[go: up one dir, main page]

WO2019072234A1 - 温控方法、装置、计算机存储介质及设备 - Google Patents

温控方法、装置、计算机存储介质及设备 Download PDF

Info

Publication number
WO2019072234A1
WO2019072234A1 PCT/CN2018/110015 CN2018110015W WO2019072234A1 WO 2019072234 A1 WO2019072234 A1 WO 2019072234A1 CN 2018110015 W CN2018110015 W CN 2018110015W WO 2019072234 A1 WO2019072234 A1 WO 2019072234A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
real
time
parameter
refrigeration
Prior art date
Application number
PCT/CN2018/110015
Other languages
English (en)
French (fr)
Inventor
杨建国
周成君
康建慧
李九江
李天社
Original Assignee
北京市京科伦冷冻设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710952544.1A external-priority patent/CN107525344A/zh
Priority claimed from CN201811180340.1A external-priority patent/CN109405405A/zh
Application filed by 北京市京科伦冷冻设备有限公司 filed Critical 北京市京科伦冷冻设备有限公司
Publication of WO2019072234A1 publication Critical patent/WO2019072234A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to the field of temperature control technologies, and in particular, to a temperature control method, device, computer storage medium and device.
  • the traditional temperature control system is a switching quantity control scheme.
  • the cold storage temperature control system when the storage temperature is 1 °C higher than the set temperature, the refrigeration system works. When the storage temperature is lower than the set temperature by 1 °C, the refrigeration system is shut down. Taking into account the actual situation of cold inventory in thermal inertia, the actual temperature fluctuations in the library temperature are greater than ⁇ 1 ° C, which have a greater impact on the quality of stored food.
  • the temperature stability of the cold storage should be guaranteed, the air temperature in the storage should be kept below -18 °C, and the fluctuation of the air temperature in the day and night storage should not exceed 1 °C.
  • the fluctuation of the Kuwen does not exceed 4 °C. Only the cold storage that meets the above criteria will be qualified to store the central reserve meat.
  • Ice temperature storage and preservation technology originated in Japan, and has obvious advantages compared with cooling storage, frozen storage and modified atmosphere storage. However, the accuracy of cold storage temperature control is very high.
  • the Japan Ice Temperature Association stipulates that the temperature fluctuation range of the ice temperature library is in the range of Within ⁇ 0.5 °C, Japan's ice temperature library has made some improvements in the library, mainly using jacket technology, the structure is more complicated, the cold storage space utilization is low, and the cost is high.
  • the present invention has been made in order to provide a temperature control method, apparatus, computer storage medium and apparatus that overcome the above problems or at least partially solve the above problems, and realize a stable and continuous indoor cooling of the refrigeration system.
  • the real-time temperature in the room is maintained at a preset target temperature, thereby ensuring low indoor temperature fluctuation and good stability.
  • a temperature control method comprising:
  • the operating parameters of the refrigeration equipment group are controlled based on the operational load amount such that the real-time evaporation parameters of the refrigeration system reach the target evaporation parameters.
  • the obtaining the real-time temperature in the room includes:
  • the average temperature of the real-time temperature of each temperature collection point of each layer is calculated, and the average temperature is taken as the real-time temperature in the room.
  • controlling the operating parameter of the cooling device group according to the running load amount comprises: controlling the number of the cooling devices in the working state in the cooling device group according to the running load amount, and compressing in the working device The mechanical frequency of the machine.
  • the determining, according to the difference between the real-time evaporation parameter and the target evaporation parameter, the current operational load required by the refrigeration equipment group including:
  • mapping relationship table includes real-time evaporation parameters and target evaporation
  • controlling the operating parameters of the cooling device group according to the running load amount includes:
  • the opening degree of the corresponding electronic expansion valve is set according to the change of the actual superheat degree SHevaporator of the evaporator in the refrigeration device;
  • the operating parameter of the refrigeration device group is controlled according to the operating load amount, so that the real-time evaporation parameter of the refrigeration system reaches the target evaporation parameter, including:
  • the set opening degree Oevaporator is output to the electronic expansion valve.
  • the number of running devices of the refrigeration device is increased, and if the real-time temperature in the room is lower than the preset minimum allowable value, the refrigeration device is reduced. The number of running stations.
  • the opening degree of the electronic expansion valve if the actual superheat degree SHevaporator is higher than the maximum allowable value, the opening degree of the electronic expansion valve is increased, and if the actual superheat degree SHevaporator is lower than the minimum allowable value, the electron is reduced.
  • the opening of the expansion valve is Oevaporator.
  • a temperature control device comprising:
  • the acquisition module is adapted to obtain real-time evaporation parameters of the real-time temperature and refrigeration system in the room;
  • a processing module configured to determine a target evaporation parameter of the refrigeration system according to a temperature difference between the real-time temperature and a preset target temperature
  • the processing module is further configured to determine, according to a difference between the real-time evaporation parameter and the target evaporation parameter, a current operational load amount required by the refrigeration equipment group;
  • a control module configured to control an operating parameter of the cooling device group according to the running load amount, so that the real-time temperature in the room reaches the preset target temperature.
  • the acquiring module includes:
  • the temperature collecting unit is adapted to collect the real-time temperature of each temperature collecting point of each layer in the indoor;
  • the calculation unit is adapted to calculate an average temperature of the real-time temperature of each temperature collection point of each layer, and use the average temperature as the real-time temperature in the room.
  • control module is specifically adapted to control the number of the refrigeration devices in the working state in the refrigeration device group according to the running load amount, and the operating mechanical frequency of the compressor in the refrigeration device in the working state.
  • the processing module is specifically configured to: search a preset mapping relationship table according to a difference between the real-time evaporation parameter and the target evaporation parameter, to obtain a running load amount corresponding to the difference, where the mapping The relationship table includes the correspondence between the difference between the real-time evaporation parameter and the target evaporation parameter and the running load amount.
  • the present invention also provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the method as described above.
  • the present invention also provides an apparatus comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing the program to implement the steps of the method as described above.
  • the invention obtains the real-time temperature of the indoor and the real-time evaporation parameter of the refrigeration system, and determines the target evaporation parameter of the refrigeration system according to the temperature difference between the indoor real-time temperature and the preset target temperature, and adopts the analog quantity method according to the real-time evaporation parameter and the target evaporation parameter.
  • the difference is adjusted in real time to adjust the operating parameters of the refrigeration equipment group, so that the refrigeration system can supply cooling to the room in a steady and continuous manner, so that the real-time temperature in the room maintains the preset target temperature, thereby ensuring low temperature fluctuation and stability in the room. it is good.
  • FIG. 1 is a flow chart of a temperature control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a temperature control device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a device according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a temperature control method according to an embodiment of the present invention.
  • the temperature control method of the embodiment of the present invention specifically includes the following steps:
  • the real-time evaporation parameters of the refrigeration system include the evaporation temperature and/or the evaporation pressure of the evaporator.
  • the obtaining the real-time temperature in the room further includes the following steps: collecting real-time temperatures of respective temperature collection points of each layer in the indoor; calculating an average temperature of real-time temperatures of each temperature collection point of each layer, The average temperature is taken as the real-time temperature in the room.
  • each temperature sensor is connected to the temperature inspection instrument through a relay, and each temperature sensor is collected by a temperature probe at the front end thereof.
  • the temperature data is given to the temperature inspection instrument, and the temperature inspection instrument realizes automatic inspection.
  • the temperature inspection instrument sequentially displays the data collected by each temperature sensor, and then transmits the temperature data to the analog acquisition module of the control device.
  • the real-time evaporation parameter of the refrigeration system can be further collected by a temperature sensor disposed in the refrigeration system or by a pressure sensor disposed in the refrigeration system.
  • the temperature control method provided by the embodiment of the invention determines the target evaporation parameter of the refrigeration system by collecting the real-time temperature in the room and the real-time evaporation parameter of the refrigeration system, and determining the target evaporation parameter according to the temperature difference between the indoor real-time temperature and the preset target temperature, and adopting the analog quantity method.
  • the working parameters of the refrigeration equipment group are adjusted in real time, so that the refrigeration system stably and continuously supplies the indoor cooling to the room, so that the real-time temperature in the room maintains the preset target temperature, thereby ensuring Indoor temperature fluctuations are low and stability is good.
  • the temperature control method provided by the embodiment of the invention can be applied to the temperature control method inside the building, such as the temperature control of the cold storage, the ice temperature storage and storage, the indoor air conditioner, and the data center, and the invention is not specifically limited.
  • the temperature control method provided by the embodiment of the invention can ensure that the indoor temperature fluctuation is low and the stability is good, thereby enabling the indoors to maintain a comfortable relative humidity range.
  • indoor air conditioning systems can improve indoor comfort. For cold storage, ice temperature storage and preservation, etc., it can reduce the dry consumption of products and ensure the quality of products.
  • the determining, according to the difference between the real-time evaporation parameter and the target evaporation parameter, the current running load amount required by the refrigeration equipment group specifically comprising the following steps: according to the real-time evaporation parameter and the The difference value of the target evaporation parameter is used to find a preset mapping relationship table to obtain an operation load amount corresponding to the difference value, where the mapping relationship table includes a difference between the real-time evaporation parameter and the target evaporation parameter and the running load amount. Correspondence between the two.
  • the operating parameters of the refrigeration equipment group include the number of refrigeration equipment in the working state of the refrigeration equipment group and the operating mechanical frequency of the compressor in each refrigeration equipment.
  • the controlling the operating parameter of the cooling device group according to the running load amount specifically includes the following steps: controlling the number of the cooling devices in the working state in the cooling device group according to the running load amount, and cooling in the working state The operating mechanical frequency of the compressor in the equipment.
  • the number of the refrigeration devices in the working state in the refrigeration device group is controlled according to the running load amount, it is necessary to perform control within the range of the number of allowed operation of the refrigeration device group to ensure basic cooling in the room.
  • the basic temperature of the storage item in the room can be ensured, so that there is no risk of sudden temperature change like the opening and closing type temperature adjustment of the conventional compressor.
  • controlling the operating parameters of the refrigeration equipment group according to the operating load amount further includes the following implementation steps:
  • the opening degree of the corresponding electronic expansion valve is set according to the change in the actual superheat degree SHevaporator of the evaporator in the refrigeration device.
  • the operating parameter of the refrigeration equipment group is controlled according to the operating load amount, so that the real-time evaporation parameter of the refrigeration system reaches the target evaporation parameter, which specifically includes:
  • the set opening degree Oevaporator is output to the electronic expansion valve.
  • the value of the target evaporation pressure Ftarget is calculated from the preset heat transfer temperature difference of the evaporator, and the calculation process is to calculate the target steam temperature of the evaporator by subtracting the preset heat transfer temperature difference from the heating temperature of the evaporator. Ttarget, and look up the table to know the target evaporation pressure Ftarget corresponding to the target steam temperature Ttarget.
  • the average temperature of the indoors is averaged to obtain an average storage temperature, that is, the real-time temperature in the room, and the temperature change of the indoors is reflected by the change of the average storage temperature.
  • the number of running devices of the refrigeration device is increased, and if the real-time temperature in the room is lower than the preset minimum allowable value, the refrigeration device is reduced. The number of running stations.
  • the opening degree of the electronic expansion valve if the actual superheat degree SHevaporator is higher than the maximum allowable value, the opening degree of the electronic expansion valve is increased, and if the actual superheat degree SHevaporator is lower than the minimum allowable value, the electron is reduced.
  • the opening of the expansion valve is Oevaporator.
  • the indoor temperature allowable range T min ⁇ T max , the allowable running range of the compressor S min ⁇ S max , the electronic expansion valve opening range O min ⁇ O max and the superheat range SH min are set in advance.
  • ⁇ SH max then auto-tempering.
  • the real-time temperature in the room that is, the average storage temperature, is calculated from the temperature data from each temperature sensor.
  • the average is higher than the storage temperature T average number of operating temperature T max S evaporator and the compressor Not more than S max, the increase in the number of operating compressors S evaporator, otherwise no action.
  • the number of compressors S evaporator is not less than S min , the number of compressors S evaporator is reduced, otherwise there is no action. It is worth noting that the reason why the number of real-time running units of the compressor is controlled within the allowable range is to ensure the basic cooling of the room, and to ensure the basic temperature of the indoor storage products when the indoor door is suddenly opened, so It does not have the risk of sudden temperature changes like the on-off temperature regulation of conventional compressors.
  • the method further comprises obtaining an actual steam temperature T evaporator from a temperature sensor inside the tube body of the evaporator , and obtaining an actual evaporation pressure F evaporator from a pressure sensor inside the tube body of the evaporator , and looking up the table to know the actual evaporation pressure F evaporator
  • the corresponding saturated steam temperature T saturated is calculated by subtracting the actual steam temperature T evaporator from the saturated steam temperature T saturated to calculate the actual superheat degree SH evaporator .
  • the opening degree O evaporator of the electronic expansion valve is increased, otherwise there is no action. If the actual superheat degree SH evaporator is lower than SH min and the opening degree O evaporator of the electronic expansion valve is not lower than O min , the opening degree O evaporator of the electronic expansion valve is reduced, otherwise there is no action.
  • the opening degree O evaporator is determined, only when the actual evaporation pressure F evaporator is less than the target evaporation pressure F target , it is determined that the opening degree O evaporator of the electronic expansion valve is valid and output to the driver of the electronic expansion valve; if the actual evaporation pressure F evaporator is not lower than the target evaporation pressure F target, described excessive liquid refrigerant in the evaporator, this time should not continue adding liquid to the evaporator, an evaporator in order to avoid liquid hammer occurs during mechanical operation, provided this case the opening degree of the electronic expansion valve O evaporator The output is zero.
  • the target evaporation pressure F target is learned as follows: in the evaporator, since the evaporation pressure is fixed, the boiling point of the refrigerant liquid (ie, the steam temperature) is fixed, so the difference between the temperature and the boiling point of the heated refrigerant liquid (ie, heat transfer) The temperature difference is also obtained. Therefore, the reversed thinking can be used to set the required heat transfer temperature difference in advance, and then the temperature of the real-time heated refrigerant liquid can be subtracted from the heat transfer temperature difference to know the steam temperature that should be achieved by the evaporator. (referred to as the target steam temperature T target ), thereby knowing the pressure (target evaporation pressure F target ) applied to the evaporator in order to reach the target steam temperature T target .
  • Fig. 2 is a schematic view showing the structure of a temperature control device according to an embodiment of the present invention.
  • the temperature control device of the embodiment of the present invention specifically includes an obtaining module 201, a processing module 202, and a control module 203, where:
  • the obtaining module 201 is adapted to obtain real-time temperature in the room and real-time evaporation parameters of the refrigeration system;
  • the processing module 202 is adapted to determine a target evaporation parameter of the refrigeration system according to a temperature difference between the real-time temperature and a preset target temperature;
  • the processing module 202 is further configured to determine, according to a difference between the real-time evaporation parameter and the target evaporation parameter, a current operational load amount required by the refrigeration device group;
  • the control module 203 is adapted to control the operating parameters of the refrigeration equipment group according to the operating load amount such that the real-time evaporation parameter of the refrigeration system reaches the target evaporation parameter.
  • the acquiring module 201 specifically includes a temperature collecting unit and a calculating unit, where:
  • the temperature collecting unit is a temperature sensor distributed in each layer in the room, and is suitable for collecting the real-time temperature of each temperature collecting point of each layer in the indoor;
  • the calculation unit is adapted to calculate an average temperature of the real-time temperature of each temperature collection point of each layer, and use the average temperature as the real-time temperature in the room.
  • control module 203 is specifically adapted to control the number of the refrigeration devices in the working state of the refrigeration device group according to the running load amount, and the operating mechanical frequency of the compressor in the refrigeration device in the working state. .
  • the processing module 202 is specifically configured to: search a preset mapping relationship table according to a difference between the real-time evaporation parameter and the target evaporation parameter, to obtain a running load corresponding to the difference
  • the mapping relationship table includes a correspondence between a difference between the real-time evaporation parameter and the target evaporation parameter and the running load amount.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.
  • the temperature control method and device determine the target evaporation parameter of the refrigeration system by collecting the real-time temperature in the room and the real-time evaporation parameter of the refrigeration system, and determining the target evaporation parameter according to the temperature difference between the indoor real-time temperature and the preset target temperature.
  • the method adjusts the working parameters of the refrigeration equipment group in real time according to the difference between the real-time evaporation parameter and the target evaporation parameter, so that the refrigeration system stably and continuously supplies the indoor cooling to the room, so that the real-time temperature in the room maintains the preset target temperature. Thereby ensuring low temperature fluctuations and good stability in the room.
  • embodiments of the present invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the method as described above.
  • the module/unit integrated by the temperature control device can be stored in a computer readable storage medium if it is implemented in the form of a software functional unit and sold or used as a separate product.
  • the present invention implements all or part of the processes in the foregoing embodiments, and may also be completed by a computer program to instruct related hardware.
  • the computer program may be stored in a computer readable storage medium. The steps of the various method embodiments described above may be implemented when the program is executed by the processor.
  • the computer program comprises computer program code, which may be in the form of source code, object code form, executable file or some intermediate form.
  • the computer readable medium may include any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM). , random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media. It should be noted that the content contained in the computer readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer readable media Does not include electrical carrier signals and telecommunication signals.
  • FIG. 3 is a schematic diagram of a device according to an embodiment of the present invention.
  • the device provided by the embodiment of the present invention includes a memory 301, a processor 302, and a computer program stored on the memory 301 and operable on the processor 302.
  • the processor 302 executes the computer program, the foregoing various temperature control methods are implemented.
  • the steps in the embodiment such as S11 shown in Figure 1, acquire real-time temperature in the room and real-time evaporation parameters of the refrigeration system.
  • S12. Determine a target evaporation parameter of the refrigeration system according to a temperature difference between the real-time temperature and a preset target temperature.
  • S13 is a schematic diagram of a device according to an embodiment of the present invention.
  • the device provided by the embodiment of the present invention includes a memory 301, a processor 302, and a computer program stored on the memory 301 and operable on the processor 302.
  • the steps in the embodiment such as S11 shown in Figure 1, acquire real-time temperature in the room and real-time
  • the computer program can be partitioned into one or more modules/units that are stored in the memory and executed by the processor to perform the present invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing a particular function, the instruction segments being used to describe the execution of the computer program in the temperature control device.
  • the computer program can be divided into an acquisition module 201, a processing module 202, and a control module 203.
  • the device may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the device may include, but is not limited to, a processor, a memory.
  • the schematic diagram 3 is merely an example of the device, does not constitute a limitation on the device, may include more or less components than the illustration, or combine some components, or different components.
  • the device may also include an input output device, a network access device, a bus, and the like.
  • the processor may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and an off-the-shelf device.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field-Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like, which is the control center of the device, connecting various parts of the entire device using various interfaces and lines.
  • the memory can be used to store the computer program and/or module, the processor implementing the device by running or executing a computer program and/or module stored in the memory, and recalling data stored in the memory Various features.
  • the memory may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored. Data created based on the use of the mobile phone (such as audio data, phone book, etc.).
  • the memory may include a high-speed random access memory, and may also include non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a Secure Digital (SD) card.
  • non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a Secure Digital (SD) card.
  • Flash Card at least one disk storage device, flash memory device, or other volatile solid-state storage device.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • embodiments of the invention may be provided as a method, apparatus, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种温控方法、温控装置、计算机可读存储介质及设备,该方法包括:获取室内实时温度和制冷系统的实时蒸发参数;根据实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数;根据实时蒸发参数与目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量;根据运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到目标蒸发参数。该方法根据实时蒸发参数与目标蒸发参数的差值实时调整制冷设备组的工作参数,能实现稳定地,连续不断的向室内按需供冷,从而室内温度波动小。

Description

温控方法、装置、计算机存储介质及设备 技术领域
本发明涉及温度控制技术领域,尤其涉及一种温控方法、装置、计算机存储介质及设备。
背景技术
传统的温控系统均为开关量控制方案。以冷库温控系统为例,即在库温比设定温度高出1℃时,制冷系统工作,库温比设定温度低出1℃时,制冷系统关闭。考虑到冷库存在热惯性等实际情况,库内温度的实际温度波动都大于±1℃,这些都对贮藏食品的品质有较大影响。
目前,国际对冻藏冷库温度波动具有明确要求:应保证冷库库温稳定性,库内空气温度应保持在-18℃以下,昼夜库内空气温度波动幅度不超过1℃,冻肉进出库的库温波动幅度不超过4℃,只有达到上述标准的冷库,才有资质承储中央储备肉。
冰温贮藏保鲜技术起源于日本,与冷却贮藏、冷冻贮藏以及气调贮藏相比具有明显的优势,但是对冷库温度控制要求很高的精度,日本冰温协会规定冰温库的温度波动范围在±0.5℃以内,日本的冰温库在库体方面做了一些改进,主要采用夹套技术,结构较为复杂,冷库空间利用率低,成本高。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的温控方法、装置、计算机存储介质及设备,实现制冷系统稳定地、连续不断的向室内按需供冷,进而使得室内的实时温度保持预设目标温度,从而确保室内温度波动度低且稳定性好。
为解决上述技术问题,本发明采用如下技术方案:
本发明的一个方面,提供了一种温控方法,包括:
获取室内的实时温度和制冷系统的实时蒸发参数;
根据所述实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数;
根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量;
根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到所 述目标蒸发参数。
进一步地,所述获取室内的实时温度,包括:
采集室内各个分层的各个温度采集点的实时温度;
计算各个分层的各个温度采集点的实时温度的平均温度,将所述平均温度作为室内的实时温度。
进一步地,所述根据所述运行载荷量控制制冷设备组的工作参数,包括:根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量,以及处于工作状态的制冷设备中压缩机的运行机械频率。
进一步地,所述根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量,包括:
根据所述实时蒸发参数与所述目标蒸发参数的差值查找预设的映射关系表,以获取与所述差值对应的运行载荷量,所述映射关系表中包括有实时蒸发参数和目标蒸发参数的差值与运行载荷量之间的对应关系。
进一步地,所述根据所述运行载荷量控制制冷设备组的工作参数,包括:
根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量;
对每台运行中的制冷设备,根据制冷设备中蒸发器的实际过热度SHevaporator的变化来设置对应的电子膨胀阀的开度Oevaporator;
相应的,所述根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到所述目标蒸发参数,包括:
若蒸发器的实际蒸发压力Fevaporator小于预设的目标蒸发压力Ftarget,则把设置后的开度Oevaporator输出至电子膨胀阀。
进一步地,在制冷设备允许运行的数量范围内,若室内的实时温度高于预设的最大允许值则增加制冷设备的运行台数,若室内的实时温度低于预设最小允许值则减少制冷设备的运行台数。
进一步地,在电子膨胀阀的开度Oevaporator的允许范围内,若实际过热度SHevaporator高于最大允许值则增大电子膨胀阀的开度Oevaporator,若实际过热度SHevaporator低于最小允许值则减少电子膨胀阀的开度Oevaporator。
本发明的另一个方面,提供了一种温控装置,包括:
获取模块,适用于获取室内的实时温度和制冷系统的实时蒸发参数;
处理模块,适用于根据所述实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数;
所述处理模块,还适用于根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量;
控制模块,适用于根据所述运行载荷量控制制冷设备组的工作参数,以使室内的实时温度达到所述预设目标温度。
进一步地,所述获取模块,包括:
温度采集单元,适用于采集室内各个分层的各个温度采集点的实时温度;
计算单元,适用于计算各个分层的各个温度采集点的实时温度的平均温度,将所述平均温度作为室内的实时温度。
进一步地,所述控制模块,具体适用于根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量,以及处于工作状态的制冷设备中压缩机的运行机械频率。
进一步地,所述处理模块,具体适用于根据所述实时蒸发参数与所述目标蒸发参数的差值查找预设的映射关系表,以获取与所述差值对应的运行载荷量,所述映射关系表中包括有实时蒸发参数和目标蒸发参数的差值与运行载荷量之间的对应关系。
此外,本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述方法的步骤。
此外,本发明还提供了一种设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上所述方法的步骤。
与现有技术相比,本发明技术方案主要的优点如下:
本发明通过获取室内的实时温度和制冷系统的实时蒸发参数,并根据室内实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数,采用模拟量方式来根据实时蒸发参数与目标蒸发参数的差值实时调整制冷设备组的工作参数,使制冷系统稳定地、连续不断的向室内按需供冷,进而使得室内的实时温度保持预设目标温度,从而确保室内温度波动度低且稳定性好。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利 要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例的温控方法的流程图;
图2为本发明实施例的温控装置的结构示意图;
图3为本发明实施例的设备的示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图1为本发明一个实施例的温控方法的流程图。参照图1,本发明实施例的温控方法具体包括以下步骤:
S11、获取室内的实时温度和制冷系统的实时蒸发参数。
其中,制冷系统的实时蒸发参数包括蒸发器的蒸发温度和/或蒸发压力。
具体的,所述获取室内的实时温度,进一步包括以下实现步骤:采集室内各个分层的各个温度采集点的实时温度;计算各个分层的各个温度采集点的实时温度的平均温度,将所述平均温度作为室内的实时温度。
本实施例中,在室内空间根据需求在各个分层合理布置一定数量的温度传感器,将每个温度传感器均通过继电器连接到温度巡检仪上,每个温度传感器通过其前端的温度探头来采集温度数据给温度巡检仪,由温度巡检仪实现自动巡检。温度巡检仪依次显示每个温度传感器采集到的数据,然后将这些温度数据集中传输到控制装置的模拟量获取模块中。
可理解的,所述获取制冷系统的实时蒸发参数,进一步可通过布置于制冷系统的温度传 感器来采集蒸发温度,或通过布置于制冷系统的压力传感器来采集蒸发压力。
S12、根据所述实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数。
S13、根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量。
S14、根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到所述目标蒸发参数。
本发明实施例提供的温控方法,通过采集室内的实时温度和制冷系统的实时蒸发参数,并根据室内实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数,采用模拟量方式来根据实时蒸发参数与目标蒸发参数的差值实时调整制冷设备组的工作参数,使制冷系统稳定地、连续不断的向室内按需供冷,进而使得室内的实时温度保持预设目标温度,从而确保室内温度波动度低且稳定性好。
本发明实施例提供的温控方法能够适用于建筑内部的温控方法,例如冷库、冰温贮藏保鲜库、室内空调以及数据中心等室内的温度控制,对此本发明不作具体限定。
本发明实施例提供的温控方法,由于能够确保室内温度波动度低且稳定性好,进而能够使室内保持在一个舒适的相对湿度范围。例如,对于室内空调系统可以提高室内舒适度。对于冷库、冰温贮藏保鲜库等,可以减少产品干耗,保证产品的品质。
在本发明实施例中,所述根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量,具体包括以下步骤:根据所述实时蒸发参数与所述目标蒸发参数的差值查找预设的映射关系表,以获取与所述差值对应的运行载荷量,所述映射关系表中包括有实时蒸发参数和目标蒸发参数的差值与运行载荷量之间的对应关系。
在本发明实施例中,制冷设备组的工作参数包括制冷设备组中处于工作状态的制冷设备的数量以及每一制冷设备中压缩机的运行机械频率等。进一步地,所述根据所述运行载荷量控制制冷设备组的工作参数,具体包括以下步骤:根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量,以及处于工作状态的制冷设备中压缩机的运行机械频率。
本发明实施例中,在根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量时,需要在制冷设备组允许运行的台数范围内进行控制,以保障室内的基本供冷,在室内大门被突然打开时也能保障室内内存储品的基本温度,如此就不会像传统压缩机的开停式调温一样,有温度骤变的风险。
在本发明的另一个实施例中,所述根据所述运行载荷量控制制冷设备组的工作参数,还包括以下实现步骤:
根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量;
对每台运行中的制冷设备,根据制冷设备中蒸发器的实际过热度SHevaporator的变化来设置对应的电子膨胀阀的开度Oevaporator。
相应的,所述根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到所述目标蒸发参数,具体包括:
若蒸发器的实际蒸发压力Fevaporator小于预设的目标蒸发压力Ftarget,则把设置后的开度Oevaporator输出至电子膨胀阀。
其中,目标蒸发压力Ftarget的值是由蒸发器的预设传热温差计算得出,所述计算的过程是用蒸发器的加热温度减去预设传热温差从而计算出蒸发器的目标蒸汽温度Ttarget,并查表得知目标蒸汽温度Ttarget所对应的目标蒸发压力Ftarget。
本实施例中,对室内各处的温度求均值以获得平均库温,即室内的实时温度,通过平均库温的变化来反映室内各处的温度变化情况。
具体的,在制冷设备允许运行的数量范围内,若室内的实时温度高于预设的最大允许值则增加制冷设备的运行台数,若室内的实时温度低于预设最小允许值则减少制冷设备的运行台数。
具体的,在电子膨胀阀的开度Oevaporator的允许范围内,若实际过热度SHevaporator高于最大允许值则增大电子膨胀阀的开度Oevaporator,若实际过热度SHevaporator低于最小允许值则减少电子膨胀阀的开度Oevaporator。
在实际应用中,事先设好室内的温度允许范围T min~T max、压缩机允许运行的台数范围S min~S max、电子膨胀阀的开度范围O min~O max和过热度范围SH min~SH max,然后才进行自动调温。通过来自各个温度传感器的温度数据计算出室内的实时温度即平均库温。接着,当平均库温T average高于温度T max且压缩机的运行台数S evaporator尚未多于S max,则增加压缩机的运行台数S evaporator,否则无动作。若平均库温T average低于温度T min且压缩机的运行台数S evaporator尚未少于S min,则减少压缩机的运行台数S evaporator,否则无动作。值得注意的是:之所以要把压缩机的实时运行台数控制在允许范围内,是为了保障室内的基本供冷,在室内大门被突然打开时也能保障室内内存储品的基本温度,如此就不会像传统压缩机的开停式调温一样,有温度骤变的风险。
为了实现防止湿压缩现象发生,提高制冷效率。该方法还包括从蒸发器的管体内部的温度传感器处获取实际蒸汽温度T evaporator,并从蒸发器的管体内部的压力传感器处获取实际蒸发压力F evaporator,并查表获知实际蒸发压力F evaporator所对应的饱和蒸汽温度T saturated,将实际蒸汽温度T evaporator减去饱和蒸汽温度T saturated从而计算出实际过热度SH evaporator。获得过热度SH evaporator后,若实际过热度SH evaporator高于SH max且电子膨胀阀的开度O evaporator尚未高于O max,则增大电子膨胀阀的开度O evaporator,否则无动作。若实际过热度SH evaporator低于SH min且电子膨胀阀的开度O evaporator尚未低于O min,则减少电子膨胀阀的开度O evaporator,否则无动作。
开度O evaporator确定后,只有在实际蒸发压力F evaporator小于目标蒸发压力F target,才会确定电子膨胀阀的开度O evaporator有效并输出至电子膨胀阀的驱动器中;若实际蒸发压力F evaporator不小于目标蒸发压力F target,说明蒸发器中的制冷液过多,此时不宜再继续给蒸发器加液,以免蒸发器在机械运转时发生液击,此时设置电子膨胀阀的开度O evaporator输出为零。其中,目标蒸发压力F target的获知过程如下:在蒸发器中,由于蒸发压力固定时,制冷液的沸点(即蒸汽温度)是固定的,因此加热制冷液的温度与沸点之差(即传热温差)也就得出了,因而可以通过反向思维,事先设置需要的传热温差,然后把实时的加热制冷液的温度减去传热温差,即可知道应该要使蒸发器达到的蒸汽温度(简称目标蒸汽温度T target),从而得知为达到目标蒸汽温度T target所应对蒸发器施加的压力(目标蒸发压力F target)。
对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
图2示意性示出了本发明一个实施例的温控装置的结构示意图。参照图2,本发明实施例的温控装置具体包括获取模块201、处理模块202以及控制模块203,其中:
获取模块201,适用于获取室内的实时温度和制冷系统的实时蒸发参数;
处理模块202,适用于根据所述实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数;
所述处理模块202,还适用于根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量;
控制模块203,适用于根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到所述目标蒸发参数。
在本发明实施例中,所述获取模块201,具体包括温度采集单元和计算单元,其中:
温度采集单元,为分布在室内各个分层的温度传感器,适用于采集室内各个分层的各个温度采集点的实时温度;
计算单元,适用于计算各个分层的各个温度采集点的实时温度的平均温度,将所述平均温度作为室内的实时温度。
在本发明实施例中,所述控制模块203,具体适用于根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量,以及处于工作状态的制冷设备中压缩机的运行机械频率。
在本发明实施例中,所述处理模块202,具体适用于根据所述实时蒸发参数与所述目标蒸发参数的差值查找预设的映射关系表,以获取与所述差值对应的运行载荷量,所述映射关系表中包括有实时蒸发参数和目标蒸发参数的差值与运行载荷量之间的对应关系。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明实施例提供的温控方法、装置,通过采集室内的实时温度和制冷系统的实时蒸发参数,并根据室内实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数,采用模拟量方式来根据实时蒸发参数与目标蒸发参数的差值实时调整制冷设备组的工作参数,使制冷系统稳定地、连续不断的向室内按需供冷,进而使得室内的实时温度保持预设目标温度,从而确保室内温度波动度低且稳定性好。
此外,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述方法的步骤。
本实施例中,所述温控装置集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可 实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
图3为本发明实施例提供的设备的示意图。本发明实施例提供的设备,包括存储器301、处理器302及存储在存储器301上并可在处理器302上运行的计算机程序,所述处理器302执行所述计算机程序时实现上述各个温控方法实施例中的步骤,例如图1所示的S11、获取室内的实时温度和制冷系统的实时蒸发参数。S12、根据所述实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数。S13、根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量。S14、根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到所述目标蒸发参数。或者,所述处理器302执行所述计算机程序时实现上述各温控装置实施例中各模块/单元的功能,例如图2所示的获取模块201、处理模块202以及控制模块203。
示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器中,并由所述处理器执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述温控装置中的执行过程。例如,所述计算机程序可以被分割成获取模块201、处理模块202以及控制模块203。
所述设备可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述设备可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,所述示意图3仅仅是所述设备的示例,并不构成对设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述设备还可以包括输入输出设备、网络接入设备、总线等。
所述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微 处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述设备的控制中心,利用各种接口和线路连接整个设备的各个部分。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述设备的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
在本发明实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性或其它的形式。
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

  1. 一种温控方法,其特征在于,包括:
    获取室内的实时温度和制冷系统的实时蒸发参数;
    根据所述实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数;
    根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量;
    根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到所述目标蒸发参数。
  2. 根据权利要求1所述的方法,其特征在于,所述获取室内的实时温度,包括:
    采集室内各个分层的各个温度采集点的实时温度;
    计算各个分层的各个温度采集点的实时温度的平均温度,将所述平均温度作为室内的实时温度。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述运行载荷量控制制冷设备组的工作参数,包括:
    根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量,以及处于工作状态的制冷设备中压缩机的运行机械频率。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量,包括:
    根据所述实时蒸发参数与所述目标蒸发参数的差值查找预设的映射关系表,以获取与所述差值对应的运行载荷量,所述映射关系表中包括有实时蒸发参数和目标蒸发参数的差值与运行载荷量之间的对应关系。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述运行载荷量控制制冷设备组的工作参数,包括:
    根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量;
    对每台运行中的制冷设备,根据制冷设备中蒸发器的实际过热度SHevaporator的变化来设置对应的电子膨胀阀的开度Oevaporator;
    相应的,所述根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸 发参数达到所述目标蒸发参数,包括:
    若蒸发器的实际蒸发压力Fevaporator小于预设的目标蒸发压力Ftarget,才把设置后的开度Oevaporator输出至电子膨胀阀。
  6. 根据权利要求5所述的方法,其特征在于,在制冷设备允许运行的数量范围内,若室内的实时温度高于预设的最大允许值则增加制冷设备的运行台数,若室内的实时温度低于预设最小允许值则减少制冷设备的运行台数。
  7. 根据权利要求5所述的方法,其特征在于,在电子膨胀阀的开度Oevaporator的允许范围内,若实际过热度SHevaporator高于最大允许值则增大电子膨胀阀的开度Oevaporator,若实际过热度SHevaporator低于最小允许值则减少电子膨胀阀的开度Oevaporator。
  8. 一种温控装置,其特征在于,包括:
    获取模块,适用于获取室内的实时温度和制冷系统的实时蒸发参数;
    处理模块,适用于根据所述实时温度与预设目标温度的温度差确定制冷系统的目标蒸发参数;
    所述处理模块,还适用于根据所述实时蒸发参数与所述目标蒸发参数的差值确定制冷设备组当前所需的运行载荷量;
    控制模块,适用于根据所述运行载荷量控制制冷设备组的工作参数,以使制冷系统的实时蒸发参数达到所述目标蒸发参数。
  9. 根据权利要求8所述的装置,其特征在于,所述获取模块,包括:
    温度采集单元,适用于采集室内各个分层的各个温度采集点的实时温度;
    计算单元,适用于计算各个分层的各个温度采集点的实时温度的平均温度,将所述平均温度作为室内的实时温度。
  10. 根据权利要求8所述的装置,其特征在于,所述控制模块,具体适用于根据所述运行载荷量控制制冷设备组中处于工作状态的制冷设备的数量,以及处于工作状态的制冷设备中压缩机的运行机械频率。
  11. 根据权利要求8-10任一项所述的装置,其特征在于,所述处理模块,具体适用于根据所述实时蒸发参数与所述目标蒸发参数的差值查找预设的映射关系表,以获取与所述差值对应的运行载荷量,所述映射关系表中包括有实时蒸发参数和目标蒸发参数的差值与运行载荷量之间的对应关系。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-7任一项所述方法的步骤。
  13. 一种设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1-7任一项所述方法的步骤。
PCT/CN2018/110015 2017-10-13 2018-10-12 温控方法、装置、计算机存储介质及设备 WO2019072234A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710952544.1A CN107525344A (zh) 2017-10-13 2017-10-13 冷库温控系统及其装置、装置内的计算机可读存储介质
CN201710952544.1 2017-10-13
CN201811180340.1A CN109405405A (zh) 2018-10-10 2018-10-10 温控方法、装置、计算机存储介质及设备
CN201811180340.1 2018-10-10

Publications (1)

Publication Number Publication Date
WO2019072234A1 true WO2019072234A1 (zh) 2019-04-18

Family

ID=66100407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110015 WO2019072234A1 (zh) 2017-10-13 2018-10-12 温控方法、装置、计算机存储介质及设备

Country Status (1)

Country Link
WO (1) WO2019072234A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176086A (zh) * 1996-09-10 1998-03-18 富士电机株式会社 商品陈列柜冷却装置
CN1395670A (zh) * 2000-11-13 2003-02-05 大金工业株式会社 空调装置
JP2004053127A (ja) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd 空調設備及びその制御方法
CN103411360A (zh) * 2013-08-28 2013-11-27 丹佛斯公司 制冷系统和方法
CN105371557A (zh) * 2015-12-02 2016-03-02 四川长虹电器股份有限公司 一种冰箱及冰箱控制方法
CN107525344A (zh) * 2017-10-13 2017-12-29 北京市京科伦冷冻设备有限公司 冷库温控系统及其装置、装置内的计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176086A (zh) * 1996-09-10 1998-03-18 富士电机株式会社 商品陈列柜冷却装置
CN1395670A (zh) * 2000-11-13 2003-02-05 大金工业株式会社 空调装置
JP2004053127A (ja) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd 空調設備及びその制御方法
CN103411360A (zh) * 2013-08-28 2013-11-27 丹佛斯公司 制冷系统和方法
CN105371557A (zh) * 2015-12-02 2016-03-02 四川长虹电器股份有限公司 一种冰箱及冰箱控制方法
CN107525344A (zh) * 2017-10-13 2017-12-29 北京市京科伦冷冻设备有限公司 冷库温控系统及其装置、装置内的计算机可读存储介质

Similar Documents

Publication Publication Date Title
CN108917103B (zh) 中央空调系统的冷水主机控制方法、装置及系统
CN104534810B (zh) 冰箱压缩机的控制方法、装置及冰箱
CN108679800B (zh) 空调的控制方法和装置
CN110749150A (zh) 一种冷冻风机的转速控制系统及其控制方法
CN109237749A (zh) 空调的控制方法及装置、空调器、存储介质
CN108131792A (zh) 空调器及其控制方法、装置
CN112856714B (zh) 冷媒流量控制方法、装置、电子设备及空调器
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN113531827A (zh) 变频空调控制方法、装置、电子设备和介质
CN114383285B (zh) 用于空调控制的方法、装置、空调及存储介质
CN119103684A (zh) 温度智能控制方法及装置
CN106989566A (zh) 一种风冷冰箱控制方法及装置
CN114322236B (zh) 用于空调控制的方法、装置、空调及存储介质
CN105737419B (zh) 一种主动式动态降温控制装置及方法
WO2019072234A1 (zh) 温控方法、装置、计算机存储介质及设备
CN108759260A (zh) 一种加热器的控制方法及冰箱
US11719477B2 (en) Variable speed compressor based AC system and control method
JP2012014431A (ja) 冷熱システムの管理サーバ
CN113639388B (zh) 用于控制机房内空调出风的方法及装置、空调、存储介质
CN108592496B (zh) 冷冻冷藏装置蒸发风机控制方法和装置
CN108592513B (zh) 冷冻冷藏装置蒸发风机控制方法和装置
CN114608147B (zh) 温度调节设备及其控制方法、控制装置和存储介质
CN111271848B (zh) 一种空调器的控制方法及其空调器
WO2023103400A1 (zh) 用于空调控制的方法、装置、空调及存储介质
CN106524423A (zh) 一种壁挂式空调器控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865454

Country of ref document: EP

Kind code of ref document: A1