[go: up one dir, main page]

WO2019029755A1 - Proceso y aparato para el tratamiento de aguas residuales domésticas mediante la implementación de filtros múltiples con material bioadsorbente y microalgas - Google Patents

Proceso y aparato para el tratamiento de aguas residuales domésticas mediante la implementación de filtros múltiples con material bioadsorbente y microalgas Download PDF

Info

Publication number
WO2019029755A1
WO2019029755A1 PCT/CO2018/000019 CO2018000019W WO2019029755A1 WO 2019029755 A1 WO2019029755 A1 WO 2019029755A1 CO 2018000019 W CO2018000019 W CO 2018000019W WO 2019029755 A1 WO2019029755 A1 WO 2019029755A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioreactor
bioadsorbent
microalgae
central tube
tube
Prior art date
Application number
PCT/CO2018/000019
Other languages
English (en)
French (fr)
Inventor
Ruben Dario CANETRO RODELO
RAMIREZ Margarita del Pilar CASTILLO
FUENTES Eduardo Antonio ESPINOZA
Euler GALLEGO CARTAGENA
Nubia Mireya GARZON BARRERO
Andrea Liliana MORENO RIOS
Original Assignee
Corporacion Universidad De La Costa Cuc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corporacion Universidad De La Costa Cuc filed Critical Corporacion Universidad De La Costa Cuc
Publication of WO2019029755A1 publication Critical patent/WO2019029755A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a treatment process that removes nutrients from domestic wastewater, through the combined use of pretreatment units with filtration based on oyster shells, other bioadsorbent materials and microalgae.
  • the design of the filtration system and operation of the same has a multifunctional mechanism in series and sustained, because in the reactors physicochemical processes are integrated as the adsorption of the bioadsorbent based on shells other bioadsorbent materials and the biological absorption of the microalga what contributes to a significant removal of phosphate in domestic wastewater.
  • phosphorus is an important nutrient in the reproductive growth of plants and in the formation of ATP; it is generally found in its oxidized state, as inorganic orthophosphate ions or in organic compounds. Specifically, it is found in higher concentrations in the sediment than in the water column, in the bond with the sediment is released, although, the equilibrium of phosphorus concentrations between the sediment and water is controlled by many factors, such as pH and dissolved oxygen.
  • microalgae are photosynthetic microorganisms that use the sun's energy to grow, in addition to consuming inorganic compounds and CO2
  • their use for the AR treatment was first proposed by CaldweII (1940), who reported the initial studies, on the use of microalgae as AR purifiers due to the use of inorganic nutrients contained in the water.
  • Chlorella sp which is a species of rapid growth and short generation time, with the capacity to tolerate rigorous environmental conditions. as those found in wastewater, efficiently assimilating the Nitrogen and Phosphorus of the AR; this species It has a high nutrient removal capacity (approximately 80%) in primary treatments, as well as secondary and in certain conditions it can completely remove ammoniacal nitrogen, nitrate, nitrogen and total phosphorus.
  • Tubular-type photobioreactors are among the reactors most used for the growth of the Chlorella sp species.
  • these reactors are a closed system consisting of a transparent tube inside which the algae grow, using the AR as a source of nutrients for their growth.
  • One of the first publications on this subject was made by Davis and others, from the Laboratory fo Pilot Plant. Ccarnegie Institution I heard Washington D. C in 1953.
  • patent US20160272524 of 2015 refers a procedure for the treatment AR by means of photosynthetically active algae that form a sediment in a state of rest, comprising the following stages: a) supply of wastewater to the algae and formation of the sediment in state at rest, b) transport of the wastewater supplied to the algae against gravity from a lower level to a higher level, while simultaneously exposing the wastewater mixed with the RA to the light; c) introduction of the ARs supplied to the algae from the upper level to the upper region of a sedimentation tank; d) allow the algae to sediment in the sedimentation tank and e) eliminate the wastewater released from the algae by sedimentation as treated AR.
  • ADBs are broad spectrum, that is, they are not selective for a particular type of pollutant, while others may be specific for certain types of contaminants.
  • Bioadsorption is a process that has been studied by many researchers, proving to be an alternative technique to conventional methods for the treatment of different industrial effluents contaminated with heavy metals and dyes.
  • the patent CN102336498 (B) of 2012 refers to another procedure for the treatment of RA, which includes the following stages: elimination of impurities and sediments from RA with high concentrations of nitrogen and phosphorus, then treatment of RA using active sludge in a sequential sequencing reactor, then the decanting of the supernatant of the sequencing lot is carried out, adding the supernatant in a membrane bioreactor for further aerobic treatment. Subsequently, it is filtered by ultrafltration membrane in the bioreactor to eliminate micro-suspensions and bacteria.
  • Patent CN103043851 (A) of 2013 describes a similar procedure for the treatment of RA with microalgae cultures, flocculation, clarification and filtration processes connected in series.
  • the present invention is directed to a process for the treatment of residential wastewater.
  • the design of the process consists of the combined use of units of pretreatment with filtration based on bioadsorbent material of mollusc shells of the genera Crassostrea sp. and / or Polymesoda sp., Coquina type coral rocks and / or microalgae culture. Its operation involves a multifunctional mechanism in series and sustained, because in the reactors physicochemical processes are integrated such as the adsorption of the material based on shells and the biological absorption of part of the microaiga which contributes in a significant removal of phosphate in waters domestic residuals.
  • the process for the treatment of domestic wastewater consists in connecting two or more bioreactors in series, passing the waste water through a central segmented tube integrated with interspersed chambers with or without bioadsorbents and leaving the central tube at bioreactor through perforations in the base of said central tube. Then, the water passes to the area located between the central tube and the body wall of the bioreactor where the wastewater comes into contact with the microalgae, from there it is passed to the next bioreactor. The water leaves the first reactor at the top and enters the next reactor through the upper part of the central tube, where the process is repeated.
  • Figure 1 corresponds to a view of a bioreactor according to the present application.
  • Figure 2 corresponds to a detailed front view of one of the interleaved chambers forming part of the segmented central tube of the bioreactor, as shown in Figure 1.
  • Figure 3 corresponds to a cross-sectional view of a cylinder of plastic meshes with bio-absorbent material located inside the central tube in Figure 2.
  • Figure 4 corresponds to a set of bioreactors for the treatment of domestic wastewater according to the present application.
  • Figure 5 corresponds to a flow diagram of the process of the present invention.
  • the present invention is directed to a process for the treatment of domestic wastewater.
  • the process consists of two or more bioreactors connected in series or in parallel, which take the domestic waste water and treat it to be discharged.
  • Figure 1 shows a view of a bioreactor according to an embodiment of the present invention.
  • the bioreactor comprises a domestic wastewater inlet (1) connected by a universal connection (2) to the feed tube (4) of the bioreactor, which comprises a valve (5) joined by a T-tube (3) to the tube feed (4).
  • the central tube has approximately the same length as the body of the bioreactor.
  • the feeding tube (4) is connected to the bioreactor by means of an inlet of the bioreactor, which is located in the upper part of the bioreactor, has a larger diameter than the feeding tube (4) and is secured to the bioreactor by means of a flange (6). ).
  • the entrance to the bioreactor is coupled to an internal tube of the bioreactor (9) by means of a coupling (7); said inner tube of the bioreactor (9), consists of a central tube segmented by intercalated chambers (9a), with or without bioadsobent material connected by couplings (10) which, in one embodiment of the present invention, two or more segments of the tube central contain plastic mesh cylinders with an opening diameter between 1.0 to 3.0 mm, which in turn contain particulate material of different sizes of mollusc shells of the genera Crassostrea sp. and / or Polymesoda sp. and / or Coquina coralline rocks ranging from 0.45 to 3.5 mm in polyethylene plastic mesh wrappers with an aperture diameter between 0.3 to 1.8 mm.
  • a space (11) is formed where live microalgae are inoculated.
  • the internal diameter of the bioreactor is approximately four times the internal diameter of the central tube.
  • the microalgae used are of the genus Chlorella sp.
  • the central tube of the bioactor (9) comprises, in its lower part, a coupling (12) that connects the inner tube of the bioreactor (9) to a lid with multiple perforations in the outlet area (14).
  • an aeration inlet (13) which feeds air into the space (11) where the microalgae are.
  • the flange (6) also houses the outlet pipe of the bioreactor (16), which also comprises a valve (15) coupled by means of a T-tube (18) to the outlet pipe.
  • Said outlet tube is connected to an inlet pipe of another bioreactor or to an outlet pipe of the system by means of a universal union (17).
  • FIG. 4 shows a view of the apparatus for the treatment of wastewater, according to an embodiment of the present application.
  • Said apparatus comprises four bioreactors (201, 202, 203, 204) connected in series.
  • each of the central tubes is segmented by interspersed chambers, with or without bioadsobent material connected by couplings, in which the segments contain particles of bioadsorbent material from shells of the genera Crassostrea sp. and / or Polymesoda sp.
  • segmented central tube of the bioreactor (201) contains a coarse particle size
  • segmented central tube of the bioreactor (202) has an average particle size
  • segmented center tubes of the bioreactors (203, 204) contain a fine particle size
  • the central tube segmented by intercalated chambers of the first (201) of the bioreactors has a distribution of segments in the upper part with bioadsorbent material with a coarse particle size, up to a height equal to half the length of the same, and a second distribution of segments with bioadsorbent material in the lower part with a size of medium particle;
  • the central tube of the second bioreactor (202) has a segment distribution at the top with bioadsorbent material with a coarse particle size and a second segment distribution with the bioadsorbent material at the bottom with an average particle size;
  • the center tubes segmented by intercalated chambers of the remaining bioreactors (203, 204) contain the bioadsorbent material with a fine particle size distributed in the interspersed chambers.
  • the bioadsorbent material has a particle size between 0.45 mm and 3.5 mm.
  • the bioreactor is made of a transparent plastic material such as, for example, acrylic and the central tube segmented by intercalated chambers is made of an opaque plastic material such as, for example, PVC.
  • PVC polyvinyl styrene
  • the present invention also teaches a method for treating domestic wastewater, which comprises connecting two or more bioreactors according to the present application, to form an apparatus (set of reactors); connect the first of said reactors to a domestic wastewater outlet pipe; open the valve to allow the flow of said waste water, so that they descend through the central tube coming into contact with the bioadsorbent material contained in the intercalated chambers and then ascend through the internal space of the bioreactor to come into contact with the microalgae.
  • the water treated in the first bioreactor comes out of the upper part of it, enters the second reactor through the upper part of it and repeats the cycle in each of the bioreactors included in the set of reactors, until they exit through the last bioreactor of the set and are properly discharged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

La presente invención está dirigida a un proceso de tratamiento que remueva nutrientes de las aguas residuales domésticas, mediante el uso combinado de unidades de pretratamiento con filtración a base de conchas de ostras, otros materiales bioadsorbentes y microalgas. El proceso de acuerdo con la presente invención consiste en un conjunto de reactores que tienen un tubo central segmentado por cámaras intercaladas las cuales contienen material particulado bioadsorbente de conchas de moluscos de los géneros Crassostrea sp y/o Polymesoda sp. y/o rocas coralinas tipo coquina de diferentes tamaños de partícula, en donde el biorreactor contiene microalgas vivas del género Chlorella sp. El proceso para el tratamiento de aguas residuales domésticas de acuerdo con la presente solicitud consiste en conectar dos o más bioreactores en serie, pasar el agua residual a través del tubo central segmentado por cámaras intercaladas del primer biorreactor, el agua residual pasa a través de la mezcla de material bioadsorbente contenido en las cámaras intercaladas y sale del tubo central al biorreactor a través de perforaciones en la parte inferior de dicho tubo central. Luego, el agua pasa al espacio comprendido entre el tubo central y la pared interna del biorreactor, donde las aguas residuales entran en contacto con las microalgas. El agua sale del primer reactor por la parte superior e ingresa al siguiente reactor por la parte superior del tubo central, donde se repite el proceso.

Description

PROCESO Y APARATO PARA EL TRATAMIENTO DE AGUAS RESIDUALES
DOMÉSTICAS MEDIANTE LA IMPLEMENT ACIÓN DE FILTROS MULTIPLES
CON MATERIAL BIOADSORBENTE Y MICROALGAS CAMPO TÉCNICO
La presente invención se relaciona con un proceso de tratamiento que remueva nutrientes de las aguas residuales domésticas, mediante el uso combinado de unidades de pretratamiento con filtración a base de conchas de ostras, otros materiales bioadsorbentes y microalgas.
El diseño del sistema de filtración y operación del mismo tiene un mecanismo multifuncional en serie y sostenido, debido a que en los reactores se integran procesos fisicoquímicos como la adsorción del bioadsorbente a base de conchas otros materiales bioadsorbentes y la absorción biológica de la microalga lo que contribuye en una remoción significativa de fosfato en aguas residuales domésticas.
ANTECEDENTES DE LA INVENCIÓN Se ha encontrado que entre los efectos de los efluentes municipales está la eutrofización. Esta problemática comenzó en los años 40 y tomo mayor visibilidad en los años 60. Debido al impacto de sus efectos y a que en las últimas décadas las condiciones tróficas de muchas de las aguas continentales han aumentado rápidamente. La eutroficación se ha convertido en una de las perturbaciones antropogénicas más extendidas y serias en los ecosistemas acuáticos. En la publicación del A US Environmental Protection Agency Perspective. Journal of Environmental Quality, 27 (2), 258-261, 1998, Parry, R., hace referencia a que en los cuerpos de agua dulce el nutriente que más incide en la eutroficación es el fósforo, mientras que en los de agua salada, el de mayor incidencia es el nitrógeno. Así mismo, en 2001 Aertebjerg y otros en European Environment Agency afirma que el fósforo es un nutriente importante en el crecimiento reproductivo de las plantas y en la formación de ATP; generalmente se encuentra en su estado oxidado, como iones de ortofosfato inorgánico o en compuestos orgánicos. Específicamente, se halla en mayores concentraciones en el sedimento que en la columna de agua, en el enlace con el sedimento se libera, aunque, el equilibrio de las concentraciones de fósforo entre el sedimento y el agua está controlado por muchos factores, tales como el pH y el oxígeno disuelto.
Dentro de las alternativas tecnológicas que se han implementado para el tratamiento de aguas residuales (AR) provenientes tanto del sector doméstico, industrial y agropecuario, se encuentran métodos artificiales basados en sistemas ingeníenles para la remoción de nutrientes de estas. Teixeira y otros en la Revista Facultad de Ingeniería de la Universidad de Antioquia, volumen 67, páginas 172-182, 2003., mencionan la implementación de reactores de lecho fluidizado con circulación interna (RALFCI) basado en el uso de biomasa activa con gran capacidad de remover excesos de materia orgánica y nitrógeno en AR. De igual modo, como alternativas de eliminación del fósforo y el nitrógeno en AR se encuentran las lagunas de estabilización, los sistemas de disposición controlada en el suelo; los lodos activados y reactores aerobios con biopelícula, así como, la remoción por procesos físicoquímicos o la combinación de algunos de los anteriores. En este sentido, otra tecnología alternativa para la remoción de fósforo de AR de forma natural ha sido la implementación de microalgas, las cuales son microorganismos fotosintéticos que utilizan la energía del sol para crecer, además de consumir compuestos inorgánicos y CO2, su uso para el tratamiento de AR fue propuesto por primera vez por CaldweII (1940), quien reportó los estudios iniciales, sobre el uso de las microalgas como purificadoras de AR debido al aprovechamiento de nutrientes inorgánicos contenidos en el agua. Seguidamente, Oswald y Gotaas en 1957, publicaron un articulo titulado "Photosynthesis in sewage treatment" en American Society Civil Enginering, 122, 73-105, en el que expusieron la posibilidad de realizar el aprovechamiento de las microalgas tanto para la remoción de contaminantes, como para la producción de biomasa vegetal, lo que puede ser considerado como valorización de las aguas residuales.
De esta manera, las microalgas han sido ampliamente utilizadas para tratamientos de aguas residuales tanto domésticas como industriales, constituyéndose en una tecnología de bajo costo. He y otros, en Bioresource technology, 146, 562-568, 2013 hacen referencia a que las microalgas permiten el reciclaje de nutrientes como fósforo y nitrógeno, los cuales son incorporados a la biomasa y conllevan a la generación de oxígeno. Según Komolafe y otros en Bioresource technology, 154, 297-304, 201 ., estas pueden reducir á su vez DBO, Coliformes y metales pesados en AR. Así mismo, Ruiz y otros., en Bioresource tecnhnology, 126, 247 - 253, 2012., encontraron que los porcentajes de remoción de nutrientes fueron satisfactorios al utilizar microalgas y permiten la combinación del tratamiento de AR con la producción de biomasa. Adicional a lo anterior, N. Abdel-Raouf y otros., en Saudi Journal of Biological Sciences 19, 257-275, 2012, señalan que el uso de microalgas ofrecen un biotratamiento terciario de las AR, permitiendo también la remoción de metales pesados e inhibición de coliformes.
He y otros (2013), hacen referencia en su investigación que dentro de las especies más estudiadas en remoción de contaminantes, se encuentra Chlorella sp, que es una especie de rápido crecimiento y corto tiempo de generación, con la capacidad de tolerar condiciones ambientales rigurosas como las encontradas en las aguas residuales, asimilando eficientemente el Nitrógeno y el Fosforo del AR; esta especie tiene una alta capacidad de remoción de nutrientes (aproximadamente 80%) en tratamientos primarios, así como secundarios y en ciertas condiciones puede remover completamente nitrógeno amoniacal, nitrato, nitrógeno y fosforo total. Dentro de los reactores más utilizados para el crecimiento de la la especie Chlorella sp se encuentran los fotobiorreactores de tipo tubular. Básicamente, estos reactores son un sistema cerrado consistente en un tubo trasparente dentro del cual crecen las algas utilizando el AR como fuente de nutrientes para su crecimiento. Una de las primeras publicaciones en este tema fue realizada por Davis y otros., del Laboratory fo Pilot Plant. Ccarnegie Institution oí Washington D. C en 1953.
En la patente US20160272524 de 2015 se refiere un procedimiento para el tratamiento AR por medio de algas fotosintéticamente activas que forman un sedimento en estado de reposo, que comprenden las siguiente etapas: a) suministro de aguas residuales a las algas y formación del sedimento en estado de reposo, b) transporte del agua residual suministrada a las algas contra la gravedad desde un nivel inferior a un nivel superior, mientras simultáneamente se exponen las aguas residuales mezclada con el AR a la luz; c) introducción de las AR suministradas a las algas desde el nivel superior hasta la región superior de un tanque de sedimentación; d) permitir que las algas sedimenten en el tanque de sedimentación y e) eliminar las aguas residuales liberadas de las algas por sedimentación como AR tratadas.
Por otra parte, las nuevas investigaciones apuntan a la utilización de materiales de desecho como bioadsorbentes BADs. Ucun y otros., en Journal oí Hazardous Materials, 161 (2), 1040-1045, 2009 estudiaron la remoción de metales pesados con materiales BADs; Panda y otros., en Journal of Hazardous Materials, 164 (1 ), 374- 379, la remoción de colorantes en AR, promulgándose así la utilización de residuos de origen agrícola, industrial o de desechos municipales, como lo describen Cardona y otros., en la Revista Ingenierías 1 (1), 1 -9, y Chao y otros., en la Revista Interciencia 26 (10), 774 - 778. Con el uso de dichos materiales se tendrían materiales apropiados para la remoción de contaminantes a un bajo costo y con menor impacto ambiental.
Algunos tipos de BADs son de amplio espectro, es decir, que no son selectivos para un tipo de contaminante en particular, mientras que otros pueden ser específicos para ciertos tipos de contaminantes. La bioadsorción es un proceso que ha sido estudiado por muchos investigadores, demostrando ser una técnica alternativa a los métodos convencionales para el tratamiento de diferentes efluentes industriales contaminados con metales pesados y colorantes. Es por esto que se ha intensificado la utilización de materiales de origen biológico, tales como: algas (Cuizano y otros., 2010), hongos (Acosta y otros., 2007), bacterias (Monge-Amaya y otros., 2008), restos de mariscos (Moreno, 2013), restos agrícolas (Tapia y otros., 2011 ), Iodos metálicos (Yang y otros., 2006) los cuales se encuentran en gran abundancia y son fácilmente transformables a bioadsorbentes. Rafatullah y otros., en Journal of hazardous materials, 166 (2), 1050 - 1059, 2010., hizó alución a que una de las ventajas del uso de biomateriales como adsorbentes es que son abundantes en la naturaleza y están disponibles a un muy bajo costo.
En los últimos años han incrementado los estudios sobre el uso de materiales biadsorbentes, sin embargo, son poco los dispositivos o sistemas desarrollados basándose en la utilidad que estos ofrecen. Al realizar la búsqueda en diversas bases de datos de patentes y/o artículos científicos fue poca la información encontrada en la que se relaciona el uso de bioadsorbente a base de ostras. Wanielista y otros., en la paténtente US007927484B2 (201 1) propusieron un sistema de filtración o bioretencion de compuestos con nitrógeno y fósforo en aguas residuales, utilizando una mezcla de materiales reciclados como neumáticos triturados, aserrín, cascara de naranja y de coco, hojas de compost, concha de ostra, cáscaras de naranja y otros materiales de origen natural incluyendo la arena, zeolitas y arcilla.
Por su parte, Fengming y Xiangjun en la patente CN103585995A (2014), dieron a conocer un nuevo material consistente de una mezcla de diversos materiales tales como titanio blanco, arena de cuarzo, caolín y concha de ostras, entre otros. En este estudio solo fue patentado el material, más no se presenta un dispositivo o tecnología para su utilización. También se han patentado otros materiales similares consistentes de mezclas de diferente material bioabsorbente y materiales inertes (Ferngming y Xiangjun (2014- CN103585966A), (Quoquiang 2014 - CN104176805A), (Quoquiang 2014 - CN104176806A), (Zhen 2015 - CN104326546A), (Wang Lu y Xu Jing 2015- CN104445448). Adicionalmente, se ha encontrado que los materiales bioadsorbentes han sido aplicados también para el tratamiento de aguas residuales industriales contaminadas con colorantes provenientes de la industria textil, como lo describe la patente WO0242228 (2002).
También se encuentran patentes en las cuales se mencionan metodologías para el tratamiento de las AR solo con el uso de microalgas. Dentro de ellas se encuentra la patente KR101444643 (B1) de 2016, la cual se refiere a un aparato para el tratamiento de las aguas residuales con microalgas, consistente de un tanque de filtración de biopelícula en el extremo frontal de un tanque de fotosíntesis/nitrificación, para la eliminación de material flotante y reducción de la turbidez, minimizando así la reducción de la transmitancia de luz debida a las bacterias heterotróficas, y permitiendo al mismo tiempo que los microorganismos de nitrificación, se adhieran a un soporte flotante, crezcan sobre él, y utilicen el oxígeno generado por fotosíntesis de microorganismos en el tanque de fotosíntesis/nitrificación con microalgas. Como resultado, los autores mencionan que se puede evitar la competencia de sustratos entre microorganismo para mejorar la eficiencia de tratamiento de materia orgánica, nitrógeno y fósforo con las microalgas. En la siguiente figura se muestra el esquema presentado en dicha patente.
La patente CN102336498 (B) del año 2012 hace alusión a otro procedimiento para el tratamiento de AR, dentro de él se incluyen las siguientes etapas: eliminación de impurezas y sedimentos de las AR con altas concentraciones de nitrógeno y fosforo, luego tratamiento del AR utilizando lodo activo en un reactor discontinuo de secuenciación, seguidamente se realiza la decantación del sobrenadante del lote de secuenciación, adicionando el sobrenadante en un biorreactor de membrana para tratamiento aeróbico adicional. Posteriormente, se filtra por membrana de ultrafltración en el biorreactor para eliminar micro-suspensiones y bacterias. El sobrenadante de ultrafiltración generado se añade a un fotobiorreactor, se desinfecta por ozono y se añaden filamentos de algas, se adiciona dióxido de carbono para realizar el cultivo de las microalgas y luego estas son llevadas a una piscina de sedimentación para ser separadas. La patente CN103043851 (A) de 2013 describe un procedimiento similar para tratamiento de AR con cultivos de microalgas, procesos de floculación, clarificación y filtración conectados en serie.
Con base en los hallazgos en las diferentes patentes y artículos científicos, se puede afirmar que, pese a que se han desarrollado invenciones en torno al uso de las microalgas para el tratamiento de AR, así como desarrollos de nuevos materiales que incluyen la concha de ostra, cada uno de ellos presenta diferentes tipos de combinaciones en cuanto al material y no revelan un dispositivo o sistema que permita su aplicación en las plantas convencionales de tratamientos de aguas residuales. Por consiguiente, el procedimiento planteado permitirá el desarrollo potencial de una invención que permita la remoción de compuestos como el nitrógeno y fosforo y a su vez conlleve a la generación de un valor agregado a través del aprovechamiento de la biomasa generada en el proceso en simultaneo del sistema de filtración combinado bioabsorbente-microalgas.
RESUMEN DE LA INVENCIÓN
La presente invención está dirigida a un proceso para el tratamiento de aguas residuales domiciliarias. El diseño del proceso consiste en el uso combinado de unidades de pretratamiento con filtración a base de material bioadsorbente de conchas de moluscos de los géneros Crassostrea sp. y/o Polymesoda sp., rocas coralinas de tipo coquina y/o cultivo de microalgas. Su operación implica un mecanismo multifuncional en serie y sostenido, debido a que en los reactores se integran procesos fisicoquímicos como la adsorción del material a base de conchas y la absorción biológica de parte de la microaiga lo que contribuye en una remoción significativa de fosfato en aguas residuales domésticas. El proceso para el tratamiento de aguas residuales domésticas de acuerdo con la presente solicitud consiste en conectar dos o más bioreactores en serie, pasar el agua residual a través de un tubo central segmentado integrado de cámaras intercaladas con o sin bioadsorbentes y sale del tubo central al biorreactor a través de perforaciones en la base de dicho tubo central. Luego, el agua pasa a la zona ubicada entre el tubo central y la pared del cuerpo del biorreactor donde las aguas residuales entran en contacto con las microalgas, de ahí se pasa al siguiente biorreactor. El agua sale del primer reactor por la parte superior e ingresa al siguiente reactor por la parte superior del tubo central, donde se repite el proceso.
BREVE DESCRIPCIÓN DE LAS FIGURAS La presente invención se entiende de forma más clara a partir de las siguientes figuras donde se muestran los componentes y resultados asociados a este proceso y aparato, así como los elementos novedosos con respecto al estado del arte, en donde, las figuras no pretenden limitar el alcance de la invención, el cual está únicamente dado por las reivindicaciones adjuntas, en donde:
La figura 1 corresponde a una vista de un biorreactor de acuerdo con la presente solicitud. La figura 2 corresponde a una vista frontal detallada de una de las cámaras intercaladas que forman parte del tubo central segmentado del biorreactor, como se muestra en la figura 1.
La figura 3 corresponde a una vista de corte transversal de un cilindro de mallas de plástico con material bioadsorbente ubicado al interior del tubo central en la figura 2.
La figura 4 corresponde a un conjunto de biorreactores para el tratamiento de aguas residuales domiciliarias de acuerdo con la presente solicitud.
La figura 5 corresponde a un diagrama de flujo del proceso de la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN La presente invención está dirigida a un proceso para el tratamiento de aguas residuales domésticas. El proceso consiste de dos o más biorreactores conectados en serie o en paralelo, los cuales toman el agua residual domiciliaria y la tratan para luego ser descargada. La Figura 1 muestra una vista de un biorreactor de acuerdo con una modalidad de la presente invención. El biorreactor comprende una entrada de aguas residuales domésticas (1) conectada mediante una unión universal (2) al tubo de alimentación (4) del biorreactor, el cual comprende una válvula (5) unida mediante un tubo en T (3) al tubo de alimentación (4). En una modalidad de acuerdo con la presente invención, el tubo central tiene aproximadamente la misma longitud que el cuerpo del biorreactor. El tubo de alimentación (4) se conecta al biorreactor mediante una entrada del biorreactor, la cual se encuentra en la parte superior del biorreactor, tiene un diámetro mayor que el tubo de alimentación (4) y está asegurada al biorreactor mediante un flanche (6). La entrada al biorreactor se acopla a un tubo interno del biorreactor (9) mediante un acople (7); dicho tubo interno del biorreactor (9), consiste en un tubo central segmentado por cámaras intercaladas (9a), con o sin material bioadsobente conectados mediante acoples (10) el cual, en una modalidad de la presente invención, dos o más segmentos del tubo central contienen cilindros de malla de plástico con diámetro de abertura entre 1.0 a 3.0 mm, el cual a su vez contienen material particulado de diferentes tamaños de conchas de moluscos de los géneros Crassostrea sp. y/o Polymesoda sp. y/o rocas coralinas de tipo coquina que oscilan entre 0.45 a 3.5 mm en envolturas de malla plástica de polietileno con diámetro de abertura entre 0.3 a 1.8 mm.
Entre el tubo interior del biorreactor (9) y la pared del cuerpo del biorreactor (8) se forma un espacio (11) donde se inoculan microalgas vivas. En una modalidad de la presente invención, el diámetro interno del biorreactor es aproximadamente cuatro veces el diámetro interno del tubo central. En una modalidad de la presente invención, las microalgas empleadas son del género Chlorella sp. El tubo central del bioaeactor (9) comprende, en su parte Inferior, un acople (12) que une el tubo interno del biorreactor (9) a una tapa con múltiples perforaciones en el área de salida (14). En la parte inferior del biorreactor encontramos una entrada de aireación (13), la cual alimenta aire al espacio (11) donde se encuentran las microalgas. El flanche (6) aloja también el tubo de salida del biorreactor (16), el cual comprende también una válvula (15) acoplada mediante un tubo en T (18) al tubo de salida. Dicho tubo de salida se conecta a un tubo de entrada de otro biorreactor o a una tubería de salida del sistema mediante una unión universal (17).
La figura 4 muestra una vista del aparato para el tratamiento de aguas residuales, de acuerdo con una modalidad de la presente solicitud. Dicho aparato comprende comprende cuatro biorreactores (201 , 202, 203, 204) conectados en serie. En dicha modalidad, cada uno de los tubos centrales está segmentado por cámaras intercaladas, con o sin material bioadsobente conectados mediante acoples, en el que los segmentos contienen partículas de material bioadsorbente de conchas de los géneros Crassostrea sp. y/o Polymesoda sp. y/o rocas coralinas de tipo coquina de diferentes tamaños de partícula recubiertas en mallas de plástico de diferentes diámetros de abertura, donde el tubo central segmentado del biorreactor (201) contiene un tamaño de partícula grueso, en tanto que el tubo central segmentado del biorreactor (202) tiene un tamaño de partícula medio, y los tubos centrales segmentados de los biorreactores (203, 204) contienen un tamaño de partícula fino.
En una modalidad alternativa, el tubo central segmentado por cámaras intercaladas del primero (201 ) de los biorreactores tiene una distribución de segmentos en la parte superior con material bioadsorbente con un tamaño de partícula grueso, hasta una altura igual a la mitad de la longitud del mismo, y una segunda distribución de segmentos con material bioadsorbente en la parte inferior con un tamaño de partícula medio; el tubo central del segundo biorreactor (202) tiene una distribución de segmentos en la parte superior con material bioadsorbente con un tamaño de partícula grueso y una segunda distribución de segmentos con el material bioadsorbente en la parte inferior con un tamaño de partícula medio; y los tubos centrales segmentados por cámaras intercaladas de los biorreactores restantes (203, 204) contienen el material bioadsorbente con un tamaño de partícula fino distribuido en las cámaras intercaladas. En una modalidad de la presente invención, el material bioadsorbente tiene un tamaño de partícula entre 0,45 mm y 3,5 mm. En una modalidad de la presente invención, el biorreactor es fabricado de un material plástico transparente como, por ejemplo, acrílico y el tubo central segmentado por cámaras intercaladas es fabricado de un material plástico opaco como, por ejemplo, PVC. El experto con habilidad en la materia podrá apreciar que es posible variar la distribución y composición de las cámaras que contienen el material bioadsorbente dentro de los tubos centrales de cada uno de los biorreactores sin alejarse del espíritu y el alcance de la presente solicitud. De igual forma, el técnico con habilidad en la materia podrá apreciar que es posible aumentar o reducir el número de biorreactores empleados por proceso, la manera en que se conectan, o sea, si van en serie o en paralelo, y las dimensiones de los mismos sin alejarse del espíritu de la presente invención.
La presente invención también enseña un método para tratar aguas residuales domiciliarias, el cual comprende conectar dos o más biorreactores de acuerdo con la presente solicitud, para formar un aparato (conjunto de reactores); conectar el primero de dichos reactores a una tubería de salida de aguas residuales domiciliarias; abrir la válvula para permitir el flujo de dichas aguas residuales, de manera tal que las mismas desciendan a través del tubo central entrando en contacto con el material bioadsorbente contenido en las cámaras intercaladas y luego asciendan a través del espacio interno del biorreactor para entrar en contacto con las microalgas. Las aguas tratadas en el primer biorreactor salen por la parte superior del mismo, ingresan al segundo reactor por la parte superior de éste y se repite el ciclo en cada uno de los biorreactores comprendidos en el conjunto de reactores, hasta que salen por el último biorreactor del conjunto y son descargadas adecuadamente. Si bien hasta ahora se ha hecho una descripción de una o más modalidades de la presente invención, la misma no es de carácter limitante y el experto con habilidad en la materia podrá apreciar que es posible desarrollar oras versiones con algunas modificaciones pero sin alejarse del espíritu y el alcance de la invención, como se establece en el capítulo reivindicatorío a continuación.

Claims

REIVINDICACIONES
1. Un aparato para el tratamiento de aguas residuales, caracterizado porque comprende dos a cuatro biorreactores cada uno de los cuales consiste de:
• una entrada de aguas residuales (1 );
• un tubo de alimentación (4) de aguas residuales conectada a la entrada (1) mediante una unión universal (2), dicho tubo (4) comprende una válvula (5) unida mediante un tubo en T (3);
• un cuerpo del biorreactor (8) en cuyo interior se colocan microalgas;
• un tubo interno (9) acoplado mediante un acople (7), dicho tubo interno del biorreactor (9), consiste en un tubo central segmentado por cámaras intercaladas (9a), con o sin material bioadsobente conectados mediante acoples (10);
• un espacio (1 1 ) formado entre el tubo interno (9) y la pared del cuerpo del biorreactor (8), en donde dicho espacio corresponde a inoculación de microalgas vivas;
• una tapa con perforaciones en el área de salida (14) acoplada a la parte inferior del tubo interno (9) mediante un acople (12); y
• una entrada de aireación (13) conectada al espacio (1 1 ) de las microalgas;
• un tubo de salida (16) conectado al flanche (6) de conexión al tubo de alimentación (4) en la parte superior del biorreactor, dicho tubo de salida (16) comprende una válvula (15) acoplada mediante un tubo en T (18) al tubo de salida,
en donde el material bioadsorbente es un material derivado de conchas de moluscos de los géneros Crassostrea sp. y/o Polymesoda sp. y/o rocas coralinas de tipo coquina; y en donde las microalgas corresponden al género Chiorella sp.
El aparato de acuerdo con la reivindicación 1 , caracterizado porque el tubo central (9) tiene la misma longitud del cuerpo del biorreactor (8).
El aparato de acuerdo con la reivindicación 1 , caracterizado porque dos o más segmentos del tubo central (9) contienen cilindros de malla de plástico con diámetro de abertura entre 1.0 a 3.0 mm, el cual a su vez contienen el material bioadsorbente con tamaños de partícula entre 0,45 y 3.5 mm en envolturas de malla plástica de polietileno con diámetro de abertura entre 0,3 a 1 ,8 mm.
El aparato de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque comprende cuatro biorreactores conectados en serie.
El aparato de acuerdo con la reivindicación 4, caracterizado porque el material bioadsorbente se distribuye en los tubos centrales de la siguiente manera:
• El tubo central del primer biorreactor (201) contiene un lecho de material bioadsorbente con un tamaño de partícula grueso;
• El tubo central del segundo biorreactor (202) contiene un lecho de material bioadsorbente con un tamaño de partícula medio; y
• El tubo central del tercer y cuarto biorreactores (203, 204) contienen un lecho de material bioadsorbente de tamaño de partícula fino.
El aparato de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el diámetro del cuerpo del biorreactor (8) es el doble del diámetro del tubo central (9).
Proceso para la remoción de fosfatos a partir de aguas residuales domesticas CARACTERIZADO porque comprende los pasos de: hacer interactuar el agua residual doméstica con un material bioadsorbente a base de conchas moluscos de los géneros Crassostrea sp. y/o Polymesoda sp. y/o rocas coralinas de tipo coquina con partículas de tamaño entre 0,3 μπι y 3,5 mm; hacer circular el agua para adsorber concentraciones de fosfatos; y hacer circular el agua con las microalgas del género Chorella sp. para remover el remanente de fosfatos no removidos en el paso anterior.
8. Proceso de acuerdo con la reivindicación 7, caracterizado porque la preparación del material bioadsorbente utilizado para la remoción de fosfatos incluye los siguientes pasos:
a) lavar con agua para eliminar los restos;
b) eliminar impurezas y materia orgánica, mediante sumersión de sendas cantidades en 100 mi de solución de HCL al 10% durante 24 horas y haciendo un relavado en agua caliente;
c) someter el material a molienda en un molino para reducir el tamaño; y d) clasificar mediante tamizado (N° 16, 10 y 8, Norma ASTM E- 1 1/95), con tamaños de partícula entre >1 ,00 a 3,35 mm.
9. Proceso de acuerdo con la reivindicación 7, caracterizado porque el tamaño del inoculo inicial del cultivo con microalgas es mayor a 0.85 x 106 células/ml de Chorella sp obtenido durante la fase exponencial, de un cultivo stock, previamente mantenido en condiciones de cultivo in vitro en medio con agua residual doméstica filtrada.
10. Proceso para remoción de fosfatos en aguas residuales domesticas caracterizado porque comprende los pasos de ingresar el agua residual domestica con concentraciones de fosfatos a un reactor (1 ) el agua residual entra en contacto de forma descendente con el material bioadsorbente (BAD) contenido en una tubería central vertical que permite la mezcla entre el material bioadsorbente, el agua residual y la microalga (2) el agua sale por la parte inferior del tubo generando un cambio de sentido ascendente hacia la cámara exterior que contiene microalgas (3) el agua residual tratada con un porcentaje de remoción de fosfatos inicial sale del reactor por una tubería hacia los reactores 2, 3 y 4 localizados en serie repitiendo el ciclo de remoción anteriormente mencionado.
PCT/CO2018/000019 2017-08-11 2018-08-13 Proceso y aparato para el tratamiento de aguas residuales domésticas mediante la implementación de filtros múltiples con material bioadsorbente y microalgas WO2019029755A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2017/0008145A CO2017008145A1 (es) 2017-08-11 2017-08-11 Proceso y aparato para el tratamiento de aguas residuales domésticas mediante la implementación de filtros múltiples con material bioadsorbente y microalgas
CONC2017/0008145 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019029755A1 true WO2019029755A1 (es) 2019-02-14

Family

ID=65273369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CO2018/000019 WO2019029755A1 (es) 2017-08-11 2018-08-13 Proceso y aparato para el tratamiento de aguas residuales domésticas mediante la implementación de filtros múltiples con material bioadsorbente y microalgas

Country Status (2)

Country Link
CO (1) CO2017008145A1 (es)
WO (1) WO2019029755A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092145A (ko) * 2020-01-15 2021-07-23 세종대학교산학협력단 바이오잉크를 이용한 수처리용 복합 미생물 담체 제조장치 및 수처리용 복합 미생물 담체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2338338Y (zh) * 1997-06-10 1999-09-15 黄玉山 微藻废水处理装置
US20040168648A1 (en) * 2002-11-25 2004-09-02 Ayers Andrew D. Inland aquaculture of marine life using water from a saline aquifer
CN103789195A (zh) * 2014-01-16 2014-05-14 浙江海洋学院 一种实现原位固液分离的膜微藻光生物反应器及其培养方法
CN104630294A (zh) * 2015-02-16 2015-05-20 南京以标能源有限责任公司 一种循环使用培养液提高微藻油脂产量的方法
CN106399113A (zh) * 2016-12-21 2017-02-15 江南大学 一种膜光生物反应器中利用市政污水高密度培养微藻的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2338338Y (zh) * 1997-06-10 1999-09-15 黄玉山 微藻废水处理装置
US20040168648A1 (en) * 2002-11-25 2004-09-02 Ayers Andrew D. Inland aquaculture of marine life using water from a saline aquifer
CN103789195A (zh) * 2014-01-16 2014-05-14 浙江海洋学院 一种实现原位固液分离的膜微藻光生物反应器及其培养方法
CN104630294A (zh) * 2015-02-16 2015-05-20 南京以标能源有限责任公司 一种循环使用培养液提高微藻油脂产量的方法
CN106399113A (zh) * 2016-12-21 2017-02-15 江南大学 一种膜光生物反应器中利用市政污水高密度培养微藻的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092145A (ko) * 2020-01-15 2021-07-23 세종대학교산학협력단 바이오잉크를 이용한 수처리용 복합 미생물 담체 제조장치 및 수처리용 복합 미생물 담체
KR102393307B1 (ko) * 2020-01-15 2022-05-03 세종대학교 산학협력단 바이오잉크를 이용한 수처리용 복합 미생물 담체 제조장치 및 수처리용 복합 미생물 담체

Also Published As

Publication number Publication date
CO2017008145A1 (es) 2019-02-19

Similar Documents

Publication Publication Date Title
Kaloudas et al. Phycoremediation of wastewater by microalgae: a review
US10189732B2 (en) Algal-sludge granule for wastewater treatment and bioenergy feedstock generation
JP4482717B1 (ja) 生活排水高度浄化処理循環システム及びこれを利用した生活排水高度浄化処理循環方法
KR101409035B1 (ko) 인공 광원 및 플루 가스를 이용한 미세조류 배양조 및 이를 이용한 하폐수 처리공정 시스템
WO2019019662A1 (zh) 长茎葡萄蕨藻与鱼虾生态共养的方法及装置
CN104761102A (zh) 一种养殖尾水回用的综合反应净化处理方法
CN103910453A (zh) 一种水产养殖废水处理装置
US7014767B2 (en) Water ozonation and bioremediation system and associated methods
KR102170601B1 (ko) 저온플라즈마와 고농축생물막을 이용한 하수 및 오폐수 고도처리 분리막장치
JP3125696B2 (ja) 流体浄化装置
CN103891667B (zh) 一种水生生物展示成套设备
CN113896375A (zh) 一种防止锦鲤鱼染疫病的水处理方法
Zribi et al. Trends in microalgal-based systems as a promising concept for emerging contaminants and mineral salt recovery from municipal wastewater
CN206188442U (zh) 基于纳米光电催化技术的循环海水养殖水处理系统
CN217377658U (zh) 一种农业面源污染农田废水处理的集成式设备
WO2019029755A1 (es) Proceso y aparato para el tratamiento de aguas residuales domésticas mediante la implementación de filtros múltiples con material bioadsorbente y microalgas
CN109399798A (zh) 一种沉淀藻池-藻菌共生生态板槽-微生物滤池的水处理系统及处理方法
CN105668935A (zh) 新型藻类—活性污泥耦合反应器及去除抗生素的方法
CN212356734U (zh) 一种藻菌共生一体化水环境净化装置
CN110028157A (zh) 一种污水生态处理系统及处理方法
CN105668937B (zh) 生态蠕动床反应器及利用其处理废水的方法
CN104058504A (zh) 一种生态能污水处理系统
CN110818067B (zh) 硝化菌和光合细菌共生的对虾养殖尾水处理系统
CN210237404U (zh) 一种深度净化农产品深加工污水的系统
CN104211262A (zh) 污水生态处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842897

Country of ref document: EP

Kind code of ref document: A1