WO2019053803A1 - 発電補助システム及び火力発電プラント - Google Patents
発電補助システム及び火力発電プラント Download PDFInfo
- Publication number
- WO2019053803A1 WO2019053803A1 PCT/JP2017/033027 JP2017033027W WO2019053803A1 WO 2019053803 A1 WO2019053803 A1 WO 2019053803A1 JP 2017033027 W JP2017033027 W JP 2017033027W WO 2019053803 A1 WO2019053803 A1 WO 2019053803A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- steam
- line
- supply line
- heat
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 182
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 134
- 238000011144 upstream manufacturing Methods 0.000 claims description 26
- 239000002803 fossil fuel Substances 0.000 claims description 9
- 238000007689 inspection Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011234 economic evaluation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
Definitions
- the present invention relates to a power generation assistance system and a thermal power plant.
- a power generation facility that generates steam by burning fossil fuel in a boiler and supplies overheated steam to a steam turbine to generate power.
- a power generation facility if the temperature of water supplied to the boiler can be increased, the power generation efficiency is improved. Therefore, it is practiced to preheat water supplied to the boiler with the extracted steam extracted from the steam turbine.
- a steam turbine plant has been proposed in which a heat source (for example, another boiler) derived from renewable energy is separately provided and the water supplied to the boiler is preheated using this heat source (for example, see Patent Document 1) .
- auxiliary equipment equipment for generating heat from renewable energy
- the operating rate utilization factor of the auxiliary equipment
- the utilization factor of the auxiliary facility is lowered, and the economic evaluation of the auxiliary facility is lowered.
- the power generating equipment may be stopped for a long time (for example, half a year), and the auxiliary equipment is also stopped for a long time.
- the evaluation of the economics of the auxiliary equipment is greatly reduced. Therefore, it is important on the installation to increase the utilization factor of the auxiliary equipment.
- An object of the present invention is to provide a power generation assistance system and a thermal power plant capable of improving the capacity factor.
- the present invention is a power generation assistance system that is disposed in a thermal power plant having a plurality of power generation facilities that supply steam from a boiler that generates fossil fuel by burning fossil fuel to generate steam to generate power, and assists the power generation by the power generation facility.
- a bypass line connected to each of the plurality of water supply lines connected from the turbines of the power generation equipment to the boiler, and bypassing the water supply line, and a steam generation unit generating steam using heat derived from renewable energy
- a heat exchanger for preheating water flowing therethrough.
- the bypass line is disposed across a plurality of the power generation facilities, and is provided for one heat exchange line passing through the heat exchanger and for each of the plurality of power generation facilities, and the upstream side of the heat exchange lines
- a plurality of bypass lines are provided for each of the plurality of power generation facilities, and a plurality of heat exchangers are provided for each of the bypass lines.
- a plurality of the heat exchangers are provided, and one heat exchange line is disposed across the plurality of the heat exchangers.
- the auxiliary power generation system further includes a flow control valve for controlling supply of steam from the heat exchange steam supply line to the heat exchanger, and the heat exchange steam supply line includes a plurality of heat exchangers. It is preferable to provide a main steam supply line disposed across and a secondary steam supply line connecting the main steam supply line and the heat exchanger. Further, the control of the supply of steam is not limited to the flow valve, and may be controlled by a mechanism including a removable short pipe, a closing flange and the like.
- the said mechanism controls the supply flow rate of the steam from the said steam supply line for heat exchange to the said heat exchanger, respectively.
- a power generation assistance system is provided on the upstream side of the bypass line across the heat exchanger for each of the plurality of power generation facilities, and an inlet valve that controls acceptance of each of the plurality of power generation facilities to the bypass line.
- an outlet valve provided downstream of the bypass line across the heat exchanger for each of the plurality of power generation facilities and controlling discharge from the bypass line to the plurality of power generation facilities.
- the outlet valve controls the flow rate of water discharged from the bypass line to each of the plurality of power generation facilities.
- the inlet valve controls the flow rate of water received from each of the plurality of power generation facilities to the bypass line.
- the said inlet valve and the said outlet valve are opened and closed according to the operating condition of the corresponding said power generation equipment.
- a condensate line is connected to the heat exchanger on the upstream side and to the steam generation unit on the downstream side, and passes through condensate of steam preheated water flowing through the bypass line; It is preferable to further include a pump disposed in the condensate line between the heat exchanger and the steam generation unit that generates steam using heat derived from renewable energy.
- the present invention also relates to a thermal power plant comprising a steam generation auxiliary system and a plurality of power generation facilities connected to the power generation auxiliary system.
- the thermal power plant 1 includes a plurality of power generation facilities 10 (systems, units) and a power generation assistance system 100.
- the thermal power plant 1 generates steam using the heat generated by burning fossil fuel to generate electricity.
- the thermal power plant 1 preheats water to be steam using heat derived from renewable energy (for example, wind power, solar power, geothermal heat, combustion heat of RDF (waste solid fuel, Refused Derived Fuel), etc.) Do.
- renewable energy for example, wind power, solar power, geothermal heat, combustion heat of RDF (waste solid fuel, Refused Derived Fuel), etc.
- Each of the plurality of power generation facilities 10 includes a boiler 11, a steam generation line for power generation 12, a turbine 13, a generator 14, a condenser 15, a water supply line 16, a water supply heater 17, and a bleed line 18.
- the "line” in this specification is a generic term of the line which can distribute
- the boiler 11 generates steam from water using the heat generated by burning fossil fuel. Specifically, the boiler 11 generates superheated steam for power generation using the combustion heat of fossil fuel.
- One end of the power generation steam supply line 12 is connected to the boiler 11. Overheated steam generated by the boiler 11 flows through the power generation steam supply line 12.
- the turbine 13 is connected to the other end of the power generation steam supply line 12.
- the turbine 13 is a steam turbine.
- the turbine 13 is rotated about the rotation shaft (not shown) by the superheated steam supplied from the boiler 11.
- the turbine 13 is rotated about a rotation shaft (not shown) by an axial power generated by expansion of the superheated steam flowing in from the power generation steam supply line 12.
- the generator 14 is connected to the turbine 13. Specifically, the generator 14 is connected to the rotation shaft of the turbine 13. The generator 14 generates power by rotation of the rotation shaft of the turbine 13.
- the condenser 15 is disposed at the outlet of the turbine 13.
- the turbine exhaust (steam) that has rotated the turbine 13 flows into the condenser 15.
- the condenser 15 cools the turbine exhaust with cooling water (not shown) to generate condensed water. Further, the condenser 15 combines drain water, which will be described later, with condensed water to generate water to be supplied to the boiler 11.
- One end of the water supply line 16 is connected to the condenser 15, and the other end is connected to the boiler 11.
- the water generated by the condenser 15 flows through the water supply line 16 toward the boiler 11.
- One end of the bleed line 18 is connected to the turbine 13. Steam extracted from a part of the steam flowing into the turbine 13 flows through the bleed line 18.
- the feed water heater 17 is disposed in the water feed line 16. Further, the other end of the bleed line 18 is connected to the feed water heater 17, and the extracted steam flows into the inside.
- the feed water heater 17 exchanges heat between the water flowing through the water feed line 16 and the extracted steam to preheat the water flowing through the water feed line 16.
- the feed water heater 17 sends drain water, in which the extracted steam is condensed by heat exchange, to the condenser 15 through the drain water flow line 19.
- the power generation assistance system 100 is a system for assisting the power generation by the power generation facility 10, and is installed in parallel to the plurality of power generation facilities 10. Specifically, the power generation assistance system 100 is a system for supplying heat derived from renewable energy to the power generation facility 10 by preheating water flowing through the water supply line 16.
- the auxiliary power generation system 100 includes a bypass line 110, a steam generation unit 120, a heat exchange steam supply line 130, a heat exchanger 140, a condensate line 150, a pump 160, an inlet valve 170, and an outlet valve 180. And.
- the bypass line 110 is connected to each of the water supply lines 16 of the plurality of power generation facilities 10 and bypasses the water supply line 16. That is, the bypass line 110 is a line for receiving water from the upstream side of the water supply line 16 and discharging it to the downstream side of the water supply line 16.
- the bypass line 110 includes one heat exchange line 111, a plurality of receiving lines 112, and a plurality of dispensing lines 113.
- the heat exchange line 111 is disposed across the plurality of power generation facilities 10. In other words, the heat exchange line 111 is disposed as a line common to the plurality of power generation facilities 10.
- the heat exchange line 111 is a line through which the water received from the plurality of power generation facilities 10 flows.
- the heat exchange line 111 passes through a heat exchanger 140 described later.
- the receiving line 112 is provided for each of the plurality of power generation facilities 10 and connects the upstream side of the heat exchange line 111 and the upstream side of the water supply line 16. Specifically, the upstream end of the receiving line 112 is connected to the upstream of the water supply line 16 of the power generation facility 10, and the downstream end of the receiving line 112 is connected to the heat exchange line 111.
- the delivery line 113 is provided for each of the plurality of power generation facilities 10, and connects the downstream side of the heat exchange line 111 and the downstream side of the water supply line 16. Specifically, the upstream end of the dispensing line 113 is connected to the downstream side of the heat exchange line 111, and the downstream end of the dispensing line 113 is connected to the downstream side of the water supply line 16 of the power generation facility 10 .
- the steam generation unit 120 generates steam for heat exchange (for preheating) using heat derived from renewable energy.
- the steam generation unit 120 generates steam using heat derived from renewable energy (eg, sunlight, geothermal energy, wind power, combustion of RDF, etc.).
- the steam generation unit 120 is, for example, a boiler 11 that burns RDF, and generates steam using the combustion heat of RDF.
- One end of the heat exchange steam supply line 130 is connected to the steam generation unit 120.
- the steam supplied from the steam generation unit 120 flows through the heat exchange steam supply line 130.
- the heat exchanger 140 is connected to the other end of the heat exchange steam supply line 130.
- a part of the bypass line 110 is disposed inside.
- a part between the upstream side and the downstream side of the heat exchange line 111 is disposed inside.
- the heat exchanger 140 uses the steam supplied from the heat exchange steam supply line 130 to preheat water flowing through the bypass line 110 (heat exchange line 111).
- the heat exchanger 140 brings the steam introduced into the interior from the heat exchange steam supply line 130 into contact with the bypass line 110 (the heat exchange line 111), thereby introducing the introduced steam and the bypass line 110 (the heat exchange line 111). Heat is exchanged with the water flowing through the heat exchange line 111).
- One end (upstream side) of the condensate line 150 is connected to the heat exchanger 140, and the other end (downstream side) is connected to the steam generation unit 120.
- the condensate line 150 steam condensate that has preheated water flowing in the bypass line 110 flows. That is, the condensate of the steam heat-exchanged in the heat exchanger 140 flows through the condensate line 150.
- the pump 160 is provided in the condensate line 150. Specifically, the pump 160 is disposed in the condensate line 150 between the heat exchanger 140 and the steam generation unit 120 that generates steam using heat derived from renewable energy. The pump 160 sends, to the steam generation unit 120, the condensed steam of the heat exchanged with the water flowing through the bypass line 110 in the heat exchanger 140.
- the inlet valve 170 is provided for each of the plurality of power generation facilities 10 and is provided on the upstream side of the bypass line 110 with the heat exchanger 140 interposed therebetween.
- the inlet valve 170 is provided at each of the connections between the water supply line 16 and the reception line 112 to open and close the communication between the water supply line 16 and the reception line 112.
- the inlet valve 170 controls the reception of water from each of the plurality of power generation facilities 10 to the bypass line 110 (the heat exchange line 111) by opening and closing the connection with the reception line 112.
- a plurality of outlet valves 180 are provided for each of the plurality of power generation facilities 10 and provided downstream of the bypass line 110 with the heat exchanger 140 interposed therebetween.
- the outlet valve 180 is provided in each of the payout lines 113 to open and close the payout line 113.
- the outlet valve 180 controls the discharge of water to the plurality of power generation facilities 10 by opening and closing the discharge line 113.
- the operation of the power generation assistance system 100 will be described.
- an operation of preheating water flowing through the bypass line 110 using the steam generated by the steam generation unit 120 will be described.
- steam generation unit 120 steam is generated using heat derived from renewable energy.
- the steam generated by the steam generation unit 120 flows through the heat exchange steam supply line 130 and is supplied to the heat exchanger 140.
- the steam supplied to the heat exchanger 140 is introduced into the heat exchanger 140.
- the steam introduced into the heat exchanger 140 is cooled by heat exchange with water flowing through the bypass line 110 (heat exchange line 111).
- the cooled steam is condensed (drain water) and discharged from the heat exchanger 140 to the condensing line 150.
- the condensed water discharged to the condensed water line 150 is pressurized by the pump 160 and returned to the steam generation unit 120.
- the inlet valve 170 and the outlet valve 180 By opening the inlet valve 170 and the outlet valve 180 arranged corresponding to each of the plurality of power generation facilities 10, water from the water supply line 16 of the plurality of power generation facilities 10 passes through the receiving line 112 and a heat exchange line Accepted at 111 The water received in the heat exchange line 111 is preheated through the heat exchanger 140 and discharged to the water supply line 16 of each power generation facility 10 through the discharge line 113.
- the inlet valve 170 and the outlet valve 180 corresponding to the power generation facility 10 to be stopped are closed. Thereby, the reception and the discharge of the water from the water supply line 16 of the power generation facility 10 to be closed to the bypass line 110 (the heat exchange line 111) are stopped.
- the inlet valve 170 and the outlet valve 180 corresponding to the other power generation facility 10 are not closed, the reception and discharge of water from the water supply line 16 of the other power generation facility 10 to the bypass line 110 (heat exchange line 111). Will continue.
- the reception and discharge of water from the water supply line 16 of the other power generation facility 10 to the bypass line 110 is continued.
- a bypass line 110 is connected to each of the water supply lines 16 connected to the boiler 11 from the turbines 13 of the plurality of power generation facilities 10 and bypasses the water supply line 16, and derived from renewable energy It is connected to the steam generation unit 120 that generates steam using heat, the heat exchange steam supply line 130 through which the steam supplied from the steam generation unit 120 flows, and the heat exchange steam supply line 130, and the heat exchange steam And a heat exchanger 140 for preheating the water flowing through the bypass line 110 using the steam introduced from the supply line 130.
- the water preheated using the heat derived from the renewable energy can be supplied to the water supply line 16 through the bypass line 110.
- the bleed air from the bleed line 18 can be reduced, and the power generation efficiency can be improved.
- the water supplied to the boiler 11 can be preheated using the heat derived from the renewable energy, carbon dioxide can be reduced by reducing the amount of fossil fuel used, and the economy can be improved.
- the steam generation unit 120 can be kept operating since it can be received from the water supply line 16 of the other power generation facilities 10 to the bypass line 110. Since the steam generation unit 120 does not have to be stopped, the facility utilization rate of the power generation assistance system 100 can be improved.
- the bypass line 110 is disposed across the plurality of power generation facilities 10, and is provided for one heat exchange line 111 passing through the heat exchanger 140 and each of the plurality of power generation facilities 10;
- a receiving line 112 connecting the upstream side and the upstream side of the water supply line 16 and a discharge line 113 provided for each of the plurality of power generation facilities 10 and connecting the downstream side of the heat exchange line 111 and the downstream side of the water supply line 16 And included.
- the power generation assistance system 100 is further provided upstream of the bypass line 110 across the heat exchanger 140 for each of the plurality of power generation facilities 10, and controls acceptance of each of the plurality of power generation facilities 10 to the bypass line 110
- An inlet valve 170, and an outlet valve 180 provided downstream of the bypass line 110 across the heat exchanger 140 for each of the plurality of power generation facilities 10 and controlling the discharge from the bypass line 110 to the plurality of power generation facilities 10; It included.
- the power generation facility 10 that receives water from the water supply line 16 to the bypass line 110 can be selectively changed. Therefore, the heat of the steam generation unit 120 can be dispersed and efficiently supplied to the power generation facility 10 in operation.
- the inlet valve 170 and the outlet valve 180 are opened and closed in accordance with the operating condition of the corresponding power generation facility 10. Thereby, the heat generated by the steam generation unit 120 can be efficiently distributed to the power generation facility 10 in operation, and the power generation efficiency can be improved.
- the power generation assistance system 100a according to the second embodiment is different from the first embodiment in that a plurality of bypass lines 110a are provided for each of a plurality of power generation facilities 10, as shown in FIG.
- the power generation assistance system 100 a according to the second embodiment includes a plurality of pumps 160 a instead of the pump 160.
- the power generation assisting system 100a according to the second embodiment includes a plurality of flow valves 190. As shown in FIG. 3, one pump 160a may be provided. Further, the flow valve 190 having a function of controlling the supply of steam may be on the inlet side of the heat exchanger 140a.
- Each of the plurality of bypass lines 110 a is provided for each power generation facility 10. That is, the bypass line 110 a is provided in a pair with the power generation facility 10. Each of the bypass lines 110 a is provided as a line that bypasses the water supply line 16 of the power generation facility 10, the upstream end is connected to the upstream end of the water supply line 16, and the downstream end is downstream of the water supply line 16. Connected to the end.
- the heat exchanger 140a is disposed in each of the plurality of bypass lines 110a. That is, the heat exchanger 140a is provided in a pair with the bypass line 110a.
- the inlet valve 170a is disposed upstream of the plurality of bypass lines 110a.
- the outlet valve 180a is disposed downstream of the plurality of bypass lines 110a.
- the heat exchange steam supply line 130a includes one main steam supply line 131a and a plurality of secondary steam supply lines 132a.
- the main steam supply line 131a is disposed across the plurality of heat exchangers 140a. In other words, the main steam supply line 131a is disposed as a common line to the plurality of heat exchangers 140a.
- the upstream end of the main steam supply line 131 a is connected to the steam generation unit 120. The steam generated by the steam generation unit 120 flows through the main steam supply line 131a.
- Each of the plurality of secondary steam supply lines 132a is disposed corresponding to the heat exchanger 140a, and the upstream end is connected to the main steam supply line 131a.
- the downstream end of each of the plurality of secondary steam supply lines 132a is connected to the heat exchanger 140a. That is, the auxiliary steam supply line 132a is provided in a pair with the heat exchanger 140a.
- the condensate line 150 includes a plurality of secondary condensate lines 151a and one main condensate line 152a.
- the upstream ends of the plurality of secondary condensate lines 151a are respectively connected to the heat exchanger 140a.
- the downstream end of each of the plurality of secondary condensing lines 151a is connected to the main condensing line 152a. That is, the auxiliary condensing line 151a is provided in a pair with the heat exchanger 140a.
- the condensed water discharged from the heat exchanger 140a flows through the auxiliary condensed water line 151a.
- Each of the pumps 160a is disposed in the condensate line 150a. Specifically, each of the pumps 160a is disposed in the secondary condensate line 151a. That is, the pump 160a is provided in a pair with the heat exchanger 140a. The pump 160 a pressurizes the condensate discharged from the heat exchanger 140 a and sends it to the steam generation unit 120.
- the flow valve 190 is disposed in the condensate line 150. Specifically, each of the flow valves 190 is disposed in the secondary condensate line 151a, and is disposed downstream of the pump 160a. That is, the flow valve 190 is disposed in a pair with the heat exchanger 140a and the pump 160a.
- the flow valve 190 opens and closes the secondary condensing line 151a to control the inflow of condensing water from the heat exchanger 140a to the primary condensing line 152a.
- each of the plurality of flow valves 190 controls the supply of steam from the heat exchange steam supply line 130a (the secondary steam supply line 132a) to the heat exchanger 140a.
- the flow valve 190 controls the supply flow rate of steam from the heat exchange steam supply line 130a to the heat exchanger.
- the flow control valve 190 controls to supply 10 t / h of steam to one heat exchanger 140a, and controls to supply 20 t / h of steam to another heat exchanger 140a.
- the downstream end of the main condensate line 152 a is connected to the steam generator 120. Condensed water that has flowed in from the plurality of sub-condensing lines 151 a flows through the main condensing line 152 a.
- the pump 160a is arrange
- the pump 160 a pressurizes the condensate discharged from the heat exchanger 140 a and sends it to the steam generation unit 120.
- the steam supplied to each heat exchanger 140a is introduced into the inside of the heat exchanger 140a.
- the steam introduced into the heat exchanger 140a exchanges heat with water flowing through the bypass line 110a to be cooled.
- the cooled steam becomes condensed water (drain water), and is discharged from the respective heat exchangers 140 a to the auxiliary water condensing line 151 a.
- the condensate discharged to the secondary condensate line 151a is pressurized by the respective pumps 160a and flows into the primary condensate line 152a.
- the condensed water joined at the main condensed water line 152a is returned to the steam generation unit 120.
- the inlet valve 170 a and the outlet valve 180 a of the bypass line 110 a connected to the power generation facility 10 to be stopped are closed. Thereby, reception of water from the water supply line 16 of the power generation facility 10 to be stopped to the bypass line 110a is stopped. Also, the supply of steam to the heat exchanger 140a for preheating the water flowing through the bypass line 110a whose reception has been stopped is also stopped. Specifically, the flow valve 190 disposed in the secondary condensate line 151a connected to the heat exchanger 140a is closed to stop the supply of steam.
- the operation of the pump 160a disposed in the same secondary condensate line 151a as the secondary condensate line 151a in which the closed flow valve 190 is disposed is also stopped.
- reception and discharge of water from the water supply line 16 of the power generation facility 10 to be stopped to the bypass line 110a are stopped, while reception and discharge of water from the other power generation facility 10 to the bypass line 110a is continued.
- reception and the discharge of water from the water supply line 16 of the other power generation facility 10 to the bypass line 110a are continued.
- the mechanism is configured to control the amount of steam supplied from the heat exchange steam supply line to the heat exchanger.
- the amount of steam supplied to each of the heat exchangers 140a can be made different. Therefore, an appropriate amount of steam can be supplied to each heat exchanger 140a according to the amount of water flowing through the bypass line 110, the amount of heat required for preheating, and the like.
- a plurality of bypass lines 110a are provided for each of the plurality of power generation facilities 10, and a plurality of heat exchangers 140a are provided for each of the bypass lines 110a.
- the power generation assistance system 100a further includes a flow valve 190 that controls the supply of steam from the heat exchange steam supply line 130a to the heat exchanger 140a.
- a main steam supply line 131a disposed across the plurality of heat exchangers 140a
- a secondary steam supply line 132a connecting the main steam supply line 131a and the heat exchanger 140a
- a heat exchange steam supply line 130a a heat exchange steam supply line 130a.
- Steam can be supplied from the main steam supply line 131a to the plurality of heat exchangers 140a via the secondary steam supply line 132a.
- the supply of steam to each of the heat exchangers 140a can be controlled by opening and closing the flow valve 190. Therefore, since the supply of steam to the heat exchanger 140a can be switched according to the operating condition of the power generation facility 10, the heat derived from the regenerated energy can be used efficiently.
- one heat exchanger 140 is used, but the invention is not limited thereto.
- a plurality of heat exchangers 140 may be provided, and the heat exchange lines 111 may be disposed to pass through the plurality of heat exchangers 140.
- redundancy may be enhanced by setting at least one of the heat exchange line 111, the heat exchange steam supply line 130, and the condensate line 150 as a plurality of lines (systems).
- a plurality of heat exchangers may be used properly for each temperature range in which heat exchange is performed. By selecting materials that are cost minimal at each temperature, a lower cost system can be obtained.
- the bypass line 110a bypassing the water supply line 16 of the power generation facility 10 is separately provided in each power generation facility 10.
- the line 111 may be provided across the plurality of heat exchangers 140a in the second embodiment, and the bypass lines 110a of the plurality of power generation facilities 10 may be connected to the plurality of heat exchangers 140a. That is, although the bypass line 110a bypassing the water supply line 16 of the power generation facility 10 is separately provided in each power generation facility 10, the present invention is not limited thereto.
- one heat exchange line 111 of the first embodiment may be employed for a plurality of heat exchangers 140a.
- one heat exchange line 111 may be disposed across the plurality of heat exchangers 140 and may be provided to pass through the plurality of heat exchangers 140 a.
- each power generation facility 10 (bypass line 110a) may be connected to one heat exchange line 111.
- the main steam supply line 131a was one, it is not restrict
- a plurality of main steam supply lines 131a may be provided to enhance redundancy.
- redundancy may be enhanced by providing a plurality of main condensate lines 152a.
- the inlet valve 170 and the outlet valve 180 corresponding to the power generation facility 10 to be stopped are closed for opening and closing the inlet valve 170 and the outlet valve 180, but the invention is not limited thereto.
- the inlet valve 170 and the outlet valve 180 may be determined to be closed or opened according to the thermal energy that each of the power generation facilities 10 can accept and the thermal energy that can be provided by the power generation assistance system 100, 100a.
- the inlet valve 170 and the outlet valve 180 of the power generation facility 10 having large allowable thermal energy are opened, and the inlet valve 170 and the outlet valve 180 of the small power generation facility 10 having acceptable thermal energy. May be closed. Thereby, the thermal efficiency of the thermal power plant 1 whole can be improved.
- the inlet valve 170 may control the flow rate of water received from each of the plurality of power generation facilities 10 to the bypass line 110.
- the outlet valve 180 may control the flow rate of water discharged from each of the plurality of bypass lines 110 to each of the power generation facilities 10.
- the inlet valves 170 may be controlled to receive different amounts of water from each of the power generation facilities 10, and the outlet valves 180 may dispense different amounts of water to each of the power generation facilities 10. It may be controlled.
- the inlet valve 170 may be controlled to receive 20 t / h of water from one power generation facility 10 and may be controlled to receive 5 t / h of water from another power generation facility 10.
- outlet valve 180 may be controlled to dispense 20 t / h of water to one power generation facility 10 and may be controlled to dispense 5 t / h of water to another power generation facility 10.
- the amount of water flowing through the bypass line 110 can be changed for each power generation facility 10, and control in line with the situation for each power generation facility 10 can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
設備利用率を向上することが可能な発電補助システム及び火力発電プラントを提供すること。 発電補助システム100は、複数の発電設備10のタービン13からボイラ11に接続される給水ライン16のそれぞれに接続され、給水ライン16をバイパスするバイパスライン110と、再生可能エネルギーに由来する熱を用いて蒸気を生成する蒸気生成部120と、蒸気生成部120から供給される蒸気が流通する熱交換用蒸気供給ライン130と、熱交換用蒸気供給ライン130に接続され、熱交換用蒸気供給ライン130から導入される蒸気を用いてバイパスライン110を流通する水を予熱する熱交換器140と、を備える。
Description
本発明は、発電補助システム及び火力発電プラントに関する。
従来より、ボイラにおいて化石燃料を燃焼することで蒸気を発生させ、蒸気タービンに過熱蒸気を供給することで発電する発電設備が知られている。一般的に、このような発電設備では、ボイラに供給される水の温度を高くすることができれば、発電効率が向上する。そこで、蒸気タービンから抽気された抽気蒸気でボイラに供給される水を予熱することが行われている。また、再生可能エネルギーに由来する熱源(例えば、他のボイラ)を別途設け、この熱源を用いてボイラに給水される水を予熱する蒸気タービンプラントが提案されている(例えば、特許文献1参照)。
ところで、再生可能エネルギーから熱を生成する設備(以下、補助設備という)を発電設備とは別途設ける場合、補助設備の稼働率(設備利用率)を考慮する必要がある。例えば、発電設備が停止するとともに補助設備を停止する場合、補助設備の設備利用率が低下し、補助設備の経済性評価が低下する。特に、発電設備の点検等では長期間(例えば、半年間等)、発電設備が停止することがあり、補助設備も長期間停止することとなる。すると、補助設備の経済性評価が大きく低下する。そこで、補助設備の設備利用率を高めることが設置の上で重要となる。
特許文献1に記載された蒸気タービンプラントでは、発電設備ごとに補助設備を設けており、発電設備が停止した場合、補助設備から供給される熱が余剰となる。このため、補助設備を有効に活用することができず、補助設備の設備利用率を向上することはできない。
本発明は、設備利用率を向上することが可能な発電補助システム及び火力発電プラントを提供することを目的とする。
本発明は、化石燃料を燃焼させて蒸気を生成するボイラからタービンに蒸気を供給して発電する発電設備を複数有する火力発電プラントに配置され、前記発電設備による発電を補助する発電補助システムであって、複数の前記発電設備のタービンからボイラに接続される給水ラインのそれぞれに接続され、給水ラインをバイパスするバイパスラインと、再生可能エネルギーに由来する熱を用いて蒸気を生成する蒸気生成部と、前記蒸気生成部から供給される蒸気が流通する熱交換用蒸気供給ラインと、前記熱交換用蒸気供給ラインに接続され、前記熱交換用蒸気供給ラインから導入される蒸気を用いて前記バイパスラインを流通する水を予熱する熱交換器と、を備える発電補助システムに関する。
また、前記バイパスラインは、複数の前記発電設備に跨って配置され、前記熱交換器を通る1つの熱交換用ラインと、複数の前記発電設備ごとに設けられ、前記熱交換用ラインの上流側と給水ラインの上流側とを接続する受入ラインと、複数の前記発電設備ごとに設けられ、前記熱交換用ラインの下流側と給水ラインの下流側とを接続する払出ラインと、を備えることが好ましい。
また、前記バイパスラインは、複数の前記発電設備ごとに複数設けられ、前記熱交換器は、前記バイパスラインごとに複数設けられることが好ましい。
また、前記熱交換器は複数設けられ、1つの前記熱交換用ラインは、複数の前記熱交換器に跨って配置されることが好ましい。
また、発電補助システムは、前記熱交換用蒸気供給ラインから前記熱交換器への蒸気の供給をそれぞれ制御する流通弁を更に備え、前記熱交換用蒸気供給ラインは、複数の前記熱交換器に跨って配置される主蒸気供給ラインと、前記主蒸気供給ラインと前記熱交換器とを接続する副蒸気供給ラインと、を備えることが好ましい。また、蒸気の供給の制御は、流通弁に制限されず、取り外し可能な短管や閉止フランジなどを含む機構で制御しても良い。
また、前記機構が、前記熱交換用蒸気供給ラインから前記熱交換器への蒸気の供給流量をそれぞれ制御することが好ましい。
また、発電補助システムは、複数の前記発電設備ごとに前記熱交換器を挟んで前記バイパスラインの上流側に設けられ、複数の前記発電設備のそれぞれから前記バイパスラインへの受入を制御する入口弁と、複数の前記発電設備ごとに前記熱交換器を挟んで前記バイパスラインの下流側に設けられ、前記バイパスラインから複数の前記発電設備への払出を制御する出口弁と、を更に備えることが好ましい。
また、前記出口弁が,前記バイパスラインから複数の前記発電設備のそれぞれへ払出する水の流量を制御することが好ましい。
また、前記入口弁が,複数の前記発電設備のそれぞれから前記バイパスラインへ受入する水の流量を制御することが好ましい。
また、前記入口弁及び前記出口弁は、対応する前記発電設備の運転状況に応じて開閉されることが好ましい。
また、発電補助システムは、上流側が前記熱交換器に接続され、下流側が前記蒸気生成部に接続され、前記バイパスラインを流通する水を予熱した蒸気の復水を流通する復水ラインと、前記熱交換器と再生可能エネルギーに由来する熱を用いて蒸気を生成する前記蒸気生成部との間の前記復水ラインに配置されるポンプと、を更に備えることが好ましい。
また、本発明は、蒸気発電補助システムと、発電補助システムに接続される複数の発電設備と、を備える火力発電プラントに関する。
本発明によれば、設備利用率を向上することが可能な発電補助システム及び火力発電プラントを提供することができる。
以下、本発明に係る発電補助システム及び火力発電プラントの各実施形態について図面を参照して説明する。
[第1実施形態]
まず、本発明の第1実施形態に係る発電補助システム100及び火力発電プラント1について、図1を参照して説明する。
火力発電プラント1は、図1に示すように、複数の発電設備10(系統、号機)と、発電補助システム100と、を備える。火力発電プラント1は、化石燃料を燃焼させることで発生した熱を用いて蒸気を生成して発電する。また、火力発電プラント1は、再生可能エネルギー(例えば、風力、太陽光、地熱、RDF(廃棄物固形燃料、Refuse Derived Fuel)の燃焼熱等)に由来する熱を用いて蒸気となる水を予熱する。
まず、本発明の第1実施形態に係る発電補助システム100及び火力発電プラント1について、図1を参照して説明する。
火力発電プラント1は、図1に示すように、複数の発電設備10(系統、号機)と、発電補助システム100と、を備える。火力発電プラント1は、化石燃料を燃焼させることで発生した熱を用いて蒸気を生成して発電する。また、火力発電プラント1は、再生可能エネルギー(例えば、風力、太陽光、地熱、RDF(廃棄物固形燃料、Refuse Derived Fuel)の燃焼熱等)に由来する熱を用いて蒸気となる水を予熱する。
複数の発電設備10のそれぞれは、ボイラ11と、発電用蒸気供給ライン12と、タービン13と、発電機14と、復水器15と、給水ライン16と、給水加熱器17と、抽気ライン18と、を備える。なお、本明細書における「ライン」とは、流路、径路、管路等の流体の流通が可能なラインの総称である。
ボイラ11は、化石燃料を燃焼させて発生した熱を用いて水から蒸気を生成する。具体的には、ボイラ11は、化石燃料の燃焼熱を用いて発電用の過熱蒸気を生成する。
発電用蒸気供給ライン12は、一端がボイラ11に接続される。発電用蒸気供給ライン12には、ボイラ11で生成された過熱蒸気が流通する。
タービン13は、発電用蒸気供給ライン12の他端に接続される。本実施形態において、タービン13は蒸気タービンである。タービン13は、ボイラ11から供給される過熱蒸気により、回転軸(図示せず)を軸心として回動する。具体的には、タービン13は、発電用蒸気供給ライン12から流入した過熱蒸気が膨張することで発生する軸動力により、回転軸(図示せず)を軸心として回転する。
発電機14は、タービン13に接続される。具体的には、発電機14は、タービン13の回転軸に接続される。発電機14は、タービン13の回転軸の回動によって発電する。
復水器15は、タービン13の出口に配置される。復水器15には、タービン13を回転させたタービン排気(蒸気)が流入する。復水器15は、冷却水(図示せず)でタービン排気を冷却して復水を生成する。また、復水器15は、後述するドレン水を復水に合流させてボイラ11に供給される水を生成する。
給水ライン16は、一端が復水器15に接続され、他端がボイラ11に接続される。給水ライン16には、復水器15により生成された水がボイラ11に向けて流通する。
抽気ライン18は、一端がタービン13に接続される。抽気ライン18には、タービン13に流入した蒸気の一部から抽気された蒸気が流通する。
給水加熱器17は、給水ライン16に配置される。また、給水加熱器17には、抽気ライン18の他端が接続され、抽気された蒸気が内部に流入する。給水加熱器17は、給水ライン16を流通する水と抽気された蒸気との間で熱交換して給水ライン16を流通する水を予熱する。給水加熱器17は、抽気された蒸気が熱交換により凝縮したドレン水をドレン水流通ライン19を介して復水器15に送る。
発電補助システム100は、発電設備10による発電を補助するシステムであり、複数の発電設備10に並設される。具体的には、発電補助システム100は、給水ライン16を流通する水を予熱することで、再生可能エネルギーに由来する熱を発電設備10に供給するシステムである。発電補助システム100は、バイパスライン110と、蒸気生成部120と、熱交換用蒸気供給ライン130と、熱交換器140と、復水ライン150と、ポンプ160と、入口弁170と、出口弁180と、を備える。
バイパスライン110は、複数の発電設備10の給水ライン16のそれぞれに接続され、給水ライン16をバイパスする。即ち、バイパスライン110は、給水ライン16の上流側から水を受入して、給水ライン16の下流側に払出するラインである。バイパスライン110は、1つの熱交換用ライン111と、複数の受入ライン112と、複数の払出ライン113と、を備える。
熱交換用ライン111は、複数の発電設備10に跨って配置される。換言すると、熱交換用ライン111は、複数の発電設備10に共通のラインとして配置される。熱交換用ライン111は、複数の発電設備10から受入された水が流通するラインである。熱交換用ライン111は、後述する熱交換器140を通る。
受入ライン112は、複数の発電設備10ごとに設けられ、熱交換用ライン111の上流側と給水ライン16の上流側とを接続する。具体的に、受入ライン112の上流側端部は、発電設備10の給水ライン16の上流側に接続され、受入ライン112の下流側端部は、熱交換用ライン111に接続される。
払出ライン113は、複数の発電設備10ごとに設けられ、熱交換用ライン111の下流側と給水ライン16の下流側とを接続する。具体的に、払出ライン113の上流側端部は、熱交換用ライン111の下流側に接続され、払出ライン113の下流側端部は、発電設備10の給水ライン16の下流側に接続される。
蒸気生成部120は、再生可能エネルギーに由来する熱を用いて熱交換用(予熱用)の蒸気を生成する。蒸気生成部120は、再生可能エネルギー(例えば、太陽光、地熱、風力、又はRDFの燃焼等)に由来する熱を用いて蒸気を生成する。本実施形態において、蒸気生成部120は、一例としてRDFを燃焼するボイラ11であり、RDFの燃焼熱を用いて蒸気を生成する。
熱交換用蒸気供給ライン130は、一端が蒸気生成部120に接続される。熱交換用蒸気供給ライン130には、蒸気生成部120から供給される蒸気が流通する。
熱交換器140は、熱交換用蒸気供給ライン130の他端に接続される。また、熱交換器140には、バイパスライン110の一部が内部に配置される。具体的には、熱交換器140には、熱交換用ライン111の上流側と下流側の間の一部が内部に配置される。熱交換器140は、熱交換用蒸気供給ライン130から供給される蒸気を用いてバイパスライン110(熱交換用ライン111)を流通する水を予熱する。具体的には、熱交換器140は、熱交換用蒸気供給ライン130から内部に導入される蒸気をバイパスライン110(熱交換用ライン111)に接触させることで、導入した蒸気とバイパスライン110(熱交換用ライン111)を流通する水との間で熱交換する。
復水ライン150は、一端(上流側)が熱交換器140に接続され、他端(下流側)が蒸気生成部120に接続される。復水ライン150には、バイパスライン110を流通する水を予熱した蒸気の復水が流通する。即ち、復水ライン150には、熱交換器140において熱交換した蒸気の復水が流通する。
ポンプ160は、復水ライン150に設けられる。具体的には、ポンプ160は、熱交換器140と再生可能エネルギーに由来する熱を用いて蒸気を生成する蒸気生成部120との間の復水ライン150に配置される。ポンプ160は、熱交換器140においてバイパスライン110を流通する水と熱交換した蒸気の復水を蒸気生成部120へ送る。
入口弁170は、複数の発電設備10ごとに設けられ、熱交換器140を挟んでバイパスライン110の上流側に設けられる。本実施形態において、入口弁170は、給水ライン16と受入ライン112の連絡部のそれぞれに設けられ、給水ライン16と受入ライン112との連絡を開閉する。入口弁170は、受入ライン112との連絡部を開閉することで、複数の発電設備10のそれぞれからバイパスライン110(熱交換用ライン111)への水の受入を制御する。
出口弁180は、複数の発電設備10ごとに複数設けられ、熱交換器140を挟んでバイパスライン110の下流側に設けられる。本実施形態において、出口弁180は、払出ライン113のそれぞれに設けられ、払出ライン113を開閉する。出口弁180は、払出ライン113を開閉することで、複数の発電設備10への水の払出を制御する。
次に、発電補助システム100の動作について説明する。
まず、蒸気生成部120で生成された蒸気を用いてバイパスライン110を流通する水を予熱する動作について説明する。
蒸気生成部120において、再生可能エネルギーに由来する熱を用いて蒸気が生成される。蒸気生成部120で生成された蒸気は、熱交換用蒸気供給ライン130を流通して熱交換器140に供給される。
まず、蒸気生成部120で生成された蒸気を用いてバイパスライン110を流通する水を予熱する動作について説明する。
蒸気生成部120において、再生可能エネルギーに由来する熱を用いて蒸気が生成される。蒸気生成部120で生成された蒸気は、熱交換用蒸気供給ライン130を流通して熱交換器140に供給される。
熱交換器140に供給された蒸気は、熱交換器140の内部に導入される。熱交換器140の内部に導入された蒸気は、バイパスライン110(熱交換用ライン111)を流通する水との間で熱交換して冷却される。冷却された蒸気は、復水(ドレン水)となり、熱交換器140から復水ライン150に排出される。
復水ライン150に排出された復水は、ポンプ160により加圧され、蒸気生成部120に還流する。
復水ライン150に排出された復水は、ポンプ160により加圧され、蒸気生成部120に還流する。
次に、入口弁170及び出口弁180の動作について説明する。
複数の発電設備10のそれぞれに対応して配置された入口弁170及び出口弁180が開放されることで、複数の発電設備10の給水ライン16から水が受入ライン112を通って熱交換用ライン111に受入される。熱交換用ライン111に受入された水は、熱交換器140を通って予熱され、払出ライン113を通ってそれぞれの発電設備10の給水ライン16に払出される。
複数の発電設備10のそれぞれに対応して配置された入口弁170及び出口弁180が開放されることで、複数の発電設備10の給水ライン16から水が受入ライン112を通って熱交換用ライン111に受入される。熱交換用ライン111に受入された水は、熱交換器140を通って予熱され、払出ライン113を通ってそれぞれの発電設備10の給水ライン16に払出される。
複数の発電設備10のうち、1台が点検等により停止する場合、停止される発電設備10に対応する入口弁170及び出口弁180が閉止される。これにより、閉止される発電設備10の給水ライン16からバイパスライン110(熱交換用ライン111)への水の受入及び払出は停止する。一方、他の発電設備10に対応する入口弁170及び出口弁180が閉止されないことで、他の発電設備10の給水ライン16からバイパスライン110(熱交換用ライン111)への水の受入及び払出は継続される。また、複数系統が点検等により停止する場合であっても、他の発電設備10の給水ライン16からバイパスライン110(熱交換用ライン111)への水の受入及び払出は継続される。
以上のような第1実施形態に係る発電補助システム100及び火力発電プラント1によれば、以下の効果を奏する。
(1)発電補助システム100を、複数の発電設備10のタービン13からボイラ11に接続される給水ライン16のそれぞれに接続され、給水ライン16をバイパスするバイパスライン110と、再生可能エネルギーに由来する熱を用いて蒸気を生成する蒸気生成部120と、蒸気生成部120から供給される蒸気が流通する熱交換用蒸気供給ライン130と、熱交換用蒸気供給ライン130に接続され、熱交換用蒸気供給ライン130から導入される蒸気を用いてバイパスライン110を流通する水を予熱する熱交換器140と、を含んで構成した。これにより、バイパスライン110を介して、再生可能エネルギーに由来する熱を用いて予熱した水を給水ライン16に供給することができる。これにより、抽気ライン18からの抽気を減らすことができ、発電効率を向上することができる。また、再生可能エネルギーに由来する熱を用いてボイラ11に供給される水を予熱できるので、化石燃料の使用量を減らすことによる二酸化炭素の削減や、経済性を向上することができる。また、複数の発電設備10の一部が停止した場合であっても、他の発電設備10の給水ライン16からバイパスライン110へ受入できるので、蒸気生成部120を運転させ続けることができる。蒸気生成部120を停止させずともよいので、発電補助システム100の設備利用率を向上することができる。
(1)発電補助システム100を、複数の発電設備10のタービン13からボイラ11に接続される給水ライン16のそれぞれに接続され、給水ライン16をバイパスするバイパスライン110と、再生可能エネルギーに由来する熱を用いて蒸気を生成する蒸気生成部120と、蒸気生成部120から供給される蒸気が流通する熱交換用蒸気供給ライン130と、熱交換用蒸気供給ライン130に接続され、熱交換用蒸気供給ライン130から導入される蒸気を用いてバイパスライン110を流通する水を予熱する熱交換器140と、を含んで構成した。これにより、バイパスライン110を介して、再生可能エネルギーに由来する熱を用いて予熱した水を給水ライン16に供給することができる。これにより、抽気ライン18からの抽気を減らすことができ、発電効率を向上することができる。また、再生可能エネルギーに由来する熱を用いてボイラ11に供給される水を予熱できるので、化石燃料の使用量を減らすことによる二酸化炭素の削減や、経済性を向上することができる。また、複数の発電設備10の一部が停止した場合であっても、他の発電設備10の給水ライン16からバイパスライン110へ受入できるので、蒸気生成部120を運転させ続けることができる。蒸気生成部120を停止させずともよいので、発電補助システム100の設備利用率を向上することができる。
(2)バイパスライン110を、複数の発電設備10に跨って配置され、熱交換器140を通る1つの熱交換用ライン111と、複数の発電設備10ごとに設けられ、熱交換用ライン111の上流側と給水ライン16の上流側とを接続する受入ライン112と、複数の発電設備10ごとに設けられ、熱交換用ライン111の下流側と給水ライン16の下流側とを接続する払出ライン113と、を含んで構成した。これにより、複数の発電設備10の給水ライン16から受入した水を1つの熱交換器140で予熱することができるので、熱効率を高めることができる。
(3)発電補助システム100を更に、複数の発電設備10ごとに熱交換器140を挟んでバイパスライン110の上流側に設けられ、複数の発電設備10のそれぞれからバイパスライン110への受入を制御する入口弁170と、複数の発電設備10ごとに熱交換器140を挟んでバイパスライン110の下流側に設けられ、バイパスライン110から複数の発電設備10への払出を制御する出口弁180と、を含んで構成した。これにより、給水ライン16からバイパスライン110に水を受入する発電設備10を選択的に変更できる。従って、運転している発電設備10に対して蒸気生成部120の熱を分散して効率良く供給できる。
(4)入口弁170及び出口弁180を、対応する発電設備10の運転状況に応じて開閉するようにした。これにより、運転中の発電設備10に対して蒸気生成部120で生成された熱を効率よく振り分けることができ、発電効率を向上することができる。
[第2実施形態]
次に、本発明の第2実施形態に係る発電補助システム100aについて、図2及び図3を参照して説明する。第2実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
第2実施形態に係る発電補助システム100aでは、図2に示すように、バイパスライン110aが、複数の発電設備10ごとに複数設けられる点等で、第1実施形態と異なる。第2実施形態に係る発電補助システム100aは、ポンプ160に代えて、複数のポンプ160aを備える。また、第2実施形態に係る発電補助システム100aは、複数の流通弁190を備える。なお,図3に示すようにポンプ160aは1台でも良い。また蒸気の供給を制御する機能を持つ流通弁190は熱交換器140a入口側でも良い。
次に、本発明の第2実施形態に係る発電補助システム100aについて、図2及び図3を参照して説明する。第2実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
第2実施形態に係る発電補助システム100aでは、図2に示すように、バイパスライン110aが、複数の発電設備10ごとに複数設けられる点等で、第1実施形態と異なる。第2実施形態に係る発電補助システム100aは、ポンプ160に代えて、複数のポンプ160aを備える。また、第2実施形態に係る発電補助システム100aは、複数の流通弁190を備える。なお,図3に示すようにポンプ160aは1台でも良い。また蒸気の供給を制御する機能を持つ流通弁190は熱交換器140a入口側でも良い。
複数のバイパスライン110aのそれぞれは、発電設備10ごとに設けられる。即ち、バイパスライン110aは、発電設備10と一対に設けられる。バイパスライン110aのそれぞれは、発電設備10の給水ライン16をバイパスするラインとして設けられ、上流側端部が給水ライン16の上流側端部に接続され、下流側端部が給水ライン16の下流側端部に接続される。
熱交換器140aは、複数のバイパスライン110aのそれぞれに配置される。即ち、熱交換器140aは、バイパスライン110aと一対に設けられる。
入口弁170aは、複数のバイパスライン110aの上流側にそれぞれ配置される。
出口弁180aは、複数のバイパスライン110aの下流側にそれぞれ配置される。
出口弁180aは、複数のバイパスライン110aの下流側にそれぞれ配置される。
熱交換用蒸気供給ライン130aは、1つの主蒸気供給ライン131aと、複数の副蒸気供給ライン132aと、を備える。
主蒸気供給ライン131aは、複数の熱交換器140aに跨って配置される。換言すると、主蒸気供給ライン131aは、複数の熱交換器140aに対して共通のラインとして配置される。主蒸気供給ライン131aは、上流側の端部が蒸気生成部120に接続される。主蒸気供給ライン131aには、蒸気生成部120で生成された蒸気が流通する。
主蒸気供給ライン131aは、複数の熱交換器140aに跨って配置される。換言すると、主蒸気供給ライン131aは、複数の熱交換器140aに対して共通のラインとして配置される。主蒸気供給ライン131aは、上流側の端部が蒸気生成部120に接続される。主蒸気供給ライン131aには、蒸気生成部120で生成された蒸気が流通する。
複数の副蒸気供給ライン132aのそれぞれは、熱交換器140aに対応して配置され、上流側の端部が主蒸気供給ライン131aに接続される。複数の副蒸気供給ライン132aのそれぞれの下流側の端部は、熱交換器140aに接続される。即ち、副蒸気供給ライン132aは、熱交換器140aと一対に設けられる。
復水ライン150は、複数の副復水ライン151aと、1つの主復水ライン152aと、を備える。
複数の副復水ライン151aの上流側の端部は、熱交換器140aにそれぞれ接続される。複数の副復水ライン151aのそれぞれの下流側の端部は、主復水ライン152aに接続される。即ち、副復水ライン151aは、熱交換器140aと一対に設けられる。副復水ライン151aには、熱交換器140aから排出される復水が流通する。
複数の副復水ライン151aの上流側の端部は、熱交換器140aにそれぞれ接続される。複数の副復水ライン151aのそれぞれの下流側の端部は、主復水ライン152aに接続される。即ち、副復水ライン151aは、熱交換器140aと一対に設けられる。副復水ライン151aには、熱交換器140aから排出される復水が流通する。
ポンプ160aのそれぞれは、復水ライン150aに配置される。具体的には、ポンプ160aのそれぞれは、副復水ライン151aに配置される。即ち、ポンプ160aは、熱交換器140aと一対に設けられる。ポンプ160aは、熱交換器140aから排出された復水を加圧して、蒸気生成部120に送る。
流通弁190は、復水ライン150に配置される。具体的には、流通弁190のそれぞれは、副復水ライン151aに配置され、ポンプ160aよりも下流側に配置される。即ち、流通弁190は、熱交換器140a及びポンプ160aと一対に配置される。流通弁190は、副復水ライン151aを開閉して、熱交換器140aから主復水ライン152aへの復水の流入を制御する。換言すると、複数の流通弁190のそれぞれは、熱交換用蒸気供給ライン130a(副蒸気供給ライン132a)から熱交換器140aへの蒸気の供給を制御する。具体的には、流通弁190は、熱交換用蒸気供給ライン130aから熱交換器への蒸気の供給流量をそれぞれ制御する。例えば、流通弁190は、一つの熱交換器140aに10t/hの蒸気を供給するように制御し、他の一つの熱交換器140aに20t/hの蒸気を供給するように制御する。
主復水ライン152aは、下流側の端部が蒸気生成部120に接続される。主復水ライン152aには、複数の副復水ライン151aから流入した復水が流通する。
ポンプ160aは、複数の副復水ライン151aのそれぞれに配置される。ポンプ160aは、熱交換器140aから排出された復水を加圧して、蒸気生成部120に送る。
次に、本実施形態に係る発電補助システム100a及び火力発電プラント1の動作を説明する。
まず、蒸気生成部120で生成された蒸気を用いてバイパスライン110aを流通する水を予熱する動作について説明する。
蒸気生成部120において、再生可能エネルギーに由来する熱を用いて蒸気が生成される。蒸気生成部120で生成された蒸気は、主蒸気供給ライン131aを流通して、複数の副蒸気供給ライン132aに分岐する。分岐した蒸気は、それぞれの熱交換器140aに供給される。
まず、蒸気生成部120で生成された蒸気を用いてバイパスライン110aを流通する水を予熱する動作について説明する。
蒸気生成部120において、再生可能エネルギーに由来する熱を用いて蒸気が生成される。蒸気生成部120で生成された蒸気は、主蒸気供給ライン131aを流通して、複数の副蒸気供給ライン132aに分岐する。分岐した蒸気は、それぞれの熱交換器140aに供給される。
それぞれの熱交換器140aに供給された蒸気は、熱交換器140aの内部に導入される。熱交換器140aの内部に導入された蒸気は、バイパスライン110aを流通する水との間で熱交換して冷却される。冷却された蒸気は、復水(ドレン水)となり、それぞれの熱交換器140aから副復水ライン151aに排出される。副復水ライン151aに排出された復水は、それぞれのポンプ160aにより加圧され、主復水ライン152aに流入する。主復水ライン152aで合流した復水は、蒸気生成部120に還流する。
次に、入口弁170a、出口弁180a、ポンプ160a、及び流通弁190の動作について説明する。
複数のバイパスライン110aのそれぞれに配置された入口弁170a及び出口弁180aが開放されることで、複数の発電設備10のそれぞれの給水ライン16からバイパスライン110aに水が受入される。また、流通弁190のそれぞれが開放され、ポンプ160aのそれぞれが動作することで、副蒸気供給ライン132aを流通する蒸気が熱交換器140aに導入される。バイパスライン110aを流通する水は、バイパスライン110aごとに配置された熱交換器140aを通って予熱され、それぞれの発電設備10の給水ライン16に払出される。
複数のバイパスライン110aのそれぞれに配置された入口弁170a及び出口弁180aが開放されることで、複数の発電設備10のそれぞれの給水ライン16からバイパスライン110aに水が受入される。また、流通弁190のそれぞれが開放され、ポンプ160aのそれぞれが動作することで、副蒸気供給ライン132aを流通する蒸気が熱交換器140aに導入される。バイパスライン110aを流通する水は、バイパスライン110aごとに配置された熱交換器140aを通って予熱され、それぞれの発電設備10の給水ライン16に払出される。
複数の発電設備10のうち、1台が点検等により停止される場合、停止される発電設備10に接続されたバイパスライン110aの入口弁170a及び出口弁180aが閉止される。これにより、停止される発電設備10の給水ライン16からバイパスライン110aへの水の受入が停止される。また、受入が停止されたバイパスライン110aを流通する水を予熱する熱交換器140aへの蒸気の供給も停止される。具体的には、熱交換器140aに接続されている副復水ライン151aに配置された流通弁190が閉止され蒸気の供給が停止される。なお,閉止された流通弁190が配置されている副復水ライン151aと同じ副復水ライン151aに配置されたポンプ160aの動作も停止される。以上により、停止される発電設備10の給水ライン16からバイパスライン110aへの水の受入及び払出が停止する一方、他の発電設備10からバイパスライン110aへの水の受入及び払出は継続される。また、複数台が点検等により停止する場合であっても、他の発電設備10の給水ライン16からバイパスライン110aへの水の受入及び払出が継続される。
以上のような第2実施形態に係る発電補助システム100a及び火力発電プラント1によれば、上記(1)の効果に加え、以下の効果を奏する。
(5)機構を、熱交換用蒸気供給ラインから熱交換器への蒸気の供給量をそれぞれ制御するように構成した。これにより、熱交換器140aのそれぞれに供給される蒸気量を異ならせることができる。従って、バイパスライン110を流通する水の量や、予熱に必要な熱量等に応じて熱交換器140aごとに適切な蒸気量を供給することができる。
(6)バイパスライン110aを、複数の発電設備10ごとに複数設け、熱交換器140aを、バイパスライン110aごとに複数設けた。これにより、バイパスライン110aや熱交換器140aの一部を点検等により停止したとしても、他のバイパスライン110aや熱交換器140aを用いて他の発電設備10に供給される水を予熱することができるので、発電効率を向上することができる。また、冗長性が高まるので、信頼性を向上できる。
(7)発電補助システム100aを更に、熱交換用蒸気供給ライン130aから熱交換器140aへの蒸気の供給をそれぞれ制御する流通弁190を含んで構成した。また、熱交換用蒸気供給ライン130aを、複数の熱交換器140aに跨って配置される主蒸気供給ライン131aと、主蒸気供給ライン131aと熱交換器140aとを接続する副蒸気供給ライン132aと、を含んで構成した。主蒸気供給ライン131aから副蒸気供給ライン132aを介して、複数の熱交換器140aに蒸気を供給することができる。また、流通弁190を開閉することで、熱交換器140aのそれぞれへの蒸気の供給を制御することができる。従って、発電設備10の運転状況に応じて熱交換器140aへの蒸気の供給を切り換えることができるので、再生エネルギーに由来する熱を効率的に用いることができる。
以上、本発明の発電補助システム及び火力発電プラントの好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
例えば、第1実施形態において、熱交換器140を1つとしたが、これに制限されない。例えば、熱交換器140が複数設けられ、熱交換用ライン111が複数の熱交換器140を通るように配置されてもよい。これにより、一部の熱交換器140をメンテナンス等で停止したとしても、発電補助システム100を継続して動作させることができる。従って、発電補助システム100の設備利用率を向上することができる。また、熱交換用ライン111、熱交換用蒸気供給ライン130、及び復水ライン150の少なくとも1つを複数ライン(系統)として、冗長性を高めるようにしてもよい。
また例えば,熱交換を行う温度域毎に複数の熱交換器を使い分けても良い。各温度においてコストミニマムな材料を、それぞれ選定する事で、より低価格なシステムとすることができる。
また例えば,熱交換を行う温度域毎に複数の熱交換器を使い分けても良い。各温度においてコストミニマムな材料を、それぞれ選定する事で、より低価格なシステムとすることができる。
また、第2実施形態において、発電設備10の給水ライン16をバイパスするバイパスライン110aを各発電設備10に個別に設けることとしたが、第1実施形態の熱交換器140を通る1つの熱交換用ライン111を,第2実施形態における複数の熱交換器140aに跨って設け,複数の前記発電設備10のバイパスライン110aを,複数の熱交換器140aへ接続しても良い。即ち、発電設備10の給水ライン16をバイパスするバイパスライン110aを各発電設備10に個別に設けることにしたが、これに制限されない。例えば、複数設けられる熱交換器140aに対して、第1実施形態の1つの熱交換用ライン111を採用してもよい。この場合、1つの熱交換用ライン111は、複数の熱交換器140に跨って配置され、複数の熱交換器140aを通るように設けられて良い。そして、各発電設備10(のバイパスライン110a)は、1つの熱交換用ライン111に接続されて良い。
また、主蒸気供給ライン131aを1つとしたが、これに制限されない。例えば、主蒸気供給ライン131aを複数系統にして、冗長性を高めるようにしてもよい。また、主復水ライン152aを複数系統にして、冗長性を高めるようにしてもよい。
また、主蒸気供給ライン131aを1つとしたが、これに制限されない。例えば、主蒸気供給ライン131aを複数系統にして、冗長性を高めるようにしてもよい。また、主復水ライン152aを複数系統にして、冗長性を高めるようにしてもよい。
また、上記各実施形態において、入口弁170及び出口弁180の開閉について、停止する発電設備10に対応する入口弁170及び出口弁180を閉止することとしたが、これに制限されない。発電設備10のそれぞれが許容可能な熱エネルギーと、発電補助システム100,100aが提供可能な熱エネルギーとに応じて、閉止又は開放する入口弁170及び出口弁180を決定してもよい。例えば、複数の発電設備10のうち、許容可能な熱エネルギーが大きい発電設備10の入口弁170及び出口弁180を開放し、許容可能な熱エネルギーの小さい発電設備10の入口弁170及び出口弁180を閉止してもよい。これにより、火力発電プラント1全体の熱効率を向上することができる。
また、上記各実施形態において、入口弁170は、複数の発電設備10のそれぞれからバイパスライン110へ受入する水の流量を制御してもよい。また、出口弁180は、複数のバイパスライン110から発電設備10のそれぞれへ払出する水の流量を制御してもよい。具体的には、入口弁170は、発電設備10のそれぞれから異なる量の水を受入するように制御されてよく、出口弁180は、発電設備10のそれぞれに異なる量の水を払出すように制御されてよい。例えば、入口弁170は、一つの発電設備10から20t/hの水を受入するように制御され、他の一つの発電設備10から5t/hの水を受入するように制御されてもよい。また、出口弁180は、一つの発電設備10に20t/hの水を払出すように制御され、他の一つの発電設備10に5t/hの水を払出すように制御されてよい。これにより、発電設備10ごとに、バイパスライン110を流通する水の量を変化させることができ、発電設備10ごとの状況に即した制御を実現することができる。
1 火力発電プラント
10 発電設備
11 ボイラ
13 タービン
16 給水ライン
100,100a 発電補助システム
110,110a バイパスライン
111 熱交換用ライン
112 受入ライン
113 払出ライン
120 蒸気生成部
130,130a 熱交換用蒸気供給ライン
131a 主蒸気供給ライン
132a 副蒸気供給ライン
140,140a 熱交換器
170,170a 入口弁
180,180a 出口弁
190 流通弁
10 発電設備
11 ボイラ
13 タービン
16 給水ライン
100,100a 発電補助システム
110,110a バイパスライン
111 熱交換用ライン
112 受入ライン
113 払出ライン
120 蒸気生成部
130,130a 熱交換用蒸気供給ライン
131a 主蒸気供給ライン
132a 副蒸気供給ライン
140,140a 熱交換器
170,170a 入口弁
180,180a 出口弁
190 流通弁
Claims (12)
- 化石燃料を燃焼させて蒸気を生成するボイラからタービンに蒸気を供給して発電する発電設備を複数有する火力発電プラントに配置され、前記発電設備による発電を補助する発電補助システムであって、
複数の前記発電設備のタービンからボイラに接続される給水ラインのそれぞれに接続され、給水ラインをバイパスするバイパスラインと、
再生可能エネルギーに由来する熱を用いて蒸気を生成する蒸気生成部と、
前記蒸気生成部から供給される蒸気が流通する熱交換用蒸気供給ラインと、
前記熱交換用蒸気供給ラインに接続され、前記熱交換用蒸気供給ラインから導入される蒸気を用いて前記バイパスラインを流通する水を予熱する熱交換器と、
を備える発電補助システム。 - 前記バイパスラインは、
複数の前記発電設備に跨って配置され、前記熱交換器を通る1つの熱交換用ラインと、
複数の前記発電設備ごとに設けられ、前記熱交換用ラインの上流側と給水ラインの上流側とを接続する受入ラインと、
複数の前記発電設備ごとに設けられ、前記熱交換用ラインの下流側と給水ラインの下流側とを接続する払出ラインと、
を備える請求項1に記載の発電補助システム。 - 前記バイパスラインは、複数の前記発電設備ごとに複数設けられ、
前記熱交換器は、前記バイパスラインごとに複数設けられる請求項1に記載の発電補助システム。 - 前記熱交換器は複数設けられ、
1つの前記熱交換用ラインは、複数の前記熱交換器に跨って配置される請求項2に記載の発電補助システム。 - 前記熱交換用蒸気供給ラインから前記熱交換器への蒸気の供給をそれぞれ制御する機構を更に備え、
前記熱交換用蒸気供給ラインは、
複数の前記熱交換器に跨って配置される主蒸気供給ラインと、
前記主蒸気供給ラインと前記熱交換器とを接続する副蒸気供給ラインと、
を備える請求項3又は4に記載の発電補助システム。 - 前記機構が、前記熱交換用蒸気供給ラインから前記熱交換器への蒸気の供給流量をそれぞれ制御する、請求項5に記載の発電補助システム。
- 複数の前記発電設備ごとに前記熱交換器を挟んで前記バイパスラインの上流側に設けられ、複数の前記発電設備のそれぞれから前記バイパスラインへの受入を制御する入口弁と、
複数の前記発電設備ごとに前記熱交換器を挟んで前記バイパスラインの下流側に設けられ、前記バイパスラインから複数の前記発電設備への払出を制御する出口弁と、
を更に備える請求項1から6のいずれか一項に記載の発電補助システム。 - 前記出口弁が,前記バイパスラインから複数の前記発電設備のそれぞれへ払出する水の流量を制御する、請求項7に記載の発電補助システム。
- 前記入口弁が,複数の前記発電設備のそれぞれから前記バイパスラインへ受入する水の流量を制御する、請求項7又は8に記載の発電補助システム。
- 前記入口弁及び前記出口弁は、対応する前記発電設備の運転状況に応じて開閉される、請求項7から9のいずれか一項に記載の発電補助システム。
- 上流側が前記熱交換器に接続され、下流側が前記蒸気生成部に接続され、前記バイパスラインを流通する水を予熱した蒸気の復水を流通する復水ラインと、
前記熱交換器と再生可能エネルギーに由来する熱を用いて蒸気を生成する前記蒸気生成部との間の前記復水ラインに配置されるポンプと、
を更に備える請求項1から10のいずれか一項に記載の発電補助システム。 - 請求項1から11のいずれか一項に記載の発電補助システムと、
前記発電補助システムに接続される複数の発電設備と、
を備える火力発電プラント。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/033027 WO2019053803A1 (ja) | 2017-09-13 | 2017-09-13 | 発電補助システム及び火力発電プラント |
JP2018500946A JP6354923B1 (ja) | 2017-09-13 | 2017-09-13 | 発電補助システム及び火力発電プラント |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/033027 WO2019053803A1 (ja) | 2017-09-13 | 2017-09-13 | 発電補助システム及び火力発電プラント |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019053803A1 true WO2019053803A1 (ja) | 2019-03-21 |
Family
ID=62843674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/033027 WO2019053803A1 (ja) | 2017-09-13 | 2017-09-13 | 発電補助システム及び火力発電プラント |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6354923B1 (ja) |
WO (1) | WO2019053803A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112361324A (zh) * | 2020-11-16 | 2021-02-12 | 华能莱芜发电有限公司 | 一种二次再热机组凝结水泵节能降耗的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52112099A (en) * | 1976-03-17 | 1977-09-20 | Westinghouse Electric Corp | Heat generator |
JP2001041006A (ja) * | 1999-08-02 | 2001-02-13 | Jgc Corp | 石油燃料燃焼コンバインドサイクル発電施設及びその発電施設の運転方法。 |
JP2002309908A (ja) * | 2001-04-11 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | タービン設備及びタービン設備の運転方法 |
JP2008121483A (ja) * | 2006-11-10 | 2008-05-29 | Kawasaki Heavy Ind Ltd | 熱媒体供給設備および太陽熱複合発電設備なびにこれらの制御方法 |
JP2015045303A (ja) * | 2013-08-29 | 2015-03-12 | 株式会社東芝 | 蒸気タービンプラントの運転方法 |
JP2015052427A (ja) * | 2013-09-06 | 2015-03-19 | 株式会社東芝 | 蒸気タービンプラント |
-
2017
- 2017-09-13 WO PCT/JP2017/033027 patent/WO2019053803A1/ja active Application Filing
- 2017-09-13 JP JP2018500946A patent/JP6354923B1/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52112099A (en) * | 1976-03-17 | 1977-09-20 | Westinghouse Electric Corp | Heat generator |
JP2001041006A (ja) * | 1999-08-02 | 2001-02-13 | Jgc Corp | 石油燃料燃焼コンバインドサイクル発電施設及びその発電施設の運転方法。 |
JP2002309908A (ja) * | 2001-04-11 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | タービン設備及びタービン設備の運転方法 |
JP2008121483A (ja) * | 2006-11-10 | 2008-05-29 | Kawasaki Heavy Ind Ltd | 熱媒体供給設備および太陽熱複合発電設備なびにこれらの制御方法 |
JP2015045303A (ja) * | 2013-08-29 | 2015-03-12 | 株式会社東芝 | 蒸気タービンプラントの運転方法 |
JP2015052427A (ja) * | 2013-09-06 | 2015-03-19 | 株式会社東芝 | 蒸気タービンプラント |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112361324A (zh) * | 2020-11-16 | 2021-02-12 | 华能莱芜发电有限公司 | 一种二次再热机组凝结水泵节能降耗的方法 |
CN112361324B (zh) * | 2020-11-16 | 2022-06-14 | 华能莱芜发电有限公司 | 一种二次再热机组凝结水泵节能降耗的方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019053803A1 (ja) | 2019-11-07 |
JP6354923B1 (ja) | 2018-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8186142B2 (en) | Systems and method for controlling stack temperature | |
US9745964B2 (en) | Steam power plant having solar collectors | |
JP4540472B2 (ja) | 廃熱式蒸気発生装置 | |
KR20210009279A (ko) | 기력 발전 플랜트, 기력 발전 플랜트의 개조 방법 및 기력 발전 플랜트의 운전 방법 | |
CA2754465C (en) | Device with a heat exchanger and method for operating a heat exchanger of a steam generating plant | |
JPH03124902A (ja) | 複合サイクル発電プラント及びその運転方法 | |
CN103403303A (zh) | 在燃烧矿物燃料的电厂设备中补装加热用抽汽装备 | |
EP2336636B1 (en) | Desuperheater for a steam turbine generator | |
JP2012102711A (ja) | 減温器蒸気熱回収設備 | |
US20040025510A1 (en) | Method for operating a gas and steam turbine installation and corresponding installation | |
JP5783458B2 (ja) | 蒸気発電プラントにおける増出力運転方法 | |
CN102770625B (zh) | 火力发电站和用于运行其中的调整式涡轮机的方法 | |
US8863493B2 (en) | Solar power plant with integrated gas turbine | |
CN113175370B (zh) | 一种不同机组间锅炉与汽轮机互连的系统以及运行方法 | |
WO2019053803A1 (ja) | 発電補助システム及び火力発電プラント | |
CN104160117A (zh) | 用于提高发电效率的机组和方法 | |
JP2009097735A (ja) | 給水加温システムおよび排熱回収ボイラ | |
JP7374159B2 (ja) | 火力発電プラントおよび火力発電プラントの制御方法 | |
CN113494321B (zh) | 一种基于高压缸零出力的母管制连接系统及运行方法 | |
KR20190048939A (ko) | 복합발전기와 연계된 연료전지 폐열회수 장치 및 이를 이용한 난방장치와의 하이브리드 시스템 | |
KR20170134127A (ko) | 복수의 팽창기를 구비한 열병합 발전시스템 | |
WO2022176846A1 (ja) | 火力発電プラントおよび火力発電プラントの制御方法 | |
CN113494322B (zh) | 一种通过母管实现机组间相互连接的系统以及运行方法 | |
CN217400983U (zh) | 安全高效的燃气-蒸汽联合循环纯凝发电机组的供热系统 | |
KR20180017752A (ko) | 복수의 팽창기를 구비한 열병합 발전시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018500946 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17925470 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17925470 Country of ref document: EP Kind code of ref document: A1 |