WO2019071881A1 - 像素结构、彩膜基板及显示面板 - Google Patents
像素结构、彩膜基板及显示面板 Download PDFInfo
- Publication number
- WO2019071881A1 WO2019071881A1 PCT/CN2018/074598 CN2018074598W WO2019071881A1 WO 2019071881 A1 WO2019071881 A1 WO 2019071881A1 CN 2018074598 W CN2018074598 W CN 2018074598W WO 2019071881 A1 WO2019071881 A1 WO 2019071881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- sub
- pixels
- white sub
- white
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims description 25
- 238000002834 transmittance Methods 0.000 abstract description 20
- 238000004088 simulation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/52—RGB geometrical arrangements
Definitions
- the present invention relates to the field of display technologies, and in particular, to a pixel structure, a color film substrate, and a display panel.
- the FHD (Full High Definition) panel has 1920 ⁇ 1080 pixels, and each pixel is composed of red (R) sub-pixels, green (G) sub-pixels, and blue (B) sub-pixels; UHD (Ultra)
- the High Definition (Ultra HD) panel has a resolution of 3840 ⁇ 2160, and the UHD resolution is 4 times that of the FHD panel.
- high-resolution pixels cause a decrease in the transmittance of the panel, thereby reducing the brightness of the display screen.
- a white (W) sub-pixel that is, a pixel structure of RGBW is added to the three sub-pixels of R, G, and B to increase the transmittance of the panel by the white sub-pixel.
- W white
- the pixel structure of the RGBW in the prior art four neutron pixels of R, G, B, and W are arranged side by side, so that the resolution of the panel is lowered.
- the horizontal pixel number of the UHD panel is 3840, and the number of horizontal sub-pixels in the RGB pixel structure is 11520; when the UHD panel is an RGBW pixel structure, it is composed of 4 sub-pixels of R, G, B, and W sub-pixels.
- the pixels are so, so the number of horizontal pixels is only 2880, and the number of vertical pixels of the RGBW panel is still 2160, which is the same as the RGB-arranged UHD panel, so that the resolution of the UHD panel is lowered.
- the white (W) sub-pixel is disposed in at least one of the three sub-pixels R, G, and B in one pixel. On the pixel, to ensure that the resolution of the panel is not changed with sufficient picture brightness.
- the white sub-pixels are randomly located in the area of the sub-pixels, and the white sub-pixels are generally concentrated in one area of the sub-pixels, thereby causing the entire panel.
- the sub-pixels are in a four-domain structure, the white sub-pixels 20 are embedded in the sub-pixels, and the white sub-pixels 20 are collectively disposed in the Within a domain structure of a sub-pixel.
- the transmittance of the white sub-pixel 20 embedded in the sub-pixel is significantly increased.
- the white sub-pixels 20 are concentrated in one domain structure of the sub-pixels, a serious brightness shift occurs in the position where the white sub-pixels 20 are located, so that the full-view transmittance of the sub-pixels is not Therefore, the transmittance of the pixel structure including the plurality of sub-pixels is uneven, thereby causing uneven light emission of the panel.
- the present invention provides a pixel structure that improves transmittance uniformity of the pixel structure.
- the pixel structure includes a plurality of pixel units arranged in an array, each of the pixel units including a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel embedded in the red sub-pixel
- the pixel, the green sub-pixel, and the blue sub-pixel, the red sub-pixel, the green sub-pixel, and the blue sub-pixel are multi-domain structures including a plurality of domain regions;
- the white sub-pixels are distributed In a plurality of domain regions of the sub-pixel in which the sub-pixel is located, the white sub-pixel is divided into a plurality of white sub-pixel regions of the same size, and one of the white sub-pixel regions is located in one of the domain regions.
- two adjacent white sub-pixel regions are symmetric in position in the domain region in which they are located.
- the position of any one of the white sub-pixel regions in the domain region in which they are located is the same as the position in which the other white sub-pixel regions are located in the domain region in which they are located.
- the red sub-pixel, the green sub-pixel, and the blue sub-pixel are all four-domain structures, and the white sub-pixels are distributed in each of the domain structures of the sub-pixels in which they are located.
- the red sub-pixel, the green sub-pixel, and the blue sub-pixel are all eight-domain structures, including two connected four-domain structures, and the white sub-pixels are distributed in any one of the four-domain structures of the sub-pixels in which they are located. Within each domain region, or the white sub-pixels are distributed within each domain region of the sub-pixel in which they are located.
- each of the white sub-pixel regions is located at a central position of a domain region in which it is located.
- each of the white sub-pixel regions is located at an edge of a domain region in which the white sub-pixel region is located, and the plurality of the white sub-pixel regions are not connected to each other.
- each of the white sub-pixel regions is located at an edge of a domain region where the white sub-pixel region is located, and the plurality of the white sub-pixel regions are connected to each other, and the symmetric center and the plurality of the white sub-pixel regions are integrated The centers of symmetry of the sub-pixels in which the white sub-pixels are located coincide.
- the sub-pixels on which the white sub-pixels are disposed are provided with perforations, and the white sub-pixels are disposed in the perforations.
- the white sub-pixel is embedded in the red sub-pixel, the green sub-pixel, and the blue sub-pixel.
- the invention also provides a color film substrate comprising a substrate and the above pixel structure, wherein the pixel structure is located on the substrate.
- the pixel structure provided by the present invention distributes the white sub-pixels into a multi-domain region of a sub-pixel in which it is located, and divides the white sub-pixel into a plurality of white sub-pixel regions of the same size, one The white sub-pixel region is located in one of the domain regions, so that the white sub-pixels are dispersed in respective domain regions of the sub-pixels in which they are located, thereby ensuring uniform light emission at each position of the sub-pixels, and further improving the pixel structure. Uniformity of transmission.
- FIG. 1 is a schematic structural view of a sub-pixel according to the prior art
- FIG. 2 is a schematic structural diagram of the sub-pixel according to an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of the sub-pixel according to another embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of the sub-pixel according to another embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of the sub-pixel according to another embodiment of the present invention.
- 6(a) is a simulation view of full-view transmittance of the sub-pixel of FIG. 1;
- 6(b) is a simulation view of full-view transmittance of the sub-pixel of FIG. 2;
- 6(c) is a simulation view of full-view transmittance of the sub-pixel of FIG. 3;
- 6(d) is a simulation view of full-view transmittance of the sub-pixel of FIG. 4;
- 6(e) is a simulation view of full-view transmittance of the sub-pixel of FIG. 5;
- FIG. 7 is a schematic structural diagram of the sub-pixel according to another embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of the sub-pixel according to another embodiment of the present invention.
- the present invention provides a pixel structure.
- the pixel structure includes a plurality of pixel units 100 arranged in an array.
- each of the pixel units 100 includes three sub-pixels, and the three sub-pixels are a red sub-pixel 11, a green sub-pixel 12, and a blue sub-pixel 13, respectively.
- Each of the pixel units 100 further includes a white sub-pixel 20 embedded in at least one of the three sub-pixels.
- the sub-pixels provided with the white sub-pixels 20 are provided with perforations, and the white sub-pixels 20 are deposited in the perforations to realize that the white sub-pixels 20 are embedded in the sub-pixels.
- the red sub-pixel 11, the green sub-pixel 12, and the blue sub-pixel 13 are arranged in parallel.
- the red sub-pixel 11, the green sub-pixel 12, and the blue sub-pixel 13 are all rectangular. It can be understood that the sub-pixels may also be other shapes such as a triangle, a diamond, or the like.
- Each of the plurality of sub-pixels has a multi-domain structure, that is, the red sub-pixel 11, the green sub-pixel 12, and the blue sub-pixel 13 each include a plurality of array-arranged domain regions 14.
- the white sub-pixels 20 are distributed within the plurality of domain regions 14 of the sub-pixels in which they are located.
- the white sub-pixel 20 is embedded in at least one of the three sub-pixels. In this embodiment, the white sub-pixel 20 is only embedded in the blue sub-pixel 13 . It can be understood that the white sub-pixels 20 in each pixel unit 100 can be embedded in any one or two or three of the red sub-pixels 11 , the green sub-pixels 12 , and the blue sub-pixels 13 . Within. For example, the white sub-pixel 20 may be embedded in the red sub-pixel 11; or embedded in the blue sub-pixel 13 and the red sub-pixel 11; or embedded in the red sub-pixel 11 and the green sub-pixel 12 and blue at the same time. Within the sub-pixel 13.
- the white sub-pixel 20 is divided into a plurality of white sub-pixel regions 21 of the same size, and one of the white sub-pixel regions 21 is located within one of the domain regions 14. Therefore, the white sub-pixels 20 are dispersed in the respective domain regions of the sub-pixels in which they are located, and the white sub-pixel regions 21 in each domain region are the same in size, thereby ensuring uniform light emission at each position of the sub-pixels. The uniformity of the transmittance of the pixel structure is further improved. Further, the positions of the two adjacent white sub-pixel regions in the domain region are symmetric, so that the light emission in each of the domain regions 14 is uniform, and the light emission at each position of the sub-pixels is further increased. In one embodiment, as shown in FIG. 2, the position of any one of the white sub-pixel regions 21 in the domain region 14 in which they are located is the same as the position in which the other white sub-pixel regions 21 are located in the domain region 14 in which they are located. .
- the red sub-pixel 11, the green sub-pixel 12, and the blue sub-pixel 13 in each of the pixel units 100 are all four-domain structures, that is, the red sub-pixel 11 and the green sub-pixel.
- the blue sub-pixels 13 each include four array-arranged domain regions 14, and the white sub-pixels 20 are divided into four white sub-pixel regions 21.
- Each of the white sub-pixel regions 21 corresponds to a domain region 14 of one of the blue sub-pixels 13 and is located at a central position of the domain region 14 in which it is located. And the white sub-pixel regions 21 are not connected to each other.
- the sub-pixels in the embodiment described in FIG. 2 are different in that each of the white sub-pixel regions 21 is located in the sub-pixel where the sub-pixel is located.
- the edges of the domain regions 14 are not connected to each other.
- four of the white sub-pixel regions 21 enclose a rectangular pattern, and the center of symmetry of the pattern coincides with the center of symmetry of the sub-pixel in which the white sub-pixel 20 is located. It can be understood that the white sub-pixel region 21 can also be located at any position of the edge of the domain region 14.
- the sub-pixels in the embodiment described in FIG. 3 are different in that each of the white sub-pixel regions 21 is located in each of the domain regions 14.
- the edges are connected to each other and the center of symmetry of the four white sub-pixel regions 21 coincides with the center of symmetry of the sub-pixel in which the white sub-pixel 21 is located.
- there are four white sub-pixel regions 21, four of the white sub-pixel regions 21 are respectively located at one corner of the four domain regions, and four of the white sub-pixel regions 21 are connected to each other. In a whole, the whole formed by the connection of the four white sub-pixel regions 21 is located at a central position of the sub-pixel.
- the sub-pixel of the embodiment described in FIG. 4 is different in that four of the white sub-pixel regions 21 are respectively located in one of the four domain regions.
- the four white sub-pixel regions 21 are connected to each other as a whole, the whole formed by the connection of the four white sub-pixel regions 21 is located at a middle position of the sub-pixel, and the sub-pixel is divided into Upper, middle and lower parts.
- FIG. 6(b)-6(e) are respectively a full-view transmittance simulation diagram of the embodiment shown in FIG. 2-5 of the present invention, and one of the prior art shown in FIG. 6(a).
- the comparison of the full-view transmittance simulation maps of the embodiments shows that the light transmittance of each sub-pixel of the present invention is higher than that of the sub-pixels in the prior art, and does not appear serious.
- the brightness shift phenomenon is also refer to FIG. 6(b)-6(e), which are respectively a full-view transmittance simulation diagram of the embodiment shown in FIG. 2-5 of the present invention, and one of the prior art shown in FIG. 6(a).
- the eight-domain structure includes Eight domain regions 14 and eight domain regions 14 are divided into two groups, each of which is the same structure as the four-domain structure, that is, the eight-domain structure is equivalent to including two connected four domains. structure.
- the white sub-pixels 20 are evenly distributed in any one of the four four-domain structures of the sub-pixels, and the white sub-pixels 20 are uniformly distributed in each of the domain regions of the four-domain structure.
- the white sub-pixel 20 may include four white sub-pixel regions 21 having the same shape and structure, and the white sub-pixel regions 21 are in one-to-one correspondence with each of the domain regions of the white sub-pixel distribution, and are located at each The central location of the domain regions. It can be understood that, similar to the four-domain structure of the red sub-pixel 11, the green sub-pixel 12, and the blue sub-pixel 13, the white sub-pixel region 21 may also be located in the domain region 14. Other locations. Alternatively, referring to FIG. 8, the white sub-pixels 20 are evenly distributed in each of the domain regions 14 of the sub-pixels of the eight-domain region, that is, the white sub-pixels 20 include eight of the white sub-pixel regions. 21.
- Each of the white sub-pixel regions 21 is in one-to-one correspondence with the domain region 14 where the white sub-pixels are located, and is located at a center position of each of the domain regions 14. It can be understood that, similar to the four-domain structure of the red sub-pixel 11, the green sub-pixel 12, and the blue sub-pixel 13, the white sub-pixel region 21 may also be located in the domain region 14. Other locations. Since light rays can have a large transmittance through the white sub-pixels 20, by uniformly distributing the white sub-pixels in the domain region 14 of the sub-pixels, it is possible to increase the sub-pixels. The light transmittance can also achieve uniform light emission at each position of the sub-pixels, and improve the uniformity of light transmission.
- the present invention also provides a color film substrate comprising a substrate and the above-described pixel structure 100, the pixel structure being located on the substrate.
- the present invention also provides a display panel comprising an array substrate and the color filter substrate and a liquid crystal layer between the array substrate and the color filter substrate, wherein the array substrate is disposed opposite to the color filter substrate, and The pixel structure 100 faces the array substrate. Light emitted by the backlight is emitted through the pixel structure 100.
- the display panel since the light transmittance uniformity of each sub-pixel in the pixel structure 100 is high, the display panel can also achieve uniform light emission.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种像素结构,通过将白色子像素(20)内嵌于多个子像素(11、12、13)中至少一个子像素(11、12、13)内,并使白色子像素(20)分布于其所在的子像素(11、12、13)的多畴区域(14)内,并将白色子像素(20)分为多个大小相同的白色子像素区域(21),一个白色子像素区域(21)位于一个畴区域(14)内,从而使得白色子像素(20)分散于其所在子像素(11、12、13)的各个畴区域(14)内,从而保证子像素(11、12、13)各个位置的出光均匀,进一步提高像素结构的透过率的均一性。
Description
本发明涉及显示技术领域,尤其涉及一种像素结构、彩膜基板及显示面板。
FHD(Full High Definition,全高清)面板的像素为1920×1080,而每个像素是由红色(R)子像素、绿色(G)子像素和蓝色(B)子像素所组成;UHD(Ultra High Definition,超高清)面板的分辨率为3840×2160,UHD的分辨率是FHD面板的4倍。但是,高分辨率的像素会造成所述面板透光率的下降,从而降低显示画面的亮度。
现有技术中通过在R、G、B三种子像素的基础上增加白色(W)的子像素,即RGBW的像素结构,以通过所述白色子像素提高面板的透光率。但是,现有技术中的所述RGBW的像素结构中R、G、B、W四中子像素并排设置,使得面板的分辨率降低。例如,UHD面板水平像素数为3840,RGB像素结构下的水平子像素数为11520;当所述UHD面板为RGBW像素结构时,因为是R、G、B、W子像素4个子像素来构成1个像素,因此水平像素数仅剩下2880,而RGBW面板的垂直像素数仍是2160,与RGB排列的UHD面板相同,从而使得所述UHD面板的分辨率降低。进一步的,现有技术中,为保证所述UHD面板的分辨率不发生变化,将所述白色(W)子像素设于一个像素中的所述R、G、B三个子像素中至少一个子像素上,以保证在具有足够的画面亮度的情况下不改变面板的分辨率。但是,现有技术中,所述白色子像素在所述子像素的区域位置是随机的,且所述白色子像素一般均集中设于所述子像素的一个区域,从而会造成所述面板全视角透过率不均的现象,使得所述面板的出光不均匀。请参阅图1,现有技术一实施例中,所述子像素为四畴结构,所述白色子像素20内嵌于所述子像素内,且所述白色子像素20均集中设于所述子像素的一个畴结构内。进一步参阅图6(a)述现有技术实施例的所述子像素的全视角透过率模拟分析可知,所述白色子像素20嵌设于所述子像素的位置透过率会显著增加,所述白色子像素20集中设于所述子像素的一个畴结构内时,所述白 色子像素20所在的位置出现了严重的亮度偏移现象,使得所述子像素的全视角透过率不均,从而使得包含多个所述子像素的像素结构的透过率不均,进而造成所述面板的出光不均匀。
发明内容
本发明提供一种像素结构,提高所述像素结构的透过率均一性。
所述像素结构包括多个阵列排布的像素单元,每个所述像素单元包括红色子像素、绿色子像素、蓝色子像素及白色子像素,所述白色子像素内嵌于所述红色子像素、绿色子像素、蓝色子像素中至少一个子像素内,所述红色子像素、绿色子像素、蓝色子像素为多畴结构,包括多个畴区域;所述白色子像素分布于其所在的子像素的多个畴区域内,所述白色子像素分为多个大小相同的白色子像素区域,一个所述白色子像素区域位于一个所述畴区域内。
其中,相邻两个所述白色子像素区域在其所在畴区域内的位置对称。
其中,任意一个所述白色子像素区域位于其所在畴区域内的位置与其它的所述白色子像素区域位于其所在畴区域内的位置相同。
其中,所述红色子像素、绿色子像素、蓝色子像素均为四畴结构,所述白色子像素分布于其所在子像素的每个所述畴结构内。
其中,所述红色子像素、绿色子像素、蓝色子像素均为八畴结构,包括两个相连的四畴结构,所述白色子像素分布于其所在子像素的任意一个所述四畴结构的每个畴区域内,或者所述白色子像素分布于其所在子像素的每个畴区域内。
其中,每个所述白色子像素区域位于其所在的畴区域的的中心位置。
其中,每个所述白色子像素区域位于其所在的畴区域的边缘,多个所述白色子像素区域互不连接。
其中,每个所述白色子像素区域位于其所在畴区域的边缘,且多个所述白色子像素区域相互连接成一体,且连成一体的多个所述白色子像素区域的对称中心与所述白色子像素所在的所述子像素的对称中心重合。
其中,设有所述白色子像素所在的子像素上设有穿孔,所述白色子像素设于所述穿孔内。
其中,所述白色子像素内嵌于所述红色子像素、绿色子像素、蓝色子像素中。
本发明还提供一种彩膜基板,包括基板及上述的像素结构,所述像素结构位于所述基板上。
本发明提供的所述像素结构,通过将所述白色子像素分布于其所在的子像素的多畴区域内,并将所述白色子像素分为多个大小相同的白色子像素区域,一个所述白色子像素区域位于一个所述畴区域内,从而使得所述白色子像素分散于其所在子像素的各个畴区域内,从而保证所述子像素各个位置的出光均匀,进一步提高所述像素结构的透过率的均一性。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中所述子像素的结构示意图;
图2是本发明实施例的所述子像素的结构示意图;
图3是本发明另一实施例的所述子像素的结构示意图;
图4是本发明另一实施例的所述子像素的结构示意图;
图5是本发明另一实施例的所述子像素的结构示意图;
图6(a)是图1所述子像素的全视角透过率模拟图;
图6(b)是图2所述子像素的全视角透过率模拟图;
图6(c)是图3所述子像素的全视角透过率模拟图;
图6(d)是图4所述子像素的全视角透过率模拟图;
图6(e)是图5所述子像素的全视角透过率模拟图;
图7是本发明另一实施例的所述子像素的结构示意图;
图8是本发明另一实施例的所述子像素的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图2,本发明提供一种像素结构。所述像素结构包括多个阵列排布的像素单元100。本实施例中,每个所述像素单元100包括三个子像素,三个所述子像素分别为红色子像素11、绿色子像素12及蓝色子像素13。每个所述像素单元100还包括白色子像素20,所述白色子像素20内嵌于所述三个子像素中至少一个子像素内。本实施例中,设有所述白色子像素20的所述子像素上设有穿孔,所述白色子像素20沉积于所述穿孔内,以实现所述白色子像素20内嵌于所述子像素内。
所述红色子像素11、绿色子像素12及蓝色子像素13阵列平行排布。本实施例中,所述红色子像素11、绿色子像素12及蓝色子像素13均为长方形。可以理解的是,所述子像素还可以为三角形、菱形等其它形状。多个所述子像素均为多畴结构,即所述红色子像素11、绿色子像素12及蓝色子像素13均包括多个阵列排布的畴区域14。并且,所述白色子像素20分布于其所在的子像素的多个畴区域14内。
所述白色子像素20内嵌于所述三个子像素中至少一个子像素内。本实施例中,所述白色子像素20仅内嵌于所述蓝色子像素13内。可以理解的是,每个像素单元100中的所述白色子像素20均可内嵌于所述红色子像素11、绿色子像素12、所述蓝色子像素13中任意一个或两个或三个内。例如,所述白色子像素20可以内嵌于红色子像素11内;或者内嵌于蓝色子像素13及红色子像素11内;或者同时内嵌于红色子像素11绿色子像素12及蓝色子像素13内。所述白色子像素20分为多个大小相同的白色子像素区域21,一个所述白色子像素区域21位于一个所述畴区域14内。从而使得所述白色子像素20分散于其所在的子像素的各个畴区域内,且每个畴区域内的所述白色子像素区域21大小相同,进而保证所述子像素各个位置的出光均匀,进一步提高所述像素结构的透过率的均一性。进一步的,相邻两个所述白色子像素区域在其所在畴区域内的位置对称,使得每个所述畴区域14内的出光一致,进一步增加所述子 像素各个位置的出光均匀。在一实施例中,如图2所示,任意一个所述白色子像素区域21在其所在畴区域14内的位置与其它的所述白色子像素区域21位于其所在畴区域14内的位置相同。
本实施例中,每个所述像素单元100中的所述红色子像素11、绿色子像素12、所述蓝色子像素13均为四畴结构,即所述红色子像素11、绿色子像素12、所述蓝色子像素13均包括四个阵列排布的畴区域14,所述白色子像素20分为四个白色子像素区域21。每个所述白色子像素区域21均与一个所述蓝色子像素13的畴区域14对应并均位于其所在的所述畴区域14的中心位置。且所述白色子像素区域21相互之间不连接。
请参阅图3,本发明另一实施例中,其与图2所述的实施例中的所述子像素的区别在于,每个所述白色子像素区域21均位于其所在子像素的所述畴区域14的边缘并互不连接。且四个所述白色子像素区域21围成一长方形的图形,且所述图形的对称中心与所述白色子像素20所在的所述子像素的对称中心重合。可以理解的是,所述白色子像素区域21还可以位于所述所述畴区域14的边缘的任意位置。
请参阅图4,本发明另一实施例中,其与图3所述的实施例中的所述子像素的区别在于,每个所述白色子像素区域21均位于每个所述畴区域14的边缘并相互连接成一体,且四个所述白色子像素区域21的对称中心与所述白色子像素21所在的所述子像素的对称中心重合。本实施例中,所述白色子像素区域21有四个,四个所述白色子像素区域21分别位于四个所述畴区域的一个角上,且四个所述白色子像素区域21相互连接成一个整体,四个所述白色子像素区域21连接形成的所述整体位于所述子像素的中心位置。
请参阅图5,本发明另一实施例中,其与图4所述的实施例的所述子像素的区别在于,四个所述白色子像素区域21分别位于四个所述畴区域的一条边上,且四个所述白色子像素区域21相互连接成一个整体,四个所述白色子像素区域21连接形成的所述整体位于所述子像素的中部位置,并将所述子像素分成上部、中部及下部三个部分。
请参阅图6(b)-6(e),分别为本发明图2-5所述实施例的全视角透过率模拟图,通过与图6(a)中所示现有技术中的一实施例的全视角透过率模拟图进行对 比可知,本发明的所述子像素各个位置的光线透过率较现有技术中所述子像素的光线透过率均一性高,不会出现严重的亮度偏移现象。
请参阅图7,可以理解的是,在其它的实施例中,当所述红色子像素11、绿色子像素12、所述蓝色子像素13可以均为八畴结构,所述八畴结构包括八个畴区域14,且八个畴区域14分为两组,每组所述畴区域14为与所述四畴结构相同的结构,即所述八畴结构相当于包括两个相连的四畴结构。所述白色子像素20均匀分布于所述子像素的两个四畴结构中任意一个所述四畴结构,且所述白色子像素20均匀分布于所述四畴结构的每个所述畴区域14内,即所述白色子像素20可以包括四个形状结构相同的白色子像素区域21,所述白色子像素区域21与所述白色子像素分布的每个畴区域一一对应,并位于每个所述畴区域的中心位置。可以理解的是,与所述红色子像素11、绿色子像素12、所述蓝色子像素13为四畴结构相同的是,所述白色子像素区域21也可以位于所述畴区域14内的其它位置。或者,请参阅图8,所述白色子像素20均匀分布于八畴区域的所述子像素的每个所述畴区域14内,即所述白色子像素20包括八个所述白色子像素区域21,每个所述白色子像素区域21与所述白色子像素所在的畴区域14一一对应,并位于每个所述畴区域14的中心位置。可以理解的是,与所述红色子像素11、绿色子像素12、所述蓝色子像素13为四畴结构相同的是,所述白色子像素区域21也可以位于所述畴区域14内的其它位置。由于光线通过所述白色子像素20能够有较大的透过率,因此,通过将所述白色子像素均匀分布于所述子像素的所述畴区域14内,能实现增大所述子像素光线透过率的同时还能够实现所述子像素各个位置的均匀出光,提高光线透过的均一性。
本发明还提供一种彩膜基板,包括基板及上述的像素结构100,所述像素结构位于所述基板上。
本发明明还一种显示面板,包括阵列基板及上述的彩膜基板及位于所述阵列基板与所述彩膜基板之间的液晶层,所述阵列基板与所述彩膜基板相对设置,且所述像素结构100朝向所述阵列基板。背光源发出的光线透过像素结构100进行出光。本发明中,由于所述像素结构100中各子像素的光线透过率均一性较高,所述显示面板也能够实现均匀出光。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。
Claims (20)
- 一种像素结构,其中,包括多个阵列排布的像素单元,每个所述像素单元包括红色子像素、绿色子像素、蓝色子像素及白色子像素,所述白色子像素内嵌于所述红色子像素、绿色子像素、蓝色子像素中至少一个子像素内,所述红色子像素、绿色子像素、蓝色子像素为多畴结构,包括多个畴区域;所述白色子像素分布于其所在的子像素的多个畴区域内,所述白色子像素分为多个大小相同的白色子像素区域,一个所述白色子像素区域位于一个所述畴区域内。
- 如权利要求1所述的像素结构,其中,相邻两个所述白色子像素区域在其所在畴区域内的位置对称。
- 如权利要求2所述的像素结构,其中,任意一个所述白色子像素区域在其所在畴区域内的位置与其它的所述白色子像素区域在其所在畴区域内的位置相同。
- 如权利要求2所述的像素结构,其中,所述红色子像素、绿色子像素、蓝色子像素均为四畴结构,所述白色子像素分布于其所在子像素的每个所述畴结构内。
- 如权利要求2所述的像素结构,其中,所述红色子像素、绿色子像素、蓝色子像素均为八畴结构,包括两个相连的四畴结构,所述白色子像素分布于其所在子像素的任意一个所述四畴结构的每个畴区域内,或者所述白色子像素分布于其所在子像素的每个畴区域内。
- 如权利要求4所述的像素结构,其中,每个所述白色子像素区域位于其所在的畴区域的的中心位置。
- 如权利要求5所述的像素结构,其中,每个所述白色子像素区域位于其所在的畴区域的的中心位置。
- 如权利要求4所述的像素结构,其中,每个所述白色子像素区域位于其所在的畴区域的边缘,且多个所述白色子像素区域互不连接。
- 如权利要求5所述的像素结构,其中,每个所述白色子像素区域位于其所在的畴区域的边缘,且多个所述白色子像素区域互不连接。
- 如权利要求4所述的像素结构,其中,每个所述白色子像素区域位于其所在畴区域的边缘,且多个所述白色子像素区域相互连接成一体,且连成一体的多个所述白色子像素区域的对称中心与所述白色子像素所在的所述子像素的对称中心重合。
- 如权利要求5所述的像素结构,其中,每个所述白色子像素区域位于其所在的畴区域的边缘,且多个所述白色子像素区域互不连接。
- 如权利要求1所述的像素结构,其中,所述白色子像素所在的子像素上设有穿孔,所述白色子像素设于所述穿孔内。
- 一种彩膜基板,其中,包括基板及像素结构,所述像素结构位于所述基板上,所述像素结构包括多个阵列排布的像素单元,每个所述像素单元包括红色子像素、绿色子像素、蓝色子像素及白色子像素,所述白色子像素内嵌于所述红色子像素、绿色子像素、蓝色子像素中至少一个子像素内,所述红色子像素、绿色子像素、蓝色子像素为多畴结构,包括多个畴区域;所述白色子像素分布于其所在的子像素的多个畴区域内,所述白色子像素分为多个大小相同的白色子像素区域,一个所述白色子像素区域位于一个所述畴区域内。
- 如权利要求13所述的彩膜基板,其中,相邻两个所述白色子像素区域在其所在畴区域内的位置对称。
- 如权利要求14所述的彩膜基板,其中,任意一个所述白色子像素区域在其所在畴区域内的位置与其它的所述白色子像素区域在其所在畴区域内的位置相同。
- 如权利要求14所述的彩膜基板,其中,所述红色子像素、绿色子像素、蓝色子像素均为四畴结构,所述白色子像素分布于其所在子像素的每个所述畴结构内。
- 如权利要求14所述的彩膜基板,其中,所述红色子像素、绿色子像素、蓝色子像素均为八畴结构,包括两个相连的四畴结构,所述白色子像素分布于其所在子像素的任意一个所述四畴结构的每个畴区域内,或者所述白色子像素分布于其所在子像素的每个畴区域内。
- 如权利要求17所述的彩膜基板,其中,每个所述白色子像素区域位 于其所在的畴区域的的中心位置。
- 如权利要求17所述的彩膜基板,其中,每个所述白色子像素区域位于其所在的畴区域的边缘,且多个所述白色子像素区域互不连接。
- 如权利要求17所述的彩膜基板,其中,每个所述白色子像素区域位于其所在畴区域的边缘,且多个所述白色子像素区域相互连接成一体,且连成一体的多个所述白色子像素区域的对称中心与所述白色子像素所在的所述子像素的对称中心重合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/773,676 US10690822B2 (en) | 2017-10-11 | 2018-01-30 | Pixel structure, color filter substrate, and display panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710945284.5A CN107817625B (zh) | 2017-10-11 | 2017-10-11 | 像素结构、彩膜基板及显示面板 |
CN201710945284.5 | 2017-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019071881A1 true WO2019071881A1 (zh) | 2019-04-18 |
Family
ID=61608114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/074598 WO2019071881A1 (zh) | 2017-10-11 | 2018-01-30 | 像素结构、彩膜基板及显示面板 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107817625B (zh) |
WO (1) | WO2019071881A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111223890B (zh) * | 2019-11-06 | 2023-01-24 | 深圳市华星光电半导体显示技术有限公司 | 显示面板及其制备方法与显示装置 |
CN111584584B (zh) * | 2020-05-15 | 2023-12-05 | Tcl华星光电技术有限公司 | 显示面板及显示装置 |
TWI822368B (zh) * | 2022-09-29 | 2023-11-11 | 達擎股份有限公司 | 顯示裝置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130050282A1 (en) * | 2011-08-31 | 2013-02-28 | Ji-Sun KIM | Display apparatus |
CN103792724A (zh) * | 2014-01-29 | 2014-05-14 | 合肥鑫晟光电科技有限公司 | 显示基板和显示装置 |
CN103809323A (zh) * | 2014-01-29 | 2014-05-21 | 合肥鑫晟光电科技有限公司 | 显示基板和显示装置 |
CN104297991A (zh) * | 2014-10-24 | 2015-01-21 | 合肥京东方光电科技有限公司 | 彩膜基板及显示装置 |
CN105096765A (zh) * | 2015-08-12 | 2015-11-25 | 京东方科技集团股份有限公司 | 一种像素结构、显示面板及显示装置 |
CN105788463A (zh) * | 2016-05-24 | 2016-07-20 | 深圳市华星光电技术有限公司 | 显示面板及wrgb像素结构 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3941481B2 (ja) * | 2000-12-22 | 2007-07-04 | セイコーエプソン株式会社 | 液晶表示装置および電子機器 |
TWI227354B (en) * | 2001-12-12 | 2005-02-01 | Seiko Epson Corp | Liquid crystal display device, substrate assembly for liquid crystal display device, and electronic apparatus |
TWI364595B (en) * | 2006-09-21 | 2012-05-21 | Wintek Corp | Trans-reflective type lcd panel and electronic device using the same |
KR101471547B1 (ko) * | 2008-02-20 | 2014-12-11 | 삼성디스플레이 주식회사 | 액정 표시 장치 |
CN103185979B (zh) * | 2011-12-29 | 2015-11-25 | 上海天马微电子有限公司 | 显示面板、显示装置及显示装置的驱动方法 |
CN102914905B (zh) * | 2012-10-12 | 2015-04-29 | 京东方科技集团股份有限公司 | 一种彩膜基板及半透半反式液晶显示装置 |
JP5910529B2 (ja) * | 2013-02-15 | 2016-04-27 | ソニー株式会社 | 表示装置および電子機器 |
KR102183919B1 (ko) * | 2014-07-31 | 2020-11-30 | 삼성디스플레이 주식회사 | 액정 표시 장치 |
CN105093656B (zh) * | 2015-08-28 | 2019-04-23 | 厦门天马微电子有限公司 | 一种液晶显示面板及其驱动方法、液晶显示装置 |
-
2017
- 2017-10-11 CN CN201710945284.5A patent/CN107817625B/zh active Active
-
2018
- 2018-01-30 WO PCT/CN2018/074598 patent/WO2019071881A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130050282A1 (en) * | 2011-08-31 | 2013-02-28 | Ji-Sun KIM | Display apparatus |
CN103792724A (zh) * | 2014-01-29 | 2014-05-14 | 合肥鑫晟光电科技有限公司 | 显示基板和显示装置 |
CN103809323A (zh) * | 2014-01-29 | 2014-05-21 | 合肥鑫晟光电科技有限公司 | 显示基板和显示装置 |
CN104297991A (zh) * | 2014-10-24 | 2015-01-21 | 合肥京东方光电科技有限公司 | 彩膜基板及显示装置 |
CN105096765A (zh) * | 2015-08-12 | 2015-11-25 | 京东方科技集团股份有限公司 | 一种像素结构、显示面板及显示装置 |
CN105788463A (zh) * | 2016-05-24 | 2016-07-20 | 深圳市华星光电技术有限公司 | 显示面板及wrgb像素结构 |
Also Published As
Publication number | Publication date |
---|---|
CN107817625B (zh) | 2020-10-09 |
CN107817625A (zh) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11114016B2 (en) | Pixel arrangement structure, display panel and display apparatus | |
CN107065319B (zh) | 液晶显示面板及显示装置 | |
CN106707606B (zh) | 异形显示面板及显示装置 | |
US10281760B2 (en) | Color filter substrate and display device | |
US9812512B2 (en) | Pixel structure and display apparatus | |
CN103792724B (zh) | 显示基板和显示装置 | |
CN105807508B (zh) | 一种显示面板及显示装置 | |
WO2016058326A1 (zh) | 像素结构、显示基板和显示装置 | |
US9870741B2 (en) | Display substrate and display device | |
KR102331850B1 (ko) | 픽셀 배열 구조체, 픽셀 배열 구조체의 디스플레이 방법 및 제조 방법, 및 디스플레이 기판 | |
CN105911785A (zh) | 一种显示面板和显示装置 | |
CN105096765A (zh) | 一种像素结构、显示面板及显示装置 | |
US10347695B2 (en) | Display panel | |
CN108565282B (zh) | 显示面板及其显示方法、显示装置 | |
US20220157897A1 (en) | Pixel arrangement structure and display panel | |
CN106932985A (zh) | Coa阵列基板及液晶显示面板 | |
WO2020244138A1 (zh) | 一种多畴像素结构的显示面板 | |
US10139665B2 (en) | Multiple viewing-field display component, patterned shielding layer and multiple viewing-field display apparatus | |
CN106023867A (zh) | 一种阵列基板和显示面板 | |
CN104297991A (zh) | 彩膜基板及显示装置 | |
KR20190015979A (ko) | Oled 디스플레이 패널 및 디스플레이 장치 | |
CN106681062A (zh) | 一种像素结构、显示面板及显示装置 | |
WO2019071881A1 (zh) | 像素结构、彩膜基板及显示面板 | |
CN114725297A (zh) | 一种显示面板和显示装置 | |
CN105093727A (zh) | 一种阵列基板、曲面显示面板、曲面显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18865854 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18865854 Country of ref document: EP Kind code of ref document: A1 |