[go: up one dir, main page]

WO2019026640A1 - Catalyst precursor, method for producing catalyst, method for producing methacrylic acid and acrylic acid, and method for producing methacrylic acid ester and acrylic acid ester - Google Patents

Catalyst precursor, method for producing catalyst, method for producing methacrylic acid and acrylic acid, and method for producing methacrylic acid ester and acrylic acid ester Download PDF

Info

Publication number
WO2019026640A1
WO2019026640A1 PCT/JP2018/027205 JP2018027205W WO2019026640A1 WO 2019026640 A1 WO2019026640 A1 WO 2019026640A1 JP 2018027205 W JP2018027205 W JP 2018027205W WO 2019026640 A1 WO2019026640 A1 WO 2019026640A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methacrylic acid
group
producing
catalyst precursor
Prior art date
Application number
PCT/JP2018/027205
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 勉
裕恵 香西
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020207005090A priority Critical patent/KR102346234B1/en
Priority to SG11201911738QA priority patent/SG11201911738QA/en
Priority to JP2019534035A priority patent/JP6769557B2/en
Priority to CN201880048701.9A priority patent/CN110944747B/en
Priority to MYPI2019007688A priority patent/MY191148A/en
Publication of WO2019026640A1 publication Critical patent/WO2019026640A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a catalyst precursor, a method of producing a catalyst using the precursor, a method of producing methacrylic acid and acrylic acid, and a method of producing methacrylic acid ester and acrylic acid ester.
  • the present invention also relates to a precursor of a catalyst used for producing methacrylic acid or acrylic acid by gas phase catalytic oxidation of methacrolein or acrolein using molecular oxygen, and methacrylic acid produced using this precursor.
  • the present invention also relates to a method for producing a catalyst for producing acrylic acid, a method for producing methacrylic acid or acrylic acid, and a method for producing methacrylic acid ester or acrylic acid ester.
  • a catalyst for producing methacrylic acid a catalyst containing a heteropolyacid such as phosphomolybdic acid, phosphomolybdate or the like or a salt thereof as a main component is known.
  • the X-ray-diffraction pattern after baking is prescribed
  • patent document 2 it describes about the X-ray-diffraction peak of the raw material for catalyst manufacture, and it is a mixture containing molybdenum and A element (A shows at least 1 sort (s) of elements chosen from the group which consists of phosphorus and arsenic.).
  • the precipitate obtained from the solution is subjected to a heat treatment at 250 to 350 ° C. to define an XRD diffraction peak.
  • an object of the present invention is to provide a catalyst precursor for producing a catalyst having a higher yield of methacrylic acid and acrylic acid than a conventional catalyst, a method for producing a catalyst from the precursor, and methacrylic acid using the catalyst And acrylic acid, and their esters.
  • the present invention is as shown in the following [1] to [8] and [1 '] to [5'].
  • a precursor of a catalyst wherein the catalyst comprises methacrylic acid and acrylic acid by vapor phase catalytic oxidation of at least one member selected from the group consisting of methacrolein and acrolein using molecular oxygen
  • P a Mo b V c Cu d A e E f G g O h (I) (In formula (I), P, Mo, V, Cu and O are element symbols showing phosphorus, molybdenum, vanadium, copper and oxygen respectively.
  • A is antimony, bismuth, arsenic, germanium, zirconium, tellurium
  • silver E represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron
  • E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin
  • G is at least one type selected from the group consisting of potassium, rubidium, cesium and thallium
  • [6] The method for producing a catalyst according to [5], wherein the heat treatment temperature in the heat treatment step is 300 to 450 ° C.
  • [7] A method of producing at least one selected from the group consisting of methacrylic acid and acrylic acid, (1) a step of producing a catalyst by the method according to [5] or [6], and (2) using molecular oxygen in the presence of the catalyst, at least one selected from the group consisting of methacrolein and acrolein Vapor phase catalytic oxidation of one species to produce at least one species selected from the group consisting of methacrylic acid and acrylic acid, Method, including.
  • a method for producing at least one selected from the group consisting of methacrylic acid esters and acrylic acid esters (1) a step of producing a catalyst by the method described in [5] or [6], (2) Gas phase catalytic oxidation of at least one member selected from the group consisting of methacrolein and acrolein using molecular oxygen in the presence of the catalyst is selected from the group consisting of methacrylic acid and acrylic acid Manufacturing at least one kind, and (3) esterifying at least one kind selected from the group consisting of the methacrylic acid and the acrylic acid, And how to contain it.
  • a precursor of a heteropolyacid salt-containing catalyst which is used in the vapor phase catalytic oxidation of methacrolein with molecular oxygen to produce a catalyst for producing methacrylic acid, which comprises counter cathode Cu—K ⁇ radiation
  • Production of methacrylic acid having, in the X-ray diffraction pattern used, peak P1 having 2 ⁇ of 26.16 ° ⁇ 0.06 ° and peak P2 having 2 ⁇ at a higher angle than peak P1 and not exceeding 26.44 ° Catalyst precursor.
  • the catalyst precursor for methacrylic acid manufacture which has a composition represented by following formula (I).
  • P, Mo, V, Cu and O are element symbols showing phosphorus, molybdenum, vanadium, copper and oxygen respectively.
  • A is antimony, bismuth, arsenic, germanium, zirconium, tellurium
  • silver E represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron
  • E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin
  • G is at least one type selected from the group consisting of potassium, rubidium, cesium and thallium
  • [4 ′] The method for producing a catalyst for producing methacrylic acid according to [3 ′], wherein the heat treatment temperature in the heat treatment step is 300 to 450 ° C.
  • a catalyst for producing methacrylic acid is produced by the method for producing a catalyst for producing methacrylic acid according to [5 '] [3'] or [4 '], and methacrolein is gas phase catalytically oxidized with molecular oxygen in the presence of the catalyst.
  • Process for producing methacrylic acid The manufacturing method of the methacrylic acid ester which esterifies the methacrylic acid manufactured by the manufacturing method of methacrylic acid as described in [6 '] [5'].
  • the catalyst precursor refers to a catalyst precursor which is composed of a raw material of a catalyst constituent element and which becomes a catalyst by being heat-treated.
  • the catalyst produced from the catalyst precursor of the present invention can be used for various oxidation reactions, for example, it is used for the reaction of producing methacrylic acid from methacrolein or acrylic acid from acrolein, and particularly preferably And methacrolein can be used in the reaction for producing methacrylic acid.
  • methacrylic acid is manufactured from methacrolein
  • these are applicable also when manufacturing acrylic acid from acrolein.
  • the catalyst precursor of the present invention contains a heteropoly acid salt, and in the X-ray diffraction pattern (X-ray diffraction line) using counter-cathode Cu-K ⁇ ray, peak P1 having 2 ⁇ of 26.16 ° ⁇ 0.06 ° and , And a peak P2 having a higher angle side than the peak P1 and not greater than 26.44 °.
  • the peak at which 2 ⁇ appears around 26 ° in the X-ray diffraction pattern is derived from the (222) plane of the heteropolyacid salt cubic structure.
  • the catalyst precursor having two or more peaks in this region has at least two kinds of heteropoly acid salts having different structures or heteropoly acid complex salts (hereinafter collectively referred to as "heteropoly acid (complex) salts").
  • heteropoly acid (complex) salts meanss of containing.
  • the heteropoly acid complex salt refers to a salt in which heteropoly acid salts having different structures are complexed in a specific ratio.
  • the peaks P1 and P2 have a height of 5/100 or more with respect to a diffraction pattern near 25.5 ° derived from ⁇ -alumina shown below.
  • the ratio (I1 / I2) of the height I1 of the peak P1 to the height I2 of the peak P2 is preferably 0.05 to 0.92 from the viewpoint of the yield of methacrylic acid.
  • the lower limit of I1 / I2 is more preferably 0.1 or more, and the upper limit thereof is more preferably 0.9 or less.
  • heteropoly acid (complex) salts having different structures also have different properties and contain heteropoly acid (complex) salts with different properties derived from said peaks P1 and P2 in the X-ray diffraction pattern It is considered that by doing this, an active site structure that is advantageous in the gas phase catalytic oxidation reaction of methacrolein is formed.
  • a diffraction pattern originating in the (012) plane of ⁇ -alumina appears around 25.5 °.
  • the angle of this diffraction pattern is 25.583 °
  • the diffraction pattern appearing from around 26 ° to 26.5 ° is the angle of the diffraction pattern derived from the (222) plane of the heteropoly acid (composite) salt in the catalyst precursor
  • 21 Diffraction patterns are also present around 3 to 21.5 °, 23.8 to 24.2 °, and 30.2 to 30.7 °.
  • the catalyst precursor of the present invention preferably has a composition represented by the following formula (I) from the viewpoint of methacrylic acid yield.
  • the molar ratio of an elemental composition be the value computed by analyzing the component which melt
  • P, Mo, V, Cu and O are element symbols showing phosphorus, molybdenum, vanadium, copper and oxygen, respectively.
  • A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron
  • E represents iron, zinc, chromium, magnesium, calcium
  • G is potassium
  • It represents at least one element selected from the group consisting of rubidium, cesium and thallium.
  • the method for producing the catalyst precursor according to the present invention is not particularly limited, but for example, a step of preparing a dry powder K1 having the peak P1 (hereinafter, also referred to as “dry powder K1 preparation step”); A step of preparing a dry powder K2 having a peak P2 (hereinafter also referred to as “dry powder K2 preparation step”), a step of mixing the dry powder K1 and the dry powder K2 to produce a catalyst precursor (hereinafter, And “a dry powder mixing step”).
  • a dry powder K1 having the peak P1 is prepared.
  • a catalyst raw material is first mixed, and a heteropoly acid-containing liquid is prepared by heating and stirring.
  • the catalyst raw material preferably contains at least phosphorus and molybdenum, and more preferably contains vanadium, copper, the element A, and the element E.
  • the raw material compounds of the respective elements are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxo acids, oxo acid salts, etc. of the respective elements are used singly or in combination of two or more kinds. It can be used.
  • a molybdenum raw material ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride and the like can be used.
  • phosphates such as orthophosphoric acid, phosphorus pentoxide, or ammonium phosphate, a cesium phosphate, can be used, for example.
  • vanadium raw material for example, ammonium vanadate, ammonium metavanadate, vanadium pentoxide, vanadium chloride and the like can be used.
  • a copper raw material copper sulfate, copper nitrate, copper acetate, cuprous chloride, cupric chloride etc. can be used, for example. These may use only 1 type and may use 2 or more types together.
  • a heteropoly acid containing at least one element of molybdenum, phosphorus, and vanadium may be used as a raw material.
  • heteropoly acids include phosphomolybdic acid, phosphovanadomolybdic acid, silicomolybdic acid and the like. These may use only 1 type and may use 2 or more types together.
  • Water, ethyl alcohol, acetone or the like can be used as a solvent for dissolving or suspending the raw material compound.
  • a solvent for dissolving or suspending the raw material compound One of these may be used, or two or more may be used in combination. Among these, water is preferable as the solvent.
  • the temperature at the time of heating and stirring is preferably 50 to 120 ° C.
  • the raw material of the element G and the ammonium raw material are added to the prepared heteropolyacid-containing liquid to prepare a heteropolyacid (composite) salt-containing liquid.
  • the temperature of the heteropoly acid-containing liquid at the time of addition of the raw material of G element and the ammonium raw material is preferably 70 to 120.degree.
  • the element G is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and it is preferable to use cesium from the viewpoint of methacrylic acid yield.
  • ammonium in the present invention is a generic name of ammonia (NH 3 ) which can be ammonium ion (NH 4 + ), and ammonium contained in ammonium-containing compounds such as ammonium salts.
  • ammonium raw material include ammonia, ammonium nitrate, ammonium hydrogencarbonate, ammonium carbonate, ammonium acetate, ammonium vanadate and the like, and it is preferable to use ammonium hydrogencarbonate and ammonium carbonate, and it is more preferable to use ammonium carbonate. These may use only 1 type and may use 2 or more types together.
  • the lower limit of the value of (Mg1 + Mn1) / Mp1 is preferably 2.8 or more, and more preferably 2.9 or more.
  • the upper limit is preferably 4.0 or less, more preferably 3.5 or less.
  • the pH of the heteropoly acid (complex) salt-containing solution is preferably 0.1 to 4 from the viewpoint of methacrylic acid yield, and more preferably 0.1 to 2.
  • the dried powder K1 is prepared by drying the resulting heteropoly acid (complex) salt-containing solution.
  • the drying method in this case is not particularly limited, and for example, evaporation to dryness, spray drying, drum drying, flash drying and the like can be used, and the spray drying is most preferable. It is preferable to carry out drying until the water content of the obtained dry powder K1 becomes 2 wt% or less.
  • dry powder K2 preparation process In this step, dry powder K2 having the peak P2 is prepared.
  • a heteropolyacid-containing liquid is first prepared by the same method as the dry powder K1 preparing step.
  • the raw material of the element G and the ammonium raw material are added to the prepared heteropolyacid-containing liquid to prepare a heteropolyacid (composite) salt-containing liquid.
  • the temperature of the heteropoly acid-containing liquid at the time of addition of the raw material of G element and the ammonium raw material is preferably 70 to 120.degree.
  • the G element is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and it is preferable to use cesium from the viewpoint of methacrylic acid yield.
  • the prepared heteropoly acid (complex) salt-containing liquid when the smaller one of the number of moles of phosphorus and the number of 1/12 of the number of moles of molybdenum is defined as Mp 2, the number of moles Mg of G element to be added, And when the number Mn2 of moles of ammonium contained in the added ammonium raw material satisfies the following formulas (IV) and (V), a dry powder K2 having a peak P2 can be obtained.
  • the lower limit of the value of (Mg 2 + Mn 2) / Mp 2 is preferably 2.8 or more, and more preferably 2.9 or more.
  • the upper limit is preferably 4.0 or less, more preferably 3.5 or less.
  • the pH of the heteropoly acid (complex) salt-containing solution is preferably 0.1 to 4 from the viewpoint of methacrylic acid yield, and more preferably 0.1 to 2.
  • the dried powder K2 is prepared by drying the resulting heteropoly acid (complex) salt-containing solution.
  • the drying method in this case is not particularly limited, and for example, evaporation to dryness, spray drying, drum drying, flash drying and the like can be used, and the spray drying is most preferable. It is preferable to carry out drying until the water content of the obtained dry powder K2 becomes 2 wt% or less.
  • the dry powder K1 and the dry powder K2 are mixed to prepare a catalyst precursor.
  • the mixing method is not particularly limited, but when dry powder K1 and dry powder K2 are dried using a spray drying method, it is only necessary to dry mix dry powder K1 and dry powder K2.
  • the dried powder K1 and the dried powder K2 are dried using the evaporation to dryness method or the drum drying method, it is preferable to perform mixing by crushing using a grinder.
  • the value of I1 / I2 can be adjusted by the mixing ratio of the dry powders K1 and K2. It is preferable to mix such that the K1 mixing ratio calculated by the following equation is 5 to 95%.
  • the lower limit of the K1 mixing ratio is more preferably 10% or more, and the upper limit is more preferably 94% or less.
  • K1 mixing ratio mass of dried powder K1 / (mass of dried powder K1 + mass of dried powder K2) ⁇ 100
  • the stirring speed at the time of adding the raw material of G element and an ammonium raw material to heteropoly acid containing liquid besides the method of preparing and mixing two types of dry powder as mentioned above, temperature of heteropoly acid containing liquid, G element
  • the catalyst precursor having both of the peak P1 and the peak P2 may be prepared in one step by adjusting the addition rates of the raw material and the ammonium raw material.
  • the catalyst precursor obtained by the dry powder mixing step may be shaped before the heat treatment step described later.
  • the molding method is not particularly limited, and known dry or wet molding methods can be applied. For example, tablet molding, press molding, extrusion molding, granulation molding and the like can be mentioned.
  • the shape of the molded article is not particularly limited, and examples thereof include a cylindrical shape, a ring shape, and a spherical shape. Further, at the time of molding, it is preferable to mold only the catalyst precursor without adding a carrier, a binder or the like to the catalyst precursor, but if necessary, for example, known additives such as graphite and talc, or known materials derived from organic substances and inorganic substances Binders may be added.
  • catalyst precursor obtained in the dry powder mixing step or the molded product of the catalyst precursor obtained in the molding step (hereinafter collectively referred to as “catalyst precursor”) is heat-treated. It is preferable to include a step (hereinafter also referred to as “heat treatment step”).
  • the heat treatment process In this step, the catalyst precursor is heat-treated to produce a catalyst.
  • the heat treatment step it is possible to obtain a catalyst with less local heat generation under industrial use conditions and high activity per reactor.
  • the heat treatment method and conditions are not particularly limited, and known methods and conditions can be applied.
  • the heat treatment temperature is preferably 300 to 450 ° C. By setting the heat treatment temperature to 300 ° C. or higher, the ammonium in the catalyst can be removed and the catalyst activity can be made favorable. By setting the heat treatment temperature to 450 ° C. or less, the thermal decomposition of the heteropoly acid is suppressed, and the rapid catalytic activity is achieved. Can be suppressed.
  • 0.5 hour or more is preferable and, as for the minimum of heat processing time, 1 hour or more is more preferable.
  • the upper limit of heat processing time 40 hours or less are preferable.
  • the heat treatment can be performed, for example, in the flow of at least one of air and an inert gas.
  • the inert gas indicates a gas which does not reduce the catalytic activity, and examples thereof include nitrogen, carbon dioxide gas, helium, argon and the like. One of these may be used, or two or more may be mixed and used.
  • the heat treatment is preferably performed in the flow of an oxygen-containing gas such as air.
  • the method for producing methacrylic acid according to the present invention produces methacrylic acid by catalytic oxidation of methacrolein with molecular oxygen in the presence of a catalyst obtained from the catalyst precursor according to the present invention. According to this method, methacrylic acid can be produced in high yield. Methacrylic acid may be produced after a given period of time has elapsed since the catalyst was obtained. Also, the production site of the catalyst and the production site of methacrylic acid may be different.
  • methacrylic acid can be produced by contacting a source gas containing methacrolein and molecular oxygen with the catalyst according to the present invention.
  • the reaction is preferably carried out in a fixed bed.
  • the catalyst may be used as it is without dilution or may be used after diluting it with an inert carrier, or it may be used by laminating a non-diluted layer and a diluted layer to form a plurality of layers.
  • the concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, the lower limit is 3% by volume or more, and the upper limit is 10% by volume or less.
  • Methacrolein may contain a small amount of impurities such as lower saturated aldehyde which do not substantially affect the reaction.
  • the molar ratio of methacrolein to molecular oxygen in the raw material gas is preferably 0.5 to 4.0 mol with respect to 1.0 mol of methacrolein, and the lower limit is 1.0 mol or more and the upper limit is 3.0 mol The following are more preferable. While it is economical to use air as a molecular oxygen source, air enriched with pure oxygen can also be used if desired.
  • the source gas may dilute methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide gas. Further, the source gas may contain water vapor.
  • methacrylic acid can be obtained with higher selectivity.
  • the concentration of water vapor in the raw material gas is preferably 0.1 to 50.0% by volume, and more preferably 1.0 to 40.0% by volume.
  • the contact time between the raw material gas and the catalyst is preferably 1.5 to 15.0 seconds, the lower limit is preferably 2.0 seconds or more, and the upper limit is more preferably 5.0 seconds or less.
  • the reaction pressure can be set in the range from atmospheric pressure to several hundreds kPa (G). However, (G) means being gauge pressure.
  • the reaction temperature is preferably 200 ° C. to 450 ° C., the lower limit is more than 250 ° C., and the upper limit is more preferably 400 ° C. or less.
  • the method for producing a methacrylic acid ester according to the present invention can be carried out by esterification of methacrylic acid obtained by the method according to the present invention.
  • a methacrylic acid ester can be obtained using methacrylic acid obtained by gas phase catalytic oxidation of methacrolein.
  • the alcohol to be reacted with methacrylic acid include methanol, ethanol, isopropanol, n-butanol, isobutanol and the like.
  • Examples of the methacrylic acid ester to be obtained include methyl methacrylate, ethyl methacrylate, propyl methacrylate and butyl methacrylate.
  • the reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin.
  • the reaction temperature is preferably 50 to 200 ° C.
  • A represents the number of moles of methacrolein supplied
  • B represents the number of moles of methacrolein reacted
  • C represents the number of moles of methacrylic acid formed.
  • Example 1 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While keeping the temperature at 80 ° C., add 24.14 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then 3.84 parts of ammonium bicarbonate dissolved in 200 parts of pure water Was added. The resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C., and further dried at 130 ° C.
  • the resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C., and further dried at 130 ° C. for 16 hours to obtain a dry powder K2a.
  • 90 parts of the dry powder K1a and 10 parts of the dry powder K2a were mixed to obtain a catalyst precursor.
  • peaks shown in Table 1 were confirmed.
  • the catalyst precursor was molded by a tableting machine and placed in a cylindrical quartz glass baking container with an inner diameter of 3 cm. Under air flow, the temperature was raised at 10 ° C./h, and the catalyst was prepared by heat treatment at 380 ° C. for 2 hours.
  • the composition of the catalyst excluding hydrogen, nitrogen and oxygen was P 1 Mo 12 V 0.5 Cu 0.15 Cs 1.97 .
  • the molar ratio of the elemental composition was calculated by analyzing a component obtained by dissolving the catalyst precursor in aqueous ammonia by ICP emission analysis.
  • the catalyst is charged in a reaction tube, and a raw material gas consisting of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of steam and 30% by volume of steam and 55% by volume of nitrogen is used.
  • the reaction was done in seconds. The results are shown in Table 1.
  • Example 2 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While maintaining the temperature at 80 ° C., add 30.10 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then dissolve 1.45 parts of ammonium bicarbonate dissolved in 200 parts of pure water Was added. The resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C., and further dried at 130 ° C.
  • the catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst. Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While maintaining the temperature at 80 ° C., add 21.56 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then dissolve 4.88 parts of ammonium bicarbonate dissolved in 200 parts of pure water Was added. The resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C. and further dried at 130 ° C.
  • the catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst. Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 Dry powder K1a and dry powder K2a were obtained in the same manner as in Example 1. Next, 6 parts of dry powder K2a was mixed with 94 parts of dry powder K1a to obtain a catalyst precursor. The composition except hydrogen, nitrogen, and oxygen of the obtained catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 2.04 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-K ⁇ ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
  • the catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst. Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 Dry powder K1a and dry powder K2a were obtained in the same manner as in Example 1. Next, the dry powder K1a was mixed with 97 parts of dry powder K2a at a ratio of 3 parts to obtain a catalyst precursor. The composition except hydrogen, nitrogen, and oxygen of the obtained catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 2.10 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-K ⁇ ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
  • the catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst. Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 Dry powder K1a and dry powder K2a were obtained in the same manner as in Example 1. Next, 90 parts of dry powder K2a was mixed with 10 parts of dry powder K1a to obtain a catalyst precursor. The composition of the obtained catalyst precursor excluding hydrogen, nitrogen and oxygen was P 1 Mo 12 V 0.5 Cu 0.15 Cs 0.54 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-K ⁇ ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
  • the catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst. Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 A dry powder K1a was obtained by the same method as in Example 1 and used as a catalyst precursor.
  • the composition of the catalyst precursor excluding hydrogen, nitrogen and oxygen was P 1 Mo 12 V 0.5 Cu 0.15 Cs 2.15 .
  • peaks shown in Table 1 were confirmed.
  • the catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst. Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 A dry powder K2a was obtained by the same method as in Example 1 and used as a catalyst precursor.
  • the composition except hydrogen, nitrogen and oxygen of the catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 0.36 .
  • peaks shown in Table 1 were confirmed.
  • the catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst. Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
  • the catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst. Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided are a catalyst precursor for producing a catalyst having a high yield of methacrylic acid, a catalyst, and a method for producing methacrylic acid and a methacrylic acid ester. A catalyst precursor including a heteropoly acid salt is used, the catalyst precursor having, in an X-ray diffraction pattern in which an anti-cathode Cu-Kα line is used, a peak P1 in which 2θ is 26.16° ± 0.06° and a peak P2 that is further toward the high-angle side than the peak P1 and is equal to or less than 26.44°. Moreover, a catalyst precursor is prepared in which the ratio (I1/I2) of the height I1 of peak P1 relative to the height I2 of peak P2 is 0.05-0.92. In addition, a catalyst is produced from the catalyst precursor, and methacrylic acid is produced from methacrolein using the catalyst.

Description

触媒前駆体、触媒の製造方法、メタクリル酸及びアクリル酸の製造方法、並びにメタクリル酸エステル及びアクリル酸エステルの製造方法Catalyst precursor, method of producing catalyst, method of producing methacrylic acid and acrylic acid, and method of producing methacrylic acid ester and acrylic acid ester
 本発明は、触媒前駆体、及びこの前駆体を用いた触媒の製造方法、メタクリル酸及びアクリル酸の製造方法、並びにメタクリル酸エステル及びアクリル酸エステルの製造方法に関する。
 また本発明は、分子状酸素を用いてメタクロレイン又はアクロレインを気相接触酸化してメタクリル酸又はアクリル酸を製造する際に用いる触媒の前駆体、及び、この前駆体を用いて製造するメタクリル酸又はアクリル酸製造用触媒の製造方法、メタクリル酸又はアクリル酸の製造方法、並びにメタクリル酸エステル又はアクリル酸エステルの製造方法に関する。
The present invention relates to a catalyst precursor, a method of producing a catalyst using the precursor, a method of producing methacrylic acid and acrylic acid, and a method of producing methacrylic acid ester and acrylic acid ester.
The present invention also relates to a precursor of a catalyst used for producing methacrylic acid or acrylic acid by gas phase catalytic oxidation of methacrolein or acrolein using molecular oxygen, and methacrylic acid produced using this precursor. The present invention also relates to a method for producing a catalyst for producing acrylic acid, a method for producing methacrylic acid or acrylic acid, and a method for producing methacrylic acid ester or acrylic acid ester.
 化学反応に用いられる触媒の構造については、数多くの検討がなされている。例えばメタクリル酸製造用触媒としては、リンモリブデン酸、リンモリブデン酸塩等のヘテロポリ酸又はその塩を主成分とする触媒が知られている。
 特許文献1では、ヘテロポリ酸塩を含む気相酸化触媒について、焼成後のX線回折パターンを規定している。
 また特許文献2では、触媒製造用原料のX線回折ピークについて記載されており、モリブデン及びA元素(Aは、リン及びヒ素からなる群より選ばれる少なくとも1種の元素を示す。)を含む混合液から得られる沈殿を、250~350℃で熱処理した後のXRD回折ピークを規定している。
Numerous studies have been made on the structure of catalysts used in chemical reactions. For example, as a catalyst for producing methacrylic acid, a catalyst containing a heteropolyacid such as phosphomolybdic acid, phosphomolybdate or the like or a salt thereof as a main component is known.
In patent document 1, the X-ray-diffraction pattern after baking is prescribed | regulated about the gas phase oxidation catalyst containing heteropoly acid salt.
Moreover, in patent document 2, it describes about the X-ray-diffraction peak of the raw material for catalyst manufacture, and it is a mixture containing molybdenum and A element (A shows at least 1 sort (s) of elements chosen from the group which consists of phosphorus and arsenic.). The precipitate obtained from the solution is subjected to a heat treatment at 250 to 350 ° C. to define an XRD diffraction peak.
特開昭57-177348JP-A-57-177348 特開2009-22945JP 2009-22945
 しかし、これらの方法で得られた触媒を使用してメタクリル酸やアクリル酸を製造する場合、収率が十分ではない問題があった。
 そこで、本発明の目的は、従来の触媒よりもメタクリル酸およびアクリル酸の収率の高い触媒を製造するための触媒前駆体、前記前駆体から触媒を製造する方法、前記触媒を用いてメタクリル酸およびアクリル酸、並びにそれらのエステルを提供することにある。
However, when producing methacrylic acid or acrylic acid using the catalyst obtained by these methods, there was a problem that the yield was not sufficient.
Therefore, an object of the present invention is to provide a catalyst precursor for producing a catalyst having a higher yield of methacrylic acid and acrylic acid than a conventional catalyst, a method for producing a catalyst from the precursor, and methacrylic acid using the catalyst And acrylic acid, and their esters.
 本発明者らは上記目的を達成するために、メタクリル酸およびアクリル酸の収率の高い触媒を製造する技術について鋭意検討を進めた。
 この結果、特定の構造を有する触媒前駆体を製造し、これを熱処理して触媒を製造することで、メタクリル酸およびアクリル酸の収率の高い触媒を製造することが可能なことを見出し、本発明に至った。
Means for Solving the Problems In order to achieve the above object, the present inventors diligently studied about a technology for producing a catalyst with a high yield of methacrylic acid and acrylic acid.
As a result, it has been found that it is possible to produce a catalyst with high yield of methacrylic acid and acrylic acid by producing a catalyst precursor having a specific structure and subjecting it to heat treatment to produce a catalyst. It came to the invention.
 本発明は、以下の[1]~[8]及び[1’]~[5’]に示すとおりである。 The present invention is as shown in the following [1] to [8] and [1 '] to [5'].
 [1]ヘテロポリ酸塩を含む触媒前駆体であって、対陰極Cu-Kα線を用いたX線回折パターンにおいて、2θが26.16°±0.06°であるピークP1と、2θがピークP1よりも高角側にあり26.44°以下にあるピークP2とを有する触媒前駆体。
 [2]前記ピークP2の高さI2に対する前記ピークP1の高さI1の比(I1/I2)が、0.05~0.92である、[1]に記載の触媒前駆体。
 [3]触媒の前駆体であって、前記触媒が、分子状酸素を用いてメタクロレイン及びアクロレインからなる群より選択される少なくとも1種を気相接触酸化して、メタクリル酸及びアクリル酸からなる群より選択される少なくとも1種を製造する際に用いれる、[1]又は[2]に記載の触媒前駆体。
 [4]下記式(I)で表される組成を有する[1]~[3]のいずれか1つに記載の触媒前駆体。
  PMoCu   (I)
 (式(I)中、P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれた少なくとも1種類の元素を示し、Gはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、g及びhは各元素の原子比率を示し、b=12の時a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
 [5][1]~[4]のいずれか1つに記載の触媒前駆体を熱処理する工程を含む、触媒の製造方法。
 [6]前記熱処理工程における熱処理温度が300~450℃である、[5]に記載の触媒の製造方法。
 [7]メタクリル酸及びアクリル酸からなる群より選択される少なくとも1種を製造する方法であって、
(1)[5]又は[6]に記載の方法により触媒を製造する工程、及び
(2)前記触媒の存在下で分子状酸素を用いて、メタクロレイン及びアクロレインからなる群より選択される少なくとも1種を気相接触酸化して、メタクリル酸及びアクリル酸からなる群より選択される少なくとも1種を製造する工程、
を含む、方法。
 [8]メタクリル酸エステル及びアクリル酸エステルからなる群より選択される少なくとも1種を製造する方法であって、
(1)[5]又は[6]に記載の方法により触媒を製造する工程、
(2)前記触媒の存在下で分子状酸素を用いて、メタクロレイン及びアクロレインからなる群より選択される少なくとも1種を気相接触酸化して、メタクリル酸及びアクリル酸からなる郡より選択される少なくとも1種を製造する工程、及び
(3)前記メタクリル酸及び前記アクリル酸からなる群より選択される少なくとも1種をエステル化する工程、
を、含む方法。
[1] It is a catalyst precursor containing a heteropoly acid salt, and in the X-ray diffraction pattern using counter-cathode Cu-Kα rays, peak P1 having 2θ of 26.16 ° ± 0.06 ° and peak of 2θ A catalyst precursor having a peak P2 located on the higher angle side than P1 and not more than 26.44 °.
[2] The catalyst precursor according to [1], wherein the ratio (I1 / I2) of the height I1 of the peak P1 to the height I2 of the peak P2 is 0.05 to 0.92.
[3] A precursor of a catalyst, wherein the catalyst comprises methacrylic acid and acrylic acid by vapor phase catalytic oxidation of at least one member selected from the group consisting of methacrolein and acrolein using molecular oxygen The catalyst precursor as described in [1] or [2] used when manufacturing at least 1 sort (s) selected from a group.
[4] The catalyst precursor according to any one of [1] to [3], which has a composition represented by the following formula (I).
P a Mo b V c Cu d A e E f G g O h (I)
(In formula (I), P, Mo, V, Cu and O are element symbols showing phosphorus, molybdenum, vanadium, copper and oxygen respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver E represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron, E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin And at least one element selected from the group consisting of lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, and G is at least one type selected from the group consisting of potassium, rubidium, cesium and thallium A, b, c, d, e, f, g and h of each element Child ratio, and when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01 to 2, e = 0 to 3, f = 0 to 3, g = 0 01 to 3, and h is an atomic ratio of oxygen necessary to satisfy the valences of the respective components.)
[5] A method for producing a catalyst, comprising the step of heat-treating the catalyst precursor according to any one of [1] to [4].
[6] The method for producing a catalyst according to [5], wherein the heat treatment temperature in the heat treatment step is 300 to 450 ° C.
[7] A method of producing at least one selected from the group consisting of methacrylic acid and acrylic acid,
(1) a step of producing a catalyst by the method according to [5] or [6], and (2) using molecular oxygen in the presence of the catalyst, at least one selected from the group consisting of methacrolein and acrolein Vapor phase catalytic oxidation of one species to produce at least one species selected from the group consisting of methacrylic acid and acrylic acid,
Method, including.
[8] A method for producing at least one selected from the group consisting of methacrylic acid esters and acrylic acid esters,
(1) a step of producing a catalyst by the method described in [5] or [6],
(2) Gas phase catalytic oxidation of at least one member selected from the group consisting of methacrolein and acrolein using molecular oxygen in the presence of the catalyst is selected from the group consisting of methacrylic acid and acrylic acid Manufacturing at least one kind, and (3) esterifying at least one kind selected from the group consisting of the methacrylic acid and the acrylic acid,
And how to contain it.
 [1’]メタクロレインを分子状酸素により気相接触酸化してメタクリル酸製造用触媒を製造する際に用いられる、ヘテロポリ酸塩を含む触媒の前駆体であって、対陰極Cu-Kα線を用いたX線回折パターンにおいて、2θが26.16°±0.06°であるピークP1と、2θがピークP1よりも高角側にあり26.44°以下にあるピークP2とを有するメタクリル酸製造用触媒前駆体。
 [2’][1’]に記載のメタクリル酸製造用触媒の前駆体であって、下記式(I)で表される組成を有するメタクリル酸製造用触媒前駆体。
  PMoCu   (I)
 (式(I)中、P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれた少なくとも1種類の元素を示し、Gはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、g及びhは各元素の原子比率を示し、b=12の時a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
 [3’][1’]又は[2’]に記載のメタクリル酸製造用触媒の前駆体を熱処理する工程を含むメタクリル酸製造用触媒の製造方法。
 [4’]前記熱処理工程における熱処理温度が300~450℃である[3’]に記載のメタクリル酸製造用触媒の製造方法。
 [5’][3’]又は[4’]に記載のメタクリル酸製造用触媒の製造方法によりメタクリル酸製造用触媒を製造し、その存在下でメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法。
 [6’][5’]に記載のメタクリル酸の製造方法により製造されたメタクリル酸をエステル化するメタクリル酸エステルの製造方法。
[1 ′] A precursor of a heteropolyacid salt-containing catalyst, which is used in the vapor phase catalytic oxidation of methacrolein with molecular oxygen to produce a catalyst for producing methacrylic acid, which comprises counter cathode Cu—Kα radiation Production of methacrylic acid having, in the X-ray diffraction pattern used, peak P1 having 2θ of 26.16 ° ± 0.06 ° and peak P2 having 2θ at a higher angle than peak P1 and not exceeding 26.44 ° Catalyst precursor.
It is a precursor of the catalyst for methacrylic acid manufacture as described in [2 '] [1'], Comprising: The catalyst precursor for methacrylic acid manufacture which has a composition represented by following formula (I).
P a Mo b V c Cu d A e E f G g O h (I)
(In formula (I), P, Mo, V, Cu and O are element symbols showing phosphorus, molybdenum, vanadium, copper and oxygen respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver E represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron, E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin And at least one element selected from the group consisting of lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, and G is at least one type selected from the group consisting of potassium, rubidium, cesium and thallium A, b, c, d, e, f, g and h of each element Child ratio, and when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01 to 2, e = 0 to 3, f = 0 to 3, g = 0 01 to 3, and h is an atomic ratio of oxygen necessary to satisfy the valences of the respective components.)
The manufacturing method of the catalyst for methacrylic acid manufacture including the process of heat-processing the precursor of the catalyst for methacrylic acid manufacture as described in [3 '] [1'] or [2 '].
[4 ′] The method for producing a catalyst for producing methacrylic acid according to [3 ′], wherein the heat treatment temperature in the heat treatment step is 300 to 450 ° C.
A catalyst for producing methacrylic acid is produced by the method for producing a catalyst for producing methacrylic acid according to [5 '] [3'] or [4 '], and methacrolein is gas phase catalytically oxidized with molecular oxygen in the presence of the catalyst. Process for producing methacrylic acid.
The manufacturing method of the methacrylic acid ester which esterifies the methacrylic acid manufactured by the manufacturing method of methacrylic acid as described in [6 '] [5'].
 本発明によれば、分子状酸素を用いて、メタクロレイン及びアクロレインを気相接触酸化してメタクリル酸及びアクリル酸を製造する際に、メタクリル酸及びアクリル酸の収率が高い触媒を製造することが可能な触媒前駆体を製造することができる。 According to the present invention, when producing methacrylic acid and acrylic acid by vapor phase catalytic oxidation of methacrolein and acrolein using molecular oxygen, producing a catalyst having a high yield of methacrylic acid and acrylic acid Can be produced.
 [触媒前駆体]
 本発明において、触媒前駆体とは触媒構成元素の原料から構成されるものであり、熱処理されることによって触媒となる、触媒前駆体を示す。
[Catalyst precursor]
In the present invention, the catalyst precursor refers to a catalyst precursor which is composed of a raw material of a catalyst constituent element and which becomes a catalyst by being heat-treated.
 本発明の触媒前駆体から製造される触媒は、様々な酸化反応に用いることができるが、例えば、メタクロレインからメタクリル酸を、又は、アクロレインからアクリル酸を製造する反応に用いられ、特に好ましくは、メタクロレインからメタクリル酸を製造する反応に用いることができる。 The catalyst produced from the catalyst precursor of the present invention can be used for various oxidation reactions, for example, it is used for the reaction of producing methacrylic acid from methacrolein or acrylic acid from acrolein, and particularly preferably And methacrolein can be used in the reaction for producing methacrylic acid.
 以下、メタクロレインからメタクリル酸を製造する場合を例として記載するが、これらは、アクロレインからアクリル酸を製造する際にも適用できるものである。 Hereinafter, although the case where methacrylic acid is manufactured from methacrolein is described as an example, these are applicable also when manufacturing acrylic acid from acrolein.
 本発明の触媒前駆体はヘテロポリ酸塩を含み、対陰極Cu-Kα線を用いたX線回折パターン(X線回折線)において、2θが26.16°±0.06°であるピークP1と、2θがピークP1よりも高角側にあり26.44°以下にあるピークP2とを有する。 The catalyst precursor of the present invention contains a heteropoly acid salt, and in the X-ray diffraction pattern (X-ray diffraction line) using counter-cathode Cu-Kα ray, peak P1 having 2θ of 26.16 ° ± 0.06 ° and , And a peak P2 having a higher angle side than the peak P1 and not greater than 26.44 °.
 X線回折パターンにおいて、2θが26°付近に出現するピークは、ヘテロポリ酸塩の立方晶構造の(222)面に由来するものである。この領域に2つ以上のピークが存在する触媒前駆体は、異なる構造を有するヘテロポリ酸塩、又はヘテロポリ酸複合塩(以下、まとめて「ヘテロポリ酸(複合)塩」とも示す。)を少なくとも2種類含有することを意味する。ここでヘテロポリ酸複合塩とは、異なる構造を有するヘテロポリ酸塩が特定の割合で複合した塩を示す。本発明の触媒前駆体を熱処理して製造した触媒を用いてメタクロレインの酸化を行うことで、高い収率でメタクリル酸を製造することができる。なお、ピークP1、ピークP2は、下記に示すα-アルミナを由来とする25.5°付近の回折パターンに対し、5/100以上の高さを有するものとする。
 前記ピークP2の高さI2に対するピークP1の高さI1の比(I1/I2)は、0.05~0.92であることがメタクリル酸の収率の観点から好ましい。I1/I2の下限は0.1以上、上限は0.9以下がより好ましい。
The peak at which 2θ appears around 26 ° in the X-ray diffraction pattern is derived from the (222) plane of the heteropolyacid salt cubic structure. The catalyst precursor having two or more peaks in this region has at least two kinds of heteropoly acid salts having different structures or heteropoly acid complex salts (hereinafter collectively referred to as "heteropoly acid (complex) salts"). Means of containing. Here, the heteropoly acid complex salt refers to a salt in which heteropoly acid salts having different structures are complexed in a specific ratio. By oxidizing methacrolein using a catalyst produced by heat-treating the catalyst precursor of the present invention, methacrylic acid can be produced in a high yield. The peaks P1 and P2 have a height of 5/100 or more with respect to a diffraction pattern near 25.5 ° derived from α-alumina shown below.
The ratio (I1 / I2) of the height I1 of the peak P1 to the height I2 of the peak P2 is preferably 0.05 to 0.92 from the viewpoint of the yield of methacrylic acid. The lower limit of I1 / I2 is more preferably 0.1 or more, and the upper limit thereof is more preferably 0.9 or less.
 この理由は明らかではないが、異なる構造を有するヘテロポリ酸(複合)塩は特性も異なっており、X線回折パターンにおける前記ピークP1及びP2に由来する、特性の異なるヘテロポリ酸(複合)塩を含有することにより、メタクロレインの気相接触酸化反応において有利な活性点構造が形成されるためと考えられる。 Although the reason for this is not clear, heteropoly acid (complex) salts having different structures also have different properties and contain heteropoly acid (complex) salts with different properties derived from said peaks P1 and P2 in the X-ray diffraction pattern It is considered that by doing this, an active site structure that is advantageous in the gas phase catalytic oxidation reaction of methacrolein is formed.
 X線回折パターンは、まず触媒前駆体を粉状とし、触媒前駆体の質量:α-アルミナの質量=1:4となるようにα-アルミナを混合して得られる混合粉について測定する。測定はPANaltical社製の「商品名:X‘Pert Pro MPD」を用い、線源:CuKα線(λ=0.15406nm)、管電圧:45kV、管電流:40mA、散乱スリット:1°、拡散防止スリット:2°、スキャンステップ:0.008°で行う。得られたデータはPANalytical社製のX線回折装置用データ収集ソフトウエア「商品名:X‘Pert」を用いてKα2線の除去操作を実施する。この時、25.5°付近にα―アルミナの(012)面に起因する回折パターンが現れる。この回折パターンの角度を25.583°として、26°付近から26.5°付近に現れる回折パターンを、触媒前駆体中のヘテロポリ酸(複合)塩の(222)面に由来する回折パターンの角度として算出する。なおヘテロポリ酸(複合)塩は、他に2θ=10.6~10.7°、13.0~13.2°、15.1~15.3°、18.4~18.6°、21.3~21.5°、23.8~24.2°、30.2~30.7°付近にも回折パターンを有する。 The X-ray diffraction pattern is first measured on a powder mixture obtained by powdering the catalyst precursor and mixing α-alumina so that the mass of the catalyst precursor: mass of α-alumina = 1: 4. Measurement is performed using "trade name: X'Pert Pro MPD" manufactured by PANaltical, using a radiation source: CuKα ray (λ = 0.15406 nm), tube voltage: 45 kV, tube current: 40 mA, scattering slit: 1 °, diffusion prevention Slit: 2 °, scan step: 0.008 °. The obtained data is subjected to the removal operation of the Kα2 line using data acquisition software for X-ray diffractometer "trade name: X‘Pert" manufactured by PANalytical. At this time, a diffraction pattern originating in the (012) plane of α-alumina appears around 25.5 °. Assuming that the angle of this diffraction pattern is 25.583 °, the diffraction pattern appearing from around 26 ° to 26.5 ° is the angle of the diffraction pattern derived from the (222) plane of the heteropoly acid (composite) salt in the catalyst precursor Calculated as Other heteropoly acid (complex) salts are 2θ = 10.6-10.7 °, 13.0-13.2 °, 15.1-15.3 °, 18.4-18.6 °, 21 Diffraction patterns are also present around 3 to 21.5 °, 23.8 to 24.2 °, and 30.2 to 30.7 °.
 本発明の触媒前駆体は、メタクリル酸収率の観点から下記式(I)で表される組成を有することが好ましい。なお、元素組成のモル比は、触媒前駆体をアンモニア水に溶解した成分をICP発光分析法で分析することによって算出した値とする。
  PMoCu   (I)
 式(I)中、P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれた少なくとも1種類の元素を示し、Gはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、g及びhは各元素の原子比率を示し、b=12の時a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。
The catalyst precursor of the present invention preferably has a composition represented by the following formula (I) from the viewpoint of methacrylic acid yield. In addition, let the molar ratio of an elemental composition be the value computed by analyzing the component which melt | dissolved the catalyst precursor in ammonia water by ICP emission spectrometry.
P a Mo b V c Cu d A e E f G g O h (I)
In formula (I), P, Mo, V, Cu and O are element symbols showing phosphorus, molybdenum, vanadium, copper and oxygen, respectively. A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron, and E represents iron, zinc, chromium, magnesium, calcium, At least one element selected from the group consisting of strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, and G is potassium, It represents at least one element selected from the group consisting of rubidium, cesium and thallium. a, b, c, d, e, f, g and h indicate atomic ratios of respective elements, and when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01 It is ̃2, e = 0 ̃3, f = 0 ̃3, g = 0.01 ̃3 and h is an atomic ratio of oxygen necessary to satisfy the valence of each component.
 [触媒前駆体の製造方法]
 本発明に係る触媒前駆体の製造方法は特に限定されるものではないが、例えば前記ピークP1を有する乾燥粉K1を調製する工程(以下、「乾燥粉K1調製工程」とも示す。)と、前記ピークP2を有する乾燥粉K2を調製する工程(以下、「乾燥粉K2調製工程」とも示す。)と、前記乾燥粉K1と前記乾燥粉K2を混合し、触媒前駆体を製造する工程(以下、「乾燥粉混合工程」とも示す。)と、を含む方法が挙げられる。
[Method of producing catalyst precursor]
The method for producing the catalyst precursor according to the present invention is not particularly limited, but for example, a step of preparing a dry powder K1 having the peak P1 (hereinafter, also referred to as "dry powder K1 preparation step"); A step of preparing a dry powder K2 having a peak P2 (hereinafter also referred to as "dry powder K2 preparation step"), a step of mixing the dry powder K1 and the dry powder K2 to produce a catalyst precursor (hereinafter, And “a dry powder mixing step”).
 (乾燥粉K1調製工程)
 本工程では、前記ピークP1を有する乾燥粉K1を調製する。
 乾燥粉K1を調製する方法としては、例えば、まず触媒原料を混合し、加熱撹拌することでヘテロポリ酸含有液を調製する。前記触媒原料は、少なくともリン及びモリブデンを含むことが好ましく、バナジウム、銅、前記A元素、及び前記E元素を含むことがより好ましい。
(Dried powder K1 preparation process)
In this step, a dry powder K1 having the peak P1 is prepared.
As a method of preparing the dry powder K1, for example, a catalyst raw material is first mixed, and a heteropoly acid-containing liquid is prepared by heating and stirring. The catalyst raw material preferably contains at least phosphorus and molybdenum, and more preferably contains vanadium, copper, the element A, and the element E.
 各元素の原料化合物は、特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等を単独で、又は2種類以上を組み合わせて使用することができる。例えばモリブデン原料としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。リン原料としては、例えば正リン酸、五酸化リン、又は、リン酸アンモニウム、リン酸セシウム等のリン酸塩が使用できる。バナジウム原料としては、例えばバナジン酸アンモニウム、メタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム等が使用できる。銅原料としては、例えば硫酸銅、硝酸銅、酢酸銅、塩化第一銅、塩化第二銅等が使用できる。これらは1種のみを用いてもよく、2種以上を併用してもよい。 The raw material compounds of the respective elements are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxo acids, oxo acid salts, etc. of the respective elements are used singly or in combination of two or more kinds. It can be used. For example, as a molybdenum raw material, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride and the like can be used. As a phosphorus raw material, phosphates, such as orthophosphoric acid, phosphorus pentoxide, or ammonium phosphate, a cesium phosphate, can be used, for example. As the vanadium raw material, for example, ammonium vanadate, ammonium metavanadate, vanadium pentoxide, vanadium chloride and the like can be used. As a copper raw material, copper sulfate, copper nitrate, copper acetate, cuprous chloride, cupric chloride etc. can be used, for example. These may use only 1 type and may use 2 or more types together.
 また、モリブデン、リン、バナジウムの原料としては、モリブデン、リン、バナジウムのうちの少なくとも一つの元素を含むヘテロポリ酸を原料として用いてもよい。ヘテロポリ酸としては、例えばリンモリブデン酸、リンバナドモリブデン酸、ケイモリブデン酸等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。 In addition, as a raw material of molybdenum, phosphorus, and vanadium, a heteropoly acid containing at least one element of molybdenum, phosphorus, and vanadium may be used as a raw material. Examples of heteropoly acids include phosphomolybdic acid, phosphovanadomolybdic acid, silicomolybdic acid and the like. These may use only 1 type and may use 2 or more types together.
 前記原料化合物を溶解又は懸濁する溶媒としては、水、エチルアルコール、アセトン等を用いることができる。これらは1種を用いてもよく、2種以上を併用してもよい。これらの中でも、溶媒としては水が好ましい。 Water, ethyl alcohol, acetone or the like can be used as a solvent for dissolving or suspending the raw material compound. One of these may be used, or two or more may be used in combination. Among these, water is preferable as the solvent.
 加熱撹拌時の温度は、50~120℃であることが望ましい。 The temperature at the time of heating and stirring is preferably 50 to 120 ° C.
 続いて、調製されたヘテロポリ酸含有液に前記G元素の原料及びアンモニウム原料を添加し、ヘテロポリ酸(複合)塩含有液を調製する。G元素の原料及びアンモニウム原料添加時におけるヘテロポリ酸含有液の温度は、70~120℃であることが好ましい。 Subsequently, the raw material of the element G and the ammonium raw material are added to the prepared heteropolyacid-containing liquid to prepare a heteropolyacid (composite) salt-containing liquid. The temperature of the heteropoly acid-containing liquid at the time of addition of the raw material of G element and the ammonium raw material is preferably 70 to 120.degree.
 G元素は、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素であり、セシウムを用いることがメタクリル酸収率の観点から好ましい。 The element G is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and it is preferable to use cesium from the viewpoint of methacrylic acid yield.
 ここで、本発明におけるアンモニウムとは、アンモニウムイオン(NH )になり得るアンモニア(NH)、及びアンモニウム塩などのアンモニウム含有化合物に含まれるアンモニウムの総称である。アンモニウム原料としては、例えばアンモニア、硝酸アンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、酢酸アンモニウム、バナジン酸アンモニウム等が挙げられるが、炭酸水素アンモニウム、炭酸アンモニウムを用いることが好ましく、炭酸アンモニウムを用いることがより好ましい。これらは1種のみを用いてもよく、2種以上を併用してもよい。 Here, ammonium in the present invention is a generic name of ammonia (NH 3 ) which can be ammonium ion (NH 4 + ), and ammonium contained in ammonium-containing compounds such as ammonium salts. Examples of the ammonium raw material include ammonia, ammonium nitrate, ammonium hydrogencarbonate, ammonium carbonate, ammonium acetate, ammonium vanadate and the like, and it is preferable to use ammonium hydrogencarbonate and ammonium carbonate, and it is more preferable to use ammonium carbonate. These may use only 1 type and may use 2 or more types together.
 調製されたヘテロポリ酸(複合)塩含有液において、リンのモル数と、モリブデンのモル数の1/12のうち小さい方の値をMp1と定義したときに、添加するG元素のモル数Mg1、及び添加するアンモニウム原料に含まれるアンモニウムのモル数Mn1が下記式(II)及び(III)を満たすことで、ピークP1を有する乾燥粉K1を得ることができる。
  1.85≦Mg1/Mp1≦2.75   (II)
  2.7≦(Mg1+Mn1)/Mp1≦6.0   (III)
In the prepared heteropoly acid (complex) salt-containing liquid, when the smaller one of the number of moles of phosphorus and the number of 1/12 of the number of moles of molybdenum is defined as Mp 1, the number of moles of G element Mg 1 to be added And when the number of moles Mn of ammonium contained in the added ammonium raw material satisfies the following formulas (II) and (III), it is possible to obtain a dry powder K1 having a peak P1.
1.85 ≦ Mg1 / Mp1 ≦ 2.75 (II)
2.7 ≦ (Mg1 + Mn1) /Mp1≦6.0 (III)
 なお、(Mg1+Mn1)/Mp1の値の下限は、2.8以上であることが好ましく、2.9以上であることがより好ましい。また上限は4.0以下であることが好ましく、3.5以下であることがより好ましい。 The lower limit of the value of (Mg1 + Mn1) / Mp1 is preferably 2.8 or more, and more preferably 2.9 or more. The upper limit is preferably 4.0 or less, more preferably 3.5 or less.
 ヘテロポリ酸(複合)塩含有液のpHは、メタクリル酸収率の観点から0.1~4が好ましく、0.1~2がより好ましい。 The pH of the heteropoly acid (complex) salt-containing solution is preferably 0.1 to 4 from the viewpoint of methacrylic acid yield, and more preferably 0.1 to 2.
 得られたヘテロポリ酸(複合)塩含有液を乾燥することで、乾燥粉K1を調製する。この際の乾燥方法は特に限定されず、例えば蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等を用いることができるが、噴霧乾燥法が最も好適である。得られる乾燥粉K1の水分量が2wt%以下になるまで乾燥を行うことが好ましい。 The dried powder K1 is prepared by drying the resulting heteropoly acid (complex) salt-containing solution. The drying method in this case is not particularly limited, and for example, evaporation to dryness, spray drying, drum drying, flash drying and the like can be used, and the spray drying is most preferable. It is preferable to carry out drying until the water content of the obtained dry powder K1 becomes 2 wt% or less.
 (乾燥粉K2調製工程)
 本工程では、前記ピークP2を有する乾燥粉K2を調製する。
 乾燥粉K2を調製する方法としては、例えば、まず乾燥粉K1調製工程と同様の方法により、ヘテロポリ酸含有液を調製する。
(Dried powder K2 preparation process)
In this step, dry powder K2 having the peak P2 is prepared.
As a method of preparing dry powder K2, for example, a heteropolyacid-containing liquid is first prepared by the same method as the dry powder K1 preparing step.
 続いて、調製されたヘテロポリ酸含有液に前記G元素の原料及びアンモニウム原料を添加し、ヘテロポリ酸(複合)塩含有液を調製する。G元素の原料及びアンモニウム原料添加時におけるヘテロポリ酸含有液の温度は、70~120℃であることが好ましい。 Subsequently, the raw material of the element G and the ammonium raw material are added to the prepared heteropolyacid-containing liquid to prepare a heteropolyacid (composite) salt-containing liquid. The temperature of the heteropoly acid-containing liquid at the time of addition of the raw material of G element and the ammonium raw material is preferably 70 to 120.degree.
 G元素は、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素であり、セシウムを用いることがメタクリル酸収率の観点からが好ましい。 The G element is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and it is preferable to use cesium from the viewpoint of methacrylic acid yield.
 調製されたヘテロポリ酸(複合)塩含有液において、リンのモル数と、モリブデンのモル数の1/12のうち小さい方の値をMp2と定義したときに、添加するG元素のモル数Mg2、及び添加するアンモニウム原料に含まれるアンモニウムのモル数Mn2が下記式(IV)及び(V)を満たすことで、ピークP2を有する乾燥粉K2を得ることができる。
  0.15≦Mg2/Mp2<Mg1/Mp1   (IV)
  2.7≦(Mg2+Mn2)/Mp2≦6.0   (V)
 なお、(Mg2+Mn2)/Mp2の値の下限は、2.8以上であることが好ましく、2.9以上であることがより好ましい。また上限は4.0以下であることが好ましく、3.5以下であることがより好ましい。
In the prepared heteropoly acid (complex) salt-containing liquid, when the smaller one of the number of moles of phosphorus and the number of 1/12 of the number of moles of molybdenum is defined as Mp 2, the number of moles Mg of G element to be added, And when the number Mn2 of moles of ammonium contained in the added ammonium raw material satisfies the following formulas (IV) and (V), a dry powder K2 having a peak P2 can be obtained.
0.15 ≦ Mg2 / Mp2 <Mg1 / Mp1 (IV)
2.7 ≦ (Mg2 + Mn2) /Mp2≦6.0 (V)
The lower limit of the value of (Mg 2 + Mn 2) / Mp 2 is preferably 2.8 or more, and more preferably 2.9 or more. The upper limit is preferably 4.0 or less, more preferably 3.5 or less.
 ヘテロポリ酸(複合)塩含有液のpHは、メタクリル酸収率の観点から0.1~4が好ましく、0.1~2がより好ましい。 The pH of the heteropoly acid (complex) salt-containing solution is preferably 0.1 to 4 from the viewpoint of methacrylic acid yield, and more preferably 0.1 to 2.
 得られたヘテロポリ酸(複合)塩含有液を乾燥することで、乾燥粉K2を調製する。この際の乾燥方法は特に限定されず、例えば蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等を用いることができるが、噴霧乾燥法が最も好適である。得られる乾燥粉K2の水分量が2wt%以下になるまで乾燥を行うことが好ましい。 The dried powder K2 is prepared by drying the resulting heteropoly acid (complex) salt-containing solution. The drying method in this case is not particularly limited, and for example, evaporation to dryness, spray drying, drum drying, flash drying and the like can be used, and the spray drying is most preferable. It is preferable to carry out drying until the water content of the obtained dry powder K2 becomes 2 wt% or less.
 (乾燥粉混合工程)
 本工程では、前記乾燥粉K1と前記乾燥粉K2を混合し、触媒前駆体を調製する。混合方法は特に限定されないが、噴霧乾燥法を用いて乾燥粉K1及び乾燥粉K2を乾燥している場合は、単に乾燥粉K1及び乾燥粉K2を乾式混合するだけでよい。蒸発乾固法やドラム乾燥法を用いて乾燥粉K1及び乾燥粉K2を乾燥している場合には、擂潰器を用いて擂潰による混合を行うことが好ましい。
 乾燥粉K1とK2の混合比率により、前記I1/I2の値を調整することができる。下記式により算出されるK1混合比が、5~95%となるように混合することが好ましい。K1混合比の下限は10%以上、上限は94%以下がより好ましい。
  K1混合比=乾燥粉K1の質量/(乾燥粉K1の質量+乾燥粉K2の質量)×100
 なお、上述のように2種類の乾燥粉を調製し混合する方法以外にも、ヘテロポリ酸含有液へG元素の原料及びアンモニウム原料を添加する際の撹拌速度、ヘテロポリ酸含有液の温度、G元素の原料及びアンモニウム原料の添加速度を調節することにより、1工程でピークP1及びピークP2の両方を有する触媒前駆体を調製しても良い。
(Dried powder mixing process)
In this step, the dry powder K1 and the dry powder K2 are mixed to prepare a catalyst precursor. The mixing method is not particularly limited, but when dry powder K1 and dry powder K2 are dried using a spray drying method, it is only necessary to dry mix dry powder K1 and dry powder K2. When the dried powder K1 and the dried powder K2 are dried using the evaporation to dryness method or the drum drying method, it is preferable to perform mixing by crushing using a grinder.
The value of I1 / I2 can be adjusted by the mixing ratio of the dry powders K1 and K2. It is preferable to mix such that the K1 mixing ratio calculated by the following equation is 5 to 95%. The lower limit of the K1 mixing ratio is more preferably 10% or more, and the upper limit is more preferably 94% or less.
K1 mixing ratio = mass of dried powder K1 / (mass of dried powder K1 + mass of dried powder K2) × 100
In addition, the stirring speed at the time of adding the raw material of G element and an ammonium raw material to heteropoly acid containing liquid besides the method of preparing and mixing two types of dry powder as mentioned above, temperature of heteropoly acid containing liquid, G element The catalyst precursor having both of the peak P1 and the peak P2 may be prepared in one step by adjusting the addition rates of the raw material and the ammonium raw material.
 (成形工程)
 後述する熱処理工程の前に、前記乾燥粉混合工程により得られた触媒前駆体を成形してもよい。成形方法は特に制限されず、公知の乾式又は湿式の成形方法が適用できる。例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状は特に限定されず、例えば、円柱状、リング状、球状等が挙げられる。また、成形時には触媒前駆体に担体やバインダー等を添加せず、触媒前駆体のみを成形することが好ましいが、必要に応じて例えばグラファイト、タルク等の公知の添加剤や有機物、無機物由来の公知のバインダーを添加してもよい。
(Molding process)
The catalyst precursor obtained by the dry powder mixing step may be shaped before the heat treatment step described later. The molding method is not particularly limited, and known dry or wet molding methods can be applied. For example, tablet molding, press molding, extrusion molding, granulation molding and the like can be mentioned. The shape of the molded article is not particularly limited, and examples thereof include a cylindrical shape, a ring shape, and a spherical shape. Further, at the time of molding, it is preferable to mold only the catalyst precursor without adding a carrier, a binder or the like to the catalyst precursor, but if necessary, for example, known additives such as graphite and talc, or known materials derived from organic substances and inorganic substances Binders may be added.
 [触媒又はメタクリル酸製造用触媒の製造方法]
 触媒を製造するには、前記乾燥粉混合工程により得られた触媒前駆体、又は前記成形工程により得られる触媒前駆体の成形物(以下、まとめて「触媒前駆体」とも示す。)を熱処理する工程(以下、「熱処理工程」とも示す。)を含むことが好ましい。
[Method for producing catalyst or catalyst for producing methacrylic acid]
In order to produce the catalyst, the catalyst precursor obtained in the dry powder mixing step or the molded product of the catalyst precursor obtained in the molding step (hereinafter collectively referred to as "catalyst precursor") is heat-treated. It is preferable to include a step (hereinafter also referred to as “heat treatment step”).
 (熱処理工程)
 本工程では、前記触媒前駆体を熱処理して触媒を製造する。熱処理工程により、工業的使用条件下で局所発熱が少なく、かつ、反応器あたりの活性の高い触媒を得ることができる。熱処理方法や条件は特に制限されず、公知の方法及び条件を適用することができる。熱処理温度は、300~450℃であることが好ましい。熱処理温度を300℃以上にすることで、触媒中のアンモニウムが除去されて触媒活性を良好とすることができ、450℃以下とすることで、ヘテロポリ酸の熱分解を抑制し、急激な触媒活性の低下を抑制することができる。また、熱処理時間の下限は0.5時間以上が好ましく、1時間以上がより好ましい。また、熱処理時間の上限は、40時間以下が好ましい。
(Heat treatment process)
In this step, the catalyst precursor is heat-treated to produce a catalyst. By the heat treatment step, it is possible to obtain a catalyst with less local heat generation under industrial use conditions and high activity per reactor. The heat treatment method and conditions are not particularly limited, and known methods and conditions can be applied. The heat treatment temperature is preferably 300 to 450 ° C. By setting the heat treatment temperature to 300 ° C. or higher, the ammonium in the catalyst can be removed and the catalyst activity can be made favorable. By setting the heat treatment temperature to 450 ° C. or less, the thermal decomposition of the heteropoly acid is suppressed, and the rapid catalytic activity is achieved. Can be suppressed. Moreover, 0.5 hour or more is preferable and, as for the minimum of heat processing time, 1 hour or more is more preferable. Moreover, as for the upper limit of heat processing time, 40 hours or less are preferable.
 熱処理は、例えば空気及び不活性ガスの少なくとも一方の流通下で行うことができる。ここで、不活性ガスとは触媒活性を低下させない気体のことを示し、例えば窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。これらは一種を用いてもよく、二種以上を混合して使用してもよい。熱処理は、空気等の酸素含有ガス流通下で行われることが好ましい。 The heat treatment can be performed, for example, in the flow of at least one of air and an inert gas. Here, the inert gas indicates a gas which does not reduce the catalytic activity, and examples thereof include nitrogen, carbon dioxide gas, helium, argon and the like. One of these may be used, or two or more may be mixed and used. The heat treatment is preferably performed in the flow of an oxygen-containing gas such as air.
 [メタクリル酸の製造方法]
 本発明に係るメタクリル酸の製造方法は、本発明に係る触媒前駆体から得られる触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する。該方法によれば、高い収率でメタクリル酸を製造することができる。
 なお、触媒を得てから一定期間経過後にメタクリル酸を製造してもよい。また触媒の製造場所とメタクリル酸の製造場所は異なっていてもよい。
[Method for producing methacrylic acid]
The method for producing methacrylic acid according to the present invention produces methacrylic acid by catalytic oxidation of methacrolein with molecular oxygen in the presence of a catalyst obtained from the catalyst precursor according to the present invention. According to this method, methacrylic acid can be produced in high yield.
Methacrylic acid may be produced after a given period of time has elapsed since the catalyst was obtained. Also, the production site of the catalyst and the production site of methacrylic acid may be different.
 具体的には、メタクロレイン及び分子状酸素を含む原料ガスと、本発明に係る触媒とを接触させることでメタクリル酸を製造することができる。この反応は固定床で行うことが好ましい。 Specifically, methacrylic acid can be produced by contacting a source gas containing methacrolein and molecular oxygen with the catalyst according to the present invention. The reaction is preferably carried out in a fixed bed.
 触媒はそのまま無希釈で使用しても、不活性担体で希釈して使用しても良く、無希釈層と希釈層とを積層し複数層を形成して使用しても良い。 The catalyst may be used as it is without dilution or may be used after diluting it with an inert carrier, or it may be used by laminating a non-diluted layer and a diluted layer to form a plurality of layers.
 原料ガス中のメタクロレインの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。メタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。原料ガス中のメタクロレインと分子状酸素とのモル比は、メタクロレイン1.0モルに対して0.5~4.0モルが好ましく、下限は1.0モル以上、上限は3.0モル以下がより好ましい。分子状酸素源としては空気を用いるのが経済的であるが、必要であれば、純酸素で富化した空気も用いることができる。 The concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, the lower limit is 3% by volume or more, and the upper limit is 10% by volume or less. Methacrolein may contain a small amount of impurities such as lower saturated aldehyde which do not substantially affect the reaction. The molar ratio of methacrolein to molecular oxygen in the raw material gas is preferably 0.5 to 4.0 mol with respect to 1.0 mol of methacrolein, and the lower limit is 1.0 mol or more and the upper limit is 3.0 mol The following are more preferable. While it is economical to use air as a molecular oxygen source, air enriched with pure oxygen can also be used if desired.
 原料ガスは、メタクロレイン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスにより希釈してもよい。また、前記原料ガスは水蒸気を含んでもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い選択率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50.0容量%が好ましく、1.0~40.0容量%がより好ましい。原料ガスと触媒との接触時間は、1.5~15.0秒が好ましく、下限は2.0秒以上、上限は5.0秒以下がより好ましい。反応圧力は大気圧~数百kPa(G)までの範囲内で設定されることができる。ただし、(G)はゲージ圧であることを意味する。反応温度は200℃~450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。 The source gas may dilute methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide gas. Further, the source gas may contain water vapor. By carrying out the reaction in the presence of steam, methacrylic acid can be obtained with higher selectivity. The concentration of water vapor in the raw material gas is preferably 0.1 to 50.0% by volume, and more preferably 1.0 to 40.0% by volume. The contact time between the raw material gas and the catalyst is preferably 1.5 to 15.0 seconds, the lower limit is preferably 2.0 seconds or more, and the upper limit is more preferably 5.0 seconds or less. The reaction pressure can be set in the range from atmospheric pressure to several hundreds kPa (G). However, (G) means being gauge pressure. The reaction temperature is preferably 200 ° C. to 450 ° C., the lower limit is more than 250 ° C., and the upper limit is more preferably 400 ° C. or less.
 [メタクリル酸エステルの製造方法]
 本発明に係るメタクリル酸エステルの製造方法は、本発明に係る方法により得られるメタクリル酸のエステル化により行うことができる。該方法によれば、メタクロレインの気相接触酸化により得られるメタクリル酸を用いて、メタクリル酸エステルを得ることができる。メタクリル酸と反応させるアルコールとしては、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られるメタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
[Method for producing methacrylic acid ester]
The method for producing a methacrylic acid ester according to the present invention can be carried out by esterification of methacrylic acid obtained by the method according to the present invention. According to this method, a methacrylic acid ester can be obtained using methacrylic acid obtained by gas phase catalytic oxidation of methacrolein. Examples of the alcohol to be reacted with methacrylic acid include methanol, ethanol, isopropanol, n-butanol, isobutanol and the like. Examples of the methacrylic acid ester to be obtained include methyl methacrylate, ethyl methacrylate, propyl methacrylate and butyl methacrylate. The reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin. The reaction temperature is preferably 50 to 200 ° C.
 以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例において、「部」は質量部を意味する。X線回折は、X線構造解析装置(商品名:X‘Pert PRO MPD、PANalytical社製)にて測定した。原料ガス及び生成物の分析は、ガスクロマトグラフィーを用いて行った。ガスクロマトグラフィーの結果から、メタクロレインの転化率、生成するメタクリル酸の選択率及びメタクリル酸の収率は下記式にて求めた。
  メタクロレイン転化率(%)=(B/A)×100
  メタクリル酸選択率(%)=(C/B)×100
  メタクリル酸収率(%)=(C/A)×100
 式中、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数を示す。
Hereinafter, the present invention will be described in detail by way of examples and comparative examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, "parts" means parts by mass. The X-ray diffraction was measured by an X-ray structural analyzer (trade name: X'Pert PRO MPD, manufactured by PANalytical). The analysis of the source gas and the product was performed using gas chromatography. From the results of gas chromatography, the conversion of methacrolein, the selectivity of the formed methacrylic acid and the yield of methacrylic acid were determined by the following equations.
Methacrolein conversion rate (%) = (B / A) x 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid yield (%) = (C / A) × 100
In the formula, A represents the number of moles of methacrolein supplied, B represents the number of moles of methacrolein reacted, and C represents the number of moles of methacrylic acid formed.
 [実施例1]
 純水600部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.36部、硝酸第二銅2.10部を溶解した。これを撹拌しながら昇温し、100℃の還流下で5時間攪拌した。降温し液温を80℃に保ちつつ、純水200部に溶解した重炭酸セシウム24.14部を添加して15分間撹拌し、続いて純水200部に溶解した重炭酸アンモニウム3.84部を添加した。得られたヘテロポリ酸(複合)塩含有液を、出口温度250℃で噴霧乾燥を行い、さらに130℃で16時間乾燥して乾燥粉K1aを得た。一方、純水600部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.36部、硝酸第二銅2.10部を溶解した。これを撹拌しながら昇温し、100℃の還流下で5時間攪拌した。降温し液温を80℃に保ちつつ、純水200部に溶解した重炭酸セシウム4.04部を添加して15分間撹拌し、続いて純水200部に溶解した重炭酸アンモニウム11.93部を添加した。得られたヘテロポリ酸(複合)塩含有液を、出口温度250℃で噴霧乾燥を行い、さらに130℃で16時間乾燥して乾燥粉K2aを得た。次に、乾燥粉K1aを90部に対し、乾燥粉K2aを10部の割合で混合し、触媒前駆体を得た。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。
Example 1
100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While keeping the temperature at 80 ° C., add 24.14 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then 3.84 parts of ammonium bicarbonate dissolved in 200 parts of pure water Was added. The resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C., and further dried at 130 ° C. for 16 hours to obtain a dry powder K1a. On the other hand, 100 parts of molybdenum trioxide, 6.67 parts of 85% by mass phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While maintaining the temperature at 80 ° C., add 4.04 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then 11.93 parts of ammonium bicarbonate dissolved in 200 parts of pure water Was added. The resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C., and further dried at 130 ° C. for 16 hours to obtain a dry powder K2a. Next, 90 parts of the dry powder K1a and 10 parts of the dry powder K2a were mixed to obtain a catalyst precursor. As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を、打錠成形機により成形し、内径3cmの円筒状石英ガラス製焼成容器に入れた。空気流通下、10℃/hで昇温し、380℃にて2時間熱処理して触媒を調製した。該触媒の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs1.97であった。なお、該元素組成のモル比は、触媒前駆体をアンモニア水に溶解した成分をICP発光分析法で分析することによって算出した。 The catalyst precursor was molded by a tableting machine and placed in a cylindrical quartz glass baking container with an inner diameter of 3 cm. Under air flow, the temperature was raised at 10 ° C./h, and the catalyst was prepared by heat treatment at 380 ° C. for 2 hours. The composition of the catalyst excluding hydrogen, nitrogen and oxygen was P 1 Mo 12 V 0.5 Cu 0.15 Cs 1.97 . The molar ratio of the elemental composition was calculated by analyzing a component obtained by dissolving the catalyst precursor in aqueous ammonia by ICP emission analysis.
 該触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%及び窒素55容量%からなる原料ガスを通じて、反応温度290℃、反応圧力256kPa、接触時間:3.6秒で反応を行った。結果を表1に示す。 The catalyst is charged in a reaction tube, and a raw material gas consisting of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of steam and 30% by volume of steam and 55% by volume of nitrogen is used. The reaction was done in seconds. The results are shown in Table 1.
 [実施例2]
 純水600部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.36部、硝酸第二銅2.10部を溶解した。これを撹拌しながら昇温し、100℃の還流下で5時間攪拌した。降温し液温を80℃に保ちつつ、純水200部に溶解した重炭酸セシウム30.10部を添加して15分間撹拌し、続いて純水200部に溶解した重炭酸アンモニウム1.45部を添加した。得られたヘテロポリ酸(複合)塩含有液を、出口温度250℃で噴霧乾燥を行い、さらに130℃で16時間乾燥して乾燥粉K1bを得た。一方、純水600部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.36部、硝酸第二銅2.10部を溶解した。これを撹拌しながら昇温し、100℃の還流下で5時間攪拌した。降温し液温を80℃に80℃に保ちつつ、純水200部に溶解した重炭酸セシウム3.14部を添加して15分間撹拌し、続いて純水200部に溶解した重炭酸アンモニウム12.29部を添加した。得られたヘテロポリ酸(複合)塩含有液を、出口温度250℃で噴霧乾燥を行い、さらに130℃で16時間乾燥して乾燥粉K2bを得た。
Example 2
100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While maintaining the temperature at 80 ° C., add 30.10 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then dissolve 1.45 parts of ammonium bicarbonate dissolved in 200 parts of pure water Was added. The resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C., and further dried at 130 ° C. for 16 hours to obtain a dry powder K1b. On the other hand, 100 parts of molybdenum trioxide, 6.67 parts of 85% by mass phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While keeping the temperature at 80 ° C. and maintaining the temperature at 80 ° C., 3.14 parts of cesium bicarbonate dissolved in 200 parts of pure water is added and stirred for 15 minutes, and then ammonium bicarbonate 12 dissolved in 200 parts of pure water .29 parts were added. The resulting heteropoly acid (complex) salt-containing solution was spray-dried at an outlet temperature of 250 ° C., and further dried at 130 ° C. for 16 hours to obtain a dry powder K2b.
 次に、乾燥粉K1bを70部に対し、乾燥粉K2bを30部の割合で混合し、触媒前駆体を得た。得られた触媒前駆体の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs1.96であった。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。 Next, 70 parts of the dry powder K1b was mixed with 30 parts of the dry powder K2b to obtain a catalyst precursor. The composition except hydrogen, nitrogen, and oxygen of the obtained catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 1.96 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を実施例1と同様の方法により成形し熱処理して、触媒を調製した。
 該触媒を用いて、実施例1と同様の方法によりメタクリル酸の製造を行った。結果を表1に示す。
The catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst.
Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
 [実施例3]
 純水600部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.36部、硝酸第二銅2.10部を溶解した。これを撹拌しながら昇温し、100℃の還流下で5時間攪拌した。降温し液温を80℃に保ちつつ、純水200部に溶解した重炭酸セシウム21.56部を添加して15分間撹拌し、続いて純水200部に溶解した重炭酸アンモニウム4.88部を添加した。得られたヘテロポリ酸(複合)塩含有液を、出口温度250℃で噴霧乾燥を行い、さらに130℃で16時間乾燥して乾燥粉K1cを得た。一方、純水600部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.36部、硝酸第二銅2.10部を溶解した。これを撹拌しながら昇温し、100℃の還流下で5時間攪拌した。降温し液温を80℃に80℃に保ちつつ、純水200部に溶解した重炭酸セシウム5.62部を添加して15分間撹拌し、続いて純水200部に溶解した重炭酸アンモニウム11.30部を添加した。得られたヘテロポリ酸(複合)塩含有液を、出口温度250℃で噴霧乾燥を行い、さらに130℃で16時間乾燥して乾燥粉K2cを得た。
[Example 3]
100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While maintaining the temperature at 80 ° C., add 21.56 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then dissolve 4.88 parts of ammonium bicarbonate dissolved in 200 parts of pure water Was added. The resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C. and further dried at 130 ° C. for 16 hours to obtain a dry powder K1c. On the other hand, 100 parts of molybdenum trioxide, 6.67 parts of 85% by mass phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While maintaining the temperature at 80 ° C. at 80 ° C., add 5.62 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then dissolve ammonium bicarbonate 11 dissolved in 200 parts of pure water. .30 parts were added. The resulting heteropoly acid (composite) salt-containing solution was spray-dried at an outlet temperature of 250 ° C. and further dried at 130 ° C. for 16 hours to obtain a dry powder K2c.
 次に、乾燥粉K1cを80部に対し、乾燥粉K2cを20部の割合で混合し、触媒前駆体を得た。得られた触媒前駆体の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs1.64であった。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。 Next, 20 parts of dry powder K2c was mixed with 80 parts of dry powder K1c to obtain a catalyst precursor. The composition except hydrogen, nitrogen and oxygen of the obtained catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 1.64 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を実施例1と同様の方法により成形し熱処理して、触媒を調製した。
 該触媒を用いて、実施例1と同様の方法によりメタクリル酸の製造を行った。結果を表1に示す。
The catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst.
Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
 [実施例4]
 実施例1と同様の方法により乾燥粉K1a及び乾燥粉K2aを得た。次に、乾燥粉K1aを94部に対し、乾燥粉K2aを6部の割合で混合し、触媒前駆体を得た。得られた触媒前駆体の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs2.04であった。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。
Example 4
Dry powder K1a and dry powder K2a were obtained in the same manner as in Example 1. Next, 6 parts of dry powder K2a was mixed with 94 parts of dry powder K1a to obtain a catalyst precursor. The composition except hydrogen, nitrogen, and oxygen of the obtained catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 2.04 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を実施例1と同様の方法により成形し熱処理して、触媒を調製した。
 該触媒を用いて、実施例1と同様の方法によりメタクリル酸の製造を行った。結果を表1に示す。
The catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst.
Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
 [実施例5]
 実施例1と同様の方法により乾燥粉K1a及び乾燥粉K2aを得た。次に、乾燥粉K1aを97部に対し、乾燥粉K2aを3部の割合で混合し、触媒前駆体を得た。得られた触媒前駆体の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs2.10であった。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。
[Example 5]
Dry powder K1a and dry powder K2a were obtained in the same manner as in Example 1. Next, the dry powder K1a was mixed with 97 parts of dry powder K2a at a ratio of 3 parts to obtain a catalyst precursor. The composition except hydrogen, nitrogen, and oxygen of the obtained catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 2.10 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を実施例1と同様の方法により成形し熱処理して、触媒を調製した。
 該触媒を用いて、実施例1と同様の方法によりメタクリル酸の製造を行った。結果を表1に示す。
The catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst.
Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
 [実施例6]
 実施例1と同様の方法により乾燥粉K1a及び乾燥粉K2aを得た。次に、乾燥粉K1aを10部に対し、乾燥粉K2aを90部の割合で混合し、触媒前駆体を得た。得られた触媒前駆体の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs0.54であった。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。
[Example 6]
Dry powder K1a and dry powder K2a were obtained in the same manner as in Example 1. Next, 90 parts of dry powder K2a was mixed with 10 parts of dry powder K1a to obtain a catalyst precursor. The composition of the obtained catalyst precursor excluding hydrogen, nitrogen and oxygen was P 1 Mo 12 V 0.5 Cu 0.15 Cs 0.54 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を実施例1と同様の方法により成形し熱処理して、触媒を調製した。
 該触媒を用いて、実施例1と同様の方法によりメタクリル酸の製造を行った。結果を表1に示す。
The catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst.
Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
 [比較例1]
 実施例1と同様の方法により乾燥粉K1aを得て、触媒前駆体とした。該触媒前駆体の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs2.15であった。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。
Comparative Example 1
A dry powder K1a was obtained by the same method as in Example 1 and used as a catalyst precursor. The composition of the catalyst precursor excluding hydrogen, nitrogen and oxygen was P 1 Mo 12 V 0.5 Cu 0.15 Cs 2.15 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を実施例1と同様の方法により成形し熱処理して、触媒を調製した。
 該触媒を用いて、実施例1と同様の方法によりメタクリル酸の製造を行った。結果を表1に示す。
The catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst.
Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
 [比較例2]
 実施例1と同様の方法により乾燥粉K2aを得て、触媒前駆体とした。該触媒前駆体の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs0.36であった。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。
Comparative Example 2
A dry powder K2a was obtained by the same method as in Example 1 and used as a catalyst precursor. The composition except hydrogen, nitrogen and oxygen of the catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 0.36 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を実施例1と同様の方法により成形し熱処理して、触媒を調製した。
 該触媒を用いて、実施例1と同様の方法によりメタクリル酸の製造を行った。結果を表1に示す。
The catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst.
Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
 [比較例3]
 実施例1と同様の方法により乾燥粉K1aを得た。一方、純水600部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.36部、硝酸第二銅2.10部を溶解した。これを撹拌しながら昇温し、100℃の還流下で5時間攪拌した。降温し液温を80℃に80℃に保ちつつ、純水200部に溶解した重炭酸セシウム1.46部を添加して15分間撹拌し、続いて純水200部に溶解した重炭酸アンモニウム12.97部を添加した。得られたヘテロポリ酸塩含有液を、出口温度250℃で噴霧乾燥を行い、さらに130℃で16時間乾燥して乾燥粉K2eを得た。
Comparative Example 3
Dry powder K1a was obtained in the same manner as in Example 1. On the other hand, 100 parts of molybdenum trioxide, 6.67 parts of 85% by mass phosphoric acid, 3.36 parts of ammonium metavanadate and 2.10 parts of cupric nitrate were dissolved in 600 parts of pure water. The temperature was raised while stirring, and stirred under reflux at 100 ° C. for 5 hours. While keeping the temperature at 80 ° C. and keeping the temperature at 80 ° C., add 1.46 parts of cesium bicarbonate dissolved in 200 parts of pure water, stir for 15 minutes, and then dissolve ammonium bicarbonate 12 dissolved in 200 parts of pure water .97 parts were added. The resulting heteropolyacid salt-containing liquid was spray-dried at an outlet temperature of 250 ° C. and further dried at 130 ° C. for 16 hours to obtain a dry powder K2e.
 次に、乾燥粉K1aを90部に対し、乾燥粉K2eを10部の割合で混合し、触媒前駆体を得た。得られた触媒前駆体の水素、窒素、酸素を除く組成は、PMo120.5Cu0.15Cs1.95であった。該触媒前駆体について、対陰極Cu-Kα線を用いたX線回折パターン測定を行った結果、表1に示すピークが確認された。 Next, 10 parts of dry powder K2a was mixed with 90 parts of dry powder K1a to obtain a catalyst precursor. The composition except hydrogen, nitrogen, and oxygen of the obtained catalyst precursor was P 1 Mo 12 V 0.5 Cu 0.15 Cs 1.95 . As a result of X-ray diffraction pattern measurement using an anticathode Cu-Kα ray for the catalyst precursor, peaks shown in Table 1 were confirmed.
 該触媒前駆体を実施例1と同様の方法により成形し熱処理して、触媒を調製した。
 該触媒を用いて、実施例1と同様の方法によりメタクリル酸の製造を行った。結果を表1に示す。
The catalyst precursor was shaped and heat-treated in the same manner as in Example 1 to prepare a catalyst.
Using this catalyst, methacrylic acid was produced in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ピークP1及びP2が本発明の規定範囲である実施例1~6により得られた触媒前駆体を熱処理したものを触媒として使用した結果、メタクリル酸収率が高いものとなった。その中でも、I1/I2の値が0.05~0.92の範囲内である実施例1~4及び6において特に高いメタクリル酸収率を示しており、I1/I2の値に最適な範囲があることが分かった。
 一方、比較例1により得られる触媒前駆体のX線回折パターンにはピークP2が、比較例2により得られる触媒前駆体のX線回折パターンにはピークP1が現れず、また比較例3により得られる触媒前駆体はピークP2の2θが規定範囲外である。このような触媒前駆体を熱処理したものを触媒として使用した結果、いずれも実施例と比較してメタクリル酸収率が低いものとなった。
 
As shown in Table 1, as a result of using, as a catalyst, those obtained by heat-treating the catalyst precursors obtained in Examples 1 to 6 in which the peaks P1 and P2 fall within the defined range of the present invention, became. Among them, particularly high methacrylic acid yield is shown in Examples 1 to 4 and 6 in which the value of I1 / I2 is in the range of 0.05 to 0.92, and the optimum range for the value of I1 / I2 is It turned out that there is.
On the other hand, the peak P2 does not appear in the X-ray diffraction pattern of the catalyst precursor obtained by Comparative Example 1, and the peak P1 does not appear in the X-ray diffraction pattern of the catalyst precursor obtained by Comparative Example 2. The catalyst precursor to be prepared has a peak P2 of 2θ outside the specified range. As a result of using such a catalyst precursor subjected to heat treatment as a catalyst, in any case, the yield of methacrylic acid was lower than in the examples.

Claims (8)

  1.  ヘテロポリ酸塩を含む触媒前駆体であって、対陰極Cu-Kα線を用いたX線回折パターンにおいて、2θが26.16°±0.06°であるピークP1と、2θがピークP1よりも高角側にあり26.44°以下にあるピークP2とを有する触媒前駆体。 A catalyst precursor containing a heteropolyacid salt, and in an X-ray diffraction pattern using counter-cathode Cu-Kα rays, peak P1 having 2θ of 26.16 ° ± 0.06 ° and 2θ more than peak P1 A catalyst precursor having a peak P2 on the high angle side and not more than 26.44 °.
  2.  前記ピークP2の高さI2に対する前記ピークP1の高さI1の比(I1/I2)が、0.05~0.92である、請求項1に記載の触媒前駆体。 The catalyst precursor according to claim 1, wherein the ratio (I1 / I2) of the height I1 of the peak P1 to the height I2 of the peak P2 is 0.05 to 0.92.
  3.  触媒の前駆体であって、前記触媒が、分子状酸素を用いてメタクロレイン及びアクロレインからなる群より選択される少なくとも1種を気相接触酸化して、メタクリル酸及びアクリル酸からなる群より選択される少なくとも1種を製造する際に用いられる、請求項1又は2に記載の触媒前駆体。 It is a precursor of a catalyst, wherein the catalyst is selected from the group consisting of methacrylic acid and acrylic acid by vapor phase catalytic oxidation of at least one member selected from the group consisting of methacrolein and acrolein using molecular oxygen. The catalyst precursor according to claim 1 or 2, which is used in the production of at least one selected from the group consisting of
  4.  下記式(I)で表される組成を有する請求項1~3のいずれか1項に記載の触媒前駆体。
      PMoCu   (I)
     (式(I)中、P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれた少なくとも1種類の元素を示し、Gはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、g及びhは各元素の原子比率を示し、b=12の時a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
    The catalyst precursor according to any one of claims 1 to 3, which has a composition represented by the following formula (I).
    P a Mo b V c Cu d A e E f G g O h (I)
    (In formula (I), P, Mo, V, Cu and O are element symbols showing phosphorus, molybdenum, vanadium, copper and oxygen respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver E represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron, E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin And at least one element selected from the group consisting of lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, and G is at least one type selected from the group consisting of potassium, rubidium, cesium and thallium A, b, c, d, e, f, g and h of each element Child ratio, and when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01 to 2, e = 0 to 3, f = 0 to 3, g = 0 01 to 3, and h is an atomic ratio of oxygen necessary to satisfy the valences of the respective components.)
  5.  請求項1~4のいずれか1項に記載の触媒前駆体を熱処理する工程を含む、触媒の製造方法。 A method for producing a catalyst, comprising the step of heat treating the catalyst precursor according to any one of claims 1 to 4.
  6.  前記熱処理工程における熱処理温度が300~450℃である、請求項5に記載の触媒の製造方法。 The method for producing a catalyst according to claim 5, wherein the heat treatment temperature in the heat treatment step is 300 to 450 属 C.
  7.  メタクリル酸及びアクリル酸からなる群より選択される少なくとも1種を製造する方法であって、
    (1)請求項5又は6に記載の方法により触媒を製造する工程、及び
    (2)前記触媒の存在下で分子状酸素を用いて、メタクロレイン及びアクロレインからなる群より選択される少なくとも1種を気相接触酸化して、メタクリル酸及びアクリル酸からなる群より選択される少なくとも1種を製造する工程、
    を含む、方法。
    A method of producing at least one selected from the group consisting of methacrylic acid and acrylic acid,
    (1) a step of producing a catalyst by the method according to claim 5 or 6, and (2) at least one member selected from the group consisting of methacrolein and acrolein using molecular oxygen in the presence of the catalyst. Gas phase catalytic oxidation to produce at least one selected from the group consisting of methacrylic acid and acrylic acid,
    Method, including.
  8.  メタクリル酸エステル及びアクリル酸エステルからなる群より選択される少なくとも1種を製造する方法であって、
    (1)請求項5又は6に記載の方法により触媒を製造する工程、
    (2)前記触媒の存在下で分子状酸素を用いて、メタクロレイン及びアクロレインからなる群より選択される少なくとも1種を気相接触酸化して、メタクリル酸及びアクリル酸からなる郡より選択される少なくとも1種を製造する工程、及び
    (3)前記メタクリル酸及び前記アクリル酸からなる群より選択される少なくとも1種をエステル化する工程、
    を、含む方法。
     
     
    A method of producing at least one selected from the group consisting of methacrylic acid esters and acrylic acid esters,
    (1) A process for producing a catalyst by the method according to claim 5 or 6,
    (2) Gas phase catalytic oxidation of at least one member selected from the group consisting of methacrolein and acrolein using molecular oxygen in the presence of the catalyst is selected from the group consisting of methacrylic acid and acrylic acid Manufacturing at least one kind, and (3) esterifying at least one kind selected from the group consisting of the methacrylic acid and the acrylic acid,
    And how to contain it.

PCT/JP2018/027205 2017-07-31 2018-07-20 Catalyst precursor, method for producing catalyst, method for producing methacrylic acid and acrylic acid, and method for producing methacrylic acid ester and acrylic acid ester WO2019026640A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207005090A KR102346234B1 (en) 2017-07-31 2018-07-20 Catalyst precursor, method for preparing catalyst, method for preparing methacrylic acid and acrylic acid, and method for preparing methacrylic acid ester and acrylic acid ester
SG11201911738QA SG11201911738QA (en) 2017-07-31 2018-07-20 Catalyst precursors, methods for producing catalysts, methods for producing methacrylic acid and acrylic acid, and methods for producing methacrylic acid esters and acrylic acid esters
JP2019534035A JP6769557B2 (en) 2017-07-31 2018-07-20 Catalyst precursor, catalyst production method, methacrylic acid and acrylic acid production method, and methacrylic acid ester and acrylic acid ester production method.
CN201880048701.9A CN110944747B (en) 2017-07-31 2018-07-20 Catalyst precursor for production of methacrylic acid, acrylic acid and esters thereof, and method for production of catalyst
MYPI2019007688A MY191148A (en) 2017-07-31 2018-07-20 Catalyst precursor, method for producing catalyst, method for producing methacrylic acid and acrylic acid, and method for producing methacrylic acid ester and acrylic acid ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-147341 2017-07-31
JP2017147341 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026640A1 true WO2019026640A1 (en) 2019-02-07

Family

ID=65232744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027205 WO2019026640A1 (en) 2017-07-31 2018-07-20 Catalyst precursor, method for producing catalyst, method for producing methacrylic acid and acrylic acid, and method for producing methacrylic acid ester and acrylic acid ester

Country Status (6)

Country Link
JP (1) JP6769557B2 (en)
KR (1) KR102346234B1 (en)
CN (1) CN110944747B (en)
MY (1) MY191148A (en)
SG (1) SG11201911738QA (en)
WO (1) WO2019026640A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102735575B1 (en) * 2019-10-01 2024-11-27 주식회사 엘지화학 Process for producing methacrylic acid and methylmethacylate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615178A (en) * 1991-11-28 1994-01-25 Tosoh Corp Method for preparing catalyst for methacrylic acid production
JP2009022945A (en) * 2007-06-20 2009-02-05 Mitsubishi Rayon Co Ltd Raw material for catalyst production, method for producing the same, method for producing the catalyst, and method for producing methacrylic acid
WO2018051840A1 (en) * 2016-09-14 2018-03-22 三菱ケミカル株式会社 Methacrylic acid production catalyst and method for producing same, and method for producing methacrylic acid and methacrylic acid ester

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035180B2 (en) 1981-04-24 1985-08-13 株式会社日本触媒 Oxidation catalyst and its preparation method
JP4222721B2 (en) * 2000-12-25 2009-02-12 三菱レイヨン株式会社 Method for producing methacrylic acid
FR2969509B1 (en) * 2010-12-22 2012-12-28 IFP Energies Nouvelles SPHERICAL MATERIAL BASED ON TRAPPED HETEROPOLYANIONS IN A MESOSTRUCTURED OXIDE MATRIX AND ITS USE AS CATALYST IN REFINING PROCESSES
JP2014226614A (en) * 2013-05-23 2014-12-08 住友化学株式会社 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615178A (en) * 1991-11-28 1994-01-25 Tosoh Corp Method for preparing catalyst for methacrylic acid production
JP2009022945A (en) * 2007-06-20 2009-02-05 Mitsubishi Rayon Co Ltd Raw material for catalyst production, method for producing the same, method for producing the catalyst, and method for producing methacrylic acid
WO2018051840A1 (en) * 2016-09-14 2018-03-22 三菱ケミカル株式会社 Methacrylic acid production catalyst and method for producing same, and method for producing methacrylic acid and methacrylic acid ester

Also Published As

Publication number Publication date
CN110944747A (en) 2020-03-31
MY191148A (en) 2022-06-01
KR102346234B1 (en) 2021-12-31
SG11201911738QA (en) 2020-01-30
CN110944747B (en) 2022-10-18
JP6769557B2 (en) 2020-10-14
KR20200033918A (en) 2020-03-30
JPWO2019026640A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5659490B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
EP3263213B1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
CN110300622B (en) Catalyst for methacrylic acid production, catalyst precursor for methacrylic acid production, processes for producing these, process for producing methacrylic acid, and process for producing methacrylic acid ester
JP5180303B2 (en) Method for producing improved acrylic acid production catalyst
JP5378041B2 (en) Method for producing composite oxide catalyst for acrylonitrile synthesis
JP2004008834A (en) Method for producing catalyst for producing methacrylic acid
JP5100520B2 (en) Method for producing catalyst for synthesizing α, β-unsaturated carboxylic acid
JP6769557B2 (en) Catalyst precursor, catalyst production method, methacrylic acid and acrylic acid production method, and methacrylic acid ester and acrylic acid ester production method.
JP6680367B2 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester
JP5362370B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
JP2019188268A (en) Manufacturing method of catalyst for manufacturing methacrylic acid, and manufacturing method of methacrylic acid
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
JPH0615178A (en) Method for preparing catalyst for methacrylic acid production
JP5663902B2 (en) Method for producing a catalyst for methacrylic acid production
JP5861267B2 (en) Method for producing a catalyst for methacrylic acid production
JP5424914B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP7031737B2 (en) A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and a methacrylic acid ester.
JP5691252B2 (en) Method for producing heteropolyacid catalyst for production of methacrylic acid, and method for producing methacrylic acid
JP2003251187A (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
WO2024225230A1 (en) Method for producing catalyst for methacrylic acid production, and method for producing methacrylic acid and methacrylic acid ester using same
JP2002239388A (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP5609396B2 (en) Catalyst for methacrylic acid production
JP2010264397A (en) Unsaturated carboxylic acid synthesis catalyst and method for producing unsaturated carboxylic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207005090

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18840745

Country of ref document: EP

Kind code of ref document: A1