[go: up one dir, main page]

WO2019058010A1 - Nuevo gel-coat aditivado con partículas de dióxido de titanio y alúmina - Google Patents

Nuevo gel-coat aditivado con partículas de dióxido de titanio y alúmina Download PDF

Info

Publication number
WO2019058010A1
WO2019058010A1 PCT/ES2018/070591 ES2018070591W WO2019058010A1 WO 2019058010 A1 WO2019058010 A1 WO 2019058010A1 ES 2018070591 W ES2018070591 W ES 2018070591W WO 2019058010 A1 WO2019058010 A1 WO 2019058010A1
Authority
WO
WIPO (PCT)
Prior art keywords
coat
gel
composition
titanium dioxide
elements
Prior art date
Application number
PCT/ES2018/070591
Other languages
English (en)
French (fr)
Inventor
Francisco De Borja DIAZ CABEZAS
Miguel PERAGÓN ORTEGA
Original Assignee
Liderkit Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liderkit Sl filed Critical Liderkit Sl
Priority to MA49590A priority Critical patent/MA49590A1/fr
Priority to EP18857910.6A priority patent/EP3686237A4/en
Publication of WO2019058010A1 publication Critical patent/WO2019058010A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention falls within the field of advanced composites and in particular in the field of catalysis. Especially, this invention relates both to the resulting composite material which has in its formulation photocatalytic additives such as T1O2, as well as the method of preparation thereof.
  • the obtained composite material finds direct application in the field of construction, transport by road, railway, air or sea, as well as in the environment in general, since this type of material has self-cleaning properties, biocidal properties, deodorization, and decontamination in the presence of air and ultraviolet light.
  • Traffic is, according to the European Environment Agency, one of the largest sources of air pollution in Europe, followed by thermal power plants and industrial plants. In Spain, 34% of the emissions of nitrogen oxides (NOx) come from traffic.
  • NOx nitrogen oxides
  • Air quality in urban areas is severely affected by traffic which is the main source of atmospheric emissions of particulate matter (including engine particulates, brake wear, wheels and rolling tread), as well as certain metals related to mechanical wear) and gases such as NOx (generic term that includes NO and NO2).
  • NOx gas that includes NO and NO2
  • the particles in suspension and NOx, together with ozone and ammonia, are the critical parameters in compliance with air quality legislation in cities in Spain and Europe in general.
  • NOx contribute to the photochemical contamination of the air, giving rise to the so-called "photochemical smog”. This term refers to a complex mixture of products that are formed from the interaction of sunlight with two of the main compounds of the exhaust gases of automobiles, nitrogen monoxide and hydrocarbons.
  • heterogeneous photochemical reactions catalyzed on the surface in the presence of ultraviolet radiation.
  • - Oxidized Compounds They are the target molecules that in the chemical reaction will degrade and decompose.
  • the first tests on heterogeneous catalysis in air for elimination of toluene were carried out and subsequently investigated with a large number and variety of compounds destined for the purification of organic compounds from wastewater.
  • the oxidation of chlorinated organic compounds aroused special attention due to its high toxicity and resistance to degradation currently used in the decomposition of nitrogen oxides as an atmospheric pollutant.
  • Photocatalysts In heterogeneous photocatalysis, the choice of photocatalyst, which must have an adequate redox potential, is fundamental. It must also comply that the photoactivation range is within the wavelength range corresponding to UV-visible radiation (200-800 nm.), In order to be able to take advantage of sunlight as a source of radiation with considerable savings of energy. The photocatalyst must also have a high specific surface to promote adsorption.
  • microporous materials such as activated carbon, mesoporous as silica or alumina and organometallic compounds among others.
  • Materials with high transparency in the UV region, such as polymers, are very interesting because they facilitate the irradiation of the semiconductor particles.
  • These materials are currently the subject of numerous studies to be used as support for photocatalysts of different nature, despite the difficulties they also have due to properties such as high thermal sensitivity and low resistance to photodegradation. It should be noted that in addition to ultraviolet radiation, the presence of oxygen and water (as a source of hydroxyl and proton amnions) is also necessary for the photocatalytic process to take place. Therefore, it is necessary that photocatalytic materials are in a medium with these three requirements for their correct activity.
  • sol-gel methodology One of the most widespread methods for obtaining photocatalytic coatings on different substrates using the sol-gel methodology is the "in situ" synthesis of the recubrimiento2 coating.
  • This sol-gel method consists in the hydrolysis and condensation of the organometallic precursor (titanium isopropoxide, titanium tetrachloride, etc.) followed by deposition by dip-coating, spin-coating, etc. of the coating obtained on the substrate to be coated .
  • organometallic precursor titanium isopropoxide, titanium tetrachloride, etc.
  • the nature of the coatings obtained initially is usually amorphous (mixture of several structures or phases), and a subsequent calcination stage is required at around 500-600 C for several hours in order to get the oxide coating of titanium has a majority anatase phase, which is the most photoactive crystalline structure of ⁇ 2.
  • This route has the disadvantage that the coatings are subjected to thermal treatments at high temperatures and the materials that cover must be able to withstand these conditions.
  • stabilizing chelating agents such as inorganic and organic acids have been used, although these agents can cause acid corrosion on metal substrates, in addition to acetylacetone which provides stable sols at almost neutral pH to give coatings on any substrate. All these Synthesis methods "in situ" needed very high heat treatments to obtain the anatase phase and achieve a good adherence to the substrate.
  • a very common methodology for obtaining coatings using previously synthesized nanoparticles is layer by layer deposition.
  • photocatalytic coatings have been developed on PET substrates, based on the assembly of different layers from nanoparticles in suspension charged oppositely.
  • coatings can be obtained on substrates sensitive to high temperatures such as metals, textiles, PET, etc .; since thermal treatments are not required at high post-deposition temperatures to induce the crystallinity of ⁇ 2 (Sánchez, B. et al., Appl. Catal. B-Environ., 2006, 66, 295).
  • patent EP 2001/1069950 B1 a different photocatalytic composition obtained by the addition of commercial ⁇ 2 nanoparticles to an aqueous colloidal dispersion of commercial silicon dioxide was proposed for possible use as a paint or as a filter coating.
  • patent US 2007/0166467 A1 its application in revest2 coatings based on silanes against corrosion in construction materials was proposed.
  • patent ES 2285868 T3 to refer to the possible use of photocurable glass paints through the use of this type of coatings.
  • the process of the invention is a process for preparing a "gel-coat" based on a synthetic curable resin that is added with particles of titanium dioxide and alumina.
  • This new material developed in contact with the volatile organic compounds that constitute the environmental pollution of the big cities allows photocatalytically deactivating the NOx in the presence of ultraviolet light.
  • the method of preparation of material also has much milder preparation conditions regarding curing, temperature conditions and solvents, than the standard methods of preparation of this type of gel-coat.
  • the molds should be located in a suitable environment (clean, without volatile particles in the environment) with suitable temperature and humidity for the work and verifying that the temperature of the initial gel-coat is between 18-25 ° C before being used.
  • the gel-coat should be homogenized, and when used, only the amount previously estimated for each mold should be used. If there was preparation of molds with Different batches of gel-coat, all should be properly homogenized before use, in order to prevent differences in physicochemical properties.
  • For the accelerated-cure gel-coats before use it must be added in a 50% catalyst solution, to end up having between 1.5 to 3.5% of the catalyst in the final weight of the mixture.
  • For non-accelerated "gel-coats" you must add before using an accelerator in a 2% solution, which when added to the gel-coat is in a proportion of 0.5-1.5% and then add the catalyst under the same conditions as in the previous case. It must be remembered that excessive agitation can leave air in the composition and cause a lamination with micropores in the cured gel-coat film, so homogenization must be carried out thoroughly to avoid the appearance of bubbles.
  • the gel-coat should be applied in a normal way on the predefined mold in the previous steps, in optimum working conditions for its application (avoid excessive humidity and working temperature conditions for its application).
  • Figure 1 Diagram of flow diagram of the process with the minimum steps necessary to be able to manufacture this new type of material additive with ⁇ 2 and AI2O3
  • the new material obtained finds direct application in the field of construction, in transport by road, railway, air or sea, as well as in the environment in general, since this type of material has several fundamental properties: photocatalytic properties to decompose the NOx, self-cleaning properties, biocidal properties, deodorization, all of them being necessary the presence of air and ultraviolet light.
  • the present invention further illustrates the methods of preparation, the fields of application by the following examples without intending to limit the scope of the invention
  • Example 1 Preparation of "gel-coat” in molds with polyester base resins that do not need accelerator for curing . See Figure 1.
  • the molds should be located in a suitable environment (clean, without volatile particles in the environment) with suitable temperature and humidity for the work and verifying that the temperature of the initial gel-coat is between 18-25 ° C before being used.
  • the base resin should be homogenized, and when used, only the amount previously estimated for each mold should be used. If there are different batches of resin, all should be thoroughly homogenized before being used, in order to prevent differences in physicochemical properties. Add a catalyst solution so that it is 2% in the mixture making the addition carefully. It must be remembered that excessive agitation can leave air in the composition and cause a laminate with micropores in the cured gel-coat film, so homogenization must be carried out meticulously to avoid the appearance of bubbles.
  • an initial additivation of between 2% T1O2 in the final weight of the mixture, additivated in powder with a particle size of less than 20 nanometers in particle width should be added to the base resin. Later it will be added with AI2O3 powder also with a granulometry of less than 20 nanometers, in quantities of between 6% final weight of the material. Perfect perfect homogenization must be produced by mechanical agitation not exceeding 500 rpm for at least 15 minutes. After that, the gel-coat composition should be applied as standard on the predefined mold in the previous steps, under optimum working conditions for its application (avoid excessive humidity and working temperature conditions for its application).
  • the molds should be located in a suitable environment (clean, without volatile particles in the environment) with suitable temperature and humidity for the work and verifying that the temperature of the initial gel-coat is between 18-25 ° C before being used.
  • the base resin should be homogenized, and when used, only the amount previously estimated for each mold should be used. If there are different batches of resin, all should be thoroughly homogenized before being used, in order to prevent differences in physicochemical properties.
  • For resins that need to use accelerators should be added before using an accelerator that when added to the resin is in a proportion of 0.5-1.5% and then add the catalyst carefully.
  • mold (see Figure 1) is used herein to mean any device that is used to shape a gel-coat prior to the curing process.
  • thermoset polymer that undergoes a chemical crosslinking reaction increasing its physical hardness properties when mixed with a catalyst agent.
  • catalyst which is used herein is understood as any chemical substance that manages to increase the speed of a chemical reaction, and that its mass is modified during the reaction thereof.
  • granulometry used in this document is understood as the graduation that is carried out of the materials, indicating in units of length the maximum size that an aggregate particle of the measured material can have.
  • integrator used in this document is understood as any chemical substance that manages to accelerate the speed of a chemical reaction and that its mass decreases during the reaction of it.
  • curing process (see Figure 1) that is used herein is understood as any polymerization process that occurs, resulting in a chemical reaction of entanglement of the gel-coat chains due to the addition of a catalyst agent and / or an accelerant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

El nuevo gel-coataditivado con partículas de dióxido de titanio y alúmina que se describe en esta patente encuentra aplicación directa en el campo de la construcción parte exterior de superficies de materiales de construcción o elementos urbanos, en el sector del transporte,dado que este tipo de material posee propiedades fotocatalíticas para poder descomponer los NOx que actualmente hay en las grandes ciudades. Además, este nuevo material posee propiedades de auto limpieza, propiedades biocidas, y de desodorización que permiten a aplicaciones en el sector del transporte marítimo donde ayudaría a superar la resistencia inducida por el apego de la vida marítima a los cascos de las embarcaciones, y puede abaratar los costes de limpieza de los mismos.

Description

D E S C R I P C I Ó N
Nuevo gel-coat aditivado con partículas de dióxido de titanio y alúmina
SECTOR DE LA TÉCNICA La presente invención se encuadra dentro del campo de los materiales compuestos avanzados y en particular en el campo de la catálisis. Especialmente, esta invención se refiere tanto al material compuesto resultante que posee en su formulación aditivos fotocatalíticos tales como el T1O2, así como el procedimiento de preparación del mismo. El material compuesto obtenido encuentra aplicación directa en el campo de la construcción, el transporte por carretera, vía férrea, aérea o marítima, así como en el medio ambiente en general, dado que este tipo de material posee propiedades de autolimpieza, propiedades biocidas, de desodorización, y descontaminación en presencia de aire y luz ultravioleta.
ANTECEDENTES DE LA INVENCIÓN La contaminación atmosférica. Los NOx y su degradación fotoquímica mediante recubrimientos fotocatalíticos.
La contaminación atmosférica provoca unas 370.000 muertes prematuras en toda la UE y en torno a 16.000 en España, según datos de la Comisión Europea. Teniendo en cuenta que como mínimo multiplica por 4 las causadas por los accidentes de circulación, este problema adquiere una dimensión suficientemente importante para que su alcance sea estudiado y analizado con detalle. El tráfico es, según la Agencia Europea del Medio Ambiente, una de las mayores fuentes de contaminación atmosférica en Europa, seguido de las centrales térmicas y de las plantas industriales. En España, el 34% de las emisiones de óxidos de nitrógeno (NOx) provienen del tráfico. Además del NOx, los contaminantes atmosféricos con mayor impacto sobre la salud son las partículas en suspensión (PM) que emiten los automóviles y la industria, junto al dióxido de azufre de los combustibles fósiles y el diésel. La calidad del aire en zonas urbanas se ve gravemente afectada por el tráfico que es la principal fuente de emisiones atmosféricas de material particulado (incluyendo las partículas de los motores, del desgaste de frenos, ruedas y firme de rodadura, así como determinados metales relacionados con el desgaste mecánico) y gases como los NOx (término genérico que incluye NO y NO2). Las partículas en suspensión y NOx, junto al ozono y amoníaco, son los parámetros críticos en el cumplimiento de la legislación de la calidad del aire en ciudades de España y de Europa en general. Por otro lado, los NOx contribuyen a la contaminación fotoquímica del aire, dando lugar al llamado "smog fotoquímico". Este término hace referencia a una mezcla compleja de productos que se forman a partir de la interacción de la luz solar con dos de los compuestos principales de los gases de escape de los automóviles, monóxido de nitrógeno e hidrocarburos. Su interacción en presencia de la luz solar da lugar a la formación de nieblas altamente oxidantes que han provocado episodios de contaminación muy graves en el pasado en grandes ciudades. En zonas urbanas, aproximadamente el 50% de las emisiones de NOx se produce por combustión en los motores de los vehículos, siendo otras fuentes de emisión las centrales eléctricas y otras fuentes industriales (U.S. EPA, 1998). Los niveles elevados de NOx además de influir en los niveles de ozono (contaminante secundario que se genera en la atmósfera por reacción de NO2 y precursores gaseosos orgánicos), y en la formación de lluvia ácida, pueden perjudicar la salud pública afectando especialmente el sistema respiratorio.
Aun reconociendo la diversidad de fuentes de emisión, el tráfico rodado de vehículos es una de las principales fuentes que afectan a los niveles de exposición de la población urbana a los contaminantes atmosféricos. Ello se debe a que la emisión se produce a gran proximidad de la población y de forma muy dispersa en las grandes urbes. Aunque los automóviles cada vez cumplen legislaciones medioambientales más exigentes, el crecimiento continuado de su número, además del uso permanente y progresivamente indiscriminado, y la proliferación creciente de los vehículos diésel en el conjunto del parque móvil, generan una situación de una progresiva complejidad.
La posibilidad de poder proteger las superficies de los edificios o de los vehículos mediante recubrimientos que puedan ser capaces de degradar este tipo de compuestos orgánicos existentes en aire con las que entran en contacto contribuyendo a la descontaminación ambiental y a la auto limpieza de estas superficies, es de gran interés y se vienen investigando la búsqueda de recubrimientos basados en nanopartículas que aporten propiedades físico-químicas diferentes a los materiales ya existentes permitiendo aportar diferentes soluciones a estos problemas ya mencionados. Problemas en el sector naviero por apego de la vida marítima. Recubrimientos fotocatalíticos en superficie de embarcaciones una solución con bajo coste.
En el sector del transporte marítimo se emplean cada año unos 36 mil millones de euros cada año en el uso de pinturas antiadherentes y costes de combustible añadidos para superar la resistencia inducida por el apego de la vida marítima a los cascos de las embarcaciones (entre un 30 y un 45% más), siendo este problema un problema creciente con el calentamiento global del planeta. Es por ello que en este sector se buscan soluciones técnicas que consigan disminuir estos efectos en las embarcaciones.
Con el uso de este tipo de nuevos materiales en las superficies de estas embarcaciones se ha comprobado que evitan la proliferación de bacterias, algas y hongos sobre determinadas superficies, ya que estos materiales poseen efecto biocida gracias en parte a la generación de radicales hidroxilos, siendo por tanto la aplicación de este tipo de materiales para la fabricación de nuevas embarcaciones una posibilidad real de una reducción de costes de mantenimiento y combustible.
Elementos de la fotocatálisis heterogénea El principio físico-químico para todas estas aplicaciones antes citadas es el mismo: reacciones fotoquímicas heterogéneas catalizadas en la superficie en presencia de radiación ultravioleta. Para poder describir mucho mejor este tipo de reacciones es necesario tener que describir más a fondo sus diferentes elementos que la componen: - Compuestos Oxidados. Son las moléculas diana que en la reacción química se van a degradar y descomponer. Por ejemplo, a principio de los años 80 se realizaron los primeros ensayos en catálisis heterogénea en aire para eliminación del tolueno y posteriormente se investigó con un gran número y variedad de compuestos destinados para la purificación de los compuestos orgánicos de las aguas residuales. La oxidación de compuestos orgánicos clorados despertó especial atención debido a su elevada toxicidad y resistencia a la degradación empleándose actualmente en la descomposición de óxidos de nitrógeno como contaminante atmosférico.
- Fotocatalizadores. En la fotocatálisis heterogénea resulta fundamental la elección del fotocatalizador, que debe tener un adecuado potencial redox. Debe cumplir además que el rango de fotoactivación se encuentre dentro del intervalo de longitud de onda correspondiente a la radiación del UV-visible (200-800 nm.), con el fin de poder aprovechar como fuente de radiación la luz solar con un considerable ahorro de energía. El fotocatalizador debe presentar además una elevada superficie específica para favorecer la adsorción. El ΤΊΟ2 es el semiconductor más empleado, debido a que es química y biológicamente inerte, no es tóxico, es abundante, económico, además de sus buenas características fotocatalíticas, que son debidas a que posee electrones de valencia en su banda de conducción que son capaces de ser excitados con una energía de radiación que está en el rango de energía de la luz ultravioleta (λ=200-400 nm), y además puede ser contenido en medios ricos tanto amniones hidroxilo como protones (Balasubramanian G. et al. "Synthesis of Inorganic Materials" Wiley- VCH, Weinheim, (2005). La cristalinidad de este semiconductor se torna fundamental para poder poseer una buena actividad fotocatalítica; así de las tres formas cristalinas más comunes del dióxido de titanio (anatasa, brookita y rutilo), la fase anastasa es la estructura del dióxido de titanio que presenta mayor actividad fotocatalítica, pese a ser una fase metaestable. Desde que Fujishima y Honda (Fujishima, A.; Honda, K., Nature 1972, 37, 238) descubrieran en la década de los setenta la disociación fotocatalítica del agua sobre electrodos de dióxido de titanio (Hashimoto K. et al. J. Appl. Phys. 2005, 44 (12) 8269) se inició el desarrollo de un gran número de investigaciones basadas en este semiconductor fotocatalítico.
- Materiales de soporte. La necesidad del empleo de fotocatalizadores soportados surgió como consecuencia del elevado coste de los procesos de filtración para recuperar el fotocatalizador. Sin embargo, también existen limitaciones a tener en cuenta en el empleo de sistemas soportados. Las dificultades en el uso de soportes están relacionadas con el reducido contacto entre el contaminante y el material fotoactivo, y con la dificultad en conseguir la total irradiación de las partículas de semiconductor. Hasta el momento, se han ensayado en fotocatálisis una gran variedad de materiales como soporte para el fotocatalizador, la mayor parte de ellos se basan en el empleo de S1O2, tanto en vidrios como en sílice fundida o cuarzo. En la actualidad, entre los materiales que ofrecen grandes posibilidades como soporte se encuentran los materiales microporosos como el carbón activo, mesoporosos como sílice o alúmina y compuestos organometálicos entre otros. Los materiales con alta transparencia en la región UV, como es el caso de los polímeros, resultan muy interesantes ya que facilitan la irradiación de las partículas del semiconductor. Estos materiales están siendo objeto en la actualidad de numerosos estudios para ser empleados como soporte de fotocatalizadores de distinta naturaleza, a pesar de las dificultades que también presentan debido a propiedades como la elevada sensibilidad térmica y baja resistencia a la fotodegradación. Cabe destacar que además de la radiación ultravioleta también es necesaria la presencia de oxígeno y de agua (como fuente de amniones hidroxilo y de protones) para que tenga lugar el proceso fotocatalítico. Por tanto, es necesario que los materiales fotocatalíticos estén en un medio con estos tres requerimientos para su correcta actividad.
Antecedentes de métodos de obtención de recubrimientos fotocatalíticos.
Uno de los métodos más extendidos para la obtención de recubrimientos fotocatalíticos sobre diferentes sustratos mediante la metodología sol-gel, es la síntesis "in situ" del recubrimiento de ΤΊΟ2. Este método sol-gel consiste en la hidrólisis y condensación del precursor organometálico (isopropóxido de titanio, tetracloruro de titanio, etc.) seguido de la deposición mediante dip-coating, spin-coating, etc .. del recubrimiento obtenido sobre el sustrato a recubrir. Con esta metodología sintética, la naturaleza de los recubrimientos obtenidos inicialmente suele ser amorfa (mezcla de varias estructuras o fases), y se requiere de una etapa posterior de calcinación a unos 500-600 C durante varias horas para poder conseguir que el recubrimiento de óxido de titanio tenga una fase anatasa mayoritaria, que es la estructura cristalina más fotoactiva del ΤΊΟ2. Esta ruta presenta la desventaja de que los recubrimientos son sometidos a tratamientos térmicos a elevadas temperaturas y los materiales que recubre deben poder soportar estas condiciones.
Así, a fínales de los años 80, (Takahashi, Y.; Matsuoka, Y. J. Mater. Sci. 1988, 23, 2259) se desarrollaron una de las primeras síntesis de recubrimientos de ΤΊΟ2, que además se basaba en esta metodología "in situ". Para ello, empleó la dietanolamina (DEA) para controlar la etapa de hidrólisis del precursor de titanio (isopropóxido de titanio) bajo la adición de agua. La presencia de etanolaminas en la disolución da lugar a quelatos estabilizantes, que reaccionan con los alcóxidos metálicos a través de la reacción de intercambio del alcohol. Se han utilizado otros agentes quelantes estabilizantes como ácidos inorgánicos y orgánicos, aunque estos agentes pueden causar corrosión ácida sobre sustratos metálicos, además de la acetilacetona que proporciona soles estables a pH casi neutros para dar lugar a recubrimientos sobre cualquier sustrato. Todos estos métodos de síntesis "in situ" necesitaban de tratamientos térmicos muy altos para obtener la fase anatasa y conseguir tener una buena adherencia al sustrato.
Se han desarrollado otros métodos sintéticos para obtener recubrimientos fotocatalíticos con dióxido de titanio, en los que las nanopartículas de ΤΊΟ2 son sintetizadas en primer lugar, y posteriormente son depositadas sobre el sustrato, de tal manera que se evitan los tratamientos térmicos, obtuvieron recubrimientos con nanopartículas de ΤΊΟ2 (fase anatasa) sintetizadas a partir de la hidrólisis en medio acuoso del tetrakis (isopropóxido) de titanio, (Peiró, A. M. et al. Appl. Catal. B-Environ. 2001 , 30, 359-373).
Una metodología muy común de obtención de recubrimientos empleando nanopartículas sintetizadas previamente es la deposición capa a capa. Así se han desarrollado recubrimientos fotocatalíticos sobre sustratos de PET, basados en el ensamblaje de diferentes capas a partir de nanopartículas en suspensión cargadas opuestamente. Mediante esta metodología se pueden obtener recubrimientos sobre sustratos sensibles a elevadas temperaturas como los metales, textiles, PET, etc.; ya que no se precisan de tratamientos térmicos a elevadas temperaturas posteriores a la deposición para inducir la cristalinidad del ΤΊΟ2 (Sánchez, B. et al. Appl. Catal. B- Environ. 2006, 66, 295). Sin embargo, cabe destacar que la interacción electrostática entre las capas en ocasiones no es suficiente (para dar lugar a una buena adherencia. De tal manera que, teniendo en cuenta todas las desventajas que presentaban los métodos sintéticos anteriormente descritos, en los últimos años se han desarrollado nuevas vías basadas en la síntesis sol-gel de híbridos inorgánicos-orgánicos para la obtención de recubrimientos fotocatalíticos.
Se ha propuesto recientemente en una patente (WO 2010/122182) un método para obtener recubrimientos fotocatalíticos híbridos mediante la vía sol-gel en condiciones suaves de síntesis a partir de un porcentaje particular de nanopartículas de ΤΊΟ2 comerciales cristalinas en fase anatasa empleando un catalizador de tipo poliéteramina. Sorprendentemente se ha descubierto ahora que empleando un catalizador completamente diferente consistente en nanopartículas de un óxido inorgánico tal como el óxido de silicio o el óxido de titanio previamente funcionalizados con determinados grupos funcionales, se pueden obtener recubrimientos fotocatalíticos alternativos sobre sustratos diversos, metálicos u otros, también en condiciones suaves de síntesis.
Sobre los posibles usos de este tipo de materiales, se está descubriendo multitud de aplicaciones prácticas todas orientadas al uso de estos recubrimientos con fines anticorrosión o bien con fines medioambientales. Ya en la patente WO 1998/32473 se detallaba el uso de este tipo de revestimientos como posibles filtros de absorción de volátiles del medio mediante el uso de aditivos. Más recientemente la patentes US 1996/5571359 detallan métodos para la preparación de tintas y pigmentos fotocurables basados en dióxido de titanio, así como la patente US 2006/7144840 B2 menciona procedimientos y revestimientos basados en cristales ΤΊΟ2 sus propiedades físico- químicas y campo de aplicaciones. También en la patente EP 2001/1069950 B1 se proponía una composición fotocatalítica diferente obtenida mediante la adición de nanopartículas de ΤΊΟ2 comerciales a una dispersión coloidal acuosa de dióxido de silicio comercial para su posible uso como pintura o como recubrimiento de filtros. En la patente US 2007/0166467 A1 se proponía su aplicación en revestimientos de ΤΊΟ2 con base de silanos frente a corrosión en materiales de construcción. Por último, cabe destacar la patente ES 2285868 T3 para referirnos al posible uso de pinturas fotocurables para vidrio mediante el uso de este tipo de recubrimientos.
En resumen, como se puede comprobar por tanto en el estado del arte de esta patente la catálisis heterogénea y más especialmente en los recubrimientos fotocatalíticos existe una creciente necesidad real por parte de la industria y de la sociedad de obtener nuevos materiales alternativos a los ya existentes que mejoren las propiedades fotocatalíticas actuales, sean competitivos económicamente, respetuosos con el medio ambiente, y que a su vez en su proceso de preparación además de posean buenas adhesiones a los sustratos sin tratamientos térmicos a elevadas temperaturas (que hace que el número de sustratos se vea reducido significativamente), para poder obtener una mayor universalidad en su aplicación a sustratos en diferentes procesos industriales y de procesos de recubrimiento.
REFERENCIAS UTILIZADAS
Las referencias de las que se han hecho uso en la redacción de la presente patente son las siguientes:
PATENTES:
• WO 2010/122182 con fecha de publicación 29.02.2012 "Method for obtaining photocatalytic coatings on metal substrates" (de Miguel Yolanda, Rufina; Villaluenga Arranz, Irune; Porro Gutiérrez, Antonio) respecto a un método para obtener recubrimientos fotocatalíticos híbridos mediante la vía sol-gel en condiciones suaves de síntesis a partir de un porcentaje particular de nanopartículas de T1O2 comerciales cristalinas en fase anatasa empleando un catalizador de tipo polieteramina.
• EP 1 069 950 B1 con fecha de publicación 12.12.2001 "Photocatalytic composition" (Pascale Escaffre, Pierre girard, Joseph Dussaud, Léonie Bouvier), repecto a se proponía una composición fotocatalítica obtenida mediante la adición de nanopartículas de T1O2 comerciales a una dispersión coloidal acuosa de dióxido de silicio comercial para su posible uso como pintura o como recubrimiento de filtros.
• US 2007/0166467 A1 con fecha de publicación 19.07.2007 "Water dispersible silanes as corrosion-protection coatings and paint primers for metal pre-treatment" (de Ji Cui) respecto a posibles aplicaciones de revestimientos con base de silanos frente a corrosión"
• WO 1998/32473 con fecha de publicación 16.01.1998 "Reduction of emissions of volatile compounds by additives" (de Wolfgang Beilfuss, Ralf Graddtke, y Herbert Mangold.) respecto a posibles métodos de absorción de volátiles mediante el uso de aditivos. · US 2007/0166467 A1 con fecha de publicación 19.07.2007 "Water dispersible silanes as corrosion-protection coatings and paint primers for metal pre-treatment" (de Ji Cui) respecto a posibles aplicaciones de revestimientos con base de silanos frente a corrosión" • US 2006/7144840 B2 con fecha de publicación 05.12.2006 "Ti02 material and the coating methods thereof" (de King Lun Yeung y Nan Yao) respecto a estado de la técnica de procedimientos y revestimientos basados en cristales Ti02 y sus propiedades físico- químicas.
« US 1996/5571359 con fecha de publicación 16.11.2007 "Radiation curable pigmented compositions" (de Melvin E. Kamen, y Bhupendra Patel) respecto a métodos existentes para tintas y pigmentos fotocurables.
• ES 2285868 T3 con fecha de publicación 16.11.2007 "Composición de pintura curable par radiación ultravioleta y proceso para su aplicación en substratos de vidrio" (de Rodrigo Cavazos Gutiérrez) para referirnos al estado del arte en el uso de pinturas fotocurables para vidrio (botellas, etiquetas, etc .. )
• ES 2401799 B1 con fecha de publicación 24.04.2014 "Procedimiento para la preparación de un aditivo que comprende partículas de ΤΊΟ2 soportadas y dispersas" (de Antonio Álvarez Berenguer, Aurora María Casado Barrasa, Antonio Esteban Cubillo, Javier Grávalos Moreno, Antonio José Sánchez Rojo, Julio Santarén Romé y José Vera Agulló) para referirnos al estado del arte en procesos de preparación de aditivos que comprende partículas de ΤΊΟ2 dispersas sobre un soporte de filosilicatos pseudolaminares para uso aditivos con actividad fotocatalítica para purificación y desinfección de aguas, corrientes gaseosas contaminadas en materiales de construcción en presencia de aire y luz ultravioleta.
PUBLICACIONES CIENTÍFICAS:
• "Electrochemical Photolysis of Water at a Semiconductor Electrode" Fujishima, A.; Honda, K., Nature 1972, 37, 238. Para referirnos al descubrimiento de la disociación fotocatalítica del agua sobre electrodos de dióxido de titanio
• "ΤΊΟ2 Photocatalysis: A Historical Overview and Future Prospects" Hashimoto K., Irie, H; Fujishima, A., Jpn. J. Appl. Phys. 2005, 44 (12) 8269. Para referirnos al desarrollo de un gran número de investigaciones basadas en este semiconductor fotocatalítico
• "Titanium Dioxide coatings on stainless steef Encyclopedia of Nanoscience and Nanotechonology" Balasubramanian G.; Dionysiou D.D.; Suidan M.T. Para referirnos a los principios básicos de las reacciones fotoquímicas que tienen lugar en la superficie de los fotocatalizadores en presencia de radiación ultravioleta.
• "Synthesis of Inorganic Materials" Wiley- VCH, Weinheim, (2005) Marcel Dekker; Schubert U., Husing N. Para referirnos a los métodos existentes de síntesis "in situ" del recubrimiento de Ti02 por métodos fotocatalíticos.
• "Dip-coating of ΤΊ02 films using a sol derived from Ti(0-i-Pr)4-diethanolamine-H20-i- PrOH system" Takahashi, Y.; Matsuoka, Y. J. Mater. Sci. 1988, 23, 2259. Para poder referirnos los desarrollos de las primeras síntesis de recubrimientos de ΤΊΟ2 que empleaban la dietanolamina (DEA) para controlar la etapa de hidrólisis del precursor de titanio (isopropóxido de titanio) bajo la adición de agua.
• "Low-Temperature deposition of ΤΊΟ2 thin films with photocatalytic activity from colloidal anatase aqueous solutions" A.M. Peiró, J. Peral, C. Domingo, X. Doménech and J.A. Ayllón. Chemistry of Materials, 2001 , 13, 2567-2573. Para referirnos a un método alternativo donde las capas de ΤΊΟ2 son sintetizadas en primer lugar, y posteriormente son depositadas sobre el sustrato.
• "Preparation of ΤΊΟ2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase" Sánchez, B.; Coronado, J. M.; Caudal, R.; Pórtela,
R.; Tejedor, I.; Anderson, M. A.; Tompkins, D.; Lee, T. Appl. Catal. B-Environ. 2006, 66, 295) Appl. Catal. B, 2006, 66(3-4): 295. Para referirnos a la obtención de recubrimientos de ΤΊΟ2 empleando nanopartículas sintetizadas previamente por deposición capa a capa. EXPLICACIÓN DE LA INVENCIÓN
El procedimiento de la invención es un procedimiento de preparación de un "gel-coat" con base de una resina curable sintética que está aditivada con partículas de dióxido de titanio y alúmina. Este nuevo material desarrollado en contacto con los compuestos orgánicos volátiles que constituyen la contaminación ambiental de las grandes urbes permite desactivar fotocatalíticamente los NOx en presencia de luz ultravioleta. El método de preparación de material además posee unas condiciones de preparación mucho más suaves respecto al curado, a las condiciones de temperatura y disolventes necesarios, que los métodos estándar de preparación de este tipo de gel-coat. Los campos de aplicación de recubrimientos con estos nuevos tipos de materiales basados son múltiples, desde nuevos tipos de recubrimientos en materiales de construcción, elementos urbanos, a las carrocerías de vehículos de transporte que permitan desactivar fotocatalíticamente los NOx de las grandes ciudades, hasta el desarrollo de recubrimientos de superficie de embarcaciones que permitan evitar el apego de la vida marina a sus cascos debido a sus efectos biocidas.
Los pasos necesarios para poder desarrollar piezas mediante este nuevo tipo de material son las siguientes:
Preparación de moldes.
Se deben ubicar los moldes en un ambiente adecuado (limpio, sin partículas volátiles en el ambiente) con temperatura y humedad aptas para el trabajo y verificando que la temperatura del gel-coat inicial esté entre 18-25°C antes de usarse.
Preparación del Gel-coat
Se debe homogeneizar el gel-coat, y al usarse se debe usar tan solo la cantidad estimada previamente para cada molde. Si hubiera preparación de moldes con diferentes lotes de gel-coat, deberá homogeneizarse adecuadamente todos antes de usarse, con el propósito de prevenir diferencias en las propiedades fisicoquímicas. Para los "gel-coats" de curado acelerado, antes de usarse se debe agregar en una disolución al 50% de catalizador, para acabar teniendo entre 1 ,5 a un 3,5 % del catalizador en el peso final de la mezcla. Para los "gel-coats" de curado no acelerado se debe agregar antes de usar un acelerador en una disolución al 2%, que al añadirse al gel-coat quede en una proporción del 0,5-1 ,5% y, posteriormente añadir el catalizador en las mismas condiciones que en el caso anterior. Se debe recordar que una agitación excesiva puede dejar aire en la composición y provocar un laminado con microporos en el film de gel- coat curado, por lo que la homogeneización se debe realizar meticulosamente para evitar la aparición de burbujas.
Aditivación del gel-coat con partículas de dióxido de titanio y alúmina.
Se deberá producir en el gel-coat una aditivación inicial de entre un 1-25% de ΤΊΟ2 (en sus fases metaestables anatasa y rutilo) en el peso final de la mezcla, aditivado en polvo con una granulometría inferior a 20 nanometros de ancho de partícula. Posteriormente se aditivará con AI2O3 en polvo también con una granulometría inferior a 20 nanometros, en unas cantidades un entre un 5-25% peso final del material. Se deberá producir una perfecta homogenización perfecta mediante agitación mecánica no superior a 500 rpm durante al menos 15 minutos. Aplicación del gel-coat aditivado.
Se deberá aplicar el gel-coat de forma normal sobre el molde predefinido en los pasos previos, en condiciones óptimas estándar de trabajo para su aplicación (evitar condiciones de humedad y de temperatura de trabajo excesivas para su aplicación). BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1.- Esquema de diagrama de flujo del proceso con los pasos mínimos necesarios para poder fabricar este nuevo tipo de material aditivado con ΤΊΟ2 y AI2O3
REALIZACIÓN PREFERENTE DE LA INVENCIÓN Modo de realización preferente de la invención.
El nuevo material obtenido encuentra aplicación directa en el campo de la construcción, en el transporte tanto por carretera, vía férrea, aérea o marítima, así como en el medio ambiente en general, dado que este tipo de material posee varias propiedades fundamentales: propiedades fotocatalíticas para poder descomponer los NOx, propiedades de autolimpieza, propiedades biocidas, de desodorización, todas ellas siendo necesario la presencia de aire y luz ultravioleta.
La presente invención adicionalmente ilustra los métodos de preparación, los campos de aplicación mediante los siguientes ejemplos sin pretender limitar el alcance de la invención Ejemplo 1. Preparación de "gel-coat" en moldes con resinas base de poliéster que no necesitan acelerador para su curado. Ver Figura 1.
Se deben ubicar los moldes en un ambiente adecuado (limpio, sin partículas volátiles en el ambiente) con temperatura y humedad aptas para el trabajo y verificando que la temperatura del gel-coat inicial esté entre 18-25°C antes de usarse. Se debe homogeneizar la resina base, y al usarse se debe usar tan solo la cantidad estimada previamente para cada molde. Si hubiera diferentes lotes de resina deberá homogeneizarse adecuadamente todos antes de usarse, con el propósito de prevenir diferencias en las propiedades fisicoquímicas. Añadir una disolución del catalizador para que quede al 2% en la mezcla realizando la adición cuidadosamente. Se debe recordar que una agitación excesiva puede dejar aire en la composición y provocar un laminado con microporos en el film de gel-coat curado, por lo que la homogeneización se debe realizar meticulosamente para evitar la aparición de burbujas. Tras ello se deberá añadir en la resina base una aditivación inicial de entre un 2% de T1O2 en el peso final de la mezcla, aditivado en polvo con una granulometría inferior a 20 nanometros de ancho de partícula. Posteriormente se aditivará con AI2O3 en polvo también con una granulometría inferior a 20 nanometros, en unas cantidades un entre un 6% peso final del material. Se deberá producir una perfecta homogenización perfecta mediante agitación mecánica no superior a 500 rpm durante al menos 15 minutos. Tras ello se deberá aplicar la composición del gel-coat de forma estándar sobre el molde predefinido en los pasos previos, en condiciones óptimas estándar de trabajo para su aplicación (evitar condiciones de humedad y de temperatura de trabajo excesivas para su aplicación).
Ejemplo 2. Preparación de "gel-coat" en moldes con resinas con base de poliéster que necesitan acelerador para su curado. Ver Figura 1.
Se deben ubicar los moldes en un ambiente adecuado (limpio, sin partículas volátiles en el ambiente) con temperatura y humedad aptas para el trabajo y verificando que la temperatura del gel-coat inicial esté entre 18-25°C antes de usarse. Se debe homogeneizar la resina base, y al usarse se debe usar tan solo la cantidad estimada previamente para cada molde. Si hubiera diferentes lotes de resina deberá homogeneizarse adecuadamente todos antes de usarse, con el propósito de prevenir diferencias en las propiedades fisicoquímicas. Para las resinas que necesitan utilizar aceleradores se debe agregar antes de usar un acelerador que al añadirse a la resina quede en una proporción del 0,5-1 ,5% y, posteriormente añadir el catalizador cuidadosamente. Se debe recordar que una agitación excesiva puede dejar aire en la composición y provocar un laminado con microporos en el film de gel-coat curado, por lo que la homogeneización se debe realizar meticulosamente para evitar la aparición de burbujas. Tras ello se deberá añadir en la resina base una aditivación inicial de entre un 1 % de ΤΊΟ2 en el peso final de la mezcla, aditivado en polvo con una granulometría inferior a 20 nanometros de ancho de partícula. Posteriormente se aditivará con AI2O3 en polvo también con una granulometría inferior a 20 nanometros, en unas cantidades un entre un 5% peso final del material. Se deberá producir una perfecta homogenización perfecta mediante agitación mecánica no superior a 500 rpm durante al menos 15 minutos. Tras ello se deberá aplicar la composición del gel-coat de forma estándar sobre el molde predefinido en los pasos previos, en condiciones óptimas estándar de trabajo para su aplicación (evitar condiciones de humedad y de temperatura de trabajo excesivas para su aplicación). Aplicación industrial de la invención.
La aplicación de este tipo de materiales a nivel industrial se enmarca en múltiples sectores industriales:
Industria del transporte. Uno de los retos más importantes que enfrenta la industria del transporte en el siglo XXI es el desarrollo de materiales que sean sostenibles medioambientalmente pero que a su vez sean funcionales y tengan unos costes de fabricación asequibles. Con el uso de carrocerías en vehículos en grandes ciudades que tengan en su exterior este nuevo tipo de nuevo material fotocatalítico como recubrimiento al estar en contacto normalmente con luz visible y con los gases contaminantes de la atmósfera (NOx), se permite realizar una reacción química en la superficie de la carrocería que consigue poder descomponer estos compuestos orgánicos tan perjudiciales para el medio ambiente, permitiendo indirectamente reducir en la medida de los posible la contaminación atmosférica al paso del vehículo.
Industria del transporte marítimo. Se ha comprobado que en superficies recubiertas con un gel-coat exterior con este nuevo tipo de materiales se evitan la proliferación de bacterias, algas y hongos, ya que estos materiales poseen efecto biocida gracias en parte a la generación de radicales hidroxilos. Es por tanto que existe una aplicación directa en el uso de este nuevo tipo de materiales fotocatalíticos aplicados sobre superficie de nuevas embarcaciones, que podrá permitir reducir el tiempo y coste de las labores de limpieza de las embarcaciones (sobre todo en el casco por debajo y encima de línea de flotación), permitirá reducir costes de combustible al mejorar su coeficiente de incidencia en el agua, así como permitirá alargar el tiempo de vida de las embarcaciones al evitar la corrosión de las superficies de las embarcaciones.
Industria de la construcción. En la construcción de edificios sostenibles, los arquitectos tienen cada vez más en cuenta entre sus parámetros la posibilidad de tener el menor impacto en el medio ambiente. Con el uso de superficies exteriores de los edificios de materiales elaboradas con este nuevo material fotocatalítico se permite poder descontaminar el ambiente exterior al edificio mediante este tipo de reacciones fotocatalíticas.
El término "molde" (véase Figura 1) se usa en este documento se entiende como cualquier dispositivo que se utiliza para dar forma a una al gel-coat antes del proceso de curado.
El término "resina" que se usa en este documento se entiende como cualquier polímero termoestable que sufre una reacción química de entrecruzamiento aumentando sus propiedades físicas de dureza cuando se mezcla con un agente catalizador.
El término "catalizador" que se usa en este documento se entiende como cualquier sustancia química que logra aumentar la velocidad de una reacción química, y que su masa se modifica durante la reacción de la misma.
El término "granulometría" que se usa en este documento se entiende como la graduación que se lleva a cabo de los materiales, indicando en unidades de longitud el tamaño máximo que puede tener una partícula agregada del material medido.
El término "acelerador" que se usa en este documento se entiende como cualquier sustancia química que logra acelerar la velocidad de una reacción química y que su masa disminuye durante la reacción de la misma.
El término "proceso de curado" (véase Figura 1) que se usa en este documento se entiende como cualquier proceso de polimerización que se produzca, dando lugar a una reacción química de entrelazamiento de las cadenas del gel-coat debido a la adición de un agente catalizador y/o un acelerante.
El nuevo material, y/o los métodos reivindicados en el presente documento pueden realizarse y ejecutarse sin experimentación debida a la luz de la presente descripción. Es evidente q u e expertos en la técnica pueden aplicar variaciones en la secuencia de pasos del método descrito en el apartado de realizaciones particulares y en la Figura 1 de este documento, sin apartarse del concepto, espíritu y alcance de la invención. Todas estas modificaciones similares para expertos en la técnica se consideran dentro del espíritu, alcance y concepto de la invención como se define por las reivindicaciones adjuntas.

Claims

REIVINDICACIONES
1. Nuevo gel-coat aditivado con partículas de dióxido de titanio y alúmina está caracterizado por:
-Entre un 50% y un 94% del peso total de una resina curable sintética que puede ser seleccionada de la familia de los poliésteres, de la familia de los vinil ésteres, o de la familia de las resinas epoxi, o combinaciones equivalentes de las mismas.
-Un catalizador químico para curar dicha resina
-Entre un 1 % a un 25% del peso total de dióxido de titanio (ΤΊΟ2 en sus fases metaestables anatasa y rutilo) con una granulometría inferior a 20 nanometros. -Entre un 5% a un 25% del peso total de óxido de aluminio (AI2O3) en polvo también con una granulometría inferior a 20 nanometros.
2. Un procedimiento para preparar este "gel-coat" según reivindicación 1 comprende al menos combinar al menos dióxido de titanio con al menos una resina de poliéster, y/ó resina epoxi y un catalizador químico para formar una composición de "gel-coat".
3. Un paso del procedimiento para preparar una composición de este "gel-coat" según reivindicación 1 comprende al menos una perfecta homogeneización de los elementos que se combinan.
4. Un paso del procedimiento para preparar una composición de este "gel-coat" según reivindicación 1 comprende un proceso de curado dicha composición.
5. Un procedimiento para preparar una composición de "gel-coat" según reivindicación
4 comprende aplicar dicha composición de "gel-coat" a un artículo, seguido de un proceso de curado.
6. Un procedimiento para preparar una composición de "gel-coat" según reivindicación
5 en el que el artículo en el que se aplica puede ser cualquier elemento exterior en contacto con el aire y la luz, y en particular pero no limitado a, elementos de superficie de paneles de construcción, elementos de superficie de materiales urbanos (tales como bancos, vallas, cubiertas, tejados, etc .. ) elementos exteriores de carrocerías de vehículos de transporte, elementos exteriores de embarcaciones tanto por encima como por debajo de la línea de flotación de la embarcación, elementos exteriores de molinos de viento, elementos constituyentes de piscinas, de bañeras, de duchas, de sanitarios, de tuberías, y tanques de almacenamiento de agua.
PCT/ES2018/070591 2017-09-20 2018-09-10 Nuevo gel-coat aditivado con partículas de dióxido de titanio y alúmina WO2019058010A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MA49590A MA49590A1 (fr) 2017-09-20 2018-09-10 Nouvel enduit gélifié additionné de particules de dioxyde de titane et d'alumine
EP18857910.6A EP3686237A4 (en) 2017-09-20 2018-09-10 NEW JELLY COATING WITH TITANIUM DIOXIDE PARTICLES AND ALUMINA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201731136 2017-09-20
ES201731136A ES2705088B2 (es) 2017-09-20 2017-09-20 Nuevo gel-coat aditivado con particulas de dioxido de titanio y alumina

Publications (1)

Publication Number Publication Date
WO2019058010A1 true WO2019058010A1 (es) 2019-03-28

Family

ID=65729015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070591 WO2019058010A1 (es) 2017-09-20 2018-09-10 Nuevo gel-coat aditivado con partículas de dióxido de titanio y alúmina

Country Status (4)

Country Link
EP (1) EP3686237A4 (es)
ES (1) ES2705088B2 (es)
MA (1) MA49590A1 (es)
WO (1) WO2019058010A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707725B (zh) * 2019-06-27 2020-10-21 奇鼎科技股份有限公司 光催化分解材料之製備方法及使用光催化分解材料之濾網結構

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571359A (en) 1992-01-24 1996-11-05 Revlon Consumer Products Corporation Radiation curable pigmented compositions
WO1998032473A2 (en) 1997-01-23 1998-07-30 Air Liquide Sante (International) Reduction of emissions of volatile compounds by additives
EP1069950B1 (fr) 1998-04-03 2001-12-12 Ahlstrom Research and Competence Center Composition photocatalytique
JP2005125164A (ja) * 2003-10-22 2005-05-19 Dainippon Toryo Co Ltd 機能性塗膜の形成法
US7144840B2 (en) 2004-07-22 2006-12-05 Hong Kong University Of Science And Technology TiO2 material and the coating methods thereof
US20070166467A1 (en) 2006-01-18 2007-07-19 Ji Cui Water dispersible silanes as corrosion-protection coatings and paint primers for metal pretreatment
ES2285868T3 (es) 1998-12-22 2007-11-16 Vitro Europa, Ltd. Composicion de pintura curable por radiacion ultravioleta y proceso para su aplicacion en sustratos de vidrio.
EP2098359A1 (en) * 2008-03-04 2009-09-09 Lm Glasfiber A/S Regenerating surface properties for composites
WO2010122182A1 (es) 2009-04-24 2010-10-28 Fundacion Labein Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos
WO2012104020A1 (en) * 2011-02-02 2012-08-09 Ashland Licensing And Intellectual Property Llc. Scratch resistant gelcoat
ES2401799B1 (es) 2011-08-08 2014-06-03 Acciona Infraestructuras, S.A. Procedimiento para la preparación de un aditivo que comprende partículas de tio2 soportadas y dispersas

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571359A (en) 1992-01-24 1996-11-05 Revlon Consumer Products Corporation Radiation curable pigmented compositions
WO1998032473A2 (en) 1997-01-23 1998-07-30 Air Liquide Sante (International) Reduction of emissions of volatile compounds by additives
EP1069950B1 (fr) 1998-04-03 2001-12-12 Ahlstrom Research and Competence Center Composition photocatalytique
ES2285868T3 (es) 1998-12-22 2007-11-16 Vitro Europa, Ltd. Composicion de pintura curable por radiacion ultravioleta y proceso para su aplicacion en sustratos de vidrio.
JP2005125164A (ja) * 2003-10-22 2005-05-19 Dainippon Toryo Co Ltd 機能性塗膜の形成法
US7144840B2 (en) 2004-07-22 2006-12-05 Hong Kong University Of Science And Technology TiO2 material and the coating methods thereof
US20070166467A1 (en) 2006-01-18 2007-07-19 Ji Cui Water dispersible silanes as corrosion-protection coatings and paint primers for metal pretreatment
EP2098359A1 (en) * 2008-03-04 2009-09-09 Lm Glasfiber A/S Regenerating surface properties for composites
WO2010122182A1 (es) 2009-04-24 2010-10-28 Fundacion Labein Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos
WO2012104020A1 (en) * 2011-02-02 2012-08-09 Ashland Licensing And Intellectual Property Llc. Scratch resistant gelcoat
ES2401799B1 (es) 2011-08-08 2014-06-03 Acciona Infraestructuras, S.A. Procedimiento para la preparación de un aditivo que comprende partículas de tio2 soportadas y dispersas

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
A.M. PEIROJ. PERALC. DOMINGOX. DOMENECHJ.A. AYLLON: "Low-Temperature deposition of Ti02 thin films with photocatalytic activity from colloidal anatase aqueous solutions", CHEMISTRY OF MATERIALS, vol. 13, 2001, pages 2567 - 2573, XP001078077, DOI: 10.1021/cm0012419
APPL. CATAL. B, vol. 66, no. 3-4, 2006, pages 295
BALASUBRAMANIAN G.DIONYSIOU D.D.SUIDAN M.T.: "Titanium Dioxide coatings on stainless steel Encyclopedia of Nanoscience and Nanotechonology", 2005, WILEY- VCH
FUJISHIMA, A.HONDA, K.: "Electrochemical Photolysis of Water at a Semiconductor Electrode", NATURE, vol. 37, 1972, pages 238
HASHIMOTO K. ET AL., J. APPL. PHYS., vol. 44, no. 12, 2005, pages 8269
HASHIMOTO K.IRIE, HFUJISHIMA, A.: "Ti02 Photocatalysis: A Historical Overview and Future Prospects", JPN. J. APPL. PHYS., vol. 44, no. 12, 2005, pages 8269, XP001502385, DOI: 10.1143/JJAP.44.8269
PEIRO, A. M. ET AL., APPL. CATAL. B-ENVIRON., vol. 30, 2001, pages 359 - 373
SANCHEZ, B. ET AL., APPL. CATAL. B- ENVIRON., vol. 66, 2006, pages 295
SANCHEZ, B.CORONADO, J. M.CAUDAL, R.PORTELA, R.TEJEDOR, I.ANDERSON, M. A.TOMPKINS, D.LEE, T.: "Preparation of Ti02 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase", APPL. CATAL. B-ENVIRON., vol. 66, 2006, pages 295, XP028001094, DOI: 10.1016/j.apcatb.2006.03.021
SEBASTIAN SCHOLZ ET AL.: "Nanoparticles reinforced epoxy gelcoats for fiber-plastic composites under multiple loads", PROGRESS IN ORGANIC COATINGS, vol. 77, no. 7, 2014, pages 1129 - 1136, XP055584296, ISSN: 0300-9440, DOI: 10.1016/j.porgcoat.2014.03.012 *
TAKAHASHI, Y.MATSUOKA, Y.: "Dip-coating of Ti02 films using a sol derived from Ti(0-i-Pr)4-diethanolamine-H20-i-PrOH system", J. MATER. SCI., vol. 23, 1988, pages 2259, XP001261415
WEIWEI CONG ET AL.: "Fabrication and Evaluation of the Nano-Ceramics Modified Epoxy Coatings", KEY ENGINEERING MATERIALS, vol. 368-372, 2008, pages 1294 - 1296, XP009519389, ISSN: 1013-9826, DOI: 10.4028/www.scientific.net/KEM.368-372.1294 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707725B (zh) * 2019-06-27 2020-10-21 奇鼎科技股份有限公司 光催化分解材料之製備方法及使用光催化分解材料之濾網結構

Also Published As

Publication number Publication date
EP3686237A4 (en) 2021-08-11
ES2705088B2 (es) 2020-03-30
MA49590A1 (fr) 2021-01-29
ES2705088A1 (es) 2019-03-21
EP3686237A1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
Agrios et al. State of the art and perspectives on materials and applications of photocatalysis over TiO 2
Chen et al. Photocatalytic construction and building materials: from fundamentals to applications
Spasiano et al. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach
Huang et al. Synthesis of Neutral SiO2/TiO2 Hydrosol and Its Application as Antireflective Self‐Cleaning Thin Film
Lalhriatpuia et al. Immobilized Nanopillars-TiO2 in the efficient removal of micro-pollutants from aqueous solutions: Physico-chemical studies
Kovacic et al. Solar driven degradation of 17β-estradiol using composite photocatalytic materials and artificial irradiation source: Influence of process and water matrix parameters
Liu et al. Performance and mechanism of self-cleaning synergistic photocatalytic coating inhibiting NO2 for green degradation of NO
Lee et al. Control of methyl tertiary-butyl ether via carbon-doped photocatalysts under visible-light irradiation
Katsumata et al. Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets
Xie et al. New Route to Synthesize Highly Active Nanocrystalline Sulfated Titania− Silica: Synergetic Effects between Sulfate Species and Silica in Enhancing the Photocatalysis Efficiency
CN100435936C (zh) 以泡沫铝负载二氧化钛的催化剂的制备方法
ES2705088B2 (es) Nuevo gel-coat aditivado con particulas de dioxido de titanio y alumina
Cheng et al. Preparation of a novel composite electrode based on N-doped TiO2-coated NaY zeolite membrane and its photoelectrocatalytic performance
Jinhui et al. The progress of TiO2 photocatalyst coating
WO2012069672A1 (es) Recubrimientos fotocatalíticos híbridos, procedimiento para aplicarlos sobre distintos sustratos y usos de los sustratos así recubiertos
Mousa et al. Catalytic photodegradation of cyclic sulfur compounds in a model fuel using a bench-scale falling-film reactor irradiated by a visible light
Sandhya et al. Visible light induced photocatalytic activity of polyaniline modified TiO2 and Clay-TiO2 composites
US20200199399A1 (en) New gel-coat additivated with titanium dioxide and alumina particles
Khan Metal oxide powder photocatalysts
Liu et al. Immobilization of nonisolated BiPO 4 particles onto PDMS/SiO 2 composite for the photocatalytic degradation of dye pollutants
JPH10167727A (ja) 変性酸化チタンゾル、光触媒組成物及びその形成剤
Han et al. Photocatalytic concrete
CN104909403A (zh) 一种二氧化钛纳米片的制备方法及其应用
CN110090657A (zh) 一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其应用
Verma et al. Photocatalytic efficacy of air purifiers equipped with self-cleaning titanium dioxide xerogel coatings against gaseous formaldehyde: A study using DRIFTS and DFT analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857910

Country of ref document: EP

Effective date: 20200420