WO2019022319A1 - 연소배가스를 이용한 중탄산소다 제조장치 및 이를 이용한 중탄산소다 제조방법 - Google Patents
연소배가스를 이용한 중탄산소다 제조장치 및 이를 이용한 중탄산소다 제조방법 Download PDFInfo
- Publication number
- WO2019022319A1 WO2019022319A1 PCT/KR2018/000188 KR2018000188W WO2019022319A1 WO 2019022319 A1 WO2019022319 A1 WO 2019022319A1 KR 2018000188 W KR2018000188 W KR 2018000188W WO 2019022319 A1 WO2019022319 A1 WO 2019022319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- slurry
- gas
- bicarbonate
- reaction tower
- Prior art date
Links
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 title claims abstract description 42
- 229910000030 sodium bicarbonate Inorganic materials 0.000 title claims abstract description 21
- 235000017557 sodium bicarbonate Nutrition 0.000 title claims abstract description 21
- 238000002485 combustion reaction Methods 0.000 title abstract description 8
- 238000002360 preparation method Methods 0.000 title abstract 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 241
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 147
- 239000002002 slurry Substances 0.000 claims abstract description 90
- 235000011121 sodium hydroxide Nutrition 0.000 claims abstract description 49
- 239000007789 gas Substances 0.000 claims description 108
- 238000000034 method Methods 0.000 claims description 74
- 239000011268 mixed slurry Substances 0.000 claims description 52
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 51
- 238000001035 drying Methods 0.000 claims description 33
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 25
- 239000003546 flue gas Substances 0.000 claims description 25
- 239000000567 combustion gas Substances 0.000 claims description 19
- 239000000706 filtrate Substances 0.000 claims description 16
- 239000012528 membrane Substances 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 13
- 239000006185 dispersion Substances 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 56
- 239000001569 carbon dioxide Substances 0.000 description 28
- 229910002092 carbon dioxide Inorganic materials 0.000 description 28
- 239000000463 material Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 7
- 239000011734 sodium Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 239000005431 greenhouse gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- VNWKTOKETHGBQD-AKLPVKDBSA-N carbane Chemical compound [15CH4] VNWKTOKETHGBQD-AKLPVKDBSA-N 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D7/00—Carbonates of sodium, potassium or alkali metals in general
- C01D7/07—Preparation from the hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/245—Stationary reactors without moving elements inside placed in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/18—Details relating to the spatial orientation of the reactor
- B01J2219/185—Details relating to the spatial orientation of the reactor vertical
Definitions
- the present invention relates to a device for producing bicarbonate using combustion gas and a method for producing bicarbonate using the same.
- a number of processes have been studied to remove carbon dioxide from flue gas emitted from a power plant that is the cause of global greenhouse gases.
- a method of removing carbon dioxide by a wet absorption method using monoethanolamine (MEA) Is capable of large-scale processing at normal pressure, but it has disadvantages of large installation cost and high energy consumption due to the large scale of treatment facilities due to characteristics of gas stream such as atmospheric pressure.
- Prior art relating to the present invention is Japanese Patent Laid-Open Publication No. 1999-104440 (published on Apr. 20, 1999, entitled " Method and apparatus for removing acidic gas in exhaust gas ").
- This document discloses a reactor comprising a vertical reactor having an inlet for flue gas at the bottom and an outlet for flue gas at the top, a means for injecting the slurry into the vertical reactor, a separator for separating dry solids contained in the flue gas from the reactor, And a recycle furnace for recirculating a part of the exhaust gas to the reactor.
- One object of the present invention is to provide an apparatus for producing bicarbonate using an excellent flue gas having excellent carbon dioxide removal efficiency and environment friendliness and capable of producing high purity bicarbonate.
- Another object of the present invention is to provide an apparatus for producing bicarbonate using flue gas having excellent economy, productivity and environment friendliness.
- the apparatus for producing bicarbonate using the combustible gas comprises a first reaction tower in which a caustic soda solution supplied from an upper part and a combustible gas introduced from a lower part contact with each other to produce a first process gas and a first slurry; And a second reaction unit formed on the first reaction unit and communicating with the first reaction unit, wherein the first process gas is supplied to the first reaction unit through the first gas line, The first process gas flowing into the lower part of the first reaction part and the lower part of the second reaction part and flowing into the lower part of the first reaction part and the lower part of the second reaction part, 2 reaction tower, wherein the first slurry and the unreacted caustic soda solution stay in the lower part of the first reaction tower to form a first mixed slurry, To a slurry drying unit provided at a lower portion of the slurry drying unit to produce sodium bicarbonate.
- a portion of the first mixed slurry may be recycled through the first circulation line to the top of the first reaction column.
- the second reaction tower may include a gas dispersion unit between the first reaction unit and the second reaction unit, wherein the gas dispersion unit has a plurality of holes formed on an inner circumferential surface thereof, The first process gas may be introduced into the lower portion of the second reaction unit through the plurality of holes.
- the first process gas introduced into the lower part of the first reaction part and the lower part of the second reaction part is in contact with the caustic soda solution flowing in from the upper part of the second reaction part to form the second process gas, the second slurry, 3 slurry, wherein the second slurry, the third slurry and the unreacted caustic soda solution remain in the lower portion of the first reaction section to form a second mixed slurry, and a part of the second mixed slurry forms the first slurry Can be circulated to the upper part of the first reaction part through the second circulation line provided at the lower part of the reaction part and can be in contact with the first process gas.
- a portion of the second mixed slurry may flow into the upper portion of the first reactor through a first feed line disposed below the first reactor to contact the flue gas.
- the pH of the first mixed slurry produced in the lower portion of the first reaction tower may be about 8.5 to about 9.0.
- the pH of the second slurry produced in the first reaction section is from about 10 to about 11, and the pH of the third slurry produced in the second reaction section may be from about 11 to about 12.
- the diameters of the first reaction tower and the second reaction tower may be such that the linear velocities of the incoming combustion gas and the first process gas are respectively about 50 m / hr to about 80 m / hr.
- the height H1 of the first reaction tower and the height H2 of the second reaction tower may be about 80 cm to about 200 cm, respectively.
- the height H1 of the first reaction tower and the height H2 of the second reaction tower may be about 12 to about 15 times the diameter of the first reaction tower and the second reaction tower.
- the slurry drying unit includes: separating means for separating the transferred first slurry into a powdery and slurry filtrate through a separation membrane; Drying means for drying the powder to produce bicarbonate; And separating the first mixed slurry into powdery and slurryy filtrate by using vibrational energy, and separating the separated slurryy filtrate from the separated mixed slurry, And may be introduced into the upper portion of the first reaction column.
- the drying means may dry the powder at about 40 ° C to about 70 ° C.
- Another aspect of the present invention relates to a method for producing bicarbonate using the apparatus for producing bicarbonate.
- the caustic soda solution supplied from the upper part of the first reaction tower and the combusted gas flowing from the lower part contact each other to produce a first process gas and a first slurry.
- the first process gas flows into the lower part of the first reaction part and the lower part of the second reaction part of the second reaction column through the first gas line and flows into the lower part of the first reaction part and the lower part of the second reaction part,
- Contacting the first process gas with a caustic soda solution introduced from the top of the second reaction section wherein the first slurry and the unreacted caustic soda solution remain in the lower portion of the first reaction column,
- the first mixed slurry is transferred to a slurry drying unit provided at a lower portion of the first reaction tower to produce sodium bicarbonate.
- the carbon dioxide removal efficiency is excellent, and it is possible to manufacture a high-purity bicarbonate with a small-scale processing facility and a low cost, thereby being excellent in economy, productivity and environment friendliness.
- FIG. 1 shows an apparatus for producing bicarbonate using flue gas according to one embodiment of the present invention.
- Fig. 2 (a) shows a cross section of a gas dispersion part according to one embodiment of the present invention
- Fig. 2 (b) shows the gas dispersion part.
- FIG 3 shows a separating means of the slurry drying unit according to one embodiment of the present invention.
- FIG. 1 shows an apparatus for producing bicarbonate using flue gas according to one embodiment of the present invention.
- the apparatus for producing bicarbonate 1000 using a combustion gas includes a first reaction, in which a caustic soda solution supplied from an upper part and a combustible gas introduced from a lower part are brought into contact with each other to produce a first process gas and a first slurry A tower 200; And an upper part of the first reaction part A1 and the first reaction part A1 formed at the lower part.
- a second reaction part (A2) communicating with the first reaction part (A2), wherein the first process gas is supplied through the first gas line (20) to the lower part of the first reaction part (A1)
- the first process gas flowing into the lower part of the second reaction part A2 flows into the lower part of the second reaction part A2 and flows into the lower part of the second reaction part A2,
- a second reaction tower (300) for producing a second process gas, a third process gas, a second slurry and a third slurry, respectively, in contact with the solution.
- NaOH sodium hydroxide
- caustic soda may be introduced into the upper part of the first reaction tower 200 and a supply line (not shown) connected to the caustic soda supply unit 400 to be described later.
- the combustible gas is discharged from the combustion of fossil fuel in a coal-fired power plant, a cement plant, a petrochemical plant, etc., and a gas containing carbon dioxide (CO 2 ) can be used.
- the concentration of carbon dioxide in the combustible gas may be determined by the fuel used in a power plant or a cement factory and a combustion method.
- the carbon dioxide in the flue gas may comprise about 13% to about 16% by volume of flue gas generated in a coal-fired power plant.
- the carbon dioxide may comprise from about 20% by volume to about 23% by volume. If the concentration of carbon dioxide in the flue gas is high, the amount of carbon dioxide that can be treated at the same reactor scale increases, which is advantageous.
- the flue gas may flow into the lower portion of the first reaction tower 200 through the flue gas inlet line 10.
- the flue gas may be cooled through the gas cooling unit 100 and introduced into the lower portion of the first reaction tower 200.
- the combustion gas inflow line 10 may further include a gas blower or the like to introduce the combustible gas into the first reaction tower 200.
- a first filling material 210 may be included in the first reaction tower 200.
- a conventional one can be used.
- an amorphous fill material can be used.
- the residence time for contact between the combustible gas and the caustic soda is increased to minimize the size of the reaction tower with excellent reaction efficiency.
- the first slurry and the combustible gas and the unreacted caustic soda solution are retained in the lower part of the first reaction tower 200 to form a first mixed slurry M 1, 1 mixed slurry M1 can maintain a constant liquid level.
- a portion of the first mixed slurry M1 is recycled into the upper portion of the first reaction column 200 through the first circulation line 70 provided in the lower portion of the first reaction column 200, / RTI > For example, circulated through the first circulation pump 72 provided in the first circulation line 70.
- the residence time necessary for the carbonation reaction between the carbon dioxide and the caustic soda solution in the combustible gas is increased through the circulation of the first mixed slurry (M1), so that the carbon dioxide
- the reaction efficiency between caustic soda is increased, which can contribute greatly to reducing the size (or reactor volume) of the entire column.
- the first process gas includes a gas dispersion unit 320 disposed between the first reaction unit A1 and the first reaction unit A1 and between the first reaction unit A1 and the second reaction unit A2. Through the gas inlet 321 of the gas inlet 321. In one embodiment, the first process gas may flow into the second reaction unit through a plurality of holes 322 formed in the inner circumferential surface of the gas dispersion unit 320.
- filling materials 310 and 312 may be contained in the first reaction part A1 and the second reaction part A2, respectively.
- a conventional one can be used.
- a static filling material in the form of a metal sheet or a structured packing may be used.
- the first process gas in which the carbon dioxide is removed by contact with the caustic soda solution in the first reaction section A1 is reused in the second reaction section A2 communicating with the first reaction section A1, Solution and is combined with the first process gas from which carbon dioxide has been removed in the second reaction section A2 to form a second process gas.
- the second slurry, the third slurry, the first process gas and the unreacted caustic soda solution are retained in the lower portion of the first reaction unit A1 to separate the second mixed slurry M2 into the first
- the second mixed slurry M2 under the reaction part A1 can maintain a constant liquid level.
- a part of the second mixed slurry M2 is circulated to the upper part of the first reaction part A1 through the second circulation line 50 provided in the lower part of the first reaction part A1, / RTI >
- the second mixed slurry may be recycled to the upper portion of the first reaction unit A1 using a second circulation pump 52 provided in the second circulation line 50.
- Part of the first and second mixed slurries may be added to the upper portion of the first reactor 200 and the upper portion of the first reactor A1 in an amount of about 5 liter / kg ⁇ mol CO 2 to about 30 liter / kg ⁇ mol CO 2 Respectively. Under the above conditions, the efficiency of producing bicarbonate can be excellent.
- the second mixed slurry M2 flows into the upper part of the first reaction column 200 through a first transfer line 60 provided below the first reaction part A1, It can come into contact with the combustion gas.
- the pH of the first slurry produced in contact with the upper portion of the first reactor 200 may be about 8.5 to about 11.0. In the above range, the reactivity is excellent, and the productivity and quality of sodium bicarbonate can be excellent.
- the pH of the first mixed slurry M1 under the first reaction column 200 may be adjusted to about 8.5 to about 9.0. Under the above conditions, the purity of the bicarbonate produced according to the present invention can be maximized.
- the pH of the second slurry produced in the first reaction part A1 is from about 10 to about 11
- the pH of the third slurry produced in the second reaction part A2 is from about 11 to about 12 days .
- the reactivity is excellent, and the productivity and quality of sodium bicarbonate can be excellent.
- a first reaction section (A1) a second slurry pH is, while the content of sodium carbonate (Na 2 CO 3) increase of the slurry drops to about 10 less than, said first transfer line to the precipitates according to the solubility characteristics of the bicarbonate of the ( 60 is clogged and the pH of the second slurry exceeds about 11, it is difficult to keep the pH of the first mixed slurry (M1) at about 8.5 to about 9.0, so that the purity of the sodium bicarbonate Can be degraded.
- the caustic soda solution stored in the caustic soda storage unit 400 may be transferred to the upper end of the first reaction unit A1 of the second reaction tower 300 through the caustic soda supply line 40.
- the caustic soda may comprise from about 10% to about 30% by weight of the total weight of the caustic soda solution. For example, from about 15% to about 20% by weight.
- the caustic soda When the caustic soda is contained in an amount less than about 10 wt.%, The reaction efficiency with carbon dioxide in the flue gas becomes low. Therefore, the purity of the desired sodium bicarbonate can not be obtained in the reaction tower of the present invention. %, It may cause many troubles in terms of long-term operation because precipitates may be formed in the transfer line at a low temperature due to the solubility characteristics of the produced carbonate and bicarbonate as well as the corrosion of the reactor. For example, in the total weight of the caustic soda solution, the caustic soda may be present at a concentration of about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, , 28, 29 or 30% by weight.
- the treatment stream of the combustion gas is supplied from the first reaction tower 200 to the second reaction tower 300 through the flow of the slurry formed by contacting the caustic soda solution and the combustion exhaust gas Are crossed from the second reaction tower 300 to the first reaction tower 100.
- the optimal pH for the production of high purity sodium bicarbonate can be controlled when the process is performed under the above conditions.
- a gas discharge line 30 is provided at an upper portion of the second reaction tower 300 to discharge the formed second process gas to the outside.
- the diameters of the first reaction tower and the second reaction tower may be such that the linear velocities of the incoming combustion gas and the first process gas are respectively about 50 m / hr to about 80 m / hr. In the above linear velocity range, the carbonation reaction rate and process efficiency of the present invention can be excellent.
- the height H1 of the first reaction tower and the height H2 of the second reaction tower may be about 80 cm to about 200 cm, respectively.
- the carbonation reaction rate and process efficiency of the present invention can be excellent.
- the height H1 of the first reaction tower and the height H2 of the second reaction tower may be about 80 cm to about 150 cm, respectively.
- the height H1 of the first reaction tower and the height H2 of the second reaction tower may be about 12 to about 15 times the diameter of the first reaction tower and the second reaction tower.
- the carbonation reaction rate and process efficiency of the present invention can be excellent.
- the first reaction tower 200 and the second reaction tower 300 further include a temperature measurement unit, a pH measurement unit, and a conductivity measurement unit, and can perform various condition change analysis during operation .
- mist eliminators 230 and 330 are provided in the first reaction column 200 and the second reaction column 300 to remove droplets of the first process gas and the second process gas, respectively, Balance can be maintained.
- a carbon dioxide measuring sensor is provided in each of the combustion gas inflow line 10, the first gas line 20 and the gas discharge line 30 to perform analysis of the carbon dioxide removal efficiency (or carbon dioxide conversion) . ≪ / RTI >
- the first mixed slurry M is transferred to the slurry drying unit 500 provided at the lower part of the first reaction tower 200 to produce sodium bicarbonate.
- the slurry drying unit 500 includes: separating means for separating the transferred first mixed slurry M1 into a powdery and slurry filtered liquid through a separation membrane; Drying means for drying the powder to produce bicarbonate; And a bicarbonate soda storage for storing the produced bicarbonate.
- the separated slurry filtrate may be introduced into the upper part of the first reaction column through a filtrate discharge line.
- the average size of the solid particles of the first mixed slurry may be about 20 ⁇ or less. For example from greater than about 0 to about 20 microns.
- the solids content of the first mixed slurry (M1) may be from about 10% to about 20% by weight. Therefore, the dehydration and drying of the first mixed slurry (M1) proceeds in the slurry drying unit, and solid sodium bicarbonate can be obtained.
- FIG. 3 shows the separating means 510 of the slurry dryer 500 according to one embodiment of the present invention.
- the separating means 510 includes a separating membrane 502 separating the powdery and slurry filtrate from the first mixed slurry M1, a vibrating means 504 provided below the separating membrane 502, A filtrate discharge line 510 through which the slurry filtrate passed through the separation membrane is discharged, and a powder storage section 506 through which the powder passing through the separation membrane is stored.
- the separation membrane When the vibration energy is applied, the separation membrane itself vibrates at a high frequency to prevent the phenomenon that the fine particles in the first mixed slurry M1 to be separated adhere to the membrane surface to deteriorate the membrane separation efficiency, can do.
- the method of removing moisture from the slurry through the diaphragm separation process of the present invention is advantageous in terms of operation and energy efficiency of the drying means. Specifically, most of the water containing the residual impurities in the first mixed slurry is removed through the separation membrane, so that the amount of water to be blown off by spray drying is reduced by the corresponding amount, and energy consumption is greatly reduced.
- the powder stored in the powder storage portion 506 may be transferred to a drying means and dried.
- the water content of the powders subjected to the vibrating separation membrane process may be about 10 wt% to about 20 wt%. Therefore, it is necessary to remove residual water by drying.
- the drying means may be a fluidized bed dryer.
- the drying means is capable of drying the powder using air at about 40 ° C to about 70 ° C. Under the above conditions, the drying efficiency is excellent and pyrolysis of the bicarbonate can be prevented.
- a slurry storage unit (not shown) may be further disposed between the lower portion of the first reaction tower A1 and the slurry drying unit 500.
- the first reaction tower 200 may further include a diaphragm-type slurry transfer pump. When the slurry transfer pump is further included, the slurry can be transferred to the slurry drying unit 500 without clogging due to slurry deposition in the slurry discharge line 80.
- Another aspect of the present invention relates to a method for producing bicarbonate using the apparatus for producing bicarbonate using the combustible gas.
- the caustic soda solution supplied from the upper part of the first reaction tower and the combusted gas flowing from the lower part contact with each other to produce a first process gas and a first slurry;
- the first process gas flows into the lower part of the first reaction part and the lower part of the second reaction part of the second reaction column through the first gas line and flows into the lower part of the first reaction part and the lower part of the second reaction part,
- the first process gas is in contact with the caustic soda solution introduced from the upper portion of the second reaction section to thereby generate the second process gas, the third process gas, the second slurry, and the third slurry, respectively, 1 slurry and the unreacted caustic soda solution and the unreacted caustic soda solution form a first mixed slurry in a lower portion of the first reaction tower, Line to the upper portion of the first reaction column to be in contact with the combustion
- the present invention utilizes combustion exhaust gas discharged from the combustion of fossil fuels in coal-fired power plants, cement and petrochemical plants, and produces carbon dioxide, which is commercially valuable, and reduces carbon dioxide, which is a typical greenhouse gas. .
- the sodium bicarbonate produced according to the present invention can be utilized in various industrial fields such as soaps, detergents, food additives, and exhaust gas refining, and has high added value and excellent usability.
- Bicarbonate Soda Production Bicarbonate was produced using the apparatus for producing bicarbonate as shown in FIG.
- the height H1 of the first reaction column and the height H2 of the second reaction column were respectively 150 cm.
- the first filling material 210 containing the amorphous filling material 1 is supplied to the upper part of the reaction tower 200 and is cooled through the gas cooling part 100 and flows into the combustion gas inflow line 10 Through the bottom of the first reaction column 200 at a flow rate of 25 liter / min, and contacted with the combustion gas containing carbon 15 to 15 vol% to produce the first process gas and the first slurry.
- the first process gas is then introduced into the first reaction section A1 of the second reaction tower 300 and the first reaction section A1 and the second reaction section A2 through the plurality of holes 322 formed in the inner circumferential surface of the gas dispersion unit and flows into the lower portion of the second reaction unit.
- the first slurry, the combustible gas and the unreacted caustic soda solution stayed in the lower part of the first reaction tower to form a first mixed slurry.
- a part of the first mixed slurry circulates through the first circulation line provided in the lower part of the first reaction tower to the upper part of the first reaction tower and is in contact with the combustible gas.
- the second slurry, the third slurry, the first process gas and the unreacted caustic soda solution remain in the lower portion of the first reaction unit A1 to form a second mixed slurry
- the second mixed slurry circulates through the second circulation line 50 provided in the lower part of the first reaction part A1 to the upper part of the first reaction part to be in contact with the first process gas.
- a part of the second mixed slurry flows into the upper part of the first reaction tower 200 through the first transfer line 60 provided in the lower part of the first reaction part A1, Respectively.
- the flow rates of the circulating first and second mixed slurries were respectively 50 liter / kg ⁇ mol CO 2 conditions.
- the first mixed slurry was transferred to a slurry drying unit provided at a lower portion of the first reaction tower through a slurry discharge line (80).
- the first mixed slurry was transferred to a separating means, passed through a separation membrane, and separated into a powdery and slurry filtrate.
- the first mixed slurry was separated into a powdery and slurry filtrate using vibrational energy, the powder was transferred to a drying means and dried at a temperature of 40 ° C to produce bicarbonate, Soda was transferred to the bicarbonate storage and stored.
- the separated slurry filtrate flowed into the upper part of the first reaction column through a filtrate discharge line.
- Example 2 The same procedure as in Example 1 was carried out except that the concentration of the caustic soda solution introduced into the upper part of the second reaction column (upper part of the second reaction part) was 20% by weight and the feed amount per minute was adjusted to 30 ml Respectively.
- Example 2 The same procedure as in Example 1 was carried out except that the amount of caustic soda solution introduced into the upper part of the second reaction tower (upper part of the second reaction part) was adjusted to 30 ml.
- Example 2 The same procedure as in Example 1 was carried out except that the height of the first and second reaction columns was 200 cm.
- Sodium bicarbonate was prepared in the same manner as in Example 1, except that it was added to the lower portion of the first reaction portion of the second reaction column.
- Sodium bicarbonate was prepared in the same manner as in Example 1 except that it was added to the lower portion of the second reaction portion of the second reaction column.
- Table 1 shows the operation results of the continuous operation for 3 hours with respect to Examples 1 to 4 above.
- the carbon dioxide capture ratio (conversion ratio) of the Example 1 was kept constant at 90% or more, and the XRD and X-ray diffraction purity of the obtained powder was 98% And there was no significant difference from the purity of commercially available products.
- Table 1 shows the operation results of the continuous operation for 3 hours in Example 1 and Comparative Examples 1 and 2.
- a carbonation reaction model capable of simulating Example 1 and Comparative Examples 1 and 2 was constructed using the pre-established process simulation tool (gPROMS, PSE) The carbon dioxide conversion rate under the same conditions was analyzed, and the results of the analysis in comparison with the continuous operation test are shown in Table 2.
- Example 2 it was analyzed that the average carbon dioxide capture ratio (conversion ratio) of Comparative Example 1 and Comparative Example 2 was lower than that of Example 1.
- the first reaction is performed in the second reaction portion of the second reaction column operated in a region having a relatively high pH (pH range of the third slurry: 11 to 12) In the first reaction part (the second slurry pH range: 10 to 11) in which a considerable part of the exhaust gas discharged from the tower is introduced to induce the carbonation reaction under a short residence time and the reaction is performed in a lower pH range than the second reaction part
- the first process gas branched from the first reaction column is subjected to the first reaction in the first reaction part of the second reactor and then the second reaction part again in the second reaction part so that the conversion of carbon dioxide is improved as compared with the comparative examples 1 and 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
Abstract
본 발명은 연소배가스를 이용한 중탄산소다 제조장치 및 이를 이용한 중탄산소다 제조방법에 관한 것이다. 한 구체예에서 상기 연소배가스를 이용한 중탄산소다 제조장치는 상부에서 공급되는 가성소다 용액 및 하부에서 유입되는 연소배가스가 접촉하여 제1 처리가스 및 제1 슬러리를 생성하는 제1 반응탑; 및 하부에 형성되는 제1 반응부, 및 상기 제1 반응부의 상부에 형성되어 제1 반응부와 연통하는 제2 반응부를 포함하며, 상기 제1 처리가스가 제1 가스라인을 통해 상기 제1 반응부 하부 및 제2 반응부 하부로 분기하여 유입되고, 상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스는, 제2 반응부 상부에서 유입되는 가성소다 용액과 각각 접촉하는 제2 반응탑;을 포함한다.
Description
본 발명은 연소배가스를 이용한 중탄산소다 제조장치 및 이를 이용한 중탄산소다 제조방법에 관한 것이다.
지구온실가스의 원인인 발전소에서 배출되는 배가스 중 이산화탄소를 제거하기 위한 공정으로는 여러 가지가 연구되고 있는데, 그 중 널리 이용되고 있는 모노에탄올아민(MEA)을 이용한 습식 흡수법으로 이산화탄소를 제거하는 방법은 상압에서의 대규모 처리가 가능하지만 상압 등 가스 기류의 특성에 기인한 처리 설비의 규모가 커서 설치비가 많이 들고 에너지 소비도 많다는 단점이 있다.
최근에는 석탄화력 발전소 등에서 배출되는 연속 배가스를 활용하여 상기 중탄산나트륨 등과 같은 고부가 화합물을 제조하고, 이와 동시에 대표적인 온실가스인 이산화탄소를 저감할 수 있는 연구가 활발히 이루어지고 있다.
본 발명과 관련한 선행기술로는 일본 공개특허공보 제1999-104440호(1999.04.20 공고, 발명의 명칭: 배기 가스 중의 산성 가스 제거 방법 및 장치)가 있다. 상기 문헌에는 하단에 배가스 입구를 가지며, 상단에 배가스 출구를 가지는 수직 반응기와, 상기 수직 반응기에 흡수제 슬러리를 분사하는 수단과, 반응기에서 나온 배가스 중에 포함되는 건조한 고형물을 분리하는 분리 장치, 분리된 고형물의 일부를 반응기에 재순환시키는 재순환로를 구비한 배가스 중의 산성 가스 제거 장치 구성이 개시되고 있다.
본 발명의 하나의 목적은 이산화탄소 제거 효율성 및 친환경성이 우수하며, 고순도 중탄산소다의 제조가 가능한 우수한 연소배가스를 이용한 중탄산소다 제조장치에 관한 것이다.
본 발명의 다른 목적은 경제성, 생산성 및 친환경성이 우수한 연소배가스를 이용한 중탄산소다 제조장치에 관한 것이다.
본 발명의 또 다른 목적은 상기 연소배가스를 이용한 중탄산소다 제조장치를 이용한 중탄산소다 제조방법에 관한 것이다.
본 발명의 하나의 관점은 연소배가스를 이용한 중탄산소다 제조장치에 관한 것이다. 한 구체예에서 상기 연소배가스를 이용한 중탄산소다 제조장치는 상부에서 공급되는 가성소다 용액 및 하부에서 유입되는 연소배가스가 접촉하여 제1 처리가스 및 제1 슬러리를 생성하는 제1 반응탑; 및 하부에 형성되는 제1 반응부, 및 상기 제1 반응부의 상부에 형성되어 제1 반응부와 연통하는 제2 반응부를 포함하며, 상기 제1 처리가스가 제1 가스라인을 통해 상기 제1 반응부 하부 및 제2 반응부 하부로 분기하여 유입되고, 상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스가, 제2 반응부 상부에서 유입되는 가성소다 용액과 접촉하는 제2 반응탑;을 포함하며, 상기 제1 슬러리 및 미반응 가성소다 용액은, 상기 제1 반응탑의 하부에 체류하여 제1 혼합슬러리를 형성하며, 상기 제1 혼합슬러리는, 상기 제1 반응탑의 하부에 구비된 슬러리 건조부로 이송되어, 중탄산소다를 생성한다.
한 구체예에서 상기 제1 혼합슬러리의 일부는, 제1 순환라인을 통해 상기 제1 반응탑 상부로 순환 유입될 수 있다.
한 구체예에서 제1항에 있어서, 상기 제2 반응탑은, 상기 제1 반응부와 상기 제2 반응부 사이에 가스분산부가 구비되며, 상기 가스분산부는 내주면에 복수 개의 홀이 형성되고, 상기 제1 처리가스는 상기 복수 개의 홀을 통해 상기 제2 반응부 하부로 유입될 수 있다.
한 구체예에서 상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스는, 제2 반응부 상부에서 유입되는 가성소다 용액과 각각 접촉하여 제2 처리가스, 제2 슬러리 및 제3 슬러리를 생성하며, 상기 제2 슬러리, 제3 슬러리 및 미반응 가성소다 용액은, 상기 제1 반응부 하부에 체류하여 제2 혼합슬러리를 형성하고, 상기 제2 혼합슬러리의 일부는 상기 제1 반응부 하부에 구비된 제2 순환라인을 통해 상기 제1 반응부 상부로 순환 유입되어, 상기 제1 처리가스와 접촉할 수 있다.
한 구체예에서 상기 제2 혼합슬러리의 일부는 상기 제1 반응부 하부에 구비된 제1 이송라인을 통해 상기 제1 반응탑의 상부로 유입되어, 상기 연소배가스와 접촉할 수 있다.
한 구체예에서 상기 제1 반응탑 하부에서 생성되는 제1 혼합슬러리의 pH는 약 8.5 내지 약 9.0 일 수 있다.
한 구체예에서, 상기 제1 반응부에서 생성되는 제2 슬러리의 pH는 약 10 내지 약 11이며, 상기 제2 반응부에서 생성되는 제3 슬러리의 pH는 약 11 내지 약 12일 수 있다.
한 구체예에서 상기 제1 반응탑 및 제2 반응탑의 직경은, 상기 유입되는 연소배가스 및 제1 처리가스의 선속도가 각각 약 50m/hr 내지 약 80m/hr가 되도록 형성될 수 있다.
한 구체예에서 상기 제1 반응탑 높이(H1) 및 제2 반응탑 높이(H2)는, 각각 약 80cm 내지 약 200cm 일 수 있다.
한 구체예에서 상기 제1 반응탑 높이(H1) 및 제2 반응탑의 높이(H2)는, 상기 제1 반응탑 및 제2 반응탑 직경의 약 12배 내지 약 15배로 형성될 수 있다.
한 구체예에서 상기 슬러리 건조부는, 상기 이송된 제1 슬러리를 분리막을 통과하여 분체 및 슬러리 여과액으로 분리하는 분리 수단; 상기 분체를 건조하여 중탄산소다를 생성하는 건조 수단; 및 상기 생성된 중탄산소다를 저장하는 중탄산소다 저장부;를 포함하며, 상기 분리막 통과시, 상기 제1 혼합슬러리를 진동 에너지를 이용하여 분체 및 슬러리 여과액으로 분리하며, 상기 분리된 슬러리 여과액은 상기 제1 반응탑 상부로 유입될 수 있다.
한 구체예에서 상기 건조 수단은 상기 분체를 약 40℃ 내지 약 70℃로 건조할 수 있다.
본 발명의 다른 관점은 상기 중탄산소다 제조장치를 이용한 중탄산소다 제조방법에 관한 것이다. 예를 들면, 상기 제1 반응탑의 상부에서 공급되는 가성소다 용액 및 하부에서 유입되는 연소배가스가 접촉하여 제1 처리가스 및 제1 슬러리를 생성하는 단계; 및 상기 제1 처리가스가 제1 가스라인을 통해 제2 반응탑의 제1 반응부 하부 및 제2 반응부 하부로 분기하여 유입되어, 상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스가, 제2 반응부 상부에서 유입되는 가성소다 용액과 접촉하는 단계;를 포함하며, 상기 제1 슬러리 및 미반응 가성소다 용액은, 상기 제1 반응탑의 하부에 체류하여 제1 혼합슬러리를 형성하며, 상기 제1 혼합슬러리는, 상기 제1 반응탑의 하부에 구비된 슬러리 건조부로 이송되어, 중탄산소다를 생성한다.
본 발명의 중탄산소다 제조장치 및 제조방법을 적용시, 이산화탄소 제거 효율성이 우수하여, 소규모 공정 설비와 저비용으로 고순도 중탄산소다의 제조가 가능하여 경제성, 생산성 및 친환경성이 우수할 수 있다.
도 1은 본 발명의 한 구체예에 따른 연소배가스를 이용한 중탄산소다 제조장치를 나타낸 것이다.
도 2(a)는 본 발명의 한 구체예에 따른 가스분산부의 단면을 나타낸 것이며, 도 2(b)는 상기 가스분산부를 나타낸 것이다.
도 3은 본 발명의 한 구체예에 따른 슬러리 건조부의 분리수단을 나타낸 것이다.
본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하도록 한다.
연소배가스를
이용한 중탄산소다 제조장치
본 발명의 하나의 관점은 연소배가스를 이용한 중탄산소다 제조장치에 관한 것이다. 도 1은 본 발명의 한 구체예에 따른 연소배가스를 이용한 중탄산소다 제조장치를 나타낸 것이다. 상기 도 1을 참조하면, 연소배가스를 이용한 중탄산소다 제조장치(1000)는 상부에서 공급되는 가성소다 용액 및 하부에서 유입되는 연소배가스가 접촉하여 제1 처리가스 및 제1 슬러리를 생성하는 제1 반응탑(200); 및 하부에 형성되는 제1 반응부(A1) 및 제1 반응부(A1)의 상부에 형성되어. 제1 반응부(A2)와 연통하는 제2 반응부(A2)를 포함하며, 상기 제1 처리가스가 제1 가스라인(20)을 통해 상기 제1 반응부(A1) 하부 및 제2 반응부(A2) 하부로 분기하여 유입되고, 상기 제1 반응부(A1) 하부 및 제2 반응부(A2) 하부로 유입된 제1 처리가스가, 제2 반응부(A2) 상부에서 유입되는 가성소다 용액과 접촉하여, 제2 처리가스, 제3 처리가스, 제2 슬러리 및 제3 슬러리를 각각 생성하는 제2 반응탑(300);을 포함한다.
가성소다(NaOH, Sodium Hydroxide)는 통상의 방법으로 제1 반응탑(200) 상부로 유입될 수 있다. 예를 들면, 제1 반응탑(200)의 상부와, 후술할 가성소다 공급부(400)와 연결된 공급라인(미도시)을 통해 가성소다를 유입할 수 있다.
상기 연소배가스는 석탄 화력발전소, 시멘트 및 석유화학 공장 등에서 화석연료의 연소로 인해 배출되는 것이며, 이산화탄소(CO2)를 포함하는 가스를 사용할 수 있다. 상기 연소배가스 중 이산화탄소의 농도는 발전소 혹은 시멘트 공장 등에서 사용되는 연료 및 연소방식에 의해 결정될 수 있다. 한 구체예에서 석탄화력 발전소에서 발생되는 연소배가스의 경우 상기 연소배가스 내 이산화탄소는 약 13 부피% 내지 약 16 부피% 포함될 수 있다. 다른 구체예에서, 제철소 고로 등에서 발생되는 연소배가스의 경우, 이산화탄소는 약 20 부피% 내지 약 23 부피% 포함될 수 있다. 상기 연소배가스 중의 이산화탄소 농도가 높아지면 동일 반응기 규모에서 처리할 수 있는 이산화탄소의 양이 많아지므로 유리할 수 있다.
도 1을 참조하면, 상기 연소배가스는, 연소배가스 유입라인(10)을 통해 제1 반응탑(200)의 하부로 유입될 수 있다. 한 구체예에서 상기 연소배가스는, 가스냉각부(100)를 거쳐 냉각되어 제1 반응탑(200)의 하부로 유입될 수 있다. 상기 연소배가스의 냉각시, 반응효율성이 증가하여, 제1 처리가스의 이산화탄소 제거 효율이 우수할 수 있다. 연소배가스 유입라인(10)은, 가스 블로워(gas blower) 등을 더 포함하여, 상기 연소배가스를 제1 반응탑(200)으로 유입시킬 수 있다.
상기 가성소다 용액과 연소배가스의 접촉시, 하기 화학식 1 및 화학식 2와 같은 탄산화 반응이 발생하여, 연소배가스에 포함된 이산화탄소가 제거된 제1 처리가스 및 제1 슬러리를 생성하게 된다:
[화학식 1]
CO2(g) + 2NaOH(l) → Na2CO3
+ H2O
[화학식 2]
Na2CO3
+ CO2(g) + H2O → 2NaHCO3
도 1을 참조하면, 제1 반응탑(200) 내부에는 제1 충전물질(210)이 포함될 수 있다. 상기 충전물질은, 통상적인 것을 사용할 수 있다. 예를 들면, 비정형 형태의 충전물질을 사용할 수 있다. 상기 제1 충전물질(210) 포함시, 연소배가스와 가성소다와의 접촉을 위한 체류시간이 증가하여, 반응 효율이 우수하면서 반응탑의 크기를 최소화할 수 있다.
상기 제1 슬러리 및 상기 연소배가스와 미반응 가성소다 용액은, 상기 제1 반응탑(200)의 하부에 체류하여 제1 혼합슬러리(M1)를 형성하며, 제1 반응탑(200) 하부의 제1 혼합슬러리(M1)는 일정 액위를 유지할 수 있다.
한 구체예에서 제1 혼합슬러리(M1)의 일부는, 제1 반응탑(200) 하부에 구비된 제1 순환라인(70)을 통해 제1 반응탑(200) 상부로 순환 유입되어 상기 연소배가스와 접촉할 수 있다. 예를 들면, 제1 순환라인(70)에 구비된 제1 순환펌프(72)를 통해 순환 유입시킬 수 있다. 상기 조건으로 제1 혼합슬러리를 순환시, 상기 제1 혼합슬러리(M1) 순환을 통해서 연소배가스중 이산화탄소와, 가성소다 용액 사이의 탄산화 반응에 필요한 체류시간이 증대되므로 해당 반응기에서 연소배가스 중 이산화탄소와 가성소다간 반응효율이 증가되고 이는 전체 충진탑의 크기(혹은 반응기 부피)를 줄이는데 크게 기여할 수 있다.
도 2는 본 발명의 한 구체예에 따른 가스분산부를 나타낸 것이다. 상기 도 1 및 도 2를 참조하면, 상기 제1 처리가스는 제1 반응부(A1) 하부 및 상기 제1 반응부(A1) 및 제2 반응부(A2) 사이에 구비된 가스분산부(320)의 가스유입구(321)를 통해 유입될 수 있다. 한 구체예에서 상기 제1 처리가스는 상기 가스분산부(320)의 내주면에 형성된 복수 개의 홀(322)을 통해 상기 제2 반응부로 유입할 수 있다.
상기 도 1을 참조하면, 제1 반응부(A1) 및 제2 반응부(A2) 내부에는 충전물질(310, 312)이 각각 포함될 수 있다. 상기 충전물질은, 통상적인 것을 사용할 수 있다. 예를 들면, 메탈 시트(metal sheet) 또는 격자 (structured packing) 형태의 정형 충전물질을 사용할 수 있다. 상기 충전물질(310, 312)을 포함시, 상기 제1 처리가스와 가성소다와의 접촉을 위한 체류시간이 증가하여, 반응 효율이 우수하면서 반응탑의 크기를 최소화할 수 있다.
한 구체예에서, 제1 반응부(A1)에서 가성소다 용액과 접촉하여 이산화탄소가 제거된 제1 처리가스는, 제1 반응부(A1)과 연통되는 제2 반응부(A2)에서 다시 가성소다 용액과 접촉하게 되며, 제2 반응부(A2)에서 이산화탄소가 제거된 제1 처리가스와 합쳐져, 제2 처리가스를 형성할 수 있다.
상기 도 2를 참조하면, 제2 슬러리, 제3 슬러리 및 상기 제1 처리가스와 미반응 가성소다 용액은, 상기 제1 반응부(A1) 하부에 체류하여 제2 혼합슬러리(M2)를 제1 반응부(A1) 하부의 제2 혼합슬러리(M2)는 일정 액위를 유지할 수 있다.
상기 제2 혼합슬러리(M2)의 일부는 상기 제1 반응부(A1) 하부에 구비된 제2 순환라인(50)을 통해 제1 반응부(A1) 상부로 순환 유입되어, 상기 제1 처리가스와 접촉할 수 있다. 예를 들면, 상기 제2 혼합슬러리는 제2 순환라인(50)에 구비된 제2 순환펌프(52)를 이용하여 제1 반응부(A1) 상부로 순환유입할 수 있다.
상기 제1 및 제2 혼합슬러리의 일부는 상기 제1 반응탑(200) 상부 및 제1 반응부(A1) 상부로 약 5 liter/kg·mol CO2 내지 약 30 liter/kg·mol CO2 의 조건으로 각각 유입시킬 수 있다. 상기 조건에서 중탄산 소다 생성 효율성이 우수할 수 있다.
상기 도 1을 참조하면, 제2 혼합슬러리(M2)는 상기 제1 반응부(A1) 하부에 구비된 제1 이송라인(60)을 통해 제1 반응탑(200)의 상부로 유입되어, 상기 연소배가스와 접촉할 수 있다.
한 구체예에서 제1 반응탑(200)에서 상부에서 접촉하여 생성되는 제1 슬러리의 pH는 약 8.5 내지 약 11.0일 수 있다. 상기 범위에서 반응성이 우수하여, 중탄산소다의 생산성 및 품질이 우수할 수 있다. 또한, 상기 제1 반응탑(200) 하부의 제1 혼합슬러리(M1)의 pH는 약 8.5 내지 약 9.0으로 조절될 수 있다. 상기 조건에서 본 발명에 따라 제조되는 중탄산소다의 순도가 최대가 될 수 있다.
상기 제1 반응탑(200) 하단부의 제1 혼합슬러리의 pH가 약 8.5 미만시, 중탄산소다의 용해도 저하에 따른 침전물이 생성되어, 슬러리 배출라인(80)이 막힐 수 있으며, pH가 약 9.0을 초과하는 경우, 중탄산소다 생성효율이 저하되어 순도가 떨어지는 반면, 탄산소다(Na2CO3)의 생성량이 증가할 수 있다.
한 구체예에서, 제1 반응부(A1)에서 생성되는 제2 슬러리의 pH는 약 10 내지 약 11이며, 제2 반응부(A2)에서 생성되는 제3 슬러리의 pH는 약 11 내지 약 12일 수 있다. 상기 범위에서 반응성이 우수하여, 중탄산소다의 생산성 및 품질이 우수할 수 있다.
제1 반응부(A1)의 제2 슬러리 pH가 약 10 미만으로 떨어지면 슬러리 중에 중 탄산소다(Na2CO3)의 함량이 증가하면서, 중탄산소다의 용해도 특성에 따른 침전물 생성으로 제1 이송라인(60)이 막히는 현상이 발생하고 상기 제2 슬러리의 pH가 약 11을 초과하는 경우, 상기 제1 혼합슬러리(M1)의 pH를 약 8.5 내지 약 9.0으로 유지하기가 어렵기 때문에 중탄산소다의 순도가 저하될 수 있다.
도 1을 참조하면, 가성소다 저장부(400)에 저장된 가성소다 용액은 가성소다 공급라인(40)을 통해 제2 반응탑(300)의 제1 반응부(A1) 상단으로 이송될 수 있다. 한 구체예에서 상기 가성소다 용액 전체중량중 상기 가성소다는 약 10 중량% 내지 약 30 중량% 포함될 수 있다. 예를 들면, 약 15 중량% 내지 약 20 중량%일 수 있다.
상기 가성소다를 약 10 중량% 미만 포함시, 상기 연소배가스중 이산화탄소와의 반응효율이 낮아지기 때문에 본 발명의 반응탑 구성으로는 원하는 중탄산소다의 순도를 얻을 수 없고 상기 가성소다의 농도를 약 30 중량% 초과하여 포함하는 경우, 반응기의 부식뿐만 아니라 제조된 탄산소다 및 중탄산소다의 용해도 특성에 의해서 낮은 온도에서 이송라인에 침전물이 생길 수 있기 때문에 장기 운전측면에서 많은 어려움이 발생할 수 있다. 예를 들면 상기 가성소다 용액 전체중량중 상기 가성소다는 약 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 또는 30 중량% 포함될 수 있다.
상기와 같이, 본 발명의 중탄산소다 제조장치에서, 연소배가스의 처리 흐름은 제1 반응탑(200)에서 제2 반응탑(300)으로, 상기 가성소다 용액 및 연소배가스를 접촉하여 형성된 슬러리의 흐름은 제2 반응탑(300)에서 제1 반응탑(100)으로 서로 교차되는데, 상기 조건으로 공정 진행시, 고순도의 중탄산소다 생산을 위한 최적의 pH를 제어할 수 있다.
도 1을 참조하면, 제2 반응탑(300)의 상부에는, 가스 배출라인(30)이 구비되어, 상기 형성된 제2 처리가스를 외부로 배출시킬 수 있다.
한 구체예에서 상기 제1 반응탑 및 제2 반응탑의 직경은, 상기 유입되는 연소배가스 및 제1 처리가스의 선속도가 각각 약 50m/hr 내지 약 80m/hr가 되도록 형성될 수 있다. 상기 선속도 범위에서, 본 발명의 탄산화 반응 속도 및 공정 효율성이 우수할 수 있다.
한 구체예에서 상기 제1 반응탑 높이(H1) 및 제2 반응탑 높이(H2)는, 각각 약 80 cm 내지 약 200 cm 일 수 있다. 상기 범위에서 본 발명의 탄산화 반응 속도 및 공정 효율성이 우수할 수 있다. 예를 들면 상기 제1 반응탑 높이(H1) 및 제2 반응탑 높이(H2)는, 각각 약 80 cm 내지 약 150 cm 일 수 있다.
한 구체예에서 상기 제1 반응탑 높이(H1) 및 제2 반응탑의 높이(H2)는, 상기 제1 반응탑 및 제2 반응탑 직경의 약 12배 내지 약 15배로 형성될 수 있다. 상기 범위에서 본 발명의 탄산화 반응 속도 및 공정 효율성이 우수할 수 있다.
한 구체예에서, 제1 반응탑(200) 및 제2 반응탑(300)은, 온도 측정부, pH 측정부 및 전도도 측정부 등이 더 포함되어, 운전 중 다양한 조건변화 분석을 실시할 수 있다.
한 구체예에서 제1 반응탑(200) 및 제2 반응탑(300)에는, 상기 제1 처리가스 및 제2 처리가스의 액적 제거를 위하여 미스트 제거기(230, 330)를 각각 설치함으로써 공정상의 수분 밸런스를 유지할 수 있다.
한 구체예에서 연소배가스 유입라인(10), 제1 가스라인(20) 및 가스 배출라인(30)에는 이산화탄소 측정센서가 각각 구비되어, 반응 공정에 따른 이산화탄소 제거효율(또는 이산화탄소 전환율) 분석을 실시간으로 수행할 수 있다.
한 구체예에서 제1 혼합슬러리(M)는, 제1 반응탑(200)의 하부에 구비된 슬러리 건조부(500)로 이송되어, 중탄산소다를 생성한다. 한 구체예에서 슬러리 건조부(500)는, 상기 이송된 제1 혼합슬러리(M1)를 분리막을 통과하여 분체 및 슬러리 여과액으로 분리하는 분리 수단; 상기 분체를 건조하여 중탄산소다를 생성하는 건조 수단; 및 상기 생성된 중탄산소다를 저장하는 중탄산소다 저장부;를 포함하며, 상기 분리된 슬러리 여과액은 여과액 배출라인을 통해 상기 제1 반응탑 상부로 유입될 수 있다.
한 구체예에서 상기 제1 혼합슬러리의 고형분 입자의 평균 사이즈는 약 20㎛ 이하일 수 있다. 예를 들면 약 0 초과 약 20㎛ 이하일 수 있다. 제1 혼합슬러리(M1)의 고형분 함량은 약 10 중량% 내지 약 20 중량% 일 수 있다. 따라서, 상기 슬러리 건조부에서 제1 혼합슬러리(M1)의 탈수 및 건조를 진행하여, 고형의 중탄산소다를 수득할 수 있다.
상기 분리막 통과시, 상기 제1 슬러리를 진동 에너지를 이용하여 분체 및 슬러리 여과액으로 분리한다. 도 3은 본 발명의 한 구체예에 따른 슬러리 건조부(500)의 분리 수단(510)을 나타낸 것이다. 상기 도 3을 참조하면, 분리 수단(510)은 제1 혼합슬러리가(M1)로부터 분체 및 슬러리 여과액을 분리하는 분리막(502), 분리막(502) 하부에 구비된 진동수단(504), 상기 분리막을 통과한 슬러리 여과액이 배출되는 여과액 배출라인(510), 상기 분리막을 통과한 분체가 저장되는 분체저장부(506)을 포함할 수 있다.
상기 진동 에너지를 적용시, 상기 분리막 자체를 고주파수로 진동하여, 분리하고자 하는 제1 혼합슬러리(M1)내 미세 입자가 막 표면에 부착되어 막 분리 효율성이 저하되는 현상을 방지하여, 처리 효율성이 우수할 수 있다.
본 발명의 진동 막 분리 공정을 통해 슬러리상의 수분을 제거하는 방식은 이후 건조 수단의 운전 및 에너지 효율성 측면에서도 우수한 장점이 있다. 구체적으로 분리막을 통해 상기 제1 혼합슬러리 내 잔류 불순물을 포함한 물이 대부분 제거 되므로 분무 건조 시 날려 보내야 하는 수분량도 해당량만큼 감소하여, 에너지 사용량이 대폭 절감된다.
상기 분체저장부(506)에 저장된 분체는, 건조 수단으로 이송되어 건조될 수 있다. 진동형 분리막 공정을 거친 분체의 함수율은 약 10 중량% 내지 약 20 중량% 일 수 있다. 따라서 건조를 통한 잔존 수분 제거가 필요하다. 예를 들면, 상기 건조 수단은 유동층 건조기를 이용할 수 있다. 한 구체예에서 상기 건조 수단은 상기 분체를 약 40℃ 내지 약 70℃의 공기를 이용하여 건조할 수 있다. 상기 조건에서 건조 효율성이 우수하며, 중탄산소다의 열분해를 방지할 수 있다.
한 구체예에서 상기 제1 반응탑(A1) 하부와 슬러리 건조부(500) 사이에 슬러리 저장부(미도시)를 더 포함할 수 있다. 한 구체예에서 제1 반응탑(200) 하부에는 다이아프램 형태의 슬러리 이송 펌프를 더 포함할 수 있다. 상기 슬러리 이송 펌프를 더 포함시, 상기 슬러리 배출 라인(80) 내부에 슬러리 침전에 따른 막힘 없이 슬러리 건조부(500)로 이송될 수 있다.
연소배가스를
이용한 중탄산소다 제조장치를 이용한 중탄산소다 제조방법
본 발명의 다른 관점은 상기 연소배가스를 이용한 중탄산소다 제조장치를 이용한 중탄산소다 제조방법에 관한 것이다. 상기 중탄산소다 제조방법은 상기 제1 반응탑의 상부에서 공급되는 가성소다 용액 및 하부에서 유입되는 연소배가스가 접촉하여 제1 처리가스 및 제1 슬러리를 생성하는 단계; 및 상기 제1 처리가스가 제1 가스라인을 통해 제2 반응탑의 제1 반응부 하부 및 제2 반응부 하부로 분기하여 유입되어, 상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스가, 제2 반응부 상부에서 유입되는 가성소다 용액과 접촉하여, 제2 처리가스, 제3 처리가스, 제2 슬러리 및 제3 슬러리를 각각 생성하는 단계;를 포함하며, 상기 제1 슬러리 및 상기 연소배가스와 미반응 가성소다 용액은, 상기 제1 반응탑의 하부에 체류하여 제1 혼합슬러리를 형성하며, 상기 제1 혼합슬러리는, 제1 반응탑 하부에 구비된 제1 순환라인을 통해 상기 제1 반응탑 상부로 순환 유입되어 상기 연소배가스와 접촉하며, 상기 제1 혼합슬러리는, 상기 제1 반응탑의 하부에 구비된 슬러리 건조부로 이송되어, 중탄산소다를 생성한다. 상기 중탄산장치는, 전술한 것과 동일하므로 이에 대한 상세한 설명은 생략하도록 한다.
본 발명은 석탄 화력발전소, 시멘트 및 석유화학 공장 등에서 화석연료의 연소로 인해 배출되는 연소 배가스를 활용하여, 상업적으로 활용가치가 매우 높은 중탄산소다를 생산하고 동시에 대표적인 온실가스인 이산화탄소를 저감할 수 있다.
본 발명에 따라 제조된 중탄산소다는 비누, 세제, 식품첨가제, 배가스 정제 등의 다양한 산업분야에서 활용이 가능한 물질로서 부가가치가 높고 활용성이 우수할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예
및
비교예
실시예
중탄산소다 제조: 하기 도 1과 같은 중탄산소다 제조장치를 이용한 중탄산소다를 제조하였다. 제1 반응탑의 높이(H1) 및 제2 반응탑의 높이(H2)는 각각 150cm이었으며, 제1 반응탑(200)에서 내부가 비정형 충전물을 포함하는 제1 충전물질(210)로 충전된 제1 반응탑(200)의 상부에서 공급되는 가성소다 용액(가성소다 15 중량% 포함, 분당 45ml의 유속으로 유입)과, 가스 냉각부(100)를 통해 냉각되어, 연소배가스 유입라인(10)을 통해 25liter/min의 유속으로 제1 반응탑(200) 하부에서 유입되며, 이산화탄소가 14~15 부피% 포함된 연소배가스를 접촉하여 제1 처리가스 및 제1 슬러리를 생성하였다.
그 다음, 상기 제1 처리가스를 제1 가스라인(20)을 통해, 제2 반응탑(300)의 제1 반응부(A1) 하부 및 상기 제1 반응부(A1) 및 제2 반응부(A2) 사이에 구비된 가스분산부(320)의 가스유입구(321)로 유입하여, 상기 가스분산부의 내주면에 형성된 복수 개의 홀(322)을 통해 상기 제2 반응부 하부로 유입하였다.
이때 상기 분기되는 제1 처리가스는, 제1 반응부 하부로 50 부피%, 가스분산부를 통해 제2 반응부로 50 부피%가 유입되었다.
상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스와, 제2 반응부 상부에서 유입되는 가성소다 용액(가성소다 15 중량% 포함, 분당 45ml의 유속으로 유입)과 접촉하여, 제2 처리가스, 제3 처리가스, 제2 슬러리 및 제3 슬러리를 각각 생성하였다.
상기 제1 슬러리 및 상기 연소배가스와 미반응 가성소다 용액은, 상기 제1 반응탑의 하부에 체류하여 제1 혼합슬러리를 형성하였다. 상기 제1 혼합슬러리의 일부는, 제1 반응탑 하부에 구비된 제1 순환라인을 통해 상기 제1 반응탑 상부로 순환 유입되어 상기 연소배가스와 접촉하였다.
또한, 제2 반응탑(300)에서 상기 제2 슬러리, 제3 슬러리 및 상기 제1 처리가스와 미반응 가성소다 용액은, 상기 제1 반응부(A1) 하부에 체류하여 제2 혼합슬러리를 형성하고, 상기 제2 혼합슬러리는 상기 제1 반응부(A1) 하부에 구비된 제2 순환라인(50)을 통해 상기 제1 반응부 상부로 순환 유입되어, 상기 제1 처리가스와 접촉하였다. 또한, 상기 제2 혼합슬러리의 일부는 상기 제1 반응부(A1) 하부에 구비된 제1 이송라인(60)을 통해 상기 제1 반응탑(200)의 상부로 유입되어, 상기 연소배가스와 접촉하였다.
이때, 순환 유입되는 제1 및 제2 혼합슬러리의 유량은 각각 50 liter/kg·mol CO2 조건으로 실시하였다.
상기 제1 혼합슬러리는, 슬러리 배출라인(80)을 통해 상기 제1 반응탑의 하부에 구비된 슬러리 건조부로 이송되었다. 상기 제1 혼합슬러리는 분리 수단으로 이송되어, 분리막을 통과하여 분체 및 슬러리 여과액으로 분리하였다. 상기 분리막 통과시, 상기 제1 혼합슬러리를 진동 에너지를 이용하여 분체 및 슬러리 여과액으로 분리하였으며, 상기 분체는 건조 수단으로 이송되어 40℃의 온도로 건조하여 중탄산소다를 생성하였고, 상기 생성된 중탄산소다는 중탄산소다 저장부로 이송되어 저장하였다. 상기 분리된 슬러리 여과액은 여과액 배출라인을 통해 상기 제1 반응탑 상부로 유입하였다.
실시예
2
상기 제2 반응탑의 상부(제2 반응부 상부)에 유입되는 가성소다 용액의 농도를 20 중량%로 적용하고, 분당 투입량을 30 ml로 조절한 것을 제외하고 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예
3
상기 제2 반응탑의 상부(제2 반응부 상부)에 유입되는 가성소다 용액의 분당 투입량을 30 ml로 조절한 것을 제외하고 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예
4
상기 제1 반응탑 및 제2 반응탑의 높이를 200cm로 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예
1
제1 처리가스를 분기하지 않고. 제2 반응탑의 제1 반응부 하부에 투입한 것을 제외하고 상기 실시예 1과 동일한 방법으로 중탄산소다를 제조하였다.
비교예
2
제1 처리가스를 분기하지 않고. 제2 반응탑의 제2 반응부 하부에 투입한 것을 제외하고 상기 실시예 1과 동일한 방법으로 중탄산소다를 제조하였다.
상기 실시예 1~4에 대하여, 3시간 동안 연속 운전한 운전결과를 표 1에 나타내었다.
상기 표 1의 결과를 참조하면, 실시예 1의 경우 이산화탄소 포집율(전환율)이 90% 이상 일정하게 유지가 되었으며 이를 통해서 얻어진 분체의 성분 분석결과(XRD, X-ray Diffraction) 순도는 약 98% 수준으로 시판중인 제품의 순도와 큰 차이가 없음을 알 수 있었다.
다음으로 실시예 2 및 실시예 3은 반응기의 높이는 동일하게 하고 가성소다의 투입량 혹은 농도를 바꾸어서 실험한 결과이다. 운전 결과 이산화탄소 평균 포집율은 90% 이상으로 매우 양호하나 2시간 이상 운전시 라인 상에 침전물이 발생되어 자주 막히는 현상이 발생되었다.
또한, 상기 실시예 1 및 비교예 1~2에 대하여, 3시간 동안 연속 운전한 운전결과를 표 1에 나타내었다. 이와 함께 상기 운전결과의 신뢰성을 확보하기 위하여 기 확보된 공정모사 툴(gPROMS, PSE사)을 활용하여 실시예 1 및 비교예 1~2를 각각 모사할 수 있는 탄산화 반응모델을 구성한 후 연속운전과 동일한 조건하에서 이산화탄소 전환율을 분석하였으며, 연속운전 테스트와 비교하여 분석한 결과를 표 2에 제시하였다.
상기 표 2를 참조하면, 비교예 1 및 비교예 2의 경우에는 실시예 1에 비하여 이산화탄소 평균 포집율(전환율)이 낮은 것으로 분석되었다. 이는 본 발명의 상세한 설명에서 언급된 바와 같이 실시예 1의 경우 상대적으로 pH가 높은 영역(제3 슬러리의 pH 범위: 11~12)에서 운전되는 제2 반응탑의 제2 반응부에 제1 반응탑에서 배출되는 배가스의 상당부분을 투입하여 짧은 체류시간 하에서 탄산화 반응이 유도되고, 제2 반응부 보다 pH가 다소 낮은 영역에서 운전되는 제1 반응부(제2 슬러리 pH 범위: 10~11)에서는 제1 반응탑 이후 분기된 제1 처리가스가 2차 반응기 제1 반응부에서 1차 반응한 후, 제2 반응부에서 다시 2차로 반응함으로써 비교예 1~2에 비해 이산화탄소 전환율이 향상된 것으로 판단된다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.
Claims (14)
- 상부에서 공급되는 가성소다 용액 및 하부에서 유입되는 연소배가스가 접촉하여 제1 처리가스 및 제1 슬러리를 생성하는 제1 반응탑; 및하부에 형성되는 제1 반응부, 및 상기 제1 반응부의 상부에 형성되어 제1 반응부와 연통하는 제2 반응부를 포함하며, 상기 제1 처리가스가 제1 가스라인을 통해 상기 제1 반응부 하부 및 제2 반응부 하부로 분기하여 유입되고, 상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스는, 제2 반응부 상부에서 유입되는 가성소다 용액과 각각 접촉하는 제2 반응탑;을 포함하며,상기 제1 슬러리 및 미반응 가성소다 용액은, 상기 제1 반응탑의 하부에 체류하여 제1 혼합슬러리를 형성하며,상기 제1 혼합슬러리는, 상기 제1 반응탑의 하부에 구비된 슬러리 건조부로 이송되어, 중탄산소다를 생성하는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항에 있어서, 상기 제1 혼합슬러리의 일부는, 제1 순환라인을 통해 상기 제1 반응탑 상부로 순환 유입되는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항에 있어서, 상기 제2 반응탑은, 상기 제1 반응부와 상기 제2 반응부 사이에 가스분산부가 구비되며,상기 가스분산부는 내주면에 복수 개의 홀이 형성되고,상기 제1 처리가스는 상기 복수 개의 홀을 통해 상기 제2 반응부 하부로 유입하는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항에 있어서, 상기 제1 반응탑 하부와 슬러리 건조부 사이에 슬러리 저장부를 더 포함하는 것을 특징으로 하는 중탄산소다 제조장치.
- 제1항에 있어서, 상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스는, 제2 반응부 상부에서 유입되는 가성소다 용액과 각각 접촉하여 제2 처리가스, 제2 슬러리 및 제3 슬러리를 생성하며,상기 제2 슬러리, 제3 슬러리 및 미반응 가성소다 용액은, 상기 제1 반응부 하부에 체류하여 제2 혼합슬러리를 형성하고,상기 제2 혼합슬러리의 일부는 상기 제1 반응부 하부에 구비된 제2 순환라인을 통해 상기 제1 반응부 상부로 순환 유입되어, 상기 제1 처리가스와 접촉하는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제5항에 있어서, 상기 제2 혼합슬러리의 일부는 상기 제1 반응부 하부에 구비된 제1 이송라인을 통해 상기 제1 반응탑의 상부로 유입되어, 상기 연소배가스와 접촉하는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항에 있어서, 상기 제1 반응탑 하부에 생성되는 제1 슬러리의 pH는 약 8.5 내지 약 9.0인 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제5항에 있어서, 상기 제1 반응부에서 생성되는 제2 슬러리의 pH는 약 10 내지 약 11이며,상기 제2 반응부에서 생성되는 제3 슬러리의 pH는 약 11 내지 약 12인 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항에 있어서, 상기 제1 반응탑 및 제2 반응탑의 직경은, 상기 유입되는 연소배가스 및 제1 처리가스의 선속도가 각각 약 50m/hr 내지 약 80m/hr가 되도록 형성되는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항에 있어서, 상기 제1 반응탑 높이(H1) 및 제2 반응탑 높이(H2)는, 각각 약 80 cm 내지 약 200 cm인 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항에 있어서, 상기 제1 반응탑 높이(H1) 및 제2 반응탑의 높이(H2)는, 상기 제1 반응탑 및 제2 반응탑 직경의 약 12배 내지 약 15배로 형성되는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항에 있어서, 상기 슬러리 건조부는, 상기 이송된 제1 혼합슬러리를 분리막을 통과하여 분체 및 슬러리 여과액으로 분리하는 분리 수단;상기 분체를 건조하여 중탄산소다를 생성하는 건조 수단; 및상기 생성된 중탄산소다를 저장하는 중탄산소다 저장부;를 포함하며,상기 분리막 통과시, 상기 제1 혼합슬러리를 진동 에너지를 이용하여 분체 및 슬러리 여과액으로 분리하며,상기 분리된 슬러리 여과액은 상기 제1 반응탑 상부로 유입되는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제11항에 있어서, 상기 건조 수단은 상기 분체를 약 40℃ 내지 약 70℃로 건조하는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조장치.
- 제1항의 중탄산소다 제조장치를 이용한 중탄산소다 제조방법이며,상기 제1 반응탑의 상부에서 공급되는 가성소다 용액 및 하부에서 유입되는 연소배가스가 접촉하여 제1 처리가스 및 제1 슬러리를 생성하는 단계; 및상기 제1 처리가스가 제1 가스라인을 통해 제2 반응탑의 제1 반응부 하부 및 제2 반응부 하부로 분기하여 유입되어, 상기 제1 반응부 하부 및 제2 반응부 하부로 유입된 제1 처리가스가, 제2 반응부 상부에서 유입되는 가성소다 용액과 접촉하는 단계;를 포함하며,상기 제1 슬러리 및 미반응 가성소다 용액은, 상기 제1 반응탑의 하부에 체류하여 제1 혼합슬러리를 형성하며,상기 제1 혼합슬러리는, 상기 제1 반응탑의 하부에 구비된 슬러리 건조부로 이송되어, 중탄산소다를 생성하는 것을 특징으로 하는 연소배가스를 이용한 중탄산소다 제조방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880002761.7A CN109588048B (zh) | 2017-07-28 | 2018-01-04 | 使用燃烧废气的碳酸氢钠生产装置和使用该装置的碳酸氢钠的生产方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0096182 | 2017-07-28 | ||
KR1020170096182A KR101951617B1 (ko) | 2017-07-28 | 2017-07-28 | 연소배가스를 이용한 중탄산소다 제조장치 및 이를 이용한 중탄산소다 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019022319A1 true WO2019022319A1 (ko) | 2019-01-31 |
Family
ID=65040184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/000188 WO2019022319A1 (ko) | 2017-07-28 | 2018-01-04 | 연소배가스를 이용한 중탄산소다 제조장치 및 이를 이용한 중탄산소다 제조방법 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101951617B1 (ko) |
CN (1) | CN109588048B (ko) |
WO (1) | WO2019022319A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220116407A (ko) * | 2020-09-22 | 2022-08-23 | 한국전력공사 | 배가스를 이용한 고순도 중탄산나트륨 제조장치 및 제조방법 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102019972B1 (ko) * | 2019-03-08 | 2019-09-10 | 주식회사 성광이엔에프 | 배가스의 co2를 이용한 중탄산나트륨 슬러리 제조장치 및 이를 이용한 배가스 처리 장치 및 방법 |
CN111530385A (zh) * | 2020-05-09 | 2020-08-14 | 李宝换 | 一种三氯异氰尿酸生产用脱除装置 |
CN112758959A (zh) * | 2021-03-12 | 2021-05-07 | 自贡鸿鹤制药有限责任公司 | 一种碳酸氢钠制备方法 |
KR20240080520A (ko) | 2022-11-30 | 2024-06-07 | 롯데케미칼 주식회사 | 배가스를 이용한 탄산수소나트륨의 제조방법 |
KR102668704B1 (ko) | 2023-12-05 | 2024-05-23 | (주)대길엔지니어링 | 바이오가스 고질화를 위한 탄산수소나트륨 제조장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0791053B2 (ja) * | 1988-02-16 | 1995-10-04 | 旭硝子株式会社 | 炭酸水素ナトリウムの製造方法 |
JP2012206872A (ja) * | 2011-03-29 | 2012-10-25 | Lion Corp | 炭酸水素ナトリウムの製造方法および製造システム |
KR20160035140A (ko) * | 2014-09-22 | 2016-03-31 | 한국전력공사 | 이산화탄소를 이용한 무기자원 제조 장치 |
KR101709865B1 (ko) * | 2015-09-23 | 2017-02-23 | 한국전력공사 | 고효율 중탄산나트륨 제조방법 |
KR20170075252A (ko) * | 2015-12-23 | 2017-07-03 | 주식회사 포스코 | 중조 및 탄산칼슘 제조 설비 및 그 제조방법 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2335804B1 (en) * | 2009-12-04 | 2014-09-10 | Alstom Technology Ltd | A method and a device for cleaning a carbon dioxide rich flue gas |
US20150343369A1 (en) * | 2013-02-08 | 2015-12-03 | Toyo Engineering Corporation | Process for recovering carbon dioxide from construction exhaust gas |
KR101550614B1 (ko) * | 2014-02-11 | 2015-09-08 | 현대자동차 주식회사 | 배기가스 정화용 촉매 담체, 이의 제조 방법, 및 이를 포함하는 배기가스 정화용 촉매 |
KR101571250B1 (ko) * | 2014-07-21 | 2015-11-23 | 한국전력공사 | 중탄산나트륨 제조 장치 및 그 제조 방법 |
JP5999228B1 (ja) * | 2015-07-01 | 2016-09-28 | 富士電機株式会社 | 排ガス処理装置 |
KR101709859B1 (ko) * | 2015-08-27 | 2017-02-23 | 한국전력공사 | 고순도 중탄산나트륨의 제조 방법 |
-
2017
- 2017-07-28 KR KR1020170096182A patent/KR101951617B1/ko active Active
-
2018
- 2018-01-04 CN CN201880002761.7A patent/CN109588048B/zh active Active
- 2018-01-04 WO PCT/KR2018/000188 patent/WO2019022319A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0791053B2 (ja) * | 1988-02-16 | 1995-10-04 | 旭硝子株式会社 | 炭酸水素ナトリウムの製造方法 |
JP2012206872A (ja) * | 2011-03-29 | 2012-10-25 | Lion Corp | 炭酸水素ナトリウムの製造方法および製造システム |
KR20160035140A (ko) * | 2014-09-22 | 2016-03-31 | 한국전력공사 | 이산화탄소를 이용한 무기자원 제조 장치 |
KR101709865B1 (ko) * | 2015-09-23 | 2017-02-23 | 한국전력공사 | 고효율 중탄산나트륨 제조방법 |
KR20170075252A (ko) * | 2015-12-23 | 2017-07-03 | 주식회사 포스코 | 중조 및 탄산칼슘 제조 설비 및 그 제조방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220116407A (ko) * | 2020-09-22 | 2022-08-23 | 한국전력공사 | 배가스를 이용한 고순도 중탄산나트륨 제조장치 및 제조방법 |
KR102513143B1 (ko) | 2020-09-22 | 2023-03-24 | 한국전력공사 | 배가스를 이용한 고순도 중탄산나트륨 제조장치 및 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20190014209A (ko) | 2019-02-12 |
KR101951617B1 (ko) | 2019-02-26 |
CN109588048B (zh) | 2021-10-12 |
CN109588048A (zh) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019022319A1 (ko) | 연소배가스를 이용한 중탄산소다 제조장치 및 이를 이용한 중탄산소다 제조방법 | |
CN100351598C (zh) | 冷却热气体的装置和方法 | |
KR101709865B1 (ko) | 고효율 중탄산나트륨 제조방법 | |
WO2011081276A1 (ko) | 용철 제조 장치 | |
WO2019190163A1 (ko) | 해수의 간접탄산화를 이용한 고순도 배터라이트형 및 칼사이트형 탄산칼슘의 제조방법 | |
HU210828B (en) | Method and apparatus for removing gaseous sulfur dioxide compounds from flu-gases from surface burning sulfur containing fuels | |
WO2023234516A1 (ko) | 석유 코크스 슬러리 제조장치 | |
CA2740617A1 (en) | An apparatus and process for hydrogenation of a silicon tetrahalide and silicon to the trihalosilane | |
WO2023234462A1 (ko) | 황산나트륨을 이용한 중조 및 석고의 제조방법 | |
WO2021221281A1 (ko) | 도심발전소 적용 이산화탄소 컴팩트 분리막 및 탄소 자원화 하이브리드 시스템 | |
WO2024019449A1 (ko) | 배기가스로부터 이산화탄소 제거시스템 | |
US2031554A (en) | Recovery of the gases and dust evolved in the electrolytic manufacture of aluminium | |
JP2010150131A (ja) | 多結晶シリコン製造方法及び製造装置 | |
KR20190083095A (ko) | 중탄산소다 제조장치 및 중탄산소다 제조방법 | |
WO2023140440A1 (ko) | 시멘트 제조 설비용 이산화탄소 포집 및 탄소자원화 시스템 | |
WO2025033851A1 (ko) | 중조 재생 및 암모니아 회수 통합 시스템 | |
WO2017057942A1 (ko) | 스팀 플라즈마를 이용한 일산화탄소 제조장치 및 제조방법 | |
KR102205282B1 (ko) | 중탄산소다 제조장치 및 이의 제조방법 | |
WO2018052220A1 (ko) | 중조 및 탄산칼슘 제조방법 및 제조설비 | |
WO2014104712A1 (ko) | 기류 건조기를 포함하는 탄소 연료의 가스화 복합 설비 | |
AU592915B2 (en) | Flyslag treatment | |
AU4003089A (en) | Process and device for the purification of raw gas from solids gasification reactors | |
FI69644B (fi) | Foerfarande och anordning foer utvinning av zink ur en gas sominnehaoller zinkaonga | |
WO2023210873A1 (ko) | 석탄가스화 복합발전용 이산화탄소 및 황산화물 포집, 및 탄소자원화 시스템 | |
WO2023210874A1 (ko) | 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18838401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18838401 Country of ref document: EP Kind code of ref document: A1 |