WO2019022248A1 - Information processing device, information processing method, and program - Google Patents
Information processing device, information processing method, and program Download PDFInfo
- Publication number
- WO2019022248A1 WO2019022248A1 PCT/JP2018/028332 JP2018028332W WO2019022248A1 WO 2019022248 A1 WO2019022248 A1 WO 2019022248A1 JP 2018028332 W JP2018028332 W JP 2018028332W WO 2019022248 A1 WO2019022248 A1 WO 2019022248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meal
- data
- blood glucose
- glucose level
- information
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims description 35
- 238000003672 processing method Methods 0.000 title claims description 6
- 239000008280 blood Substances 0.000 claims abstract description 221
- 210000004369 blood Anatomy 0.000 claims abstract description 221
- 235000012054 meals Nutrition 0.000 claims abstract description 192
- 238000000034 method Methods 0.000 claims abstract description 44
- 230000008859 change Effects 0.000 claims abstract description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 143
- 239000008103 glucose Substances 0.000 claims description 143
- 230000000694 effects Effects 0.000 claims description 45
- 230000002123 temporal effect Effects 0.000 claims description 18
- 238000004458 analytical method Methods 0.000 claims description 17
- 235000005911 diet Nutrition 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 13
- 238000007405 data analysis Methods 0.000 claims description 12
- 230000037213 diet Effects 0.000 claims description 10
- 238000013523 data management Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 description 36
- 238000007726 management method Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 15
- 235000021152 breakfast Nutrition 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 230000036541 health Effects 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- 235000013305 food Nutrition 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000035764 nutrition Effects 0.000 description 7
- 235000016709 nutrition Nutrition 0.000 description 7
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 235000013405 beer Nutrition 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 235000013322 soy milk Nutrition 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000003287 bathing Methods 0.000 description 3
- 230000000378 dietary effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 235000015927 pasta Nutrition 0.000 description 3
- 244000294411 Mirabilis expansa Species 0.000 description 2
- 235000015429 Mirabilis expansa Nutrition 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000003796 beauty Effects 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 235000013536 miso Nutrition 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- XDIYNQZUNSSENW-UUBOPVPUSA-N (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O XDIYNQZUNSSENW-UUBOPVPUSA-N 0.000 description 1
- 241000252073 Anguilliformes Species 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/22—Social work or social welfare, e.g. community support activities or counselling services
Definitions
- the present invention relates to an information processing apparatus, an information processing method, and a program.
- CGM Continuous Glucose Monitoring / sustained blood glucose measurement
- the image stored in the storage area is acquired, the meal portion included in the acquired image is specified, and the color frequency distribution of the plurality of pixels is determined based on the value of each of the plurality of pixels included in the specified meal portion.
- the number of color types included in the meal part is calculated, and based on the calculated number of color types, the meal balance numerical value is calculated, and the calculated meal balance numerical value is output
- an analysis device see Patent Document 1.
- Non-Patent Document 1 and Patent Document 1 it is not possible to grasp the relationship between the specific content of the meal consumed by the subject of the blood glucose level and the blood glucose level.
- the present invention is made in view of such a situation, and an object of the present invention is to provide a method for easily grasping the relation between the contents of a meal ingested by a subject of blood glucose level and the blood glucose level.
- an information processing apparatus is: Blood glucose level data acquisition means for acquiring blood glucose level data, which is temporal information of blood glucose level, A meal data acquisition unit that acquires meal data that is temporally information on the meal of the subject of the blood glucose level; A first graph showing temporal changes in blood glucose level of the subject based on the blood glucose level data acquired by the blood glucose level data acquiring unit and the meal data acquired by the meal data acquiring unit A graph generation unit that generates a second graph in which information indicating the contents of the subject's meal is displayed in a superimposed manner; Equipped with
- the meal data includes at least meal image data, which is data of an image obtained by capturing the content of the meal of the subject, and information on date and time when the image is captured.
- the food image data may be analyzed to further include detailed information extraction means for extracting detailed information including at least information on a used food material and a sugar mass, for the food consumed by the subject.
- Activity data acquisition means for acquiring activity data, which is temporal information on the activity of the subject;
- Data analysis means for analyzing the influence of the contents of the meal of the subject and the contents of the activity on the change of the blood glucose level based on the blood glucose level data, the meal data and the activity data;
- alert information is generated including at least one of notes on the diet the subject is about to ingest, and notes on the activity of the subject.
- An alert management unit that executes control to output the generated alert information to an information processing terminal operated by the subject; Can further be provided.
- An information processing method and program according to an aspect of the present invention are processing methods and programs corresponding to the above-described information processing apparatus according to the aspect of the present invention.
- the present invention it is possible to grasp the relationship between the content of a meal ingested by the subject having a blood glucose level and the blood glucose level. As a result, not only the subject of the blood glucose level but also the doctor, a registered dietitian, etc. are not satisfied with the subject of the blood glucose level based on the relationship between the content of the meal consumed by the subject of the blood glucose level and the blood glucose level. It is possible to accurately give instructions for diseases and beauty.
- FIG. 5 is a functional block diagram showing an example of a functional configuration for realizing a graph generation process among the functional configurations of the server of FIG. 2 in the information processing system of FIG. 1.
- FIG. 1 is a block diagram of an information processing system including a server 1 which is an embodiment of the information processing apparatus of the present invention.
- the information processing system shown in FIG. 1 is configured by mutually connecting a server 1, a user terminal 2, a doctor terminal 4, and a dietitian terminal 5 via a network N such as the Internet.
- a blood glucose level measuring device 3 is connected to the user terminal 2.
- the user U is a person who operates the user terminal 2 and is a person who continuously measures his / her blood glucose level for 24 hours using the blood glucose level measuring device 3 connected to the user terminal 2.
- the user U is also a person who uses the imaging function of the user terminal 2 to continuously image the contents of his own meal.
- the doctor D is a person who operates the doctor terminal 4 and is a person who performs health management instruction of the user U.
- the management dietitian M is a person who operates the dietitian terminal 5 and is a person who performs nutrition management instruction of the user U.
- the server 1 is an information processing apparatus that executes various processes in order to manage the operation of the user terminal 2.
- the server 1 includes temporal information on the blood sugar level of the user U (hereinafter referred to as “blood sugar level data”) and temporal information on contents of the meal of the user U (hereinafter referred to as “meal data”).
- a graph hereinafter referred to as “blood sugar level / meal graph” indicating the relation between the contents of each meal of the user U and the blood sugar level of the user U is generated.
- the meal data in the present embodiment includes at least data of an image obtained by capturing the content of each meal of the user U (hereinafter referred to as "meal image data”) and information on the date and time when the image is captured. .
- the server 1 analyzes the meal image data included in the meal data to extract detailed information such as ingredients and nutrients contained in the imaged food, and the meal data is also included in the extracted detailed information.
- the blood sugar level / meal graph specifically displays information indicating the contents of the food data in a superimposed manner based on the blood sugar level transition graph showing the time-lapse numerical value of the user U's blood sugar level.
- the food consumed by U and the change in blood glucose level of user U are visualized. For this reason, at first glance at the blood glucose level / meal graph, it is possible to easily grasp the influence of the contents of the meal consumed by the user U on the blood glucose level of the user U.
- the blood glucose level is the concentration of glucose (glucose) in the blood of the user U.
- glucose glucose
- the fasting blood glucose level is approximately 80 to 100 mg / dL, but the blood glucose level after eating a meal shows a slightly higher value. That is, when the user U eats, carbohydrates are absorbed and become glucose into the blood. For this reason, the blood glucose level after having a meal is higher than the blood glucose level before having a meal. If the user U's fasting blood glucose level in the early morning is 126 mg / dL or more, or the blood glucose level after a meal is 200 mg / dL or more, it is said that the suspicion of diabetes is heavy. Thus, the blood sugar level basically increases in value as the user U consumes a meal.
- the degree of increase in the blood glucose level of the user U is different depending on various factors such as the constitution of the user U, the content of the meal, the timing of the meal, and the type of behavior after eating.
- the blood sugar level is large only when “white rice” is ingested. It may rise.
- the user U ingests the "gyudon Nashimori" of A beef bowl storehouse and the "gyudon noodles bowl” of B beef bowl storehouse at the same timing, there is a large difference in the rise of the blood glucose level. May occur.
- the doctor D and the registered dietitian M perform appropriate health guidance and nutrition guidance for the user U simply by grasping general information such as the content of nutrients such as carbohydrates contained in the user U's diet. I can not do it. That is, in order for the doctor D and the registered dietitian M to give appropriate health and nutrition guidance to the user U, various factors such as the contents of the user U's meal and the timing of the meal must be sufficiently considered. . In this regard, the blood glucose level / meal graph generated by the server 1 of FIG. 1 "visualizes" the contents of the user U's meal and the timing of the meal.
- the doctor D or the registered dietitian M can easily grasp the relationship between the contents of the meal consumed by the user U and the timing of the meal and the change in the blood glucose level simply by looking at the blood glucose level / meal graph. it can.
- the doctor D or the registered dietitian M can give the user U appropriate health instruction only by asking the user U about the past activity contents of the user U while looking at the blood glucose level / meal graph. it can.
- the user U who has exercised after eating has a constitution in which the increase in blood sugar level is smaller than exercise before eating. There is.
- the doctor D can provide the user U with health guidance to exercise as much as possible after eating.
- the blood sugar level tends to be greatly increased only when the user U ingests "white rice” out of "udon", "pasta” and "white rice” at first glance at the blood sugar level / meal graph. It may be possible to grasp.
- the registered dietitian M can provide the user U with nutrition instruction to the effect that the carbohydrates should be taken from noodles such as udon and pasta as much as possible.
- the user terminal 2 is an information processing terminal operated by the user U, and includes, for example, a smartphone. Based on the operation of the user U, the user terminal 2 images the contents of the meal of the user U with a camera function provided by the user terminal 2, and transmits meal image data obtained by the imaging to the server 1 as meal data.
- the blood glucose level measuring device 3 is an electronic device for the user U to continuously measure his or her blood glucose level.
- the blood glucose level measuring device 3 and the user terminal 2 are connected using near field communication technology such as Bluetooth (registered trademark) or wire communication such as a cable.
- the blood glucose level measuring device 3 continuously measures the blood glucose level of the user U for 24 hours based on the operation of the user U, and transmits the blood glucose level data as the measurement result to the user terminal 2.
- the blood sugar level data includes a user ID uniquely identifying the user U, a user name, a time when the blood sugar level is measured, and a specific numerical value indicating the blood sugar level.
- the specific example of blood glucose level data is later mentioned with reference to FIG. 4A.
- the doctor terminal 4 is an information processing apparatus operated by the doctor D, and is configured of, for example, a personal computer.
- the doctor terminal 4 acquires the blood glucose level / meal graph transmitted from the server 1 based on the operation of the doctor D.
- the dietitian terminal 5 is an information processing device operated by the dietitian M, and is configured of, for example, a personal computer.
- the dietitian terminal 5 acquires the blood sugar level / meal graph transmitted from the server 1 based on the operation of the managing dietitian M.
- FIG. 2 is a block diagram showing the hardware configuration of the server 1 in the information processing system of FIG.
- the server 1 includes a central processing unit (CPU) 11, a read only memory (ROM) 12, a random access memory (RAM) 13, a bus 14, an input / output interface 15, a touch operation input unit 16, and a display unit.
- CPU central processing unit
- ROM read only memory
- RAM random access memory
- a storage unit 19 a storage unit 19, a first communication unit 20, a second communication unit 21, a drive 22, and a removable medium 30 are provided.
- the CPU 11 executes various processes in accordance with a program stored in the ROM 12 or a program loaded from the storage unit 19 into the RAM 13.
- the RAM 13 appropriately stores information necessary for the CPU 11 to execute various processes.
- the CPU 11, the ROM 12 and the RAM 13 are connected to one another via a bus 14.
- An input / output interface 15 is also connected to the bus 14.
- the touch operation input unit 16, the display unit 17, the input unit 18, the storage unit 19, the first communication unit 20, the second communication unit 21, and the drive 22 are connected to the input / output interface 15.
- the touch operation input unit 16 is formed of, for example, a capacitive or resistive (pressure-sensitive) position input sensor stacked on the display unit 17, and detects coordinates of a position at which a touch operation is performed.
- the display unit 17 is configured of a display such as liquid crystal and displays various images such as an image related to program preparation.
- the touch operation input unit 16 and the display unit 17 constitute a touch panel.
- the input unit 18 includes various hardware and the like, and inputs various information in accordance with a user's instruction operation.
- the storage unit 19 is configured by a hard disk, a dynamic random access memory (DRAM), or the like, and stores various information.
- the first communication unit 20 executes control for performing near field wireless communication in a method according to the Bluetooth (registered trademark) standard. Specifically, for example, the blood glucose level data measured by the blood glucose level measuring device 3 is received by near field communication of a method according to the standard of Bluetooth (registered trademark).
- the second communication unit 21 controls communication performed with another device (for example, the user terminal 2, the doctor terminal 4, the dietitian terminal 5) separately from the first communication unit 20 independently of the first communication unit 20. .
- the drive 22 is provided as needed.
- the removable medium 30 made of a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is appropriately attached to the drive 22.
- the program read from the removable media 30 by the drive 22 is installed in the storage unit 19 as necessary.
- the removable media 30 can also store various information stored in the storage unit 19 in the same manner as the storage unit 19.
- the user terminal 2, the doctor terminal 4 and the dietitian terminal 5 also have basically the same hardware configuration as the hardware configuration shown in FIG. .
- FIG. 3 shows an example of a functional configuration for realizing graph generation processing, graph display control processing, and alert output processing among the functional configurations of the server 1 of FIG. 2 in the information processing system of FIG. It is a functional block diagram.
- the “graph generation process” refers to a series of processes until the user U's blood glucose level / meal graph is generated among the processes executed by the server 1.
- the “graph display control process” causes the user terminal 2, the doctor terminal 4, and the dietitian terminal 5 to display the blood sugar level / meal graph of the user U generated in the graph generation process among the processes executed by the server 1.
- the “alert output process” is a series of processes for causing the user terminal 2 to output an alert at a predetermined timing based on various data serving as the basis of the blood sugar level / meal graph of the user U among the processes executed by the server 1.
- the blood glucose level data acquisition unit 101 As shown in FIG. 3, in the CPU 11 (FIG. 2) of the server 1, when the graph generation processing is executed, the blood glucose level data acquisition unit 101, the meal data management unit 102, and the graph generation unit 103 Function.
- the graph display control process When the graph display control process is executed, the graph display control unit 104 functions.
- the alert output process is executed, the activity data acquisition unit 105, the data analysis unit 106, and the alert management unit 107 function.
- blood glucose level DB401, meal DB402, graph DB403, and activity DB404 are provided in one area
- the blood sugar level data acquisition unit 101 acquires the blood sugar level data transmitted from the user terminal 2.
- the timing at which the blood sugar level data acquisition unit 101 acquires blood sugar level data is not particularly limited.
- the blood sugar level data may be acquired in real time, every s seconds (s is an arbitrary integer value of 1 or more), every m minutes (m is 1)
- the blood sugar level data may be acquired at any timing such as the above arbitrary integer value) and every h hours (h is an arbitrary integer value of 1 or more).
- the blood glucose level data acquired by the blood glucose level data acquisition unit 101 is stored and managed in the blood glucose level DB 401. A specific example of the blood sugar level data will be described later with reference to FIG. 4A.
- the meal data management unit 102 acquires the meal data transmitted from the user terminal 2, analyzes the meal image data included in the meal data, and extracts detailed information.
- the detailed information may include any information on the user U's meal. For example, the name of the dish, the place where the dish is provided or the name of the shop, the food used, and information on nutrition such as the amount of sugar and calories may be included.
- the analysis method of the data of the image by the server 1 is not specifically limited. For example, analysis of image data may be performed using artificial intelligence (AI) which has previously learned detailed information of various dishes. Further, the timing at which the meal data management unit 102 acquires meal data is not particularly limited.
- the meal data may be acquired in real time, or even if the meal data of d days (d is an arbitrary integer value of 1 or more) is acquired collectively Good.
- the detailed information on the meal extracted from the meal data by the meal data management unit 102 is stored in the meal DB 402 and managed.
- the specific example of the detailed information regarding the meal extracted from meal data is later mentioned with reference to FIG. 4B.
- the graph generation unit 103 generates a blood glucose level / meal graph based on the blood glucose level data acquired by the blood glucose level data acquisition unit 101 and the meal data acquired by the meal data management unit 102 and for which detailed information is extracted. . Thereby, the blood glucose level / meal graph generated by the graph generation unit 103 is stored in the graph DB 403 and managed.
- the graph display control unit 104 executes control to display the blood sugar level / meal graph generated by the graph generation unit 103 on the user terminal 2, the doctor terminal 4, and the dietitian terminal 5.
- the user U, the doctor D, and the dietetic dietitian M can easily grasp the relationship between the blood glucose level and the content of the subject's meal of the blood glucose level.
- the activity data acquisition unit 105 acquires temporal information on the activity of the user U as activity data.
- the activity data at least includes the past schedule of the user U. Therefore, by referring to the activity data, it becomes possible to grasp what action the user U has taken in a certain day at a certain time.
- the specific method for acquiring activity data is not particularly limited.
- the schedule of the user U stored and managed by the general schedule management function of the user terminal 2 may be acquired as activity data.
- information input to the user terminal 2 by the user U may be acquired as activity data.
- the activity data acquired by the activity data acquisition unit is stored in the activity DB 404 and managed.
- the data analysis unit 106 analyzes the influence of the contents of the meal of the user U and the contents of the activity on the change of the blood glucose level, based on the blood glucose level data, the diet data, and the activity data.
- the analysis method of various data by the data analysis unit 106 is not particularly limited.
- artificial intelligence (AI) may be used to analyze various data.
- the blood sugar level data, the meal data, and the activity data are accumulated, thereby increasing the credibility as information indicating the characteristic of the user U's constitution. That is, if you take such kind of meal at such a timing, your blood sugar level tends to rise, or if you take such kind of meal at this timing, your blood sugar level does not rise so much , The characteristics of the constitution of the user U are gradually clarified.
- the result of analyzing the blood sugar level data, the meal data, and the activity data of the user U accumulated in the server 1 can be used as effective information for maintaining the health of the user U. That is, the result of analysis by the data analysis unit 106 (hereinafter referred to as “analysis data”) is used as information for supporting health guidance of the user U by the doctor D and nutrition guidance of the user U by the management dietitian M. Can.
- the analysis data is also used when generating alert information to be described later, which is output from the user terminal 2.
- the alert management unit 107 Based on the analysis data, the alert management unit 107 generates alert information including at least notes on the meal that the user U intends to ingest, and notes on the activity of the user U. The alert management unit 107 also executes control to cause the user terminal 2 to output the generated alert information.
- the user U can know in advance a food material that may cause the blood sugar level to rise rapidly and an activity that may cause the blood sugar level to rise rapidly.
- the analysis data includes information that the user U's blood glucose level tends to rise sharply when eating a dish containing soymilk within a predetermined time after getting up.
- the alert management unit 107 executes the following process. That is, the alert management unit 107 generates alert information indicating that soymilk having a tendency to rapidly increase the blood sugar level is included in the breakfast of the user U, and controls the user terminal 2 to output the alert information. Run. By this, the user U can know that soymilk, which tends to raise the blood sugar level rapidly, is included in the breakfast before eating the breakfast.
- the analysis data shows that the probability that the user U takes a bath between 21:00 and 22:00 is 88% and the blood sugar level of the user U drinks beer within a predetermined time after bathing It is assumed that information is included that the information tends to rise sharply.
- the alert management unit 107 has alert information indicating that the beer U tends to rise sharply when drinking beer within a predetermined time after bathing at around 20:30, which is likely to be immediately before the user U takes a bath.
- the generation and control for causing the user terminal 2 to output the alert information are executed. Thereby, the user U can know immediately before bathing that, after taking a bath, drinking beer in a predetermined time tends to rapidly raise the blood sugar level.
- the analysis data not only plays a role in supporting various instruction to the user U by the doctor D and the dietitian M, but also plays a role as a material for generating alert information output from the user terminal 2 .
- FIGS. 4A and 4B are diagrams showing specific examples of various data stored and managed in each of the blood sugar level DB 401, the meal DB and the meal DB 402.
- FIG. 4A and 4B are diagrams showing specific examples of various data stored and managed in each of the blood sugar level DB 401, the meal DB and the meal DB 402.
- FIG. 4A is a diagram showing a specific example of blood glucose level data stored and managed in the blood glucose level DB 401.
- the blood glucose level data includes at least a user ID uniquely identifying the user U, a user name, a date and time when the blood glucose level was measured, and a specific numerical value indicating the blood glucose level.
- it is stored as blood glucose level data that the blood glucose level at “July 1, 2017 16:30” of “user U1” with user ID “01234” is “95 mg / dL”. ing.
- the blood glucose level at the time of "July 1, 2017 16:40" of the user U1 is "97 mg / dL".
- the blood glucose level data is managed over time.
- the details of the blood glucose level of the user U1 at another measurement time are as shown in FIG. 4A.
- FIG. 4B is a diagram showing a specific example of meal data stored and managed in the meal DB 402.
- the meal DB 402 includes temporal information on the meal contents of the user U. That is, the meal data includes a user ID uniquely identifying the user U, the user name, the date and time when the user U started taking the intake, information on the place where the food was provided, the dish name, the meal image data, , Contains information on nutrition contained in the dish. Specifically, for example, “Ochazuke”, which the user U1 ingested at “7:00” on “July 1, 2017” at “home”, has “60.0 g” of carbohydrate and “282 kcal” in calories include.
- “Miso ramen” consumed by user U1 at “1 2:00” on “July 1, 2017” at “ ⁇ ken ” contains 80.0 g of sugar and 625 kcal of calories.
- the details of the other meal data are as shown in FIG. 4B.
- FIG. 5 is a flowchart for explaining the flow of graph generation processing executed by the server 1 of FIG.
- step S1 the blood sugar level data acquisition unit 101 determines whether blood sugar level data has been transmitted from the user terminal 2. Until blood sugar level data is transmitted from the user terminal 2, it is determined as NO in step S1, the process is returned to step S1, and the process of step S1 is repeated. On the other hand, when blood glucose level data is transmitted from the user terminal 2, it is determined as YES in step S1, and the process proceeds to step S2.
- step S2 the meal data management unit 102 determines whether or not meal data has been transmitted from the user terminal 2. Until meal data is transmitted from the user terminal 2, it is determined as NO in step S2, the process is returned to step S2, and the process of step S2 is repeated. On the other hand, when meal data is transmitted from the user terminal 2, it is determined as YES in step S2, and the process proceeds to step S3.
- step S3 the meal data management unit 102 analyzes the meal image data included in the meal data to extract detailed information, and includes the detailed information in the meal data for management.
- step S4 the graph generation unit 103 uses the blood sugar level data acquired in the process of step S1 and the meal data acquired in the process of step S2 and in which the detailed information is extracted from the meal image data in the process of step S3. Based on the blood sugar level / meal graph is generated. This completes the graph generation process.
- FIG. 6 is an image diagram showing an example of a blood glucose level / meal graph generated by the graph generation process executed by the server 1 of FIG. 3.
- the blood glucose level / meal graph BF superimposes information F1 to F3 indicating the contents of the meal data based on the blood glucose level transition graph B showing the time-lapse numerical value of the user U's blood glucose level. It is displayed.
- the blood glucose level / diet graph BF has a horizontal axis as a date and a vertical axis as a blood glucose level (unit: mg / dL) based on a blood glucose level transition graph B, the date and time when the meal was taken and Information F1 to F3 indicating contents are displayed in a superimposed manner.
- the blood glucose level of the user U is approximately 80 to 90 mg / dL from 0 o'clock to 7 o'clock on July 1, 2017. However, it reached about 160 mg / dL at about 8:00 immediately after taking tea pickling at home as breakfast at 7:00 on the same day, and reached about 170 mg / dL which is the peak value in the morning at 9:00.
- the blood sugar level continues to decrease until 12 o'clock, but reaches around 170 mg / dL again at 13 o'clock immediately after consuming miso ramen at a ramen shop " ⁇ ⁇ ken" as lunch at 12 o'clock.
- the blood sugar level continues to decrease until 18 o'clock, but at 19 o'clock immediately after taking a nape at an eels called " ⁇ ⁇ ya" as dinner at 18 o'clock, 180 mg / dL which is the highest value on this day The degree has reached.
- the blood glucose level / diet graph BF can be used as effective information when the doctor D or the registered dietitian M instructs the user U to perform various instructions.
- the doctor D confirms the blood sugar level / meal graph BF shown in FIG. 6, and the blood sugar level of the user U suddenly rises immediately after each of breakfast, lunch, and dinner, and peaks P1 to P3 are obtained. Understand that they are meeting each other. However, while peak P2 after lunch and peak P3 after dinner both arrive about 1 hour after the meal start, only breakfast peak P1 arrives about 2 hours after the meal start . Then, the doctor D confirms what kind of activity was performed after breakfast in the interview with the user U.
- the user U leaves his home at 8 o'clock for work after breakfast, but tells that he is commuting to work on foot for about an hour for health. Then, Doctor D checks the blood sugar level / meal graph again, and the user U's blood sugar level rapidly rises until 8:00, which is one hour after the start of breakfast, and then the inclination of the graph becomes gentle for one more hour. Confirm that peak P1 is reached by rising to time. Thereby, the doctor D estimates that the user U has a tendency to rise in blood sugar level when exercised after a meal, and performs treatment such as health guidance based on this estimation and further detailed examination. It can be taken. As described above, from the blood sugar level / meal graph BF, the doctor D and the dietetic dietitian M can accurately give instructions for the user U for no disease and for beauty.
- step S3 in the flowchart shown in FIG. 5 can be omitted. Even if only the meal image data is displayed on the blood sugar level / meal graph without displaying detailed information, it is possible to grasp the contents of most meals by looking at the meal image data It is.
- the blood glucose level of the user U is continuously measured by the blood glucose level measuring device 3 every 10 minutes for 24 hours, but the timing at which the blood glucose level measuring device 3 measures the blood glucose level of the user U Is not particularly limited.
- the blood sugar level of the user U may be measured at any timing, such as every s seconds, every m minutes, every h hours, etc., as with the timing when the blood sugar level data acquisition unit 101 described above acquires blood sugar level data.
- the users of the blood sugar level / meal graph are the user U, the doctor D, and the management dietitian M, but these users are examples, and those in all positions have blood sugar level / meal It can be a subject of graph use.
- a family of user U, an exclusive trainer of a fitness club to which user U goes, etc. also uses the blood glucose level / meal graph by operating the information processing apparatus similar to the doctor terminal 4 or the dietitian terminal 5 be able to. Thereby, persons in all positions can be involved in the health of the user U.
- each hardware configuration shown in FIG. 2 is merely an example for achieving the object of the present invention, and is not particularly limited.
- the functional block diagram shown in FIG. 3 is merely an example and is not particularly limited. That is, it is sufficient if the information processing system is equipped with a function capable of executing the above-described series of processes as a whole, and what functional block is used to realize this function is not particularly limited to the example of FIG. . Also, one functional block may be configured as a single piece of hardware or in combination with a single piece of software.
- a program constituting the software is installed on a computer or the like from a network or a recording medium.
- the computer may be a computer incorporated in dedicated hardware.
- the computer may be a computer capable of executing various functions by installing various programs, such as a general-purpose smartphone or personal computer other than a server.
- a recording medium including such a program is distributed not only by a removable medium separately from the apparatus main body to provide the program to each user, but is configured not only by removable media but also by each user while being incorporated in the apparatus main body. It comprises the provided recording medium and the like.
- step S1 in the step of describing the program to be recorded on the recording medium, the processing performed chronologically according to the order is, of course, parallel or individually not necessarily necessarily chronologically processing. It also includes the processing to be performed.
- meal data is transmitted after determination of whether blood sugar level data has been transmitted (determination in step S1 and hereinafter referred to as “first determination”). It is determined whether or not it has been received (this is the determination of step S2, hereinafter referred to as “the second determination").
- the timings of the first determination and the second determination are not particularly limited. The first determination and the second determination may be performed in parallel, respectively.
- an information processing apparatus for example, the server 1 in FIG. 1 to which the present invention is applied is Blood glucose level data acquisition means (for example, the blood glucose level data acquisition unit 101 of FIG. 3) for acquiring blood glucose level data that is temporal information of the blood glucose level;
- a meal data acquisition unit e.g., the meal data management unit 102 in FIG. 3 for acquiring meal data that is temporal information related to the meal of the subject of the blood glucose level (e.g., the user U in FIG.
- Graph generation means for example, the graph generation unit 103) for generating (for example, the blood sugar level / meal graph BF in FIG. 6); Equipped with As a result, it is possible to generate a graph capable of grasping the relationship between the content of the meal consumed by the subject whose blood glucose level is ingested and the blood glucose level.
- the meal data includes at least meal image data, which is data of an image obtained by capturing the content of the meal of the subject, and information on date and time when the image is captured, Detailed information extraction means for extracting detailed information including at least information on used foodstuffs and sugar mass about the meal consumed by the subject by analyzing the meal image data (e.g. Part 102) Can further be provided. In this way, it is possible to generate a graph capable of grasping the relationship between the specific content including the detailed information of the meal consumed by the subject of the blood glucose level and the blood glucose level.
- an activity data acquisition unit (e.g., the activity data acquisition unit 105 in FIG. 3) that acquires activity data that is temporal information related to the activity of the subject.
- Data analysis means for analyzing the influence of the contents of the meal of the subject and the contents of the activity on the change of the blood glucose level based on the blood glucose level data, the diet data, and the activity data (for example, FIG. 3)
- Data analysis unit 106 of Based on analysis data obtained as a result of analysis by the data analysis means, alert information is generated including at least one of notes on the diet the subject is about to ingest, and notes on the activity of the subject.
- An alert management unit (for example, the alert management unit 107 in FIG.
- the subject whose blood glucose level is to be measured can know in advance foods that may cause the blood glucose level to rise rapidly and activities that may cause the blood glucose level to rise rapidly.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Primary Health Care (AREA)
- Biomedical Technology (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Epidemiology (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Provided is a method with which a subject measuring his/her blood sugar level can easily ascertain the relationship between the blood sugar level and the content of meals he/she has actually consumed. A blood sugar level data acquisition unit 101 acquires blood sugar level data, which is chronological information about a blood sugar level. A meal data management unit 102 acquires meal data, which is chronological information pertaining to meals consumed by the subject measuring his/her blood sugar level. On the basis of the blood sugar level data acquired by the blood sugar level data acquisition means and the meal data acquired by the meal data acquisition means, a graph generation unit 103 generates a second graph in which information indicating the content of the meals of the subject is displayed superposed on a first graph representing the chronological change in the blood sugar level of the subject.
Description
本発明は、情報処理装置、情報処理方法、及びプログラムに関する。
The present invention relates to an information processing apparatus, an information processing method, and a program.
従来より、皮下の組織間質液中の糖濃度を、一定間隔で24時間以上継続的に測る手法としてのCGM(Continuous Glucose Monitoring/持続血糖測定)は存在する(非特許文献1参照)。
また、記憶領域に記憶された画像を取得し、取得した画像に含まれる食事部分を特定し、特定した食事部分に含まれる複数の画素各々の値に基づいて、該複数の画素の色頻度分布を作成し、作成した色頻度分布に基づいて、食事部分に含まれる色種類数を算出し、算出した色種類数に基づき、食事バランス数値を算出し、算出した食事バランス数値を出力する食事画像解析装置は存在する(特許文献1参照)。 Conventionally, there is CGM (Continuous Glucose Monitoring / sustained blood glucose measurement) as a method of continuously measuring sugar concentration in subcutaneous tissue interstitial fluid at regular intervals for 24 hours or more (see Non-Patent Document 1).
Further, the image stored in the storage area is acquired, the meal portion included in the acquired image is specified, and the color frequency distribution of the plurality of pixels is determined based on the value of each of the plurality of pixels included in the specified meal portion. Based on the created color frequency distribution, the number of color types included in the meal part is calculated, and based on the calculated number of color types, the meal balance numerical value is calculated, and the calculated meal balance numerical value is output There is an analysis device (see Patent Document 1).
また、記憶領域に記憶された画像を取得し、取得した画像に含まれる食事部分を特定し、特定した食事部分に含まれる複数の画素各々の値に基づいて、該複数の画素の色頻度分布を作成し、作成した色頻度分布に基づいて、食事部分に含まれる色種類数を算出し、算出した色種類数に基づき、食事バランス数値を算出し、算出した食事バランス数値を出力する食事画像解析装置は存在する(特許文献1参照)。 Conventionally, there is CGM (Continuous Glucose Monitoring / sustained blood glucose measurement) as a method of continuously measuring sugar concentration in subcutaneous tissue interstitial fluid at regular intervals for 24 hours or more (see Non-Patent Document 1).
Further, the image stored in the storage area is acquired, the meal portion included in the acquired image is specified, and the color frequency distribution of the plurality of pixels is determined based on the value of each of the plurality of pixels included in the specified meal portion. Based on the created color frequency distribution, the number of color types included in the meal part is calculated, and based on the calculated number of color types, the meal balance numerical value is calculated, and the calculated meal balance numerical value is output There is an analysis device (see Patent Document 1).
しかしながら、非特許文献1及び特許文献1に記載された技術では、血糖値の被測定者が摂取した食事の具体的内容と、血糖値との関係を把握することはできない。
However, with the techniques described in Non-Patent Document 1 and Patent Document 1, it is not possible to grasp the relationship between the specific content of the meal consumed by the subject of the blood glucose level and the blood glucose level.
本発明は、このような状況に鑑みてなされたものであり、血糖値の被測定者が摂取した食事の内容と血糖値との関係を容易に把握する手法を提供することを目的とする。
The present invention is made in view of such a situation, and an object of the present invention is to provide a method for easily grasping the relation between the contents of a meal ingested by a subject of blood glucose level and the blood glucose level.
上記目的を達成するため、本発明の一態様である情報処理装置は、
血糖値の経時的な情報である血糖値データを取得する血糖値データ取得手段と、
前記血糖値の被測定者の食事に関する経時的な情報である食事データを取得する食事データ取得手段と、
前記血糖値データ取得手段により取得された前記血糖値データと、前記食事データ取得手段により取得された前記食事データとに基づいて、前記被測定者の血糖値の経時的な変化を表す第1グラフに、前記被測定者の食事の内容を示す情報を重畳的に表示させた第2グラフを生成するグラフ生成手段と、
を備える。 In order to achieve the above object, an information processing apparatus according to an aspect of the present invention is:
Blood glucose level data acquisition means for acquiring blood glucose level data, which is temporal information of blood glucose level,
A meal data acquisition unit that acquires meal data that is temporally information on the meal of the subject of the blood glucose level;
A first graph showing temporal changes in blood glucose level of the subject based on the blood glucose level data acquired by the blood glucose level data acquiring unit and the meal data acquired by the meal data acquiring unit A graph generation unit that generates a second graph in which information indicating the contents of the subject's meal is displayed in a superimposed manner;
Equipped with
血糖値の経時的な情報である血糖値データを取得する血糖値データ取得手段と、
前記血糖値の被測定者の食事に関する経時的な情報である食事データを取得する食事データ取得手段と、
前記血糖値データ取得手段により取得された前記血糖値データと、前記食事データ取得手段により取得された前記食事データとに基づいて、前記被測定者の血糖値の経時的な変化を表す第1グラフに、前記被測定者の食事の内容を示す情報を重畳的に表示させた第2グラフを生成するグラフ生成手段と、
を備える。 In order to achieve the above object, an information processing apparatus according to an aspect of the present invention is:
Blood glucose level data acquisition means for acquiring blood glucose level data, which is temporal information of blood glucose level,
A meal data acquisition unit that acquires meal data that is temporally information on the meal of the subject of the blood glucose level;
A first graph showing temporal changes in blood glucose level of the subject based on the blood glucose level data acquired by the blood glucose level data acquiring unit and the meal data acquired by the meal data acquiring unit A graph generation unit that generates a second graph in which information indicating the contents of the subject's meal is displayed in a superimposed manner;
Equipped with
また、前記食事データには、前記被測定者の食事の内容が撮像された画像のデータである食事画像データと、当該画像が撮像された日時に関する情報とが少なくとも含まれ、
前記食事画像データを解析することにより、前記被測定者が摂取した食事について、使用された食材、及び糖質量に関する情報を少なくとも含む詳細情報を抽出する詳細情報抽出手段
をさらに備えることができる。 Further, the meal data includes at least meal image data, which is data of an image obtained by capturing the content of the meal of the subject, and information on date and time when the image is captured,
The food image data may be analyzed to further include detailed information extraction means for extracting detailed information including at least information on a used food material and a sugar mass, for the food consumed by the subject.
前記食事画像データを解析することにより、前記被測定者が摂取した食事について、使用された食材、及び糖質量に関する情報を少なくとも含む詳細情報を抽出する詳細情報抽出手段
をさらに備えることができる。 Further, the meal data includes at least meal image data, which is data of an image obtained by capturing the content of the meal of the subject, and information on date and time when the image is captured,
The food image data may be analyzed to further include detailed information extraction means for extracting detailed information including at least information on a used food material and a sugar mass, for the food consumed by the subject.
前記被測定者の活動に関する経時的な情報である活動データを取得する活動データ取得手段と、
前記血糖値データと、前記食事データと、前記活動データとに基づいて、前記被測定者の食事の内容及び活動の内容が血糖値の変化に与える影響についての分析を行うデータ分析手段と、
前記データ分析手段による分析の結果である分析データに基づいて、前記被測定者が摂取しようとする食事に関する留意事項、及び前記被測定者の活動に関する留意事項のうち少なくとも一方を含むアラート情報を生成し、生成したアラート情報を前記被測定者が操作する情報処理端末に出力させる制御を実行するアラート管理手段と、
をさらに備えることができる。 Activity data acquisition means for acquiring activity data, which is temporal information on the activity of the subject;
Data analysis means for analyzing the influence of the contents of the meal of the subject and the contents of the activity on the change of the blood glucose level based on the blood glucose level data, the meal data and the activity data;
Based on analysis data obtained as a result of analysis by the data analysis means, alert information is generated including at least one of notes on the diet the subject is about to ingest, and notes on the activity of the subject. An alert management unit that executes control to output the generated alert information to an information processing terminal operated by the subject;
Can further be provided.
前記血糖値データと、前記食事データと、前記活動データとに基づいて、前記被測定者の食事の内容及び活動の内容が血糖値の変化に与える影響についての分析を行うデータ分析手段と、
前記データ分析手段による分析の結果である分析データに基づいて、前記被測定者が摂取しようとする食事に関する留意事項、及び前記被測定者の活動に関する留意事項のうち少なくとも一方を含むアラート情報を生成し、生成したアラート情報を前記被測定者が操作する情報処理端末に出力させる制御を実行するアラート管理手段と、
をさらに備えることができる。 Activity data acquisition means for acquiring activity data, which is temporal information on the activity of the subject;
Data analysis means for analyzing the influence of the contents of the meal of the subject and the contents of the activity on the change of the blood glucose level based on the blood glucose level data, the meal data and the activity data;
Based on analysis data obtained as a result of analysis by the data analysis means, alert information is generated including at least one of notes on the diet the subject is about to ingest, and notes on the activity of the subject. An alert management unit that executes control to output the generated alert information to an information processing terminal operated by the subject;
Can further be provided.
本発明の一態様の情報処理方法及びプログラムは、上述の本発明の一態様の情報処理装置に対応する処理方法及びプログラムである。
An information processing method and program according to an aspect of the present invention are processing methods and programs corresponding to the above-described information processing apparatus according to the aspect of the present invention.
本発明によれば、血糖値の被測定者が摂取した食事の内容と血糖値との関係を把握することができる。これにより、血糖値の被測定者のみならず、医師、管理栄養士等も、血糖値の被測定者が摂取した食事の内容と血糖値との関係に基づいて、血糖値の被測定者における未病や美容のための指示を的確に行うことが可能となる。
According to the present invention, it is possible to grasp the relationship between the content of a meal ingested by the subject having a blood glucose level and the blood glucose level. As a result, not only the subject of the blood glucose level but also the doctor, a registered dietitian, etc. are not satisfied with the subject of the blood glucose level based on the relationship between the content of the meal consumed by the subject of the blood glucose level and the blood glucose level. It is possible to accurately give instructions for diseases and beauty.
以下、本発明の実施形態について図面を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の情報処理装置の一実施形態であるサーバ1を含む、情報処理システムの構成図である。
FIG. 1 is a block diagram of an information processing system including a server 1 which is an embodiment of the information processing apparatus of the present invention.
図1に示す情報処理システムは、サーバ1と、ユーザ端末2と、医師端末4と、栄養士端末5とが、インターネット等のネットワークNを介して相互に接続されることで構成される。また、ユーザ端末2には血糖値測定器3が接続されている。
The information processing system shown in FIG. 1 is configured by mutually connecting a server 1, a user terminal 2, a doctor terminal 4, and a dietitian terminal 5 via a network N such as the Internet. In addition, a blood glucose level measuring device 3 is connected to the user terminal 2.
ユーザUは、ユーザ端末2を操作する者であって、ユーザ端末2と接続された血糖値測定器3を用いて、自身の血糖値を24時間継続的に測定する者である。また、ユーザUは、ユーザ端末2の撮像機能を用いて、継続的に自身の毎食の食事の内容を撮像する者でもある。
医師Dは、医師端末4を操作する者であって、ユーザUの健康管理指導を行う者である。
管理栄養士Mは、栄養士端末5を操作する者であって、ユーザUの栄養管理指導を行う者である。 The user U is a person who operates theuser terminal 2 and is a person who continuously measures his / her blood glucose level for 24 hours using the blood glucose level measuring device 3 connected to the user terminal 2. In addition, the user U is also a person who uses the imaging function of the user terminal 2 to continuously image the contents of his own meal.
The doctor D is a person who operates thedoctor terminal 4 and is a person who performs health management instruction of the user U.
The management dietitian M is a person who operates thedietitian terminal 5 and is a person who performs nutrition management instruction of the user U.
医師Dは、医師端末4を操作する者であって、ユーザUの健康管理指導を行う者である。
管理栄養士Mは、栄養士端末5を操作する者であって、ユーザUの栄養管理指導を行う者である。 The user U is a person who operates the
The doctor D is a person who operates the
The management dietitian M is a person who operates the
サーバ1は、ユーザ端末2の動作を管理すべく、各種処理を実行する情報処理装置である。サーバ1は、例えば、ユーザUの血糖値に関する経時的な情報(以下「血糖値データ」と呼ぶ)と、当該ユーザUの食事の内容に関する経時的な情報(以下「食事データ」と呼ぶ)とに基づいて、ユーザUの毎回の食事の内容と、ユーザUの血糖値との関係が示されたグラフ(以下「血糖値・食事グラフ」と呼ぶ)を生成する。本実施形態における食事データには、ユーザUの毎回の食事の内容が撮像された画像のデータ(以下「食事画像データ」と呼ぶ)と、当該画像が撮像された日時に関する情報とが少なくとも含まれる。また、サーバ1は、食事データに含まれる食事画像データを解析することにより、撮像された料理に含まれる食材や栄養素等の詳細な情報の抽出を行い、抽出された詳細な情報についても食事データとして管理する。
血糖値・食事グラフは、具体的にはユーザUの血糖値の経時的な数値を示す血糖値推移グラフをベースに、食事データの内容を示す情報を重畳的に表示させたものであり、ユーザUが摂取した食べ物と、ユーザUの血糖値の変化とが可視化されている。このため、血糖値・食事グラフを一見すれば、ユーザUが摂取した食事の内容がユーザUの血糖値に与えた影響を容易に把握することができる。 Theserver 1 is an information processing apparatus that executes various processes in order to manage the operation of the user terminal 2. For example, the server 1 includes temporal information on the blood sugar level of the user U (hereinafter referred to as “blood sugar level data”) and temporal information on contents of the meal of the user U (hereinafter referred to as “meal data”). Based on the above, a graph (hereinafter referred to as “blood sugar level / meal graph”) indicating the relation between the contents of each meal of the user U and the blood sugar level of the user U is generated. The meal data in the present embodiment includes at least data of an image obtained by capturing the content of each meal of the user U (hereinafter referred to as "meal image data") and information on the date and time when the image is captured. . In addition, the server 1 analyzes the meal image data included in the meal data to extract detailed information such as ingredients and nutrients contained in the imaged food, and the meal data is also included in the extracted detailed information. Manage as.
The blood sugar level / meal graph specifically displays information indicating the contents of the food data in a superimposed manner based on the blood sugar level transition graph showing the time-lapse numerical value of the user U's blood sugar level. The food consumed by U and the change in blood glucose level of user U are visualized. For this reason, at first glance at the blood glucose level / meal graph, it is possible to easily grasp the influence of the contents of the meal consumed by the user U on the blood glucose level of the user U.
血糖値・食事グラフは、具体的にはユーザUの血糖値の経時的な数値を示す血糖値推移グラフをベースに、食事データの内容を示す情報を重畳的に表示させたものであり、ユーザUが摂取した食べ物と、ユーザUの血糖値の変化とが可視化されている。このため、血糖値・食事グラフを一見すれば、ユーザUが摂取した食事の内容がユーザUの血糖値に与えた影響を容易に把握することができる。 The
The blood sugar level / meal graph specifically displays information indicating the contents of the food data in a superimposed manner based on the blood sugar level transition graph showing the time-lapse numerical value of the user U's blood sugar level. The food consumed by U and the change in blood glucose level of user U are visualized. For this reason, at first glance at the blood glucose level / meal graph, it is possible to easily grasp the influence of the contents of the meal consumed by the user U on the blood glucose level of the user U.
血糖値とは、ユーザUの血液内のグルコース(ブドウ糖)の濃度である。ユーザUが健常である場合、空腹時の血糖値はおおよそ80乃至100mg/dL程度であるが、食事をとった後の血糖値は若干高い数値を示す。即ち、ユーザUが食事をとると、炭水化物が吸収され、ブドウ糖となって血液中に出てくる。このため、食事をとった後の血糖値の方が食事をとる前の血糖値よりも高くなる。なお、ユーザUの早朝の空腹時の血糖値が126mg/dL以上、又は食事後の血糖値が200mg/dL以上の場合、糖尿病の疑いが濃厚であるといわれている。
このように、血糖値は、基本的にはユーザUが食事を摂取することによって数値が上昇する。しかしながら、ユーザUの体質、食事の内容、食事のタイミング、食後の行動の種類等の各種要素によって、ユーザUの血糖値の上昇度合に差異が生じるとされている。
例えば、炭水化物の含有量が同一である「うどん」、「パスタ」、及び「白米」であっても、これらを食するユーザUの体質によっては、「白米」を摂取した場合だけ血糖値が大きく上昇することがある。また、ユーザUが、A牛丼屋の「牛丼並盛」と、B牛丼屋の「牛丼並盛」とを同じタイミングで摂取した場合であっても、血糖値の上昇に大きく差が生じることがある。
また例えば、同じ「うどん」をユーザUが昼食時に食する場合と夕食時に食する場合とでは、血糖値の上昇に大きく差が生じることがある。また、同じ時間帯に同じ種類の「うどん」を摂取した場合であっても、食する前に運動を行っていた場合と、運動を行っていなかった場合とでは血糖値の上昇に大きく差が生じることがある。 The blood glucose level is the concentration of glucose (glucose) in the blood of the user U. When the user U is healthy, the fasting blood glucose level is approximately 80 to 100 mg / dL, but the blood glucose level after eating a meal shows a slightly higher value. That is, when the user U eats, carbohydrates are absorbed and become glucose into the blood. For this reason, the blood glucose level after having a meal is higher than the blood glucose level before having a meal. If the user U's fasting blood glucose level in the early morning is 126 mg / dL or more, or the blood glucose level after a meal is 200 mg / dL or more, it is said that the suspicion of diabetes is heavy.
Thus, the blood sugar level basically increases in value as the user U consumes a meal. However, depending on various factors such as the constitution of the user U, the content of the meal, the timing of the meal, and the type of behavior after eating, it is considered that the degree of increase in the blood glucose level of the user U is different.
For example, depending on the constitution of the user U who eats "Udon", "pasta", and "white rice" having the same content of carbohydrates, the blood sugar level is large only when "white rice" is ingested. It may rise. In addition, even when the user U ingests the "gyudon Nashimori" of A beef bowl storehouse and the "gyudon noodles bowl" of B beef bowl storehouse at the same timing, there is a large difference in the rise of the blood glucose level. May occur.
Further, for example, there may be a large difference in the rise of the blood glucose level between the case where the user U eats at the time of lunch and the case where he eats at the same time the same "Udon". In addition, even when the same type of "Udon" is ingested during the same time zone, there is a large difference between the increase in blood sugar level when performing exercise before eating and when not performing exercise. May occur.
このように、血糖値は、基本的にはユーザUが食事を摂取することによって数値が上昇する。しかしながら、ユーザUの体質、食事の内容、食事のタイミング、食後の行動の種類等の各種要素によって、ユーザUの血糖値の上昇度合に差異が生じるとされている。
例えば、炭水化物の含有量が同一である「うどん」、「パスタ」、及び「白米」であっても、これらを食するユーザUの体質によっては、「白米」を摂取した場合だけ血糖値が大きく上昇することがある。また、ユーザUが、A牛丼屋の「牛丼並盛」と、B牛丼屋の「牛丼並盛」とを同じタイミングで摂取した場合であっても、血糖値の上昇に大きく差が生じることがある。
また例えば、同じ「うどん」をユーザUが昼食時に食する場合と夕食時に食する場合とでは、血糖値の上昇に大きく差が生じることがある。また、同じ時間帯に同じ種類の「うどん」を摂取した場合であっても、食する前に運動を行っていた場合と、運動を行っていなかった場合とでは血糖値の上昇に大きく差が生じることがある。 The blood glucose level is the concentration of glucose (glucose) in the blood of the user U. When the user U is healthy, the fasting blood glucose level is approximately 80 to 100 mg / dL, but the blood glucose level after eating a meal shows a slightly higher value. That is, when the user U eats, carbohydrates are absorbed and become glucose into the blood. For this reason, the blood glucose level after having a meal is higher than the blood glucose level before having a meal. If the user U's fasting blood glucose level in the early morning is 126 mg / dL or more, or the blood glucose level after a meal is 200 mg / dL or more, it is said that the suspicion of diabetes is heavy.
Thus, the blood sugar level basically increases in value as the user U consumes a meal. However, depending on various factors such as the constitution of the user U, the content of the meal, the timing of the meal, and the type of behavior after eating, it is considered that the degree of increase in the blood glucose level of the user U is different.
For example, depending on the constitution of the user U who eats "Udon", "pasta", and "white rice" having the same content of carbohydrates, the blood sugar level is large only when "white rice" is ingested. It may rise. In addition, even when the user U ingests the "gyudon Nashimori" of A beef bowl storehouse and the "gyudon noodles bowl" of B beef bowl storehouse at the same timing, there is a large difference in the rise of the blood glucose level. May occur.
Further, for example, there may be a large difference in the rise of the blood glucose level between the case where the user U eats at the time of lunch and the case where he eats at the same time the same "Udon". In addition, even when the same type of "Udon" is ingested during the same time zone, there is a large difference between the increase in blood sugar level when performing exercise before eating and when not performing exercise. May occur.
即ち、医師Dや管理栄養士Mは、単にユーザUの食事に含まれる炭水化物等の栄養素の含有量等の一般的な情報を把握するだけでは、ユーザUに対し的確な健康指導や栄養指導を行うことができない。つまり、医師Dや管理栄養士Mが、ユーザUに対し適切な健康指導や栄養指導を行うためには、ユーザUの食事の内容や、食事のタイミング等の各種要素が十分に考慮されなければならない。
この点について、図1のサーバ1により生成される血糖値・食事グラフは、ユーザUの食事の内容や、食事のタイミングが「見える化」されている。このため、医師Dや管理栄養士Mは、血糖値・食事グラフを一見するだけでユーザUが摂取した食事の内容、及び食事のタイミングと、血糖値の変化との関係を容易に把握することができる。
これにより、医師Dや管理栄養士Mは、ユーザUに対して、血糖値・食事グラフを見ながらユーザUの過去の活動内容について問診するだけで、ユーザUに対し的確な健康指導を行うことができる。具体的には例えば、血糖値・食事グラフの内容及び問診結果から、ユーザUは、食後に運動をした方が、食前に運動するよりも血糖値の上昇が少ない体質であることが把握できる場合がある。この場合、医師Dは、ユーザUに対し、できる限り食後に運動をすべき旨の健康指導を行うことができる。
また例えば、血糖値・食事グラフを一見するだけで、ユーザUが、「うどん」、「パスタ」、「白米」のうち「白米」を摂取した時だけ血糖値が大きく上昇する傾向にあることが把握できる場合がある。この場合、管理栄養士Mは、ユーザUに対し、できる限りうどんやパスタ等の麺類から炭水化物を摂取すべき旨の栄養指導を行うことができる。
また、医師Dや管理栄養士Mのみならず、ユーザU自身も、血糖値・食事グラフを一見するだけで、血糖値がどのような時に上昇し易く、どのような時に上昇し難いのかというユーザU特有の体質や傾向を容易に把握することができる。
なお、血糖値・食事グラフの具体例については図6を参照して後述する。 That is, the doctor D and the registered dietitian M perform appropriate health guidance and nutrition guidance for the user U simply by grasping general information such as the content of nutrients such as carbohydrates contained in the user U's diet. I can not do it. That is, in order for the doctor D and the registered dietitian M to give appropriate health and nutrition guidance to the user U, various factors such as the contents of the user U's meal and the timing of the meal must be sufficiently considered. .
In this regard, the blood glucose level / meal graph generated by theserver 1 of FIG. 1 "visualizes" the contents of the user U's meal and the timing of the meal. Therefore, the doctor D or the registered dietitian M can easily grasp the relationship between the contents of the meal consumed by the user U and the timing of the meal and the change in the blood glucose level simply by looking at the blood glucose level / meal graph. it can.
Thus, the doctor D or the registered dietitian M can give the user U appropriate health instruction only by asking the user U about the past activity contents of the user U while looking at the blood glucose level / meal graph. it can. Specifically, for example, from the contents of the blood sugar level and the contents of the meal graph and the result of the inquiry, it can be understood that the user U who has exercised after eating has a constitution in which the increase in blood sugar level is smaller than exercise before eating. There is. In this case, the doctor D can provide the user U with health guidance to exercise as much as possible after eating.
Also, for example, the blood sugar level tends to be greatly increased only when the user U ingests "white rice" out of "udon", "pasta" and "white rice" at first glance at the blood sugar level / meal graph. It may be possible to grasp. In this case, the registered dietitian M can provide the user U with nutrition instruction to the effect that the carbohydrates should be taken from noodles such as udon and pasta as much as possible.
Also, not only the doctor D and the dietetic dietitian M but also the user U himself / herself sees the blood glucose level / meal graph at a glance, and at what time the blood glucose level easily rises, and at which time it is difficult for the user U to Unique constitutions and trends can be easily grasped.
In addition, the specific example of a blood glucose level and a meal graph is later mentioned with reference to FIG.
この点について、図1のサーバ1により生成される血糖値・食事グラフは、ユーザUの食事の内容や、食事のタイミングが「見える化」されている。このため、医師Dや管理栄養士Mは、血糖値・食事グラフを一見するだけでユーザUが摂取した食事の内容、及び食事のタイミングと、血糖値の変化との関係を容易に把握することができる。
これにより、医師Dや管理栄養士Mは、ユーザUに対して、血糖値・食事グラフを見ながらユーザUの過去の活動内容について問診するだけで、ユーザUに対し的確な健康指導を行うことができる。具体的には例えば、血糖値・食事グラフの内容及び問診結果から、ユーザUは、食後に運動をした方が、食前に運動するよりも血糖値の上昇が少ない体質であることが把握できる場合がある。この場合、医師Dは、ユーザUに対し、できる限り食後に運動をすべき旨の健康指導を行うことができる。
また例えば、血糖値・食事グラフを一見するだけで、ユーザUが、「うどん」、「パスタ」、「白米」のうち「白米」を摂取した時だけ血糖値が大きく上昇する傾向にあることが把握できる場合がある。この場合、管理栄養士Mは、ユーザUに対し、できる限りうどんやパスタ等の麺類から炭水化物を摂取すべき旨の栄養指導を行うことができる。
また、医師Dや管理栄養士Mのみならず、ユーザU自身も、血糖値・食事グラフを一見するだけで、血糖値がどのような時に上昇し易く、どのような時に上昇し難いのかというユーザU特有の体質や傾向を容易に把握することができる。
なお、血糖値・食事グラフの具体例については図6を参照して後述する。 That is, the doctor D and the registered dietitian M perform appropriate health guidance and nutrition guidance for the user U simply by grasping general information such as the content of nutrients such as carbohydrates contained in the user U's diet. I can not do it. That is, in order for the doctor D and the registered dietitian M to give appropriate health and nutrition guidance to the user U, various factors such as the contents of the user U's meal and the timing of the meal must be sufficiently considered. .
In this regard, the blood glucose level / meal graph generated by the
Thus, the doctor D or the registered dietitian M can give the user U appropriate health instruction only by asking the user U about the past activity contents of the user U while looking at the blood glucose level / meal graph. it can. Specifically, for example, from the contents of the blood sugar level and the contents of the meal graph and the result of the inquiry, it can be understood that the user U who has exercised after eating has a constitution in which the increase in blood sugar level is smaller than exercise before eating. There is. In this case, the doctor D can provide the user U with health guidance to exercise as much as possible after eating.
Also, for example, the blood sugar level tends to be greatly increased only when the user U ingests "white rice" out of "udon", "pasta" and "white rice" at first glance at the blood sugar level / meal graph. It may be possible to grasp. In this case, the registered dietitian M can provide the user U with nutrition instruction to the effect that the carbohydrates should be taken from noodles such as udon and pasta as much as possible.
Also, not only the doctor D and the dietetic dietitian M but also the user U himself / herself sees the blood glucose level / meal graph at a glance, and at what time the blood glucose level easily rises, and at which time it is difficult for the user U to Unique constitutions and trends can be easily grasped.
In addition, the specific example of a blood glucose level and a meal graph is later mentioned with reference to FIG.
ユーザ端末2は、ユーザUが操作する情報処理端末であって、例えばスマートフォン等で構成される。ユーザ端末2は、ユーザUの操作に基づいて、自身が備えるカメラ機能でユーザUの食事の内容を撮像し、撮像により得られた食事画像データを食事データとしてサーバ1に送信する。
The user terminal 2 is an information processing terminal operated by the user U, and includes, for example, a smartphone. Based on the operation of the user U, the user terminal 2 images the contents of the meal of the user U with a camera function provided by the user terminal 2, and transmits meal image data obtained by the imaging to the server 1 as meal data.
血糖値測定器3は、ユーザUが自身の血糖値を継続的に測定するための電子機器である。血糖値測定器3とユーザ端末2とは、ブルートゥース(Bluetooth)(登録商標)等の近距離無線通信技術や、ケーブル等の有線を用いて接続されている。血糖値測定器3は、ユーザUの操作に基づいて、ユーザUの血糖値を24時間継続的に測定し、その測定結果としての血糖値データをユーザ端末2に送信する。血糖値データには、ユーザUを一意に特定するユーザIDと、ユーザ名と、血糖値が測定された時刻と、血糖値を示す具体的な数値とが含まれる。なお、血糖値データの具体例については、図4Aを参照して後述する。
The blood glucose level measuring device 3 is an electronic device for the user U to continuously measure his or her blood glucose level. The blood glucose level measuring device 3 and the user terminal 2 are connected using near field communication technology such as Bluetooth (registered trademark) or wire communication such as a cable. The blood glucose level measuring device 3 continuously measures the blood glucose level of the user U for 24 hours based on the operation of the user U, and transmits the blood glucose level data as the measurement result to the user terminal 2. The blood sugar level data includes a user ID uniquely identifying the user U, a user name, a time when the blood sugar level is measured, and a specific numerical value indicating the blood sugar level. In addition, the specific example of blood glucose level data is later mentioned with reference to FIG. 4A.
医師端末4は、医師Dが操作する情報処理装置であって、例えばパーソナルコンピュータ等で構成される。医師端末4は、医師Dの操作に基づいて、サーバ1から送信されて来た血糖値・食事グラフを取得する。
栄養士端末5は、管理栄養士Mが操作する情報処理装置であって、例えばパーソナルコンピュータ等で構成される。栄養士端末5は、管理栄養士Mの操作に基づいて、サーバ1から送信されて来た血糖値・食事グラフを取得する。 Thedoctor terminal 4 is an information processing apparatus operated by the doctor D, and is configured of, for example, a personal computer. The doctor terminal 4 acquires the blood glucose level / meal graph transmitted from the server 1 based on the operation of the doctor D.
Thedietitian terminal 5 is an information processing device operated by the dietitian M, and is configured of, for example, a personal computer. The dietitian terminal 5 acquires the blood sugar level / meal graph transmitted from the server 1 based on the operation of the managing dietitian M.
栄養士端末5は、管理栄養士Mが操作する情報処理装置であって、例えばパーソナルコンピュータ等で構成される。栄養士端末5は、管理栄養士Mの操作に基づいて、サーバ1から送信されて来た血糖値・食事グラフを取得する。 The
The
図2は、図1の情報処理システムのうち、サーバ1のハードウェア構成を示すブロック図である。
FIG. 2 is a block diagram showing the hardware configuration of the server 1 in the information processing system of FIG.
サーバ1は、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、バス14と、入出力インターフェース15と、タッチ操作入力部16と、表示部17と、入力部18と、記憶部19と、第1通信部20と、第2通信部21と、ドライブ22と、リムーバブルメディア30とを備えている。
The server 1 includes a central processing unit (CPU) 11, a read only memory (ROM) 12, a random access memory (RAM) 13, a bus 14, an input / output interface 15, a touch operation input unit 16, and a display unit. A storage unit 19, a storage unit 19, a first communication unit 20, a second communication unit 21, a drive 22, and a removable medium 30 are provided.
CPU11は、ROM12に記録されているプログラム、又は、記憶部19からRAM13にロードされたプログラムに従って各種の処理を実行する。
RAM13には、CPU11が各種の処理を実行する上において必要な情報等も適宜記憶される。 TheCPU 11 executes various processes in accordance with a program stored in the ROM 12 or a program loaded from the storage unit 19 into the RAM 13.
TheRAM 13 appropriately stores information necessary for the CPU 11 to execute various processes.
RAM13には、CPU11が各種の処理を実行する上において必要な情報等も適宜記憶される。 The
The
CPU11、ROM12及びRAM13は、バス14を介して相互に接続されている。このバス14にはまた、入出力インターフェース15も接続されている。入出力インターフェース15には、タッチ操作入力部16、表示部17、入力部18、記憶部19、第1通信部20、第2通信部21及びドライブ22が接続されている。
The CPU 11, the ROM 12 and the RAM 13 are connected to one another via a bus 14. An input / output interface 15 is also connected to the bus 14. The touch operation input unit 16, the display unit 17, the input unit 18, the storage unit 19, the first communication unit 20, the second communication unit 21, and the drive 22 are connected to the input / output interface 15.
タッチ操作入力部16は、例えば表示部17に積層される静電容量式又は抵抗膜式(感圧式)の位置入力センサにより構成され、タッチ操作がなされた位置の座標を検出する。
表示部17は、液晶等のディスプレイにより構成され、プログラム作製に関する画像等、各種画像を表示する。
このように、本実施形態では、タッチ操作入力部16と表示部17とにより、タッチパネルが構成されている。 The touchoperation input unit 16 is formed of, for example, a capacitive or resistive (pressure-sensitive) position input sensor stacked on the display unit 17, and detects coordinates of a position at which a touch operation is performed.
Thedisplay unit 17 is configured of a display such as liquid crystal and displays various images such as an image related to program preparation.
Thus, in the present embodiment, the touchoperation input unit 16 and the display unit 17 constitute a touch panel.
表示部17は、液晶等のディスプレイにより構成され、プログラム作製に関する画像等、各種画像を表示する。
このように、本実施形態では、タッチ操作入力部16と表示部17とにより、タッチパネルが構成されている。 The touch
The
Thus, in the present embodiment, the touch
入力部18は、各種ハードウェア等で構成され、ユーザの指示操作に応じて各種情報を入力する。
記憶部19は、ハードディスクやDRAM(Dynamic Random Access Memory)等で構成され、各種情報を記憶する。
第1通信部20は、例えば、Bluetooth(登録商標)の規格に従った方式で近距離無線通信を行う制御を実行する。具体的には例えば、血糖値測定器3で測定された血糖値データを、Bluetooth(登録商標)の規格に従った方式の近距離無線通信で受信する。
第2通信部21は、第1通信部20とは別個独立して、インターネット等を介して他の装置(例えばユーザ端末2、医師端末4、栄養士端末5)との間で行う通信を制御する。 Theinput unit 18 includes various hardware and the like, and inputs various information in accordance with a user's instruction operation.
Thestorage unit 19 is configured by a hard disk, a dynamic random access memory (DRAM), or the like, and stores various information.
For example, thefirst communication unit 20 executes control for performing near field wireless communication in a method according to the Bluetooth (registered trademark) standard. Specifically, for example, the blood glucose level data measured by the blood glucose level measuring device 3 is received by near field communication of a method according to the standard of Bluetooth (registered trademark).
Thesecond communication unit 21 controls communication performed with another device (for example, the user terminal 2, the doctor terminal 4, the dietitian terminal 5) separately from the first communication unit 20 independently of the first communication unit 20. .
記憶部19は、ハードディスクやDRAM(Dynamic Random Access Memory)等で構成され、各種情報を記憶する。
第1通信部20は、例えば、Bluetooth(登録商標)の規格に従った方式で近距離無線通信を行う制御を実行する。具体的には例えば、血糖値測定器3で測定された血糖値データを、Bluetooth(登録商標)の規格に従った方式の近距離無線通信で受信する。
第2通信部21は、第1通信部20とは別個独立して、インターネット等を介して他の装置(例えばユーザ端末2、医師端末4、栄養士端末5)との間で行う通信を制御する。 The
The
For example, the
The
ドライブ22は、必要に応じて設けられる。ドライブ22には、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリ等よりなる、リムーバブルメディア30が適宜装着される。ドライブ22によってリムーバブルメディア30から読み出されたプログラムは、必要に応じて記憶部19にインストールされる。
また、リムーバブルメディア30は、記憶部19に記憶されている各種情報も、記憶部19と同様に記憶することができる。 Thedrive 22 is provided as needed. The removable medium 30 made of a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is appropriately attached to the drive 22. The program read from the removable media 30 by the drive 22 is installed in the storage unit 19 as necessary.
Theremovable media 30 can also store various information stored in the storage unit 19 in the same manner as the storage unit 19.
また、リムーバブルメディア30は、記憶部19に記憶されている各種情報も、記憶部19と同様に記憶することができる。 The
The
なお、図示はしないが、図1の情報処理システムのうち、ユーザ端末2、医師端末4、及び栄養士端末5も図2に示すハードウェア構成と基本的に同様のハードウェア構成を有している。
Although not shown, in the information processing system of FIG. 1, the user terminal 2, the doctor terminal 4 and the dietitian terminal 5 also have basically the same hardware configuration as the hardware configuration shown in FIG. .
次に、このようなハードウェア構成を持つサーバ1の機能的構成について、図3を参照して説明する。
図3は、図1の情報処理システムにおける図2のサーバ1の機能的構成のうち、グラフ生成処理と、グラフ表示制御処理と、アラート出力処理とを実現するための機能的構成の一例を示す機能ブロック図である。 Next, the functional configuration of theserver 1 having such a hardware configuration will be described with reference to FIG.
FIG. 3 shows an example of a functional configuration for realizing graph generation processing, graph display control processing, and alert output processing among the functional configurations of theserver 1 of FIG. 2 in the information processing system of FIG. It is a functional block diagram.
図3は、図1の情報処理システムにおける図2のサーバ1の機能的構成のうち、グラフ生成処理と、グラフ表示制御処理と、アラート出力処理とを実現するための機能的構成の一例を示す機能ブロック図である。 Next, the functional configuration of the
FIG. 3 shows an example of a functional configuration for realizing graph generation processing, graph display control processing, and alert output processing among the functional configurations of the
「グラフ生成処理」とは、サーバ1が実行する処理のうち、ユーザUの血糖値・食事グラフを生成するまでの一連の処理をいう。
「グラフ表示制御処理」とは、サーバ1が実行する処理のうち、グラフ生成処理で生成されたユーザUの血糖値・食事グラフを、ユーザ端末2、医師端末4、及び栄養士端末5に表示させる制御を実行する処理をいう。
「アラート出力処理」とは、サーバ1が実行する処理のうち、ユーザUの血糖値・食事グラフの根拠となる各種データに基づいて、所定のタイミングでユーザ端末2にアラートを出力させるまでの一連の処理をいう。 The “graph generation process” refers to a series of processes until the user U's blood glucose level / meal graph is generated among the processes executed by theserver 1.
The “graph display control process” causes theuser terminal 2, the doctor terminal 4, and the dietitian terminal 5 to display the blood sugar level / meal graph of the user U generated in the graph generation process among the processes executed by the server 1. The process of executing control.
The “alert output process” is a series of processes for causing theuser terminal 2 to output an alert at a predetermined timing based on various data serving as the basis of the blood sugar level / meal graph of the user U among the processes executed by the server 1. The process of
「グラフ表示制御処理」とは、サーバ1が実行する処理のうち、グラフ生成処理で生成されたユーザUの血糖値・食事グラフを、ユーザ端末2、医師端末4、及び栄養士端末5に表示させる制御を実行する処理をいう。
「アラート出力処理」とは、サーバ1が実行する処理のうち、ユーザUの血糖値・食事グラフの根拠となる各種データに基づいて、所定のタイミングでユーザ端末2にアラートを出力させるまでの一連の処理をいう。 The “graph generation process” refers to a series of processes until the user U's blood glucose level / meal graph is generated among the processes executed by the
The “graph display control process” causes the
The “alert output process” is a series of processes for causing the
図3に示すように、サーバ1のCPU11(図2)においては、グラフ生成処理が実行される場合には、血糖値データ取得部101と、食事データ管理部102と、グラフ生成部103とが機能する。
また、グラフ表示制御処理が実行される場合には、グラフ表示制御部104が機能する。
また、アラート出力処理が実行される場合には、活動データ取得部105と、データ分析部106と、アラート管理部107が機能する。
なお、記憶部19(図2)の一領域には、血糖値DB401と、食事DB402と、グラフDB403と、活動DB404とが設けられている。 As shown in FIG. 3, in the CPU 11 (FIG. 2) of theserver 1, when the graph generation processing is executed, the blood glucose level data acquisition unit 101, the meal data management unit 102, and the graph generation unit 103 Function.
When the graph display control process is executed, the graphdisplay control unit 104 functions.
When the alert output process is executed, the activitydata acquisition unit 105, the data analysis unit 106, and the alert management unit 107 function.
In addition, blood glucose level DB401, meal DB402, graph DB403, and activity DB404 are provided in one area | region of the memory | storage part 19 (FIG. 2).
また、グラフ表示制御処理が実行される場合には、グラフ表示制御部104が機能する。
また、アラート出力処理が実行される場合には、活動データ取得部105と、データ分析部106と、アラート管理部107が機能する。
なお、記憶部19(図2)の一領域には、血糖値DB401と、食事DB402と、グラフDB403と、活動DB404とが設けられている。 As shown in FIG. 3, in the CPU 11 (FIG. 2) of the
When the graph display control process is executed, the graph
When the alert output process is executed, the activity
In addition, blood glucose level DB401, meal DB402, graph DB403, and activity DB404 are provided in one area | region of the memory | storage part 19 (FIG. 2).
血糖値データ取得部101は、ユーザ端末2から送信されて来た血糖値データを取得する。なお、血糖値データ取得部101が血糖値データを取得するタイミングは特に限定されない。例えばユーザ端末2により血糖値データが取得されたときにリアルタイムで当該血糖値データを取得してもよいし、s秒おき(sは1以上の任意の整数値)、m分おき(mは1以上の任意の整数値)、h時間おき(hは1以上の任意の整数値)等任意のタイミングで血糖値データを取得してもよい。血糖値データ取得部101により取得された血糖値データは、血糖値DB401に記憶されて管理される。なお、血糖値データの具体例については図4Aを参照して後述する。
The blood sugar level data acquisition unit 101 acquires the blood sugar level data transmitted from the user terminal 2. The timing at which the blood sugar level data acquisition unit 101 acquires blood sugar level data is not particularly limited. For example, when blood sugar level data is acquired by the user terminal 2, the blood sugar level data may be acquired in real time, every s seconds (s is an arbitrary integer value of 1 or more), every m minutes (m is 1) The blood sugar level data may be acquired at any timing such as the above arbitrary integer value) and every h hours (h is an arbitrary integer value of 1 or more). The blood glucose level data acquired by the blood glucose level data acquisition unit 101 is stored and managed in the blood glucose level DB 401. A specific example of the blood sugar level data will be described later with reference to FIG. 4A.
食事データ管理部102は、ユーザ端末2から送信されて来た食事データを取得し、当該食事データに含まれる食事画像データを解析して詳細情報を抽出する。詳細情報には、ユーザUの食事に関するあらゆる情報を含めてよい。例えば料理名、料理が提供された場所や店名、使用されている食材、糖質量やカロリー等の栄養に関する情報等を含めてよい。なお、サーバ1による画像のデータの解析手法は特に限定されない。例えば、様々な料理の詳細情報を予め学習させた人工知能(AI)を用いて画像のデータの解析を行ってもよい。また、食事データ管理部102が食事データを取得するタイミングは特に限定されない。例えばユーザ端末2により食事の内容が撮像されたときにリアルタイムで食事データを取得してもよいし、d日分(dは1以上の任意の整数値)の食事データをまとめて取得してもよい。食事データ管理部102により食事データから抽出された食事に関する詳細情報は、食事DB402に記憶されて管理される。なお、食事データから抽出された食事に関する詳細な情報の具体例については図4Bを参照して後述する。
The meal data management unit 102 acquires the meal data transmitted from the user terminal 2, analyzes the meal image data included in the meal data, and extracts detailed information. The detailed information may include any information on the user U's meal. For example, the name of the dish, the place where the dish is provided or the name of the shop, the food used, and information on nutrition such as the amount of sugar and calories may be included. In addition, the analysis method of the data of the image by the server 1 is not specifically limited. For example, analysis of image data may be performed using artificial intelligence (AI) which has previously learned detailed information of various dishes. Further, the timing at which the meal data management unit 102 acquires meal data is not particularly limited. For example, when the contents of the meal are imaged by the user terminal 2, the meal data may be acquired in real time, or even if the meal data of d days (d is an arbitrary integer value of 1 or more) is acquired collectively Good. The detailed information on the meal extracted from the meal data by the meal data management unit 102 is stored in the meal DB 402 and managed. In addition, the specific example of the detailed information regarding the meal extracted from meal data is later mentioned with reference to FIG. 4B.
グラフ生成部103は、血糖値データ取得部101により取得された血糖値データと、食事データ管理部102により取得されて詳細情報が抽出された食事データとに基づいて血糖値・食事グラフを生成する。これにより、グラフ生成部103により生成された血糖値・食事グラフは、グラフDB403に記憶されて管理される。
The graph generation unit 103 generates a blood glucose level / meal graph based on the blood glucose level data acquired by the blood glucose level data acquisition unit 101 and the meal data acquired by the meal data management unit 102 and for which detailed information is extracted. . Thereby, the blood glucose level / meal graph generated by the graph generation unit 103 is stored in the graph DB 403 and managed.
グラフ表示制御部104は、グラフ生成部103により生成された血糖値・食事グラフを、ユーザ端末2、医師端末4、及び栄養士端末5に表示させる制御を実行する。これにより、ユーザU、医師D、及び管理栄養士Mは、血糖値の被測定者の食事の内容と血糖値との関係を容易に把握することができるようになる。なお、ユーザ端末2等に表示される血糖値・食事グラフの具体例については図6を参照して後述する。
The graph display control unit 104 executes control to display the blood sugar level / meal graph generated by the graph generation unit 103 on the user terminal 2, the doctor terminal 4, and the dietitian terminal 5. As a result, the user U, the doctor D, and the dietetic dietitian M can easily grasp the relationship between the blood glucose level and the content of the subject's meal of the blood glucose level. In addition, the specific example of the blood glucose level / meal graph displayed on user terminal 2 grade | etc., Is later mentioned with reference to FIG.
活動データ取得部105は、ユーザUの活動に関する経時的な情報を活動データとして取得する。活動データには、ユーザUの過去のスケジュールが少なくとも含まれる。このため、活動データを参照することにより、ある日ある時間においてユーザUがどのような行動をとっていたのかを把握することが可能となる。なお、活動データを取得する具体的な手法は特に限定されない。例えば、ユーザ端末2が備える一般的なスケジュール管理機能により記憶され管理されているユーザUのスケジュールを活動データとして取得してもよい。また例えば、ユーザUによりユーザ端末2に入力された情報を活動データとして取得してもよい。活動データ取得部により取得された活動データは、活動DB404に記憶されて管理される。
The activity data acquisition unit 105 acquires temporal information on the activity of the user U as activity data. The activity data at least includes the past schedule of the user U. Therefore, by referring to the activity data, it becomes possible to grasp what action the user U has taken in a certain day at a certain time. The specific method for acquiring activity data is not particularly limited. For example, the schedule of the user U stored and managed by the general schedule management function of the user terminal 2 may be acquired as activity data. Alternatively, for example, information input to the user terminal 2 by the user U may be acquired as activity data. The activity data acquired by the activity data acquisition unit is stored in the activity DB 404 and managed.
データ分析部106は、血糖値データと、食事データと、活動データとに基づいて、ユーザUの食事の内容及び活動の内容が血糖値の変化に与える影響について分析を行う。データ分析部106による各種データの分析手法は特に限定されない。例えば人工知能(AI)を用いて各種データの分析を行ってもよい。血糖値データ、食事データ、及び活動データは、蓄積されていくことにより、ユーザUの体質の特徴を示す情報としての信憑性が高くなる。即ち、こういったタイミングでこういった類の食事をとった場合に血糖値が上昇し易いとか、こういったタイミングでこういった類の食事をとった場合にはあまり血糖値が上昇しないといった、ユーザUの体質の特徴が次第に明確化される。このため、サーバ1に蓄積されたユーザUの血糖値データ、食事データ、及び活動データを分析した結果は、ユーザUの健康を維持するために有効な情報として利用することができる。即ち、データ分析部106による分析の結果(以下「分析データ」と呼ぶ)は、医師DによるユーザUの健康指導や、管理栄養士MによるユーザUの栄養指導をサポートするための情報として利用することができる。
また、分析データは、ユーザ端末2から出力される、後述するアラート情報を生成する際にも利用される。 Thedata analysis unit 106 analyzes the influence of the contents of the meal of the user U and the contents of the activity on the change of the blood glucose level, based on the blood glucose level data, the diet data, and the activity data. The analysis method of various data by the data analysis unit 106 is not particularly limited. For example, artificial intelligence (AI) may be used to analyze various data. The blood sugar level data, the meal data, and the activity data are accumulated, thereby increasing the credibility as information indicating the characteristic of the user U's constitution. That is, if you take such kind of meal at such a timing, your blood sugar level tends to rise, or if you take such kind of meal at this timing, your blood sugar level does not rise so much , The characteristics of the constitution of the user U are gradually clarified. Therefore, the result of analyzing the blood sugar level data, the meal data, and the activity data of the user U accumulated in the server 1 can be used as effective information for maintaining the health of the user U. That is, the result of analysis by the data analysis unit 106 (hereinafter referred to as “analysis data”) is used as information for supporting health guidance of the user U by the doctor D and nutrition guidance of the user U by the management dietitian M. Can.
The analysis data is also used when generating alert information to be described later, which is output from theuser terminal 2.
また、分析データは、ユーザ端末2から出力される、後述するアラート情報を生成する際にも利用される。 The
The analysis data is also used when generating alert information to be described later, which is output from the
アラート管理部107は、分析データに基づいて、ユーザUが摂取しようとする食事に関する留意事項、及びユーザUの活動に関する留意事項を少なくとも含むアラート情報を生成する。また、アラート管理部107は、生成したアラート情報をユーザ端末2に出力させる制御を実行する。これにより、ユーザUは、血糖値を急激に上昇させるおそれのある食材や、血糖値を急激に上昇させるおそれのある活動を事前に知ることができる。
例えば、ユーザUの血糖値が、起床後所定の時間内に豆乳が含まれる料理を食べると急激に上昇する傾向にあるという情報が分析データに含まれていた場合を想定する。この場合、ユーザUの朝食時にリアルタイムで送信されて来た当該朝食の食事データに豆乳が含まれていると、アラート管理部107は、以下の処理を実行する。即ち、アラート管理部107は、ユーザUの朝食に血糖値を急激に上昇させる傾向にある豆乳が含まれている旨を示すアラート情報の生成と、当該アラート情報をユーザ端末2に出力させる制御を実行する。これにより、ユーザUは、血糖値を急激に上昇させる傾向にある豆乳が朝食に含まれていることを、朝食を食べる前に知ることができる。
また例えば、分析データに、ユーザUは21:00~22:00の間に入浴する確率が88%であるという情報と、ユーザUの血糖値が、入浴後所定の時間内にビールを飲むと急激に上昇する傾向にあるという情報とが含まれていた場合を想定する。この場合、アラート管理部107は、ユーザUが入浴する直前である確率が高い20:30前後に、入浴後所定の時間内にビールを飲むと急激に上昇する傾向にある旨を示すアラート情報の生成と、当該アラート情報をユーザ端末2に出力させる制御を実行する。これにより、ユーザUは、入浴後、所定の時間内にビールを飲むと血糖値を急激に上昇させる傾向にあることを、入浴直前に知ることができる。
このように、分析データは、医師Dや管理栄養士MによるユーザUに対する各種指導をサポートする役割を果たすだけではなく、ユーザ端末2から出力されるアラート情報を生成するための材料としての役割も果たす。 Based on the analysis data, thealert management unit 107 generates alert information including at least notes on the meal that the user U intends to ingest, and notes on the activity of the user U. The alert management unit 107 also executes control to cause the user terminal 2 to output the generated alert information. As a result, the user U can know in advance a food material that may cause the blood sugar level to rise rapidly and an activity that may cause the blood sugar level to rise rapidly.
For example, it is assumed that the analysis data includes information that the user U's blood glucose level tends to rise sharply when eating a dish containing soymilk within a predetermined time after getting up. In this case, if soymilk is included in the meal data of the breakfast transmitted in real time at the time of the breakfast of the user U, thealert management unit 107 executes the following process. That is, the alert management unit 107 generates alert information indicating that soymilk having a tendency to rapidly increase the blood sugar level is included in the breakfast of the user U, and controls the user terminal 2 to output the alert information. Run. By this, the user U can know that soymilk, which tends to raise the blood sugar level rapidly, is included in the breakfast before eating the breakfast.
Also, for example, if the analysis data shows that the probability that the user U takes a bath between 21:00 and 22:00 is 88% and the blood sugar level of the user U drinks beer within a predetermined time after bathing It is assumed that information is included that the information tends to rise sharply. In this case, thealert management unit 107 has alert information indicating that the beer U tends to rise sharply when drinking beer within a predetermined time after bathing at around 20:30, which is likely to be immediately before the user U takes a bath. The generation and control for causing the user terminal 2 to output the alert information are executed. Thereby, the user U can know immediately before bathing that, after taking a bath, drinking beer in a predetermined time tends to rapidly raise the blood sugar level.
Thus, the analysis data not only plays a role in supporting various instruction to the user U by the doctor D and the dietitian M, but also plays a role as a material for generating alert information output from theuser terminal 2 .
例えば、ユーザUの血糖値が、起床後所定の時間内に豆乳が含まれる料理を食べると急激に上昇する傾向にあるという情報が分析データに含まれていた場合を想定する。この場合、ユーザUの朝食時にリアルタイムで送信されて来た当該朝食の食事データに豆乳が含まれていると、アラート管理部107は、以下の処理を実行する。即ち、アラート管理部107は、ユーザUの朝食に血糖値を急激に上昇させる傾向にある豆乳が含まれている旨を示すアラート情報の生成と、当該アラート情報をユーザ端末2に出力させる制御を実行する。これにより、ユーザUは、血糖値を急激に上昇させる傾向にある豆乳が朝食に含まれていることを、朝食を食べる前に知ることができる。
また例えば、分析データに、ユーザUは21:00~22:00の間に入浴する確率が88%であるという情報と、ユーザUの血糖値が、入浴後所定の時間内にビールを飲むと急激に上昇する傾向にあるという情報とが含まれていた場合を想定する。この場合、アラート管理部107は、ユーザUが入浴する直前である確率が高い20:30前後に、入浴後所定の時間内にビールを飲むと急激に上昇する傾向にある旨を示すアラート情報の生成と、当該アラート情報をユーザ端末2に出力させる制御を実行する。これにより、ユーザUは、入浴後、所定の時間内にビールを飲むと血糖値を急激に上昇させる傾向にあることを、入浴直前に知ることができる。
このように、分析データは、医師Dや管理栄養士MによるユーザUに対する各種指導をサポートする役割を果たすだけではなく、ユーザ端末2から出力されるアラート情報を生成するための材料としての役割も果たす。 Based on the analysis data, the
For example, it is assumed that the analysis data includes information that the user U's blood glucose level tends to rise sharply when eating a dish containing soymilk within a predetermined time after getting up. In this case, if soymilk is included in the meal data of the breakfast transmitted in real time at the time of the breakfast of the user U, the
Also, for example, if the analysis data shows that the probability that the user U takes a bath between 21:00 and 22:00 is 88% and the blood sugar level of the user U drinks beer within a predetermined time after bathing It is assumed that information is included that the information tends to rise sharply. In this case, the
Thus, the analysis data not only plays a role in supporting various instruction to the user U by the doctor D and the dietitian M, but also plays a role as a material for generating alert information output from the
次に、図4A及び図4Bを参照して、血糖値DB401と、食事DBと402と、グラフDB403と、活動DB404との夫々に記憶されて管理されている各種データの具体例を説明する。
図4A及び図4Bは、血糖値DB401と、食事DBと402との夫々に記憶されて管理されている各種データの具体例を示す図である。 Next, specific examples of various data stored and managed in each of the bloodsugar level DB 401, the meal DB 402, the graph DB 403, and the activity DB 404 will be described with reference to FIGS. 4A and 4B.
FIGS. 4A and 4B are diagrams showing specific examples of various data stored and managed in each of the bloodsugar level DB 401, the meal DB and the meal DB 402. FIG.
図4A及び図4Bは、血糖値DB401と、食事DBと402との夫々に記憶されて管理されている各種データの具体例を示す図である。 Next, specific examples of various data stored and managed in each of the blood
FIGS. 4A and 4B are diagrams showing specific examples of various data stored and managed in each of the blood
図4Aは、血糖値DB401に記憶されて管理されている血糖値データの具体例を示す図である。なお、図4Aに示す例では、ユーザUの血糖値は10分おきに24時間継続的に計測されているものとする。
図4Aに示すように、血糖値データには、ユーザUを一意に特定するユーザIDと、ユーザ名と、血糖値が測定された日時と、血糖値を示す具体的な数値とが少なくとも含まれる。具体的には例えば、ユーザIDを「01234」とする「ユーザU1」の「2017年7月1日16:30」時点の血糖値は「95mg/dL」であることが血糖値データとして記憶されている。また、同ユーザU1の「2017年7月1日16:40」時点の血糖値は「97mg/dL」であることが記憶されている。このように、血糖値データは経時的に管理されている。なお、他の測定時刻におけるユーザU1の血糖値の詳細については、図4Aに示すとおりである。 FIG. 4A is a diagram showing a specific example of blood glucose level data stored and managed in the bloodglucose level DB 401. In the example shown in FIG. 4A, it is assumed that the blood glucose level of the user U is continuously measured every 10 minutes for 24 hours.
As shown in FIG. 4A, the blood glucose level data includes at least a user ID uniquely identifying the user U, a user name, a date and time when the blood glucose level was measured, and a specific numerical value indicating the blood glucose level. . Specifically, for example, it is stored as blood glucose level data that the blood glucose level at “July 1, 2017 16:30” of “user U1” with user ID “01234” is “95 mg / dL”. ing. In addition, it is stored that the blood glucose level at the time of "July 1, 2017 16:40" of the user U1 is "97 mg / dL". Thus, the blood glucose level data is managed over time. The details of the blood glucose level of the user U1 at another measurement time are as shown in FIG. 4A.
図4Aに示すように、血糖値データには、ユーザUを一意に特定するユーザIDと、ユーザ名と、血糖値が測定された日時と、血糖値を示す具体的な数値とが少なくとも含まれる。具体的には例えば、ユーザIDを「01234」とする「ユーザU1」の「2017年7月1日16:30」時点の血糖値は「95mg/dL」であることが血糖値データとして記憶されている。また、同ユーザU1の「2017年7月1日16:40」時点の血糖値は「97mg/dL」であることが記憶されている。このように、血糖値データは経時的に管理されている。なお、他の測定時刻におけるユーザU1の血糖値の詳細については、図4Aに示すとおりである。 FIG. 4A is a diagram showing a specific example of blood glucose level data stored and managed in the blood
As shown in FIG. 4A, the blood glucose level data includes at least a user ID uniquely identifying the user U, a user name, a date and time when the blood glucose level was measured, and a specific numerical value indicating the blood glucose level. . Specifically, for example, it is stored as blood glucose level data that the blood glucose level at “July 1, 2017 16:30” of “user U1” with user ID “01234” is “95 mg / dL”. ing. In addition, it is stored that the blood glucose level at the time of "July 1, 2017 16:40" of the user U1 is "97 mg / dL". Thus, the blood glucose level data is managed over time. The details of the blood glucose level of the user U1 at another measurement time are as shown in FIG. 4A.
図4Bは、食事DB402に記憶されて管理されている、食事データの具体例を示す図である。
図4Bに示すように、食事DB402には、ユーザUの食事内容に関する経時的な情報が含まれている。即ち、食事データには、ユーザUを一意に特定するユーザIDと、ユーザ名と、ユーザUが摂取を開始した日時と、料理が提供された場所に関する情報と、料理名と、食事画像データと、料理に含まれる栄養に関する情報とが含まれている。
具体的には例えば、ユーザU1が「2017年7月1日」の「7:00」に「自宅」で摂取した「お茶漬け」には、糖質が「60.0g」、カロリーが「282kcal」含まれている。また、ユーザU1が「2017年7月1日」の「12:00」に「○○軒」で摂取した「味噌ラーメン」には、糖質が「80.0g」、カロリーが「625kcal」が含まれている。なお、他の食事データの詳細については、図4Bに示すとおりである。 FIG. 4B is a diagram showing a specific example of meal data stored and managed in themeal DB 402. As shown in FIG.
As shown in FIG. 4B, themeal DB 402 includes temporal information on the meal contents of the user U. That is, the meal data includes a user ID uniquely identifying the user U, the user name, the date and time when the user U started taking the intake, information on the place where the food was provided, the dish name, the meal image data, , Contains information on nutrition contained in the dish.
Specifically, for example, “Ochazuke”, which the user U1 ingested at “7:00” on “July 1, 2017” at “home”, has “60.0 g” of carbohydrate and “282 kcal” in calories include. In addition, “Miso ramen” consumed by user U1 at “1 2:00” on “July 1, 2017” at “○」 ken ”contains 80.0 g of sugar and 625 kcal of calories. include. The details of the other meal data are as shown in FIG. 4B.
図4Bに示すように、食事DB402には、ユーザUの食事内容に関する経時的な情報が含まれている。即ち、食事データには、ユーザUを一意に特定するユーザIDと、ユーザ名と、ユーザUが摂取を開始した日時と、料理が提供された場所に関する情報と、料理名と、食事画像データと、料理に含まれる栄養に関する情報とが含まれている。
具体的には例えば、ユーザU1が「2017年7月1日」の「7:00」に「自宅」で摂取した「お茶漬け」には、糖質が「60.0g」、カロリーが「282kcal」含まれている。また、ユーザU1が「2017年7月1日」の「12:00」に「○○軒」で摂取した「味噌ラーメン」には、糖質が「80.0g」、カロリーが「625kcal」が含まれている。なお、他の食事データの詳細については、図4Bに示すとおりである。 FIG. 4B is a diagram showing a specific example of meal data stored and managed in the
As shown in FIG. 4B, the
Specifically, for example, “Ochazuke”, which the user U1 ingested at “7:00” on “July 1, 2017” at “home”, has “60.0 g” of carbohydrate and “282 kcal” in calories include. In addition, “Miso ramen” consumed by user U1 at “1 2:00” on “July 1, 2017” at “○」 ken ”contains 80.0 g of sugar and 625 kcal of calories. include. The details of the other meal data are as shown in FIG. 4B.
次に、図5を参照して、図3の機能的構成を有するサーバ1が実行するグラフ生成処理について説明する。
図5は、図3のサーバ1が実行するグラフ生成処理の流れを説明するフローチャートである。 Next, with reference to FIG. 5, graph generation processing executed by theserver 1 having the functional configuration of FIG. 3 will be described.
FIG. 5 is a flowchart for explaining the flow of graph generation processing executed by theserver 1 of FIG.
図5は、図3のサーバ1が実行するグラフ生成処理の流れを説明するフローチャートである。 Next, with reference to FIG. 5, graph generation processing executed by the
FIG. 5 is a flowchart for explaining the flow of graph generation processing executed by the
図5に示すように、サーバ1では、次のような一連の処理が実行される。
ステップS1において、血糖値データ取得部101は、ユーザ端末2から血糖値データが送信されて来たか否かを判定する。
ユーザ端末2から血糖値データが送信されて来るまでの間、ステップS1においてNOであると判定されて、処理はステップS1に戻され、ステップS1の処理が繰り返される。
これに対して、ユーザ端末2から血糖値データが送信されて来ると、ステップS1においてYESであると判定されて、処理はステップS2に進む。 As shown in FIG. 5, theserver 1 executes the following series of processing.
In step S1, the blood sugar leveldata acquisition unit 101 determines whether blood sugar level data has been transmitted from the user terminal 2.
Until blood sugar level data is transmitted from theuser terminal 2, it is determined as NO in step S1, the process is returned to step S1, and the process of step S1 is repeated.
On the other hand, when blood glucose level data is transmitted from theuser terminal 2, it is determined as YES in step S1, and the process proceeds to step S2.
ステップS1において、血糖値データ取得部101は、ユーザ端末2から血糖値データが送信されて来たか否かを判定する。
ユーザ端末2から血糖値データが送信されて来るまでの間、ステップS1においてNOであると判定されて、処理はステップS1に戻され、ステップS1の処理が繰り返される。
これに対して、ユーザ端末2から血糖値データが送信されて来ると、ステップS1においてYESであると判定されて、処理はステップS2に進む。 As shown in FIG. 5, the
In step S1, the blood sugar level
Until blood sugar level data is transmitted from the
On the other hand, when blood glucose level data is transmitted from the
ステップS2において、食事データ管理部102は、ユーザ端末2から食事データが送信されて来たか否かを判定する。
ユーザ端末2から食事データが送信されて来るまでの間、ステップS2においてNOであると判定されて、処理はステップS2に戻され、ステップS2の処理が繰り返される。
これに対して、ユーザ端末2から食事データが送信されて来ると、ステップS2においてYESであると判定されて、処理はステップS3に進む。
ステップS3において、食事データ管理部102は、食事データに含まれる、食事画像データの解析を行うことで詳細情報を抽出し、当該詳細情報を食事データに含めて管理する。
ステップS4において、グラフ生成部103は、ステップS1の処理で取得された血糖値データと、ステップS2の処理で取得され、ステップS3の処理で食事画像データから詳細情報が抽出された食事データとに基づいて、血糖値・食事グラフを生成する。これによりグラフ生成処理は終了する。 In step S2, the mealdata management unit 102 determines whether or not meal data has been transmitted from the user terminal 2.
Until meal data is transmitted from theuser terminal 2, it is determined as NO in step S2, the process is returned to step S2, and the process of step S2 is repeated.
On the other hand, when meal data is transmitted from theuser terminal 2, it is determined as YES in step S2, and the process proceeds to step S3.
In step S3, the mealdata management unit 102 analyzes the meal image data included in the meal data to extract detailed information, and includes the detailed information in the meal data for management.
In step S4, thegraph generation unit 103 uses the blood sugar level data acquired in the process of step S1 and the meal data acquired in the process of step S2 and in which the detailed information is extracted from the meal image data in the process of step S3. Based on the blood sugar level / meal graph is generated. This completes the graph generation process.
ユーザ端末2から食事データが送信されて来るまでの間、ステップS2においてNOであると判定されて、処理はステップS2に戻され、ステップS2の処理が繰り返される。
これに対して、ユーザ端末2から食事データが送信されて来ると、ステップS2においてYESであると判定されて、処理はステップS3に進む。
ステップS3において、食事データ管理部102は、食事データに含まれる、食事画像データの解析を行うことで詳細情報を抽出し、当該詳細情報を食事データに含めて管理する。
ステップS4において、グラフ生成部103は、ステップS1の処理で取得された血糖値データと、ステップS2の処理で取得され、ステップS3の処理で食事画像データから詳細情報が抽出された食事データとに基づいて、血糖値・食事グラフを生成する。これによりグラフ生成処理は終了する。 In step S2, the meal
Until meal data is transmitted from the
On the other hand, when meal data is transmitted from the
In step S3, the meal
In step S4, the
次に、図6を参照して、図3のサーバ1が実行するグラフ生成処理により生成される血糖値・食事グラフの具体例について説明する。
図6は、図3のサーバ1が実行するグラフ生成処理により生成される血糖値・食事グラフの一例を示すイメージ図である。 Next, with reference to FIG. 6, the specific example of the blood glucose level / meal graph produced | generated by the graph production | generation process which theserver 1 of FIG. 3 performs is demonstrated.
FIG. 6 is an image diagram showing an example of a blood glucose level / meal graph generated by the graph generation process executed by theserver 1 of FIG. 3.
図6は、図3のサーバ1が実行するグラフ生成処理により生成される血糖値・食事グラフの一例を示すイメージ図である。 Next, with reference to FIG. 6, the specific example of the blood glucose level / meal graph produced | generated by the graph production | generation process which the
FIG. 6 is an image diagram showing an example of a blood glucose level / meal graph generated by the graph generation process executed by the
図6に示すように、血糖値・食事グラフBFは、ユーザUの血糖値の経時的な数値を示す血糖値推移グラフBをベースに、食事データの内容を示す情報F1乃至F3を重畳的に表示させたものである。具体的には、血糖値・食事グラフBFは、横軸を日時とし、縦軸を血糖値(単位:mg/dL)とする血糖値推移グラフBをベースに、食事をとった日時と食事の内容とを示す情報F1乃至F3を重畳的に表示させている。これにより、血糖値・食事グラフBFを一見すれば、ユーザUが実際に摂取した料理の内容と、ユーザUの血糖値の変化との関係を容易に把握することができる。
具体的には、ユーザUの血糖値は、2017年7月1日の0時から7時まではおおよそ80~90mg/dL程度で推移している。しかし、同日の7時に朝食として自宅でお茶漬けを摂取した直後の8時には160mg/dL程度に達し、9時には午前中のピーク値である170mg/dL程度に達している。その後、血糖値は、12時まで下降し続けているが、12時に昼食として「○○軒」というラーメン屋で味噌ラーメンを摂取した直後の13時には、再び170mg/dL程度に達している。さらにその後、血糖値は、18時まで下降し続けているが、18時に夕食として「○○屋」といううなぎ屋でうな重を摂取した直後の19時には、この日一番高い値である180mg/dL程度に達している。
上述したように、血糖値・食事グラフBFは、ユーザUに対する医師Dや管理栄養士Mによる各種指導の際に有効な情報として利用することができる。具体的には例えば、医師DからユーザUに対し、以下のような健康指導が行われることが想定できる。
即ち、医師Dは、図6に示す血糖値・食事グラフBFを確認することにより、ユーザUの血糖値が、朝食、昼食、及び夕食の夫々の直後にいずれも急上昇し、ピークP1乃至P3の夫々を迎えていることを把握する。しかしながら、昼食後のピークP2、及び夕食後のピークP3は、いずれも食事開始後1時間程度で到来しているのに対し、朝食のピークP1だけが食事開始後2時間程度で到来している。そこで、医師Dは、ユーザUに対する問診において、朝食後にどのような活動を行ったかを確認する。これに対し、ユーザUは、朝食後は出勤のために8時に自宅を出発するが、健康のために勤務先まで1時間程度徒歩で通勤している旨を告げる。すると、医師Dは、再度血糖値・食事グラフを確認し、ユーザUの血糖値が、朝食開始後1時間である8時まで急上昇し、その後さらに1時間、グラフの傾きは緩やかになるが9時まで上昇することによってピークP1を迎えていることを確認する。これにより、医師Dは、ユーザUが、食事後に運動をすると血糖値が上昇する傾向にある体質であることを推測し、この推測に基づいた健康指導や、さらに詳しい検査を行う等の処置をとることができる。
このように、血糖値・食事グラフBFから、医師Dや管理栄養士Mは、ユーザUにおける未病や美容のための指示を的確に行うことが可能となる。 As shown in FIG. 6, the blood glucose level / meal graph BF superimposes information F1 to F3 indicating the contents of the meal data based on the blood glucose level transition graph B showing the time-lapse numerical value of the user U's blood glucose level. It is displayed. Specifically, the blood glucose level / diet graph BF has a horizontal axis as a date and a vertical axis as a blood glucose level (unit: mg / dL) based on a blood glucose level transition graph B, the date and time when the meal was taken and Information F1 to F3 indicating contents are displayed in a superimposed manner. As a result, by looking at the blood glucose level / meal graph BF, it is possible to easily grasp the relationship between the contents of the dish actually consumed by the user U and the change in the blood glucose level of the user U.
Specifically, the blood glucose level of the user U is approximately 80 to 90 mg / dL from 0 o'clock to 7 o'clock on July 1, 2017. However, it reached about 160 mg / dL at about 8:00 immediately after taking tea pickling at home as breakfast at 7:00 on the same day, and reached about 170 mg / dL which is the peak value in the morning at 9:00. After that, the blood sugar level continues to decrease until 12 o'clock, but reaches around 170 mg / dL again at 13 o'clock immediately after consuming miso ramen at a ramen shop "○ 軒 ken" as lunch at 12 o'clock. After that, the blood sugar level continues to decrease until 18 o'clock, but at 19 o'clock immediately after taking a nape at an eels called "○ ○ ya" as dinner at 18 o'clock, 180 mg / dL which is the highest value on this day The degree has reached.
As described above, the blood glucose level / diet graph BF can be used as effective information when the doctor D or the registered dietitian M instructs the user U to perform various instructions. Specifically, for example, it can be assumed that the following health instruction is given from the doctor D to the user U:
That is, the doctor D confirms the blood sugar level / meal graph BF shown in FIG. 6, and the blood sugar level of the user U suddenly rises immediately after each of breakfast, lunch, and dinner, and peaks P1 to P3 are obtained. Understand that they are meeting each other. However, while peak P2 after lunch and peak P3 after dinner both arrive about 1 hour after the meal start, only breakfast peak P1 arrives about 2 hours after the meal start . Then, the doctor D confirms what kind of activity was performed after breakfast in the interview with the user U. On the other hand, the user U leaves his home at 8 o'clock for work after breakfast, but tells that he is commuting to work on foot for about an hour for health. Then, Doctor D checks the blood sugar level / meal graph again, and the user U's blood sugar level rapidly rises until 8:00, which is one hour after the start of breakfast, and then the inclination of the graph becomes gentle for one more hour. Confirm that peak P1 is reached by rising to time. Thereby, the doctor D estimates that the user U has a tendency to rise in blood sugar level when exercised after a meal, and performs treatment such as health guidance based on this estimation and further detailed examination. It can be taken.
As described above, from the blood sugar level / meal graph BF, the doctor D and the dietetic dietitian M can accurately give instructions for the user U for no disease and for beauty.
具体的には、ユーザUの血糖値は、2017年7月1日の0時から7時まではおおよそ80~90mg/dL程度で推移している。しかし、同日の7時に朝食として自宅でお茶漬けを摂取した直後の8時には160mg/dL程度に達し、9時には午前中のピーク値である170mg/dL程度に達している。その後、血糖値は、12時まで下降し続けているが、12時に昼食として「○○軒」というラーメン屋で味噌ラーメンを摂取した直後の13時には、再び170mg/dL程度に達している。さらにその後、血糖値は、18時まで下降し続けているが、18時に夕食として「○○屋」といううなぎ屋でうな重を摂取した直後の19時には、この日一番高い値である180mg/dL程度に達している。
上述したように、血糖値・食事グラフBFは、ユーザUに対する医師Dや管理栄養士Mによる各種指導の際に有効な情報として利用することができる。具体的には例えば、医師DからユーザUに対し、以下のような健康指導が行われることが想定できる。
即ち、医師Dは、図6に示す血糖値・食事グラフBFを確認することにより、ユーザUの血糖値が、朝食、昼食、及び夕食の夫々の直後にいずれも急上昇し、ピークP1乃至P3の夫々を迎えていることを把握する。しかしながら、昼食後のピークP2、及び夕食後のピークP3は、いずれも食事開始後1時間程度で到来しているのに対し、朝食のピークP1だけが食事開始後2時間程度で到来している。そこで、医師Dは、ユーザUに対する問診において、朝食後にどのような活動を行ったかを確認する。これに対し、ユーザUは、朝食後は出勤のために8時に自宅を出発するが、健康のために勤務先まで1時間程度徒歩で通勤している旨を告げる。すると、医師Dは、再度血糖値・食事グラフを確認し、ユーザUの血糖値が、朝食開始後1時間である8時まで急上昇し、その後さらに1時間、グラフの傾きは緩やかになるが9時まで上昇することによってピークP1を迎えていることを確認する。これにより、医師Dは、ユーザUが、食事後に運動をすると血糖値が上昇する傾向にある体質であることを推測し、この推測に基づいた健康指導や、さらに詳しい検査を行う等の処置をとることができる。
このように、血糖値・食事グラフBFから、医師Dや管理栄養士Mは、ユーザUにおける未病や美容のための指示を的確に行うことが可能となる。 As shown in FIG. 6, the blood glucose level / meal graph BF superimposes information F1 to F3 indicating the contents of the meal data based on the blood glucose level transition graph B showing the time-lapse numerical value of the user U's blood glucose level. It is displayed. Specifically, the blood glucose level / diet graph BF has a horizontal axis as a date and a vertical axis as a blood glucose level (unit: mg / dL) based on a blood glucose level transition graph B, the date and time when the meal was taken and Information F1 to F3 indicating contents are displayed in a superimposed manner. As a result, by looking at the blood glucose level / meal graph BF, it is possible to easily grasp the relationship between the contents of the dish actually consumed by the user U and the change in the blood glucose level of the user U.
Specifically, the blood glucose level of the user U is approximately 80 to 90 mg / dL from 0 o'clock to 7 o'clock on July 1, 2017. However, it reached about 160 mg / dL at about 8:00 immediately after taking tea pickling at home as breakfast at 7:00 on the same day, and reached about 170 mg / dL which is the peak value in the morning at 9:00. After that, the blood sugar level continues to decrease until 12 o'clock, but reaches around 170 mg / dL again at 13 o'clock immediately after consuming miso ramen at a ramen shop "○ 軒 ken" as lunch at 12 o'clock. After that, the blood sugar level continues to decrease until 18 o'clock, but at 19 o'clock immediately after taking a nape at an eels called "○ ○ ya" as dinner at 18 o'clock, 180 mg / dL which is the highest value on this day The degree has reached.
As described above, the blood glucose level / diet graph BF can be used as effective information when the doctor D or the registered dietitian M instructs the user U to perform various instructions. Specifically, for example, it can be assumed that the following health instruction is given from the doctor D to the user U:
That is, the doctor D confirms the blood sugar level / meal graph BF shown in FIG. 6, and the blood sugar level of the user U suddenly rises immediately after each of breakfast, lunch, and dinner, and peaks P1 to P3 are obtained. Understand that they are meeting each other. However, while peak P2 after lunch and peak P3 after dinner both arrive about 1 hour after the meal start, only breakfast peak P1 arrives about 2 hours after the meal start . Then, the doctor D confirms what kind of activity was performed after breakfast in the interview with the user U. On the other hand, the user U leaves his home at 8 o'clock for work after breakfast, but tells that he is commuting to work on foot for about an hour for health. Then, Doctor D checks the blood sugar level / meal graph again, and the user U's blood sugar level rapidly rises until 8:00, which is one hour after the start of breakfast, and then the inclination of the graph becomes gentle for one more hour. Confirm that peak P1 is reached by rising to time. Thereby, the doctor D estimates that the user U has a tendency to rise in blood sugar level when exercised after a meal, and performs treatment such as health guidance based on this estimation and further detailed examination. It can be taken.
As described above, from the blood sugar level / meal graph BF, the doctor D and the dietetic dietitian M can accurately give instructions for the user U for no disease and for beauty.
以上、本発明の一実施形態について説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, A deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention It is.
例えば、上述した実施形態では、血糖値・食事グラフには、食事画像データを解析することで抽出された詳細情報が表示されるが、当該詳細情報を表示させず、食事画像データのみを表示させてもよい。この場合、図5に示すフローチャートにおけるステップS3の処理を省略することができる。なお、詳細情報が表示させず、食事画像データのみが血糖値・食事グラフに表示される場合であっても、食事画像データを一見することにより大抵の食事についてはその内容を把握することは可能である。
For example, in the embodiment described above, although detailed information extracted by analyzing meal image data is displayed on the blood glucose level / meal graph, only the meal image data is displayed without displaying the detailed information. May be In this case, the process of step S3 in the flowchart shown in FIG. 5 can be omitted. Even if only the meal image data is displayed on the blood sugar level / meal graph without displaying detailed information, it is possible to grasp the contents of most meals by looking at the meal image data It is.
また、上述した実施形態では、ユーザUの血糖値は血糖値測定器3によって10分おきに24時間継続的に計測されているが、血糖値測定器3がユーザUの血糖値を測定するタイミングは特に限定されない。上述の血糖値データ取得部101が血糖値データを取得するタイミングと同様に、s秒おき、m分おき、h時間おき等任意のタイミングでユーザUの血糖値を計測してよい。
In the above-described embodiment, the blood glucose level of the user U is continuously measured by the blood glucose level measuring device 3 every 10 minutes for 24 hours, but the timing at which the blood glucose level measuring device 3 measures the blood glucose level of the user U Is not particularly limited. The blood sugar level of the user U may be measured at any timing, such as every s seconds, every m minutes, every h hours, etc., as with the timing when the blood sugar level data acquisition unit 101 described above acquires blood sugar level data.
また、上述した実施形態では、血糖値・食事グラフの利用主体は、ユーザU、医師D、及び管理栄養士Mとしているが、これら利用主体は例示であり、あらゆる立場にある者が血糖値・食事グラフの利用主体となり得る。具体的には例えば、ユーザUの家族や、ユーザUが通うフィットネスクラブの専属トレーナー等も、医師端末4や栄養士端末5と同様の情報処理装置を操作することにより血糖値・食事グラフを利用することができる。これにより、あらゆる立場にある者がユーザUの健康に関与することができる。
In the embodiment described above, the users of the blood sugar level / meal graph are the user U, the doctor D, and the management dietitian M, but these users are examples, and those in all positions have blood sugar level / meal It can be a subject of graph use. Specifically, for example, a family of user U, an exclusive trainer of a fitness club to which user U goes, etc. also uses the blood glucose level / meal graph by operating the information processing apparatus similar to the doctor terminal 4 or the dietitian terminal 5 be able to. Thereby, persons in all positions can be involved in the health of the user U.
また、図2に示す各ハードウェア構成は、本発明の目的を達成するための例示に過ぎず、特に限定されない。
Further, each hardware configuration shown in FIG. 2 is merely an example for achieving the object of the present invention, and is not particularly limited.
また、図3に示す機能ブロック図は、例示に過ぎず、特に限定されない。即ち、上述した一連の処理を全体として実行出来る機能が情報処理システムに備えられていれば足り、この機能を実現するためにどのような機能ブロックを用いるのかは、特に図3の例に限定されない。
また、1つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体との組み合わせで構成してもよい。 Further, the functional block diagram shown in FIG. 3 is merely an example and is not particularly limited. That is, it is sufficient if the information processing system is equipped with a function capable of executing the above-described series of processes as a whole, and what functional block is used to realize this function is not particularly limited to the example of FIG. .
Also, one functional block may be configured as a single piece of hardware or in combination with a single piece of software.
また、1つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体との組み合わせで構成してもよい。 Further, the functional block diagram shown in FIG. 3 is merely an example and is not particularly limited. That is, it is sufficient if the information processing system is equipped with a function capable of executing the above-described series of processes as a whole, and what functional block is used to realize this function is not particularly limited to the example of FIG. .
Also, one functional block may be configured as a single piece of hardware or in combination with a single piece of software.
各機能ブロックの処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。
コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えばサーバの他汎用のスマートフォンやパーソナルコンピュータであってもよい。 When the process of each functional block is to be executed by software, a program constituting the software is installed on a computer or the like from a network or a recording medium.
The computer may be a computer incorporated in dedicated hardware. In addition, the computer may be a computer capable of executing various functions by installing various programs, such as a general-purpose smartphone or personal computer other than a server.
コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えばサーバの他汎用のスマートフォンやパーソナルコンピュータであってもよい。 When the process of each functional block is to be executed by software, a program constituting the software is installed on a computer or the like from a network or a recording medium.
The computer may be a computer incorporated in dedicated hardware. In addition, the computer may be a computer capable of executing various functions by installing various programs, such as a general-purpose smartphone or personal computer other than a server.
このようなプログラムを含む記録媒体は、各ユーザにプログラムを提供するために装置本体とは別に配布される、リムーバブルメディアにより構成されるだけではなく、装置本体に予め組み込まれた状態で各ユーザに提供される記録媒体等で構成される。
A recording medium including such a program is distributed not only by a removable medium separately from the apparatus main body to provide the program to each user, but is configured not only by removable media but also by each user while being incorporated in the apparatus main body. It comprises the provided recording medium and the like.
なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に添って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的或いは個別に実行される処理をも含むものである。
例えば、上述の図5のグラフ生成処理では、血糖値データが送信されて来たか否かの判定(ステップS1の判定であり、以下「第1の判定」と呼ぶ)の後に、食事データが送信されて来たか否かの判定(ステップS2の判定であり、以下「第2の判定」と呼ぶ)が行われる。しかしながら、サーバ1において血糖値・食事グラフが生成される時点(ステップS4の処理時点)で、第1の判定及び第2の判定の夫々として「YES」の判定がなされ、かつ、食事画像データから詳細情報の抽出がなされていれば足りる。このため、第1の判定と第2の判定の各タイミングは特に限定されない。また、第1の判定と第2の判定は夫々並列的に行われてもよい。 In the present specification, in the step of describing the program to be recorded on the recording medium, the processing performed chronologically according to the order is, of course, parallel or individually not necessarily necessarily chronologically processing. It also includes the processing to be performed.
For example, in the graph generation process of FIG. 5 described above, meal data is transmitted after determination of whether blood sugar level data has been transmitted (determination in step S1 and hereinafter referred to as “first determination”). It is determined whether or not it has been received (this is the determination of step S2, hereinafter referred to as "the second determination"). However, at the time when the blood glucose level / meal graph is generated in server 1 (at the time of processing in step S4), “YES” is determined as each of the first determination and the second determination, and from meal image data It is sufficient if detailed information is extracted. Therefore, the timings of the first determination and the second determination are not particularly limited. The first determination and the second determination may be performed in parallel, respectively.
例えば、上述の図5のグラフ生成処理では、血糖値データが送信されて来たか否かの判定(ステップS1の判定であり、以下「第1の判定」と呼ぶ)の後に、食事データが送信されて来たか否かの判定(ステップS2の判定であり、以下「第2の判定」と呼ぶ)が行われる。しかしながら、サーバ1において血糖値・食事グラフが生成される時点(ステップS4の処理時点)で、第1の判定及び第2の判定の夫々として「YES」の判定がなされ、かつ、食事画像データから詳細情報の抽出がなされていれば足りる。このため、第1の判定と第2の判定の各タイミングは特に限定されない。また、第1の判定と第2の判定は夫々並列的に行われてもよい。 In the present specification, in the step of describing the program to be recorded on the recording medium, the processing performed chronologically according to the order is, of course, parallel or individually not necessarily necessarily chronologically processing. It also includes the processing to be performed.
For example, in the graph generation process of FIG. 5 described above, meal data is transmitted after determination of whether blood sugar level data has been transmitted (determination in step S1 and hereinafter referred to as “first determination”). It is determined whether or not it has been received (this is the determination of step S2, hereinafter referred to as "the second determination"). However, at the time when the blood glucose level / meal graph is generated in server 1 (at the time of processing in step S4), “YES” is determined as each of the first determination and the second determination, and from meal image data It is sufficient if detailed information is extracted. Therefore, the timings of the first determination and the second determination are not particularly limited. The first determination and the second determination may be performed in parallel, respectively.
以上まとめると、本発明が適用される情報処理装置は、次のような構成を取れば足り、各種各様な実施形態を取ることができる。
即ち、本発明が適用される情報処理装置(例えば図1のサーバ1)は、
血糖値の経時的な情報である血糖値データを取得する血糖値データ取得手段(例えば図3の血糖値データ取得部101)と、
前記血糖値の被測定者(例えば図1のユーザU)の食事に関する経時的な情報である食事データを取得する食事データ取得手段(例えば図3の食事データ管理部102)と、
前記血糖値データ取得手段により取得された前記血糖値データと、前記食事データ取得手段により取得された前記食事データとに基づいて、前記被測定者の血糖値の経時的な変化を表す第1グラフ(例えば図6の血糖値推移グラフB)に、前記被測定者の食事の内容を示す情報(例えば図6の食事データの内容を示す情報F1乃至F3)を重畳的に表示させた第2グラフ(例えば図6の血糖値・食事グラフBF)を生成するグラフ生成手段(例えばグラフ生成部103)と、
を備える。
これにより、血糖値の被測定者が摂取した食事の内容と血糖値との関係を把握することができるグラフを生成することができる。 In summary, the information processing apparatus to which the present invention is applied only needs to have the following configuration, and various various embodiments can be taken.
That is, an information processing apparatus (for example, theserver 1 in FIG. 1) to which the present invention is applied is
Blood glucose level data acquisition means (for example, the blood glucose leveldata acquisition unit 101 of FIG. 3) for acquiring blood glucose level data that is temporal information of the blood glucose level;
A meal data acquisition unit (e.g., the mealdata management unit 102 in FIG. 3) for acquiring meal data that is temporal information related to the meal of the subject of the blood glucose level (e.g., the user U in FIG. 1);
A first graph showing temporal changes in blood glucose level of the subject based on the blood glucose level data acquired by the blood glucose level data acquiring unit and the meal data acquired by the meal data acquiring unit A second graph in which information indicating contents of the meal of the subject (for example, information F1 to F3 indicating contents of meal data of FIG. 6) is superimposed on (eg, blood sugar level transition graph B of FIG. 6) Graph generation means (for example, the graph generation unit 103) for generating (for example, the blood sugar level / meal graph BF in FIG. 6);
Equipped with
As a result, it is possible to generate a graph capable of grasping the relationship between the content of the meal consumed by the subject whose blood glucose level is ingested and the blood glucose level.
即ち、本発明が適用される情報処理装置(例えば図1のサーバ1)は、
血糖値の経時的な情報である血糖値データを取得する血糖値データ取得手段(例えば図3の血糖値データ取得部101)と、
前記血糖値の被測定者(例えば図1のユーザU)の食事に関する経時的な情報である食事データを取得する食事データ取得手段(例えば図3の食事データ管理部102)と、
前記血糖値データ取得手段により取得された前記血糖値データと、前記食事データ取得手段により取得された前記食事データとに基づいて、前記被測定者の血糖値の経時的な変化を表す第1グラフ(例えば図6の血糖値推移グラフB)に、前記被測定者の食事の内容を示す情報(例えば図6の食事データの内容を示す情報F1乃至F3)を重畳的に表示させた第2グラフ(例えば図6の血糖値・食事グラフBF)を生成するグラフ生成手段(例えばグラフ生成部103)と、
を備える。
これにより、血糖値の被測定者が摂取した食事の内容と血糖値との関係を把握することができるグラフを生成することができる。 In summary, the information processing apparatus to which the present invention is applied only needs to have the following configuration, and various various embodiments can be taken.
That is, an information processing apparatus (for example, the
Blood glucose level data acquisition means (for example, the blood glucose level
A meal data acquisition unit (e.g., the meal
A first graph showing temporal changes in blood glucose level of the subject based on the blood glucose level data acquired by the blood glucose level data acquiring unit and the meal data acquired by the meal data acquiring unit A second graph in which information indicating contents of the meal of the subject (for example, information F1 to F3 indicating contents of meal data of FIG. 6) is superimposed on (eg, blood sugar level transition graph B of FIG. 6) Graph generation means (for example, the graph generation unit 103) for generating (for example, the blood sugar level / meal graph BF in FIG. 6);
Equipped with
As a result, it is possible to generate a graph capable of grasping the relationship between the content of the meal consumed by the subject whose blood glucose level is ingested and the blood glucose level.
前記食事データには、前記被測定者の食事の内容が撮像された画像のデータである食事画像データと、当該画像が撮像された日時に関する情報とが少なくとも含まれ、
前記食事画像データを解析することにより、前記被測定者が摂取した食事について、使用された食材、及び糖質量に関する情報を少なくとも含む詳細情報を抽出する詳細情報抽出手段(例えば図3の食事データ管理部102)
をさらに備えることができる。
これにより、血糖値の被測定者が摂取した食事の詳細情報を含む具体的な内容と血糖値との関係を把握することができるグラフを生成することができる。 The meal data includes at least meal image data, which is data of an image obtained by capturing the content of the meal of the subject, and information on date and time when the image is captured,
Detailed information extraction means for extracting detailed information including at least information on used foodstuffs and sugar mass about the meal consumed by the subject by analyzing the meal image data (e.g. Part 102)
Can further be provided.
In this way, it is possible to generate a graph capable of grasping the relationship between the specific content including the detailed information of the meal consumed by the subject of the blood glucose level and the blood glucose level.
前記食事画像データを解析することにより、前記被測定者が摂取した食事について、使用された食材、及び糖質量に関する情報を少なくとも含む詳細情報を抽出する詳細情報抽出手段(例えば図3の食事データ管理部102)
をさらに備えることができる。
これにより、血糖値の被測定者が摂取した食事の詳細情報を含む具体的な内容と血糖値との関係を把握することができるグラフを生成することができる。 The meal data includes at least meal image data, which is data of an image obtained by capturing the content of the meal of the subject, and information on date and time when the image is captured,
Detailed information extraction means for extracting detailed information including at least information on used foodstuffs and sugar mass about the meal consumed by the subject by analyzing the meal image data (e.g. Part 102)
Can further be provided.
In this way, it is possible to generate a graph capable of grasping the relationship between the specific content including the detailed information of the meal consumed by the subject of the blood glucose level and the blood glucose level.
また、前記被測定者の活動に関する経時的な情報である活動データを取得する活動データ取得手段(例えば図3の活動データ取得部105)と、
前記血糖値データと、前記食事データ、前記活動データとに基づいて、前記被測定者の食事の内容及び活動の内容が血糖値の変化に与える影響についての分析を行うデータ分析手段(例えば図3のデータ分析部106)と、
前記データ分析手段による分析の結果である分析データに基づいて、前記被測定者が摂取しようとする食事に関する留意事項、及び前記被測定者の活動に関する留意事項のうち少なくとも一方を含むアラート情報を生成し、生成したアラート情報を前記被測定者が操作する情報処理端末に出力させる制御を実行するアラート管理手段(例えば図3のアラート管理部107)と、
をさらに備えることができる。
これにより、血糖値の被測定者は、血糖値を急激に上昇させるおそれのある食材や、血糖値を急激に上昇させるおそれのある活動を事前に知ることができる。 Also, an activity data acquisition unit (e.g., the activitydata acquisition unit 105 in FIG. 3) that acquires activity data that is temporal information related to the activity of the subject.
Data analysis means for analyzing the influence of the contents of the meal of the subject and the contents of the activity on the change of the blood glucose level based on the blood glucose level data, the diet data, and the activity data (for example, FIG. 3) Data analysis unit 106) of
Based on analysis data obtained as a result of analysis by the data analysis means, alert information is generated including at least one of notes on the diet the subject is about to ingest, and notes on the activity of the subject. An alert management unit (for example, thealert management unit 107 in FIG. 3) that executes control to cause the information processing terminal operated by the subject to output the generated alert information;
Can further be provided.
As a result, the subject whose blood glucose level is to be measured can know in advance foods that may cause the blood glucose level to rise rapidly and activities that may cause the blood glucose level to rise rapidly.
前記血糖値データと、前記食事データ、前記活動データとに基づいて、前記被測定者の食事の内容及び活動の内容が血糖値の変化に与える影響についての分析を行うデータ分析手段(例えば図3のデータ分析部106)と、
前記データ分析手段による分析の結果である分析データに基づいて、前記被測定者が摂取しようとする食事に関する留意事項、及び前記被測定者の活動に関する留意事項のうち少なくとも一方を含むアラート情報を生成し、生成したアラート情報を前記被測定者が操作する情報処理端末に出力させる制御を実行するアラート管理手段(例えば図3のアラート管理部107)と、
をさらに備えることができる。
これにより、血糖値の被測定者は、血糖値を急激に上昇させるおそれのある食材や、血糖値を急激に上昇させるおそれのある活動を事前に知ることができる。 Also, an activity data acquisition unit (e.g., the activity
Data analysis means for analyzing the influence of the contents of the meal of the subject and the contents of the activity on the change of the blood glucose level based on the blood glucose level data, the diet data, and the activity data (for example, FIG. 3) Data analysis unit 106) of
Based on analysis data obtained as a result of analysis by the data analysis means, alert information is generated including at least one of notes on the diet the subject is about to ingest, and notes on the activity of the subject. An alert management unit (for example, the
Can further be provided.
As a result, the subject whose blood glucose level is to be measured can know in advance foods that may cause the blood glucose level to rise rapidly and activities that may cause the blood glucose level to rise rapidly.
1:サーバ
2:ユーザ端末
3:血糖値測定器
4:医師端末
5:栄養士端末
11:CPU
12:ROM
13:RAM
14:バス
15:入出力インターフェース
16:タッチ操作入力部
17:表示部
18:入力部
19:記憶部
20:第1通信部
21:第2通信部
22:ドライブ
30:リムーバブルメディア
101:血糖値データ取得部
102:食事データ管理部
103:グラフ生成部
104:グラフ表示制御部
105:活動データ取得部
106:データ分析部
107:アラート管理部
401:血糖値DB
402:食事DB
403:グラフDB
404:活動DB
B:血糖値グラフ
BF:血糖値・食事グラフ
F1,F2,F3:食事データの内容を示す情報
U:ユーザ
N:ネットワーク 1: Server 2: User terminal 3: Blood glucose meter 4: Doctor terminal 5: Nutritionist terminal 11: CPU
12: ROM
13: RAM
14: bus 15: input / output interface 16: touch operation input unit 17: display unit 18: input unit 19: storage unit 20: first communication unit 21: second communication unit 22: drive 30: removable media 101: blood glucose level data Acquisition unit 102: Meal data management unit 103: Graph generation unit 104: Graph display control unit 105: Activity data acquisition unit 106: Data analysis unit 107: Alert management unit 401: Blood glucose level DB
402: Meal DB
403: Graph DB
404: Activity DB
B: Blood glucose level graph BF: Blood glucose level / meal graph F1, F2, F3: Information indicating contents of meal data U: User N: Network
2:ユーザ端末
3:血糖値測定器
4:医師端末
5:栄養士端末
11:CPU
12:ROM
13:RAM
14:バス
15:入出力インターフェース
16:タッチ操作入力部
17:表示部
18:入力部
19:記憶部
20:第1通信部
21:第2通信部
22:ドライブ
30:リムーバブルメディア
101:血糖値データ取得部
102:食事データ管理部
103:グラフ生成部
104:グラフ表示制御部
105:活動データ取得部
106:データ分析部
107:アラート管理部
401:血糖値DB
402:食事DB
403:グラフDB
404:活動DB
B:血糖値グラフ
BF:血糖値・食事グラフ
F1,F2,F3:食事データの内容を示す情報
U:ユーザ
N:ネットワーク 1: Server 2: User terminal 3: Blood glucose meter 4: Doctor terminal 5: Nutritionist terminal 11: CPU
12: ROM
13: RAM
14: bus 15: input / output interface 16: touch operation input unit 17: display unit 18: input unit 19: storage unit 20: first communication unit 21: second communication unit 22: drive 30: removable media 101: blood glucose level data Acquisition unit 102: Meal data management unit 103: Graph generation unit 104: Graph display control unit 105: Activity data acquisition unit 106: Data analysis unit 107: Alert management unit 401: Blood glucose level DB
402: Meal DB
403: Graph DB
404: Activity DB
B: Blood glucose level graph BF: Blood glucose level / meal graph F1, F2, F3: Information indicating contents of meal data U: User N: Network
Claims (5)
- 血糖値の経時的な情報である血糖値データを取得する血糖値データ取得手段と、
前記血糖値の被測定者の食事に関する経時的な情報である食事データを取得する食事データ取得手段と、
前記血糖値データ取得手段により取得された前記血糖値データと、前記食事データ取得手段により取得された前記食事データとに基づいて、前記被測定者の血糖値の経時的な変化を表す第1グラフに、前記被測定者の食事の内容を示す情報を重畳的に表示させた第2グラフを生成するグラフ生成手段と、
を備える情報処理装置。 Blood glucose level data acquisition means for acquiring blood glucose level data, which is temporal information of blood glucose level,
A meal data acquisition unit that acquires meal data that is temporally information on the meal of the subject of the blood glucose level;
A first graph showing temporal changes in blood glucose level of the subject based on the blood glucose level data acquired by the blood glucose level data acquiring unit and the meal data acquired by the meal data acquiring unit A graph generation unit that generates a second graph in which information indicating the contents of the subject's meal is displayed in a superimposed manner;
An information processing apparatus comprising: - 前記食事データには、前記被測定者の食事の内容が撮像された画像のデータである食事画像データと、当該画像が撮像された日時に関する情報とが少なくとも含まれ、
前記食事画像データを解析することにより、前記被測定者が摂取した食事について、使用された食材、及び糖質量に関する情報を少なくとも含む詳細情報を抽出する詳細情報抽出手段
をさらに備える請求項1に記載の情報処理装置。 The meal data includes at least meal image data, which is data of an image obtained by capturing the content of the meal of the subject, and information on date and time when the image is captured,
The method according to claim 1, further comprising: detailed information extracting means for extracting detailed information including at least information on used foodstuffs and sugar amount about the meal consumed by the subject by analyzing the meal image data. Information processing equipment. - 前記被測定者の活動に関する経時的な情報である活動データを取得する活動データ取得手段と、
前記血糖値データと、前記食事データと、前記活動データとに基づいて、前記被測定者の食事の内容及び活動の内容が血糖値の変化に与える影響についての分析を行うデータ分析手段と、
前記データ分析手段による分析の結果である分析データに基づいて、前記被測定者が摂取しようとする食事に関する留意事項、及び前記被測定者の活動に関する留意事項のうち少なくとも一方を含むアラート情報を生成し、生成したアラート情報を前記被測定者が操作する情報処理端末に出力させる制御を実行するアラート管理手段と、
をさらに備える請求項1又は2に記載の情報処理装置。 Activity data acquisition means for acquiring activity data, which is temporal information on the activity of the subject;
Data analysis means for analyzing the influence of the contents of the meal of the subject and the contents of the activity on the change of the blood glucose level based on the blood glucose level data, the meal data and the activity data;
Based on analysis data obtained as a result of analysis by the data analysis means, alert information is generated including at least one of notes on the diet the subject is about to ingest, and notes on the activity of the subject. An alert management unit that executes control to output the generated alert information to an information processing terminal operated by the subject;
The information processing apparatus according to claim 1, further comprising: - 情報処理装置が実行する情報処理方法において、
血糖値の経時的な情報である血糖値データを取得する血糖値データ取得ステップと、
前記血糖値の被測定者の食事に関する経時的な情報である食事データを取得する食事データ取得ステップと、
前記血糖値データ取得ステップで取得された前記血糖値データと、前記食事データ取得ステップで取得された前記食事データとに基づいて、前記被測定者の血糖値の経時的な変化を表す第1グラフに、前記被測定者の食事の内容を示す情報を重畳的に表示させた第2グラフを生成するグラフ生成ステップと、
を含む情報処理方法。 In an information processing method executed by an information processing apparatus,
A blood sugar level data acquisition step of acquiring blood sugar level data which is temporal information of the blood sugar level;
A meal data acquisition step of acquiring meal data, which is information with time of the subject's diet of the blood glucose level;
A first graph showing temporal changes in blood glucose level of the subject based on the blood glucose level data acquired in the blood glucose level data acquisition step and the meal data acquired in the meal data acquisition step A graph generating step of generating a second graph on which information indicating the contents of the subject's meal is displayed in a superimposed manner;
Information processing method including: - 情報処理装置を制御するコンピュータに、
血糖値の経時的な情報である血糖値データを取得する血糖値データ取得ステップと、
前記血糖値の被測定者の食事に関する経時的な情報である食事データを取得する食事データ取得ステップと、
前記血糖値データ取得ステップで取得された前記血糖値データと、前記食事データ取得ステップで取得された前記食事データとに基づいて、前記被測定者の血糖値の経時的な変化を表す第1グラフに、前記被測定者の食事の内容を示す情報を重畳的に表示させた第2グラフを生成するグラフ生成ステップと、
を含む制御処理を実行させるプログラム。 In a computer that controls an information processing apparatus,
A blood sugar level data acquisition step of acquiring blood sugar level data which is temporal information of the blood sugar level;
A meal data acquisition step of acquiring meal data, which is information with time of the subject's diet of the blood glucose level;
A first graph showing temporal changes in blood glucose level of the subject based on the blood glucose level data acquired in the blood glucose level data acquisition step and the meal data acquired in the meal data acquisition step A graph generating step of generating a second graph on which information indicating the contents of the subject's meal is displayed in a superimposed manner;
A program that executes control processing including
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017145871A JP7032072B2 (en) | 2017-07-27 | 2017-07-27 | Information processing equipment, information processing methods, and programs |
JP2017-145871 | 2017-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019022248A1 true WO2019022248A1 (en) | 2019-01-31 |
Family
ID=65039599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028332 WO2019022248A1 (en) | 2017-07-27 | 2018-07-27 | Information processing device, information processing method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7032072B2 (en) |
WO (1) | WO2019022248A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114599269A (en) * | 2019-10-30 | 2022-06-07 | 泰尔茂株式会社 | Blood sugar management device, blood sugar management system, blood sugar management method, and blood sugar management program |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7393871B2 (en) * | 2019-03-13 | 2023-12-07 | キヤノンメディカルシステムズ株式会社 | Medical information processing equipment |
CN114631151A (en) | 2019-11-01 | 2022-06-14 | 泰尔茂株式会社 | Image management system, wearable device, image management method, and image management program |
US20220202319A1 (en) * | 2020-12-29 | 2022-06-30 | Dexcom, Inc. | Meal and activity logging with a glucose monitoring interface |
WO2022196799A1 (en) * | 2021-03-18 | 2022-09-22 | 株式会社ファーストスクリーニング | Information processing device, program, and information processing method |
WO2022249998A1 (en) * | 2021-05-28 | 2022-12-01 | 株式会社ファーストスクリーニング | Health management assistance system and health management assistance method |
KR102319279B1 (en) * | 2021-06-23 | 2021-11-01 | (주)휴레이포지티브 | Method and system for managing for health using meal recording |
KR102428570B1 (en) * | 2022-01-24 | 2022-08-02 | 양재명 | Method for Predicting Changes of Blood-Sugar using Food Images |
JP7564836B2 (en) * | 2022-02-07 | 2024-10-09 | Sompoひまわり生命保険株式会社 | System, mobile terminal, server, information processing device, program, or method |
WO2024172352A1 (en) * | 2023-02-13 | 2024-08-22 | 주식회사 카카오헬스케어 | System and method for providing blood glucose management service |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010160783A (en) * | 2008-12-12 | 2010-07-22 | Flower Robotics Inc | Information providing system, portable information terminal, and information management device |
JP2013190915A (en) * | 2012-03-13 | 2013-09-26 | Hitachi Ltd | Life habit improvement support system and method for analyzing biological index |
JP2014211918A (en) * | 2014-08-20 | 2014-11-13 | セイコーエプソン株式会社 | Blood sugar level change information generation system and blood sugar level change information generation device |
JP2017102614A (en) * | 2015-11-30 | 2017-06-08 | 株式会社ニコン | Electronic instrument |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060272652A1 (en) | 2005-06-03 | 2006-12-07 | Medtronic Minimed, Inc. | Virtual patient software system for educating and treating individuals with diabetes |
CN102197304B (en) | 2008-11-04 | 2013-08-28 | 松下电器产业株式会社 | Measurement device, insulin infusion device, measurement method, method for controlling insulin infusion device, and program |
-
2017
- 2017-07-27 JP JP2017145871A patent/JP7032072B2/en active Active
-
2018
- 2018-07-27 WO PCT/JP2018/028332 patent/WO2019022248A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010160783A (en) * | 2008-12-12 | 2010-07-22 | Flower Robotics Inc | Information providing system, portable information terminal, and information management device |
JP2013190915A (en) * | 2012-03-13 | 2013-09-26 | Hitachi Ltd | Life habit improvement support system and method for analyzing biological index |
JP2014211918A (en) * | 2014-08-20 | 2014-11-13 | セイコーエプソン株式会社 | Blood sugar level change information generation system and blood sugar level change information generation device |
JP2017102614A (en) * | 2015-11-30 | 2017-06-08 | 株式会社ニコン | Electronic instrument |
Non-Patent Citations (1)
Title |
---|
vol. 9, no. 15, 27 August 2018 (2018-08-27), pages 19 - 20, Retrieved from the Internet <URL:https://web. archive. org/web/20160624223413/https://clou d. e-smbg. net/pdf/smarte-SMBGmanual. pdf> * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114599269A (en) * | 2019-10-30 | 2022-06-07 | 泰尔茂株式会社 | Blood sugar management device, blood sugar management system, blood sugar management method, and blood sugar management program |
Also Published As
Publication number | Publication date |
---|---|
JP7032072B2 (en) | 2022-03-08 |
JP2019028625A (en) | 2019-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019022248A1 (en) | Information processing device, information processing method, and program | |
JP6411639B2 (en) | Ingredient proposal device, ingredient proposal method and ingredient proposal program | |
US9314206B2 (en) | Diet and calories measurements and control | |
US20180197434A1 (en) | Lifestyle management supporting apparatus and lifestyle management supporting method | |
JP6719788B1 (en) | Lifestyle related disease prevention and improvement support system | |
JP5835580B2 (en) | Lifestyle improvement support system and analysis method of biological index | |
JP7239220B2 (en) | Nutrition intake estimation device, health management support device, nutrition intake estimation method, health management support method, program, and nutrition intake estimation system | |
WO2022014538A1 (en) | Method, device, program, and system for measuring degree of health of subject | |
JP5853348B2 (en) | Lifestyle analysis system and lifestyle analysis method | |
US20220262495A1 (en) | User auxiliary information output device, user auxiliary information output system, and user auxiliary information output method | |
WO2023073052A1 (en) | Systems and methods for providing individualized nutritional recommendations for intermittent fasting | |
JP6628849B2 (en) | Foodstuff proposal device, foodstuff proposal method and foodstuff proposal program. | |
JP7277224B2 (en) | Support system, support method, support device and support program | |
JP7256907B1 (en) | Information processing program, information processing apparatus, and information processing method | |
JP2016103274A (en) | Eating and drinking control method | |
JP7327833B2 (en) | Health management support device, health management support method, program, and health management support system | |
JP7455071B2 (en) | Information processing device, control method and control program | |
TW201202991A (en) | System and method thereof for generating recipes according to personal physical data | |
JP6748601B2 (en) | refrigerator | |
JP7692158B2 (en) | Dietary guidance system, control method and program | |
Al-Maghrabi | Measuring Food Volume and Nutritional Values from Food Images | |
JP7630092B2 (en) | Lifestyle improvement system and control method | |
JP7709705B2 (en) | Stimulus identification program, stimulus identification device, and stimulus identification system | |
Nath | The influence of social context on food-evoked emotion: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Psychology at Massey University, Albany, New Zealand | |
Meimei et al. | The Nexus between Health Behavior and Health Outcomes in China: The Role of Dietary Habits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18837273 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18837273 Country of ref document: EP Kind code of ref document: A1 |