WO2019033691A1 - 高速飞行方法及翼环机 - Google Patents
高速飞行方法及翼环机 Download PDFInfo
- Publication number
- WO2019033691A1 WO2019033691A1 PCT/CN2018/000297 CN2018000297W WO2019033691A1 WO 2019033691 A1 WO2019033691 A1 WO 2019033691A1 CN 2018000297 W CN2018000297 W CN 2018000297W WO 2019033691 A1 WO2019033691 A1 WO 2019033691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wing
- ring
- deflection
- wing ring
- same
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000012530 fluid Substances 0.000 claims abstract description 40
- 230000008569 process Effects 0.000 claims abstract description 25
- 230000033001 locomotion Effects 0.000 claims abstract description 11
- 238000010408 sweeping Methods 0.000 claims abstract description 3
- 240000002836 Ipomoea tricolor Species 0.000 claims description 40
- 230000007246 mechanism Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000008602 contraction Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/02—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/001—Flying saucers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/003—Aircraft not otherwise provided for with wings, paddle wheels, bladed wheels, moving or rotating in relation to the fuselage
- B64C39/005—Aircraft not otherwise provided for with wings, paddle wheels, bladed wheels, moving or rotating in relation to the fuselage about a horizontal transversal axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/06—Aircraft not otherwise provided for having disc- or ring-shaped wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/06—Aircraft not otherwise provided for having disc- or ring-shaped wings
- B64C39/062—Aircraft not otherwise provided for having disc- or ring-shaped wings having annular wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/20—Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
Definitions
- the invention relates to a wing ring machine technology, in particular to a dished aircraft technology in which a wing ring machine is a lifting device.
- the wing ring machine relates to a ring-shaped rotorcraft, a ring-shaped wind turbine, a ring-shaped turbine and a ring-shaped propeller machine, and the wing-wing flying saucer is a dish-shaped aircraft with a wing ring machine as a lifting device.
- FIGs 47 to 50 of the accompanying drawings of the application also show that the existing wing-wing UFO technology cannot simultaneously set the central nacelle (Fig. 47-48) and the outer ring nacelle (Figs. 49-52), and it is impossible to realize two kinds of nacelles. Communication connection. How can we make the wing ring UFO have two or two nacelles and connect them to each other?
- the large ring rotorcraft has a large diameter of the wing ring, and its annular truss has a high linear velocity and a large centrifugal force.
- the existing wing ring technology can only thicken the annular truss to resist centrifugal force, but this increases Self weight. Can we significantly improve the anti-centrifugal support ability of the ring-ring truss without increasing the amount of material or upgrading the material grade?
- the diameter of the large wing ring machine is very large, and the faster the wing speed (airspeed) of the wing from the center of the circle, the greater the lift, and the slower the wing speed (airspeed) near the center, the more burden. How can I rotate around the wings at the same line speed?
- the large wing ring machine has a large diameter, its wing ring line speed is very high, and the centrifugal force of the ring ring truss is large. How can we greatly improve the ability to resist centrifugal branching without increasing the weight and material grade of the ring truss?
- the present invention is a method for providing a horizontal driving force for a dished aircraft or a dished submarine with a wing ring machine as a lifting device.
- the "fluid generator” refers to a device capable of generating a fluid, such as a jet engine, a propeller engine, a powerful fan, a steam ejector, a water jet, a magnetic flow generator, and the like.
- partition refers not only to “repetition without interval” (ie, repeating the deflection process one after another), but also to “repetitively repeating” (ie, the process of two deflections is separated by the process of not deflecting or / and not exactly the same deflection process).
- specific road segment refers not only to a specific road segment in which the point or/and length is set to be fixed, but also to specify a midpoint or/and a length to which a particular road segment can be moved or/and changed.
- the sections where the starting point and the ending point do not coincide are referred to herein as “specific sections", or, although the starting point and the ending point coincide, the fins or fluid generators do not change the deflection angle in a circular motion, and also break The original wing ring unifies the upward lift and produces a horizontal component, which is essentially the “specific road segment” referred to in this article.
- the disc-shaped aircraft with the wing ring machine as the lift mechanism had to be additionally equipped with an engine dedicated to providing forward power and turning power because the existing wing ring machine can only provide axial aerodynamic force (ie lift), but it cannot Provide horizontal driving force.
- the angle of attack of each fin On the same circumference of the existing wing ring machine, the angle of attack of each fin, the spanwise orientation of each fin (ie, the direction indicated by the span) and the angle between the central axis of the wing ring, each fluid
- the angle between the direction of the force generated by the generator and the tangent of the wing ring can only be uniform. If they are deflected, the deflection of the same angle can only occur at the same time. Therefore, the existing wing ring machine can only form one
- the axially consistent force is only lift for the flying saucer.
- the invention makes the flap angle of attack, the spanwise pointing or the fluid direction deflect only in a specific road section, so that the uniform upward lifting force separates a horizontal force, and the present invention uses this force to drive the flying saucer forward, turn, brake Or fly backwards (refer to flying directly backwards without turning or turning).
- the wing ring flying saucer has an air suspension function, so when the direction of the horizontal driving force is reversed, the flying saucer can be safely braked.
- Sub-scheme 1 As the general scheme, and the specific road segment is more than one segment.
- Sub-scheme 2 As in the general scheme, and in the “two or more circular motions in two consecutive times, each time passing through a specific section”, the fins or fluid generators are only in the whole process of this time. Repeat the same deflection process, and the whole process before and after is not the same deflection process, or even the opposite deflection process (for example, the previous whole process consists of two or more "wings” And then recovers the "deflection action", and the whole process of the latter is composed of two or more "deflection of the flap first, then recovery”.
- the previous whole process is twice or More than three times of the "fluid force direction is first biased to the inner side of the circumferential tangent, and then restored" of the deflection action; and the entire process of the second time by two or more times "the direction of the fluid force is biased to the outer side of the circumferential tangent, then restore" deflection
- the composition of the action Since the front and rear force deflection processes are reversed, the driving force in the horizontal direction caused by the two deflections is in the opposite direction, so that the flying saucer can be obtained. The force required to turn left and right and back backwards).
- Sub-Scheme 3 As in the general scheme, the wing deflection process either changes the spanwise orientation or changes the wing angle of attack.
- Changing the spanwise orientation means changing the angle between the spanwise orientation and the axis of the wing ring or wing ring machine.
- Changing the wingspan not only enables the flying saucer to advance quickly with the airfoil, but also keeps the flying saucer in a horizontal position (the center axis is not tilted).
- Changing the wing angle of attack can be either the total deflection angle of the airfoil (such as the overall deflection of the fins of some large three-bladed wind turbines), or it can be only deflecting the flaps, ailerons or slats (such as most aircraft). Wing).
- Changing the wing angle of attack is to drive the flying saucer forward by tilting the center axis of the flying saucer to make the lift of the whole machine separate a horizontal direction.
- Sub-program 4 As sub-scenario 1, the specific road segment described in the two sub-schemes is made into a mid-point symmetric road segment group.
- This "midpoint” refers to a point that can divide the particular road segment into two equal parts, and the two “midpoints” are located at the intersection of the same circumference line and the same diameter (such as q and Q in FIG. 5).
- a and A symmetry, b and B symmetry can also be made as shown in Fig. 5 (but it is not necessary to implement the invention).
- two such road segments are referred to as “middle point symmetrical road segment groups”.
- Sub-solution 5 As sub-scenario 4, and the number of the road segment groups is greater than one group.
- Sub-scenario 6 As in sub-scenario 4, the fins of the same wing ring or the fins of different wing rings point in opposite directions in the specific sections of the two sections, thereby achieving greater thrust and preventing the annular truss from being flattened. Or squashed.
- This so-called "wing-off direction opposite" refers to the situation shown in Figure 8, that is, the flap passing through the ab section is deflected upwards, and the flap passing through the AB section is deflected downward (the so-called ab section, AB section is shown in Figure 5). ).
- the power deflection wing ring machine belongs to a ring rotor machine, a ring propeller machine or a ring wind turbine.
- At least 2 fins or fluid generators on the same circumference of the wing ring are provided with a deflection mechanism that is capable of deflecting on a particular road segment and fully recovering or substantially restoring without deflection after sweeping a particular road segment
- the front state, and the deflection mechanism is a mechanism capable of changing the spanwise pointing or/and the flap angle of attack, or a mechanism capable of changing the direction of the force generated by the fluid generator.
- the fin deflector can change the spanwise orientation and/or the flap angle of attack, and the fluid generator deflector can change the angle between the direction of fluid force and the circumferential tangent of the wing ring.
- Sub-scheme 1 As the general scheme, the number of wing rings is not less than two, and at least two of the wing rings have the same center and different radii.
- Sub-scheme 2 as in the general scheme, and the number of the wing rings is not less than two, and has a radial passage compartment (a nacelle erected along a radius or a diameter), and the radial passage compartment exists independently (refer only to There is a radial access compartment, not a radial access compartment, or a combined nacelle with a circular nacelle or/and a central nacelle.
- Sub-scheme 3 as in the general scheme, and the wing ring has at least one centripetal force device, and the same centripetal force device on the same circumferential line has not less than three, which are in an annular array; the centripetal force device is capable of generating a pointing wing ring A device for the force of the axis.
- Centripetal devices are available in a variety of forms, the most convenient of which are the fins and fluid generators on the wing rings.
- the fin 6 the lift of the fin produces a component of force towards the central axis of the wing ring, which becomes a source of centripetal force.
- a fluid generator that pushes the ring to rotate and move circumferentially with the wing ring also produces centripetal force when the direction of the force of the fluid is biased to the outside of the tangent of its circular motion trajectory.
- tangent line of circular motion trajectory refers to the tangent of a circular trajectory formed by the circular motion of a fluid (such as a high-pressure airflow) injection port or the like (such as the center of the propeller).
- a fluid such as a high-pressure airflow
- AD the fluid ray (the ejection direction).
- the side on which the arc AB is located is the inner side of the tangent line, and the other side (ie, the side on which the fluid ray AD is located) is outside the tangent line.
- a wing ring flying saucer with an outer ring nacelle is provided, which breaks the old sleeve of the nacelle's nacelle only on the central axis.
- the large increase in the number of passenger and cargo distribution ports can greatly improve the logistics speed, especially the speed and safety of express delivery, while reducing logistics and express delivery costs.
- Annular truss of annular rotor 2. Annular truss of outer wing ring; 3. Annular truss of inner wing ring; 4. Flat cut fin; 5. Wing; 6. Curved fin; a virtual connection at both ends of the curved fin; 8. a non-deflectable wing-bound wing; 9. a deflectable angle of attack or a spanwise-oriented wing; a 9-1 wing 9 handle; 10. a hydraulic telescopic rod ; 11.
- a shaft (the joint between the bottom end of the hydraulic telescopic rod and the annular truss 2 or the flap 9 of the outer wing ring); 12.B shaft (the shank of the fin 9 and the outer annular truss 2 or the flap 9) The dynamic connection point); 13.C rotating shaft (the dynamic connection point between the top of the hydraulic telescopic rod and the shank of the airfoil 9); 14.D rotating shaft (the dynamic connection point between the bottom end of the hydraulic telescopic rod and the inner annular truss 3) ; 15. Annular nacelle; 15-1. Annular nacelle with smaller radius; 15-2. Annular nacelle with larger radius; 16. Central nacelle; 17. Radial nacelle; 18.
- Annular truss of upper annular rotor Cross section 19. cross section of the annular truss of the lower annular rotor; 20. flying saucer (annular rotorcraft); 21. lifting rod; 22. nacelle floor; 23. jet engine; 24. air intake of the jet engine ; 25. Jet engine jet; 26. Connect the jet engine and the fin or ring Bearing of the frame; 27. bearing connecting the top of the jet engine and the hydraulic telescopic rod; 28. propeller engine; 29. connecting rod; 39. circular cross section (orbital ring); 40. frame ring (ring car) Frame); 41. rail car wheel; 44. rail coupling loop; 45. flying saucer forward direction; 46. wing ring rotation direction.
- Figure 1 A side view of a wing-wing flying saucer (a cutaway view along the diameter);
- Figure 2 A top view of a wing ring
- Figure 3 is a schematic view showing the connection of the fin 9 of the wing ring shown in Figure 2 and the deflection device of the ring truss 1 (which is a sectional view in the radial direction);
- Figure 4 Schematic diagram of the principle of the power deflection wing ring machine
- Figure 5 is a schematic view showing a method of setting a deflection path of a fin or a fluid generating device for providing level flight power
- Figure 6 is a schematic diagram showing the principle of obtaining a horizontal driving force by deflecting the spanwise pointing
- Figure 7 Schematic diagram of the principle of obtaining a horizontal driving force by deflecting the spanwise pointing
- Figure 8 is a schematic diagram showing the principle of obtaining a horizontal driving force by deflecting the spanwise pointing
- Figure 9 is a schematic view showing the principle of obtaining a horizontal driving force by deflecting a fluid
- Figure 10 is a schematic view showing the principle of obtaining a horizontal driving force by deflecting a fluid
- Figure 11 is a schematic view of a deflection device of a jet engine and its connection to a fin;
- Figure 12 is a schematic view showing the deflection operation of the jet engine in Figure 11;
- Figure 13 is a perspective view of a deflection device of a propeller engine and its connection to the airfoil;
- Figure 14 is a schematic view showing the two ends of the flap 9 connected to the two annular trusses 1 by means of a deflection device;
- Figure 15 Top view of a combined nacelle
- Figure 16 A top view of a combined nacelle
- Figure 17 is a schematic cross-sectional view of a wing ring flying saucer in a diameter direction
- Figure 18 A top view of a wing ring
- Figure 19 is a schematic cross-sectional view of a wing ring flying saucer in a diameter direction
- Figure 20 is a schematic view showing the structure of a wing ring flying saucer, which is a sectional view in the diameter direction;
- Figure 21 Schematic diagram of a wing ring flying saucer, which is a cutaway view in the diameter direction;
- Figure 22 is a schematic view showing the structure of a wing ring flying saucer, which is a sectional view in the diameter direction;
- Figure 23 is a schematic view showing the structure of a wing ring flying saucer, which is a sectional view in the diameter direction;
- Figure 24 Schematic diagram of a wing ring flying saucer, which is a top view
- Figure 25 is a schematic view showing the structure of a wing ring flying saucer, which is a sectional view in the diameter direction;
- Figure 26 A top view of a wing ring
- Figure 27 A top view of a wing ring
- Figure 28 A top view of a wing ring
- Figure 29 A top view of a wing ring
- Figure 30 A top view of a wing ring
- Figure 31 A top view of a wing ring
- Figure 32 Schematic diagram of the concept of "outside of tangent”.
- a wing-wing flying saucer is constructed by connecting two wing rings as shown in FIG. 2 and a ring-shaped nacelle 15, as shown in FIG. 1 (two wing rings, two rail coupling rings 44 and one ring-shaped nacelle 15)
- a dish-shaped wing ring machine is constructed, and the annular nacelle 15 is movably connected to the two wing rings 9 via the upper and lower rail coupling rings 44).
- the two wing rings rotate in opposite directions, and the fins 9 have a lift wing shape.
- the upward facing side of the airfoil is lower than the downward facing air pressure.
- the engine in this example may be an electric motor or an internal combustion engine.
- the engine may be mounted at an appropriate position on the toroidal frame (frame ring) 40 to electrically connect the engine to the wheel 41 of the railcar, with the engine driving the wheel 41 to rotate, and the wheel 41 to rotate the wing.
- the number of engines depends on the power demand. It is possible to configure one engine per wheel 41, one engine per wheel group, or even one engine every few wheels.
- each of the fins 9 is connected to the annular truss 1 of the wing ring.
- the end of the shank 9-1 of the flap 9 is movably connected to the outer annular truss 2 via the B-rotor 12.
- the top end of the hydraulic rod 10 is movably connected to the shank 9-1 of the flap 9 via the C-rotor 13; the bottom end of the hydraulic telescopic rod 10 is movably coupled to the outer annular truss 2 via the A-rotor 11.
- the X1 group has three signal transmitters a, q, and b, and the X2 group has three signal transmitters A, Q, and B (see Figure 5).
- a signal receiver is arranged on each of the fins 9, and the task of the signal receiver is to receive the signals sent by the fins when they pass through a, q, b, A, Q, B, respectively, and transmit them to the control device of the motor.
- the control device executes a signal command to cause the motor to rotate forward, reverse or stop, thereby causing the hydraulic telescopic rod 10 to extend, shorten or stop.
- the X1 and X2 sets of signal transmitters for small low-speed wing-wing UFOs should be reduced by one. Since only a little endurance N is left (as shown in Fig. 6 or Fig. 7), when the force N is too large, the wing ring which should be kept in a perfect circle may be flattened or flattened, thereby impeding mechanical properties.
- a large or high-speed wing-wing flying saucer should allow X1 and X2 to simultaneously receive an equal force N (as shown in Figure 8). To do this, the following settings must be made:
- the initial length of the hydraulic telescopic rod 10 that is, the length required to fix the spanwise orientation at the initial angle, must be left with an appropriate amount of expansion and contraction to ensure that it can be extended both at the initial length and at the initial stage.
- the length is retracted, and the extended limit length and the retracted limit length are equal.
- the lift mechanism of the wing ring UFO is the wing ring machine, and the wing ring machine can only emit upward lift, so the wing ring UFO must be additionally provided with an engine that provides horizontal driving force.
- a stable horizontal component (a force N in FIGS. 6, 7, and 8) can be obtained from the upward lift of the wing ring machine.
- the signal receiver receives the forward or reverse rotation command to turn the forward rotation circuit or the reverse rotation circuit on, and the motor rotates in the forward or reverse direction to drive the hydraulic expansion and contraction.
- the rod 10 is elongated or contracted so that the flap 9 is lifted or pressed, the spanwise deflection angle continues to increase, and the horizontal component continues to increase.
- the signal receiver receives the reverse or forward rotation command to rotate the motor in the reverse or forward direction, and the hydraulic telescopic rod 10 begins to contract or elongate, and the wingspan The deflection angle begins to decrease and the horizontal thrust continues to decrease.
- the flap 9 passes through point b or point B, its signal receiver receives the stop command, the motor stops rotating, and the hydraulic telescopic rod 10 stops moving, and the hydraulic telescopic rod 10 just retracts (or elongates). ) to the initial length, the flap 9 just returns to the initial span angle, and the horizontal thrust generated by the flap 9 is zeroed. As each fin is following the previous wing and the horizontal thrust generated by the previous wing continues to decrease, the horizontal thrust generated by the latter is continuously increasing, thus providing continuous, stable horizontal power.
- the four signal transmitters of a, A, q, and Q that can only transmit a single forward or reverse signal in the Y1 and Y2 directions can be changed to both transmit a forward signal.
- the transmitter that inverts the signal can also be transmitted, and the flying saucer direction lever is used as its forward/reverse signal inversion controller.
- the signals from a, A, q, and Q cause the low pressure surface of the airfoil to lean toward the left side of the original forward direction (as shown in Figure 8); when the joystick is pulled to the right, the right turn circuit should be turned on, so that a, A, q
- the signal from Q causes the low pressure side of the airfoil to lean to the right side of the original forward direction (ie, the low pressure side of the two fins 9 is opposite to that shown in FIG. 8).
- This example is very easy to implement left and right turns.
- the four signal transmitters a, A, q, Q, etc. in the X1 orientation and the X2 orientation are also set according to the method of the third example.
- Each of the fins or fluid generators of each of the wing rings of Examples 1 to 4 is provided with a deflecting device, in this example, the number of fins or fluid generators equipped with the deflecting device is reduced, at least to one (when When more than one, they should still be in a circular array (ie, the distance between the two is equal).
- the flying saucer only needs to deflect the flaps, ailerons or slats to achieve the purpose of changing the wing angle of attack. Since the angle of attack is only changed in the "specific section", the wing only produces a lift change on the section, so that the lift on the section is greater or smaller than the other sections, resulting in a slight tilt of the wing ring. Since the wing ring is tilted, the lift of the whole machine will decompose a horizontal driving force.
- the deflection device of the existing large-sized three-blade wind turbine that can deflect the airfoil as a whole is replaced by the originally disposed spanwise pointing deflection device.
- the flap integral deflection device of the three-blade wind turbine is placed inside the annular truss 1 of the wing ring, and the root of the flap 9 is connected thereto, so that the deflection device can deflect the wing ring 9 as a whole, thereby directly changing the wing
- the angle of attack is the driving force in the horizontal direction.
- each flap 9 The fin deflection means of each flap 9 is removed, making it a non-deflectable spanwise directed flap 8, and a jet engine 23 (shown in Figure 11) is provided at the end of each flap, and the jet engine 23 is passed through the bearing.
- the movable connection is made with the airfoil 9 and the hydraulic rod 10 is movably connected to the wing ring 9 via the bearing 11, and is movably connected to the jet engine 23 via the bearing 27.
- the thrust generated by the jet engine 23 is deviated from the tangential direction in the "specific section", thereby generating the thrust in the horizontal direction.
- the circle represents the annular truss of the wing ring
- the thick solid arrow represents the direction of the force exerted by the airfoil or fluid generator that has traveled to that position and has been deflected (if the airfoil or fluid occurs) If the device does not deflect when it is moved to this position, the direction of the force it emits is in the same direction as the tangent of the wing ring, that is, the direction indicated by the thin dotted arrow in the figure, so that it is impossible to generate horizontal driving force)
- the thick dashed arrow represents the component of this deflected force in the horizontal advancement direction of the wing ring (ie, the portion of the component that is converted to the horizontal driving force).
- the thin solid arrow in the figure represents the direction of the force exerted by the fin or fluid generator when it is moved to that position.
- the direction and force of the force is emitted because the fin or fluid generator does not deflect when it is moved to this position.
- the direction of the ring tangent is the same.
- each fin or fluid generator will have a pointing on the same road segment.
- the horizontal driving force in the same direction, and one such driving force is generated successively on the same road section one after another (Fig. 9 and Fig. 10 only show the yaw dynamics at two positions in each section, In fact, the horizontal component forces generated by the individual fins or fluid generators on the road segment thus form a horizontally continuous force N that is also stable in size and direction.
- Figure 9 shows the situation where the power is deflected only on one road segment
- Figure 10 shows the situation where the power is deflected at the same time on both road segments (the two paths are the paths a and b of Figure 5 and A) To the path of section B).
- Example 9 On the basis of Example 8, the jet engine 23 and its associated hydraulic telescopic rod 10 are moved to a ring-shaped annular truss (all jet engines 23 should be in an annular array).
- Example 10 On the basis of Example 8 or Example 9, the jet engine 23 is replaced with a propeller engine 28 (as shown in Fig. 13).
- a circular central nacelle 16 and four strip-shaped radial nacelles 17 are added, and the radial nacelle 17 is connected from four directions and communicates with the central nacelle 16 and the annular nacelle 15 to constitute The dish-shaped nacelle shown in Figure 15.
- Figure 18 is a schematic cross-sectional view showing the radial section of the wing ring flying saucer of this example.
- the scale of the central nacelle 16 is enlarged, and the wing ring shown in Fig. 2 originally configured is replaced with the wing ring shown in Fig. 18, the deflection device of the vane 9 and its wing ring
- the connection manner of the annular truss is completely the same as that of the eleventh example, and the two ends of the fin 8 are fixedly connected to the two annular trusses respectively.
- Example 12 On the basis of Example 12, the original fin 9 is removed, and the top view of the wing ring is as shown in Fig. 25. At both ends of each of the fins 9, it is connected to the two annular trusses 1, as shown in Fig. 14.
- one (or two) of the hydraulic rods 10 shown in Fig. 14 are actuated to be elongated or shortened so that the flaps 9 are deflected toward the wings. If the two hydraulic rods 10 are activated at the same time, the spanwise orientation of the flaps 9 will deflect faster.
- Example 13 On the basis of Example 13, the shape of the nacelle is further changed, and the position of the rail coupling ring 44 is shifted, so that the flap 9 and the nacelle are changed from the upper and lower connections to the left and right.
- the radial section of the whole machine is shown in Figure 21.
- the advantage of changing the left and right lateral connections is to reduce the weight of the rail coupling loop.
- the number of wheels on each railcar can be reduced from 5 to 3 (only one round up and down, left or right).
- the volume of the flying saucer is further expanded.
- the side view of the whole machine is as shown in Fig. 22, and the top view is as shown in Fig. 24.
- the wing ring used in this example consists of two wing rings with the same center and different radii. Two wing rings of different radii on the same level may have the same direction of rotation or vice versa, and any two wing rings of the same radius on different levels must have opposite directions of rotation.
- the fins on different radii can obtain the same linear velocity (airspeed), which is beneficial to maximize the lift of the whole machine and maximize the mechanical strength.
- Example 15 On the basis of Example 15, the entire wing ring of the lower layer and its deflection device and the rail coupling ring are eliminated to obtain a flatter flying saucer (Fig. 23).
- Example 12 On the basis of Example 12, Example 13, Example 14, or Example 15, the nacelle is deformed into the shape shown in FIG. The radial section of the whole machine is shown in Figure 25.
- the nacelle, wing ring machine, deflection device, etc. are waterproof and sealed to adapt to surface landing, floating and submersible.
- the wing ring machine can not only provide forward power but also accelerate upward floating under water or sink).
- Example 19 On the basis of any of the above examples, the flying saucer is provided with a circular or circular airbag to accommodate surface landing and floating.
- Example 19 On the basis of Example 18 or Example 19, a high-pressure water flow generator is used instead of a jet engine.
- annular array of landing gears is provided, all of which are connected to the annular nacelle 15, the central nacelle 16 or the toroidal frame (frame ring) 40.
- both wing rings are provided with fins or fluid aircraft deflection devices and corresponding signal transmitting and receiving devices.
- the deflection device of one of the wing rings and the corresponding signal transmitting and receiving device are eliminated, so that the wing ring machine has only one wing ring with deflection means and corresponding signal transmitting and receiving means. This leaves only one wing ring to produce a horizontal component, which is sufficient for some applications of the wing ring machine.
- q is the midpoint of the ab section
- Q is the midpoint of the AB section
- all of the midpoint symmetric road segments have three pairs of symmetric points; one is the starting point of the two segments, the other is the end point of the two segments, and the third is the midpoint of the two segments.
- the length of any section of the road segment is increased or shortened, so that the start and end points of the two sections are asymmetrical (but the point symmetry of the two sections is still maintained).
- the two sections of the same length of one or more sets of mid-point symmetry sections are changed to different lengths (but the connection of the midpoints of the two sections still passes through the center of the wing ring).
- the flap or fluid generator of its wing ring is set to "on two or three consecutive times" using the method described in Example 1, Example 2, Example 3, or Example 9 of the preferred embodiment. In the above circular motion, the same deflection process is repeated each time a particular section is passed.”
- the annular rotor, the annular propeller or the annular rotor has a top view as shown in Fig. 27 as shown in Fig. 28. Its lift flaps (wings that generate lift when cutting air), due to the low pressure facing the central axis, produce a force directed toward the center of the wing ring).
- wing-flying flying saucer On any type of wing-flying flying saucer, it has an annular rotor, a ring-shaped propeller or an annular wind-up wheel as seen in Fig. 26 as shown in Fig. 29.
- the diagonal vanes have a lift wing shape (lifting force is generated when the air is cut, and the lift is directed to the central axis of the wing ring).
- the annular rotor, the annular propeller or the annular rotor has a top view as shown in Fig. 26 as shown in Fig. 30.
- the diagonal vanes have a lift wing shape (lifting force is generated when the air is cut, and the lift is directed to the central axis of the wing ring).
- any of the wing-shaped flying saucers having a ring-shaped rotor, a ring-shaped propeller or an annular wind wheel as shown in Fig. 31 is a side view as shown in Fig. 31.
- the curved fin has a lift wing shape, and the lift of the raised wing section is directed to the central axis of the wing ring).
- any of the wing-wing UFOs having a ring-shaped rotor, a ring-shaped propeller or an annular wind turbine with a span that is directed parallel to the central axis of the wing ring, the low-pressure surface of the blade being directed to the middle of the wing ring
- the axis (the chord line is parallel to the circumferential tangent of the wing ring).
- any of the disc-shaped aircrafts with a ring-shaped rotorcraft, a ring-shaped propeller or a ring-shaped wind turbine as a lifting device all of the fins of the annular rotor are oriented with the smaller one of the chords oriented toward the axis (see Figure 24 or Figure 26).
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Wind Motors (AREA)
Abstract
一种飞碟高速飞行方法和动力偏转翼环机,所述方法是以翼环机为升力装置的碟状航空器或水下潜艇器产生水平方向驱动力的方法,翼环上的翼片(5)或流体发生器在接连两次或三次以上的圆周运动中每次途径特定路段时皆重复相同的偏转过程;所述翼环机的翼环的同一圆周线上最少有两个翼片(5)或流体发生器配置有偏转装置,所述偏转装置能够在特定路段发生偏转并在掠过特定路段后完全恢复或基本恢复未发生偏转前的状态,而且所述偏转机构是能够改变翼展指向或/和翼片迎角的机构,或是能够改变流体发生器所产生的作用力的方向的机构。
Description
本发明涉及翼环机技术,尤其是以翼环机为升力装置的碟状飞行器技术。
背景技术和技术问题
翼环机涉及环状旋翼机、环状风轮机、环状水轮机和环状螺旋桨机,而翼环飞碟则是以翼环机为升力装置的碟状飞行器。
罗琮贵申请的《翼环及具有翼环的装置暨方法》(公开号CN103195662A)较为全面地记载了翼环机技术。该申请的说明书虽涉及了引擎和翼片的偏转装置,但是完全没有涉及和暗示本申请所记载的偏转方式和技术效果,而其说明书附图之图47、图48表明:现有翼环飞碟只能通过额外设置的引擎获得水平方向的驱动力,否则无法实现水平方向运动。而这就严重压缩有效承载量并加大能耗和污染。能否找到一种无需额外增设引擎的就能驱使飞碟前进、转弯、刹车、倒飞的方法和装置呢?
该申请的说明书附图之图47~50还表明,现有翼环飞碟技术无法同时设置中央机舱(如图47~48)和外环机舱(如图49~52),更无法实现两种机舱的沟通连相。如何才能让翼环飞碟同时拥有两种或两个机舱并使它们相互沟通连接?
大型环状旋翼机的翼环直径很大,其环状桁架线速度很高,所承受的离心力很大,现有翼环机技术只能加粗环状桁架以抵抗离心力,然而这就增加了自重。能否在不增加材料用量、不提升材料等级的前提下大幅度提升翼环环状桁架的抗离心支解能力?
大型翼环机的直径很大,其翼片离圆心越远线的翼段速度(空速)越快、升力越大,而越是靠近圆心的翼段速度(空速)越慢,越成为累赘。如何才能使靠近各翼段以相同的线速度旋转?
大型翼环机的直径很大,其翼环线速度很高,翼环环状桁架所承受的离心力很大。如何才能在不增加环状桁架重量和材料等级的前提下大幅度提升其抵抗离心支解的能力?
一、飞碟高速飞行方法的技术方案
本发明是一种为以翼环机为升力装置的碟状航空器或碟状潜艇提供水平方向驱动力的方法。
总方案:在任一种以翼环机为升力装置的碟状航空器或碟状潜艇中,使翼环上的翼片或流体发生器在接连两次或三次以上的圆周运动中每次途经特定路段时皆重复相同的偏转过程。
所述“流体发生器”,指能够产生流体的装置,比如喷气引擎、螺旋桨引擎、强力风扇、蒸汽喷射器、水流喷射器和磁流发生器等等。
所谓“重复””,不仅指“无间隔的重复”(即一次接一次地重复偏转过程),也指“有间隔地重复”(即两次发生偏转的过程之间隔着不发生偏转的过程或/和不完全相同的偏转过程)。
所谓“特定路段”,不仅指其中点或/和长度被设置为固定不变的特定路段,也指定中点或/和长度被设置为可游移或/和变化的特定路段。凡起点和终点不重合的路段皆为本文所称之“特定路段”,或者,虽然起点和终点重合,但是翼片或流体发生器在一次圆周运动中并非全程都不改变偏转角度,也会打破原先翼环统一向上的升力而产生一个水平方向的分力,实质上还是属于本文所指“特定路段”。
先前以翼环机为升力机构的碟状航空器之所以必须额外设置专用于提供前进动力和转弯动力的引擎,是因为现有翼环机只能提供轴向的空气动力(即升力),却无法提供水平方向的驱动力。
在现有翼环机的同一圆周线上,每个翼片的迎角、每个翼片的翼展指向(即翼展所指方向)与翼环中轴线之间的夹角、每个流体发生器发出的作用力方向与翼环切线之间的夹角,都只能是统一的,如果它们发生偏转,也只能同时发生相同角度的偏转,因此现有翼环机只能形成一个与轴向一致的合力,对飞碟来说就是只有升力。
本发明使翼片迎角、翼展指向或流体方向仅在特定路段发生偏转,从而使统一向上的升力分出一个水平方向上的力,本发明正是利用这个力驱动飞碟前进、转弯、刹车或倒飞(指不掉头、不转向的情况下直接向后飞行)。翼环飞碟有空 中悬停功能,因此,当水平方向驱动力的方向倒转,飞碟就能安全刹车。
子方案一:如总方案,并且使所述特定路段多于1段。
子方案二:如总方案,且在前后两次的“接连两次或三次以上的圆周运动中每次途经特定路段时”,翼片或流体发生器仅是在各自本次的全过程中“重复相同的偏转过程”,而前后两次的全过程却是不相同的偏转过程,甚至是完全相反的偏转过程(比如,前一次的全过程由两次或三次以上的“翼片先翘起,然后复原”的偏转动作组成,而后一次的全过程却是由两次或三次以上的“翼片先下压,然后复原”的偏转动作组成。又比如,前一次的全过程由两次或三次以上的“流体作用力方向先偏向圆周切线内侧,然后复原”的偏转动作组成;而后一次的全过程由两次或三次以上的“流体作用力方向先偏向圆周切线外侧,然后复原”的偏转动作组成。由于前后两次作用力偏转过程相反,因此两次偏转所产生水平方向的驱动力必然方向相反,因此能够使飞碟获得左、右转弯和向后倒飞所需的力)。
子方案三:如总方案,翼片偏转过程或者改变了翼展指向,或者改变了翼片迎角。
改变翼展指向,指改变翼展指向与翼环或翼环机中轴线之间的夹角。改变翼展指向不但能够以翼片驱动飞碟快速前进,而且可以让飞碟保持水平姿态(中轴线不倾斜)。而改变翼片迎角,既可以是翼片整体偏转迎角(如某些大型三叶风轮机的翼片整体偏转),也可以是仅仅偏转襟翼、副翼或缝翼(如大部分飞机机翼)。改变翼片迎角是通过使飞碟中轴线前倾,使整机升力分出一个水平方向的动力,从而驱动飞碟前进。
子方案四:如子方案一,且使两段子方案所述特定路段成为中点对称的路段组。
此“中点”指能将所述特定路段分割为两等分的点,而两个“中点”分处于同一圆周线与同一直径的两个交点上(如图5的q和Q)。在两个中点对称的基础上,还可以如图5那样使a和A对称、b和B对称(但是并非必须如此才能实现本发明)。本文将这样的两个路段称为“中点对称的路段组”。
子方案五:如子方案四,且所述路段组的数量大于1组。
子方案六:如子方案四,且同一翼环的翼片或不同翼环的翼片在所述两段特定路段中的翼展指向相反,从而取得更大推力并防止环状桁架被拉扁或挤扁。此 所谓“翼展指向相反”是指附图8所示情形,即途经ab路段的翼片向上偏转翘起,途经AB路段的翼片向下偏转压下(所谓ab路段、AB路段见于图5)。
二、动力偏转翼环机的技术方案
动力偏转翼环机属于环状旋翼机、环状螺旋桨机或环状风轮机。
总方案:翼环的同一圆周线上最少有2个翼片或流体发生器配置有偏转机构,所述偏转机构能够在特定路段发生偏转并在掠过特定路段后完全恢复或基本恢复未发生偏转前的状态,而且所述偏转机构是能够改变翼展指向或/和翼片迎角的机构,或是能够改变流体发生器所产生的作用力的方向的机构。。翼片偏转装置能改变翼展指向和/或翼片迎角,流体发生器偏转装置能改变流体作用力方向与翼环圆周切线之间的夹角。
子方案一:如总方案,且翼环数量不少于两个,并且最少有两个翼环圆心相同而半径不同。
子方案二:如总方案,且所述翼环数量不少于两个,且具有径向通道舱(沿半径或直径方向架设的机舱),且所述径向通道舱或者独立存在(指仅有径向通道舱这一种机舱,而不是指只能有一条径向通道舱),或者与环形机舱或/和中央机舱一起构成组合式机舱。
子方案三:如总方案,且翼环上最少具有一种向心力装置,同一圆周线上的同一种向心力装置不少于三个,它们呈环形阵列;所述向心力装置是能够产生指向翼环中轴线的作用力的装置。
向心力装置形式多样,其中最便于运用的是翼环上的翼片和流体发生器。
随着翼环旋转而作圆周运动的升力翼片,当其气压较低的一面倾向或朝向翼环的中轴线(比如图28、图29和图30中的翼片5,或者图31中的翼片6),翼片的升力就产生一个朝向翼环中轴线的分力,这就成为一种向心力来源。
推动翼环旋转并随同翼环作圆周运动的流体发生器,当其流体的作用力方向偏向于其圆周运动轨迹的切线外侧,也同样产生向心力。
所谓“圆周运动轨迹的切线”,指流体(如高压气流)喷射口或类似部位(比如螺旋桨的圆心部位)圆周运动形成的圆形轨迹的切线。如图32所示,AC是该切线,AD是流体射线(喷射方向)。以该切线AC为界,弧线AB所处的一侧为切线内侧,另一侧(即流体射线AD所处的一侧)为该切线外侧。
(一)高速飞行方法和动力偏转翼环机的有益效果:
1.是讫今唯一能使翼环飞碟(即碟状翼环机或环状翼环机)实现高速飞行的技术方案;
2.完全不需额外设置专门提供水平方向驱动力的引擎,就能使飞碟高速快捷地前进、转弯、刹车、倒飞;
3.极大降低建造成本、极大降低飞碟自重;
4.极大减少能耗和空气污染;
5.能保证翼环机高速飞行时不被挤扁、拉扁;
6.能抵消部分离心力对环状桁架的拉裂作用,因而达到削减环状桁架重量、显著提高净载量的目的。
(二)一种碟状翼环机的有益效果:
1.使不同半径上的翼片可以获得相同的线速度(空速),有利于整机升力最大化、机械强度最大化。
2.提供了一种具有外环机舱的翼环飞碟,打破了碟状飞行器的机舱只能处于中轴线上的老套。
3.大大增加了翼环飞碟的观光窗口、客货集散通道和有效承载空间。
4.客货集散口的大量增加,又可大大提高物流速度,尤其是提高快递分发速度和安全度,同时降低物流、快递成本。
一、附图标记说明:
1.环状旋翼的环状桁架;2.外翼环的环状桁架;3.内翼环的环状桁架;4.平切翼片;5.翼片;6.弧形翼片;7.弧形翼片两端的虚拟连线;8.不可偏转翼展指向的翼片;9.可偏转迎角或翼展指向的翼片;9-1翼片9的柄;10.液压伸缩杆;11.A转轴(液压伸缩杆底端与外翼环的环状桁架2或翼片9的动连接点);12.B转轴(翼片9的柄与外环状桁架2或翼片9的动连接点);13.C转轴(液压伸缩杆顶端与翼片9的柄之间的动连接点);14.D转轴(液压伸缩杆底端与内环状桁架3的动连接点);15.环形机舱;15-1.半径较小的环形机舱;15-2.半径较大的环形机舱;16. 中央机舱;17.径向机舱;18.上环状旋翼的环状桁架的横截面;19.下环状旋翼的环状桁架的横截面;20.飞碟(环状旋翼机);21.升降杆;22.机舱底板;23.喷气引擎;24.喷气引擎的进气口;25.喷气引擎的喷气口;26.连接喷气引擎和翼片或环状桁架的轴承;27.连接喷气引擎和液压伸缩杆顶端的轴承;28.螺旋桨引擎;29.连杆;39.横切面呈槽型的环形轨道(轨道环);40.车架环(环形车架);41.轨道车的轮;44.车轨耦合环;45.飞碟前进方向;46.翼环旋转方向。
二、附图内容说明:
图1:一种翼环飞碟的侧视示意图(是沿直径剖切面图);
图2:一种翼环的俯视图;
图3:图2所示翼环的翼片9及其配置的偏转装置与环状桁架1的连接方式示意图(是沿半径方向剖切面图);
图4:动力偏转翼环机原理示意图;
图5:提供平飞动力的翼片或流体发生装置偏转路径设置方法示意图;
图6:通过偏转翼展指向而获得水平驱动力的原理示意图;
图7:通过偏转翼展指向而获得水平驱动力的原理示意图;
图8:通过偏转翼展指向而获得水平驱动力的原理示意图;
图9:通过偏转流体射向而获得水平驱动力的原理示意图;
图10:通过偏转流体射向而获得水平驱动力的原理示意图;
图11:一种喷气引擎的偏转装置及其与翼片连接方式示意图;
图12:图11中的喷气引擎偏转动作示意图;
图13:一种螺旋桨引擎的偏转装置及其与翼片连接方式示意图;
图14:翼片9的两端通过偏转装置与两个环状桁架1连接的示意图;
图15:一种组合式机舱的俯视图;
图16:一种组合式机舱的俯视图;
图17:一种翼环飞碟沿直径方向的剖切面示意图;
图18:一种翼环的俯视图;
图19:一种翼环飞碟沿直径方向的剖切面示意图;
图20:一种翼环飞碟的结构示意图,是沿直径方向的剖切面图;
图21:一种翼环飞碟的结构示意图,是沿直径方向的剖切面图;
图22:一种翼环飞碟的结构示意图,是沿直径方向的剖切面图;
图23:一种翼环飞碟的结构示意图,是沿直径方向的剖切面图;
图24:一种翼环飞碟的结构示意图,是俯视图;
图25:一种翼环飞碟的结构示意图,是沿直径方向的剖切面图;
图26:一种翼环的俯视图;
图27:一种翼环的俯视图;
图28:一种翼环的俯视图;
图29:一种翼环的俯视图;
图30:一种翼环的俯视图;
图31:一种翼环的俯视图;
图32:“切线外侧”概念示意图。
例一:
一种翼环飞碟,由两个图2所示的翼环和一个环形机舱15连接构成,具体连接方式如图1所示(两个翼环、两个车轨耦合环44和一个环形机舱15构成了一架碟状翼环机,环形机舱15通过上下两个车轨耦合环44与两个翼环9实现动连接)。
本例中,两个翼环的旋转方向相反,而且翼片9具有升力翼形,切割空气时翼片朝上的一面比朝下的一面气压低。
本例中的发动机可以采用电动机或内燃机。发动机可以安装在环形车架(车架环)40的适当位置,将发动机与轨道车的轮41作动力连接,以发动机带动轮41旋转,以轮41带动翼环旋转。
发动机的数量视动力需求而定,可以是每一个轮41配置一个发动机,也可以是每个轮组配置一个发动机,甚至可以是每隔几个轮组才配置一个发动机。
关键设置如下:
每个翼片9与翼环的环状桁架1的连接方式可见于图3。翼片9的柄9-1的末端通过B转轴12与外环状桁架2实现动连接。液压杆10的顶端通过C转轴13与翼片9的柄9-1实现动连接;液压伸缩杆10的底端通过A转轴11与外环状桁架2实现动连接。
然后,环形机舱15上设置X1和X2两组信号发射器,具体方位见于图4的X1方位和X2方位。X1组共有a、q、b三个信号发射器,X2组共有A、Q、B三个信号发射器(见于图5)。
同时,在每个翼片9上设置信号接收器,信号接收器的任务是在随翼片途经a、q、b、A、Q、B时分别接收它们发出的信号并传达给电机的控制装置,控制装置执行信号指令使电机正转、反转或停转,从而使液压伸缩杆10伸长、缩短或停止动作。
小型低速翼环飞碟的X1和X2两组信号发射器应可减其一。由于仅剩一点承受力N(如图6或图7所示),因此当力N过大,本应保持正圆形的翼环有可能被挤扁或拉扁,从而妨碍机械性能。
因此大型的或高速的翼环飞碟应使X1和X2同时承受相等的力N(如图8所示),为此必须作如下设置:
一、b和B始终只发出电机停转信号,使液压杆保持初始状态。
二、A和Q两者发出的信号必须相反,a和q两者发出的信号必须相反,目的是使液压杆从伸长(或缩短)变为收缩(或伸长);
三、q和Q两者发出的信号必须相反,a和A两者发出的信号必须相反,目的是使翼片在X1和X2两方位的翼展指向相反(如图8)。
四、液压伸缩杆10的初始长度,也就是将翼展指向固定在初始角度所需的长度,必须留有适当的伸缩量,以保证既能在处于初始长度时下伸出,又能在处于初始长度时回缩,并且伸出的极限长度和回缩的极限长度相等。
五、必须保证信号接收器只有在到达a、q、b、A、Q、B各点时才会接收到各点发出的信号并执行该指令(不被其他点上的信号干扰)。
翼环飞碟的升力机构是翼环机,而翼环机本来只能发出向上的升力,因此翼环飞碟必须另外设置提供水平方向驱动力的引擎。而本实施例能从翼环机向上的升力中得出一个稳定的水平方向的分力(如图6、图7、图8中的力N)。
由于上述设置,翼片9途经a点或A点时,其信号接收器接到正转或反转指令而使正转电路或反转电路接通,电机正向或反向旋转,驱动液压伸缩杆10伸长或收缩,从而使翼片9翘起或下压,翼展偏转角度持续加大,水平方向的分力持续加大。同理,翼片9途经b点或B点时,其信号接收器接到反转或正转指 令而使电机反向或正向旋转,液压伸缩杆10随之开始收缩或伸长,翼展偏转角度开始持续变小,水平推力也持续变小。同理,翼片9途经b点或B点时,其信号接收器接到停转指令,电机停止旋转,液压伸缩杆10随之停止动作,此时液压伸缩杆10正好回缩(或伸长)到初始长度,翼片9正好恢复到初始翼展角度,该翼片9产生的水平推力归零。由于每个翼片都在跟进前一个翼片,前一个翼片产生的水平推力持续减小时,后一个翼片产生的水平推力正在持续加大,因此可以得到持续、稳定的水平方向动力。
例二:
在例一的基础上,在环形机舱15的Y1方位和Y2方位增设两组对称的信号发射器,设置方法与X1方位和X2方位上的两组完全一样,仅是所处方位不同(见于图4)。当只需前进时,就只需打开X1和X2,需要转弯时才打开Y1和Y2。
例三:
在例一或例二的基础上,将Y1、Y2方位的原本只能单一发射正转或反转信号的a、A、q、Q四个信号发射器,改为既可发射正转信号,又可发射反转信号的发射器,并且将飞碟方向操纵杆作为其正转/反转信号倒转控制器。操纵杆呈垂直状态时应使a、A、q、Q停止发出任何信号,从而翼片途经Y1、Y2两方位时不作任何偏转;操纵杆向左扳动时应使左转电路接通,使a、A、q、Q发出的信号导致翼片低压面倾向原前进方向的左侧(如图8);当操纵杆向右扳动时应使右转电路接通,使a、A、q、Q发出的信号导致翼片低压面倾向原前进方向的右侧(即两个翼片9的低压面所向与图8所示相反)。
本例非常易于实现左转弯和右转弯。
例四:
在例三的基础上,将X1方位和X2方位上的a、A、q、Q等4个信号发射器也按例三的方法设置。
当方向操纵杆向前压,X1和X2方位上翼片的低压面向前倾,因而向前飞行;当方向操纵杆向后拉,X1和X2方位上翼片的低压面向后倾,因而可迅速减,在短距离内实现刹车(悬停),甚至迅速从前进转弯为后退(不转弯掉头的前提下向后倒飞)。
例五:
例一至例四中每个翼环的每个翼片或流体发生器皆配置有偏转装置,本例是将配置有偏转装置的翼片或流体发生器的数量减少,最少可减少到一个(当多于一个时,它们应仍然呈环形阵列(即两两距离相等)。
例六:
在例一至例四中任一例的基础上作如下改动:
以现有飞机的具有襟翼、副翼或/和缝翼的机翼(及其偏转控制装置)取代原有的全部翼片9(及其翼展指向偏转装置)。
术飞碟只需使襟翼、副翼或缝翼发生偏转,就可达到改变翼片迎角的目的。由于仅在“特定路段”改变迎角,机翼仅在该路段上产生升力变化,使该路段上的升力大于或小于其他路段,从而造成翼环的轻微倾斜。由于翼环倾斜,因此整机升力会分解出一个水平方向驱动力。
例七:
在例一的基础上作如下改动:
用现有大型三叶风轮机的可以使翼片作整体偏转的偏转装置,取代原有设置的翼展指向偏转装置。将三叶风轮机的翼片整体偏转装置置于翼环的环状桁架1的内部,而翼片9的根部与之连接,使得该偏转装置能够使翼环9发生整体偏转,从而直接改变翼片迎角,得出水平方向的驱动力。
例八:
在例一至例四中任一例的基础上作如下改动:
取消每个翼片9配置的翼片偏转装置,使其成为不可偏转翼展指向的翼片8,并且在每个翼片末端设置喷气引擎23(如图11所示),喷气引擎23通过轴承26与翼片9实现动连接,而液压杆10通过轴承11与翼环9实现动连接,通过轴承27与喷气引擎23实现动连接。
通过控制液压杆伸、缩(比如在图12所示的状态下),使喷气引擎23产生的推力在“特定路段”偏离切线方向,从而产生水平方向的推力。具体原理如下:
在图9和图10中,圆代表翼环的环状桁架,粗实线箭头代表运行到该位置并已偏转角度的翼片或流体发生器发出的作用力的方向(如果翼片或流体发生器运行到该位置仍不发生偏转的话,它发出的作用力的方向就与翼环切线为同方向, 即图中细虚线箭头所指的方向,那样的话就不可能产生水平驱动力),图中粗虚线箭头代表这个偏转后的作用力在翼环水平前进方向上的分量(即转化为水平驱动力的那部分分量)。图中细实线箭头代表翼片或流体发生器运行到该位置时发出的作用力的方向,由于翼片或流体发生器运行到该位置时并不偏转,因此发出的作用力的方向与翼环切线方向相同。
虽然每个旋转中的翼片或流体发生器都不是持续地产生水平方向的驱动力,但是,如图9和图10所示,由于每个翼片或流体发生器都会在同一路段上产生指向同一个方向的水平驱动力,而且是一个紧接一个地、接连不断地在同一路段上产生这样一个驱动力(图9和图10仅仅是表现了每段中两个位置上的偏转动力情况,实际上),因此该路段上受到的由各个翼片或流体发生器产生的水平方向上的分力会形成一个水平方向的持续不断的、大小和方向也稳定的合力N。
注:图9表现只在一个路段上偏转动力指向的情形,而图10表现同时在两个路段上偏转动力指向的情形(这两段路径即图5所表现的a至b段的路径和A至B段的路径)。
例九:在例八的基础上,将喷气引擎23及其配属的液压伸缩杆10移到翼环环状桁架上(全部喷气引擎23应呈环形阵列)。
例十:在例八或例九的基础上,用螺旋桨引擎28取代喷气引擎23(如图13所示)。
例十一:
在例一至例九中任一例的基础上,增加一个圆形中央机舱16和四个条状径向机舱17,径向机舱17从四个方向连接并沟通中央机舱16和环形机舱15,从而构成图15所示的碟状机舱。
图18是本例翼环飞碟径向剖切面示意图。
例十二:
在例十一的基础上,扩大中央机舱16的规模,并且将其原先配置的图2所示的翼环换为图18所示的翼环,翼片9的偏转装置及其与翼环的环状桁架的连接方式完全与例十一相同,翼片8的两端分别与两个环状桁架固定连接。
整机径向剖切面如图19所示。
例十三:
在例十二的基础上,取消其原有的翼片9,使其翼环的俯视图如图25。在其每个翼片9的两端与两个环状桁架1连接,连接方式见于图14。
本例整机径向剖切面如图20所示。
当需要提供水平飞行动力时,启动图14所示的一支(或两支)液压杆10,使之伸长或缩短,从而使翼片9发生翼展指向偏转。如同时启动两支液压杆10,翼片9的翼展指向会偏转得更快。
例十四:
在例十三的基础上,进一步将机舱形状改变,并且将车轨耦合环44转移位置,使翼片9与机舱从上下连接改为左右连接。本例整机径向剖切面如图21所示。
改为左右横向连接的好处在于减轻车轨耦合环的重量,每个轨道车上的轮数可以从5减少到3(只需上、下各置一轮,左或右置一轮)。
例十五:
在例十四的基础上,进一步扩大飞碟的体量,本例整机侧视如图22所示,俯视如图24所示。
本例所采用的翼环由两个圆心相同、半径不同的翼环组成。同一层面上的两个半径不同的翼环,其旋转方向既可相同,亦可相反,而不同层面上的任意两个半径相同的翼环,其旋转方向必须相反。
由于同一层面上的两个翼环不必一定以相同的角速度旋转,使不同半径上的翼片可以获得相同的线速度(空速),从而有利于整机升力最大化、机械强度最大化。
例十六:
在例十五的基础上,取消下层面的全部翼环及其偏转装置和车轨耦合环,得到更为扁平的飞碟(如图23)。
例十七:
在例十二、例十三、例十四或例十五的基础上,将机舱变形为图16所示的形状。本例整机径向剖切面如图25所示。
例十八:
在以上各例中任一例的基础上,对机舱、翼环机、偏转装置等作防水密封, 以适应水面降落、漂浮和潜航(翼环机在水下不仅可以提供前进动力还可加速上浮或下沉)。
例十九:在以上各例中任一例的基础上,给飞碟配置环形或圆形气囊,以适应水面降落和漂浮。
例十九;在例十八或例十九的基础上,用高压水流发生器代替喷气引擎。
例二十一:
在上述任一例的基础上,设置环状阵列的起落架,所有起落架皆与环状机舱15、中央机舱16或环形车架(车架环)40相连接。
例二十二:
上述各例中的翼环机,其两个翼环皆设置有翼片或流体飞行器偏转装置及相应的信号发射和接收装置。本例将其中一个翼环的偏转装置及相应的信号发射和接收装置取消,使翼环机仅有一个翼环具有偏转装置及相应的信号发射和接收装置。这样只剩一个翼环产生水平方向的分力,对于某些用途的翼环机来说也够了。
例一:
如图5,q是ab路段的中点,Q是AB路段的中点,此两段特定路段实际成为中点对称的路段组。
在上述任一例最佳实施例中,其所有的中点对称的路段组皆有三对对称的点;一是两路段的起点,二是两路段的终点,三是两路段的中点。
本例将路段组中任一路段的长度加大或缩短,使两路段的起点和终点皆不对称(但仍保持两路段中点对称)。
例二:
在以上各例基础上,将一组或多组中点对称的路段组中原本长度相同的两路段改成长度不同(但两路段的中点的连线仍然经过翼环的圆心)。
所谓“中点对称的路段组”,如图5:q是ab路段的中点,Q是AB中段的中点,此两个中点处于同一直线上且两者离翼环圆心距离相等。
例三:
在任一种翼环飞碟上,采用最佳实施例之例一、例二、例三……或例九所述方法将其翼环的翼片或流体发生器设置成“在接连两次或三次以上的圆周运动中 每次途经特定路段时皆重复相同的偏转过程”。
例四:
在任一种翼环飞碟上,其具有的环状旋翼、环状螺旋桨或环状风轮俯视如图27侧视如图28所示。其升力翼片(切割空气时会产生升力的翼片),由于低压面向中轴线倾斜,因此产生指向翼环中心的力)。
例五:
在任一种翼环飞碟上,其具有的环状旋翼、环状螺旋桨或环状风俯轮视如图26侧视如图29。其斜向翼片具有升力翼形(切割空气时会产生升力,升力指向翼环的中轴线)。
例六:
在任一种翼环飞碟上,其具有的环状旋翼、环状螺旋桨或环状风轮俯视如图26侧视如图30。其斜向翼片具有升力翼形(切割空气时会产生升力,升力指向翼环的中轴线)。
例七:
任一种翼环飞碟,其具有的环状旋翼、环状螺旋桨或环状风轮俯视如图26侧视如图图31、所示。其弧形翼片具有升力翼形,其翘起翼段的升力指向翼环的中轴线)。
例八:
任一种翼环飞碟,其具有的环状旋翼、环状螺旋桨或环状风轮的翼展指向平行于该翼环中轴线的翼片,此种翼片的低压面正对于翼环的中轴线(翼弦线平行于翼环圆周切线)。同一翼环上最少在一个圆周线上有不少于3个此种翼片,且这些翼片在该圆周线上两两距离相等。
翼片的低压而,指翼片切割空气时,翼片的两个面中气压较低的那一面。
例九:
任一种以环状旋翼机、环状螺旋桨或环状风轮机为升力装置的碟状飞行器,其环状旋翼的全部翼片皆是翼弦较小的一端朝向轴心方向(如图24或图26所示)。
Claims (11)
- 飞碟高速飞行方法,以翼环机为升力装置的碟状航空器或水下潜艇器产生水平方向驱动力的方法,其特征是:翼环上的翼片或流体发生器在接连两次或三次以上的圆周运动中每次途经特定路段时皆重复相同的偏转过程,。
- 根据权利要求1所述的方法,其特征是:使所述特定路段多于1段。
- 根据权利要求1所述的方法,其特征是:在前后两次的“接连两次或三次以上的圆周运动中每次途经特定路段时”,翼片或流体发生器仅是在各自本次的全过程中“重复相同的偏转过程”,而前后两次的全过程却是不相同的偏转过程,甚至是完全相反的偏转过程。
- 根据权利要求1所述的方法,其特征是:翼片偏转过程或者改变了翼展指向,或者改变了翼片迎角。
- 根据权利要求2所述的方法,其特征是:使两段所述特定路段成为中点对称的路段组。
- 根据权利要求5所述的方法,其特征是:所述路段组的数量大于1。
- 根据权利要求5所述的方法,其特征是:使同一翼环的翼片或不同翼环的翼片在所述两段特定路段中的翼展指向相反,从而取得更大推力并防止环状桁架被拉扁或挤扁。
- 动力偏转翼环机,属于环状旋翼机、环状螺旋桨机或环状风轮机,其特征是:翼环的同一圆周线上最少有2个翼片或流体发生器配置有偏转机构,所述偏转机构能够在特定路段发生偏转并在掠过特定路段后完全恢复或基本恢复未发生偏转前的状态,而且所述偏转机构是能够改变翼展指向或/和翼片迎角的机构,或是能够改变流体发生器所产生的作用力的方向的机构。
- 根据权利要求8所述的翼环机,其特征是:所述翼环数量不少于两个,并且最少有两个翼环圆心相同而半径不同。
- 根据权利要求8所述的翼环机,其特征是:所述翼环数量不少于两个,并且具有径向通道舱,所述径向通道舱或者独立存在,或者与环形机舱或/和中央机舱一起构成组合式机舱。
- 根据权利要求8所述的翼环机,其特征是:翼环上最少具有一种向心力装置,同一圆周线上的同一种向心力装置不少于三个,它们呈环形阵列;所述向心力装置是能够产生指向翼环中轴线的作用力的装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18845735.2A EP3674212A4 (en) | 2017-08-15 | 2018-08-14 | HIGH-SPEED FLIGHT PROCESS AND RING-BLADE AIRCRAFT |
US16/787,027 US11472547B2 (en) | 2017-08-15 | 2020-02-11 | High-speed flight method and coleopter |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710704379.8 | 2017-08-15 | ||
CN201710704379 | 2017-08-15 | ||
CN201711110752 | 2017-11-12 | ||
CN201711110752.3 | 2017-11-12 | ||
CN201711242954.3A CN108438217A (zh) | 2017-08-15 | 2017-11-30 | 翼环机、平飞方法及高空航母 |
CN201711242954.3 | 2017-11-30 | ||
CN201810912833.3 | 2018-08-12 | ||
CN201810912833 | 2018-08-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/787,027 Continuation US11472547B2 (en) | 2017-08-15 | 2020-02-11 | High-speed flight method and coleopter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019033691A1 true WO2019033691A1 (zh) | 2019-02-21 |
Family
ID=65362742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/000297 WO2019033691A1 (zh) | 2017-08-15 | 2018-08-14 | 高速飞行方法及翼环机 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11472547B2 (zh) |
EP (1) | EP3674212A4 (zh) |
CN (1) | CN110282133A (zh) |
WO (1) | WO2019033691A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020156018A1 (zh) | 2019-02-03 | 2020-08-06 | 罗琮贵 | 低能耗高速飞行方法及其翼环机 |
CN113525684A (zh) * | 2021-08-31 | 2021-10-22 | 清华大学 | 仿生飞行器及仿生飞行器的制造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112407245A (zh) * | 2020-12-14 | 2021-02-26 | 中国科学院工程热物理研究所 | 一种飞行器 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006321252A (ja) * | 2004-01-27 | 2006-11-30 | Kaido Ikeda | 回転ダクト方式シュラウド付回転翼 |
CN101643116A (zh) * | 2009-08-03 | 2010-02-10 | 北京航空航天大学 | 一种使用双螺旋桨垂直涵道控制的倾转旋翼飞机 |
CN102384042A (zh) * | 2011-09-20 | 2012-03-21 | 罗琮贵 | 翼环、四种翼环机构、两种翼环飞机暨翼环对拉风电机构 |
CN103195662A (zh) | 2011-03-14 | 2013-07-10 | 罗琮贵 | 翼环及具有翼环的机构暨方法 |
CN104816825A (zh) * | 2015-04-13 | 2015-08-05 | 北京航空航天大学 | 一种伸缩折展旋翼 |
WO2015116015A1 (ru) * | 2014-02-03 | 2015-08-06 | Анатолий Викторович КОНДРАТЮК | Надувной летательный аппарат |
CN104976074A (zh) * | 2013-12-14 | 2015-10-14 | 罗琮贵 | 垂直轴发电环、对拉飞悬机、方法暨翼片、翼轮、翼轮机 |
CN106986019A (zh) * | 2017-04-17 | 2017-07-28 | 四川建筑职业技术学院 | 一种可改变多旋翼无人机旋翼面倾斜角度的电机座 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1347733A (fr) * | 1962-10-30 | 1964-01-04 | Aéronef | |
GB1163853A (en) * | 1966-07-13 | 1969-09-10 | Vlm Corp | Rotary Wing Aircraft |
CH568187A5 (zh) * | 1973-09-25 | 1975-10-31 | Kaelin J R | |
FR2263152A1 (en) * | 1974-03-04 | 1975-10-03 | Fulgeanu Silviu | Lightweight vertical take-off aircraft - uses car engine to drive contra-rotating rotors surrounding spherical cabin |
US4023751A (en) * | 1976-07-28 | 1977-05-17 | Richard Walter A | Flying ship |
US4807830A (en) * | 1986-12-15 | 1989-02-28 | Horton Paul F | Aircraft with magnetically coupled annulus |
US5839690A (en) * | 1990-06-11 | 1998-11-24 | Blanchette; David John | Inertial acceleration aircraft |
GB2283720A (en) * | 1993-11-09 | 1995-05-17 | Derek Anthony Harris | Vertical take-off flying machine. |
US5653404A (en) * | 1995-04-17 | 1997-08-05 | Ploshkin; Gennady | Disc-shaped submersible aircraft |
DE29914928U1 (de) * | 1999-08-26 | 2001-02-08 | Eckert, Jörg, 75323 Bad Wildbad | Schwebe-/Gleit-Fluggerät |
WO2001040052A1 (en) * | 1999-11-29 | 2001-06-07 | Natural Colour Kari Kirjavainen Oy | Aircraft rotor and aircraft |
DE10014899A1 (de) * | 2000-03-24 | 2001-09-27 | Helmut Richter | Ringflügelflugzeug |
JP2003104297A (ja) * | 2001-09-30 | 2003-04-09 | Akio Tanaka | 飛走航機 |
US6672539B1 (en) * | 2002-08-30 | 2004-01-06 | Stephen L. Schoeneck | Power generation system |
US10450063B1 (en) * | 2007-06-05 | 2019-10-22 | American Aviation Technologies, Llc | Aircraft having VTOL, translational and traverse flight |
US20160376002A1 (en) * | 2015-02-19 | 2016-12-29 | Robert Davidson | Aircraft with Rotating Outer Shell |
US9550566B2 (en) * | 2015-05-27 | 2017-01-24 | John Francis Henning, JR. | Disc-shaped turbo-jet aircraft |
US9896197B2 (en) | 2015-05-28 | 2018-02-20 | Eugene H Vetter | Devices and methods for in flight transition VTOL/fixed wing hybrid aircraft structures and flight modes |
US11129325B2 (en) | 2018-07-02 | 2021-09-28 | Felton, Inc. | Conveyance belt for high speed planting of seeds |
-
2018
- 2018-08-14 CN CN201810925531.XA patent/CN110282133A/zh active Pending
- 2018-08-14 EP EP18845735.2A patent/EP3674212A4/en active Pending
- 2018-08-14 WO PCT/CN2018/000297 patent/WO2019033691A1/zh unknown
-
2020
- 2020-02-11 US US16/787,027 patent/US11472547B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006321252A (ja) * | 2004-01-27 | 2006-11-30 | Kaido Ikeda | 回転ダクト方式シュラウド付回転翼 |
CN101643116A (zh) * | 2009-08-03 | 2010-02-10 | 北京航空航天大学 | 一种使用双螺旋桨垂直涵道控制的倾转旋翼飞机 |
CN103195662A (zh) | 2011-03-14 | 2013-07-10 | 罗琮贵 | 翼环及具有翼环的机构暨方法 |
CN102384042A (zh) * | 2011-09-20 | 2012-03-21 | 罗琮贵 | 翼环、四种翼环机构、两种翼环飞机暨翼环对拉风电机构 |
CN104976074A (zh) * | 2013-12-14 | 2015-10-14 | 罗琮贵 | 垂直轴发电环、对拉飞悬机、方法暨翼片、翼轮、翼轮机 |
WO2015116015A1 (ru) * | 2014-02-03 | 2015-08-06 | Анатолий Викторович КОНДРАТЮК | Надувной летательный аппарат |
CN104816825A (zh) * | 2015-04-13 | 2015-08-05 | 北京航空航天大学 | 一种伸缩折展旋翼 |
CN106986019A (zh) * | 2017-04-17 | 2017-07-28 | 四川建筑职业技术学院 | 一种可改变多旋翼无人机旋翼面倾斜角度的电机座 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3674212A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020156018A1 (zh) | 2019-02-03 | 2020-08-06 | 罗琮贵 | 低能耗高速飞行方法及其翼环机 |
CN113525684A (zh) * | 2021-08-31 | 2021-10-22 | 清华大学 | 仿生飞行器及仿生飞行器的制造方法 |
CN113525684B (zh) * | 2021-08-31 | 2023-08-08 | 清华大学 | 仿生飞行器及仿生飞行器的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3674212A1 (en) | 2020-07-01 |
US11472547B2 (en) | 2022-10-18 |
EP3674212A4 (en) | 2021-10-27 |
US20200172239A1 (en) | 2020-06-04 |
CN110282133A (zh) | 2019-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102471407B1 (ko) | 강성 날개의 역학을 시뮬레이션하기 위해 회전자를 사용하는 vtol 항공기 | |
US8286909B2 (en) | Boundary layer propulsion airship with related system and method | |
US10988245B2 (en) | Segmented duct for tilting proprotors | |
EP2748064B1 (en) | A kite for a system for extracting energy from the wind | |
WO2015101346A1 (zh) | 飞行器和飞行时飞行器结构形态转换的方法 | |
CN108528692B (zh) | 一种折叠机翼双旋翼飞行器及其控制方法 | |
CN108082466A (zh) | 一种倾转涵道连接翼布局垂直起降飞行器 | |
CN102490898B (zh) | 一种共轴式双旋翼直升机 | |
CN101010235A (zh) | 混合式飞行器 | |
CA2195581A1 (en) | Gyro stabilized triple mode aircraft | |
US20170008622A1 (en) | Aircraft | |
WO2019033691A1 (zh) | 高速飞行方法及翼环机 | |
CN102417034A (zh) | 横列式刚性旋翼桨叶直升机 | |
CN103754360B (zh) | 一种类飞碟式旋翼机 | |
CN106945829A (zh) | 一种万向铰涵道双旋翼飞行器 | |
CN201712785U (zh) | 摆线螺旋桨 | |
RU2369525C2 (ru) | Конвертолет | |
CN103057703A (zh) | 具有羽翼翼形的双旋翼共轴直升机 | |
CN106043687A (zh) | 双发后推式鸭式旋翼/固定翼复合式垂直起降飞行器 | |
CN101844617B (zh) | 一种新构型的双横梁双螺桨直升机 | |
CN114954932A (zh) | 一种基于可变桨翼技术与双桨翼布局的垂直起降飞行器 | |
US20220153409A9 (en) | Low energy consumption high-speed flight method and wing-ring aircraft using same | |
CN114313259B (zh) | 一种纵向滚翼单元及基于该纵向滚翼单元的纵向滚翼飞行器 | |
CN102745332B (zh) | 气动式动力增升装置 | |
CN114715413A (zh) | 一种流体曲率引擎及流体曲率引擎装备及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18845735 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018845735 Country of ref document: EP Effective date: 20200316 |