、頭部52における右耳又は左耳のいずれかの後方位置に配置される。具体的には、参照電極113は、頭部52において第1電極111及び第2電極112が配置されている側の耳の後方位置に配置される。本実施形態では、第1電極111及び第2電極112は、頭部52の右側表面に配置されているので、参照電極113は、右耳の後方位置に配置される。アース電極114は、頭部52における右耳又は左耳のうち参照電極113が配置されていない方の耳の後方位置に配置される。本実施形態では、参照電極113が右耳の後方位置に配置されるので、アース電極114は、左耳の後方位置に配置される。参照電極113及びアース電極114の各々は、ヘッドセット1の本体15に対して電線16(図2参照)にて電気的に接続されており、頭部52の表面(頭皮)に貼り付けられる。なお、参照電極113及びアース電極114を配置する位置は、上述したような耳の後方位置ではなく、耳たぶであってもよい。耳の後方位置及び耳たぶは、頭部において脳活動由来の生体電位の影響を受けにくい場所である。つまり、参照電極113及びアース電極114は、頭部において脳活動由来の生体電位の影響を受けにくい場所に配置されることが好ましい。
Further, in the present embodiment, the headset 1 further includes the reference electrode 113 and the ground electrode 114. The reference electrode 113 is an electrode for measuring a reference potential of an electroencephalogram signal measured by each of the first electrode 111 and the second electrode 112. The reference electrode 113 is disposed at a rear position of either the right ear or the left ear on the head 52. Specifically, the reference electrode 113 is disposed at the head 52 at a position behind the ear on which the first electrode 111 and the second electrode 112 are disposed. In the present embodiment, since the first electrode 111 and the second electrode 112 are disposed on the right surface of the head 52, the reference electrode 113 is disposed at the rear position of the right ear. The earth electrode 114 is disposed at the rear of the right ear or the left ear of the head 52 where the reference electrode 113 is not disposed. In the present embodiment, since the reference electrode 113 is disposed at the rear position of the right ear, the ground electrode 114 is disposed at the rear position of the left ear. Each of the reference electrode 113 and the ground electrode 114 is electrically connected to the main body 15 of the headset 1 by the electric wire 16 (see FIG. 2), and is attached to the surface (scalp) of the head 52. The position where the reference electrode 113 and the ground electrode 114 are disposed may be the earlobe instead of the position behind the ear as described above. The posterior position of the ear and the earlobe are places in the head that are less susceptible to biopotentials from brain activity. That is, it is preferable that the reference electrode 113 and the ground electrode 114 be disposed at a position on the head that is not easily influenced by bioelectric potential derived from brain activity.
信号処理部12は、電極部11、参照電極113及びアース電極114に電気的に接続されており、電極部11から入力される脳波信号(電気信号)に対して信号処理を実行し、脳波情報を生成する。つまり、ヘッドセット1は、電極部11にて対象者5の脳の活動電位を測定することで対象者5の脳波を測定し、信号処理部12にて脳波を表す脳波情報を生成する。信号処理部12は、少なくとも脳波信号を増幅する増幅器、及びA/D変換するA/D変換器を含んでおり、増幅後のディジタル形式の脳波信号を、脳波情報として出力する。
The signal processing unit 12 is electrically connected to the electrode unit 11, the reference electrode 113, and the earth electrode 114, and performs signal processing on an electroencephalogram signal (electric signal) input from the electrode unit 11, Generate That is, the headset 1 measures the brain waves of the subject 5 by measuring the action potential of the brain of the subject 5 by the electrode unit 11, and generates the brain wave information representing the brain waves by the signal processing unit 12. The signal processing unit 12 includes at least an amplifier for amplifying an electroencephalogram signal and an A / D converter for A / D conversion, and outputs an electroencephalogram signal in digital form after amplification as electroencephalogram information.
第1通信部13は、情報処理装置2との通信機能を有している。第1通信部13は、少なくとも信号処理部12で生成された脳波情報を情報処理装置2に送信する。本実施形態では、第1通信部13は、情報処理装置2と双方向に通信可能である。第1通信部13の通信方式は、例えば、Bluetooth(登録商標)等に準拠した無線通信である。第1通信部13からは、随時、脳波情報が情報処理装置2に送信されている。
The first communication unit 13 has a communication function with the information processing device 2. The first communication unit 13 transmits at least the electroencephalogram information generated by the signal processing unit 12 to the information processing device 2. In the present embodiment, the first communication unit 13 can communicate bi-directionally with the information processing apparatus 2. The communication method of the first communication unit 13 is, for example, wireless communication compliant with Bluetooth (registered trademark) or the like. From the first communication unit 13, electroencephalogram information is transmitted to the information processing device 2 as needed.
情報処理装置2は、プロセッサ21と、メモリ22と、を含むコンピュータシステムを主構成とする。情報処理装置2は、第2通信部23と、操作部24と、第3通信部25と、表示部26と、を更に有している。
The information processing apparatus 2 mainly includes a computer system including a processor 21 and a memory 22. The information processing apparatus 2 further includes a second communication unit 23, an operation unit 24, a third communication unit 25, and a display unit 26.
第2通信部23は、ヘッドセット1(第1通信部13)との通信機能を有している。第2通信部23は、少なくとも脳波情報をヘッドセット1から受信する。本実施形態では、第2通信部23は、ヘッドセット1と双方向に通信可能である。第2通信部23は、例えば、一例として、200Hz程度のサンプリング周波数でサンプリングされた脳波情報を、ヘッドセット1から随時受信する。
The second communication unit 23 has a communication function with the headset 1 (first communication unit 13). The second communication unit 23 receives at least brain wave information from the headset 1. In the present embodiment, the second communication unit 23 can communicate bi-directionally with the headset 1. For example, as an example, the second communication unit 23 receives brain wave information sampled at a sampling frequency of about 200 Hz from the headset 1 as needed.
第3通信部25は、制御装置4との通信機能を有している。第3通信部25は、少なくとも制御信号を制御装置4に送信する。第3通信部25の通信方式は、例えば、USB(Universal Serial Bus)に準拠した有線通信である。
The third communication unit 25 has a communication function with the control device 4. The third communication unit 25 transmits at least a control signal to the control device 4. The communication method of the third communication unit 25 is, for example, wired communication conforming to USB (Universal Serial Bus).
本実施形態では、情報処理装置2は、タッチパネルディスプレイを搭載しており、タッチパネルディスプレイが操作部24及び表示部26として機能する。そのため、情報処理装置2は、表示部26に表示される各画面上でのボタン等のオブジェクトの操作(タップ、スワイプ、ドラッグ等)が操作部24で検出されることをもって、ボタン等のオブジェクトが操作されたことと判断する。つまり、操作部24及び表示部26は、各種の表示に加えて、対象者5又は医療スタッフからの操作入力を受け付けるユーザインタフェースとして機能する。ただし、操作部24は、タッチパネルディスプレイに限らず、例えば、キーボード、ポインティングデバイス、又はメカニカルなスイッチ等であってもよい。
In the present embodiment, the information processing apparatus 2 includes a touch panel display, and the touch panel display functions as the operation unit 24 and the display unit 26. Therefore, in the information processing apparatus 2, when the operation unit 24 detects an operation (tap, swipe, drag, etc.) of an object such as a button on each screen displayed on the display unit 26, an object such as a button is displayed. Judge that it has been operated. That is, in addition to various displays, the operation unit 24 and the display unit 26 function as a user interface that receives operation input from the subject 5 or medical staff. However, the operation unit 24 is not limited to the touch panel display, and may be, for example, a keyboard, a pointing device, or a mechanical switch.
プロセッサ21は、取得部211、解析部212、検出部213、判定部214、処理部215、入力部216、出力部217、表示制御部218、選択部219、提示部220及び削除部221の機能を有している。メモリ22に記録されているプログラムをプロセッサ21が実行することによって、取得部211、解析部212、検出部213、判定部214、処理部215、入力部216、出力部217及び表示制御部218の機能が実現される。同様に、メモリ22に記録されているプログラムをプロセッサ21が実行することによって、選択部219、提示部220及び削除部221の機能が実現される。
The processor 21 has functions of an acquisition unit 211, an analysis unit 212, a detection unit 213, a determination unit 214, a processing unit 215, an input unit 216, an output unit 217, a display control unit 218, a selection unit 219, a presentation unit 220, and a deletion unit 221. have. The processor 21 executes the program stored in the memory 22 to obtain the acquisition unit 211, the analysis unit 212, the detection unit 213, the determination unit 214, the processing unit 215, the input unit 216, the output unit 217, and the display control unit 218. Function is realized. Similarly, when the processor 21 executes the program stored in the memory 22, the functions of the selection unit 219, the presentation unit 220, and the deletion unit 221 are realized.
取得部211は、対象者5の頭部52の一部である測定箇所51に配置される電極部11にて採取される脳波を表す脳波情報を取得する。すなわち、取得部211は、ヘッドセット1の電極部11にて採取される脳波を表す脳波情報を、第2通信部23を介してヘッドセット1から取得する。ここで、取得部211は、第1電極111にて採取される脳波を表す第1脳波情報及び第2電極112にて採取される脳波を表す第2脳波情報をそれぞれ取得する。つまり、本実施形態では、電極部11が第1電極111及び第2電極112を含んでいるので、取得部211では、第1電極111で採取される脳波情報を第1脳波情報、第2電極112で採取される脳波情報を第2脳波情報として区別する。本実施形態では、取得部211はディジタル形式の脳波情報を取得し、取得した脳波情報をメモリ22に記憶する。このとき、メモリ22には、訓練時間の開始から終了までの間に脳波測定システム10で測定された脳波情報の時系列データが記憶される。メモリ22は、脳波情報を複数記憶可能である。つまり、メモリ22は、取得部211で取得された脳波情報を複数記憶する記憶部として機能する。
The acquisition unit 211 acquires electroencephalogram information representing an electroencephalogram collected by the electrode unit 11 disposed at the measurement point 51 which is a part of the head 52 of the subject 5. That is, the acquisition unit 211 acquires brain wave information representing brain waves collected by the electrode unit 11 of the headset 1 from the headset 1 via the second communication unit 23. Here, the acquisition unit 211 acquires first brain wave information representing the brain waves collected by the first electrode 111 and second brain wave information representing the brain waves collected by the second electrode 112. That is, in the present embodiment, since the electrode unit 11 includes the first electrode 111 and the second electrode 112, in the acquisition unit 211, the electroencephalogram information collected by the first electrode 111 is the first electroencephalogram information, the second electrode The brain wave information collected at 112 is distinguished as second brain wave information. In the present embodiment, the acquisition unit 211 acquires brain wave information in digital form, and stores the acquired brain wave information in the memory 22. At this time, the memory 22 stores time-series data of electroencephalogram information measured by the electroencephalogram measurement system 10 from the start to the end of the training time. The memory 22 can store a plurality of brain wave information. That is, the memory 22 functions as a storage unit that stores a plurality of brain wave information acquired by the acquisition unit 211.
解析部212は、取得部211で取得された脳波情報の解析を行う。解析部212は、メモリ22に記憶されている脳波情報の周波数解析を行い、周波数帯域ごとの信号強度を示すスペクトルデータを生成する。具体的には、解析部212は、メモリ22に記憶されている脳波情報を所定時間分だけ読み出して、例えば、短時間フーリエ変換(short-time Fourier transform:STFT)等の周波数解析を行う。これにより、時間経過に伴って変化する脳波信号について、周波数帯域ごとのパワーが算出される。本開示でいう「パワー」は、周波数帯域ごとの強度(スペクトル強度)の積算値である。
The analysis unit 212 analyzes the electroencephalogram information acquired by the acquisition unit 211. The analysis unit 212 performs frequency analysis of brain wave information stored in the memory 22 and generates spectrum data indicating signal strength for each frequency band. Specifically, the analysis unit 212 reads out the electroencephalogram information stored in the memory 22 for a predetermined time, and performs frequency analysis such as short-time Fourier transform (STFT), for example. Thereby, power of each frequency band is calculated for an electroencephalogram signal that changes with time. "Power" in the present disclosure is an integrated value of intensities (spectral intensities) for each frequency band.
検出部213は、解析部212で解析された周波数帯域ごとのパワーに基づいて、対象者5が随意運動を行おうと企図した際に生じ得る特徴的な変化を含む脳波を検出する。具体的には、検出部213は、特定の周波数帯域のパワーが安静範囲と運動範囲とのいずれにあるかによって、特徴的な変化を含む脳波の有無を判断する。本開示でいう「安静範囲」は、対象者5が、身体を安静状態とし、つまり随意運動を行おうと企図(想起)せず、リラックスした状態を維持しているときの、対象者5の脳波の特定の周波数帯域のパワーがとり得る範囲を意味する。本開示でいう「運動範囲」は、対象者5が随意運動を行おうと企図した場合に脳波の特定の周波数帯域のパワーがとり得る範囲を意味する。つまり、検出部213は、特定の周波数帯域のパワーが安静範囲から運動範囲へ遷移したことをもって、対象者5が随意運動を行おうと企図した際に生じ得る特徴的な変化を含む脳波が発生したと判断する。
The detection unit 213 detects an electroencephalogram including a characteristic change that may occur when the subject 5 intends to perform a voluntary exercise based on the power of each frequency band analyzed by the analysis unit 212. Specifically, the detection unit 213 determines the presence or absence of an electroencephalogram including a characteristic change depending on whether the power of the specific frequency band is in the resting range or the motion range. The “resting area” referred to in the present disclosure is the brain wave of the subject 5 when the subject 5 is in a resting state, that is, does not intend to perform voluntary exercise (remembering) and maintains a relaxed state. It means the range that the power of the specific frequency band of can take. The “movement range” in the present disclosure means a range in which the power of a specific frequency band of the electroencephalogram can be taken when the subject 5 intends to perform a voluntary exercise. That is, the detection unit 213 generates an electroencephalogram including a characteristic change that may occur when the subject 5 intends to perform voluntary exercise when the power of the specific frequency band transitions from the resting range to the exercise range. I will judge.
更に詳しく説明すると、本実施形態では一例として、検出部213は、解析部212で解析された周波数帯域ごとのパワーから、まず特定の周波数帯域のパワーの減少量を表す活性化レベルを算出する。そして、検出部213は、算出された活性化レベルを、メモリ22に記憶されている閾値と比較し、活性化レベルが閾値を超えることをもって、脳波の特徴的な変化が生じたと判断する。すなわち、活性化レベルに対する閾値は、特定の周波数帯域のパワーを表すグラフ(図6参照)において、安静範囲A1と運動範囲A2との境界線(直線Lth1)に相当する値である。そのため、事象関連脱同期が生じて特定の周波数帯域のパワーが減少し、特定の周波数帯域のパワーが安静範囲から運動範囲へ遷移したときに、活性化レベルが閾値を超えることになる。詳しくは「(3.3)キャリブレーション処理」の欄で説明するが、閾値は、キャリブレーション処理にて設定される。
More specifically, in the present embodiment, as an example, the detection unit 213 first calculates an activation level representing a decrease in power of a specific frequency band from the power of each frequency band analyzed by the analysis unit 212. Then, the detection unit 213 compares the calculated activation level with the threshold stored in the memory 22, and determines that the characteristic change of the electroencephalogram has occurred when the activation level exceeds the threshold. That is, the threshold for the activation level is a value corresponding to the boundary line (straight line Lth1) between the resting range A1 and the motion range A2 in the graph representing the power of the specific frequency band (see FIG. 6). Therefore, event-related desynchronization occurs and the power of a particular frequency band decreases, and when the power of a particular frequency band transitions from the resting range to the motion range, the activation level exceeds the threshold. Although the details will be described in the section of “(3.3) Calibration process”, the threshold is set in the calibration process.
判定部214は、取得部211で取得された脳波情報に基づいて、アーチファクトの有無を判定する。アーチファクトは、上述したように脳波に対して雑音成分となるため、判定部214にて、アーチファクトが含まれていると判定された場合には、脳波の測定精度の低下が生じ得る。判定部214の動作について詳しくは「(3.3)キャリブレーション処理」の欄で説明する。
The determination unit 214 determines the presence or absence of an artifact based on the brain wave information acquired by the acquisition unit 211. Since the artifact is a noise component to the electroencephalogram as described above, when the determination unit 214 determines that the artifact is included, the measurement accuracy of the electroencephalogram may be degraded. The operation of the determination unit 214 will be described in detail in the section “(3.3) Calibration process”.
処理部215は、脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。つまり、処理部215では、少なくとも活性化レベルに対する閾値を含む各種のパラメータを決定するためのキャリブレーション処理が実行される。処理部215によるキャリブレーション処理は、訓練過程に先駆けて実行される。処理部215は、キャリブレーション処理で決定された各種のパラメータを、メモリ22に記憶する。
The processing unit 215 executes a calibration process for determining parameters used for analysis of electroencephalogram information. That is, in the processing unit 215, calibration processing for determining various parameters including at least a threshold for the activation level is performed. The calibration process by the processing unit 215 is performed prior to the training process. The processing unit 215 stores various parameters determined in the calibration process in the memory 22.
入力部216は、メモリ22に記憶されている複数の脳波情報の中からキャリブレーション処理に使用される1以上の脳波情報を指定する指定信号を、操作部24より受け付ける。すなわち、キャリブレーション処理では、メモリ22に記憶されている複数の脳波情報のうち、指定信号にて指定される1以上の脳波情報が使用される。言い換えれば、入力部216が操作部24より受け付ける指定信号は、メモリ22に記憶されている複数の脳波情報の中から、キャリブレーション処理に使用される1以上の脳波情報を指定するための信号である。
The input unit 216 receives, from the operation unit 24, a designation signal for designating one or more brain wave information to be used for the calibration process among the plurality of brain wave information stored in the memory 22. That is, in the calibration process, one or more brain wave information designated by the designation signal among the plurality of brain wave information stored in the memory 22 is used. In other words, the designation signal received by the input unit 216 from the operation unit 24 is a signal for designating one or more brain wave information to be used for calibration processing among a plurality of brain wave information stored in the memory 22. is there.
さらに、入力部216は、処理部215がキャリブレーション処理を実行した後で、指定信号を受け付ける再指定処理を実行する機能を有している。そして、処理部215は、再指定処理において入力部216が受け付けた指定信号にて指定される1以上の脳波情報に基づいて、キャリブレーション処理を再度実行する機能を有している。すなわち、処理部215は、キャリブレーション処理を複数回繰り返し実行可能に構成されている。入力部216は、「N」回目のキャリブレーション処理の終了後、「N+1」回目のキャリブレーション処理の開始前に、再指定処理にて指定信号を受付可能に構成されている(Nは自然数)。再指定処理について詳しくは「(3.4)再指定処理」の欄で説明する。
Furthermore, the input unit 216 has a function of executing a re-designation process of accepting a designation signal after the processing unit 215 executes the calibration process. Then, the processing unit 215 has a function to execute the calibration processing again based on the one or more brain wave information designated by the designation signal received by the input unit 216 in the redesignation processing. That is, the processing unit 215 is configured to be able to repeatedly execute the calibration process a plurality of times. The input unit 216 is configured to be able to receive the designation signal in the re-designating process before the start of the “N + 1” -th calibration process after the “N” -th calibration process ends (N is a natural number) . The re-designation process will be described in detail in the section “(3.4) Re-designation process”.
また、取得部211は、処理部215がキャリブレーション処理を実行してから、入力部216が再指定処理を実行するまでの間において、脳波情報を更に取得してメモリ22に追加する追加処理を実行する機能を有している。すなわち、処理部215が、キャリブレーション処理を複数回繰り返し実行する場合において、入力部216が再指定処理を実行する前に、取得部211が、脳波情報を更に取得してメモリ22に追加する追加処理を実行可能に構成されている。そのため、「N」回目のキャリブレーション処理の終了後、「N+1」回目のキャリブレーション処理の開始前の期間においては、取得部211の追加処理にてメモリ22に脳波情報を追加後、入力部216の再指定処理にて指定信号を受付可能である。追加処理について詳しくは「(3.3)キャリブレーション処理」の欄で説明する。
In addition, the acquisition unit 211 performs additional processing to further acquire brain wave information and add it to the memory 22 in a period from when the processing unit 215 executes calibration processing until the input unit 216 executes re-designation processing. It has a function to execute. That is, when the processing unit 215 repeatedly executes the calibration process a plurality of times, the acquiring unit 211 additionally acquires brain wave information and adds it to the memory 22 before the input unit 216 executes the re-designating process. Processing is configured to be executable. Therefore, after the end of the “N” -th calibration process, in a period before the start of the “N + 1” -th calibration process, the brain wave information is added to the memory 22 by the additional process of the acquisition unit 211, and then the input unit 216 A designation signal can be received in the re-designation process of. The addition process will be described in detail in the section “(3.3) Calibration process”.
出力部217は、判定部214の判定結果を出力する。すなわち、判定部214にてアーチファクトの有無が判定されると、その判定結果が出力部217より出力される。出力部217による判定結果の出力の態様としては、例えば、表示、音声出力、プリントアウト(印刷)、非一時的記録媒体への書き込み、及び情報端末への送信等がある。本実施形態では、判定結果が表示部26に表示されるように、出力部217は、表示制御部218に判定結果を出力する。
The output unit 217 outputs the determination result of the determination unit 214. That is, when the determination unit 214 determines the presence or absence of an artifact, the determination result is output from the output unit 217. Examples of the output mode of the determination result by the output unit 217 include display, voice output, printout (printing), writing to a non-temporary recording medium, and transmission to an information terminal. In the present embodiment, the output unit 217 outputs the determination result to the display control unit 218 so that the determination result is displayed on the display unit 26.
表示制御部218は、メモリ22に記憶されている複数の脳波情報を表示部26に表示させる。さらに、表示制御部218は、出力部217が出力する判定結果を表示部26に表示させる。表示制御部218は、表示部26を制御する機能を有しており、様々なコンテンツを表示部26に表示させることが可能である。表示制御部218は、少なくともメモリ22に記憶されている複数の脳波情報及び判定部214の判定結果を表示部26に表示させる。
The display control unit 218 causes the display unit 26 to display a plurality of brain wave information stored in the memory 22. Further, the display control unit 218 causes the display unit 26 to display the determination result output by the output unit 217. The display control unit 218 has a function of controlling the display unit 26, and can display various contents on the display unit 26. The display control unit 218 causes the display unit 26 to display at least the plurality of brain wave information stored in the memory 22 and the determination result of the determination unit 214.
選択部219は、処理部215がキャリブレーション処理を実行してから、入力部216が再指定処理を実行するまでの間において、選択信号を操作部24より受け付ける。本開示でいう「選択信号」は、取得部211による追加処理を実行するか否かを選択するための信号である。すなわち、取得部211は、再指定処理の実行前に、必ず追加処理を実行するのではなく、取得部211が追加処理を実行するか否かは、選択信号によって選択可能である。そのため、選択処理にて追加処理を実行することが選択された場合にのみ、再指定処理の実行前に、取得部211による追加処理が実行される。
The selection unit 219 receives a selection signal from the operation unit 24 after the processing unit 215 executes the calibration process until the input unit 216 executes the re-designation process. The “selection signal” in the present disclosure is a signal for selecting whether or not to execute the additional process by the acquisition unit 211. That is, the acquisition unit 211 does not necessarily execute the addition process before the execution of the re-designation process, and whether or not the acquisition unit 211 performs the addition process can be selected by the selection signal. Therefore, only when the execution of the additional processing is selected in the selection processing, the additional processing by the acquiring unit 211 is executed before the execution of the re-designation processing.
提示部220は、キャリブレーション処理の結果を提示する。すなわち、処理部215にてキャリブレーション処理が実行されると、その結果が提示部220より提示される。提示部220による提示の態様としては、例えば、表示、音声出力、プリントアウト(印刷)、非一時的記録媒体への書き込み、及び情報端末への送信等がある。本実施形態では、提示部220は、キャリブレーション処理の結果が表示部26に表示されるように、提示部220は、表示制御部218にキャリブレーション処理の結果を出力する。
The presentation unit 220 presents the result of the calibration process. That is, when the calibration process is performed in the processing unit 215, the result is presented from the presentation unit 220. Examples of modes of presentation by the presentation unit 220 include display, audio output, printout (printing), writing to a non-temporary recording medium, and transmission to an information terminal. In the present embodiment, the presentation unit 220 outputs the result of the calibration process to the display control unit 218 such that the result of the calibration process is displayed on the display unit 26.
削除部221は、メモリ22に記憶されている複数の脳波情報の中から少なくとも1つの脳波情報を削除する。具体的には、削除部221は、入力部216が受け付けた指定信号にて指定されなかった少なくとも1つの脳波情報を、メモリ22における脳波情報の記憶領域から削除(消去)する。
The deletion unit 221 deletes at least one brain wave information from among the plurality of brain wave information stored in the memory 22. Specifically, the deletion unit 221 deletes (deletes) at least one electroencephalogram information not designated by the designation signal received by the input unit 216 from the storage area of the electroencephalogram information in the memory 22.
(3.2)訓練過程
次に、訓練過程における脳波測定システム10の動作について詳しく説明する。 (3.2) Training Process Next, the operation of theelectroencephalogram measurement system 10 in the training process will be described in detail.
次に、訓練過程における脳波測定システム10の動作について詳しく説明する。 (3.2) Training Process Next, the operation of the
訓練過程においては、リハビリテーション支援システム100の動作モードは、訓練モードである。リハビリテーション支援システム100の動作モードが訓練モードにあれば、情報処理装置2の表示部26には、例えば、図4に示すような、訓練画面200が表示される。図4の例において、領域を示す一点鎖線及び参照符号は説明のために表記しているに過ぎず、実際には、これらの一点鎖線及び参照符号は表示部26に表示されない。
In the training process, the operation mode of the rehabilitation support system 100 is a training mode. If the operation mode of the rehabilitation support system 100 is in the training mode, for example, a training screen 200 as shown in FIG. 4 is displayed on the display unit 26 of the information processing device 2. In the example of FIG. 4, the dashed-dotted line indicating the region and the reference numeral are only shown for the sake of explanation, and in fact, the dashed-dotted line and the reference numeral are not displayed on the display unit 26.
訓練画面200は、活性化レベル表示領域G1、脳波表示領域G2、訓練開始ボタンG3、装具操作ボタンG4、回数表示領域G5、感知状態表示領域G6、機器状態表示領域G7、ステータス表示領域G8及び終了ボタンG9を有している。また、訓練画面200は、操作ガイド領域G10、チェックボックスG11、訓練情報出力ボタンG12、履歴ボタンG13及び設定ボタンG14を更に有している。
The training screen 200 includes an activation level display area G1, an electroencephalogram display area G2, a training start button G3, a brace operation button G4, a count display area G5, a sensing state display area G6, an apparatus state display area G7, a status display area G8 and an end. It has a button G9. The training screen 200 further includes an operation guide area G10, a check box G11, a training information output button G12, a history button G13, and a setting button G14.
活性化レベル表示領域G1は、活性化レベルのグラフを表示するための領域である。活性化レベルのグラフは、横軸を時間(秒)、縦軸を活性化レベルとして、活性化レベルの時間変化を表す波形を表示する。活性化レベル表示領域G1において、直線L1は閾値(設定値)を表している。さらに、活性化レベルが閾値を超える期間には、活性化レベルのグラフの上方に帯状の判定マークM1が表示される。また、活性化レベルのグラフの背景色は、訓練時間の前半の安静期間(0~5秒の期間)と、訓練時間の後半の運動期間(5~10秒の期間)と、で異なることが好ましい。
The activation level display area G1 is an area for displaying a graph of the activation level. The activation level graph displays a waveform representing a time change of the activation level, with the horizontal axis representing time (seconds) and the vertical axis representing the activation level. In the activation level display area G1, a straight line L1 represents a threshold (a set value). Further, in a period in which the activation level exceeds the threshold, a band of judgment marks M1 is displayed above the graph of the activation level. Also, the background color of the activation level graph may be different between the resting period (0-5 seconds period) in the first half of the training time and the exercise period (5-10 seconds period) in the second half of the training time preferable.
脳波表示領域G2は、ヘッドセット1で測定された脳波を表示するための領域である。脳波表示領域G2における脳波は、ヘッドセット1から情報処理装置2に送信される脳波情報に従って、リアルタイムで表示される。脳波のグラフは、横軸を時間(秒)、縦軸を電位として、脳波の時間変化を表す波形を表示する。
The electroencephalogram display area G2 is an area for displaying the electroencephalogram measured by the headset 1. The brain waves in the brain wave display area G2 are displayed in real time according to the brain wave information transmitted from the headset 1 to the information processing device 2. The graph of the electroencephalogram has a horizontal axis representing time (seconds) and a vertical axis representing potential, and displays a waveform representing time change of the electroencephalogram.
訓練開始ボタンG3は、訓練を開始するためのボタンである。訓練開始ボタンG3がタップされることで、リハビリテーション支援システム100による訓練が開始し、脳波測定システム10での脳波の測定が開始する。
The training start button G3 is a button for starting training. By the training start button G3 being tapped, the training by the rehabilitation support system 100 is started, and the measurement of the electroencephalogram in the electroencephalogram measurement system 10 is started.
装具操作ボタンG4は、運動補助装置3を操作するためのボタンである。装具操作ボタンG4がタップされることで、脳波測定システム10から制御信号が出力され、運動補助装置3の閉動作又は開動作が行われる。ここで、装具操作ボタンG4には、「装具閉」又は「装具開」というようなテキスト情報が表示される。「装具閉」と表示されている状態で装具操作ボタンG4がタップされると、運動補助装置3の閉動作が行われ、「装具開」と表示されている状態で装具操作ボタンG4がタップされると、運動補助装置3の開動作が行われる。
The brace operation button G4 is a button for operating the exercise assisting device 3. By tapping the device operation button G4, a control signal is output from the electroencephalogram measurement system 10, and the closing operation or the opening operation of the exercise assisting apparatus 3 is performed. Here, text information such as "apparatus closed" or "apparatus open" is displayed on the appliance operation button G4. When the brace operation button G4 is tapped in a state in which "the brace is closed", the closing operation of the exercise assisting device 3 is performed, and the brace operation button G4 is tapped in a state in which "the brace is opened" Then, the opening operation of the exercise assisting device 3 is performed.
回数表示領域G5は、成功回数及び試行回数を表示するための領域である。本開示でいう「成功回数」は、脳波測定システム10が、対象者5が随意運動を行おうと企図した際に生じ得る事象関連脱同期による特徴的な変化を含む脳波を、訓練時間の運動期間内に検出した回数である。本開示でいう「試行回数」は、リハビリテーション支援システム100による訓練が行われた回数である。
The number display area G5 is an area for displaying the number of successes and the number of trials. In the present disclosure, the “number of successes” refers to an exercise period of training time in which an electroencephalogram measurement system 10 includes characteristic changes due to event-related desynchronization that may occur when the subject 5 intends to perform voluntary exercise. This is the number of times detected inside. The “number of trials” in the present disclosure is the number of times training is performed by the rehabilitation support system 100.
感知状態表示領域G6は、脳波の感知状態を表示するための領域である。本実施形態では、脳波測定システム10は、第1電極111及び第2電極112の各々について、対象者5の身体(頭皮)との間のインピーダンス値を測定し、測定されたインピーダンス値に応じて感知状態の良否を判定している。図4の例では、感知状態表示領域G6に、インピーダンス値(図4では「80以上」)のテキスト表示と、第1電極111及び第2電極112の各々の感知状態の良否を表すマーカ表示と、がなされている。具体的には、第1電極111及び第2電極112の各々の感知状態の良否によって、例えば、人の頭部を模したイラスト上におけるマーカの色が変化する。
The sensing state display area G6 is an area for displaying the sensing state of the electroencephalogram. In the present embodiment, the electroencephalogram measurement system 10 measures, for each of the first electrode 111 and the second electrode 112, an impedance value with respect to the body (scalp) of the subject 5 according to the measured impedance value. It is judged whether the sensing state is good or bad. In the example of FIG. 4, a text display of an impedance value (“80 or more in FIG. 4”) and a marker display indicating the quality of the sensing state of each of the first electrode 111 and the second electrode 112 are displayed in the sensing state display area G6. , Has been done. Specifically, depending on whether the sensing state of each of the first electrode 111 and the second electrode 112 is good or bad, for example, the color of the marker on the illustration imitating the head of a person changes.
機器状態表示領域G7は、リハビリテーション支援システム100における各機器の状態を表示するための領域である。機器状態表示領域G7では、例えば、情報処理装置2におけるヘッドセット1との接続状態、ヘッドセット1の電池残量等の状態が「○」又は「×」等のアイコンで表示される。
The device state display area G7 is an area for displaying the state of each device in the rehabilitation support system 100. In the device state display area G7, for example, the state of connection of the information processing device 2 to the headset 1, the state of the remaining battery capacity of the headset 1, and the like are displayed as icons such as “o” or “x”.
ステータス表示領域G8は、対象者5の識別情報(被験者ID)及び氏名、並びに医療スタッフの識別情報(検者ID)及び氏名等を表示するための領域である。また、ステータス表示領域G8には、「リハビリ対象」、つまりリハビリテーションの対象が「左手」と「右手」とのいずれであるかを示す対象アイコンG81が更に表示される。図4の例では、対象アイコンG81は、リハビリテーションの対象が「左手」であることをテキスト情報にて示している。
The status display area G8 is an area for displaying the identification information (subject ID) and name of the subject 5 and the identification information (examiner ID) and name of the medical staff. Further, in the status display area G8, a target icon G81 indicating “rehabilitation target”, that is, whether the target of rehabilitation is “left hand” or “right hand” is further displayed. In the example of FIG. 4, the target icon G <b> 81 indicates in text information that the target of rehabilitation is the “left hand”.
終了ボタンG9は、訓練を終了するためのボタンである。終了ボタンG9がタップされることで、リハビリテーション支援システム100による訓練が終了し、脳波測定システム10での脳波の測定が終了する。
The end button G9 is a button for ending the training. By tapping the end button G9, the training by the rehabilitation support system 100 ends, and the measurement of the electroencephalogram in the electroencephalogram measurement system 10 ends.
操作ガイド領域G10は、リハビリテーション支援システム100の操作をガイドするテキスト情報を表示するための領域である。図4の例では、「試行を開始する場合は〔訓練開始〕ボタンを押してください」というテキスト情報が操作ガイド領域G10に表示されている。操作ガイド領域G10の表示内容は、リハビリテーション支援システム100の動作状態に応じて変化する。
The operation guide area G10 is an area for displaying text information for guiding the operation of the rehabilitation support system 100. In the example of FIG. 4, text information “Please press the [Start training] button to start trial” is displayed in the operation guide area G10. The display content of the operation guide area G10 changes in accordance with the operation state of the rehabilitation support system 100.
チェックボックスG11は、脳波表示領域G2に脳波を表示するか否かを切り替えるためのアイコンである。チェックボックスG11がタップされることで、脳波表示領域G2に脳波が表示される状態と、表示されない状態とが交互に切り替わる。チェックボックスG11の表示がアクティブになっている状態では、脳波表示領域G2に脳波が表示される。
The check box G11 is an icon for switching whether to display an electroencephalogram in the electroencephalogram display area G2. By tapping the check box G11, a state in which an electroencephalogram is displayed in the electroencephalogram display area G2 and a state in which the electroencephalogram is not displayed are alternately switched. In the state where the display of the check box G11 is active, the electroencephalogram is displayed in the electroencephalogram display area G2.
訓練情報出力ボタンG12は、リハビリテーションの結果を含む訓練情報を出力するためのボタンである。訓練情報出力ボタンG12がタップされることで、訓練情報が、所望の態様で出力される。訓練情報の出力の態様としては、例えば、表示、音声出力、プリントアウト(印刷)、非一時的記録媒体への書き込み、及び情報端末への送信等がある。
The training information output button G12 is a button for outputting training information including the result of rehabilitation. By tapping the training information output button G12, training information is output in a desired manner. Examples of the output mode of the training information include display, voice output, printout (printing), writing to a non-temporary recording medium, and transmission to an information terminal.
履歴ボタンG13は、リハビリテーションの結果を含む訓練情報の履歴を参照するためのボタンである。履歴ボタンG13がタップされることで、情報処理装置2の表示部26に表示される画面が、訓練画面200から履歴参照画面に遷移する。履歴参照画面には、少なくとも対象者5が過去に実施したリハビリテーションの結果が表示される。
The history button G13 is a button for referring to the history of training information including the result of rehabilitation. By tapping the history button G13, the screen displayed on the display unit 26 of the information processing device 2 changes from the training screen 200 to the history reference screen. The history reference screen displays at least the result of rehabilitation performed by the subject 5 in the past.
設定ボタンG14は、リハビリテーション支援システム100の動作モードを、リハビリテーション支援システム100に関する各種の設定を行う設定モードに移行させるためのボタンである。設定ボタンG14がタップされることで、情報処理装置2の表示部26に表示される画面が、訓練画面200から後述の設定画面201(図5参照)に遷移する。
The setting button G14 is a button for shifting the operation mode of the rehabilitation support system 100 to a setting mode for performing various settings regarding the rehabilitation support system 100. By tapping the setting button G14, the screen displayed on the display unit 26 of the information processing device 2 changes from the training screen 200 to a setting screen 201 described later (see FIG. 5).
訓練過程においては、上述したような訓練画面200が情報処理装置2の表示部26に表示された状態で、対象者5がリハビリテーションを実施する。つまり、訓練開始ボタンG3がタップされることで、リハビリテーション支援システム100による訓練が開始する。
In the training process, in a state where the training screen 200 as described above is displayed on the display unit 26 of the information processing device 2, the subject person 5 performs rehabilitation. That is, when the training start button G3 is tapped, training by the rehabilitation support system 100 is started.
訓練の開始と同時に、訓練時間のカウントが開始して、脳波測定システム10は対象者5の脳波を測定する。そして、訓練時間の前半の安静期間(0~5秒の期間)には、対象者5は、操作ガイド領域G10の表示、又は医療スタッフの指示に従って、身体を安静状態とする。このとき、活性化レベル及び脳波はリアルタイムで訓練画面200に表示される。ただし、安静期間においては、脳波測定システム10は、活性化レベルと閾値との比較を行わず、事象関連脱同期による特徴的な変化を含む脳波の検出を行わない。
At the start of training, counting of training time starts, and the electroencephalogram measurement system 10 measures the brain waves of the subject 5. Then, in a resting period (a period of 0 to 5 seconds) in the first half of the training time, the subject 5 puts the body in a resting state in accordance with the display of the operation guide area G10 or the instruction of the medical staff. At this time, the activation level and the electroencephalogram are displayed on the training screen 200 in real time. However, in the resting period, the electroencephalogram measurement system 10 does not compare the activation level with the threshold, and does not detect the electroencephalogram including the characteristic change due to the event-related desynchronization.
一方、訓練時間の後半の運動期間(5~10秒の期間)には、対象者5は、操作ガイド領域G10の表示、又は医療スタッフの指示に従って、手指53の伸展動作、つまり随意運動を行おうとする企図(想起)を行う。このとき、活性化レベル及び脳波はリアルタイムで訓練画面200に表示される。さらに、運動期間においては、脳波測定システム10は、活性化レベルと閾値との比較を行い、事象関連脱同期による特徴的な変化を含む脳波を検出する。ここで、事象関連脱同期が生じることにより、活性化レベルが閾値(図4の直線L1参照)を超えると、訓練画面200における活性化レベルのグラフの上方に帯状の判定マークM1が表示される。
On the other hand, in the second exercise period of the training time (period of 5 to 10 seconds), the subject 5 performs the extension operation of the fingers 53, that is, the voluntary exercise according to the display of the operation guide region G10 or the instruction of the medical staff. Make an attempt (remembering) to try. At this time, the activation level and the electroencephalogram are displayed on the training screen 200 in real time. Furthermore, during the exercise period, the electroencephalogram measurement system 10 compares the activation level with the threshold to detect an electroencephalogram including a characteristic change due to event-related desynchronization. Here, when the activation level exceeds the threshold (see the straight line L1 in FIG. 4) due to the occurrence of event-related desynchronization, a band-shaped judgment mark M1 is displayed above the graph of the activation level in the training screen 200. .
更に詳しく説明すると、脳波測定システム10は、随時、取得部211で取得された脳波情報を解析部212にて解析する。さらに、脳波測定システム10は、解析部212で解析された周波数帯域ごとのパワーに基づいて、検出部213にて活性化レベルを算出し、活性化レベルと閾値との比較を行う。脳波測定システム10では、事象関連脱同期が生じて特定の周波数帯域のパワーが減少し、特定の周波数帯域のパワーが安静範囲から運動範囲へ遷移したときに、活性化レベルが閾値を超えたと判断される。
More specifically, the electroencephalogram measurement system 10 analyzes the electroencephalogram information acquired by the acquisition unit 211 at an analysis unit 212 as needed. Furthermore, the electroencephalogram measurement system 10 calculates the activation level in the detection unit 213 based on the power of each frequency band analyzed by the analysis unit 212, and compares the activation level with the threshold. In the electroencephalogram measurement system 10, it is determined that the activation level exceeds the threshold when the event related desynchronization occurs and the power of the specific frequency band decreases and the power of the specific frequency band transitions from the resting range to the exercise range Be done.
ここで、特定の周波数帯域は、単一の周波数帯域(一例として、α波の帯域又はβ波の帯域)でもよいし、複数の周波数帯域(一例として、α波の帯域及びβ波の帯域)であってもよい。特定の周波数帯域が、例えば、2つの周波数帯域である場合には、これら2つの周波数帯域のパワーで規定される座標値が、安静範囲から運動範囲へ遷移した場合、活性化レベルが閾値を超える。
Here, the specific frequency band may be a single frequency band (as an example, a band of α waves or a band of β waves), or a plurality of frequency bands (as an example, a band of α waves and a band of β waves) It may be If the specific frequency band is, for example, two frequency bands, the activation level exceeds the threshold value when the coordinate value defined by the power of these two frequency bands transitions from the resting range to the motion range .
また、本実施形態では、脳波測定システム10は、活性化レベルが閾値を超えている状態の継続時間を測定する機能を有している。図4に例示する訓練画面200では、判定マークM1の長さが継続時間の長さに相当する。脳波測定システム10は、活性化レベルが閾値以下の値から、閾値を超える値に立ち上がる(変化する)と、第3の制御信号を運動補助装置3に送信する。さらに、継続時間が規定時間(例えば、「1秒」)に達すると、脳波測定システム10は、第1の制御信号を運動補助装置3に送信する。
Moreover, in the present embodiment, the electroencephalogram measurement system 10 has a function of measuring the duration of the state in which the activation level exceeds the threshold. In the training screen 200 illustrated in FIG. 4, the length of the determination mark M1 corresponds to the length of the duration. The electroencephalogram measurement system 10 transmits a third control signal to the exercise assistance device 3 when the activation level rises (changes) to a value exceeding the threshold value from the value below the threshold value. Furthermore, when the duration time reaches a prescribed time (for example, “1 second”), the electroencephalogram measurement system 10 transmits a first control signal to the exercise assistance device 3.
上記より、活性化レベルが閾値を超えたときに、運動補助装置3の電気刺激発生装置32が駆動され、運動補助装置3にて、対象者5の身体に電気的な刺激が与えられて、対象者5の随意運動(伸展動作)が補助される。さらに、活性化レベルが閾値を超える状態が規定時間継続したときに、運動補助装置3の手指駆動装置31が駆動され、運動補助装置3にて、手指駆動装置31の「開動作」が行われて、対象者5の随意運動(伸展動作)が補助される。
From the above, when the activation level exceeds the threshold value, the electrical stimulation generator 32 of the motion assist device 3 is driven, and the motion assist device 3 applies an electrical stimulus to the body of the subject 5, The voluntary movement (extension movement) of the subject 5 is assisted. Furthermore, when the state where the activation level exceeds the threshold continues for a prescribed time, the finger drive device 31 of the exercise assisting device 3 is driven, and the movement assisting device 3 performs the “opening operation” of the finger drive device 31. Thus, the voluntary movement (extension movement) of the subject 5 is assisted.
その結果、対象者5が随意運動を行おうと企図(想起)した際に、随意運動の対象となる部位に対応する脳領域の活性化が実際に起きたタイミングに合わせて、運動補助装置3にて対象者5の随意運動(左の手指53の伸展動作)が補助される。このとき、対象者5の筋肉及び感覚神経が活動し、その情報が脳に伝達されることにより、神経の再構築が行われ、リハビリテーションの効果が得られる。したがって、リハビリテーション支援システム100によれば、様々な状態の対象者5について、医療スタッフが補助する場合と同様に、対象者5が単独で随意運動を行う場合に比べて効果的な、運動療法によるリハビリテーションを実現可能となる。
As a result, when the subject 5 intends to perform voluntary exercise (remembering), according to the timing at which activation of the brain region corresponding to the site to be subjected to voluntary exercise actually occurs, Thus, the voluntary movement of the subject 5 (the extension operation of the left finger 53) is assisted. At this time, the muscles and sensory nerves of the subject 5 are activated, and the information is transmitted to the brain, whereby the nerves are reconstructed and the effect of rehabilitation is obtained. Therefore, according to the rehabilitation support system 100, for the subject 5 in various states, exercise therapy is more effective than in the case where the subject 5 performs voluntary exercise alone, as in the case where medical staff assists. It is possible to realize rehabilitation.
ところで、リハビリテーション支援システム100の動作モードが設定モードにあれば、情報処理装置2の表示部26には、図5に示すような、設定画面201が表示される。図5の例において、領域を示す一点鎖線及び参照符号は説明のために表記しているに過ぎず、実際には、これらの一点鎖線及び参照符号は表示部26に表示されない。
By the way, when the operation mode of the rehabilitation support system 100 is in the setting mode, the setting screen 201 as shown in FIG. 5 is displayed on the display unit 26 of the information processing device 2. In the example of FIG. 5, the dashed-dotted line indicating the region and the reference numeral are only shown for the sake of explanation, and in fact, the dashed-dotted line and the reference numeral are not displayed on the display unit 26.
設定画面201は、訓練画面200と同様の感知状態表示領域G6、機器状態表示領域G7、ステータス表示領域G8及び終了ボタンG9に加えて、第1~5の設定領域G21~G25及び更新ボタンG26を含んでいる。
The setting screen 201 includes first to fifth setting areas G21 to G25 and an update button G26 in addition to the sensing state display area G6, the apparatus state display area G7, the status display area G8 and the end button G9 similar to the training screen 200. It contains.
第1の設定領域G21には、電気刺激発生装置32による電気的な刺激の強度(神経筋刺激レベル)を調節するためのスライドバーが表示される。第2の設定領域G22には、音量を調節するためのスライドバーが表示される。第3の設定領域G23には、活性化レベルに対する閾値を調節するためのスライドバーが表示される。第4の設定領域G24には、手指駆動装置31の動作速度を調整するための上段スライドバーG27、及び手指駆動装置31の可動範囲を調整するための下段スライドバーG28が表示される。
In the first setting area G21, a slide bar for adjusting the intensity (neurostimulation level) of the electrical stimulation by the electrical stimulation generator 32 is displayed. In the second setting area G22, a slide bar for adjusting the volume is displayed. In the third setting area G23, a slide bar for adjusting a threshold for the activation level is displayed. In the fourth setting area G24, an upper slide bar G27 for adjusting the operation speed of the finger drive device 31 and a lower slide bar G28 for adjusting the movable range of the finger drive device 31 are displayed.
第5の設定領域G25には、規定時間を設定するためのスライドバーが表示される。本開示でいう「規定時間」は、手指駆動装置31の開動作により対象者5の伸展動作を補助するか否かを判定するための時間であって、一例として、デフォルトで1.0秒に設定されている。脳波測定システム10は、活性化レベルが閾値を超えている状態が規定時間継続したときに、第1の制御信号を出力して手指駆動装置31を駆動する。
In the fifth setting area G25, a slide bar for setting a prescribed time is displayed. The “specified time” referred to in the present disclosure is a time for determining whether or not the extension operation of the subject 5 is assisted by the opening operation of the finger drive device 31 and is 1.0 seconds by default as an example. It is set. The electroencephalogram measurement system 10 outputs the first control signal to drive the finger drive device 31 when the activation level exceeds the threshold value for a prescribed time period.
ここで、手指駆動装置31の可動範囲については、開動作の終点を規定する「開角度」と、閉動作の終点を規定する「閉角度」と、を個別に設定可能である。具体的には、下段スライドバーG28には、開角度を調節するための第1スライダG281と、閉角度を調節するための第2スライダG282と、が含まれている。さらに、感覚的に手指駆動装置31の可動範囲を調節可能となるように、第1スライダG281と、開動作のアクションを示すイラスト及び開角度を表すテキスト情報とで、表示色(例えば水色)が統一されている。同様に、第2スライダG282と、閉動作のアクションを示すイラスト及び閉角度を表すテキスト情報とで、表示色(例えば赤色)が統一されている。
Here, with respect to the movable range of the finger drive device 31, an "open angle" defining the end point of the opening operation and a "closing angle" defining the end point of the closing operation can be set individually. Specifically, the lower slide bar G28 includes a first slider G281 for adjusting the opening angle and a second slider G282 for adjusting the closing angle. Furthermore, the display color (for example, light blue) of the first slider G281, the illustration indicating the action of the opening operation and the text information indicating the opening angle is set so that the movable range of the finger drive 31 can be sensibly adjusted. It is unified. Similarly, the display color (for example, red) is unified in the second slider G282 and the illustration indicating the action of the closing operation and the text information indicating the closing angle.
更新ボタンG26は、リハビリテーション支援システム100の動作モードを、訓練モードに移行させるためのボタンである。更新ボタンG26がタップされることで、情報処理装置2の表示部26に表示される画面が、設定画面201から訓練画面200に遷移する。このとき、設定画面201で設定された各種の設定値がメモリ22に書き込まれ、設定値の更新が行われる。
The update button G26 is a button for shifting the operation mode of the rehabilitation support system 100 to the training mode. By tapping the update button G26, the screen displayed on the display unit 26 of the information processing device 2 changes from the setting screen 201 to the training screen 200. At this time, various setting values set on the setting screen 201 are written to the memory 22, and the setting values are updated.
(3.3)キャリブレーション処理
次に、訓練課程に先駆けて準備過程において実行されるキャリブレーション処理時における、脳波測定システム10の動作について詳しく説明する。 (3.3) Calibration Process Next, the operation of theelectroencephalogram measurement system 10 in the calibration process performed in the preparation process prior to the training process will be described in detail.
次に、訓練課程に先駆けて準備過程において実行されるキャリブレーション処理時における、脳波測定システム10の動作について詳しく説明する。 (3.3) Calibration Process Next, the operation of the
(3.3.1)処理の概要
キャリブレーション処理は、リハビリテーション支援システム100の動作モードがキャリブレーションモードであるときに行われる。キャリブレーション処理は、少なくとも活性化レベルに対する閾値を含む、各種のパラメータを決定するための処理である。つまり、上述したように、事象関連脱同期によりパワーが減少する周波数帯域、及びパワーの減少量等は、例えば、対象者5の属性(年齢及び性別等)、障害部位、障害の状態、及び個人差等によってばらつく。そこで、脳波測定システム10では、検出対象となる脳波の検出精度を高めるために、キャリブレーション処理にて、脳波情報の解析に用いる各種のパラメータを対象者5ごとに決定する。 (3.3.1) Outline of Process The calibration process is performed when the operation mode of therehabilitation support system 100 is the calibration mode. The calibration process is a process for determining various parameters including at least a threshold for the activation level. That is, as described above, the frequency band in which the power decreases due to event-related desynchronization, and the reduction amount of the power are, for example, the attributes of the subject 5 (such as age and gender), the failure site, the failure status, and the individual. It fluctuates by the difference etc. Therefore, in the electroencephalogram measurement system 10, in order to enhance the detection accuracy of the electroencephalogram to be detected, various parameters used for analysis of the electroencephalogram information are determined for each subject 5 in the calibration process.
キャリブレーション処理は、リハビリテーション支援システム100の動作モードがキャリブレーションモードであるときに行われる。キャリブレーション処理は、少なくとも活性化レベルに対する閾値を含む、各種のパラメータを決定するための処理である。つまり、上述したように、事象関連脱同期によりパワーが減少する周波数帯域、及びパワーの減少量等は、例えば、対象者5の属性(年齢及び性別等)、障害部位、障害の状態、及び個人差等によってばらつく。そこで、脳波測定システム10では、検出対象となる脳波の検出精度を高めるために、キャリブレーション処理にて、脳波情報の解析に用いる各種のパラメータを対象者5ごとに決定する。 (3.3.1) Outline of Process The calibration process is performed when the operation mode of the
キャリブレーション処理は、脳波測定システム10にて、訓練課程と同様の手順で実際に対象者5の脳波を測定する測定処理と、測定された脳波に基づいて、この対象者5に合わせた各種のパラメータが決定される算出処理と、を含む。
The calibration process is performed by the electroencephalogram measurement system 10 according to the measurement process of actually measuring the electroencephalogram of the subject 5 in the same procedure as the training course, and various kinds of adjustment based on the measured electroencephalogram. Calculation processing in which the parameter is determined.
測定処理においては、訓練時間と同様、安静期間と運動期間とに2分されたキャリブレーション時間が設定され、このキャリブレーション時間に、脳波測定システム10にて脳波が測定される。対象者5は、キャリブレーション時間における安静期間及び運動期間の各々において、リハビリテーション支援システム100の指示に従ってリハビリテーションを実施する。本実施形態では一例として、キャリブレーション時間は「10秒間」であって、キャリブレーション時間を2等分した場合の前半の「5秒間」が安静期間、後半の「5秒間」が運動期間であると仮定する。
In the measurement process, as in the training time, a calibration time divided into a resting period and an exercise period is set, and an electroencephalogram is measured by the electroencephalogram measurement system 10 during this calibration time. The subject 5 performs rehabilitation according to the instruction of the rehabilitation support system 100 in each of the resting period and the exercise period in the calibration time. In this embodiment, as an example, the calibration time is "10 seconds", and the first half "5 seconds" when the calibration time is divided into two is the resting period, and the second half "5 seconds" is the exercise period. Suppose.
すなわち、安静期間においては、対象者5は、身体を安静状態とし、つまり随意運動を行おうと企図(想起)せず、リラックスした状態を維持する。一方、運動期間においては、対象者5は、手指53の伸展動作、つまり随意運動を行おうと企図(想起)する。脳波測定システム10は、これら安静期間及び運動期間の両方において、対象者5の脳波を測定する。脳波測定システム10は、キャリブレーション時間(安静期間及び運動期間)中に測定された脳波情報を、レコードとしてメモリ22に記憶する。つまり、本開示でいう「レコード」は、測定処理において、キャリブレーション時間の開始から終了までの間に脳波測定システム10で測定された脳波情報の時系列データである。ただし、測定処理のキャリブレーション時間においては、訓練課程とは異なり、脳波測定システム10は、脳波の特徴的な変化を検出する処理を行わない。
That is, in the resting period, the subject 5 puts the body in a resting state, that is, does not intend to perform voluntary exercise (reminds), and maintains a relaxed state. On the other hand, in the exercise period, the subject 5 intends to perform extension movement of the fingers 53, that is, to perform a voluntary exercise. The electroencephalogram measurement system 10 measures the brain waves of the subject 5 in both the resting period and the exercise period. The electroencephalogram measurement system 10 stores the electroencephalogram information measured during the calibration time (rest period and exercise period) in the memory 22 as a record. That is, the “record” in the present disclosure is time-series data of electroencephalogram information measured by the electroencephalogram measurement system 10 during the measurement process from the start to the end of the calibration time. However, in the calibration time of the measurement process, unlike the training process, the electroencephalogram measurement system 10 does not perform the process of detecting the characteristic change of the electroencephalogram.
ここで、脳波測定システム10は、キャリブレーション処理において、上述した測定処理を複数回行うことができる。メモリ22は、所定数(一例として「30」)を上限として、複数のレコードを記憶することが可能である。これにより、1ないし複数回の測定処理の終了時点において、メモリ22には、安静期間及び運動期間における対象者5の脳波を表す、1ないし複数のレコードが記憶される。
Here, the electroencephalogram measurement system 10 can perform the above-described measurement process multiple times in the calibration process. The memory 22 can store a plurality of records with a predetermined number (for example, “30”) as an upper limit. Thus, at the end of one or more measurement processes, the memory 22 stores one or more records representing the electroencephalogram of the subject 5 in the resting period and the exercise period.
算出処理においては、1ないし複数回の測定処理にてメモリ22に記憶された1ないし複数のレコードを用いて、対象者5に合わせた各種のパラメータを決定する。具体的には、脳波測定システム10は、随時、取得部211で取得された脳波情報を解析部212にて解析し、解析部212で解析された周波数帯域ごとのパワーに基づいて、各種のパラメータを決定する。このとき決定されるパラメータには、少なくとも活性化レベルに対する閾値、並びにα波及びβ波の各々の周波数帯域等が含まれている。
In the calculation process, various parameters tailored to the object person 5 are determined using one or more records stored in the memory 22 in one or more measurement processes. Specifically, the electroencephalogram measurement system 10 analyzes the electroencephalogram information acquired by the acquisition unit 211 at any time by the analysis unit 212, and based on the power for each frequency band analyzed by the analysis unit 212, various parameters Decide. The parameters determined at this time include at least a threshold for the activation level, and frequency bands of each of the alpha wave and the beta wave.
ここにおいて、各種のパラメータを決定するのに、メモリ22に記憶された1ないし複数のレコードが全て用いられることは必須ではない。例えば、メモリ22に5つのレコードが記憶されている場合に、これら5つのレコードのうち、少なくとも1つのレコードが、パラメータを決定するための算出処理に用いられればよい。そこで、本実施形態では、上述したように、入力部216が、メモリ22に記憶されている複数の脳波情報の中から1以上の脳波情報(レコード)を指定する指定信号を、操作部24より受け付ける。そして、処理部215では、指定信号にて指定される1以上の脳波情報(レコード)に基づいて、脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。その結果、メモリ22に記憶された1ないし複数のレコードのうち、いずれのレコードが算出処理に用いられるかについては、対象者5又は医療スタッフにより指定される。
Here, it is not essential that one or more records stored in the memory 22 be all used to determine various parameters. For example, when five records are stored in the memory 22, at least one of the five records may be used for calculation processing for determining a parameter. Therefore, in the present embodiment, as described above, the input unit 216 uses the operation unit 24 to designate a designation signal that designates one or more brain wave information (record) from among the plurality of brain wave information stored in the memory 22. Accept. Then, the processing unit 215 executes calibration processing for determining a parameter used for analysis of brain wave information based on one or more brain wave information (record) specified by the designation signal. As a result, which one of the one or more records stored in the memory 22 is used for the calculation process is specified by the subject 5 or the medical staff.
以下に、活性化レベルに対する閾値の決定方法について、図6を参照して簡単に説明する。図6は、複数(ここでは一例として5つ)のレコードについて、α波及びβ波の2つの周波数帯域に着目した場合の、安静期間及び運動期間の各々についてのパワーをプロットしたグラフである。図6では、横軸をα波のパワー、縦軸をβ波のパワーとし、安静期間におけるパワーの代表値(例えば、平均値)を「○」印で示し、運動期間におけるパワーの代表値(例えば、平均値)を「×」印で示している。図6では、対象者5におけるα波及びβ波の各々の周波数帯域が既に決定された状態を想定している。
Below, the method of determining the threshold for the activation level is briefly described with reference to FIG. FIG. 6 is a graph in which the powers of the resting period and the exercise period are plotted for a plurality of (five in this example) records, focusing on two frequency bands of α wave and β wave. In FIG. 6, the horizontal axis represents the power of the alpha wave, and the vertical axis represents the power of the beta wave, and representative values (for example, average values) of power in the resting period are indicated by "o". For example, the average value is indicated by "x" mark. In FIG. 6, it is assumed that the frequency bands of the alpha wave and the beta wave in the subject 5 have already been determined.
すなわち、図6において、α波及びβ波の2つの周波数帯域について、「○」印が存在する範囲が安静範囲A1であって、「×」印が存在する範囲が運動範囲A2に相当する。上述したように、脳波測定システム10は、特定の周波数帯域のパワーが安静範囲から運動範囲へ遷移したことをもって、対象者5が随意運動を行おうとした際に生じ得る特徴的な変化を含む脳波が発生したと判断する。そのため、図6における安静範囲A1と運動範囲A2との境界線(直線Lth1)が、活性化レベルに対する閾値に相当する。このように、活性化レベルに対する閾値は、測定処理において測定された1ないし複数のレコードに基づいて決定可能である。
That is, in FIG. 6, the range in which the “o” mark exists is the resting range A1 and the range in which the “x” mark exists corresponds to the movement range A2 for the two frequency bands of the α wave and the β wave. As described above, the electroencephalogram measurement system 10 includes an electroencephalogram including a characteristic change that may occur when the subject 5 tries to perform voluntary exercise when the power of a specific frequency band transitions from the resting range to the exercise range. It is judged that Therefore, the boundary line (straight line Lth1) between the resting range A1 and the motion range A2 in FIG. 6 corresponds to the threshold value for the activation level. Thus, the threshold for the activation level can be determined based on one or more records measured in the measurement process.
キャリブレーション処理にて決定された各種のパラメータは、メモリ22に記憶される。その後の訓練課程において、リハビリテーション支援システム100は、キャリブレーション処理で決定された各種のパラメータを使用する。また、設定画面201(図5参照)の第3の設定領域G23では、上述したようにスライドバーにて、活性化レベルに対する閾値を調節可能である。ただし、設定画面201では、キャリブレーション処理で決定された閾値を、正方向又は負方向にシフトする調節がされるだけであって、あくまで基準となる閾値はキャリブレーション処理で決定される。
Various parameters determined by the calibration process are stored in the memory 22. In the subsequent training course, the rehabilitation support system 100 uses various parameters determined in the calibration process. Further, in the third setting area G23 of the setting screen 201 (see FIG. 5), as described above, it is possible to adjust the threshold with respect to the activation level with the slide bar. However, on the setting screen 201, the threshold determined in the calibration processing is only adjusted to shift in the positive direction or the negative direction, and the threshold serving as the reference is determined in the calibration processing.
閾値の決定方法は、上述した方法に限らず、例えば、線形判別分析(Linear Discriminant Analysis:LDA)又はサポートベクターマシン(Support Vector Machine:SVM)といった様々な方法を適用可能である。
The method of determining the threshold is not limited to the method described above, and various methods such as Linear Discriminant Analysis (LDA) or Support Vector Machine (SVM) can be applied.
(3.3.2)画面の説明
次に、キャリブレーション処理に際して、情報処理装置2の表示部26に表示される画面について、情報処理装置2の表示部26に表示される画面を表す図7~図9を参照して説明する。図7~図9の例において、領域を示す一点鎖線及び参照符号は説明のために表記しているに過ぎず、実際には、これらの一点鎖線及び参照符号は表示部26に表示されない。 (3.3.2) Description of Screen Next, regarding the screen displayed on thedisplay unit 26 of the information processing device 2 at the time of the calibration process, a screen displayed on the display unit 26 of the information processing device 2 is shown in FIG. This will be described with reference to FIG. In the example of FIGS. 7 to 9, the dashed-dotted line indicating the region and the reference numeral are only shown for the sake of explanation, and in fact, the dashed-dotted line and the reference numeral are not displayed on the display unit 26.
次に、キャリブレーション処理に際して、情報処理装置2の表示部26に表示される画面について、情報処理装置2の表示部26に表示される画面を表す図7~図9を参照して説明する。図7~図9の例において、領域を示す一点鎖線及び参照符号は説明のために表記しているに過ぎず、実際には、これらの一点鎖線及び参照符号は表示部26に表示されない。 (3.3.2) Description of Screen Next, regarding the screen displayed on the
すなわち、キャリブレーション処理において、まず測定処理中には、情報処理装置2の表示部26に、例えば、図7に示すような、キャリブレーション画面202が表示される。測定処理が終了すると、情報処理装置2の表示部26には、例えば、図8に示すような、選択画面203が表示される。選択画面203では、算出処理に使用されるレコードが選択される。算出処理が終了すると、情報処理装置2の表示部26には、例えば、図9に示すような、キャリブレーション結果画面204が表示される。
That is, in the calibration process, first, during the measurement process, a calibration screen 202 as shown in, for example, FIG. 7 is displayed on the display unit 26 of the information processing device 2. When the measurement process ends, for example, a selection screen 203 as shown in FIG. 8 is displayed on the display unit 26 of the information processing device 2. In the selection screen 203, a record to be used for the calculation process is selected. When the calculation process is completed, a calibration result screen 204 as shown in FIG. 9, for example, is displayed on the display unit 26 of the information processing device 2.
キャリブレーション画面202は、図7に示すように、訓練画面200と同様の活性化レベル表示領域G1、脳波表示領域G2、回数表示領域G5、感知状態表示領域G6、機器状態表示領域G7、ステータス表示領域G8及び終了ボタンG9を含んでいる。さらに、キャリブレーション画面202は、訓練画面200と同様の操作ガイド領域G10及びチェックボックスG11に加えて、測定開始ボタンG31、移行ボタンG32及び戻るボタンG33を含んでいる。キャリブレーション画面202の活性化レベル表示領域G1は、基本的には訓練画面200と同じであるが、α波とβ波との各々のグラフが表示される点で、訓練画面200と相違する。また、キャリブレーション画面202の回数表示領域G5は、基本的には訓練画面200と同じであるが、「成功回数」が表示されない点で、訓練画面200と相違する。
The calibration screen 202 is, as shown in FIG. 7, an activation level display area G1, an electroencephalogram display area G2, a frequency display area G5, a sensing state display area G6, an apparatus state display area G7, and a status display similar to the training screen 200. A region G8 and an end button G9 are included. Furthermore, the calibration screen 202 includes a measurement start button G31, a transition button G32, and a back button G33 in addition to the operation guide area G10 and the check box G11 similar to the training screen 200. The activation level display area G1 of the calibration screen 202 is basically the same as the training screen 200, but differs from the training screen 200 in that the respective graphs of the alpha wave and the beta wave are displayed. Moreover, although the frequency | count display area G5 of the calibration screen 202 is fundamentally the same as the training screen 200, it differs from the training screen 200 by the point in which "the number of successes" is not displayed.
キャリブレーション画面202の活性化レベル表示領域G1には、α波についての活性化レベルのグラフと、β波についての活性化レベルのグラフとが同時に表示される。ただし、α波のグラフとβ波のグラフとが区別可能なように、α波のグラフとβ波のグラフとでは表示態様(例えば、表示色)が異なる。また、キャリブレーション処理においては、活性化レベルに対する閾値が未設定であるため、活性化レベル表示領域G1には、閾値(設定値)を表す直線L1が表示されず、活性化レベルのグラフの上方の判定マークM1も表示されない。活性化レベルのグラフの背景色は、キャリブレーション時間の前半の安静期間(0~5秒の期間)と、キャリブレーション時間の後半の安静期間(5~10秒の期間)と、で異なることが好ましい。
In the activation level display area G1 of the calibration screen 202, a graph of the activation level for the alpha wave and a graph of the activation level for the beta wave are simultaneously displayed. However, as the graph of the α wave and the graph of the β wave can be distinguished, the display mode (for example, display color) is different between the graph of the α wave and the graph of the β wave. Further, in the calibration process, since the threshold for the activation level is not set yet, the activation level display area G1 does not display the straight line L1 representing the threshold (set value), and the graph above the activation level is displayed. The judgment mark M1 is not displayed either. The background color of the activation level graph may be different between the resting period (0-5 seconds period) in the first half of the calibration time and the resting period (5-10 seconds period) in the second half of the calibration time preferable.
測定開始ボタンG31は、測定処理を開始するためのボタンである。測定開始ボタンG31がタップされることで、脳波測定システム10での脳波の測定が開始する。
The measurement start button G31 is a button for starting the measurement process. Measurement of the electroencephalogram in the electroencephalogram measurement system 10 is started by tapping the measurement start button G31.
移行ボタンG32は、算出処理に移行するためのボタンである。移行ボタンG32がタップされることで、脳波測定システム10は測定処理を終了し、情報処理装置2の表示部26に表示される画面が、キャリブレーション画面202から選択画面203(図8参照)に遷移する。
The transition button G32 is a button for shifting to calculation processing. By tapping the transition button G32, the electroencephalogram measurement system 10 ends the measurement processing, and the screen displayed on the display unit 26 of the information processing device 2 changes from the calibration screen 202 to the selection screen 203 (see FIG. 8). Transition.
戻るボタンG33は、脳波測定システム10をキャリブレーション処理の開始前の状態に戻すためのボタンである。戻るボタンG33がタップされることで、脳波測定システム10は、キャリブレーション処理を終了し、キャリブレーション処理の開始前の状態に復帰する。
The return button G33 is a button for returning the electroencephalogram measurement system 10 to the state before the start of the calibration process. By tapping the back button G33, the electroencephalogram measurement system 10 ends the calibration process, and returns to the state before the start of the calibration process.
選択画面203は、図8に示すように、レコード表示領域G41、操作ガイド領域G42、凡例表示領域G43、追試行ボタンG44、選択数表示領域G45及び計算ボタンG46を含んでいる。
As shown in FIG. 8, the selection screen 203 includes a record display area G41, an operation guide area G42, a legend display area G43, a follow button G44, a selection number display area G45, and a calculation button G46.
レコード表示領域G41は、レコードとしてメモリ22に記憶された脳波を表示するための領域である。ここで、レコード表示領域G41における脳波のグラフは、脳波表示領域G2と同様に、横軸を時間(秒)、縦軸を電位として、脳波の時間変化を表す波形を表示する。図8の例では、メモリ22に記憶されている複数(ここでは2つ)のレコードについて、脳波が上下方向に並べて表示されている。さらに、レコード表示領域G41において、各レコードの脳波の右方には、レコードに対応付けてチェックボックスG411が表示されている。チェックボックスG411は、算出処理に用いるレコードを選択するためのアイコンである。チェックボックスG411がタップされることで、対応するレコードが算出処理に用いられる状態と、用いられない状態とが交互に切り替わる。チェックボックスG411の表示がアクティブになっている状態では、対応するレコードが算出処理に用いられる。
The record display area G41 is an area for displaying an electroencephalogram stored in the memory 22 as a record. Here, in the graph of the electroencephalogram in the record display area G41, similarly to the electroencephalogram display area G2, the horizontal axis represents time (seconds) and the vertical axis represents potential, and a waveform representing time change of the electroencephalogram is displayed. In the example of FIG. 8, electroencephalograms are vertically arranged and displayed for a plurality of (two in this case) records stored in the memory 22. Furthermore, in the record display area G41, a check box G411 is displayed on the right side of the electroencephalogram of each record in association with the record. The check box G411 is an icon for selecting a record used for the calculation process. By tapping the check box G411, the state where the corresponding record is used for the calculation process and the state where it is not used are alternately switched. In the state where the display of the check box G411 is active, the corresponding record is used for the calculation process.
ここにおいて、レコード表示領域G41に表示されているレコードの数が多く、一覧表示できない場合には、レコード表示領域G41に表示されているレコードが上下方向へスクロール可能である。その結果、レコード表示領域G41には、レコード表示領域G41に一覧表示可能な数を超えて、多数のレコードを表示可能となる。
Here, when the number of records displayed in the record display area G41 is large and the list can not be displayed, the records displayed in the record display area G41 can be scrolled in the vertical direction. As a result, a large number of records can be displayed in the record display area G41 beyond the number that can be displayed in a list in the record display area G41.
ところで、レコード表示領域G41における各レコードの脳波の下方には、各レコードに対応して、帯状のアーチファクトマークM2が表示される。アーチファクトマークM2は、脳波情報にアーチファクトが含まれていると判定される期間にのみ表示される。上述したように、本実施形態に係る脳波測定システム10は、脳波情報にアーチファクトが含まれているか否かを判定する機能(判定部214)を有するので、判定部214での判定結果がアーチファクトマークM2に反映されることになる。
By the way, below the electroencephalogram of each record in the record display area G41, a band-shaped artifact mark M2 is displayed corresponding to each record. The artifact mark M2 is displayed only in a period in which it is determined that brain wave information includes an artifact. As described above, since the electroencephalogram measurement system 10 according to the present embodiment has a function (determination unit 214) for determining whether or not an artifact is included in the electroencephalogram information, the determination result in the determination unit 214 is an artifact mark It will be reflected in M2.
つまり、ある脳波情報についてアーチファクトマークM2が表示されている期間には、脳波情報にアーチファクトが含まれている可能性が高く、アーチファクトマークM2が表示されていない期間には、脳波情報にアーチファクトが含まれていない可能性が高い。本実施形態に係る脳波測定システム10では、このようなアーチファクトマークM2をレコード表示領域G41に表示することにより、アーチファクトが含まれていないレコードの中から、算出処理に用いるレコードを容易に選択可能となる。つまり、対象者5又は医療スタッフが、チェックボックスG411にて算出処理に用いるレコードを選択するに際して、アーチファクトマークM2が表示されていないレコードのみを選択することで、アーチファクトが含まれていないレコードのみを選択できる。その結果、アーチファクトが含まれていない脳波情報を用いて、パラメータを精度よく決定することができる。
That is, there is a high possibility that an artifact is included in the brain wave information in a period in which the artifact mark M2 is displayed for certain brain wave information, and an artifact is included in the brain wave information in a period in which the artifact mark M2 is not displayed. There is a high possibility that In the electroencephalogram measurement system 10 according to the present embodiment, by displaying such an artifact mark M2 in the record display area G41, it is possible to easily select a record to be used for calculation processing from among records not including an artifact. Become. That is, when the object person 5 or the medical staff selects the record to be used for the calculation process in the check box G411, only the record not including the artifact mark is selected by selecting only the record in which the artifact mark M2 is not displayed. It can be selected. As a result, it is possible to accurately determine the parameters by using the electroencephalogram information which does not include an artifact.
このとき、入力部216では、対象者5又は医療スタッフが、チェックボックスG411にて選択したレコードを表す指定信号を、操作部24より受け付けることになる。つまり、対象者5又は医療スタッフが、チェックボックスG411にて算出処理に用いるレコードを選択することにより、取得部211で取得された複数の脳波情報の中からキャリブレーション処理(算出処理)に使用される1以上の脳波情報が指定される。
At this time, in the input unit 216, the target person 5 or the medical staff receives from the operation unit 24 a designation signal representing the record selected in the check box G411. That is, the target person 5 or the medical staff selects the record to be used for the calculation process in the check box G411, and is used for the calibration process (calculation process) from among the plurality of electroencephalogram information acquired by the acquisition unit 211. One or more brain wave information is specified.
操作ガイド領域G42は、脳波測定システム10の操作をガイドするテキスト情報を表示するための領域である。図8の例では、「分析に使用する波形を選択してください。2つ以上選択し、”計算”を押すとここに計算結果が表示されます。選択をはずした波形はやり直すことができます。やり直したい場合は”追試行”を押してください。」というテキスト情報が表示されている。操作ガイド領域G42の表示内容は、脳波測定システム10の動作状態に応じて変化する。
The operation guide area G42 is an area for displaying text information for guiding the operation of the electroencephalogram measurement system 10. In the example in Fig. 8, select "Select the waveform to be used for analysis. Select two or more and press" Calculation "to display the calculation result here. The waveform which has been deselected can be redone. If you want to try again, the text information "Please try again" is displayed. The display content of the operation guide area G42 changes in accordance with the operation state of the electroencephalogram measurement system 10.
凡例表示領域G43は、アーチファクトマークM2の表示態様についての説明を表示するための領域である。本実施形態に係る脳波測定システム10は、アーチファクトの有無だけでなく、アーチファクトが有ると判定した場合、そのアーチファクトの種類を更に判定する機能を有している。そして、アーチファクトマークM2の表示態様は、判定されたアーチファクトの種類によって異なる。アーチファクトの種類には少なくとも、眼球運動に起因して生じるアーチファクト(以下、「眼球由来のアーチファクト」ともいう)と、体動・表情筋運動に起因して生じるアーチファクト(以下、「体動由来のアーチファクト」ともいう)との2種類がある。眼球由来のアーチファクトと、体動由来のアーチファクトとでは、アーチファクトマークM2の表示態様(例えば、表示色)が異なる。そのため、凡例表示領域G43には、これら2種類の表示態様が、各々の説明と共に表示される。
The legend display area G43 is an area for displaying the description of the display mode of the artifact mark M2. The electroencephalogram measurement system 10 according to the present embodiment has a function of further determining the type of artifact if it is determined that there is an artifact as well as the presence or absence of an artifact. Then, the display mode of the artifact mark M2 differs depending on the type of the determined artifact. The types of artifacts include at least an artifact caused by eye movement (hereinafter also referred to as "eye-derived artifact") and an artifact caused by body movement / expression muscle movement (hereinafter referred to as "body movement-derived artifact" There are two types: The display aspect (for example, display color) of artifact mark M2 differs in the artifact derived from eyeballs and the artifact derived from body movement. Therefore, in the legend display area G43, these two types of display modes are displayed together with their respective descriptions.
追試行ボタンG44は、追試行を開始するためのボタンである。本開示でいう「追試行」は、測定処理を再度行うことによりレコードを追加する処理である。つまり、追試行が行われる度に測定処理が再度行われて、取得部211は、脳波情報を更に取得しメモリ22に追加する追加処理を実行する。追試行ボタンG44がタップされることで、選択画面203からキャリブレーション画面202に遷移する。
The retry button G44 is a button for starting a retry. The “retry” in the present disclosure is a process of adding a record by performing the measurement process again. That is, each time the retrial is performed, the measurement process is performed again, and the acquisition unit 211 performs an additional process of further acquiring brain wave information and adding it to the memory 22. By tapping the retry button G44, the transition from the selection screen 203 to the calibration screen 202 is made.
選択数表示領域G45は、選択画面203において選択されたレコード(波形)の数を表示するための領域である。具体的には、レコード表示領域G41に表示されているレコードの数(つまり、メモリ22に記憶されているレコードの数)を分母とし、算出処理に用いるレコードとして選択されているレコードの数を分子として、分数表記でレコード数が表示される。例えば、図8に示すように、レコード表示領域G41に表示されている2つのレコードの全てが選択されている(つまり、チェックボックスG411の表示がアクティブになっている)場合には、選択数表示領域G45には「2/2」と表示される。
The selection number display area G45 is an area for displaying the number of records (waveforms) selected on the selection screen 203. Specifically, the number of records displayed in the record display area G41 (that is, the number of records stored in the memory 22) is used as a denominator, and the number of records selected as records used for the calculation process is a numerator. The number of records is displayed in fractional notation. For example, as shown in FIG. 8, when all of the two records displayed in the record display area G41 are selected (that is, the display of the check box G411 is active), the number of selections is displayed. In the area G45, "2/2" is displayed.
計算ボタンG46は、算出処理を開始するためのボタンである。計算ボタンG46がタップされることで、その時点で選択画面203にて選択されているレコードを用いて、脳波測定システム10は算出処理を開始する。
The calculation button G46 is a button for starting the calculation process. By tapping the calculation button G46, the electroencephalogram measurement system 10 starts the calculation process using the record selected on the selection screen 203 at that time.
キャリブレーション結果画面204は、図9に示すように、選択画面203と同様のレコード表示領域G41、凡例表示領域G43、追試行ボタンG44、選択数表示領域G45及び計算ボタンG46を含んでいる。キャリブレーション結果画面204は、時間周波数マップG51、情報表示領域G52、解析結果表示領域G53及び終了ボタンG54を更に含んでいる。
The calibration result screen 204 includes, as shown in FIG. 9, a record display area G41 similar to the selection screen 203, a legend display area G43, a retrial button G44, a selection number display area G45, and a calculation button G46. The calibration result screen 204 further includes a time frequency map G51, an information display area G52, an analysis result display area G53, and an end button G54.
時間周波数マップG51は、算出処理で使用されたキャリブレーション時間における特定の周波数帯域のパワーの変化の傾向を表すグラフである。時間周波数マップG51では、横軸を時間軸、縦軸を周波数とする2次元マップにおいて、各座標位置のパワーを「色」にて表している。つまり、時間周波数マップG51によれば、安静期間から運動期間にかけてパワーの変化が生じる周波数帯域が視覚的に表示される。また、時間周波数マップG51には、算出処理で算出されたα波及びβ波の各々の周波数帯域を示す直線G511,G512が表示されている。直線G511は、α波の周波数帯域(範囲)の下限値及び上限値を表し、直線G512は、β波の周波数帯域(範囲)の下限値及び上限値を表す。
The time frequency map G51 is a graph representing the tendency of change in power of a specific frequency band at the calibration time used in the calculation process. In the time frequency map G51, the power of each coordinate position is represented by "color" in a two-dimensional map in which the horizontal axis is a time axis and the vertical axis is a frequency. That is, according to the time frequency map G51, the frequency band in which the change of power occurs from the resting period to the exercise period is visually displayed. Further, in the time frequency map G51, straight lines G511 and G512 indicating the respective frequency bands of the α wave and the β wave calculated by the calculation process are displayed. The straight line G511 represents the lower limit value and the upper limit value of the frequency band (range) of the α wave, and the straight line G512 represents the lower limit value and the upper limit value of the frequency band (range) of the β wave.
情報表示領域G52は、測定処理に関する情報を表示するための領域である。図9の例では、測定処理の実行回数(分析試行回数)、安静期間(リラックス区間)の時間長さ、及び運動期間(イメージ区間)の時間長さを表すテキスト情報が、情報表示領域G52に表示されている。
The information display area G52 is an area for displaying information related to measurement processing. In the example of FIG. 9, text information representing the number of times of measurement processing execution (the number of analysis trials), the length of time of a resting period (relaxation period), and the length of time of an exercise period (image period) It is displayed.
解析結果表示領域G53は、算出処理での解析結果を表示するための領域である。図9の例では、α波の周波数帯域(α波周波数範囲)、β波の周波数帯域(β波周波数範囲)、事象関連脱同期による特徴的な変化を含む脳波が生じた割合(正解率)を表すテキスト情報が、解析結果表示領域G53に表示されている。
The analysis result display area G53 is an area for displaying the analysis result in the calculation process. In the example of FIG. 9, the ratio of occurrence of brain waves including characteristic changes due to the frequency band of alpha wave (alpha wave frequency range), the frequency band of beta wave (beta wave frequency range), and event-related desynchronization (accuracy rate) The text information representing H is displayed in the analysis result display area G53.
終了ボタンG54は、キャリブレーション処理を終了するためのボタンである。終了ボタンG54がタップされることで、脳波測定システム10はキャリブレーション処理を終了する。
The end button G54 is a button for ending the calibration process. The electroencephalogram measurement system 10 ends the calibration process by tapping the end button G54.
(3.3.3)処理の詳細
次に、キャリブレーション処理の詳細について、図10に示すフローチャートを参照して説明する。 (3.3.3) Details of Process Next, the details of the calibration process will be described with reference to the flowchart shown in FIG.
次に、キャリブレーション処理の詳細について、図10に示すフローチャートを参照して説明する。 (3.3.3) Details of Process Next, the details of the calibration process will be described with reference to the flowchart shown in FIG.
まず、脳波測定システム10は、情報処理装置2の表示部26に、キャリブレーション画面202(図7参照)を表示する(S1)。キャリブレーション画面202において、測定開始ボタンG31がタップされることで、脳波測定システム10での脳波の測定、つまり測定処理が開始する(S2)。これにより、取得部211での脳波情報が取得され、取得された脳波情報がレコードとしてメモリ22に記憶される(S3)。
First, the electroencephalogram measurement system 10 displays a calibration screen 202 (see FIG. 7) on the display unit 26 of the information processing device 2 (S1). Measurement of an electroencephalogram in the electroencephalogram measurement system 10, that is, measurement processing is started by tapping the measurement start button G31 on the calibration screen 202 (S2). Thereby, the electroencephalogram information in the acquisition unit 211 is acquired, and the acquired electroencephalogram information is stored as a record in the memory 22 (S3).
その後、脳波測定システム10は、情報処理装置2の表示部26に、選択画面203(図8参照)を表示する(S4)。選択画面203においては、メモリ22に記憶されている複数の脳波情報(レコード)の中から1以上の脳波情報を指定するための指定信号の受け付けが行われる(S5)。具体的には、上述したように、入力部216では、対象者5又は医療スタッフが、レコード表示領域G41のチェックボックスG411にて選択したレコードを表す指定信号を、操作部24より受け付ける。
Thereafter, the electroencephalogram measurement system 10 displays the selection screen 203 (see FIG. 8) on the display unit 26 of the information processing device 2 (S4). In the selection screen 203, a designation signal for designating one or more brain wave information from among a plurality of brain wave information (records) stored in the memory 22 is received (S5). Specifically, as described above, the input unit 216 receives, from the operation unit 24, a specification signal indicating the record selected by the subject 5 or the medical staff in the check box G411 of the record display area G41.
その後、選択画面203の計算ボタンG46の操作の有無、つまり計算ボタンG46がタップされたか否かが判定される(S6)。選択画面203の計算ボタンG46の操作無し、と判定されれば(S6:No)、続いて、選択画面203の追試行ボタンG44の操作の有無、つまり追試行ボタンG44がタップされたか否かが判定される(S7)。選択画面203の追試行ボタンG44の操作無し、と判定されれば(S7:No)、脳波測定システム10は、ステップS4に戻り、選択画面203の表示を継続する。
Thereafter, it is determined whether or not the calculation button G46 of the selection screen 203 is operated, that is, whether the calculation button G46 is tapped (S6). If it is determined that the operation of the calculation button G46 on the selection screen 203 is not performed (S6: No), subsequently, the presence or absence of the operation on the follow-up button G44 on the selection screen 203, that is, whether or not the follow-up button G44 is tapped It is determined (S7). If it is determined that there is no operation of the follow-up button G44 of the selection screen 203 (S7: No), the electroencephalogram measurement system 10 returns to step S4 and continues the display of the selection screen 203.
一方、選択画面203の追試行ボタンG44の操作有り、と判定されれば(S7:Yes)、脳波測定システム10は、ステップS1に戻る。そのため、表示部26の画面は、選択画面203からキャリブレーション画面202に切り替わる。つまり、選択画面203において、追試行ボタンG44がタップされた場合には(S7:Yes)、測定処理(S2)が再度行われて、取得部211は、脳波情報を更に取得しメモリ22に追加する追加処理を実行することになる(S3)。ここで、表示制御部218は、メモリ22に記憶されている複数の脳波情報を表示部26に表示させるので、メモリ22に脳波情報が追加されることで、表示制御部218は追加処理を実行することになる。表示制御部218が行う追加処理は、表示部26に表示させる複数の脳波情報に別の脳波情報を追加する処理である。
On the other hand, if it is determined that there is an operation of the retrial button G44 on the selection screen 203 (S7: Yes), the electroencephalogram measurement system 10 returns to step S1. Therefore, the screen of the display unit 26 is switched from the selection screen 203 to the calibration screen 202. That is, when the follow-up button G44 is tapped on the selection screen 203 (S7: Yes), the measurement process (S2) is performed again, and the acquisition unit 211 further acquires brain wave information and adds it to the memory 22. An additional process is to be performed (S3). Here, since the display control unit 218 causes the display unit 26 to display a plurality of brain wave information stored in the memory 22, the brain wave information is added to the memory 22, and the display control unit 218 executes additional processing. It will be done. The addition process performed by the display control unit 218 is a process of adding another brain wave information to the plurality of brain wave information to be displayed on the display unit 26.
また、選択画面203の計算ボタンG46の操作有り、と判定されれば(S6:Yes)、脳波情報の解析に用いる各種のパラメータを決定するための算出処理が実行される(S8)。算出処理では、メモリ22に記憶されている複数の脳波情報(レコード)のうち、ステップS5において指定信号にて指定された脳波情報を用いて、脳波情報の解析に用いる各種のパラメータが決定される。
If it is determined that the calculation button G46 of the selection screen 203 is operated (S6: Yes), calculation processing for determining various parameters used for analysis of electroencephalogram information is executed (S8). In the calculation process, among the plurality of electroencephalogram information (records) stored in the memory 22, various parameters used for analysis of the electroencephalogram information are determined using the electroencephalogram information designated by the designation signal in step S5. .
算出処理の終了後、脳波測定システム10は、情報処理装置2の表示部26に、キャリブレーション結果画面204(図9参照)を表示する(S9)。すなわち、キャリブレーション結果画面204においては、提示部220にて、キャリブレーション処理の結果が提示(表示)される。キャリブレーション結果画面204においては、選択画面203と同様のレコード表示領域G41が表示され、メモリ22に記憶されている複数の脳波情報(レコード)の中から1以上の脳波情報を指定するための指定信号の受け付けが行われる(S10)。具体的には、上述したように、入力部216では、対象者5又は医療スタッフが、レコード表示領域G41のチェックボックスG411にて選択したレコードを表す指定信号を、操作部24より受け付ける。
After the end of the calculation process, the electroencephalogram measurement system 10 displays the calibration result screen 204 (see FIG. 9) on the display unit 26 of the information processing device 2 (S9). That is, on the calibration result screen 204, the presentation unit 220 presents (displays) the result of the calibration process. In the calibration result screen 204, a record display area G41 similar to the selection screen 203 is displayed, and designation for designating one or more brain wave information from among a plurality of brain wave information (records) stored in the memory 22. A signal is received (S10). Specifically, as described above, the input unit 216 receives, from the operation unit 24, a specification signal indicating the record selected by the subject 5 or the medical staff in the check box G411 of the record display area G41.
その後、キャリブレーション結果画面204の計算ボタンG46の操作の有無、つまり計算ボタンG46がタップされたか否かが判定される(S11)。キャリブレーション結果画面204の計算ボタンG46の操作無し、と判定されれば(S11:No)、続いて、キャリブレーション結果画面204の追試行ボタンG44の操作の有無、つまり追試行ボタンG44がタップされたか否かが判定される(S12)。キャリブレーション結果画面204の追試行ボタンG44の操作無し、と判定されれば(S12:No)、脳波測定システム10は、キャリブレーション処理を終了する。このとき、実際には、上述したように終了ボタンG54がタップされることで、脳波測定システム10はキャリブレーション処理を終了する。
Thereafter, it is determined whether or not the calculation button G46 of the calibration result screen 204 is operated, that is, whether the calculation button G46 is tapped (S11). If it is determined that the calculation button G46 of the calibration result screen 204 is not operated (S11: No), then the presence or absence of the operation of the retry button G44 of the calibration result screen 204, that is, the retry button G44 is tapped. It is determined whether or not it is (S12). If it is determined that the follow-up button G44 of the calibration result screen 204 is not operated (S12: No), the electroencephalogram measurement system 10 ends the calibration process. At this time, in practice, the electroencephalogram measurement system 10 ends the calibration process by tapping the end button G54 as described above.
一方、キャリブレーション結果画面204の追試行ボタンG44の操作有り、と判定されれば(S12:Yes)、脳波測定システム10は、ステップS1に戻る。そのため、表示部26の画面は、キャリブレーション結果画面204からキャリブレーション画面202に切り替わる。つまり、キャリブレーション結果画面204において、追試行ボタンG44がタップされた場合には(S12:Yes)、測定処理(S2)が再度行われて、取得部211は、脳波情報を更に取得しメモリ22に追加する追加処理を実行することになる(S3)。
On the other hand, if it is determined that there is an operation of the follow-up button G44 of the calibration result screen 204 (S12: Yes), the electroencephalogram measurement system 10 returns to step S1. Therefore, the screen of the display unit 26 is switched from the calibration result screen 204 to the calibration screen 202. That is, when the follow-up button G44 is tapped on the calibration result screen 204 (S12: Yes), the measurement process (S2) is performed again, and the acquiring unit 211 further acquires brain wave information and the memory 22. An additional process to be added to is executed (S3).
また、キャリブレーション結果画面204の計算ボタンG46の操作有り、と判定されれば(S11:Yes)、脳波情報の解析に用いる各種のパラメータを決定するための算出処理が再度実行される(S8)。算出処理では、メモリ22に記憶されている複数の脳波情報(レコード)のうち、ステップS10において指定信号にて指定された脳波情報を用いて、脳波情報の解析に用いる各種のパラメータが決定される。
If it is determined that the calculation button G46 of the calibration result screen 204 is operated (S11: Yes), calculation processing for determining various parameters used for analysis of brain wave information is executed again (S8) . In the calculation processing, among the plurality of electroencephalogram information (records) stored in the memory 22, various parameters used for analysis of the electroencephalogram information are determined using the electroencephalogram information designated by the designation signal in step S10. .
さらに、本実施形態においては、追試行ボタンG44の操作有り、と判定された際(S7:Yes又はS12:Yes)、指定信号により指定されていない脳波情報(レコード)は、削除部221にてメモリ22から削除される。具体的には、追試行ボタンG44がタップされた際に、チェックボックスG411の表示が非アクティブになっている、つまりチェックボックスG411のチェックが外れている脳波情報(レコード)は削除される。したがって、追試行ボタンG44がタップされて追加処理が実行された後においては、削除部221にてメモリ22から削除された脳波情報は、指定信号で指定される脳波情報の選択肢から外れることになる。
Furthermore, in the present embodiment, when it is determined that the follow button G44 is operated (S7: Yes or S12: Yes), the brain wave information (record) not designated by the designation signal is deleted by the deletion unit 221. It is deleted from the memory 22. Specifically, when the follow-up button G44 is tapped, the display of the check box G411 is inactive, that is, the electroencephalogram information (record) whose check box G411 is unchecked is deleted. Therefore, after the retry button G44 is tapped and the addition process is executed, the electroencephalogram information deleted from the memory 22 by the deletion unit 221 will deviate from the options of the electroencephalogram information specified by the specification signal. .
このように、本実施形態では、選択画面203及びキャリブレーション結果画面204の各々において、キャリブレーション処理に用いられる脳波情報を、指定信号によって指定することが可能である(S5又はS10)。また、ステップS10、又はステップS11及びステップS12を経てからのステップS5では、処理部215がキャリブレーション処理を実行した後において、指定信号を受け付ける再指定処理が実行されることになる。
As described above, in the present embodiment, in each of the selection screen 203 and the calibration result screen 204, it is possible to designate the electroencephalogram information used for the calibration process by the designation signal (S5 or S10). In addition, in step S5 after passing through step S10 or step S11 and step S12, after the processing unit 215 performs the calibration process, the re-designation process of accepting the designation signal is performed.
ここで、キャリブレーション処理後、再指定処理までの間において、追加処理が実行されるか否かは、キャリブレーション結果画面204において、計算ボタンG46と追試行ボタンG44とのいずれが操作されるかによって決定される。言い換えれば、選択部219では、キャリブレーション結果画面204において、計算ボタンG46と追試行ボタンG44とのいずれが操作されたかを表す選択信号を、操作部24より受け付けることになる。すなわち、キャリブレーション結果画面204の計算ボタンG46がタップされた場合には(S11:Yes)、算出処理(S8)の後、追加処理が実行されることなく、ステップS10での再指定処理が実行される。一方、キャリブレーション結果画面204の追試行ボタンG44がタップされた場合には(S12:Yes)、算出処理(S8)の後、追加処理(S3)が実行されてから、ステップS5での再指定処理が実行される。
Here, after the calibration process and before the re-designation process, which of the calculation button G46 and the follow-up button G44 is operated on the calibration result screen 204 as to whether or not the additional process is executed Determined by In other words, the selection unit 219 receives, from the operation unit 24, a selection signal indicating which of the calculation button G46 and the follow-up button G44 has been operated on the calibration result screen 204. That is, when the calculation button G46 of the calibration result screen 204 is tapped (S11: Yes), after the calculation process (S8), the re-designating process in step S10 is performed without performing the additional process. Be done. On the other hand, when the follow-up button G44 of the calibration result screen 204 is tapped (S12: Yes), after the addition process (S3) is executed after the calculation process (S8), re-designation in step S5 Processing is performed.
(変形例)
実施形態1は、本開示の様々な実施形態の一つに過ぎない。実施形態1は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、脳波測定システム10と同様の機能は、脳波測定方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。一態様に係る脳波測定方法は、対象者5の頭部52の一部である測定箇所51に配置される電極部11にて採取される脳波を表す脳波情報を取得して、記憶部(メモリ22)に複数の脳波情報を記憶する。さらに、脳波測定方法では、記憶部(メモリ22)に記憶されている複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部24より受け付ける。さらに、脳波測定方法では、指定信号にて指定される1以上の脳波情報に基づいて、脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。一態様に係る(コンピュータ)プログラムは、コンピュータシステムに、上記の脳波測定方法を実行させるためのプログラムである。 (Modification)
Embodiment 1 is only one of various embodiments of the present disclosure. The first embodiment can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved. The same function as that of the electroencephalogram measurement system 10 may be embodied by an electroencephalogram measurement method, a (computer) program, or a non-temporary recording medium recording the program. The electroencephalogram measurement method according to one aspect acquires brain wave information representing an electroencephalogram collected by the electrode unit 11 disposed at the measurement point 51 which is a part of the head 52 of the subject 5, and stores the memory unit (memory 22) store a plurality of electroencephalogram information. Furthermore, in the electroencephalogram measurement method, a designation signal for designating one or more pieces of brain wave information from among a plurality of pieces of brain wave information stored in the storage unit (memory 22) is received from the operation unit 24. Furthermore, in the electroencephalogram measurement method, calibration processing for determining parameters used for analysis of electroencephalogram information is executed based on one or more electroencephalogram information designated by the designation signal. A (computer) program according to an aspect is a program for causing a computer system to execute the above-described electroencephalogram measurement method.
実施形態1は、本開示の様々な実施形態の一つに過ぎない。実施形態1は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、脳波測定システム10と同様の機能は、脳波測定方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。一態様に係る脳波測定方法は、対象者5の頭部52の一部である測定箇所51に配置される電極部11にて採取される脳波を表す脳波情報を取得して、記憶部(メモリ22)に複数の脳波情報を記憶する。さらに、脳波測定方法では、記憶部(メモリ22)に記憶されている複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部24より受け付ける。さらに、脳波測定方法では、指定信号にて指定される1以上の脳波情報に基づいて、脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。一態様に係る(コンピュータ)プログラムは、コンピュータシステムに、上記の脳波測定方法を実行させるためのプログラムである。 (Modification)
以下、実施形態1の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
Hereinafter, modifications of the first embodiment will be listed. The modifications described below can be applied in combination as appropriate.
本開示における脳波測定システム10は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における脳波測定システム10としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。
The electroencephalogram measurement system 10 in the present disclosure includes a computer system. The computer system mainly includes a processor and memory as hardware. The processor executes the program stored in the memory of the computer system to implement the function as the electroencephalogram measurement system 10 in the present disclosure. The program may be pre-recorded in the memory of the computer system, may be provided through a telecommunication line, and recorded in a non-transitory recording medium such as a computer system-readable memory card, an optical disc, a hard disk drive, etc. It may be provided. A processor of a computer system is configured of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). The term “integrated circuit such as IC or LSI” as used herein varies depending on the degree of integration, and includes integrated circuits called system LSI, very large scale integration (VLSI), or ultra large scale integration (ULSI). Furthermore, use as a processor also a field-programmable gate array (FPGA) or a logic device capable of reconfiguring junction relations inside the LSI or reconfiguring circuit sections inside the LSI, which are programmed after the LSI is manufactured. Can. The plurality of electronic circuits may be integrated into one chip or may be distributed to a plurality of chips. The plurality of chips may be integrated into one device or may be distributed to a plurality of devices.
また、例えば、情報処理装置2の複数の構成要素が、1つの筐体内に集約されていることは脳波測定システム10に必須の構成ではなく、情報処理装置2の複数の構成要素は、複数の筐体に分散して設けられていてもよい。複数の構成要素が複数の筐体に分散して設けられている場合でも、例えば、インターネット等のネットワークを介して複数の構成要素が接続されることにより、協働して脳波測定システム10を実現することができる。さらに、脳波測定システム10の少なくとも一部の機能は、例えば、サーバ又はクラウド(クラウドコンピューティング)等によって実現されてもよい。反対に、例えば、ヘッドセット1及び情報処理装置2のように、複数の装置に分散されている機能が、脳波測定システム10の一部として、脳波測定システム10の他の構成要素と共に1つの筐体内に集約されていてもよい。
Further, for example, it is not an essential configuration for the electroencephalogram measurement system 10 that a plurality of components of the information processing device 2 are integrated in one case, and a plurality of components of the information processing device 2 are a plurality of It may be provided separately in the case. Even when a plurality of components are distributed in a plurality of cases, for example, the plurality of components are connected via a network such as the Internet to realize the electroencephalogram measurement system 10 in cooperation. can do. Furthermore, at least a part of the functions of the electroencephalogram measurement system 10 may be realized by, for example, a server or a cloud (cloud computing). On the contrary, for example, as in the case of the headset 1 and the information processing device 2, the functions distributed to a plurality of devices are one case together with other components of the electroencephalogram measurement system 10 as a part of the electroencephalogram measurement system 10. It may be integrated in the body.
また、電極部11は、対象者5の頭部52の表面(頭皮)に接触する構成に限らず、例えば、脳の表面(脳表)に電極部11が接触するように電極部11が構成されてもよい。
Moreover, the electrode part 11 is not limited to the structure which contacts the surface (scalp) of the head 52 of the subject 5, for example, the electrode part 11 is comprised so that the electrode part 11 may contact the surface (brain surface) of a brain. It may be done.
また、リハビリテーション支援システム100は、対象者5の手指のリハビリテーションに限らず、例えば、肩、肘、上腕、腰、下肢、又は上肢等、対象者5の身体の任意の部位のリハビリテーションに用いられてもよい。対象者5が随意運動を行おうと企図(想起)した際に生じ得る脳波の特徴的な変化の仕方は、リハビリテーションの対象部位及び運動内容等によって異なる場合がある。例えば、対象者5が随意運動を行おうと企図した際に事象関連同期(Event-Related Synchronization:ERS)が生じる場合には、随意運動時に運動野付近で測定される脳波において、特定の周波数帯域のパワーが増加する。この場合、脳波測定システム10では、特定の周波数帯域のパワーが増加することをもって、脳波の特徴的な変化を検出する。
In addition, the rehabilitation support system 100 is not limited to the rehabilitation of the fingers of the subject 5, but is used for rehabilitation of any part of the body of the subject 5, such as the shoulder, elbow, upper arm, waist, lower extremity, or upper extremity. It is also good. The manner of characteristic changes of the electroencephalogram that may occur when the subject 5 intends to perform voluntary exercise may differ depending on the target site of rehabilitation, exercise content and the like. For example, if event-related synchronization (ERS) occurs when the subject 5 intends to perform a voluntary exercise, in the electroencephalogram measured in the vicinity of the motor area at the time of voluntary exercise, a specific frequency band Power increases. In this case, the electroencephalogram measurement system 10 detects the characteristic change of the electroencephalogram by the increase of the power of the specific frequency band.
また、リハビリテーション支援システム100は、対象者5に電気的又は機械的(力学的)な刺激を与える構成に限らず、例えば、映像を表示することで、対象者5に視覚的な刺激を与える構成であってもよい。この場合、リハビリテーション支援システム100は、例えば、対象者5が随意運動を行おうと企図した際に、随意運動の対象となる部位に対応する脳領域の活性化が実際に起きたタイミングに合わせて、障害部位が正常に動いているような映像を対象者5に見せる。このようにしても、リハビリテーション支援システム100は、対象者5の随意運動を補助することができる。
Further, the rehabilitation support system 100 is not limited to the configuration that gives the subject 5 electrical or mechanical (mechanical) stimulation, and for example, the configuration that gives the subject 5 a visual stimulus by displaying an image. It may be In this case, for example, when the subject 5 intends to perform a voluntary exercise, the rehabilitation support system 100 is timed to the timing at which the activation of the brain region corresponding to the target area of the voluntary exercise actually occurs. The subject 5 is shown an image in which the failure site is moving normally. Even in this way, the rehabilitation support system 100 can assist the voluntary exercise of the subject 5.
また、運動補助装置3と制御装置4とは別体に限らず、例えば、運動補助装置3と制御装置4とが1つの筐体内に収容され一体化されていてもよい。
Moreover, the movement assistance device 3 and the control device 4 are not limited to separate bodies, and for example, the movement assistance device 3 and the control device 4 may be accommodated and integrated in one case.
また、ヘッドセット1と情報処理装置2との間の通信方式は、実施形態1では無線通信であるが、この例に限らず、例えば、有線通信であってもよいし、中継器等を介した通信方式であってもよい。制御装置4と情報処理装置2との間の通信方式は、実施形態1では有線通信であるが、この例に限らず、例えば、無線通信であってもよいし、中継器等を介した通信方式であってもよい。
The communication method between the headset 1 and the information processing apparatus 2 is wireless communication in the first embodiment, but the present invention is not limited to this example. For example, wired communication may be used. A communication method may be used. The communication method between the control device 4 and the information processing device 2 is wired communication in the first embodiment, but the present invention is not limited to this example. For example, wireless communication may be used, and communication via relays etc. It may be a method.
また、ヘッドセット1は電池駆動式に限らず、信号処理部12及び第1通信部13等の動作用電力が、例えば、情報処理装置2から供給される構成であってもよい。
The headset 1 is not limited to the battery drive type, and the operation power of the signal processing unit 12 and the first communication unit 13 may be supplied from, for example, the information processing apparatus 2.
また、情報処理装置2は、専用のヘッドセット1から脳波情報を取得する構成に限らず、例えば、汎用の脳波計から脳波情報を取得するように構成されていてもよい。
Further, the information processing apparatus 2 is not limited to the configuration for acquiring brain wave information from the dedicated headset 1, and may be configured to acquire brain wave information from, for example, a general-purpose electroencephalograph.
また、実施形態1では、アーチファクトの判定結果がキャリブレーション処理に用いられる場合について説明したが、この例に限らず、例えば、訓練過程においてアーチファクトの判定結果が出力されてもよい。これにより、訓練過程におけるアーチファクトの状態を、対象者5及び医療スタッフが容易に確認できる。
In the first embodiment, although the case where the determination result of the artifact is used for the calibration process has been described, the present invention is not limited to this example. For example, the determination result of the artifact may be output in the training process. Thereby, the subject 5 and the medical staff can easily confirm the state of the artifact in the training process.
また、実施形態1では、対象者5又は医療スタッフが、アーチファクトの判定結果を参照して、キャリブレーション処理に使用される脳波情報を選択するが、この例に限らず、キャリブレーション処理に使用される脳波情報が自動的に選択されてもよい。すなわち、出力部217がアーチファクトの判定結果を、例えば、処理部215に出力することで、処理部215が、アーチファクトの判定結果に基づいてキャリブレーション処理に使用する脳波情報を自動的に選択してもよい。この場合、処理部215は、例えば、アーチファクトが含まれていないと判定された脳波情報のみを選択することが好ましい。
In the first embodiment, the subject 5 or medical staff selects the electroencephalogram information to be used for the calibration process with reference to the determination result of the artifact, but the present invention is not limited to this example. EEG information may be automatically selected. That is, when the output unit 217 outputs the determination result of the artifact to, for example, the processing unit 215, the processing unit 215 automatically selects the electroencephalogram information to be used for the calibration process based on the determination result of the artifact. It is also good. In this case, it is preferable that the processing unit 215 select, for example, only brain wave information determined not to contain an artifact.
また、取得部211で取得された脳波情報を複数記憶する記憶部は、情報処理装置2のメモリ22に限らず、例えば、情報処理装置2にてアクセス可能な非一時的記録媒体、サーバ又はクラウド(クラウドコンピューティング)等にて実現されてもよい。
In addition, the storage unit that stores a plurality of brain wave information acquired by the acquisition unit 211 is not limited to the memory 22 of the information processing device 2, for example, a non-temporary recording medium accessible by the information processing device 2, a server, or a cloud (Cloud computing) may be realized.
また、入力部216が指定信号を操作部24より受け付ける際に、メモリ22に記憶されている脳波情報をレコードとしてレコード表示領域G41に表示する構成は、脳波測定システム10に必須の構成ではない。例えば、メモリ22に記憶されている脳波情報は、音声出力、プリントアウト(印刷)、非一時的記録媒体への書き込み、及び情報端末への送信等の態様で、対象者5又は医療スタッフに提示されてもよい。
The configuration in which the electroencephalogram information stored in the memory 22 is displayed as a record in the record display area G41 when the input unit 216 receives a designation signal from the operation unit 24 is not an essential configuration of the electroencephalogram measurement system 10. For example, the brain wave information stored in the memory 22 is presented to the subject 5 or medical staff in a mode such as voice output, printout (writing), writing to a non-temporary recording medium, and transmission to an information terminal. It may be done.
また、削除部221は、指定信号により指定されていない脳波情報をメモリ22から削除する構成に限らず、例えば、最新の所定数のレコード(脳波情報)を残して古い脳波情報を自動的にメモリ22から削除してもよい。
Further, the deletion unit 221 is not limited to the configuration in which the brain wave information not designated by the designation signal is deleted from the memory 22. For example, the memory 102 automatically stores old brain wave information by leaving the latest predetermined number of records (brain wave information). You may delete it from 22.
また、活性化レベル及び閾値等の二値間の比較において、「超える」としているところは、二値が等しい場合を含まず、二値の一方が他方を超えている場合のみを含む。ただし、これに限らず、ここでいう「超える」は、二値が等しい場合、及び二値の一方が他方を超えている場合の両方を含む「以上」と同義であってもよい。つまり、二値が等しい場合を含むか否かは、閾値等の設定次第で任意に変更できるので、「超える」か「以上」かに技術上の差異はない。同様に、「以下」においても「未満」と同義であってもよい。
In addition, in comparisons between binary values such as activation level and threshold value, places where "exceed" are not included when the binary values are equal but include only when one of the binary values exceeds the other. However, not only this but "more than" here may be synonymous with "or more" including both when the binary value is equal and when one of the binary values exceeds the other. In other words, whether or not the binary values are equal can be arbitrarily changed depending on the setting of the threshold value or the like, so there is no technical difference in "over" or "above". Similarly, "less than" may be synonymous with "less than".
(まとめ)
以上説明したように、第1の態様に係る脳波測定システム(10)は、取得部(211)と、記憶部(メモリ22)と、入力部(216)と、処理部(215)と、を備える。取得部(211)は、脳波情報を取得する。脳波情報は、電極部(11)にて採取される脳波を表す情報である。電極部(11)は、対象者(5)の頭部(52)の一部である測定箇所(51)に配置される。記憶部は、取得部(211)で取得された脳波情報を複数記憶する。入力部(216)は、記憶部に記憶されている複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部(24)より受け付ける。処理部(215)は、指定信号にて指定される1以上の脳波情報に基づいて、脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。 (Summary)
As described above, the electroencephalogram measurement system (10) according to the first aspect includes the acquisition unit (211), the storage unit (memory 22), the input unit (216), and the processing unit (215). Prepare. An acquisition unit (211) acquires brain wave information. The electroencephalogram information is information representing an electroencephalogram collected by the electrode unit (11). The electrode unit (11) is disposed at a measurement point (51) which is a part of the head (52) of the subject (5). The storage unit stores a plurality of brain wave information acquired by the acquisition unit (211). The input unit (216) receives, from the operation unit (24), a designation signal for designating one or more pieces of brain wave information from among the plurality of pieces of brain wave information stored in the storage unit. The processing unit (215) executes a calibration process for determining a parameter used for analysis of brain wave information, based on the one or more brain wave information specified by the designation signal.
以上説明したように、第1の態様に係る脳波測定システム(10)は、取得部(211)と、記憶部(メモリ22)と、入力部(216)と、処理部(215)と、を備える。取得部(211)は、脳波情報を取得する。脳波情報は、電極部(11)にて採取される脳波を表す情報である。電極部(11)は、対象者(5)の頭部(52)の一部である測定箇所(51)に配置される。記憶部は、取得部(211)で取得された脳波情報を複数記憶する。入力部(216)は、記憶部に記憶されている複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部(24)より受け付ける。処理部(215)は、指定信号にて指定される1以上の脳波情報に基づいて、脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。 (Summary)
As described above, the electroencephalogram measurement system (10) according to the first aspect includes the acquisition unit (211), the storage unit (memory 22), the input unit (216), and the processing unit (215). Prepare. An acquisition unit (211) acquires brain wave information. The electroencephalogram information is information representing an electroencephalogram collected by the electrode unit (11). The electrode unit (11) is disposed at a measurement point (51) which is a part of the head (52) of the subject (5). The storage unit stores a plurality of brain wave information acquired by the acquisition unit (211). The input unit (216) receives, from the operation unit (24), a designation signal for designating one or more pieces of brain wave information from among the plurality of pieces of brain wave information stored in the storage unit. The processing unit (215) executes a calibration process for determining a parameter used for analysis of brain wave information, based on the one or more brain wave information specified by the designation signal.
この態様によれば、記憶部(メモリ22)に記憶されている複数の脳波情報の中から、キャリブレーション処理に使用される1以上の脳波情報を指定することが可能である。したがって、キャリブレーション処理においては、例えば、アーチファクトの影響が少ない脳波情報のみを用いて、精度よくパラメータを決定することが可能である。その結果、パラメータに生じる誤差を小さく抑えることができ、脳波測定の精度の低下を抑制できる。
According to this aspect, it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
第2の態様に係る脳波測定システム(10)は、第1の態様において、記憶部(メモリ22)に記憶されている複数の脳波情報を表示部(26)に表示させる表示制御部(218)を更に備える。
The electroencephalogram measurement system (10) according to the second aspect is, in the first aspect, a display control part (218) that causes the display part (26) to display a plurality of electroencephalogram information stored in the storage part (memory 22). Further comprising
この態様によれば、表示部(26)に表示される複数の脳波情報を参照して、キャリブレーション処理に使用される1以上の脳波情報を指定することが可能である。したがって、キャリブレーション処理に使用される脳波情報の指定(選択)作業が、比較的容易になる。
According to this aspect, it is possible to designate one or more brain wave information to be used in the calibration process with reference to the plurality of brain wave information displayed on the display unit (26). Therefore, the designation (selection) operation of the brain wave information used for the calibration process becomes relatively easy.
第3の態様に係る脳波測定システム(10)では、第1又は2の態様において、入力部(216)は、処理部(215)がキャリブレーション処理を実行した後で、指定信号を受け付ける再指定処理を実行する。処理部(215)は、再指定処理において入力部(216)が受け付けた指定信号にて指定される1以上の脳波情報に基づいて、キャリブレーション処理を再度実行する。
In the electroencephalogram measurement system (10) according to the third aspect, in the first or second aspect, the input unit (216) re-specifies the designation signal to be accepted after the processing unit (215) executes the calibration processing. Execute the process The processing unit (215) executes the calibration processing again based on the one or more brain wave information designated by the designation signal received by the input unit (216) in the re-designation processing.
この態様によれば、再指定処理により、キャリブレーション処理に使用される1以上の脳波情報を指定し直した状態で、キャリブレーション処理を再度実行できる。したがって、取得済みの脳波情報を破棄して取得部(211)による脳波情報の取得からやり直す場合に比べて、再度のキャリブレーション処理に要する時間を短縮でき、また、対象者(5)及び医療スタッフ等の負担を軽減できる。
According to this aspect, the calibration process can be executed again in the state where one or more brain wave information used for the calibration process is redesignated by the re-designation process. Therefore, compared with the case where the acquired electroencephalogram information is discarded and retried from acquisition of the electroencephalogram information by the acquisition unit (211), the time required for the calibration process again can be shortened, and the target person (5) and medical staff It is possible to reduce the burden of
第4の態様に係る脳波測定システム(10)では、第3の態様において、取得部(211)は、追加処理を実行する。追加処理は、処理部(215)がキャリブレーション処理を実行してから、入力部(216)が再指定処理を実行するまでの間において、脳波情報を更に取得して記憶部(メモリ22)に追加する処理である。
In the electroencephalogram measurement system (10) according to the fourth aspect, in the third aspect, the acquisition unit (211) executes an additional process. In the addition processing, brain wave information is further acquired and stored in the storage unit (memory 22) in a period from when the processing unit (215) executes calibration processing until the input unit (216) executes re-designation processing. It is a process to add.
この態様によれば、指定信号による脳波情報の選択肢が十分でない場合に、追加処理により、脳波情報の選択肢を増やした状態で、再指定処理を実行できる。したがって、取得済みの脳波情報を破棄して取得部(211)による脳波情報の取得からやり直す場合に比べて、再度のキャリブレーション処理に要する時間を短縮でき、また、対象者(5)及び医療スタッフ等の負担を軽減できる。
According to this aspect, when the choice of the electroencephalogram information by the designation signal is not sufficient, the re-designation process can be executed in a state where the choice of the electroencephalogram information is increased by the addition process. Therefore, compared with the case where the acquired electroencephalogram information is discarded and retried from acquisition of the electroencephalogram information by the acquisition unit (211), the time required for the calibration process again can be shortened, and the target person (5) and medical staff It is possible to reduce the burden of
第5の態様に係る脳波測定システム(10)は、第4の態様において、選択部(219)を更に備える。選択部(219)は、処理部(215)がキャリブレーション処理を実行してから、入力部(216)が再指定処理を実行するまでの間において、取得部(211)による追加処理を実行するか否かを選択する選択信号を、操作部(24)より受け付ける。
The electroencephalogram measurement system (10) according to the fifth aspect further includes a selection unit (219) in the fourth aspect. The selection unit (219) performs additional processing by the acquisition unit (211) from when the processing unit (215) executes calibration processing until the input unit (216) executes re-designation processing. A selection signal for selecting whether or not to be received is received from the operation unit (24).
この態様によれば、例えば、指定信号による脳波情報の選択肢が十分でない場合にのみ、追加処理を実行することで、再度のキャリブレーション処理に要する時間を短縮でき、また、対象者(5)及び医療スタッフ等の負担を軽減できる。
According to this aspect, for example, by executing the additional process only when the option of the electroencephalogram information by the designated signal is not sufficient, the time required for the calibration process again can be shortened, and the subject (5) and The burden on medical staff etc. can be reduced.
第6の態様に係る脳波測定システム(10)は、第1~5のいずれかの態様において、キャリブレーション処理の結果を提示する提示部(220)を更に備える。
The electroencephalogram measurement system (10) according to the sixth aspect further includes a presentation unit (220) for presenting the result of the calibration process in any of the first to fifth aspects.
この態様によれば、例えば、提示部(220)にて提示されたキャリブレーション処理の結果が一定の基準を満たすように、キャリブレーション処理のやり直しを行うことで、脳波測定の精度の低下をより一層抑制できる。
According to this aspect, for example, the calibration process is retried so that the result of the calibration process presented by the presentation unit (220) satisfies a certain standard, thereby lowering the accuracy of the electroencephalogram measurement. It can be further suppressed.
第7の態様に係る脳波測定システム(10)は、第1~6のいずれかの態様において、記憶部(メモリ22)に記憶されている複数の脳波情報の中から少なくとも1つの脳波情報を削除する削除部(221)を更に備える。
In the electroencephalogram measurement system (10) according to the seventh aspect, in any one of the first to sixth aspects, at least one electroencephalogram information is deleted from the plurality of electroencephalogram information stored in the storage unit (memory 22). And a deletion unit (221).
この態様によれば、例えば、キャリブレーション処理に使用される脳波情報として不適当な脳波情報については、指定信号による脳波情報の選択肢から削除することで、キャリブレーション処理に使用される脳波情報の指定(選択)作業が、比較的容易になる。
According to this aspect, for example, the brain wave information inappropriate for the brain wave information used in the calibration process is deleted from the choice of the brain wave information according to the designation signal, thereby specifying the brain wave information used in the calibration process. (Selection) work is relatively easy.
第8の態様に係るリハビリテーション支援システム(100)は、脳波測定システム(10)と、運動補助装置(3)と、制御装置(4)と、を備える。運動補助装置(3)は、対象者(5)に機械的な刺激と電気的な刺激との少なくとも一方を加える。制御装置(4)は、取得部(211)で取得された脳波情報に基づいて運動補助装置(3)を制御する。
A rehabilitation support system (100) according to an eighth aspect includes an electroencephalogram measurement system (10), an exercise support device (3), and a control device (4). The exercise assisting device (3) applies at least one of mechanical stimulation and electrical stimulation to the subject (5). The control device (4) controls the exercise assistance device (3) based on the brain wave information acquired by the acquisition unit (211).
この態様によれば、記憶部(メモリ22)に記憶されている複数の脳波情報の中から、キャリブレーション処理に使用される1以上の脳波情報を指定することが可能である。したがって、キャリブレーション処理においては、例えば、アーチファクトの影響が少ない脳波情報のみを用いて、精度よくパラメータを決定することが可能である。その結果、パラメータに生じる誤差を小さく抑えることができ、脳波測定の精度の低下を抑制できる。
According to this aspect, it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
第9の態様に係る脳波測定方法は、対象者(5)の頭部(52)の一部である測定箇所(51)に配置される電極部(11)にて採取される脳波を表す脳波情報を取得して、記憶部(メモリ22)に複数の脳波情報を記憶する。さらに、この脳波測定方法では、記憶部に記憶されている複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部(24)より受け付ける。さらに、この脳波測定方法では、指定信号にて指定される1以上の脳波情報に基づいて、脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。
An electroencephalogram measurement method according to a ninth aspect is an electroencephalogram representing an electroencephalogram collected by an electrode unit (11) disposed at a measurement location (51) which is a part of a head (52) of a subject (5). Information is acquired, and a plurality of brain wave information is stored in the storage unit (memory 22). Furthermore, in this electroencephalogram measurement method, a designation signal for designating one or more brain wave information from among a plurality of brain wave information stored in the storage unit is received from the operation unit (24). Furthermore, in this electroencephalogram measurement method, calibration processing for determining parameters used for analysis of electroencephalogram information is executed based on one or more electroencephalogram information designated by the designation signal.
この態様によれば、記憶部(メモリ22)に記憶されている複数の脳波情報の中から、キャリブレーション処理に使用される1以上の脳波情報を指定することが可能である。したがって、キャリブレーション処理においては、例えば、アーチファクトの影響が少ない脳波情報のみを用いて、精度よくパラメータを決定することが可能である。その結果、パラメータに生じる誤差を小さく抑えることができ、脳波測定の精度の低下を抑制できる。
According to this aspect, it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
第10の態様に係るプログラムは、コンピュータシステムに、第9の態様に係る脳波測定方法を実行させるためのプログラムである。
A program according to a tenth aspect is a program for causing a computer system to execute the electroencephalogram measurement method according to the ninth aspect.
この態様によれば、記憶部(メモリ22)に記憶されている複数の脳波情報の中から、キャリブレーション処理に使用される1以上の脳波情報を指定することが可能である。したがって、キャリブレーション処理においては、例えば、アーチファクトの影響が少ない脳波情報のみを用いて、精度よくパラメータを決定することが可能である。その結果、パラメータに生じる誤差を小さく抑えることができ、脳波測定の精度の低下を抑制できる。
According to this aspect, it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
第11の態様に係る非一時的記録媒体は、コンピュータシステムに、第9の態様に係る脳波測定方法を実行させるためのプログラムを記録した、コンピュータシステムで読取可能な非一時的記録媒体である。
The non-temporary recording medium according to the eleventh aspect is a non-transitory recording medium readable by a computer system in which a program for causing a computer system to execute the electroencephalogram measurement method according to the ninth aspect is recorded.
この態様によれば、記憶部(メモリ22)に記憶されている複数の脳波情報の中から、キャリブレーション処理に使用される1以上の脳波情報を指定することが可能である。したがって、キャリブレーション処理においては、例えば、アーチファクトの影響が少ない脳波情報のみを用いて、精度よくパラメータを決定することが可能である。その結果、パラメータに生じる誤差を小さく抑えることができ、脳波測定の精度の低下を抑制できる。
According to this aspect, it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information stored in the storage unit (memory 22). Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
上記態様に限らず、実施形態1に係る脳波測定システム(10)の種々の構成(変形例を含む)は、脳波測定方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化可能である。
Not limited to the above aspect, various configurations (including modified examples) of the electroencephalogram measurement system (10) according to the first embodiment may be an electroencephalogram measurement method, a (computer) program, or a non-temporary recording medium recording the program. It can be embodied.
第12の態様に係る脳波測定システム(10)は、表示制御部(218)と、入力部(216)と、処理部(215)と、を備える。表示制御部(218)は、複数の脳波情報を表示部(26)に表示させる。入力部(216)は、複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部(24)より受け付ける。処理部(215)は、指定信号にて指定される1以上の脳波情報に基づいて、脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する。
An electroencephalogram measurement system (10) according to a twelfth aspect includes a display control unit (218), an input unit (216), and a processing unit (215). The display control unit (218) causes the display unit (26) to display a plurality of brain wave information. The input unit (216) receives, from the operation unit (24), a designation signal for designating one or more pieces of brain wave information from among a plurality of pieces of brain wave information. The processing unit (215) executes a calibration process for determining a parameter used for analysis of brain wave information, based on the one or more brain wave information specified by the designation signal.
この態様によれば、複数の脳波情報の中から、キャリブレーション処理に使用される1以上の脳波情報を指定することが可能である。したがって、キャリブレーション処理においては、例えば、アーチファクトの影響が少ない脳波情報のみを用いて、精度よくパラメータを決定することが可能である。その結果、パラメータに生じる誤差を小さく抑えることができ、脳波測定の精度の低下を抑制できる。
According to this aspect, it is possible to specify one or more brain wave information to be used for the calibration process from among the plurality of brain wave information. Therefore, in the calibration process, for example, it is possible to accurately determine the parameters using only brain wave information that is less affected by an artifact. As a result, it is possible to suppress the error generated in the parameter to a small value, and to suppress the decrease in the accuracy of the electroencephalogram measurement.
第13の態様に係る脳波測定システム(10)では、第12の態様において、入力部(216)は、処理部(215)がキャリブレーション処理を実行した後で、指定信号を受け付ける再指定処理を実行する。処理部(215)は、再指定処理において入力部(216)が受け付けた指定信号にて指定される1以上の脳波情報に基づいて、キャリブレーション処理を再度実行する。
In the electroencephalogram measurement system (10) according to the thirteenth aspect, in the twelfth aspect, the input unit (216) performs re-designation processing for accepting a designation signal after the processing unit (215) executes calibration processing. Run. The processing unit (215) executes the calibration processing again based on the one or more brain wave information designated by the designation signal received by the input unit (216) in the re-designation processing.
この態様によれば、再指定処理により、キャリブレーション処理に使用される1以上の脳波情報を指定し直した状態で、キャリブレーション処理を再度実行できる。したがって、取得済みの脳波情報を破棄して脳波情報の取得からやり直す場合に比べて、再度のキャリブレーション処理に要する時間を短縮でき、また、対象者(5)及び医療スタッフ等の負担を軽減できる。
According to this aspect, the calibration process can be executed again in the state where one or more brain wave information used for the calibration process is redesignated by the re-designation process. Therefore, compared to the case where the acquired brain wave information is discarded and the brain wave information is acquired again, the time required for the calibration process again can be shortened, and the burden on the subject (5) and medical staff can be reduced. .
第14の態様に係る脳波測定システム(10)では、第13の態様において、表示制御部(218)は、追加処理を実行する。追加処理は、処理部(215)がキャリブレーション処理を実行してから、入力部(216)が再指定処理を実行するまでの間において、表示部(26)に表示させる複数の脳波情報に別の脳波情報を追加する処理である。
In the electroencephalogram measurement system (10) according to the fourteenth aspect, in the thirteenth aspect, the display control unit (218) executes an additional process. The addition process is different from the plurality of electroencephalogram information to be displayed on the display unit (26) after the processing unit (215) performs the calibration process and the input unit (216) performs the re-designation process. Processing to add brain wave information of
この態様によれば、指定信号による脳波情報の選択肢が十分でない場合に、追加処理により、脳波情報の選択肢を増やした状態で、再指定処理を実行できる。したがって、取得済みの脳波情報を破棄して脳波情報の取得からやり直す場合に比べて、再度のキャリブレーション処理に要する時間を短縮でき、また、対象者(5)及び医療スタッフ等の負担を軽減できる。
According to this aspect, when the choice of the electroencephalogram information by the designation signal is not sufficient, the re-designation process can be executed in a state where the choice of the electroencephalogram information is increased by the addition process. Therefore, compared to the case where the acquired brain wave information is discarded and the brain wave information is acquired again, the time required for the calibration process again can be shortened, and the burden on the subject (5) and medical staff can be reduced. .
第2~7,13,14の態様に係る構成については、脳波測定システム(10)に必須の構成ではなく、適宜省略可能である。
The configurations according to the second to seventh, thirteenth, and fourteenth aspects are not essential components of the electroencephalogram measurement system (10), and can be omitted as appropriate.
5 対象者
10 脳波測定システム
11 電極部
24 操作部
26 表示部
51 測定箇所
52 頭部
211 取得部
215 処理部
216 入力部
218 表示制御部
219 選択部
220 提示部
221 削除部
DESCRIPTION OFSYMBOLS 5 object person 10 electroencephalogram measurement system 11 electrode part 24 operation part 26 display part 51 measurement part 52 head 211 acquisition part 215 processing part 216 input part 218 display control part 219 selection part 220 presentation part 221 deletion part
10 脳波測定システム
11 電極部
24 操作部
26 表示部
51 測定箇所
52 頭部
211 取得部
215 処理部
216 入力部
218 表示制御部
219 選択部
220 提示部
221 削除部
DESCRIPTION OF
Claims (13)
- 対象者の頭部の一部である測定箇所に配置される電極部にて採取される脳波を表す脳波情報を取得する取得部と、
前記取得部で取得された前記脳波情報を複数記憶する記憶部と、
前記記憶部に記憶されている前記複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部より受け付ける入力部と、
前記指定信号にて指定される前記1以上の脳波情報に基づいて、前記脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する処理部と、を備える
脳波測定システム。 An acquisition unit for acquiring electroencephalogram information representing an electroencephalogram collected by an electrode unit disposed at a measurement location which is a part of the head of the subject;
A storage unit that stores a plurality of the brain wave information acquired by the acquisition unit;
An input unit that receives, from an operation unit, a designation signal that designates one or more brain wave information from among the plurality of brain wave information stored in the storage unit;
A processing unit configured to execute a calibration process for determining a parameter used for analysis of the brain wave information based on the one or more brain wave information specified by the designation signal. - 前記記憶部に記憶されている前記複数の脳波情報を表示部に表示させる表示制御部を更に備える
請求項1に記載の脳波測定システム。 The electroencephalogram measurement system according to claim 1, further comprising a display control unit that causes the display unit to display the plurality of brain wave information stored in the storage unit. - 前記入力部は、前記処理部が前記キャリブレーション処理を実行した後で、前記指定信号を受け付ける再指定処理を実行し、
前記処理部は、前記再指定処理において前記入力部が受け付けた前記指定信号にて指定される1以上の脳波情報に基づいて、前記キャリブレーション処理を再度実行する
請求項1又は2に記載の脳波測定システム。 The input unit executes re-designation processing for receiving the designation signal after the processing unit executes the calibration processing,
The brain wave according to claim 1 or 2, wherein the processing unit executes the calibration process again based on one or more brain wave information specified by the designation signal received by the input unit in the re-designation process. Measurement system. - 前記取得部は、前記処理部が前記キャリブレーション処理を実行してから、前記入力部が前記再指定処理を実行するまでの間において、前記脳波情報を更に取得して前記記憶部に追加する追加処理を実行する
請求項3に記載の脳波測定システム。 The acquisition unit additionally acquires the brain wave information and adds the brain wave information to the storage unit after the processing unit executes the calibration process and the input unit executes the re-designation process. The electroencephalogram measurement system according to claim 3, which executes a process. - 前記処理部が前記キャリブレーション処理を実行してから、前記入力部が前記再指定処理を実行するまでの間において、前記取得部による前記追加処理を実行するか否かを選択する選択信号を、前記操作部より受け付ける選択部を更に備える
請求項4に記載の脳波測定システム。 A selection signal for selecting whether or not to execute the additional process by the acquisition unit after the processing unit executes the calibration process and before the input unit executes the re-designation process, The electroencephalogram measurement system according to claim 4, further comprising a selection unit received from the operation unit. - 前記キャリブレーション処理の結果を提示する提示部を更に備える
請求項1~5のいずれか1項に記載の脳波測定システム。 The electroencephalogram measurement system according to any one of claims 1 to 5, further comprising a presentation unit that presents a result of the calibration process. - 前記記憶部に記憶されている前記複数の脳波情報の中から少なくとも1つの脳波情報を削除する削除部を更に備える
請求項1~6のいずれか1項に記載の脳波測定システム。 The electroencephalogram measurement system according to any one of claims 1 to 6, further comprising a deletion unit configured to delete at least one brain wave information from the plurality of brain wave information stored in the storage unit. - 対象者の頭部の一部である測定箇所に配置される電極部にて採取される脳波を表す脳波情報を取得して、記憶部に複数の脳波情報を記憶し、
前記記憶部に記憶されている前記複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部より受け付けて、
前記指定信号にて指定される前記1以上の脳波情報に基づいて、前記脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する
脳波測定方法。 Acquiring electroencephalogram information representing electroencephalograms collected by an electrode unit disposed at a measurement location which is a part of the subject's head, and storing a plurality of electroencephalogram information in a storage unit;
A designation signal for designating one or more brain wave information from among the plurality of brain wave information stored in the storage unit is accepted from the operation unit,
A calibration process for determining a parameter used for analysis of the brain wave information based on the one or more brain wave information specified by the designation signal. - コンピュータシステムに、
請求項8に記載の脳波測定方法を実行させるためのプログラム。 Computer system,
A program for executing the electroencephalogram measurement method according to claim 8. - コンピュータシステムに、
請求項8に記載の脳波測定方法を実行させるためのプログラムを記録した、コンピュータシステムで読取可能な非一時的記録媒体。 Computer system,
A non-transitory recording medium readable by a computer system, wherein a program for executing the electroencephalogram measurement method according to claim 8 is recorded. - 複数の脳波情報を表示部に表示させる表示制御部と、
前記複数の脳波情報の中から1以上の脳波情報を指定する指定信号を、操作部より受け付ける入力部と、
前記指定信号にて指定される前記1以上の脳波情報に基づいて、前記脳波情報の解析に用いるパラメータを決定するためのキャリブレーション処理を実行する処理部と、を備える
脳波測定システム。 A display control unit for displaying a plurality of brain wave information on a display unit;
An input unit that receives, from an operation unit, a designation signal that designates one or more pieces of brain wave information from among the plurality of pieces of brain wave information;
A processing unit configured to execute a calibration process for determining a parameter used for analysis of the brain wave information based on the one or more brain wave information specified by the designation signal. - 前記入力部は、前記処理部が前記キャリブレーション処理を実行した後で、前記指定信号を受け付ける再指定処理を実行し、
前記処理部は、前記再指定処理において前記入力部が受け付けた前記指定信号にて指定される前記1以上の脳波情報に基づいて、前記キャリブレーション処理を再度実行する
請求項11に記載の脳波測定システム。 The input unit executes re-designation processing for receiving the designation signal after the processing unit executes the calibration processing,
The electroencephalogram measurement according to claim 11, wherein the processing unit executes the calibration process again based on the one or more brain wave information specified by the designation signal received by the input unit in the re-designation process. system. - 前記表示制御部は、前記処理部が前記キャリブレーション処理を実行してから、前記入力部が前記再指定処理を実行するまでの間において、前記表示部に表示させる前記複数の脳波情報に別の脳波情報を追加する追加処理を実行する
請求項12に記載の脳波測定システム。
The display control unit is configured to display the plurality of electroencephalogram information to be displayed on the display unit after the processing unit performs the calibration process and the input unit performs the re-designating process. The electroencephalogram measurement system according to claim 12, which performs additional processing of adding electroencephalogram information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019549353A JP6888789B2 (en) | 2017-10-20 | 2018-10-19 | EEG measurement system, EEG measurement method, program, and non-temporary recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-204088 | 2017-10-20 | ||
JP2017204088 | 2017-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078323A1 true WO2019078323A1 (en) | 2019-04-25 |
Family
ID=66172925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038926 WO2019078323A1 (en) | 2017-10-20 | 2018-10-19 | Brain wave measurement system, brain wave measurement method, program, and non-transitory recording medium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6888789B2 (en) |
WO (1) | WO2019078323A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111603135A (en) * | 2020-05-11 | 2020-09-01 | 江南大学 | A low-power epilepsy detection circuit based on master-slave support vector machine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5363858A (en) * | 1993-02-11 | 1994-11-15 | Francis Luca Conte | Method and apparatus for multifaceted electroencephalographic response analysis (MERA) |
JP2012217721A (en) * | 2011-04-12 | 2012-11-12 | Keio Gijuku | Electroencephalogram signal processor for rehabilitation, rehabilitation system equipped with the same, and electrode pad used therein |
-
2018
- 2018-10-19 WO PCT/JP2018/038926 patent/WO2019078323A1/en active Application Filing
- 2018-10-19 JP JP2019549353A patent/JP6888789B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5363858A (en) * | 1993-02-11 | 1994-11-15 | Francis Luca Conte | Method and apparatus for multifaceted electroencephalographic response analysis (MERA) |
JP2012217721A (en) * | 2011-04-12 | 2012-11-12 | Keio Gijuku | Electroencephalogram signal processor for rehabilitation, rehabilitation system equipped with the same, and electrode pad used therein |
Non-Patent Citations (1)
Title |
---|
MIYAKE, SHINJI: "Knowhow of physiological measurement and data analysis for developing and evaluating products", 24 March 2017, TOKYO, ISBN: 978-4-86043-463-2, pages: 20 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111603135A (en) * | 2020-05-11 | 2020-09-01 | 江南大学 | A low-power epilepsy detection circuit based on master-slave support vector machine |
CN111603135B (en) * | 2020-05-11 | 2021-09-28 | 江南大学 | Low-power-consumption epilepsy detection circuit based on master-slave support vector machine |
Also Published As
Publication number | Publication date |
---|---|
JP6888789B2 (en) | 2021-06-16 |
JPWO2019078323A1 (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7024151B2 (en) | EEG measurement system, EEG measurement method, program, and non-temporary recording medium | |
US20220031248A1 (en) | Connection quality assessment for eeg electrode arrays | |
JP7149613B2 (en) | Rehabilitation support system, electroencephalogram measurement system control method, program, and non-temporary recording medium | |
EP3797827B1 (en) | Electronic electrocardiogram calipers | |
US20090259137A1 (en) | Determination of biosensor contact quality | |
Novak et al. | Predicting targets of human reaching motions using different sensing technologies | |
JP2009297059A (en) | Brain training support apparatus | |
CN106413532A (en) | Rehabilitation system and method | |
JP6960619B2 (en) | EEG judgment system | |
KR102409381B1 (en) | Method and apparatus for processing biosignal using recursive estimation | |
EP1987768A1 (en) | Stimulation arrangement for measurement of physiological signal rectivity | |
JP6888789B2 (en) | EEG measurement system, EEG measurement method, program, and non-temporary recording medium | |
CN105326482B (en) | Method and apparatus for recording physiological signals | |
JP6755507B2 (en) | How to operate the brain activity training system and the brain activity training system | |
WO2019168500A1 (en) | Connection quality assessment for eeg electrode arrays | |
JP6840343B2 (en) | Pseudo-electroencephalogram generation system and electroencephalogram measurement system | |
JP6928594B2 (en) | Stimulation system, rehabilitation support system | |
WO2021050972A1 (en) | Wearable system for automated, objective and continuous quantification of pain | |
JP6905500B2 (en) | Rehabilitation support system, control method of rehabilitation support system, and program | |
JP6917600B2 (en) | Inflammation assessment system, program, non-temporary recording medium | |
KR20040055504A (en) | System and method for controlling eeg bio-feedback | |
JP2019076715A (en) | Exercise assisting system and rehabilitation support system | |
CN114554960A (en) | ECG measuring device | |
JP2019076714A (en) | Finger driving device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18868446 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019549353 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18868446 Country of ref document: EP Kind code of ref document: A1 |