[go: up one dir, main page]

WO2019037283A1 - Method, base station, relay node, and device with storage function for communication - Google Patents

Method, base station, relay node, and device with storage function for communication Download PDF

Info

Publication number
WO2019037283A1
WO2019037283A1 PCT/CN2017/110117 CN2017110117W WO2019037283A1 WO 2019037283 A1 WO2019037283 A1 WO 2019037283A1 CN 2017110117 W CN2017110117 W CN 2017110117W WO 2019037283 A1 WO2019037283 A1 WO 2019037283A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
backhaul link
relay node
backhaul
path
Prior art date
Application number
PCT/CN2017/110117
Other languages
French (fr)
Inventor
Yanbo TANG
Zhenhong Li
Original Assignee
Huizhou Tcl Mobile Communication Co.,Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Mobile Communication Co.,Ltd filed Critical Huizhou Tcl Mobile Communication Co.,Ltd
Publication of WO2019037283A1 publication Critical patent/WO2019037283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • Embodiments of the present disclosure generally relate tocommunicationtechnology, and in particular relate to a method, a base station, a relay node, and a device with storage function for communication.
  • abackhaul link connection In a 5G communication network, abackhaul link connection must be able to support the mobile traffics of each cell. Because the cell distribution is very dense, the cost will be too high to adopt the cable backhaul link, andthe problem can be effectively resolved by adopting the wireless self-backhaul link.
  • the self-backhaul link defines that an access link and a backhaul link share frequency resources of a same frequency band.
  • the access link is close to or coincides with the backhaul link, thetraffics to be transmitted of each other will be interfered, which affects the quality of communication.
  • Themain objective of the presentdisclosure to provide a communication method, which is capable of improving the communication quality of a self-backhaul link.
  • a technical scheme adopted by the presentdisclosure provides a communication method.
  • the method includes: receiving communication status information transmitted from at least one relay node through a base station; selectingapath for a backhaul link matching the communication status information in a selectable backhaul link pathset through the base station; and transmitting the selected path for the backhaul link to the relay node through the base station for the relay node to adopt.
  • the method includes: transmitting communication status information to a base station; andreceiving and adopting a path for a backhaul linkwhich is selected and transmitted by the base station
  • another technical scheme adopted by the present disclosure provides a base station including a first processing circuit and a first communication circuit electrically coupled to each other, where the first processing circuit executes instructions at operation to implement the above-mentioned method.
  • a relay node including a second processing circuit and a second communication circuit electrically coupled to each other, where the second processing circuit executes instructions at operation to implementthe above-mentioned methods.
  • another technical scheme adopted by the present disclosure provides a device with storage function, where the device stores instructions and the above-mentioned methodsare implemented while the instructions are executed.
  • the presentdisclosure is advantageous in that: in contrast to the prior art, the presentdisclosure causes the base station to receive the communication status information transmitted by the relay node for all the paths for the backhaul links to which it participates, select the path for the backhaul link matching the communication status information according to the communication status information, andnotify the relay node of the selected path for the backhaul link so that the relay node transmits information traffics according to the selected path for the backhaul link, which is capable of selecting the suitablepath for the backhaul linkeffectively and reasonably, and the efficiency ofresourceutility and the communication quality ofthe self-backhaul linkare improved, .
  • FIG. 1 is a flow chart of a first embodiment of acommunication methodof the present disclosure.
  • FIG. 2 is aschematic diagram of a frequency resource allocation of a relay nodeaccording to an embodiment of the present disclosure.
  • FIG. 3 is a flow chart of a second embodiment of acommunication methodof the present disclosure.
  • FIG. 4 is a flow chart of a third embodiment of acommunication methodof the present disclosure.
  • FIG. 5 is a flow chart of a fourth embodiment of acommunication methodof the present disclosure.
  • FIG. 6 is a flow chart of a fifth embodiment of acommunication methodof the present disclosure.
  • FIG. 7 is a flow chart of a sixth embodiment of acommunication methodof the present disclosure.
  • FIG. 8 is a flow chart of a seventh embodiment of acommunication methodof the present disclosure.
  • FIG. 9 is aschematic diagram of a connection relationship between a base station and a relay nodeaccording to an embodiment of the present disclosure.
  • FIG. 10 is aschematic diagram of the structure of a base stationaccording to an embodiment of the present disclosure.
  • FIG. 11 is aschematic diagram of the structure of a relay nodeaccording to an embodiment of the present disclosure.
  • FIG. 12 is aschematic diagram of the structure of a device with storage functionaccording to an embodiment of the present disclosure.
  • FIG. 1 a flow chart of a first embodiment of acommunication methodof the present disclosure is depicted.
  • the method may include the following blocks.
  • At S101 receiving communication status information transmitted from at least one relay node through a base station.
  • a resource 10 of the relay node includes a control message transmission band 11, a backhaul link dedicated band 12, a shared band 13, and a terminal dedicated band 14.
  • the resource allocation of other embodiments of the presentdisclosure is not limited to that shown in FIG. 2, and all embodiments of the presentdisclosure are applicable as long as in an implementation scenario with the shared band 13.
  • control message transmission band 11 is not available as a frequencyband which can be shared by abackhaul link and an access link, but as a dedicated band for transmitting control messages between the base station and the relay node or among a plurality of relay nodes.
  • the backhaul link dedicated band 12 is only for the backhaul link, and the backhaul link dedicated band 12 may be used when the traffic to be transmitted by the backhaul link requires a high communication quality or the traffic is a delay sensitive traffic.
  • the bandwidth of the backhaul linkdedicated band 12 is variable, and in other implementation scenarios, the bandwidth of the backhaul link dedicated band 12may be fixed.
  • the shared band 13 is a frequency band shared by the backhaul link and the access link, which occupies most of the resource 10 of the relay node.
  • the shared band 13 can be used forthebackhaul linktraffictransmission andthe access link traffictransmission at the same time.
  • the terminal dedicated band 14 is a frequency band dedicated to the access link.
  • the base station will determine whether a user terminal needs to use the terminal dedicated band 14 according to the strength of the anti-interference capability of the user terminal. For example, the base station may preset an angle threshold between the backhaul link and the access link (e.g., 5 degrees and 10 degrees) . When the angle between the backhaul link and the access link is within the threshold, which represents that the mutual interference between the two is large, and the terminal dedicated band 14 is enabled.
  • the base station transmits a communication status information detection request to at least one relay node, so that the relay node responds to the communication status information detection request and startsto detect the communication status of all the paths for the backhaul links originating fromthe relay node itself, and transmits the detected communication status information to the base station.
  • the communication status information includes at least one of a communication quality of all the paths for the backhaul links originating from (the relay node) itself, a type of a traffic to be transmitted (by the relay node) , and a resource requirement of the backhaul link and an access link sharing a same frequency band with the backhaul link.
  • the communication quality of all the paths for the backhaul links originating from (the relay node) itself is mainly reflected by a signal-to-noise ratio of (the communication of) the path for the backhaul link, in which the signal-to-noise ratio reflects the interference to the signal.
  • SINR signal to interference plus noise ratio
  • the signal quality is excellent while SINR ⁇ 25
  • parameters such as the reception power of a reference signal, the reception quality of a reference signal, and the strength of a received signal can be used as reference designators.
  • the type of the traffic to be transmitted includes at least one of whether the trafficbelongs to a latency sensitivity and a communication quality requirement of the traffic.
  • the communication quality requirement is defined based on whether the traffic is liable to be interfered in the transmission process. If the traffic is liable to be interfered, the communication quality requirement of the traffic is high, and if the traffic has a strong anti-interference capability or has some fault-tolerant space, it can accept a certain interference, andthe communication quality requirement of the traffic is relatively low.
  • the resource requirement of the backhaul link and the access link sharinga same frequency band with the backhaul link includes at least one of a traffic amount to be transmitted by both the backhaul link and the access link as well as a resource reuse rate of a shared frequency band of both.
  • the resource reuse rateof the shared frequency band of the backhaul link and the access link will be high, which means that the probability of being interfered and delay will be high when adopting the path for the backhaul link.
  • the base station may also receive the communication status informationtransmitted by the relay node which is obtained by detecting the communication status of all the paths for the backhaul links originating fromthe relay node itself at a preset period through the relay node.
  • multi-hop technology is supported, that is, one relay node can transmit traffic to the base station through another or a plurality of relay nodes.
  • the specific number of relay nodesutilized by one relay node to transmittraffics to the base station can be set in advanceor notset. If not set, the number of the relay nodes which the base station is connected to decremented by 1 is used as the upper limit.
  • the single hop means the relay node transmits traffics to the base station directly.
  • the base station selects the most suitablepath for thebackhaul linkfrom the backhaul link pathset of the single hop backhaul link pathand the multi hop backhaul link pathaccording to the received communication status information. Specifically, the most suitablepaths for the backhaul links are selected for these traffics according to the types of the trafficsto be transmitted. If the traffic to be transmitted is thelatency sensitivity, the traffic has the highest priority, and the base station selects the path for the backhaul linkthat has the most high signal-to-noise ratio, the lowestamount of the traffic which the backhaul link and the access link need to transmit, and the lowest resource reuse rate of the shared frequency band of the backhaul link and the access link.
  • the base station selects the path for the backhaul link that has the higher signal-to-noise ratio, the lower amount of the traffic which the backhaul link and the access link need to transmit, and the lower resource reuse rate of the shared frequency band of the backhaul link and the access link. If the traffic to be transmitted is notthelatency sensitivity and requires a lower communication quality, the base stationselects the suitable path for the backhaul link for the traffic from the remaining path for the backhaul link after selectingthe path for thebackhaul link for the other traffics with high priority.
  • this embodiment selects the suitable path for the backhaul link for the type of different traffics, even for the traffics transmitted by the same relay node, the base station will render differentpriorities according to the different types of these traffics and select different paths for the backhaul links.
  • the base station before selecting the different paths for the backhaul links for different traffics, updates the candidate paths of the backhaul linksaccording to thecommunication quality of the path for the backhaul link in the received communication status information. Specifically, the base station seta filter condition for thecommunication quality of the path for the backhaul linkin advance. If the communication quality of the path for the backhaul link does not satisfy the preset filter condition, the path for the backhaul link is deleted from the candidate backhaul link pathwhile the path for the backhaul link is in the original candidate backhaul link path, and the path for the backhaul link is ignoredwhile the path for the backhaul link is not in the original candidate backhaul link path.
  • the path for the backhaul link is maintainedwhile the path for the backhaul link is in the original candidate backhaul link path, andthepath for the backhaul link is added to the candidate backhaul link pathwhile the path for the backhaul link is not in the original candidate backhaul link path.
  • the preset filtering condition is that the signal-to-noise ratio of the communication of the path for the backhaul link is equal to or greater than a preset threshold.
  • it may also be parameters such as the reception power ofa reference signal, the reception quality of a reference signal, and the strength of a received signal greater than the preset threshold.
  • the selected paths for the backhaul links aretransmitted to the corresponding relay node which needs to transmit these traffics, so that the relay node transmits the different traffics according to the selection of the base station through the different paths of the backhaul links after receiving these selected paths for the backhaul links.
  • the base station in order to reduce the operation complexity of scheduling the path for the backhaul link, notifies the relay node to unload at least part of the scheduling subtask before the base station transmits the selected path for the backhaul linkto the relay node, thereby reducing the load of operations.
  • the candidate path for the backhaul link is updated first according to the communication quality of the path for the backhaul link in the received communication status information, so as to ensure that the traffic transmission capability meets the minimum requirement. Therefore, for the traffic which does not require a high communication qualitytowards the path for the backhaul link, the path for the backhaul link can be assignedarbitrarily, which eliminates the selectin step and is more simple.
  • a millimeterwave is utilizedin transmittingtraffics.
  • the millimeter wave itself has a strong anti-interference performance, which is suitable to be used in multi-link share band communication methods.
  • the millimeter wave has high isolation while transmitted in different links, which has good directionality and supports multi-hop communication methods.
  • other electromagnetic waves can also be chosen to transmit traffics.
  • the base station receivesthe communication status information transmitted by the relay node for all the paths for the backhaul links to which it participates, selects the path for the backhaul link matching the communication status information according to the communication status information, andnotifies the relay node of the selected path for the backhaul link so that the relay node transmits information traffics according to the selected path for the backhaul link, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources.
  • the base station notifies the relay node to unload at least part of the scheduling subtask before the base station transmits the selected path for the backhaul linkto the relay node, which is capable of reducing the load of operations.
  • FIG. 3 a flow chart of a second embodiment of a communication method of the present disclosure is depicted.
  • the method may include the following blocks.
  • the transmission of the control message of the backhaul linkbetween the base station and the relay node or among a plurality of relay nodes is known or slowly changed, hence the base station needs to maintain the backhaul link path list of the control layerand broadcasts the backhaul link path list to aplurality of relay nodeswhich are wirelessly connected with the base station.
  • Apathfor the backhaul link of the control layer refers to the link path (the path for the backhaul link) by which the base station transmits messages to the relay node. After the base station broadcasts the path for thebackhaul link of the control layer to the relay node, the subsequent control messagewill be transmitted to the relay node through the path for the backhaul link.
  • At S202 receiving communication status information transmitted from at least one relay node through a base station.
  • Steps S202-S204 are basically similar to steps S101-S103 of the second embodiment of the communication method of the present disclosure, and will not be described herein.
  • the base station broadcasts the path for the backhaul link of the control layer to the relay node, so that the relay node can receive the control message transmitted by the base station according to the fixed link path, thereby improving the reliability of communication.
  • the control message is transmitted according to the fixed link path, which can effectively improve the transmission reliability and transmission rate.
  • FIG. 4 a flow chart of a third embodiment of a communication method of the present disclosure is depicted.
  • the method may include the following blocks.
  • At S301 receiving communication status information transmitted from at least one relay node through a base station.
  • Steps S301-S303 are basically similar to steps S101-S103 of the first embodiment of the communication method of the present disclosure, and will not be described herein.
  • the relay node needs to acknowledge the new path for the backhaul link.
  • the base station receives the backhaul link path re-planning request which is transmitted based on the selected path for the backhaul link by the relay node, confirms the new path for the backhaul link, and notifies the relay node to transmit traffics according to the selected path for the backhaul link.
  • this embodiment performs a secondary acknowledgment when the path for the backhaul linkwhich is selected by the base station is different from the default path for the backhaul link, thereby ensuring the correctness of the selection and avoiding the error or delay in the transmission of traffics.
  • FIG. 5 a flow chart of a fourth embodiment of a communication method of the present disclosure is depicted.
  • the method may include the following blocks.
  • AtS401 transmitting communication status information to a base station.
  • the relay node initiates to perform detection on all the paths for the backhaul links originating fromthe relay node itself based on a received communication status information detection request transmitted by the base stationin response to the communication status information detection request, and transmits the detected communication status information to the base station.
  • the relay node detects at least one of a communication quality of all the paths for the backhaul links originating from (the relay node) itself, a type of a traffic to be transmitted (by the relay node) , and a resource requirement of the backhaul link and an access link sharing a same frequency band with the backhaul link, and assembles the detection results into the communication status information to transmit to the base station.
  • the communication quality of all the paths for the backhaul links originating from (the relay node) itself is mainly reflected by a signal-to-noise ratio of (the communication of) the path for the backhaul link, in which the signal-to-noise ratio reflects the interference to the signal.
  • the maximum value of SINR is 30, and can be even negative at minimum.
  • the signal quality is excellent while SINR ⁇ 25
  • it is considered that the signal quality is average while 20>SINR ⁇ 10
  • SINR ⁇ 5 parameters such as the reception power of a reference signal, the reception quality of a reference signal, and the strength of a received signal.
  • the type of the traffic to be transmitted includes at least one of whether the traffic belongs to a latency sensitivity and a communication quality requirement of the traffic.
  • the communication quality requirement is defined based on whether the traffic is liable to be interfered in the transmission process. If the traffic is liable to be interfered, the communication quality requirement of the traffic is high, and if the traffic has a strong anti-interference capability or has some fault-tolerant space, it can accept a certain interference, andthe communication quality requirement of the traffic is relatively low.
  • the resource requirement of the backhaul link and the access link sharinga same frequency band with the backhaul link includes at least one of a traffic amount to be transmitted bythe backhaul link and the access link which are connected by a same relay node as well as a resource reuse rate of a shared frequency band of the backhaul link and the access link.
  • the resource reuse rateof the shared frequency band of the backhaul link and the access link will be high, which means that the probability of being interfered and delay will be high when adopting the path for the backhaul link.
  • the relay node may detect the communication status of all the paths for the backhaul links originating fromthe relay node itselfperiodically, and transmit the detected communication status information to the base station.
  • the base station selects the matching path for the backhaul link for different transmission traffics according to the received communication status information and transmits the selected path for the backhaul link to the relay node.
  • the relay node transmits different traffics viathe matching path for the backhaul linkwhich is selected by the base station.
  • the relay node transmits the communication status information of all the paths for the backhaul links originating fromthe relay node itself to the base station, so that the base station can select the matching path for the backhaul linkaccording to the communication status information, and transmit traffics according to the path for the backhaul link selected by the base station, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources
  • FIG. 6 a flow chart of a fifth embodiment of a communication method of the present disclosure is depicted.
  • the method may include the following blocks.
  • the transmission of the control message of the backhaul link between the base station and the relay node or among a plurality of relay nodes is known or slowly changed, hence the base station needs to maintain the backhaul link path list of the control layer, and the relay node receives the backhaul link path listbroadcasted by the base station.
  • a pathfor the backhaul link of the control layer refers to the link path (the path for the backhaul link) by which the base station transmits messages to the relay node. After the relay node receives the pathfor the backhaul link of the control layer which is broadcasted by the base station, the subsequent control message transmitted by the base station will all be received through the path for the backhaul link.
  • Steps S502-S503 are basically similar to steps S401-S402 of the fourth embodiment of the communication method of the present disclosure, and will not be described herein.
  • the control message transmitted by the base station is received according tothe fixed linkpath, thereby improving the reliability of communication.
  • the control message is transmitted according to the fixed link path, which can effectively improve the transmission reliability and transmission rate.
  • FIG. 7 a flow chart of a sixth embodiment of a communication method of the present disclosure is depicted.
  • the method may include the following blocks.
  • Steps S601-S602 are basically similar to steps S401-S402 in the fourth embodiment of the communication method of the present disclosure, and will not be described herein.
  • the new path for thebackhaul link needs to be acknowledged.
  • the base station receives the backhaul link path re-planning request which is transmitted by the relay node, confirms the new path for the backhaul link, and notifies the relay node to transmit traffics according to the selected path for the backhaul link. After receiving the confirmation information, the relay node transmits traffics according to the path for the backhaul link which is selected by the base station.
  • this embodiment performs a secondary acknowledgment to the base station when the received path for the backhaul link which is selected by the base station is different from the default path for the backhaul link, thereby ensuring the correctness of the selection and avoiding the error or delay in the transmission of traffics.
  • a flow chart of a seventh embodiment of a communication method of the present disclosure is depicted, and a schematic diagram of a connection relationship between a base station and a relay node according to an embodiment of the present disclosure is depicted.
  • the method may include the following blocks.
  • a base station 20 is wirelessly connected with three relay nodes 31, 32, and 33, and the base station 20 transmits traffics with the three relay nodes 31, 32, and 33 through a millimeter wave. In other embodiments, it is also possible to transmit traffics through other electromagnetic waves.
  • the backhaul link of the three relay nodes 31, 32, and 33 as well as the base station 20 are defined to support single hop (the relay node directly wirelessly connects the base station) and double hop (one relay node is connected to the base station via another relay node) modes.
  • the seventh embodiment of the communication method of the present disclosure includes the following steps.
  • the base station maintains a backhaul link path list of a control layer.
  • the transmission of the control message of the backhaul link between the base station and the relay node or among a plurality of relay nodes is known or slowly changed, hence the base station needs to maintain the backhaul link path list of the control layer.
  • Apathfor the backhaul link of the control layer refers to the link path (the path for the backhaul link) by which the base station transmits messages to the relay node.
  • the path for the backhaul link of the control layer includes the base station 20 –the relay node 31, the base station 20 –the relay node 32, and the base station 20 –the relay node 33.
  • the base station broadcasts the backhaul link path list to the relay node. After the base station broadcasts the path for the backhaul link of the control layer to the relay node, the subsequent control message will be transmitted to the relay node through the path for the backhaul link.
  • the base station transmitsa communication status information detection request to the relay node, and the relay node responds to the communication status information detection request and startsto detect the communication status of all the paths for the backhaul links originating fromthe relay node itself, and transmits the detected communication status information to the base station.
  • the communication status information includes at least one of a communication quality of all the paths for the backhaul links originating from (the relay node) itself, a type of a traffic to be transmitted (by the relay node) , and a resource requirement of the backhaul link and an access link sharing a same frequency band with the backhaul link.
  • the communication quality of all the paths for the backhaul links originating from (the relay node) itself is mainly reflected by a signal-to-noise ratio of (the communication of) the path for the backhaul link, in which the signal-to-noise ratio reflects the interference to the signal.
  • SINR signal to interference plus noise ratio
  • the signal quality is excellent while SINR ⁇ 25
  • parameters such as the reception power of a reference signal, the reception quality of a reference signal, and the strength of a received signal can be used as reference designators.
  • the type of the traffic to be transmitted includes at least one of whether the traffic belongs to a latency sensitivity and a communication quality requirement of the traffic.
  • the communication quality requirement is defined based on whether the traffic is liable to be interfered in the transmission process. If the traffic is liable to be interfered, the communication quality requirement of the traffic is high, and if the traffic has a strong anti-interference capability or has some fault-tolerant space, it can accept a certain interference, and the communication quality requirement of the traffic is relatively low.
  • the resource requirement of the backhaul link and the access link sharinga same frequency band with the backhaul link includes at least one of a traffic amount to be transmitted bythe backhaul link and the access link which are connected by a same relay node, as well as a resource reuse rate of a shared frequency band of the backhaul link and the access link.
  • the resource reuse rateof the shared frequency band of the backhaul link and the access link will be high, which means that the probability of being interfered and delay will be high when adopting the path for the backhaul link.
  • the base station may also receive the communication status informationtransmitted by the relay node which is obtained by detecting the communication status of all the paths for the backhaul links originating fromthe relay node itself at a preset period through the relay node.
  • the base station selects the path for the backhaul link which matches the communication status information in the selectable backhaul link pathset.
  • the base station selects the most suitablepath for the backhaul link from the backhaul link pathset of the single hop backhaul link pathand the multi hop backhaul link pathaccording to the received communication status information.
  • the backhaul link path set of the single hop backhaul link path and the multi hop backhaul link path includes the relay node 31 –the base station 20, the relay node 31 –the relay node 32 –the base station 20, the relay node 31 –the relay node 33 –the base station 20, the relay node 32 –the base station 20, the relay node 32 –the relay node 31 -the base station 20, the relay node 32 –the relay node 33 –the base station 20, the relay node 33 -the base station 20, relay node 33 –the relay node 31 -base station 20, and the relay node 33 –the relay node 32 –the base station 20.
  • the most suitablepaths for the backhaul links are selected for these traffics according to the types of the traffics to be transmitted. If the traffic to be transmitted is thelatency sensitivity, the traffic has the highest priority, and the base station selects the path for the backhaul link that has the most high signal-to-noise ratio, the lowest amount of the traffic which the backhaul link and the access link need to transmit, and the lowest resource reuse rate of the shared frequency band of the backhaul link and the access link.
  • the base station selects the path for the backhaul link that has the higher signal-to-noise ratio, the lower amount of the traffic which the backhaul link and the access link need to transmit, and the lower resource reuse rate of the shared frequency band of the backhaul link and the access link. If the traffic to be transmitted is notthelatency sensitivity and requires a lower communication quality, the base stationselects the suitable path for the backhaul link for the traffic from the remaining path for the backhaul link after selectingthe path for the backhaul link for the other traffics with high priority.
  • this embodiment selects the suitable path for the backhaul link for the type of different traffics, even for the traffics transmitted by the same relay node, the base station will render differentpriorities according to the different types of these traffics and select different paths for the backhaul links.
  • the base station before selecting the different paths for the backhaul links for different traffics, updates the candidate paths of the backhaul linksaccording to thecommunication quality of the path for the backhaul link in the received communication status information. Specifically, the base station seta filter condition for thecommunication quality of the path for the backhaul link in advance. If the communication quality of the path for the backhaul link does not satisfy the preset filter condition, the path for the backhaul link is deleted from the candidate backhaul link pathwhile the path for the backhaul link is in the original candidate backhaul link path, and the path for the backhaul link is ignoredwhile the path for the backhaul link is not in the original candidate backhaul link path.
  • the path for the backhaul link is maintained while the path for the backhaul link is in the original candidate backhaul link path, and thepath for the backhaul link is added to the candidate backhaul link path while the path for the backhaul link is not in the original candidate backhaul link path.
  • the communication quality of the path for the backhaul link of the relay node 31 –the base station 20 does not satisfythe preset condition
  • the path for the backhaul link of the relay node 31 -the base station 20 is deleted from the candidate path for the backhaul link.
  • the communication quality of the path for the backhaul link of the relay node 31 –the base station 20 satisfies the preset condition
  • the path for the backhaul link of the relay node 31 -the base station 20 is added to the candidate path for the backhaul link.
  • the preset filtering condition is that the signal-to-noise ratio of the communication of the path for the backhaul link is equal to or greater than a preset threshold.
  • it may also be parameters such as the reception power of a reference signal, the reception quality of a reference signal, and the strength of a received signal greater than the preset threshold.
  • the base station in order to reduce the operation complexity of scheduling the path for the backhaul link, notifies the relay node to unload at least part of the scheduling subtask before the base station transmits the selected path for the backhaul linkto the relay node, thereby reducing the load of operations.
  • the base station transmits the selected path for the backhaul link to the relay node. After the base stationselects different paths for the backhaul links for different traffics, the selected paths for the backhaul linksaretransmitted to the corresponding relay node which needs to transmit these traffics, so that the relay node transmits the different traffics according to the selection of the base station through the different paths of the backhaul links after receiving these selected paths for the backhaul links.
  • the relay node transmits a backhaul link path re-planning request based on the selected path for the backhaul link. If the path for the backhaul link selected by the base station is different from the original default path for the backhaul link of the relay node, the relay node needs to acknowledge the new path for the backhaul link.
  • a backhaul link path re-planning confirmation message is transmitted to the relay node.
  • the base station receives the backhaul link path re-planning request which is transmitted based on the selected path for the backhaul link by the relay node, confirms the new path for the backhaul link, and notifies the relay node to transmit traffics according to the selected path for the backhaul link.
  • the relay node After receiving the confirmation message of the base station, the relay node transmits traffics according to the path for the backhaul linkwhich is selected by the base station.
  • the base station receives the communication status information transmitted by the relay node, selects the matching path for the backhaul link for the traffic to be transmitted on the basis of it (the communication status information) , and transmits the selected path for the backhaul link to the relay node.
  • the relay node transmits traffics according to the received path for the backhaul link, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources.
  • a base station 40 includes a first processing circuit 41 and a first communication circuit 42 which are electrically coupled to each other.
  • a relay node 50 includes a second processing circuit 51 and a second communication circuit 52 which areelectrically coupled to each other.
  • the base station 40 and the second communication circuit 52 of the relay node 50 transmit information to each other through the first communication circuit 42.
  • the first communication circuit 42 of the base station 40 and the second communication circuit 52 of the relay node 50 are also utilized to transmit information with a user terminal.
  • the frequency used to transmitinformation between the base station 40 and the relay node 50 is equal to the frequency used to transmit information between the relay node 50 and the user terminal.
  • the first processing circuit 41 of the base station 40 controls the first communication circuit 42
  • the second processing circuit 51 of the relay node 50 controls the second communication circuit 52, thereby implementingthe communication method shown in any of the embodiments of FIG. 1 and FIGs. 3-8.
  • the first processing circuit of the base station controls the first communication circuit to receive the communication state information transmitted through the relay node by using the second processing circuit to control the second communication circuit, and selects the matching path for the backhaul linkaccording to the communication state information to transmit to the relay node through the first communication circuit.
  • the second processing circuit of the relay node controls the second communication circuit to receive the selected path for the backhaul link, and transmits traffics according to the path for the backhaul link, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources.
  • FIG. 12 aschematic diagram of the structure of a device with storage functionaccording to an embodiment of the present disclosure is depicted.
  • a device 60 with a storage function stores at least one program or instructions 61, the program or instructions61 is utilized to execute the communication method shown in FIG. 1 and FIGs. 3-8.
  • the device with the storage function may be a storage chip or a hard diskin a terminal, a removable hard disk, or be other readable, writeable, and storable device such as a USB flash drive and an optical disk, and may also be a server or the like.
  • the program or instructions stored in the device with the storage function can be used to complete the method which selectsthe suitable path for the backhaul link dynamically, which improves the efficiency ofresourceutility and reduces the waste of resources.
  • the relay node of the present disclosure transmits its own communication status information to the base station, the base station selects the matching path for the backhaul link according to the received communication status information, and transmits the selected path for thebackhaul link to the relay node.
  • the relay node transmits trafficsaccording to the received path for the backhaul link, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

The presentdisclosure discloses a method, a base station, a relay node, and a device with storage function for communication. The method includes: receiving communication status information transmitted from at least one relay node through a base station; selectingapath for a backhaul link matching the communication status information in a selectable backhaul link pathset through the base station; andtransmitting the selected path for the backhaul link to the relay node through the base station for the relay node to adopt. The present disclosurefurther discloses an access network-based location area updating device. Through the above-mentioned manner, the present disclosure can select the suitablepath for the backhaul link dynamically, so that the relay node transmits traffics according to the selected path for the backhaul link, which improves the use efficiency and reduces the waste of resources.

Description

METHOD, BASE STATION, RELAY NODE, AND DEVICE WITH STORAGE FUNCTION FOR COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosuregenerally relate tocommunicationtechnology, and in particular relate to a method, a base station, a relay node, and a device with storage function for communication.
BACKGROUND
In a 5G communication network, abackhaul link connection must be able to support the mobile traffics of each cell. Because the cell distribution is very dense, the cost will be too high to adopt the cable backhaul link, andthe problem can be effectively resolved by adopting the wireless self-backhaul link.
The self-backhaul link defines that an access link and a backhaul link share frequency resources of a same frequency band. When the access link is close to or coincides with the backhaul link, thetraffics to be transmitted of each other will be interfered, which affects the quality of communication.
SUMMARY
Themain objective of the presentdisclosure to provide a communication method, which is capable of improving the communication quality of a self-backhaul link.
In order to achieve the above objective, a technical scheme adopted by the presentdisclosure provides a communication method. The method includes: receiving communication status information transmitted from at least one relay node through a base station; selectingapath for a backhaul link matching the communication  status information in a selectable backhaul link pathset through the base station; and transmitting the selected path for the backhaul link to the relay node through the base station for the relay node to adopt.
In order to achieve the above objective, another technical scheme adopted by the present disclosure provides a communication method. The method includes: transmitting communication status information to a base station; andreceiving and adopting a path for a backhaul linkwhich is selected and transmitted by the base station
In order to achieve the above objective, another technical scheme adopted by the present disclosure provides a base stationincluding a first processing circuit and a first communication circuit electrically coupled to each other, where the first processing circuit executes instructions at operation to implement the above-mentioned method.
In order to achieve the above objective, another technical scheme adopted by the present disclosure provides a relay node including a second processing circuit and a second communication circuit electrically coupled to each other, where the second processing circuit executes instructions at operation to implementthe above-mentioned methods.
In order to achieve the above objective, another technical scheme adopted by the present disclosure provides a device with storage function, where the device stores instructions and the above-mentioned methodsare implemented while the instructions are executed.
The presentdisclosure is advantageous in that: in contrast to the prior art, the presentdisclosure causes the base station to receive the communication status information transmitted by the relay node for all the paths for the backhaul links to which it participates, select the path for the backhaul link matching the communication  status information according to the communication status information, andnotify the relay node of the selected path for the backhaul link so that the relay node transmits information traffics according to the selected path for the backhaul link, which is capable of selecting the suitablepath for the backhaul linkeffectively and reasonably, and the efficiency ofresourceutility and the communication quality ofthe self-backhaul linkare improved, .
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flow chart of a first embodiment of acommunication methodof the present disclosure.
FIG. 2 is aschematic diagram of a frequency resource allocation of a relay nodeaccording to an embodiment of the present disclosure.
FIG. 3 is a flow chart of a second embodiment of acommunication methodof the present disclosure.
FIG. 4 is a flow chart of a third embodiment of acommunication methodof the present disclosure.
FIG. 5 is a flow chart of a fourth embodiment of acommunication methodof the present disclosure.
FIG. 6 is a flow chart of a fifth embodiment of acommunication methodof the present disclosure.
FIG. 7 is a flow chart of a sixth embodiment of acommunication methodof the present disclosure.
FIG. 8 is a flow chart of a seventh embodiment of acommunication methodof the present disclosure.
FIG. 9is aschematic diagram of a connection relationship between a base station and a relay nodeaccording to an embodiment of the present disclosure.
FIG. 10is aschematic diagram of the structure of a base stationaccording to an embodiment of the present disclosure.
FIG. 11is aschematic diagram of the structure of a relay nodeaccording to an embodiment of the present disclosure.
FIG. 12is aschematic diagram of the structure of a device with storage functionaccording to an embodiment of the present disclosure.
DETAILED DESCRIPTION
The technical schemes in the embodiments of the presentdisclosure will now be described in conjunction with the accompanying drawings in the embodiments of the presentdisclosure, and it will be apparent that the described embodiments are merely part of the embodiments of the disclosure, and are not all embodiments. All other embodiments obtained based on the embodiments in the present disclosureby those of ordinary skill in the art without making creative work are within the scope of the presentdisclosure.
Referring to FIG. 1, a flow chart of a first embodiment of acommunication methodof the present disclosure is depicted. The method may include the following blocks.
At S101: receiving communication status information transmitted from at least one relay node through a base station.
Referring to FIG. 2, aschematic diagram of a frequency resource allocation of a relay nodeaccording to an embodiment of the present disclosure is depicted, for ease of description. As shown in FIG. 2, a resource 10 of the relay node includes a control message transmission band 11, a backhaul link dedicated band 12, a shared band 13, and a terminal dedicated band 14. Of course, the resource allocation of other embodiments of the presentdisclosure is not limited to that shown in FIG. 2, and all  embodiments of the presentdisclosure are applicable as long as in an implementation scenario with the shared band 13.
In this implementation scenario, there is no sub-6 GHz frequency, and a reliable and stable link is required as a link for the message exchange in a control layer. Therefore, the control message transmission band 11 is not available as a frequencyband which can be shared by abackhaul link and an access link, but as a dedicated band for transmitting control messages between the base station and the relay node or among a plurality of relay nodes.
The backhaul link dedicated band 12 is only for the backhaul link, and the backhaul link dedicated band 12 may be used when the traffic to be transmitted by the backhaul link requires a high communication quality or the traffic is a delay sensitive traffic. In this implementation scenario, the bandwidth of the backhaul linkdedicated band 12 is variable, and in other implementation scenarios, the bandwidth of the backhaul link dedicated band 12may be fixed.
The shared band 13 is a frequency band shared by the backhaul link and the access link, which occupies most of the resource 10 of the relay node. The shared band 13 can be used forthebackhaul linktraffictransmission andthe access link traffictransmission at the same time.
The terminal dedicated band 14 is a frequency band dedicated to the access link. When the shared band 13 is utilized by thebackhaul link and the access link to perform traffic transmission at the same time, it will cause some interferences to the transmitted traffics. The base station will determine whether a user terminal needs to use the terminal dedicated band 14 according to the strength of the anti-interference capability of the user terminal. For example, the base station may preset an angle threshold between the backhaul link and the access link (e.g., 5 degrees and 10 degrees) . When the angle between the backhaul link and the access link is within the  threshold, which represents that the mutual interference between the two is large, and the terminal dedicated band 14 is enabled.
In a specific implementation scenario, the base station transmits a communication status information detection request to at least one relay node, so that the relay node responds to the communication status information detection request and startsto detect the communication status of all the paths for the backhaul links originating fromthe relay node itself, and transmits the detected communication status information to the base station.
Specifically, the communication status information includes at least one of a communication quality of all the paths for the backhaul links originating from (the relay node) itself, a type of a traffic to be transmitted (by the relay node) , and a resource requirement of the backhaul link and an access link sharing a same frequency band with the backhaul link. In this implementation scenario, the communication quality of all the paths for the backhaul links originating from (the relay node) itself is mainly reflected by a signal-to-noise ratio of (the communication of) the path for the backhaul link, in which the signal-to-noise ratio reflects the interference to the signal. During the detection, the maximum value of SINR (signal to interference plus noise ratio) is 30, and can be even negative at minimum. In general, it is considered that the signal quality is excellent while SINR ≥ 25, it is considered that the signal quality is good while 25>SINR≥20, it is considered that the signal quality is average while 20>SINR≥10, and it is considered that the signal quality is poor while SINR<5. In other implementation scenarios, parameters such as the reception power ofa reference signal, the reception quality of a reference signal, and the strength of a received signal can be used as reference designators.
In this embodiment, the type of the traffic to be transmitted includes at least one of whether the trafficbelongs to a latency sensitivity and a communication quality  requirement of the traffic. In other implementation scenarios, it is also possible to directly preset the priority of different traffics. The communication quality requirement is defined based on whether the traffic is liable to be interfered in the transmission process. If the traffic is liable to be interfered, the communication quality requirement of the traffic is high, and if the traffic has a strong anti-interference capability or has some fault-tolerant space, it can accept a certain interference, andthe communication quality requirement of the traffic is relatively low.
In this implementation scenario, the resource requirement of the backhaul link and the access link sharinga same frequency band with the backhaul linkincludes at least one ofa traffic amount to be transmitted by both the backhaul link and the access link as well asa resource reuse rate of a shared frequency band of both. When one relay node transmits a large amount of traffic (s) in the backhaul link and the access linkat the same time, the resource reuse rateof the shared frequency band of the backhaul link and the access linkwill be high, which means that the probability of being interfered and delay will be high when adopting the path for the backhaul link.
In other implementations, it is also possible for the base station to receive the communication status informationtransmitted by the relay node which is obtained by detecting the communication status of all the paths for the backhaul links originating fromthe relay node itself at a preset period through the relay node.
At S102: selecting a path for a backhaul link matching the communication status information in a selectable backhaul link path set through the base station.
In a specific implementation scenario, multi-hop technology is supported, that is, one relay node can transmit traffic to the base station through another or a plurality of relay nodes. The specific number of relay nodesutilized by one relay node to transmittraffics to the base station can be set in advanceor notset. If not set, the number of the relay nodes which the base station is connected to decremented by 1 is  used as the upper limit. The single hop means the relay node transmits traffics to the base station directly.
In this implementation scenario, the base station selects the most suitablepath for thebackhaul linkfrom the backhaul link pathset of the single hop backhaul link pathand the multi hop backhaul link pathaccording to the received communication status information. Specifically, the most suitablepaths for the backhaul links are selected for these traffics according to the types of the trafficsto be transmitted. If the traffic to be transmitted is thelatency sensitivity, the traffic has the highest priority, and the base station selects the path for the backhaul linkthat has the most high signal-to-noise ratio, the lowestamount of the traffic which the backhaul link and the access link need to transmit, and the lowest resource reuse rate of the shared frequency band of the backhaul link and the access link. If the traffic to be transmitted requires a higher communication quality, the traffic has a higher priority, and the base station selects the path for the backhaul link that has the higher signal-to-noise ratio, the lower amount of the traffic which the backhaul link and the access link need to transmit, and the lower resource reuse rate of the shared frequency band of the backhaul link and the access link. If the traffic to be transmitted is notthelatency sensitivity and requires a lower communication quality, the base stationselects the suitable path for the backhaul link for the traffic from the remaining path for the backhaul link after selectingthe path for thebackhaul link for the other traffics with high priority.
Since this embodiment selects the suitable path for the backhaul link for the type of different traffics, even for the traffics transmitted by the same relay node, the base station will render differentpriorities according to the different types of these traffics and select different paths for the backhaul links.
In other implementation scenarios, before selecting the different paths for  the backhaul links for different traffics, the base station updates the candidate paths of the backhaul linksaccording to thecommunication quality of the path for the backhaul link in the received communication status information. Specifically, the base station seta filter condition for thecommunication quality of the path for the backhaul linkin advance. If the communication quality of the path for the backhaul link does not satisfy the preset filter condition, the path for the backhaul link is deleted from the candidate backhaul link pathwhile the path for the backhaul link is in the original candidate backhaul link path, and the path for the backhaul link is ignoredwhile the path for the backhaul link is not in the original candidate backhaul link path. If the communication quality of the path for the backhaul link satisfies the preset filter condition, the path for the backhaul link is maintainedwhile the path for the backhaul link is in the original candidate backhaul link path, andthepath for the backhaul link is added to the candidate backhaul link pathwhile the path for the backhaul link is not in the original candidate backhaul link path.
In this implementation scenario, the preset filtering condition is that the signal-to-noise ratio of the communication of the path for the backhaul link is equal to or greater than a preset threshold. In other embodiments, it may also be parameters such as the reception power ofa reference signal, the reception quality of a reference signal, and the strength of a received signal greater than the preset threshold. In this way, the path for the backhaul linkwhich willcause severeinterference because of the backhaul linkand the access link share a same frequency band will not serve as the candidate path for the backhaul link, which can effectively reduce the number of the path of the backhaul link to be selected by the base station, andimprove the quality of traffic transmission.
At S103: transmitting the selected path for the backhaul link to the relay node through the base station for the relay node to adopt.
In a specific implementation scenario, after the base stationselects different paths for the backhaul links for different traffics, the selected paths for the backhaul linksaretransmitted to the corresponding relay node which needs to transmit these traffics, so that the relay node transmits the different traffics according to the selection of the base station through the different paths of the backhaul links after receiving these selected paths for the backhaul links.
In other implementation scenarios, in order to reduce the operation complexity of scheduling the path for the backhaul link, the base station notifies the relay node to unload at least part of the scheduling subtask before the base station transmits the selected path for the backhaul linkto the relay node, thereby reducing the load of operations.
In other implementation scenarios, the candidate path for the backhaul link is updated first according to the communication quality of the path for the backhaul link in the received communication status information, so as to ensure that the traffic transmission capability meets the minimum requirement. Therefore, for the traffic which does not require a high communication qualitytowards the path for the backhaul link, the path for the backhaul link can be assignedarbitrarily, which eliminates the selectin step and is more simple.
In this implementation scenario, a millimeterwave is utilizedin transmittingtraffics. The millimeter wave itself has a strong anti-interference performance, which is suitable to be used in multi-link share band communication methods. In addition, the millimeter wave has high isolation while transmitted in different links, which has good directionality and supports multi-hop communication methods. In other implementation scenarios, other electromagnetic waves can also be chosen to transmit traffics.
As described above, in this embodiment, the base station receivesthe  communication status information transmitted by the relay node for all the paths for the backhaul links to which it participates, selects the path for the backhaul link matching the communication status information according to the communication status information, andnotifies the relay node of the selected path for the backhaul link so that the relay node transmits information traffics according to the selected path for the backhaul link, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources. The base station notifies the relay node to unload at least part of the scheduling subtask before the base station transmits the selected path for the backhaul linkto the relay node, which is capable of reducing the load of operations.
Referring to FIG. 3, a flow chart of a second embodiment of a communication method of the present disclosure is depicted. The method may include the following blocks.
At S201: maintaining a backhaul link path list of a control layer and broadcasting the list to the relay node through the base station.
In a specific implementation scenario, the transmission of the control message of the backhaul linkbetween the base station and the relay node or among a plurality of relay nodesis known or slowly changed, hence the base station needs to maintain the backhaul link path list of the control layerand broadcasts the backhaul link path list to aplurality of relay nodeswhich are wirelessly connected with the base station. Apathfor the backhaul link of the control layer refers to the link path (the path for the backhaul link) by which the base station transmits messages to the relay node. After the base station broadcasts the path for thebackhaul link of the control layer to the relay node, the subsequent control messagewill be transmitted to the relay node through the path for the backhaul link.
At S202: receiving communication status information transmitted from at  least one relay node through a base station.
At S203: selecting a path for a backhaul link matching the communication status information in a selectable backhaul link path set through the base station.
At S204: transmitting the selected path for the backhaul link to the relay node through the base station for the relay node to adopt.
Steps S202-S204 are basically similar to steps S101-S103 of the second embodiment of the communication method of the present disclosure, and will not be described herein.
As described above, in this embodiment, the base station broadcasts the path for the backhaul link of the control layer to the relay node, so that the relay node can receive the control message transmitted by the base station according to the fixed link path, thereby improving the reliability of communication. In addition, the control messageis transmitted according to the fixed link path, which can effectively improve the transmission reliability and transmission rate.
Referring to FIG. 4, a flow chart of a third embodiment of a communication method of the present disclosure is depicted. The method may include the following blocks.
At S301: receiving communication status information transmitted from at least one relay node through a base station.
At S302: selecting a path for a backhaul link matching the communication status information in a selectable backhaul link path set through the base station.
At S303: transmitting the selected path for the backhaul link to the relay node through the base station for the relay node to adoptpathpath.
Steps S301-S303 are basically similar to steps S101-S103 of the first embodiment of the communication method of the present disclosure, and will not be described herein.
At S304: receiving a backhaul link path re-planning request which is transmitted based on the selected path for the backhaul link by the at least one relay node.
In a specific implementation scenario, if the path for the backhaul link selected by the base station is different from the original default path for the backhaul link of the relay node, the relay node needs to acknowledge the new path for the backhaul link.
At S305: transmitting a backhaul link path re-planning confirmation message to the at least one relay node.
In a specific implementation scenario, the base station receives the backhaul link path re-planning request which is transmitted based on the selected path for the backhaul link by the relay node, confirms the new path for the backhaul link, and notifies the relay node to transmit traffics according to the selected path for the backhaul link.
As can be seen from the above description, this embodiment performs a secondary acknowledgment when the path for the backhaul linkwhich is selected by the base station is different from the default path for the backhaul link, thereby ensuring the correctness of the selection and avoiding the error or delay in the transmission of traffics.
Referring to FIG. 5, a flow chart of a fourth embodiment of a communication method of the present disclosure is depicted. The method may include the following blocks.
AtS401: transmitting communication status information to a base station.
In a specific implementation scenario, the relay node initiates to perform detection on all the paths for the backhaul links originating fromthe relay node itself based on a received communication status information detection request transmitted  by the base stationin response to the communication status information detection request, and transmits the detected communication status information to the base station.
Specifically, after the relay noderesponds to the communication status information detection request, the relay nodedetects at least one of a communication quality of all the paths for the backhaul links originating from (the relay node) itself, a type of a traffic to be transmitted (by the relay node) , and a resource requirement of the backhaul link and an access link sharing a same frequency band with the backhaul link, and assembles the detection results into the communication status information to transmit to the base station.
In this implementation scenario, the communication quality of all the paths for the backhaul links originating from (the relay node) itself is mainly reflected by a signal-to-noise ratio of (the communication of) the path for the backhaul link, in which the signal-to-noise ratio reflects the interference to the signal. During the detection, the maximum value of SINR is 30, and can be even negative at minimum. In general, it is considered that the signal quality is excellent while SINR ≥ 25, it is considered that the signal quality is good while 25>SINR≥20, it is considered that the signal quality is average while 20>SINR≥10, and it is considered that the signal quality is poor while SINR<5. In other implementation scenarios, parameters such as the reception power of a reference signal, the reception quality of a reference signal, and the strength of a received signal can be used as reference designators.
In this embodiment, the type of the traffic to be transmitted includes at least one of whether the traffic belongs to a latency sensitivity and a communication quality requirement of the traffic. In other implementation scenarios, it is also possible to directly preset the priority of different traffics. The communication quality requirement is defined based on whether the traffic is liable to be interfered in the  transmission process. If the traffic is liable to be interfered, the communication quality requirement of the traffic is high, and if the traffic has a strong anti-interference capability or has some fault-tolerant space, it can accept a certain interference, andthe communication quality requirement of the traffic is relatively low.
In this implementation scenario, the resource requirement of the backhaul link and the access link sharinga same frequency band with the backhaul link includes at least one ofa traffic amount to be transmitted bythe backhaul link and the access link which are connected by a same relay node as well asa resource reuse rate of a shared frequency band of the backhaul link and the access link. When one relay node transmits a large amount of trafficsin the backhaul link and the access linkat the same time, the resource reuse rateof the shared frequency band of the backhaul link and the access link will be high, which means that the probability of being interfered and delay will be high when adopting the path for the backhaul link.
In other implementation scenarios, the relay node may detect the communication status of all the paths for the backhaul links originating fromthe relay node itselfperiodically, and transmit the detected communication status information to the base station.
At S402: receiving and adopting a path for a backhaul link which is selected and transmitted by the base station, where the path for the backhaul link matching the communication status information is in a selectable backhaul link pathset.
In a specific implementation scenario, the base station selects the matching path for the backhaul link for different transmission traffics according to the received communication status information and transmits the selected path for the backhaul link to the relay node. The relay node transmits different traffics viathe matching path for the backhaul linkwhich is selected by the base station.
As described above, in this embodiment, the relay node transmits the  communication status information of all the paths for the backhaul links originating fromthe relay node itself to the base station, so that the base station can select the matching path for the backhaul linkaccording to the communication status information, and transmit traffics according to the path for the backhaul link selected by the base station, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources
Referring to FIG. 6, a flow chart of a fifth embodiment of a communication method of the present disclosure is depicted. The method may include the following blocks.
At S501: receiving a backhaul link path list of a control layer which is broadcasted by the base station.
In a specific implementation scenario, the transmission of the control message of the backhaul link between the base station and the relay node or among a plurality of relay nodesis known or slowly changed, hence the base station needs to maintain the backhaul link path list of the control layer, and the relay node receives the backhaul link path listbroadcasted by the base station. A pathfor the backhaul link of the control layer refers to the link path (the path for the backhaul link) by which the base station transmits messages to the relay node. After the relay node receives the pathfor the backhaul link of the control layer which is broadcasted by the base station, the subsequent control message transmitted by the base station will all be received through the path for the backhaul link.
At S502: transmitting communication status information to a base station.
At S503: receiving and adopting a path for a backhaul link which is selected and transmitted by the base station, where the path for the backhaul link matching the communication status information is in a selectable backhaul link pathset.
Steps S502-S503 are basically similar to steps S401-S402 of the fourth embodiment of the communication method of the present disclosure, and will not be described herein.
As can be seen from the above description, in this embodiment, the control message transmitted by the base station is received according tothe fixed linkpath, thereby improving the reliability of communication. In addition, the control messageis transmitted according to the fixed link path, which can effectively improve the transmission reliability and transmission rate.
Referring to FIG. 7, a flow chart of a sixth embodiment of a communication method of the present disclosure is depicted. The method may include the following blocks.
At S601: transmitting communication status information to a base station.
At S602: receiving and adopting a path for a backhaul link which is selected and transmitted by the base station, where the path for the backhaul link matching the communication status information is in a selectable backhaul link pathset.
Steps S601-S602 are basically similar to steps S401-S402 in the fourth embodiment of the communication method of the present disclosure, and will not be described herein.
At S603: transmitting a backhaul link path resetting request to the base station.
In a specific implementation scenario, if the path for the backhaul link received by the relay node which is selected by the base stationis different from the original default path for the backhaul link of the relay node, the new path for thebackhaul link needs to be acknowledged.
At S604: receiving confirmation information of a backhaul link path resetting which is transmitted by the base station.
In a specific implementation scenario, the base station receives the backhaul link path re-planning request which is transmitted by the relay node, confirms the new path for the backhaul link, and notifies the relay node to transmit traffics according to the selected path for the backhaul link. After receiving the confirmation information, the relay node transmits traffics according to the path for the backhaul link which is selected by the base station.
As can be seen from the above description, this embodiment performs a secondary acknowledgment to the base station when the received path for the backhaul link which is selected by the base station is different from the default path for the backhaul link, thereby ensuring the correctness of the selection and avoiding the error or delay in the transmission of traffics.
Referring to FIG. 8 and FIG. 9, a flow chart of a seventh embodiment of a communication method of the present disclosure is depicted, and a schematic diagram of a connection relationship between a base station and a relay node according to an embodiment of the present disclosure is depicted. The method may include the following blocks. As shown in FIG. 9, a base station 20 is wirelessly connected with three  relay nodes  31, 32, and 33, and the base station 20 transmits traffics with the three  relay nodes  31, 32, and 33 through a millimeter wave. In other embodiments, it is also possible to transmit traffics through other electromagnetic waves. In this embodiment, the backhaul link of the three  relay nodes  31, 32, and 33 as well as the base station 20 are defined to support single hop (the relay node directly wirelessly connects the base station) and double hop (one relay node is connected to the base station via another relay node) modes.
As shown in FIG. 8, the seventh embodiment of the communication method of the present disclosureincludes the following steps.
The base station maintains a backhaul link path list of a control layer. In a  specific implementation scenario, the transmission of the control message of the backhaul link between the base station and the relay node or among a plurality of relay nodesis known or slowly changed, hence the base station needs to maintain the backhaul link path list of the control layer. Apathfor the backhaul link of the control layer refers to the link path (the path for the backhaul link) by which the base station transmits messages to the relay node. Inthe connection relationship shown in FIG. 9, the path for the backhaul link of the control layer includes the base station 20 –the relay node 31, the base station 20 –the relay node 32, and the base station 20 –the relay node 33.
The base station broadcasts the backhaul link path list to the relay node. After the base station broadcasts the path for the backhaul link of the control layer to the relay node, the subsequent control message will be transmitted to the relay node through the path for the backhaul link.
The base station transmitsa communication status information detection request to the relay node, and the relay node responds to the communication status information detection request and startsto detect the communication status of all the paths for the backhaul links originating fromthe relay node itself, and transmits the detected communication status information to the base station.
Specifically, the communication status information includes at least one of a communication quality of all the paths for the backhaul links originating from (the relay node) itself, a type of a traffic to be transmitted (by the relay node) , and a resource requirement of the backhaul link and an access link sharing a same frequency band with the backhaul link. In this implementation scenario, the communication quality of all the paths for the backhaul links originating from (the relay node) itself is mainly reflected by a signal-to-noise ratio of (the communication of) the path for the backhaul link, in which the signal-to-noise ratio reflects the  interference to the signal. During the detection, the maximum value of SINR (signal to interference plus noise ratio) is 30, and can be even negative at minimum. In general, it is considered that the signal quality is excellent while SINR ≥ 25, it is considered that the signal quality is good while 25>SINR≥20, it is considered that the signal quality is average while 20>SINR≥10, and it is considered that the signal quality is poor while SINR<5. In other implementation scenarios, parameters such as the reception power of a reference signal, the reception quality of a reference signal, and the strength of a received signal can be used as reference designators.
In this embodiment, the type of the traffic to be transmitted includes at least one of whether the traffic belongs to a latency sensitivity and a communication quality requirement of the traffic. In other implementation scenarios, it is also possible to directly preset the priority of different traffics. The communication quality requirement is defined based on whether the traffic is liable to be interfered in the transmission process. If the traffic is liable to be interfered, the communication quality requirement of the traffic is high, and if the traffic has a strong anti-interference capability or has some fault-tolerant space, it can accept a certain interference, and the communication quality requirement of the traffic is relatively low.
In this implementation scenario, the resource requirement of the backhaul link and the access link sharinga same frequency band with the backhaul link includes at least one ofa traffic amount to be transmitted bythe backhaul link and the access link which are connected by a same relay node, as well asa resource reuse rate of a shared frequency band of the backhaul link and the access link. When one relay node transmits a large amount of trafficsin the backhaul link and the access linkat the same time, the resource reuse rateof the shared frequency band of the backhaul link and the access link will be high, which means that the probability of being interfered and  delay will be high when adopting the path for the backhaul link.
In other implementations, it is also possible for the base station to receive the communication status informationtransmitted by the relay node which is obtained by detecting the communication status of all the paths for the backhaul links originating fromthe relay node itself at a preset period through the relay node.
The base station selects the path for the backhaul link which matches the communication status information in the selectable backhaul link pathset. In this implementation scenario, the base station selects the most suitablepath for the backhaul link from the backhaul link pathset of the single hop backhaul link pathand the multi hop backhaul link pathaccording to the received communication status information. In the connection relationship shown in FIG. 9, the backhaul link path set of the single hop backhaul link path and the multi hop backhaul link path includes the relay node 31 –the base station 20, the relay node 31 –the relay node 32 –the base station 20, the relay node 31 –the relay node 33 –the base station 20, the relay node 32 –the base station 20, the relay node 32 –the relay node 31 -the base station 20, the relay node 32 –the relay node 33 –the base station 20, the relay node 33 -the base station 20, relay node 33 –the relay node 31 -base station 20, and the relay node 33 –the relay node 32 –the base station 20.
Specifically, the most suitablepaths for the backhaul links are selected for these traffics according to the types of the traffics to be transmitted. If the traffic to be transmitted is thelatency sensitivity, the traffic has the highest priority, and the base station selects the path for the backhaul link that has the most high signal-to-noise ratio, the lowest amount of the traffic which the backhaul link and the access link need to transmit, and the lowest resource reuse rate of the shared frequency band of the backhaul link and the access link. If the traffic to be transmitted requires a higher communication quality, the traffic has a higher priority, and the base station  selects the path for the backhaul link that has the higher signal-to-noise ratio, the lower amount of the traffic which the backhaul link and the access link need to transmit, and the lower resource reuse rate of the shared frequency band of the backhaul link and the access link. If the traffic to be transmitted is notthelatency sensitivity and requires a lower communication quality, the base stationselects the suitable path for the backhaul link for the traffic from the remaining path for the backhaul link after selectingthe path for the backhaul link for the other traffics with high priority.
Since this embodiment selects the suitable path for the backhaul link for the type of different traffics, even for the traffics transmitted by the same relay node, the base station will render differentpriorities according to the different types of these traffics and select different paths for the backhaul links.
In other implementation scenarios, before selecting the different paths for the backhaul links for different traffics, the base station updates the candidate paths of the backhaul linksaccording to thecommunication quality of the path for the backhaul link in the received communication status information. Specifically, the base station seta filter condition for thecommunication quality of the path for the backhaul link in advance. If the communication quality of the path for the backhaul link does not satisfy the preset filter condition, the path for the backhaul link is deleted from the candidate backhaul link pathwhile the path for the backhaul link is in the original candidate backhaul link path, and the path for the backhaul link is ignoredwhile the path for the backhaul link is not in the original candidate backhaul link path. If the communication quality of the path for the backhaul link satisfies the preset filter condition, the path for the backhaul link is maintained while the path for the backhaul link is in the original candidate backhaul link path, and thepath for the backhaul link is added to the candidate backhaul link path while the path for the backhaul link is not  in the original candidate backhaul link path.
For example, as shown in FIG. 9, the path for the backhaul link SINR (the relay node 31 –the base station 20) = 18, and the preset threshold is 20, the communication quality of the path for the backhaul link of the relay node 31 –the base station 20 does not satisfythe preset condition, the path for the backhaul link of the relay node 31 -the base station 20is deleted from the candidate path for the backhaul link. If in another test, the path for the backhaul link SINR (the relay node 31 –the base station 20) = 22, the communication quality of the path for the backhaul link of the relay node 31 –the base station 20 satisfies the preset condition, the path for the backhaul link of the relay node 31 -the base station 20is added to the candidate path for the backhaul link.
In this implementation scenario, the preset filtering condition is that the signal-to-noise ratio of the communication of the path for the backhaul link is equal to or greater than a preset threshold. In other embodiments, it may also be parameters such as the reception power of a reference signal, the reception quality of a reference signal, and the strength of a received signal greater than the preset threshold. In this way, the path for the backhaul link which willcause severeinterference because of the backhaul link and the access link share a same frequency band will not serve as the candidate path for the backhaul link, which can effectively reduce the number of the path of the backhaul link to be selected by the base station, andimprove the quality of traffic transmission.
In this implementation scenario, in order to reduce the operation complexity of scheduling the path for the backhaul link, the base station notifies the relay node to unload at least part of the scheduling subtask before the base station transmits the selected path for the backhaul linkto the relay node, thereby reducing the load of operations.
The base station transmits the selected path for the backhaul link to the relay node. After the base stationselects different paths for the backhaul links for different traffics, the selected paths for the backhaul linksaretransmitted to the corresponding relay node which needs to transmit these traffics, so that the relay node transmits the different traffics according to the selection of the base station through the different paths of the backhaul links after receiving these selected paths for the backhaul links.
The relay node transmits a backhaul link path re-planning request based on the selected path for the backhaul link. If the path for the backhaul link selected by the base station is different from the original default path for the backhaul link of the relay node, the relay node needs to acknowledge the new path for the backhaul link.
A backhaul link path re-planning confirmation message is transmitted to the relay node. The base station receives the backhaul link path re-planning request which is transmitted based on the selected path for the backhaul link by the relay node, confirms the new path for the backhaul link, and notifies the relay node to transmit traffics according to the selected path for the backhaul link.
After receiving the confirmation message of the base station, the relay node transmits traffics according to the path for the backhaul linkwhich is selected by the base station.
As described above, in this embodiment, the base station receives the communication status information transmitted by the relay node, selects the matching path for the backhaul link for the traffic to be transmitted on the basis of it (the communication status information) , and transmits the selected path for the backhaul link to the relay node. The relay node transmits traffics according to the received path for the backhaul link, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the  waste of resources.
Referring to FIG. 10, a schematic diagram of the structure of a base station according to an embodiment of the present disclosure is depicted. A base station 40 includes a first processing circuit 41 and a first communication circuit 42 which are electrically coupled to each other. Referring to FIG. 11, aschematic diagram of the structure of a relay nodeaccording to an embodiment of the present disclosure is depicted. A relay node 50 includes a second processing circuit 51 and a second communication circuit 52 which areelectrically coupled to each other. The base station 40 and the second communication circuit 52 of the relay node 50transmit information to each other through the first communication circuit 42. The first communication circuit 42 of the base station 40 and the second communication circuit 52 of the relay node 50 are also utilized to transmit information with a user terminal. In this embodiment, the frequency used to transmitinformation between the base station 40 and the relay node 50 is equal to the frequency used to transmit information between the relay node 50 and the user terminal.
In the actual operation, the first processing circuit 41 of the base station 40 controls the first communication circuit 42, the second processing circuit 51 of the relay node 50 controls the second communication circuit 52, thereby implementingthe communication method shown in any of the embodiments of FIG. 1 and FIGs. 3-8.
As described above, in this embodiment, the first processing circuit of the base station controls the first communication circuit to receive the communication state information transmitted through the relay node by using the second processing circuit to control the second communication circuit, and selects the matching path for the backhaul linkaccording to the communication state information to transmit to the relay node through the first communication circuit. The second processing circuit of the relay node controls the second communication circuit to receive the selected path  for the backhaul link, and transmits traffics according to the path for the backhaul link, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources..
Referring to FIG. 12, aschematic diagram of the structure of a device with storage functionaccording to an embodiment of the present disclosure is depicted.
device 60 with a storage function stores at least one program or instructions 61, the program or instructions61 is utilized to execute the communication method shown in FIG. 1 and FIGs. 3-8. In one embodiment, the device with the storage function may be a storage chip or a hard diskin a terminal, a removable hard disk, or be other readable, writeable, and storable device such as a USB flash drive and an optical disk, and may also be a server or the like.
As described above, in this embodiment, the program or instructions stored in the device with the storage function can be used to complete the method which selectsthe suitable path for the backhaul link dynamically, which improves the efficiency ofresourceutility and reduces the waste of resources.
In contrast to the prior art, the relay node of the present disclosure transmits its own communication status information to the base station, the base station selects the matching path for the backhaul link according to the received communication status information, and transmits the selected path for thebackhaul link to the relay node. The relay node transmits trafficsaccording to the received path for the backhaul link, which is capable of selecting the suitable path for the backhaul linkdynamically, thereby improving the efficiency ofresourceutility and reducing the waste of resources.
The foregoing is merely embodiments of the present disclosure, and is not intended to limit the scope of the present disclosure. Any equivalent structure or  flow transformation made based on the specification and the accompanying drawings of the present disclosure, or any direct or indirect applications of the disclosure on other related fields, shall all be covered within the protection of the present disclosure.

Claims (28)

  1. A communication method, comprising:
    receiving communication status information transmitted from at least one relay node through a base station;
    selectingapath for a backhaul link matching the communication status information in aselectable backhaul link pathset through the base station; and
    transmitting the selected path for the backhaul link to the relay node through the base station for the relay node to adopt.
  2. The method of claim 1, wherein the receivingthe communication status information transmitted from the at least one relay node through the base station comprises:
    receiving the communication status information transmitted periodically by the at least one relay node through the base station.
  3. The method of claim 1, wherein the receivingthe communication status information transmitted from the at least one relay node through the base station comprises:
    transmitting a communication status information detection request to the at least one relay node through the base station; and
    receiving communication status information transmitted by the at least one relay node in response to the detection request through the base station.
  4. The method of claim 1, whereinbefore the transmitting the selected path for the backhaul link to the relay node through the base station comprises:
    notifying the at least one relay node to unload at least a portion of a scheduling subtask through the base station.
  5. The method ofany of claims 1-3, wherein:
    the communication status informationcomprisesat least one of a communication quality of all the paths for the backhaul linksoriginating fromthe at least one relay node itself, a type of a trafficto be transmitted by the at least one relay node, anda resource requirement of the backhaul link and an access link sharinga same frequency band with the backhaul link.
  6. The method of claim 5, wherein:
    the communication quality of all the paths for the backhaul linksoriginating fromthe at least one relay node itselfcomprises a signal-to-noise ratio of the communication of the path for the backhaul link.
  7. The method of claim 5, wherein:
    the type of the trafficcomprisesat least one of whether the trafficbelongs to a latency sensitivity and a communication quality requirement of the traffic.
  8. The method of claim 7, whereinthe selectingthepath for the backhaul link matching the communication status information in theselectable backhaul link pathset through the base station comprises:
    allocatingthepath for the backhaul link with thebest communication quality tothetrafficof the latency sensitivitythrough the base station, wherein the trafficof the latency sensitivityhas the highest priority.
  9. Themethod of claim 5, wherein:
    the resource requirement of the backhaul link and an access link sharinga same frequency band with the backhaul link comprises at least one ofa trafficamount to be transmitted by both the backhaul link and the access link as well asa resource reuse rate of a shared frequency band of both.
  10. Themethod ofany of claims 1-3, wherein:
    the selectable backhaul link pathset comprises a single hop backhaul linkpathand a multi hop backhaul linkpathof the relay node utilizing a millimeter wave to transmit.
  11. Themethod ofany of claims 1-3, whereinbefore the receivingthe communication status information transmitted from the at least one relay node through the base station comprises:
    maintaining a backhaul linkpathlist of a control layer and broadcasting the list to the relay node through the base station.
  12. Themethod ofany of claims1-3, wherein the selectingthepath for the backhaul link matching the communication status information in theselectable backhaul link pathset through the base station comprises:
    deleting thepath for the backhaul link with the communication status information does not satisfy a preset condition fromthe selectable backhaul linkpathset; and /or
    adding a new path for the backhaul link with the communication status information satisfies the preset condition to the selectable backhaul linkpathset.
  13. The method of claim 12, wherein:
    the preset condition being thesignal-to-noise ratio of the communication of the path for the backhaul linkis greater than or equal to a preset threshold.
  14. Themethod ofany of claims 1-3, whereinafter the transmitting the selected path for the backhaul link to the relay node through the base station for the relay node to adopt comprises:
    receiving a backhaul linkpathre-planning request transmittedbased on the selectedpath for the backhaul linkbythe at least one relay node; and
    transmitting a backhaul link pathre-planningconfirmation message to the at least one relay node.
  15. A communication method, comprising:
    transmitting communication status information to a base station; and
    receiving and adopting a path for a backhaul link selected and transmitted by the base station, wherein the path for the backhaul linkpathmatchesthe communication status information in a selectable backhaul link pathset.
  16. The method of claim 15, whereinthe transmitting communication status information to the base station comprises:
    transmitting the communication status information to the base station at a preset period.
  17. The method of claim 15, whereinthe transmitting communication status information to the base station comprises:
    receiving a communication status information detection request transmitted by the base station; and
    transmitting a communication status message to the base station in response to the detection request.
  18. The method of claim 15, wherein before thereceiving and adopting thepath for the backhaul link selected and transmitted by the base station comprises:
    unloading at least a portion of a scheduling subtask according to a notification of the base station.
  19. Themethod ofany of claims 15-17, wherein:
    the communication status information comprises at least one of a communication quality of all the paths for the backhaul links, a type of a traffic to be transmitted, and a resource requirement of the backhaul link and an access link sharing a same frequency band with the backhaul link.
  20. The method of claim 19, wherein:
    the communication quality of all the paths for the backhaul linkscomprises a signal-to-noise ratio of the communication of the path for the backhaul link.
  21. Themethod of claim 19, wherein:
    the type of the traffic comprisesat least one of whether the trafficbelongs to a latency sensitivity and a communication quality requirement of the traffic.
  22. The method of claim 19, wherein:
    the resource requirement of the backhaul link and the access link sharing the same frequency band with the backhaul link comprises at least one of a traffic amount to be transmitted by both the backhaul link and the access link as well as a resource reuse rate of a shared frequency band of both.
  23. Themethod ofany of claims 15-18, wherein:
    the selectable backhaul link pathset comprises a single hop backhaul linkpathand a multi hop backhaul linkpathof the relay node utilizing a millimeter wave to transmit.
  24. Themethod ofany of claims 15-18, whereinbefore the transmitting communication status information to the base station comprises:
    receiving a backhaul linkpathlist of a control layer broadcasted by the base station.
  25. Themethod ofany of claims 15-18, wherein after thereceiving and adopting thepath for the backhaul link selected and transmitted by the base station comprises:
    transmitting abackhaul linkpathresetting request to the base station; and
    receiving confirmation information of a backhaul link path resetting transmitted by the base station.
  26. A base stationcomprising a first processing circuit and a first communication circuit electrically coupled to each other, thefirst processing circuit executing instructions at operation to implement the method as claimed in any of claims 1-15.
  27. A relay nodecomprising a second processing circuit and a second communication circuit electrically coupled to each other, the second processing circuit executing instructions at operation to implementthe method as claimed in any of claims 16-26.
  28. A device with storage function whereinthe device stores instructions and the method as claimed in any of claims 1-15 and 16-25are implemented while the instructions are executed.
PCT/CN2017/110117 2017-08-24 2017-11-09 Method, base station, relay node, and device with storage function for communication WO2019037283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710738593.5A CN109429294B (en) 2017-08-24 2017-08-24 Communication method, base station, relay node and device with storage performance
CN201710738593.5 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019037283A1 true WO2019037283A1 (en) 2019-02-28

Family

ID=65439688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110117 WO2019037283A1 (en) 2017-08-24 2017-11-09 Method, base station, relay node, and device with storage function for communication

Country Status (2)

Country Link
CN (1) CN109429294B (en)
WO (1) WO2019037283A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087199B (en) * 2019-05-09 2021-07-27 信息产业电子第十一设计研究院科技工程股份有限公司 User group data service system and method based on millimeter wave system downlink of relay

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687444A (en) * 2009-10-30 2012-09-19 捷讯研究有限公司 Downlink MCS selection in a type 2 relay network
US20140112162A1 (en) * 2012-10-19 2014-04-24 Qualcomm Incorporated Power efficient relay discovery protocol
CN106162764A (en) * 2015-04-03 2016-11-23 电信科学技术研究院 A kind of routing resource and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101790041B1 (en) * 2011-06-24 2017-11-20 삼성전자주식회사 Method and apparatus for setting transmission power of relay node
CN102905309B (en) * 2012-11-06 2015-10-28 重庆邮电大学 A kind of relay communication method based on cooperative MAC protocol in vehicle self-organizing network
CN103220116A (en) * 2013-05-16 2013-07-24 东南大学 Distributed resource distribution method for multiple input multiple output (MIMO)-orthogonal frequency division multiple access (OFDMA) wireless relay system
US9560573B2 (en) * 2014-10-02 2017-01-31 Qualcomm Incorporated Relay link communication
CN104618934B (en) * 2015-01-14 2018-01-05 西安交通大学 A kind of global optimization relay node selecting method based on throughput prediction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687444A (en) * 2009-10-30 2012-09-19 捷讯研究有限公司 Downlink MCS selection in a type 2 relay network
US20140112162A1 (en) * 2012-10-19 2014-04-24 Qualcomm Incorporated Power efficient relay discovery protocol
CN106162764A (en) * 2015-04-03 2016-11-23 电信科学技术研究院 A kind of routing resource and device

Also Published As

Publication number Publication date
CN109429294A (en) 2019-03-05
CN109429294B (en) 2020-10-02

Similar Documents

Publication Publication Date Title
CN109151923B (en) Communication method and device
KR102146149B1 (en) Full duplex operation in a wireless communication network
EP3311533B1 (en) Mesh path selection
CN111543080B (en) System and method for network topology management
US9681464B2 (en) Cooperative transmission within heterogeneous stations
JP6962519B2 (en) Wireless communication methods and equipment
JP6801191B2 (en) Wireless communication systems, wireless communication devices, and wireless communication programs
WO2019149023A1 (en) Relay transmission method and device
US12184352B2 (en) Atmospheric duct interference elimamating scheme
EP3381239B1 (en) Interference mitigation in dense mesh networks
JP2020524948A (en) Communication method and device
WO2015114458A2 (en) Methods and systems for controlling cells in a network
US20230164757A1 (en) Communication method and apparatus
KR20230113492A (en) Method performed by communication node and communication node in communication system
CN113840298B (en) Networking architecture of base station, communication control method and equipment
JP7486611B2 (en) Upstream signal transmission method, device, communication node, and storage medium
JP6251705B2 (en) Communication terminal device and router device
JP7565546B2 (en) Wireless node, wireless communication system, and wireless communication method
JP7549851B2 (en) COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND NODE
WO2019037283A1 (en) Method, base station, relay node, and device with storage function for communication
WO2019041369A1 (en) Relay automatic routing method and device
JP6223661B2 (en) Wireless terminal, wireless communication system, and computer program
JP7645361B2 (en) Wireless relay device and wireless relay method
JPWO2019211907A1 (en) Wireless route control method, wireless communication system, wireless node, and wireless route control program
CN107484248B (en) Data transmission method, macro base station and user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922194

Country of ref document: EP

Kind code of ref document: A1