[go: up one dir, main page]

WO2019019736A1 - 安全实现方法、相关装置以及系统 - Google Patents

安全实现方法、相关装置以及系统 Download PDF

Info

Publication number
WO2019019736A1
WO2019019736A1 PCT/CN2018/084702 CN2018084702W WO2019019736A1 WO 2019019736 A1 WO2019019736 A1 WO 2019019736A1 CN 2018084702 W CN2018084702 W CN 2018084702W WO 2019019736 A1 WO2019019736 A1 WO 2019019736A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
target
amf
security
kamf
Prior art date
Application number
PCT/CN2018/084702
Other languages
English (en)
French (fr)
Inventor
吴�荣
甘露
张博
谭帅帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21161248.6A priority Critical patent/EP3917187A1/en
Priority to KR1020207005062A priority patent/KR102264718B1/ko
Priority to BR112020001289-0A priority patent/BR112020001289B1/pt
Priority to JP2020504242A priority patent/JP7100115B2/ja
Priority to CN201880048692.3A priority patent/CN110945892B/zh
Priority to EP18838161.0A priority patent/EP3576446B1/en
Publication of WO2019019736A1 publication Critical patent/WO2019019736A1/zh
Priority to US16/409,207 priority patent/US10728757B2/en
Priority to US16/720,673 priority patent/US11228905B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/009Security arrangements; Authentication; Protecting privacy or anonymity specially adapted for networks, e.g. wireless sensor networks, ad-hoc networks, RFID networks or cloud networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0038Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of security context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a security implementation method, related apparatus, and system.
  • the user equipment can directly establish a communication connection with the base station to perform communication, and utilize the data transmission service provided by the network to present a rich communication experience to the user.
  • the network connection of the user equipment needs to be switched from the original base station to the current base station to continue to maintain communication.
  • Future mobile communication architectures (such as the 5th generation communication system 5G) also require the network to meet the switching needs of user equipment.
  • the SA2 architecture group has proposed a general architecture of a 5G network, in which the access and management network element AMF of the core network is usually deployed at a position closer to the base station. Therefore, when the user equipment switches communication across the base station, it may also cause cross-AMF handover.
  • the current communication security implementation method is not applicable to the security protection of cross-AMF handover in 5G networks. Therefore, how to establish a security mechanism based on the future mobile communication architecture has become an urgent problem to be solved. problem.
  • the embodiments of the present invention provide a security implementation method, a related device, and a system, which can implement security protection in a cross-AMF handover scenario, improve security of a future mobile communication architecture, and meet user requirements.
  • the embodiment of the present invention discloses a security implementation method, where the method includes: receiving, by a first network element, a request for switching a user equipment from a source access network device to a target access network device;
  • the network element obtains a security key, and the security key is used to: after the user equipment is switched from the source access network device to the target access network device, to the user equipment and the target network
  • the communication between the target network includes the target access network device and the target core network device, the target core network device includes the first network element, and the first network element is connected to the target
  • the network access device sends the security key.
  • the second network element is connected to the source access network device, and the second network element and the source access network device belong to the network device on the source side;
  • the first network element is connected to the target access network device, and the first network element and the target network are connected.
  • the network access device belongs to the network device on the target side.
  • the second network element may be a network device such as a source AMF, a source SEAF, and a source SMF
  • the first network element is a network device such as a target AMF, a target SEAF, and a target SMF.
  • the request may carry a security context of the active side, and the source-side security context may include, for example, a lifetime of the key, an index of the key, a security capability of the UE, an integrity algorithm, an integrity algorithm identifier, and an encryption algorithm. And one or more of the encryption algorithm identifier and the count value associated with the calculation key, the request may be, for example, a handover request, a path switch request, or the like.
  • the first network element obtains the security key, and the first intermediate key is the first intermediate key, and the first intermediate key is the upper layer key generated after the authentication.
  • An access layer AS and a non-access stratum NAS key for deriving a lower layer; the first network element determining a security protection algorithm, and deriving the security based on the security protection algorithm and the first intermediate key Key.
  • the security key may include an access layer AS key and a non-access stratum NAS key, and the AS key is used to protect communication between the user equipment and the access network device, and the NAS key is used for the user equipment. Communication with core network devices (such as AMF/SEAF/SMF, etc.) is protected.
  • the manner in which the first network element obtains the first intermediate key may be various:
  • the first network element obtains the first intermediate key that is derived by the second network element based on the second intermediate key and the network parameter, where the second intermediate key is the upper layer secret generated after the authentication.
  • the key is used to derive the access layer and the non-access stratum key of the lower layer.
  • the second intermediate key is the key Kamf that originally existed in the second network element, and the key Kamf is authenticated by the first Obtained by the second network element.
  • the first network element receives the second intermediate key sent by the second network element, and the first intermediate element is derived based on the second intermediate key and the network parameter. .
  • the first network element obtains an anchor key Kseaf.
  • the first intermediate element is derived based on the anchor key and network parameters.
  • the network parameters may include a target side identifier, a slice identifier, a network access identifier NAI, a network slice selection assistance information NSSAI, an AMF area identifier, an AMF setting identifier, an AMF global unique indicator GUAMI, an AMF pointer pointer, an AMF set identifier, Count one or more of the value Nonce or Counter or random code or serial code.
  • the first network element may further obtain a first NH key and a next hop key association count first NCC sent by the second network element; the first network element is based on the ⁇ One NH, the first NCC ⁇ pairs get the ⁇ second NH, second NCC ⁇ pair.
  • the first network element may send a ⁇ second NH, second NCC ⁇ pair, and a second key and a third key to the target access network device, and the target access network device is based on ⁇ second NH, second The NCC ⁇ pair generates the first key.
  • the security key includes a first key, a second key, and a third key; the first key is used for security protection between the user equipment and the target access network device.
  • the security protection algorithm includes a NAS confidentiality algorithm identifier and a NAS integrity
  • the first key for example, a key KgNB, based on the first parameter, where the first parameter includes the first intermediate key, a target cell identifier, and a frequency One or more of a point, a NAS count value, a NAS connection identifier, a count value, or a random code or a sequence code
  • the first network element derives the second key based on the second parameter, such as a key Knasenc
  • the second parameter includes one or more of the first intermediate key, the NAS confidentiality algorithm identifier, a count value, or a random code or a sequence code
  • the first network element is based on the third Deriving the third key, such as Knasint; wherein the third parameter comprises one of the first intermediate key,
  • the sending, by the first network element, the security key to the target access network device includes: sending, by the first network element, the first key to the target access network device.
  • the source access network device is an access network device of the first communication system
  • the target access network device is an access network device of the second communication system
  • the first network element is a network element of the second communication system
  • the request includes a security context of the first communication system, and a third intermediate key
  • the third intermediate key is generated after being authenticated in the first communication system
  • the key of the upper layer used to derive the keys of the access layer and the non-access stratum of the lower layer
  • the first network element Acquiring the first intermediate key by the first network element, including: the first network element is based on a security context of the first communications system, a security context of the second communications system, and the third intermediate key The first intermediate key derived.
  • the first network element includes a target access and mobility management network element AMF
  • the second network element includes a source AMF
  • the target AMF connects to the target access network device
  • the source The AMF is connected to the source access network device
  • the first network element includes a target security anchor SEAF
  • the second network element includes a source security anchor SEAF
  • the target SEAF is connected to the target access network device.
  • the source SEAF is connected to the source access network device.
  • the network parameters include a target side identifier, a slice identifier, a network access identifier NAI, a network slice selection assistance information NSSAI, an AMF area identifier, an AMF setting identifier, an AMF global unique indicator GUAMI, an AMF pointer.
  • a pointer One or more of a pointer, an AMF set identifier, a count value, or a random code or a sequence code.
  • the first network element includes a mobility management entity network element MME of the first communication system;
  • the target access network device is an access network device of the first communication system;
  • the access network device is an access network device of the second communication system;
  • the MME receives a request for handover of a user equipment from the source access network device to the target access network device; the request includes a security context of the second communication system; and the MME obtains a security key, configured to: after the user equipment is handed over from the source access network device to the target access network device, to the user equipment and the target access network device The communication between the two is protected; the MME sends the security key to the target access network device.
  • the MME obtains the home subscription subscriber server HSS of the first communication system, based on the first encryption key, the first integrity protection key, the service network name identifier, and the serial number SQN. a third intermediate key; the third intermediate key is an upper layer key generated after being authenticated in the first communication system, and is used to derive a key of an access layer and a non-access stratum of the lower layer; The MME derives the security key based on the security context of the second communication system and the third intermediate key.
  • the MME acquires a first intermediate key sent by the AMF of the second communication system; the first intermediate key is an upper layer key generated after the authentication in the second communication system. Deriving a lower layer access layer AS and a non-access stratum NAS key; the MME deriving the third intermediate key based on the first intermediate key; the MME is based on the second The security context of the communication system, the third intermediate key deriving the security key.
  • an embodiment of the present invention provides a security implementation method, including:
  • the target access network device Receiving, by the target access network device, a request for switching the user equipment from the source wireless node to the target wireless node; the target access network device receiving the first key sent by the core network device; the first key being the user equipment An intermediate key for performing security protection with the target access network device; the target access network device generates a second key based on the intermediate key; the second key is a user equipment and the target An intermediate key for security protection between the wireless nodes; the target access network device transmitting the second key to the target wireless node, so that the target wireless node generates a security key based on the second key;
  • the security key is configured to protect communication between the user equipment and the target wireless node after the user equipment is handed over from the source wireless node to the target wireless node.
  • an embodiment of the present invention provides a network element, where the network element is a first network element, where the first network element includes a receiver, a transmitter, a memory, and a processor coupled to the memory.
  • the receiver, transmitter, memory, and processor can be connected by bus or other means.
  • the transmitter is used to send data and signaling to the outside, and the receiver is used to receive data and signaling from the outside.
  • the memory is for storing program code and related data (such as configuration information, security context, key, etc.), and the processor 1201 is configured to call and run the program code stored in the memory and execute the relevant steps of the method of the first aspect. .
  • an embodiment of the present invention provides a target access network device, where the target access network device includes a receiver, a transmitter, a memory, and a processor coupled to the memory.
  • the receiver, transmitter, memory, processor can be connected by bus or other means.
  • the transmitter is used to send data and signaling to the outside, and the receiver is used to receive data and signaling from the outside.
  • the memory is for storing program code and related data (such as configuration information, security context, keys, etc.), the processor is for calling and running the program code stored in the memory, and performing the relevant steps of the method of the second aspect.
  • an embodiment of the present invention provides a network element, where the network element includes a receiving module, a key processing module, and a sending module, where the network element is used to implement the method described in the first aspect.
  • an embodiment of the present invention provides a computer readable storage medium for storing an implementation code of the method of the first aspect or the second aspect.
  • an embodiment of the present invention provides a computer software product, which when used in a computer, can be used to implement the method of the first aspect or the second aspect.
  • the communication system may generate a security key correspondingly, and use a secure network element (SEAF/AMF) to implement the target-side security context and the security key. Get and pass.
  • SEAF/AMF secure network element
  • FIG. 1 is a schematic structural diagram of a system for mobile communication disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a scenario of an LTE system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a scenario of a 5G system according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a security implementation method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of still another security implementation method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of still another security implementation method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of still another security implementation method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of still another security implementation method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart diagram of still another security implementation method according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart diagram of still another security implementation method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a scenario of a 5G combined WLAN system according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a device disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of still another apparatus according to an embodiment of the present invention.
  • FIG. 1 is a network architecture of a future mobile communication, where the network architecture includes a user equipment, an access network equipment, and an operator network (eg, a 3GPP network such as 5G), and the carrier network includes a core network and a data network, and the user equipment accesses The network device accesses the carrier network.
  • the network architecture includes a user equipment, an access network equipment, and an operator network (eg, a 3GPP network such as 5G)
  • the carrier network includes a core network and a data network
  • the user equipment accesses
  • the network device accesses the carrier network.
  • the specific description is as follows:
  • the user equipment is a logical entity.
  • the UE may be any one of a terminal equipment (Terminal Equipment), a communication device (Communication Device), and an Internet of Things (IoT) device.
  • the terminal device may be a smart phone, a smart watch, a smart tablet, or the like.
  • the communication device can be a server, a gateway (GW), a controller, and the like.
  • IoT devices can be sensors, electricity meters, water meters, and the like.
  • An access network may be referred to as a radio access network (RAN) in a specific application, and the RAN is composed of an access network device and is responsible for accessing user equipment.
  • the RAN may be a base station (such as NB, eNB, gNB, etc.), a Wireless Fidelity (Wi-Fi) access point, a Bluetooth access point, and the like.
  • a data network which may be an external network of an operator or a network controlled by an operator, is used to provide service services to users.
  • the UE can access the DN by accessing the carrier network, using the services provided by the operator or third party on the DN.
  • the core network serves as the interface of the bearer network to the DN, and provides the UE with communication connection, authentication, management, policy control, and bearer for data services.
  • the CN further includes: an access and mobility management network element, a session management network element, an authentication server network element, a policy control node, an application function network element, a user plane node, etc., and the related descriptions are as follows:
  • Access and Mobility Management Function the control plane network element provided by the operator, responsible for access control and mobility management of the UE accessing the operator network.
  • AMF Access and Mobility Management Function
  • SEAF Security Anchor Function
  • AMF Security Anchor Function
  • SEAF is connected to AMF as a node for security authentication.
  • the AMF and the SEAF set may be deployed together in a physical location, or the AMF and the SEAF may be separately set.
  • the functions of the AMF and the SEAF may be deployed separately from different network elements, or the functions of the AMF and the SEAF may be set to the same network element (for example, the AMF has the function of SEAF).
  • Session Management Function a control plane network element provided by the operator, responsible for managing the session of the UE's data packets.
  • AUSF Authentication Server Function
  • the authentication server function network element AUSF is a control plane network element provided by the operator for UE authentication.
  • AUSF can be deployed as a separate logical functional entity or in a device such as AMF/SMF.
  • Unified Data Manager a control plane network element provided by the operator, responsible for storing the Subscriber Permanent Identifier (SUPI), registration information, credentials, and Signing data. These data are used for authentication and authorization of the UE to access the carrier network.
  • SUPI Subscriber Permanent Identifier
  • Signing data are used for authentication and authorization of the UE to access the carrier network.
  • the application function network element (Application Function, AF) is used to store service security requirements and provide information for policy decision.
  • UPF User Plane Function
  • the UPF can be a gateway, a server, a controller, a user plane function network element, and the like.
  • the UPF can be set inside the operation network or outside the operation network.
  • the UPF is a user plane network element provided by the operator, and is a gateway for the carrier network to communicate with the DN.
  • PCF policy control function
  • the PCF is deployed with a policy control function
  • the function of the policy control refers to completing the negotiation of the user plane protection mechanism according to the security requirement, and determining the function of the user plane protection mechanism in the network.
  • FIG. 1 the logical relationship between the network elements is embodied.
  • some network elements may be deployed separately, or two or two or multiple network elements may be integrated into one entity.
  • AMF and SMF can be deployed in one entity, or AMF and SMF can be deployed in separate entities.
  • FIG. 2 shows an application scenario of handover communication in an LTE communication system.
  • the LTE communication system is composed of an Evolved Packet Core (EPC), an Evolved Node B (eNode B), and a user equipment.
  • the EPC is responsible for the core network part, and the EPC includes a Home Subscriber Server (HSS) 141 for storing user subscription information, a Mobility Management Entity (MME) for signaling processing and mobility management, and a base station.
  • HSS Home Subscriber Server
  • MME Mobility Management Entity
  • the base station is connected to the core network.
  • the base station 121 is connected to the MME 131
  • the base station 122 is connected to the MME 132.
  • the user equipment and the base station perform uplink communication or downlink communication through the LTE air interface technology (such as the Uu interface).
  • the user equipment is in communication with the base station 121. If the user equipment moves from 111 to 112, the user equipment may need to switch the communication connection from the base station 121 to the base station 122, after completing the handover process. The user equipment is in communication with the base station 122 to continue communication. It can be seen that in this process, since the base station 121 and the base station 122 are respectively connected to different MMEs, the above communication switching procedure is also accompanied by the communication switching of the MME.
  • FIG. 3 shows an application scenario of switching communication in a 5G communication system.
  • the 5G communication system includes a user equipment, an access network, and a core network.
  • the access network includes a RAN device 221 and a RAN device 222.
  • the core network includes a core network device group 231 and a core network device group 232.
  • the access network device is connected to the core network device, and the RAN device 221 is connected to the core network device.
  • the AMF in 231, the RAN device group 222 is connected to the AMF in the core network device group 232.
  • the user equipment and the access network device perform uplink communication or downlink communication through the 5G air interface technology.
  • the user equipment is in communication with the RAN device 221, and if the user equipment moves from 211 to 212, then the user equipment may need to switch the communication connection from the RAN device 221 to the RAN device 222, upon completion. After the handover process, the user equipment communicates with the RAN device 222 to continue communication. It can be seen that in this process, since the RAN device 221 and the RAN device 222 are respectively connected to the AMFs of different core network device groups, the above communication switching process is also accompanied by the communication switching of the AMF.
  • the embodiment of the present invention provides a security implementation method. Referring to FIG. 4, the method includes but not Limited to the following steps:
  • the source access network device triggers a communication switch.
  • the user equipment and the source access network device establish a communication connection by using an access technology.
  • the source access network device triggers a communication handover.
  • the access technology may be CDMA2000, WLAN, fixed access, Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE), 5G. And other technologies.
  • the source RAN of the connection management under the source AMF also needs to switch to the target RAN.
  • the reason for the handover may be various.
  • the source RAN has no Xn interface connection with the target RAN.
  • the UE moves from the communication cell of the source RAN to the communication cell of the target RAN, the current communication connection needs to be switched from the source RAN to the target.
  • the communication resources are insufficient, and the currently connected source RAN needs to switch the communication connection request of the UE to the target RAN with better network condition; for example, the current communication system (such as LTE) needs to be switched to Another communication system (such as 5G), and so on.
  • LTE Long Term Evolution
  • 5G Another communication system
  • the source access network device sends a first request to the second network element; the second network element sends a second request to the first network element.
  • the first request sent by the source access network device to the second network element and the second request sent by the second network element to the first network element may be the same request, or may be different requests, the first request.
  • the second request may carry a security context of the active side, where the source side security context may include, for example, a lifetime of the key, an index of the key, a security capability of the UE, an integrity algorithm, an integrity algorithm identifier, an encryption algorithm,
  • the encryption algorithm identifies one or more of the count values associated with the calculation key, such as a handover request, and the second request is, for example, a path switch request.
  • the second network element is connected to the source access network device, and the second network element and the source access network device belong to the network device on the source side;
  • the first network element is connected to the target access network device, and the first network element and the target network are connected.
  • the network access device belongs to the network device on the target side.
  • the second network element may be a network device such as a source AMF, a source SEAF, and a source SMF
  • the first network element is a network device such as a target AMF, a target SEAF, and a target SMF.
  • the first network element obtains a security key.
  • the security key is used to protect communication between the user equipment and the target network after the user equipment is switched from the source access network device to the target access network device, where the target network includes the a target access network device and a target core network device, where the target core network device includes the first network element.
  • the security key may include an access layer AS key and a non-access stratum NAS key, and the AS key is used to protect communication between the user equipment and the access network device, and the NAS key is used for the user equipment. Communication with core network devices (such as AMF/SEAF/SMF, etc.) is protected.
  • the first network element obtains the security key, and the first network element generates the security key, or the first network element acquires the security key sent by the other network element.
  • the first network element may first obtain the first intermediate key, where the first intermediate key is an upper layer key generated after the authentication, and is used to derive the access layer AS and the non-access layer of the lower layer.
  • the layer NAS key for example, the first intermediate key is a new Kamf; then, the first network element determines a security protection algorithm, including a specific security algorithm and an identifier of the security algorithm, and the identifier can be used to indicate a specific protection algorithm.
  • the first network element then derives a security key based on the security protection algorithm and the first intermediate key, and the security protection algorithm may include a NAS layer confidentiality algorithm identifier and a NAS layer integrity algorithm identifier, and an AS layer secret. Sexual algorithm identification and AS layer integrity algorithm identification.
  • the security key includes a first key, a second key, and a third key; the first key is an intermediate key for security protection between the user equipment and the target access network device, such as a secret
  • the key KgNB is a NAS signaling cryptographic protection key, such as a key Knasenc; and the third key is a NAS signaling integrity protection key, such as Knasint.
  • the first network element may derive the first key according to the first parameter, where the first parameter includes the first intermediate key, a target cell identifier, a frequency point, a NAS count value, and a NAS a one or more of a connection identifier, a count value Nonce or a Counter or a random code or a sequence code; deriving the second key based on the second parameter, wherein the second parameter comprises the first intermediate density One or more of a key, a NAS confidentiality algorithm identifier, a count value Nonce or Counter, or a random code or a sequence code; the third key is derived based on a third parameter, wherein the third parameter includes Determining one or more of a first intermediate key, a NAS integrity algorithm identifier, a count value Nonce or a Counter, or a random code or a sequence code; the first network element may save the second key and the third key, And in a subsequent step, the first key is sent to the access network device.
  • the first parameter includes the first intermediate key,
  • the manner in which the first network element obtains the first intermediate key may be various:
  • the first network element obtains the first intermediate key that is derived by the second network element based on the second intermediate key and the network parameter, where the second intermediate key is the upper layer secret generated after the authentication.
  • the key is used to derive the access layer and the non-access stratum key of the lower layer.
  • the second intermediate key is the key Kamf that originally existed in the second network element, and the key Kamf is authenticated by the first Obtained by the second network element.
  • the first network element receives the second intermediate key sent by the second network element, and the first intermediate element is derived based on the second intermediate key and the network parameter. .
  • the first network element obtains an anchor key Kseaf.
  • the first intermediate element is derived based on the anchor key and network parameters.
  • the network parameters may include a target side identifier, a slice identifier, a network access identifier NAI, a network slice selection assistance information NSSAI, an AMF area identifier, an AMF setting identifier, an AMF global unique indicator GUAMI, an AMF pointer pointer, an AMF set identifier, Count one or more of the value Nonce or Counter or random code or serial code.
  • the first network element may further obtain a first NH key and a next hop key association count first NCC sent by the second network element; the first network element is based on the ⁇ One NH, the first NCC ⁇ pairs get the ⁇ second NH, second NCC ⁇ pair.
  • the first network element may send a ⁇ second NH, second NCC ⁇ pair, and a second key and a third key to the target access network device, and the target access network device is based on ⁇ second NH, second The NCC ⁇ pair generates the first key.
  • the first network element sends a security key to the target access network device, and the sent security key includes the first key.
  • the first network element sends a security context to the user equipment by using the second network element and the access network device, so that the user equipment can generate a security key based on the security context, where the security context received by the user equipment only needs to include the network.
  • the parameters generated by the user equipment side when the keys related to the security key are generated such as the random number RAND, the count value Nonce or Counter, the time stamp, the associated security protection algorithm identifier, and the like.
  • the user equipment generates a security key based on the security context.
  • the user equipment may generate a security key based on a security context, a network parameter, a pre-existing local intermediate key, etc., where the security key includes an AS key and a NAS key.
  • the user equipment and the target access network device complete the subsequent handover process. Finally, the communication connection of the user equipment is switched from the current source RAN to the target RAN.
  • security-related messages transmitted between the source side and the target side, between the source side and the UE side, and between the target side and the UE side may be delivered in the form of separate messages, or may be carried in other messages (eg, requests related to handover, responses, etc.).
  • the invention is not limited herein.
  • an embodiment of the present invention provides a security implementation method.
  • the UE side and the network side may be configured with an anchor key Kseaf.
  • network security can be implemented by the following methods, including but not limited to the following steps:
  • the source RAN triggers a communication switch.
  • the source RAN of the connection management under the source AMF also needs to switch to the target RAN.
  • the source RAN may trigger the communication handover.
  • the reason for the handover may be various.
  • the source RAN has no Xn interface connection with the target RAN.
  • the UE moves from the communication cell of the source RAN to the communication cell of the target RAN, the current needs to be The communication connection is switched from the source RAN to the target RAN; for example, the current network congestion causes insufficient communication resources, and the currently connected source RAN needs to switch the UE's communication connection request to the target RAN with better network conditions, and so on.
  • the source RAN sends a handover request to the source AMF.
  • the source RAN sends a message of the handover request (Handover Required) to the source AMF, and informs the source AMF that there is a user to perform handover, and the handover request carries the identifier of the UE.
  • AMF specifies the bearer used to forward data (message).
  • the source AMF sends a path switch request to the target AMF.
  • the source AMF selects a target AMF, and sends a Forward Relocation Request to the target AMF, where the path switching request may include a security context on the source side.
  • the target AMF sends a handover request to the target RAN.
  • the target AMF sends a message of a handover request (Handover Request) to the target RAN to request the target RAN to establish a radio network resource, and create a context of the UE in the target RAN.
  • the target AMF may also assign an identifier and an IP address of the uplink communication tunnel to the PDU session, and the target RAN sends a PDU session.
  • the target RAN returns a confirmation message of the handover request to the target AMF.
  • the target RAN sends an acknowledgement message of the handover request to the target AMF, which includes the PDU session that has been accepted by the target RAN.
  • the target RAN will assign the identifier of the downlink communication tunnel and the IP address of the PDU session and send a PDU session to the target AMF.
  • the target AMF sends a key request to the SEAF.
  • the SEAF is used as a node for security authentication and key configuration, and the AMF and the SEAF may be deployed separately or collectively.
  • the number of SEAFs may be one or multiple.
  • the source AMF and the target AMF may be connected to the same SEAF, or the source AMF and the target AMF may be respectively Connect different SEAFs (source AMF connection source SEAF, target AMF connection target SEAF), then cross-AMF will be accompanied by cross-SEAF handover; AMF and SEAF can be deployed together in physical location when AMF and SEAF set deployment, but Still two logical entities with different functions, in the case of cross-AMF, will also be accompanied by cross-SEAF switching.
  • the target AMF in order to ensure network communication security after AMF handover, sends a key request to the SEAF in order to obtain an intermediate key for generating a security key.
  • step 6 may also be placed after step 3, and may also be placed after step 4. There is no limit here.
  • the embodiment of the present invention does not limit the key request to a separate signaling message.
  • the key request in step 6 may be carried in other interactive messages between the target AMF and the SEAF. in.
  • SEAF generates Kamf based on Kseaf and network parameters.
  • the key Kseaf is an anchor key
  • the anchor key is a key generated after authentication, and belongs to an upper layer key in the service network, and the anchor key can be used to derive a lower layer key of the service network.
  • the SEAF after the UE performs identity verification with the network, the SEAF has the key Kseaf.
  • the Kseaf may be fixedly stored in the SEAF, or may be temporarily stored in the SEAF, and deleted after the Kseaf generates the lower layer key in the network. In the latter case, when the SEAF receives the key request of the target AMF, the SEAF may send a request to the AUSF, which generates Kseaf based on the request and sends the Kseaf to the SEAF.
  • the SEAF generates a new intermediate key Kamf (first intermediate key) based on Kseaf and network parameters, and Kamf can be used to derive the underlying access layer AS and non-access stratum NAS keys.
  • the network parameter is a related parameter on the network side, and the network parameter may be, for example, a target side identifier, a slice identifier, a network access identifier NAI, a network slice selection assistance information NSSAI, an AMF area identifier, and an AMF global unique indicator GUAMI.
  • the network parameter may also include other parameters. The above network parameters are briefly explained below.
  • the target side identifier an identifier that can uniquely identify the target side information, such as the target side service network identifier, the target side specific cell ID, and the target side base station ID.
  • Slice ID The ID used to uniquely identify the network slice.
  • NAI Network Access Identifier
  • NSSAI Network slice selection assistant information
  • the NSSAI may include a slice of various identifiers, identifiers of slice related entities.
  • the terminal may select and construct an instance related to the network slice by providing NSSAI, and one network slice selection auxiliary information may correspond to one network slice.
  • AMF Region ID The identifier used to distinguish which area the AMF is in.
  • AMF Set ID An identifier that uniquely identifies an AMF set within an AMF area.
  • the AMF Pointer is the identifier of the AMF that uniquely identifies it under an AMF set.
  • other network parameters may also be a timestamp, a registration type, an AMF ID, a SEAF ID, a NAS Count or a security algorithm identifier, and a security algorithm type. Name, serial number SQN, AK, these parameters or the length of one of the above-mentioned key parameters, etc., the "other parameters" used in describing the generation of the relevant key can be referred to the description here, which will be described later. No longer.
  • SEAF derives the intermediate key Kamf based on Kseaf and network parameters:
  • Kamf KDF (Kseaf, target side ID, slice ID, NAI, NSSAI, AMF area identifier, GUAMI, AMF pointer, AMF setting identifier, count value Nonce or Counter or random code Random or sequence code Sequencenumber, other parameters), wherein KDF is a key derivation function.
  • the SEAF sends Kamf to the target AMF, and correspondingly, the target AMF obtains the Kamf.
  • the target AMF generates a security key based on Kamf.
  • the security key is used to protect communication between the UE and the target RAN after the UE is handed over from the source RAN to the target RAN.
  • the protocol stack can be divided into an Access Stratum (AS) and a Non-Access Stratum (NAS). Therefore, the security key generated here needs to include the AS layer key and the NAS layer key.
  • the target AMF may determine a key protection algorithm according to a preset rule. For example, the target AMF is pre-set with an algorithm priority list, and the algorithm priority list has multiple types. The algorithm ID, the target AMF looks up the algorithm priority list, and selects a new NAS algorithm according to the algorithm priority list, and obtains the NAS confidentiality algorithm ID and the NAS integrity algorithm ID. The target AMF may also select a new AS algorithm to obtain the AS confidentiality algorithm ID and the AS integrity algorithm ID.
  • the target AMF first generates an intermediate key KgNB, which is an intermediate key used on the target RAN side, and KgNB is used to generate an AS layer related key on the target RAN side (eg, Krrcenc, Krrcint, Kupenc) , Kupint, etc.), KgNB needs to be sent to the target access network device in the subsequent steps.
  • KgNB is an intermediate key used on the target RAN side
  • KgNB is used to generate an AS layer related key on the target RAN side (eg, Krrcenc, Krrcint, Kupenc) , Kupint, etc.)
  • KgNB needs to be sent to the target access network device in the subsequent steps.
  • the target AMF derives KgNB based on Kamf and the first parameter, specifically:
  • KgNB KDF (Kamf, target cell identifier, frequency point, NAS count value, NAS connection identifier, count value Nonce or Counter or random code Random or sequence code Sequence number, other parameters).
  • the NAS count value is a count value of the NAS transport NAS message or a count value of the NAS data packet, and may be an uplink NAS count value or a downlink NAS count value.
  • the frequency point (EARFCN-DL) indicates the downlink communication frequency of the network.
  • the target physical cell id is used to uniquely identify the target cell.
  • the target AMF For the NAS layer key, the target AMF needs to generate Knasenc and Knasint, where Knasenc is the network side NAS signaling encryption protection key, where Knasint is the network side NAS signaling integrity protection key.
  • the target AMF saves the NAS layer key and may also send the NAS layer key to other core network devices as needed.
  • the target AMF derives Knasenc based on Kamf, the re-determined key protection algorithm, and the second parameter, specifically:
  • Knasenc KDF (Kamf, NAS confidentiality algorithm ID, count value Nonce or Counter or random code Random or sequence code Sequence number, other parameters).
  • the target AMF derives Knasint based on Kamf, the re-determined key protection algorithm, and the third parameter, specifically:
  • Knasint KDF (Kamf, NAS integrity algorithm ID, count value Nonce or Counter or random code Random or sequence code Sequence number, other parameters).
  • the target AMF sends a security key and a security context to the target RAN.
  • the target RAN obtains a security key and a security context.
  • the security key here includes KgNB.
  • the target AMF also notifies the target RAN of the selected NAS algorithm (which may also include the AS algorithm), so that the target RAN determines the security protection algorithm.
  • the target AMF may also send a security context to the target RAN.
  • the security context contains information related to network security.
  • the security context includes: a life cycle of the key, an index of the key, a security capability of the UE, an integrity algorithm, an integrity algorithm identifier, an encryption algorithm, an encryption algorithm identifier, a count value related to the calculation key, and the like.
  • specific keys may also be included.
  • the UE security capability may be a list of encryption and integrity algorithms supported by the UE, a key length required by the UE, a key lifetime, and the like.
  • the target RAN continues to derive the specific key of the AS layer based on the security protection algorithm and the intermediate key KgNB, including the key Krrcenc, the key Krrcint, the key Kupenc, the key Kupint, etc., wherein the key Krrcenc is the air interface wireless access side control plane signaling encryption key; the key Krrcint is the air interface wireless access side signaling integrity protection key; the key Kupenc is the air interface wireless access side user plane encryption protection key; Kupint is the air interface wireless access side user plane integrity protection key.
  • step 6 is placed after the step 3, in a possible embodiment, the security key and the security context in step 10 can also be specifically implemented in the message of the handover request in step 4.
  • the target RAN sends a response to the target AMF to inform the target AMF to successfully obtain the security key.
  • the target AMF sends a path switch response and a security context to the source AMF.
  • the target AMF in response to the path switching request in step 3, sends an acknowledgement message of the path switch request to the source AMF, where the acknowledgement message of the path switch request may carry a security context.
  • the source AMF sends a handover request and a security context to the source RAN.
  • the source AMF sends a handover request (HO Command) to the source RAN to notify the source RAN that the handover preparation is complete, wherein the handover request may carry a security context.
  • HO Command handover request
  • the source RAN sends a handover request and a security context to the UE.
  • the source RAN sends a handover request to the UE, notifies the UE that the handover preparation is complete, and prompts the UE to complete the subsequent handover operation.
  • the security request may be carried in the handover request.
  • the UE generates a security key based on the Kseaf and the security context.
  • the security context received by the UE side only needs to include parameters that are not available on the UE side when the network side generates each key, such as a random number, a timestamp, a security protection algorithm identifier, etc., and the UE may be in the previous step. There are other parameters for generating keys.
  • the UE Since the UE has already configured Kseaf after being authenticated with the network, the UE also shares the network parameters of the network side in advance. Therefore, for the UE, the UE can also generate a new NAS layer based on Kseaf, network parameters, and security context. Key and AS layer key. For example, the UE may first generate Kamf based on Kseaf, and then generate AS layer keys (such as Krrcenc, Krrcint, Kupenc, Kupint, etc.) and NAS layer keys (such as Knasenc, Knasint, etc.) based on Kamf, network parameters, security context, and specific process. Referring to the related descriptions in Step 7, Step 9, and Step 10, details are not described herein again.
  • AS layer keys such as Krrcenc, Krrcint, Kupenc, Kupint, etc.
  • NAS layer keys such as Knasenc, Knasint, etc.
  • the UE and the target RAN complete the subsequent handover process.
  • the UE and the target RAN will also continue to complete the subsequent handover process. For example, after the UE successfully synchronizes with the target cell, it sends a handover confirmation message to the target RAN.
  • the target RAN sends a handover notification to the target AMF, notifying the target AMF that the UE is already located in the target cell.
  • the target AMF sends a handover path retransmission complete message to the source AMF.
  • the source AMF replies with a response to the target AMF.
  • the source AMF sends a message of UE context release to inform the source RAN to release resources related to the UE.
  • the source RAN returns a release confirmation message to the source AMF, and so on.
  • the UE's communication connection is switched from the source RAN to the target RAN.
  • the SMFs corresponding to different AMFs may be different, so SMF handover may also occur in the foregoing process. In this case, you also need to consider the security protection of the PDU session.
  • the SEAF when the SEAF generates Kamf in step 7, the update of the PDU session key needs to be considered on the target side. Then, when the SEAF generates Kamf, the SEAF sends an indication message to the AUSF, and triggers the AUSF to generate a new PDU session key. Specifically, the AUSF pre-stores the key Left K. Then, the AUSF may generate a new PDU session based on Left K and relevant information of the UE sent by the source AMF and session information (such as session ID, slice information, etc.).
  • the key Ksmf is specifically:
  • Ksmf KDF (Left K, NAI, NSSAI, slice ID, AMF related parameters, SMF related parameters, count value Nonce or Counter or random code Random or sequence code Sequence number, other parameters).
  • the AUSF then sends the Ksmf to the SEAF or the target AMF, which forwards the Ksmf to the target SMF and the UE, and the target SMF/UE updates the PDU session key using Ksmf.
  • the communication system can generate a security key correspondingly, and use the security network element SEAF/AMF to implement the acquisition and delivery of the target-side security context and the security key.
  • the security key on the target side is generated by the network element on the target side (such as SEAF/target AMF)
  • the target RAN cannot obtain the security key used by the source RAN, and the communication information between the source RAN and the UE cannot be cracked.
  • the backward security of the network communication is implemented; the source RAN cannot obtain the security key used by the target RAN, and cannot break the communication information between the target RAN and the UE, thereby realizing the forward security of the network communication.
  • the embodiment of the present invention provides another security implementation method.
  • the UE side and the network side may be configured with the first Kamf.
  • network security can be implemented by the following methods, including but not limited to the following steps:
  • the source RAN triggers the communication switch. Refer to the description of step 1 in Figure 5.
  • the source RAN sends a handover request to the source AMF/source SEAF.
  • the SEAF is used as a node for security authentication and key configuration, and the source AMF and the source SEAF may be deployed separately or collectively.
  • the source AMF and the source SEAF are deployed separately, the source AMF is connected to the source SEAF, and the cross-AMF will be accompanied by the cross-SEAF handover; when the source AMF and the source SEAF set are deployed, the source AMF and the source SEAF can be deployed together at the physical location.
  • cross-AMF it is still two logical entities with different functions.
  • cross-SEAF it will also be accompanied by cross-SEAF switching.
  • the source AMF/source SEAF derives the second Kamf based on the first Kamf.
  • the source SEAF/AMF After the source AMF/SEAF receives the handover request sent by the source RAN, the source SEAF/AMF generates a second intermediate key Kamf based on the first intermediate key Kamf (referred to as the first Kamf) and the network parameter stored in advance (referred to as the first Two Kamf).
  • the network parameter may be, for example, a target side identifier, a slice identifier, a network access identifier NAI, a network slice selection assistance information NSSAI, an AMF region identifier, an AMF global unique indicator GUAMI, an AMF pointer, an AMF set identifier, a Nonce count value, or a random number.
  • the network parameters will also include other parameters.
  • the source SEAF/AMF derives the second Kamf based on the pre-stored first Kamf and network parameters, specifically:
  • Second Kamf KDF (first Kamf, target side ID, slice ID, NAI, NSSAI, AMF area identifier, GUAMI, AMF pointer, AMF setting identifier, count value Nonce or Counter or random code Random or sequence code Sequencenumber, other parameters ).
  • the source AMF/source SEAF derives the second Kamf based on the first Kamf, which may include the following cases:
  • Case 1 The source AMF derives the second Kamf based on the preset first Kamf;
  • Case 2 The source SEAF derives the second Kamf based on the preset first Kamf and sends the second Kamf to the source AMF.
  • the source AMF/source SEAF sends a path switch request to the target AMF/target SEAF, the second Kamf.
  • the target AMF and the target SEAF may be deployed separately or collectively.
  • the target AMF and the target SEAF When the target AMF and the target SEAF are deployed separately, the target AMF is connected to the target SEAF, and the cross-AMF will be accompanied by the cross-SEAF handover; when the target AMF and the target SEAF set are deployed, the target AMF and the target SEAF may be deployed together at the physical location.
  • cross-AMF it is still two logical entities with different functions.
  • cross-SEAF it will also be accompanied by cross-SEAF switching.
  • the source AMF/source SEAF sends a path switch request to the target AMF/target SEAF, where the path switch request carries the second Kamf.
  • the source AMF/source SEAF sends a path switch request and a second Kamf to the target AMF/target SEAF, respectively.
  • the target AMF/target SEAF sends a handover request to the target RAN.
  • the target RAN feeds back a confirmation message of the handover request to the target AMF/target SEAF.
  • the target AMF/target SEAF generates a security key based on the second Kamf.
  • the security key is used to protect communication between the UE and the target RAN after the UE is handed over from the source RAN to the target RAN.
  • the security key generated here includes an AS layer key and a NAS layer key.
  • the target AMF/target SEAF may determine the NAS confidentiality algorithm ID and the NAS integrity algorithm ID according to a preset rule, and the target AMF/target SEAF is based on the first Kamf and the first
  • the parameter derives KgNB, derives Knasenc based on the first Kamf, key protection algorithm and second parameter, and derives Knasint based on the first Kamf, key protection algorithm and third parameter.
  • the target AMF/target SEAF can save the location. Knasenc and Knasint.
  • step 6 may also be placed after step 4, and may also be placed after step 5. There is no limit here.
  • the target AMF/target SEAF second Kamf generates a security key, which may include the following cases:
  • Case 1 The target AMF derives a security key based on the preset second Kamf;
  • Case 2 The target SEAF derives a security key based on the preset second Kamf and sends the security key to the target AMF.
  • the target AMF/target SEAF sends a security key and a security context to the target RAN.
  • the security key sent includes KgNB.
  • the specific operation may be similar to the step 10 of the embodiment of FIG. 5, and details are not described herein again.
  • the target RAN feeds back a response to the target AMF/target SEAF to notify the target AMF/target SEAF to successfully obtain the security key.
  • the target AMF/target SEAF feeds back the path switching response and security context to the source AMF/source SEAF.
  • the target AMF in response to the path switch request in step 4, sends a confirmation message of the path switch request to the source AMF, where the acknowledgement message of the path switch request may carry a security context.
  • the source AMF/source SEAF feeds back the handover request and security context to the source RAN. Specifically, in response to the handover request in step 2, the source AMF sends a handover request (HO Command) to the source RAN to notify the source RAN that the handover preparation is complete, wherein the handover request may carry a security context.
  • HO Command handover request
  • the source RAN sends a handover request and a security context to the UE.
  • the source RAN sends a handover request to the UE, notifies the UE that the handover preparation is complete, and prompts the UE to complete the subsequent handover operation.
  • the security request may be carried in the handover request.
  • the UE generates a security key based on the first Kamf and the security context.
  • the security context received by the UE side only needs to include parameters that are not available on the UE side when the network side generates each key, such as a random number, a timestamp, etc., a security protection algorithm identifier, etc., and the UE may be in the previous step. All other parameters for generating keys are available.
  • the UE has already configured the first Kamf after the network is authenticated.
  • the UE also shares the network parameters of the network in advance. Therefore, for the UE, the UE can also be based on the first Kamf and network parameters.
  • the security context generates a new NAS layer key and an AS layer key.
  • the UE and the target RAN complete the subsequent handover process.
  • step 3 may be cancelled, and in step 4, the source AMF/source SEAF sends the first Kamf to the target AMF/target SEAF. After step 4, the target AMF/target SEAF generates a second Kamf based on the first Kamf.
  • the target AMF/target SEAF when the communication system performs AMF handover, the SMF corresponding to different AMFs may be different, so SMF handover may also occur in the foregoing process. In this case, you also need to consider the security protection of the PDU session.
  • the target AMF/target SEAF when the target AMF/target SEAF generates a security key based on the second Kamf in step 7, the update of the PDU session key needs to be considered on the target side.
  • the target AMF/target SEAF sends an indication message to the AUSF, triggering the AUSF to generate a new PDU session key.
  • the AUSF pre-stores the key Left K. Then, the AUSF may generate new information based on Left K, and related information of the UE and session information (such as session ID, slice information, etc.) sent by the source AMF/source SEAF.
  • PDU session key Ksmf when the communication system performs AMF handover, the SMF corresponding to different AMFs may be different
  • the communication system can generate a security key correspondingly, and use the security network element SEAF/AMF to implement the acquisition and delivery of the target-side security context and the security key.
  • the security network element SEAF/AMF Since the lower layer key derivation is derived from the derivation of the first intermediate key Kamf of the source AMF/source SEAF, the source AMF/source SEAF side generates and delivers the target side security context.
  • the target RAN cannot crack the source RAN.
  • the communication information with the UE realizes the backward security of the network communication.
  • the embodiment of the present invention provides a security implementation method.
  • the network security may be implemented by using the following methods, including but not limited to the following steps:
  • the source RAN triggers a communication switch.
  • the source RAN sends a handover request to the source AMF/source SEAF.
  • the source AMF/source SEAF sends a path switch request to the target AMF/target SEAF.
  • the target AMF/target SEAF sends a handover request to the target RAN.
  • the target RAN feeds back a confirmation message of the handover request to the target AMF/target SEAF.
  • the target AMF/target SEAF determines the local security policy.
  • the security policy may be preset in the local cache, or may be stored in other security network elements (for example, PCF, UDM, AUSF, etc.), and the security policy indicates whether the UE needs to re-authenticate to switch to the target RAN.
  • the target AMF/target SEAF queries the security policy from the local cache or queries the security policy from other security network elements.
  • the security policy may be determined according to the following implementation conditions: the key on the source AMF/source SEAF side has expired or is no longer secure, or the security capability of the UE needs to be re-acquired instead of being transmitted through the source AMF/source SEAF side. Security context. Then, when the current situation meets the implementation conditions indicated by the security policy, the target AMF/target SEAF determines that the local security policy indicates that the UE handover to the target RAN requires re-authentication, so the target AMF/target SEAF will continue to perform the subsequent steps.
  • the target AMF/target SEAF feeds back a path switch response to the source AMF/source SEAF, the path switch response not carrying a security context.
  • the source AMF/source SEAF feeds back the handover request to the source RAN, and the handover request does not carry a security context.
  • the source RAN sends a handover request to the UE, and the handover request does not carry a security context.
  • the UE and the target RAN complete the subsequent handover process.
  • the UE performs mutual authentication with the AUSF or UDM.
  • the UE After the communication connection of the UE is switched from the source RAN to the target RAN, the UE performs mutual authentication with the authentication network element to verify the identity of the UE.
  • the authentication network element may be an AUSF or a UDM. After passing the mutual authentication, both the UE side and the target AMF/target SEAF side obtain a new anchor key Kseaf.
  • the target AMF/target SEAF generates a security key based on the new Kseaf.
  • the target AMF/target SEAF generates a security key (KgNB and NAS layer key for generating an AS layer key) based on the new Kseaf, pre-shared network parameters, security context, and saves the NAS layer key.
  • KgNB and NAS layer key for generating an AS layer key
  • the security context herein may be based on the security context passed from the source AMF/source SEAF side and combined with the security context of the target AMF/target SEAF side itself, such as finally obtaining a security context including: encryption. Algorithm ID and integrity algorithm ID, security capabilities of user equipment, and the like.
  • the target AMF/target SEAF sends a security key to the target RAN, wherein the transmitted security key includes KgNB.
  • the UE generates a security key based on the new Kseaf. There is no necessary sequence in this step and step 12 and step 13.
  • the UE can also generate a security key based on the new Kseaf, the pre-shared network parameters, and the security context.
  • a security key based on the new Kseaf, the pre-shared network parameters, and the security context.
  • the SMF corresponding to different AMFs may be different, so SMF handover may also occur in the foregoing process.
  • the AUSF after the two-way authentication described in step 11, the AUSF also obtains a new key, Left K, which can generate a new PDU session key Ksmf and send it to the SMF, which is not described here.
  • the target side re-authenticates to obtain a new protection key to meet the forward and backward security. There is no need to pass the key on the source side or based on an existing key.
  • the communication system can obtain a new protection key after the re-directional mutual authentication, without requiring the source network side to transmit the intermediate key, and does not need to be based on the original
  • the key generates an intermediate key.
  • the target RAN cannot obtain the security key used by the source RAN, and cannot break the communication information between the source RAN and the UE, thereby implementing the backward security of the network communication; the source RAN cannot obtain the security key used by the target RAN.
  • the communication information between the target RAN and the UE cannot be cracked, and the forward security of the network communication is realized.
  • the embodiment of the present invention provides another security implementation method.
  • the UE side and the source AMF/source SEAF may be configured with the first key Kamf, the source.
  • the first KgNB is configured on the RAN side.
  • the source RAN triggers a communication switch.
  • the source RAN sends a handover request to the source AMF/source SEAF.
  • the source AMF/source SEAF derives the second Kamf based on the first Kamf.
  • the source AMF/source SEAF sends a path switch request, a second Kamf, a first NH, and a first NCC to the target AMF/target SEAF.
  • the key KeNB is associated with the NH parameter and the NCC parameter, wherein NH represents a next hop key (Next hop), and the NCC represents a next hop key association count (Next Chain Counter).
  • NH represents a next hop key
  • NCC represents a next hop key association count
  • Both KeNB and NH can be derived from other intermediate keys (such as Kasme).
  • KeNB derives directly from Kasme with an NCC value of zero.
  • the subsequent KeNB needs to be updated, it can be updated according to the ⁇ NH, NCC ⁇ pair.
  • the source AMF/source SEAF determines a ⁇ first NH, first NCC ⁇ pair, and sends ⁇ first NH, first NCC, second Kamf ⁇ , path switch request to the target AMF/target SEAF, respectively. .
  • the source AMF/source SEAF determines a ⁇ first NH, first NCC ⁇ pair and sends a ⁇ first NH, first NCC ⁇ pair, a second Kamf, through the path switch request to the target AMF/target SEAF.
  • the target AMF/target SEAF generates a first security key based on the second Kamf, the first NH, and the first NCC.
  • the target AMF/target SEAF saves the received ⁇ first NH, first NCC ⁇ pair and derives ⁇ second NH, second based on ⁇ first NH, first NCC ⁇ pair and second Kamf. NCC ⁇ , the specific process of derivation is as follows:
  • Second NH KDF (second Kamf, first NH);
  • Second NCC first NCC+1
  • target AMF/target SEAF will also derive Knasenc based on the second Kamf, the redefined key protection algorithm and the second parameter, specifically:
  • Knasenc KDF (second Kamf, NAS confidentiality algorithm ID, count value Nonce or Counter or random code Random or sequence code Sequence number, other parameters).
  • the target AMF/target SEAF also derives Kamf, the key protection algorithm and the third parameter from Knasint, specifically:
  • Knasint KDF (second Kamf, NAS integrity algorithm ID, count value Nonce or Counter or random code Random or sequence code Sequence number, other parameters).
  • the first security key includes the above ⁇ second NH, second NCC ⁇ pair, the key Knasenc, and the key Knasint.
  • the subsequent target AMF/target SEAF saves the key Knasenc, the key Knasint, and sends the ⁇ second NH, second NCC ⁇ pair to the access network.
  • the target AMF/target SEAF sends a handover request, a ⁇ second NH, second NCC ⁇ pair in the first security key to the target RAN, and correspondingly, the target RAN obtains and saves the ⁇ second NH, second NCC ⁇ pair. .
  • the target RAN sends a confirmation message of the handover request to the target AMF/target SEAF, notifying the target AMF/target SEAF to successfully obtain the ⁇ second NH, second NCC ⁇ pair in the first security key.
  • the target RAN generates a second security key based on the first security key.
  • the target RAN generates a second KgNB based on parameters such as a ⁇ second NH, second NCC ⁇ pair, and a physical identifier of the target RAN, specifically:
  • the second KgNB KDF (second NH, physical identification, other parameters).
  • the target RAN obtains the second KgNB
  • the specific key of the AS layer such as the key Krrcenc, the key Krrcint, the key Kupenc, the key Kupint, etc. can be further derived based on the security protection algorithm and the second KgNB.
  • the target AMF/target SEAF feeds back the path switch response and security context to the source AMF/source SEAF.
  • the source AMF/source SEAF feeds back the handover request and security context to the source RAN.
  • the source RAN feeds back the handover request and the security context to the UE.
  • the UE generates a security key based on the first Kamf and the security context.
  • the security context received by the UE side only needs to include parameters that are not available on the UE side when the network side generates each key, such as a random number, a timestamp, etc., a security protection algorithm identifier, ⁇ first NH, first NCC ⁇ , etc., the UE may have other parameters for generating keys in the previous steps.
  • the UE since the UE has already configured the first Kamf after the network is authenticated with the network, the UE also shares the network parameters of the network side in advance, so the UE can generate the NAS layer key based on the first Kamf, the network parameter, and the security context.
  • the UE may also obtain ⁇ second NH, second NCC ⁇ based on ⁇ first NH, first NCC ⁇ , first Kamf, and based on parameters such as ⁇ second NH, second NCC ⁇ , and physical identity of the target RAN.
  • a second KgNB is generated, and a specific AS layer key is derived based on the second KgNB.
  • the UE and the target RAN complete the subsequent handover process.
  • the target side (target RAN, target AMF/target SEAF, etc.) is based on the key KgNB of the source side (source RAN, source AMF/source SEAF, etc.).
  • Kamf generates a security key on the target side.
  • the target RAN cannot obtain the security key used by the source RAN, and cannot break the communication information between the source RAN and the UE, thereby realizing the backward security of the network communication.
  • the SMFs corresponding to different AMFs may be different, so SMF handover may also occur in the foregoing process. In this case, you also need to consider the security protection of the PDU session.
  • the target AMF/target SEAF sends indication information to the AUSF, triggering the AUSF to generate a new PDU session key.
  • the AUSF pre-stores the key Left K. Then, the AUSF may generate new information based on Left K, and related information of the UE and session information (such as session ID, slice information, etc.) sent by the target AMF/target SEAF.
  • PDU session key Ksmf specifically:
  • Ksmf KDF (Left K, NAI, NSSAI, slice ID, AMF related parameters, SMF related parameters, count value Nonce or Counter or random code Random or sequence code Sequence number, other parameters).
  • the AUSF then sends the Ksmf to the SEAF or the target AMF, which forwards the Ksmf to the target SMF and the UE, and the target SMF/UE updates the PDU session key using Ksmf.
  • the security implementation method provided by the embodiment of the present invention can be applied not only to the scenario of trans-RAN/cross AMF handover in the same communication system, but also to the cross-base station (eNB and gNB)/cross-access management network in different communication systems.
  • the scenario of the MME and the AMF is as shown in FIG. 9.
  • the embodiment of the present invention provides another security implementation method, which can be applied to the handover process of different communication systems.
  • the UE is originally established in the first communication system.
  • the communication connection after which the UE needs to switch the communication connection to the second communication system based on the user's needs or the current network conditions (for example, the mobile phone switches from the LTE communication system to the 5G communication system).
  • the first communication system includes: an eNB in an access network, an MME in a core network, an HSS, and the like
  • the second communication system includes: being in access
  • the gNB of the network is in the target AMF/target SEAF, AUSF, etc. of the core network.
  • the network security can be implemented by the following methods, including but not limited to the following steps:
  • the eNB triggers a communication switch.
  • the eNB may trigger a communication switch based on factors such as a requirement of the UE, a mobility of the UE, a current network condition, and the like.
  • the eNB sends a handover request to the MME.
  • the eNB sends a message of the handover request (Handover Required) to the MME, and notifies the MME that the user wants to perform handover, and the handover request carries the identifier of the UE.
  • the MME sends a path switch request, an original system security context, and an intermediate key Kasme to the target AMF/target SEAF.
  • the security context of the first communication system is the security context of the first communication system, and the security context of the first communication system includes, for example, a lifetime of a security-related key in the first communication system, an index of a key, and a UE.
  • Security capabilities, integrity algorithms, integrity algorithm identification, encryption algorithms, encryption algorithm identification, count values associated with computing keys, etc. may also include specific keys.
  • the UE security capability may be a list of encryption and integrity algorithms supported by the UE, a key length required by the UE, a key lifetime, and the like.
  • the intermediate key Kasme is an upper layer key generated after the authentication in the first communication system, and is used to derive a key of the lower layer access layer and the non-access stratum.
  • the path of the MME to the target side AMF/SEAF carries the security context of the first communication system, the intermediate key Kasme.
  • the MME transmits the path switch request, the security context of the first communication system, and the intermediate key Kasme to the target AMF/SEAF, respectively.
  • Target AMF/Target SEAF gets Kamf based on Kasme.
  • the AMF/SEAF intermediate key Kasme and the network parameter derive Kamf for example:
  • Kamf KDF (Kasme, target side ID, slice ID, NAI, NSSAI, AMF area identifier, GUAMI, AMF pointer, AMF setting identifier, count value Nonce or Counter or random code Random or sequence code Sequencenumber, other parameters).
  • the AMF/SEAF may also derive the Kamf using Kasme, the security context of the first communication system (eg, utilizing the security capabilities of the UE), network parameters, and the like.
  • the target AMF/target SEAF generates a security key based on Kamf.
  • the target AMF/target SEAF may determine a key protection algorithm of the second communication system according to a preset rule, for example, a target priority list of 5G pre-set in the target AMF/target SEAF, algorithm priority
  • a target priority list of 5G pre-set in the target AMF/target SEAF algorithm priority
  • the list has multiple algorithm IDs, the target AMF looks up the algorithm priority list, and selects the 5G NAS algorithm according to the algorithm priority list to obtain the NAS confidentiality algorithm ID and the NAS integrity algorithm ID.
  • the target AMF/target SEAF can derive the AS layer key and the NAS layer related key based on Kamf: such as KgNB, Knasenc, Knasint, etc., and the target AMF/target SEAF saves the Knasenc, Knasint.
  • Kamf such as KgNB, Knasenc, Knasint, etc.
  • the target AMF/target SEAF sends a handover request and a security key to the gNB, and the security key transmitted here includes KgNB.
  • the security key transmitted here includes KgNB.
  • gNB obtains KgNB.
  • the target AMF/target SEAF sends a handover request to the gNB, where the handover request carries the key KgNB.
  • the handover request also carries the count value Nonce or Counter, so that the UE side can correctly generate. Key.
  • the gNB when the second communication system supports user plane integrity protection, the gNB needs to determine whether it is necessary to generate and enable the user plane security key. Specifically, the gNB can judge according to the pre-stored policy, or gNB. It may also be negotiated with a network element such as an SMF or an AMF to make a judgment, or the gNB may perform a judgment according to a security context of the second communication system, the security context including indication information indicating whether the integrity is turned on. When it is judged that the user plane protection is supported, the gNB continues to generate the AS key of the subsequent key Krrcenc, the key Krrcint, the key Kupenc, the key Kupint, etc. based on the KgNB.
  • the gNB sends a confirmation message of the handover request to the target AMF/target SEAF.
  • the target AMF/target SEAF sends a path switch request and a security context to the MME.
  • the security context includes the count value Nonce or Counter.
  • the MME sends a handover request and a security context to the eNB.
  • the eNB sends a handover request and a security context to the UE.
  • the UE generates a security key.
  • the security context received by the UE side only needs to include parameters that are not available on the UE side when the network side generates each key, such as a random number (count value Nonce or Counter), timestamp, etc., 5G related security protection. Algorithm identification, etc., the UE may have other parameters for generating a key in the previous steps.
  • the UE can also generate a new NAS layer key and an AS layer key based on Kasme, network parameters, security context, and the like. For example, the UE may first generate Kamf based on Kasme, and then generate AS layer keys (such as Krrcenc, Krrcint, Kupenc, Kupint, etc.) and NAS layer keys (such as Knasenc, Knasint, etc.) based on Kamf, network parameters, security context, etc. Let me repeat.
  • AS layer keys such as Krrcenc, Krrcint, Kupenc, Kupint, etc.
  • NAS layer keys such as Knasenc, Knasint, etc.
  • the UE and the gNB complete the subsequent handover process, and finally, the communication connection of the UE is switched from the eNB to the gNB.
  • the Kasme may not be delivered in step 3, and step 4 is cancelled.
  • the AUSF may be based on the target side CK/IK and MME.
  • the original system security context passed is generated to generate a new Kseaf on the target side and sent to the target AMF/target SEAF.
  • the target AMF/target SEAF then generates subsequent Kamf according to the new Kseaf, the first communication system (such as 5G) security protection algorithm. Key.
  • the Kasme may not be delivered in step 3, and step 4 is cancelled.
  • Kseaf KDF (Klte, service network name identifier, count value Nonce or Counter or random code Random or sequence code Sequence number, other parameters.
  • AUSF sends Kseaf to the target AMF/target SEAF, the target AMF/target SEAF then generates a subsequent key such as Kamf according to Kseaf, the first communication system (such as 5G) security protection algorithm.
  • the communication system on the target side in the implementation process of the handover across the communication system, can generate the security key by using the intermediate key of the communication system on the source side and the security context, thereby Communication in the communication system is secured.
  • the communication system on the target side cannot obtain the security key used by the communication system on the source side, and cannot break the communication information between the communication system on the source side and the UE, thereby realizing the backward security of the network communication.
  • the UE originally establishes a communication connection in the second communication system, and then the UE is based on user requirements or In the current network situation, it is necessary to switch the communication connection to the first communication system (for example, the mobile phone switches from the 5G communication system to the LTE communication system).
  • the first communication system (LTE communication system) includes: an eNB in an access network, an MME in a core network, an HSS, and the like
  • the second communication system (5G communication system) includes: being in access The gNB of the network is in the target AMF/target SEAF, AUSF, etc. of the core network.
  • the network security can be implemented by the following methods, including but not limited to the following steps:
  • gNB triggers communication switching.
  • the eNB may trigger a communication switch based on factors such as a requirement of the UE, a mobility of the UE, a current network condition, and the like.
  • the gNB sends a handover request to the source AMF/source SEAF, notifying that there is a user to switch to the source AMF/source SEAF.
  • the source AMF/source SEAF sends a path switch request to the MME, and the security context of the original system; the MME sends a handover request to the HSS, and the security context of the source system.
  • the security context of the original communication system is the security context of the second communication system
  • the security context of the second communication system includes, for example, the lifetime of the security-related key in the second communication system, the index of the key, and the UE.
  • the security capability, the integrity algorithm, the integrity algorithm identifier, the encryption algorithm, the encryption algorithm identifier, the count value related to the calculation key, and the like may also include the specific key, whether the integrity is turned on or the like.
  • the source AMF/source SEAF carries the security context in a path switch request sent by the MME.
  • the HSS feeds back the path switch request response to the MME; the MME feeds back the path switch request response to the source AMF/source SEAF.
  • AUSF sends CK and IK to HSS.
  • the AUSF may be used to generate an Integrity Key (IK) and a Cipher Key (CK) required by the HSS, and Send the CK, IK to the HSS.
  • IK Integrity Key
  • CK Cipher Key
  • the HSS sends a response to the AUSF to notify the AUSF that the CK and IK have been successfully received.
  • HSS generates Kasme based on CK and IK.
  • the HSS further derives an intermediate key Kasme suitable for the first communication system based on the acquired CK and IK, which may be:
  • Kasme KDF (CK, IK, service network name identifier, serial number SQN, other parameters.
  • the HSS sends a Kasme to the MME, and correspondingly, the MME obtains the Kasme.
  • the MME generates a security key based on the Kasme and the security context.
  • the MME may generate a security key (including a key KeNB and a NAS key) based on parameters such as a security capability of the UE, a security capability of the UE, and a security capability of the network side, and the MME may save the NAS key.
  • the security capability of the UE may be, for example, a list of encryption and integrity algorithms supported by the UE, a key length required by the UE, a key lifetime, and the like.
  • the network-side security capability may be, for example, a pre-configured network support in the network device on the network side. A list of encryption and integrity algorithms, a priority list of encryption and integrity algorithms supported by the operator, a key length supported by the network device/operator, a key lifetime, and so on.
  • the process of generating the key KeNB may be:
  • KeNB KDF (new NAS count value, length of NAS count value, algorithm identification, other parameters).
  • the MME sends an S1 path switch request and a security key to the eNB, and the transmitted security key includes the KeNB.
  • the S1 interface is an interface between the eNB and the MME.
  • the MME sends a path switch request to the eNB through the S1 interface, where the path switch request may carry the KeNB.
  • the MME sends the path switch request and the KeNB to the eNB through the S1 interface.
  • the eNB feeds back the S1 path response to the MME, and notifies the MME that the message is successfully received.
  • the eNB does not calculate the user plane integrity key.
  • the eNB determines that it is not necessary to generate and enable a user plane security key. In this case, if the received security key includes a user plane integrity protection key, the eNB will not enable the key; in addition, in the process of the eNB generating the AS key based on the received key KeNB The user plane integrity protection key of the AS is no longer generated.
  • the source AMF/source SEAF feeds back the handover request and security context to the gNB.
  • the gNB sends a handover request and a security context to the UE.
  • the UE generates a security key.
  • the security context received by the UE side only needs to include parameters that are not available on the UE side when the network side generates each key, such as a random number (count value Nonce or Counter), timestamp, etc., and LTE-related security protection. Algorithm identification, etc., the UE may have other parameters for generating a key in the previous steps. The UE may derive Kasme based on the preset Kamf, and then obtain the corresponding AS layer key and NAS layer key based on Kasme, network parameters, security context, and the like.
  • the UE and the eNB complete the subsequent handover process, and finally, the communication connection of the UE is switched from the gNB to the eNB.
  • step 5 and step 6 may also be omitted, and in step 7, the HSS may be based on the pre-stored CK/IK and the received original system ( The second system) security context generates the intermediate key Kasme, and in step 9, the MME may generate the KeNB and the NAS key based on the Kasme, first system (eg 5G) security protection algorithm.
  • first system eg 5G
  • the AMF may send Kamf to the MME, and the MME derives Kasme based on Kamf, and the method may be:
  • Kasme KDF (Kamf, target side ID, service network name identifier, count value Nonce or Counter or random code Random or sequence code Sequence number, NAS COUNT);
  • the second Kasme KDF (Kamf, Kasme for the first time, other parameters).
  • the communication system on the target side in the implementation process of the handover across the communication system, can generate the security key by using the intermediate key of the communication system on the source side and the security context, thereby Communication in the communication system is secured.
  • the communication system on the target side cannot obtain the security key used by the communication system on the source side, and cannot break the communication information between the communication system on the source side and the UE, thereby realizing the backward security of the network communication.
  • an embodiment of the present invention provides an application scenario of handover communication in a communication system formed by combining a 5G network and a WLAN network.
  • the 5G network includes an access network and a core network.
  • the access network includes a RAN device 331 and a RAN device 332.
  • the core network includes a core network device group 341.
  • the access network devices are respectively connected to the core network device through the N2 interface.
  • the WLAN network includes a wireless node 321, a wireless node 322, and user equipment that establishes a communication connection with a wireless node (which may also be considered part of the access network), wherein the wireless node may pass Xw with the RAN device 331 and the RAN device 332, respectively. Interface connection.
  • the user equipment and the wireless node perform uplink communication or downlink communication through the WLAN technology.
  • the user equipment is in communication with the wireless node 321 . If the user equipment moves from 311 to 312, the user equipment may need to switch the communication connection from the wireless node 321 to the wireless node 322, upon completion. After the handover process, the user equipment communicates with the wireless node 322 to continue communication. In this process, the communication handover process may be accompanied by the communication handover of the RAN device.
  • the security implementation method provided by the embodiment of the present invention can also be used to secure the switched communication. Specifically, the following steps may be included:
  • the RAN device 332 receives a request to switch the user equipment from the wireless node 321 to the wireless node 322;
  • the wireless node may be, for example, a WLAN Termination, a wireless access point AP, a wireless router, or the like.
  • the RAN device may be, for example, a base station device such as gNB.
  • the RAN device 332 obtains the master key
  • the RAN device 332 can obtain the master key in the following manner:
  • the core network device group 341 generates an intermediate key KgNB and transmits the KgNB to the RAN device 332.
  • the RAN device 332 generates a master key based on the KgNB, for example, when the wireless node is a WLAN Termination.
  • the RAN device 332 transmits a master key to the wireless node 322 via the Xw interface, the S-Kwt air interface protection key of the WLAN, and the wireless node 322 generates a final security key based on the master key S-Kwt and the IEEE 802.11 specification.
  • the security key is used to protect communication between the user equipment and the wireless node 322 after the user equipment is handed over from the wireless node 321 to the wireless node 322.
  • the RAN device 332 sends the WLAN endpoint count value (WTCounter) to the user equipment through an air interface message, such as an RRC signaling message, with the UE, so that the user equipment can also calculate the corresponding S-Kwt, and then based on the S-Kwt. And the IEEE specification generates a security key.
  • WTCounter WLAN endpoint count value
  • an embodiment of the present invention provides an apparatus 1200.
  • the apparatus 1200 includes a processor 1201, a memory 1202, and a transmitter 1203, and a receiver 1204.
  • the memory 1202 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an Erasable Programmable Read Only Memory (EPROM), or a portable device.
  • RAM random access memory
  • ROM read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • Transmitter 1203 is used to transmit data and receiver 1204 is used to receive data.
  • the processor 1201 may be one or more central processing units (CPUs). In the case where the processor 1201 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1201 is configured to read the program code stored in the memory 1202 to implement the function of the authentication network element in the embodiment of FIG. 3.
  • the program code stored in the memory 1202 is specifically used to implement the function of the first network element in the embodiment of FIG. 4.
  • the specific description is as follows:
  • the receiver 1204 is configured to receive a request for switching a user equipment from a source access network device to a target access network device;
  • the processor 1201 is configured to obtain a security key, where the security key is used to: after the user equipment is switched from the source access network device to the target access network device, to the user equipment The communication with the target network is protected, the target network includes the target access network device and a target core network device, and the target core network device includes the first network element;
  • the transmitter 1203 is configured to send the security key to the target access network device.
  • the processor 1201 is configured to obtain a security key, including:
  • the processor 1201 is configured to acquire a first intermediate key, where the first intermediate key is an upper layer key generated after the authentication, and is used to derive a lower layer access layer AS and a non-access stratum NAS key;
  • the processor 1201 is configured to determine a security protection algorithm, and derive the security key based on the security protection algorithm and the first intermediate key.
  • the processor 1201 is configured to acquire the first intermediate key, including:
  • the processor 1201 is configured to obtain, by the receiver 1204, the first intermediate key that is derived from the security anchor SEAF based on an anchor key and a network parameter.
  • the processor 1201 is configured to acquire the first intermediate key, including:
  • the processor 1201 is configured to obtain, by the receiver 1204, the first intermediate key that is derived by the second network element based on the second intermediate key and the network parameter, where the second intermediate key is generated after the authentication.
  • the upper layer key is used to derive the underlying access layer and non-access stratum keys.
  • the processor 1201 is configured to acquire the first intermediate key, including:
  • the processor 1201 is configured to receive, by the receiver 1204, a second intermediate key sent by the second network element;
  • the processor 1201 is configured to use the first intermediate key that is derived based on the second intermediate key and the network parameter, where the second intermediate key is a key of an upper layer generated after the authentication, and is used for pushing The access layer and the non-access stratum key of the lower layer are derived.
  • the processor 1201 is configured to acquire the first intermediate key, including:
  • the processor 1201 After the user equipment switches from the source access network device to the target access network device, and the user equipment re-passes the two-way authentication, the processor 1201 obtains an anchor key;
  • the processor 1201 is configured to derive the first intermediate key based on the anchor key and network parameters.
  • the receiver 1204 is further configured to receive a next hop key first NH, a next hop key association count sent by the second network element, and the first NCC; the processor 1201 is further configured to be based on The first NH and the first NCC obtain a second NH and a second NCC; the transmitter 1203 is further configured to send the second NH and the second NCC to the target access network device.
  • the security key includes a first key, a second key, and a third key; the first key is a security protection between the user equipment and the target access network device.
  • the processor 1201 is configured to determine a security protection algorithm, and deriving the security key based on the security protection algorithm and the first intermediate key, including:
  • the security protection algorithm includes a NAS confidentiality algorithm identifier and a NAS integrity algorithm identifier.
  • the processor 1201 is configured to derive the first key based on a first parameter, where the first parameter includes the first intermediate key, a target cell identifier, a frequency point, a NAS count value, and a NAS connection.
  • the first parameter includes the first intermediate key, a target cell identifier, a frequency point, a NAS count value, and a NAS connection.
  • the processor 1201 is configured to derive the second key based on the second parameter, where the second parameter includes the first intermediate key, the NAS confidentiality algorithm identifier, a count value, or a random code Or one or more of the serial codes;
  • the processor 1201 is configured to derive the third key based on a third parameter, where the third parameter includes the first intermediate key, the NAS integrity algorithm identifier, a count value, or a random code Or one or more of the serial codes;
  • the transmitter 1203 is configured to send the security key to the target access network device, including:
  • the transmitter 1203 is configured to send the first key to the target access network device.
  • the source access network device is an access network device of the first communication system
  • the target access network device is an access network device of the second communication system
  • a network element of the second communication system
  • the request includes a security context of the first communication system, a third intermediate key
  • the third intermediate key is an upper layer generated after being authenticated in the first communication system Key for deriving the access layer of the lower layer and the key of the non-access stratum;
  • the processor 1201 is configured to acquire a first intermediate key, including:
  • the processor 1201 is configured to derive the first intermediate key based on a security context of the first communication system, a security context of the second communication system, and the third intermediate key.
  • the first network element includes a target access and mobility management network element AMF
  • the second network element includes a source AMF
  • the target AMF is connected to the target access network device, and the source AMF is Connecting the source access network device
  • the first network element includes a target security anchor SEAF
  • the second network element includes a source security anchor SEAF
  • the target SEAF is connected to the target access network device
  • the source SEAF is connected to the source access network device.
  • the network parameter includes a target side identifier, a slice identifier, a network access identifier NAI, a network slice selection assistance information NSSAI, an AMF area identifier, an AMF setting identifier, an AMF global unique indicator GUAMI, and an AMF pointer pointer.
  • AMF set identifier count value or one or more of a random code or a sequence code.
  • the first network element includes a mobility management entity network element MME of the first communication system;
  • the target access network device is an access network device of the first communication system;
  • the network access device is an access network device of the second communication system;
  • the receiver 1204 of the MME is configured to receive a request for handover of a user equipment from the source access network device to the target access network device; the request includes a security context of the second communication system;
  • the processor 1201 of the MME is configured to obtain a security key
  • the transmitter 1203 of the MME is configured to send the security key to the target access network device.
  • the processor 1201 of the MME is configured to receive, by using the receiver 1204 of the MME, the home subscription subscriber server HSS of the first communication system, based on the first encryption key, the first integrity protection key. a service network name identifier, a third intermediate key derived by the serial number SQN; the third intermediate key is an upper layer key generated after being authenticated in the first communication system, and is used to derive a lower layer Keys for the access layer and the non-access stratum;
  • the processor 1201 of the MME is configured to derive the security key based on the security context of the second communication system and the third intermediate key.
  • the processor 1201 of the MME is configured to obtain a security key, including:
  • the processor 1201 of the MME is configured to receive, by the receiver 1204 of the MME, a first intermediate key sent by the AMF of the second communication system; the first intermediate key is an authentication in the second communication system.
  • the generated upper layer key is used to derive the lower layer access layer AS and the non-access layer NAS key;
  • the processor 1201 of the MME is configured to derive the third intermediate key based on the first intermediate key
  • the processor 1201 of the MME is configured to derive the security key based on the security context of the second communication system and the third intermediate key.
  • the steps performed by the processor 1201 and other technical features involved in the processor 1201 may also refer to the corresponding description of the method embodiment shown in FIG. 5-10. Let me repeat.
  • the program code stored in the memory 1202 is specifically used to implement the functions of the RAN device 332 in the embodiment of FIG.
  • the specific description is as follows:
  • the receiver 1204 is configured to receive a request for switching a user equipment from a source wireless node to a target wireless node;
  • the receiver 1204 is further configured to receive a first key (such as a KeNB or a KgNB) sent by the core network device, where the first key is a middle security between the user equipment and the target access network device. key;
  • a first key such as a KeNB or a KgNB
  • the processor 1201 is configured to generate a second key (master key) based on the intermediate key; the second key is an intermediate key for security protection between the user equipment and the target wireless node;
  • the transmitter 1203 is configured to send the second key to a target wireless node, so that the target wireless node generates a security key based on the second key; the security key is used to After the user equipment switches from the source wireless node to the target wireless node, the communication between the user equipment and the target wireless node is protected.
  • the steps performed by the processor 1201 and other technical features involved in the processor 1201 may also refer to the corresponding description of the method embodiment shown in FIG. 11 , and details are not described herein again.
  • an embodiment of the present invention provides another apparatus 1300.
  • the apparatus 1300 is a first network element, and specifically includes: a receiving module 1301, a key processing module 1302, and a sending module 1303, which are described as follows:
  • the receiving module 1301 is configured to receive a request for switching a user equipment from a source access network device to a target access network device;
  • the key processing module 1302 is configured to obtain a security key, where the security key is used after the user equipment is switched from the source access network device to the target access network device, and the user equipment is used.
  • the communication with the target network is protected, the target network includes the target access network device and a target core network device, and the target core network device includes the first network element;
  • the sending module 1303 is configured to send the security key to the target access network device.
  • the key processing module 1302 obtains a first intermediate key; the first intermediate key is an upper layer key generated after the authentication, and is used to derive the lower access layer AS and the non-access layer NAS. Key
  • the key processing module 1302 determines a security protection algorithm that derives the security key based on the security protection algorithm and the first intermediate key.
  • the acquiring, by the first network element, the first intermediate key includes:
  • the key processing module 1302 obtains the first intermediate key derived by the security anchor SEAF based on the anchor key and the network parameter by the receiving module 1301.
  • the key processing module 1302 obtains the first intermediate key, including:
  • the key processing module 1302 obtains, by the receiving module 1301, the first intermediate key that is derived by the second network element based on the second intermediate key and the network parameter, where the second intermediate key is the upper layer secret generated after the authentication.
  • the key is used to derive the access layer and non-access stratum keys of the lower layer.
  • the key processing module 1302 obtains the first intermediate key, including:
  • the receiving module 1301 receives the second intermediate key sent by the second network element.
  • the first intermediate key is derived by the key processing module 1302 based on the second intermediate key and the network parameter; wherein the second intermediate key is an upper layer key generated after the authentication, and is used to derive the lower layer. Access layer and non-access stratum keys.
  • the key processing module 1302 obtains the first intermediate key, including:
  • the key processing module 1302 obtains an anchor key
  • the key processing module 1302 derives the first intermediate key based on the anchor key and network parameters.
  • the key processing module 1302 further acquires, by the receiving module 1301, the next hop key sent by the second network element, the first NH, the next hop key association count, the first NCC;
  • the key processing module 1302 obtains the second NH and the second NCC based on the first NH and the first NCC;
  • the sending module 1303 sends the second NH and the second NCC to the target access network device.
  • the security key includes a first key, a second key, and a third key; the first key is a middle between the user equipment and the target access network device for security protection.
  • the key processing module 1302 determines a security protection algorithm, and derives the security key based on the security protection algorithm and the first intermediate key, including:
  • the security protection algorithm includes a NAS confidentiality algorithm identifier and a NAS integrity algorithm identifier.
  • the key processing module 1302 derives the first key based on the first parameter, where the first parameter includes the first intermediate key, a target cell identifier, a frequency point, a NAS count value, a NAS connection identifier, Counting value or one or more of a random code or a serial code;
  • the key processing module 1302 derives the second key based on the second parameter; wherein the second parameter includes the first intermediate key, the NAS confidentiality algorithm identifier, a count value, or a random code or sequence One or more of the codes;
  • the key processing module 1302 derives the third key based on the third parameter; wherein the third parameter includes the first intermediate key, the NAS integrity algorithm identifier, a count value, or a random code or sequence One or more of the codes;
  • the sending module 1303 sends the security key to the target access network device, including:
  • the transmitting sends the first key to the target access network device.
  • the source access network device is an access network device of a first communication system
  • the target access network device is an access network device of a second communication system
  • a network element of the second communication system
  • the request includes a security context of the first communication system, a third intermediate key
  • the third intermediate key is an upper layer generated after being authenticated in the first communication system a key used to derive a key of an access layer and a non-access stratum of the lower layer;
  • the key processing module 1302 obtains the first intermediate key, including:
  • the key processing module 1302 is based on the security context of the first communication system, the security context of the second communication system, and the first intermediate key derived from the third intermediate key.
  • the first network element includes a target access and mobility management network element AMF
  • the second network element includes a source AMF
  • the target AMF is connected to the target access network device
  • the source AMF is connected.
  • the source SEAF is connected to the source access network device.
  • the network parameter includes a target side identifier, a slice identifier, a network access identifier NAI, a network slice selection assistance information NSSAI, an AMF area identifier, an AMF setting identifier, an AMF global unique indicator GUAMI, an AMF pointer pointer, AMF set identifier, count value, or one or more of a random code or a sequence code.
  • the first network element includes a mobility management entity network element MME of the first communication system;
  • the target access network device is an access network device of the first communication system;
  • the network device is an access network device of the second communication system;
  • the key processing module 1302 receives, by the receiving module 1301, a request to switch communication of the user equipment from the source access network device to the target access network device; the request includes a security context of the second communication system;
  • the key processing module 1302 obtains a security key, where the security key is used to switch the user equipment from the source access network device to the target access network device to the user equipment and Protection of communication between the target networks;
  • the sending module 1303 sends the security key to the target access network device.
  • the MME obtains a security key, including:
  • the key processing module 1302 obtains, by using the receiving module 1301, the first subscription user server HSS of the first communication system, based on the first encryption key, the first integrity protection key, the service network name identifier, and the serial number SQN. a third intermediate key; the third intermediate key is an upper layer key generated after being authenticated in the first communication system, and is used to derive a key of an access layer and a non-access stratum of the lower layer;
  • the key processing module 1302 derives the security key based on the security context of the second communication system and the third intermediate key.
  • the key processing module 1302 obtains the security key, including: the key processing module 1302 acquires the first intermediate key sent by the AMF of the second communication system by the receiving module 1301; the first intermediate key The upper layer key generated after the authentication in the second communication system is used to derive the access layer AS and the non-access stratum NAS key of the lower layer;
  • the key processing module 1302 derives the third intermediate key based on the first intermediate key
  • the key processing module 1302 derives the security key based on the security context of the second communication system and the third intermediate key.
  • the computer program product comprises one or more computer instructions which, when loaded and executed on a computer, produce, in whole or in part, a process or function according to an embodiment of the invention.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a network site, computer, server or data center Transmission to another network site, computer, server, or data center via wired (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer, or can be a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape, etc.), an optical medium (such as a DVD, etc.), or a semiconductor medium (such as a solid state hard disk) or the like.
  • a magnetic medium such as a floppy disk, a hard disk, a magnetic tape, etc.
  • an optical medium such as a DVD, etc.
  • a semiconductor medium such as a solid state hard disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了安全实现方法、相关装置和系统,该方法包括:第一网元接收将用户设备从源接入网设备切换到目标接入网设备的通信的请求;第一网元获得安全密钥;所述安全密钥用于,在将所述用户设备从所述源接入网设备切换到所述目标接入网设备后,对所述用户设备与所述目标接入网设备之间的通信进行保护;第一网元向所述目标接入网设备发送所述安全密钥。

Description

安全实现方法、相关装置以及系统 技术领域
本申请涉及通信技术领域,尤其涉及安全实现方法、相关装置以及系统。
背景技术
现如今,用户设备(如手机)已经被广泛地应用,极大的方便了人们的生活。用户设备可以直接与基站建立通信连接,从而进行通信,利用网络提供的数据传输服务为用户呈现丰富的通信体验。在一些应用场景中,如果用户设备从一个基站小区移动到当前基站小区,需要将用户设备的网络连接从原基站切换到当前基站,才能继续保持通信。
未来移动通信架构(例如第5代通信系统5G)同样要求网络满足用户设备的切换需求。目前,在现有的移动通信3GPP标准中,SA2架构组已经提出了5G网络的大致架构,在该架构中,核心网的接入与管理网元AMF通常会部署在离基站较近的位置,所以当用户设备跨基站切换通信时,也可能会造成跨AMF切换。
然而,目前的通信安全实现方法(可扩展的身份验证协议EAP方法)并不适用5G网络中跨AMF切换的安全保护,因此,如何建立基于未来的移动通信架构的安全机制,成为目前亟待解决的问题。
发明内容
本发明实施例提供了安全实现方法、相关装置以及系统,可实现跨AMF切换场景中的安全保护,提高未来的移动通信架构的安全性,满足用户需求。
第一方面,本发明实施例公开了一种安全实现方法,该方法包括:第一网元接收将用户设备从源接入网设备切换到目标接入网设备的通信的请求;所述第一网元获得安全密钥;所述安全密钥用于,在将所述用户设备从所述源接入网设备切换到所述目标接入网设备后,对所述用户设备与所述目标网络之间的通信进行保护,所述目标网络包括所述目标接入网设备和目标核心网设备,所述目标核心网设备包括所述第一网元;所述第一网元向所述目标接入网设备发送所述安全密钥。
其中,第二网元连接所述源接入网设备,第二网元和源接入网设备属于源侧的网络设备;第一网元连接目标接入网设备,第一网元和目标接入网设备属于目标侧的网络设备。
在具体实现中,所述第二网元可以是源AMF、源SEAF、源SMF等网络设备,第一网元为对应的目标AMF、目标SEAF、目标SMF等网络设备。
其中,所述请求可能携带有源侧的安全上下文,所述源侧安全上下文例如可以包括密钥的生存周期、密钥的索引、UE的安全能力、完整性算法、完整性算法标识、加密算法、加密算法标识、与计算密钥相关的计数值中的一项或多项,所述请求例如可以为切换请求、路径切换请求等等。
在本发明实施例中,所述第一网元获得安全密钥,包括:所述第一网元获取第一中间密钥;所述第一中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层AS和非接入层NAS密钥;所述第一网元确定安全保护算法,基于所述安全保护算法和所述第一中间密 钥推衍出所述安全密钥。
所述安全密钥可包括接入层AS密钥和非接入层NAS密钥,AS密钥用于对用户设备与接入网设备之间的通信进行保护,NAS密钥用于对用户设备与核心网设备(如AMF/SEAF/SMF等等)之间的通信进行保护。
其中,第一网元获取第一中间密钥的方式可以是多种多样的:
具体实施例中,第一网元获取第二网元基于第二中间密钥、网络参数推衍出的所述第一中间密钥;其中,第二中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层和非接入层密钥,例如,第二中间密钥为原先已存在于第二网元的密钥Kamf,该密钥Kamf在通过认证时由第二网元所获取。
具体实施例中,第一网元接收第二网元发送的第二中间密钥;所述第一网元基于所述第二中间密钥、网络参数推衍出的所述第一中间密钥。
具体实施例中,在所述用户设备从所述源接入网设备切换到所述目标接入网设备、并且所述用户设备重新通过双向认证后,所述第一网元获得锚密钥Kseaf;所述第一网元基于所述锚密钥、网络参数推衍出的所述第一中间密钥。
其中,网络参数可包括目标侧标识、切片标识、网络接入标识符NAI、网络切片选择辅助信息NSSAI、AMF区域标识、AMF设置标识、AMF全局唯一指示符GUAMI、AMF指针pointer、AMF集合标识、计数值Nonce或Counter或随机码或序列码中的一项或多项。
在本发明具体实施例中,第一网元还可以获取第二网元发送的下一跳密钥第一NH、下一跳密钥关联计数第一NCC;所述第一网元基于{第一NH,第一NCC}对得到{第二NH,第二NCC}对。后续步骤中第一网元可向目标接入网设备发送{第二NH,第二NCC}对,以及第二密钥、第三密钥,目标接入网设备基于{第二NH,第二NCC}对生成第一密钥。
在可能的实施例中,所述安全密钥包括第一密钥,第二密钥和第三密钥;所述第一密钥为用户设备与所述目标接入网设备之间进行安全保护的中间密钥;所述第二密钥为NAS信令加密性保护密钥;所述第三密钥为NAS信令完整性保护密钥;
所述第一网元确定安全保护算法,基于所述安全保护算法和所述第一中间密钥推衍出所述安全密钥,包括:所述安全保护算法包括NAS机密性算法标识和NAS完整性算法标识,所述第一网元基于第一参数推衍出所述第一密钥,例如密钥KgNB;其中,所述第一参数包括所述第一中间密钥、目标小区标识、频点、NAS计数值、NAS连接标识、计数值或随机码或序列码中的一项或多项;所述第一网元基于第二参数推衍出所述第二密钥,例如密钥Knasenc;其中,所述第二参数包括所述第一中间密钥、所述NAS机密性算法标识、计数值或随机码或序列码中的一项或多项;所述第一网元基于第三参数推衍出所述第三密钥,例如Knasint;其中,所述第三参数包括所述第一中间密钥、所述NAS完整性算法标识、计数值或随机码或序列码中的一项或多项;
所述第一网元向所述目标接入网设备发送所述安全密钥,包括:所述第一网元向所述目标接入网设备发送所述第一密钥。
在可能的实施例中,所述源接入网设备为第一通信系统的接入网设备;所述目标接入网设备为第二通信系统的接入网设备;所述第一网元为所述第二通信系统的网元;所述请求包括所述第一通信系统的安全上下文、第三中间密钥;所述第三中间密钥为在所述第一 通信系统中认证后生成的上层的密钥,用于推衍下层的接入层和非接入层的密钥;
所述第一网元获取第一中间密钥,包括:所述第一网元基于所述第一通信系统的安全上下文、所述第二通信系统的安全上下文以及所述第三中间密钥推衍出的所述第一中间密钥。
在可能的实施例中,所述第一网元包括目标接入和移动管理网元AMF,所述第二网元包括源AMF,所述目标AMF连接所述目标接入网设备,所述源AMF连接所述源接入网设备;或者,所述第一网元包括目标安全锚点SEAF,所述第二网元包括源安全锚点SEAF,所述目标SEAF连接所述目标接入网设备,所述源SEAF连接所述源接入网设备。
在可能的实施例中,所述网络参数包括目标侧标识、切片标识、网络接入标识符NAI、网络切片选择辅助信息NSSAI、AMF区域标识、AMF设置标识、AMF全局唯一指示符GUAMI、AMF指针pointer、AMF集合标识、计数值或随机码或序列码中的一项或多项。
在可能的实施例中,所述第一网元包括第一通信系统的移动性管理实体网元MME;所述目标接入网设备为所述第一通信系统的接入网设备;所述源接入网设备为第二通信系统的接入网设备;
具体的,所述MME接收将用户设备从所述源接入网设备切换到所述目标接入网设备的通信的请求;所述请求包括所述第二通信系统的安全上下文;所述MME获得安全密钥;所述安全密钥用于,在将所述用户设备从所述源接入网设备切换到所述目标接入网设备后,对所述用户设备与所述目标接入网设备之间的通信进行保护;所述MME向所述目标接入网设备发送所述安全密钥。
在可能的实施例中,所述MME获取所述第一通信系统的归属签约用户服务器HSS基于第一加密密钥、第一完整性保护密钥、服务网络名称标识、序列号SQN推衍出的第三中间密钥;所述第三中间密钥为在所述第一通信系统中认证后生成的上层的密钥,用于推衍下层的接入层和非接入层的密钥;所述MME基于所述第二通信系统的安全上下文、所述第三中间密钥推衍出所述安全密钥。
在可能的实施例中,所述MME获取所述第二通信系统的AMF发送的第一中间密钥;所述第一中间密钥为所述第二通信系统中认证后生成的上层的密钥,用于推衍下层的接入层AS和非接入层NAS密钥;所述MME基于所述第一中间密钥推衍出所述第三中间密钥;所述MME基于所述第二通信系统的安全上下文、所述第三中间密钥推衍出所述安全密钥。
第二方面,本发明实施例提供了一种安全实现方法,其特征在于,包括:
目标接入网设备接收将用户设备从源无线节点切换到目标无线节点的通信的请求;所述目标接入网设备接收核心网设备发送的第一密钥;所述第一密钥为用户设备与所述目标接入网设备之间进行安全保护的中间密钥;所述目标接入网设备基于所述中间密钥生成第二密钥;所述第二密钥为用户设备与所述目标无线节点之间进行安全保护的中间密钥;所述目标接入网设备向目标无线节点发送所述第二密钥,以便于所述目标无线节点基于所述第二密钥生成安全密钥;所述安全密钥用于,在将所述用户设备从源无线节点切换到目标无线节点后,对所述用户设备与所述目标无线节点之间的通信进行保护。
第三方面,本发明实施例提供了一种网元,该网元为第一网元,第一网元包括接收器、发射器、存储器和与存储器耦合的处理器。接收器、发射器、存储器、处理器可通过总线 或者其它方式连接。其中,发射器用于向外部发送数据、信令,接收器用于从外部接收数据、信令。存储器用于存储程序代码以及相关数据(如配置信息、安全上下文、密钥等等),处理器1201用于调用并运行存储于存储器中的程序代码,并执行第一方面所述方法的相关步骤。
第四方面,本发明实施例提供了一种目标接入网设备,该目标接入网设备包括接收器、发射器、存储器和与存储器耦合的处理器。接收器、发射器、存储器、处理器可通过总线或者其它方式连接。其中,发射器用于向外部发送数据、信令,接收器用于从外部接收数据、信令。存储器用于存储程序代码以及相关数据(如配置信息、安全上下文、密钥等等),处理器用于调用并运行存储于存储器中的程序代码,并执行第二方面所述方法的相关步骤。
第五方面,本发明实施例提供了一种网元,该网元包括接收模块,密钥处理模块,发送模块,该网元用于实现第一方面描述的方法。
第六方面,本发明实施例提供了一种计算机可读存储介质,用于存储第一方面或第二方面所述方法的实现代码。
第七方面,本发明实施例提供了一种计算机软件产品,当其在计算机中运行时,可用于实现第一方面或第二方面所述的方法。
实施本发明实施例,在跨网元(如跨AMF切换)的实施过程中,通信系统可相应生成安全密钥,使用安全网元(SEAF/AMF)来实现目标侧安全上下文和安全密钥的获取和传递。通过实施本发明实施例有利于实现在未来的移动通信架构(如5G)中跨AMF切换的场景中的安全保护,提高未来的移动通信架构的安全性,满足用户需求。
附图说明
下面将对背景技术或者实施例所需要使用的附图作简单地介绍。
图1是本发明实施例公开的一种移动通信的系统架构示意图;
图2是本发明实施例公开的一种LTE系统的场景示意图;
图3是本发明实施例公开的一种5G系统的场景示意图;
图4是本发明实施例公开的一种安全实现方法的流程示意图;
图5是本发明实施例公开的又一种安全实现方法的流程示意图;
图6是本发明实施例公开的又一种安全实现方法的流程示意图;
图7是本发明实施例公开的又一种安全实现方法的流程示意图;
图8是本发明实施例公开的又一种安全实现方法的流程示意图;
图9是本发明实施例公开的又一种安全实现方法的流程示意图;
图10是本发明实施例公开的又一种安全实现方法的流程示意图;
图11是本发明实施例公开的一种5G结合WLAN系统的场景示意图;
图12是本发明实施例公开的一种装置的结构示意图;
图13是本发明实施例公开的又一种装置的结构示意图。
具体实施方式
下面将结合附图对本发明实施例中的技术方案进行清楚地描述。
为便于方案理解,首先结合相关附图来举例介绍本申请实施例的方案可能应用到的网络架构。图1为未来的移动通信的网络架构,该网络架构包括用户设备、接入网设备和运营商网络(如5G等3GPP网络),运营商网络又包括核心网和数据网,用户设备通过接入网设备接入运营商网络。具体描述如下:
用户设备(User Equipment,UE),UE为逻辑实体,具体的,UE可以是终端设备(Terminal Equipment)、通信设备(Communication Device)、物联网(Internet of Things,IoT)设备中的任意一种。其中,终端设备可以是智能手机(smart phone)、智能手表(smartwatch),智能平板(smart tablet)等等。通信设备可以是服务器、网关(Gateway,GW)、控制器等等。物联网设备可以是传感器,电表以及水表等等。
接入网(access network,AN),在具体应用中又可称为无线接入网(Radio Access Network,RAN),RAN由接入网设备组成,负责用户设备的接入。RAN可以是基站(如NB、eNB、gNB等)、无线保真(Wireless Fidelity,Wi-Fi)接入点、以及蓝牙接入点等等。
数据网络(Data network,DN),DN可以为运营商外部网络,也可以为运营商控制的网络,用于向用户提供业务服务。UE可通过接入运营商网络来访问DN,使用DN上的运营商或第三方提供的业务。
核心网(core network,CN),CN作为承载网络提供到DN的接口,为UE提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。其中,CN又包括:接入和移动管理网元、会话管理网元,认证服务器网元、策略控制节点、应用功能网元、用户面节点等,相关描述具体如下:
接入与移动管理网元(Access and Mobility Management Function,AMF),由运营商提供的控制面网元,负责UE接入运营商网络的接入控制和移动性管理。作为NAS信令的终结点,处理网络信令;
安全锚点(Security Anchor Function,SEAF),SEAF与AMF连接,作为安全认证功能的节点。在具体实施中,在物理位置上可以将AMF和SEAF集合部署在一起,也可以将AMF和SEAF分别独立设置。另外,在可能的实施中,可以将AMF和SEAF的功能分离部署不同的网元,也可以将AMF和SEAF的功能几种设置于同一个网元(比如AMF具备SEAF的功能)。
会话管理网元(Session Management Function,SMF),由运营商提供的控制面网元,负责管理UE的数据包的会话。
认证服务器网元(Authentication Server Function,AUSF),认证服务器功能网元AUSF是由运营商提供的控制面网元,用于UE的认证。AUSF可以作为一个独立的逻辑功能实体单独部署,也可以集合在AMF/SMF等设备中。
统一数据管理网元(Unified Data Manager,UDM),由运营商提供的控制面网元,负责存储运营商网络的签约用户持久标识(Subscriber Permanent Identifier,SUPI)、注册信息、信任状(credential)、签约数据。这些数据用于UE接入运营商网络的认证和授权。
应用功能网元(Application Function,AF),用于存储业务安全需求,提供策略判定的信息。
用户面节点(User Plane Function,UPF),UPF可以是网关、服务器、控制器、用户 面功能网元等。UPF可以设置在运营网内部,也可以设置在运营网外部。UPF是由运营商提供的用户面网元,是运营商网络与DN通信的网关。
策略控制节点(Policy control Function,PCF),所述PCF部署有策略控制的功能,所述策略控制的功能是指根据安全需求完成用户面保护机制的协商,确定网络中的用户面保护机制的功能。
需要说明的是,图1中体现的是各个网元之间的逻辑关系,在实际中,有些网元可以单独部署,也可以两两或多个网元集成部署在一个实体中。例如,AMF和SMF可部署在一个实体中,或者AMF和SMF也可分别部署在不同的实体中。
图2示出了一种LTE通信系统中切换通信的应用场景。该LTE通信系统由演进分组核心网(Evolved Packet Core,EPC)、基站(Evolved Node B,eNode B)和用户设备3部分组成。其中,EPC负责核心网部分,EPC包括用于存储用户签约信息的归属签约用户服务器(Home Subscriber Server,HSS)141,信令处理和移动管理的移动性管理实体(Mobility Management Entity,MME);基站负责接入网部分,基站与核心网连接,如图示中基站121连接MME131,基站122连接MME132;用户设备与基站之间通过LTE空口技术(如Uu接口)进行上行通信或下行通信。
在一具体的通信场景中,用户设备与基站121通信连接,如果用户设备从111处移动至112处,那么,用户设备可能就需要将通信连接从基站121切换至基站122,在完成切换进程后,用户设备与基站122通信连接,进而才能继续进行通信。可以看出,在这一过程中,由于基站121和基站122分别连接于不同的MME,所以,上述通信切换过程同样伴随着MME的通信切换。
图3示出了一种5G通信系统中切换通信的应用场景。该5G通信系统包括用户设备、接入网和核心网,可参考图1实施例的相关描述。其中,接入网包括RAN设备221、RAN设备222,核心网包括核心网设备组231和核心网设备组232,接入网设备与核心网设备连接,如图示中RAN设备221连接核心网设备231中的AMF,RAN设备组222连接核心网设备组232中的AMF。用户设备与接入网设备之间通过5G空口技术进行上行通信或下行通信。
在一具体的通信场景中,用户设备与RAN设备221通信连接,如果用户设备从211处移动至212处,那么,用户设备可能就需要将通信连接从RAN设备221切换至RAN设备222,在完成切换进程后,用户设备与RAN设备222通信连接,进而才能继续进行通信。可以看出,在这一过程中,由于RAN设备221和RAN设备222分别连接于不同核心网设备组的AMF,所以,上述通信切换过程同样伴随着AMF的通信切换。
为了提高未来移动通信架构的网络安全性,实现跨AMF切换后网络侧和用户设备侧获得足够的安全把障,本发明实施例提供了一种安全实现方法,参见图4,该方法包括但不限于以下步骤:
1、源接入网设备触发通信切换。
本发明实施例中,用户设备与源接入网设备通过接入技术建立通信连接。当用户设备需要从当前连接的源RAN切换到目标RAN时,源接入网设备触发通信切换。其中,接入技 术可以为CDMA2000、无线局域网络(WLAN)、固定接入(Fixed access)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、5G等技术。
具体应用场景中,当UE跨AMF切换时,即从源AMF切换至目标AMF时,其源AMF下连接管理的源RAN也需要切换至目标RAN。切换的原因可以是多种多样的,例如,源RAN与目标RAN没有Xn接口连接,当UE从源RAN的通信小区向目标RAN的通信小区移动时,需要将当前通信连接从源RAN切换至目标RAN;又比如,在当前网络拥塞导致通信资源不足,当前连接的源RAN需要将UE的通信连接请求切换至网络状况较好的目标RAN;又比如,需要将当前通信系统(如LTE)切换到另一个通信系统(如5G),等等。
2、源接入网设备向第二网元发送第一请求;第二网元向第一网元发送第二请求。
其中,源接入网设备向第二网元发送的第一请求和第二网元向第一网元发送的第二请求可以是相同的请求,也可能是不同的请求,所述第一请求或第二请求可能携带有源侧的安全上下文,所述源侧安全上下文例如可以包括密钥的生存周期、密钥的索引、UE的安全能力、完整性算法、完整性算法标识、加密算法、加密算法标识、与计算密钥相关的计数值中的一项或多项,所述第一请求例如为切换请求,第二请求例如为路径切换请求。后文实施例中相关的请求可参考这里的描述,后文将不再赘述。
其中,第二网元连接所述源接入网设备,第二网元和源接入网设备属于源侧的网络设备;第一网元连接目标接入网设备,第一网元和目标接入网设备属于目标侧的网络设备。
在具体实现中,所述第二网元可以是源AMF、源SEAF、源SMF等网络设备,第一网元为对应的目标AMF、目标SEAF、目标SMF等网络设备。
3、第一网元获得安全密钥。
其中,所述安全密钥用于在将所述用户设备从源接入网设备切换到目标接入网设备后,对用户设备与目标网络之间的通信进行保护,所述目标网络包括所述目标接入网设备和目标核心网设备,所述目标核心网设备包括所述第一网元。所述安全密钥可包括接入层AS密钥和非接入层NAS密钥,AS密钥用于对用户设备与接入网设备之间的通信进行保护,NAS密钥用于对用户设备与核心网设备(如AMF/SEAF/SMF等等)之间的通信进行保护。
第一网元获得安全密钥,包括:第一网元生成该安全密钥,或者,第一网元获取其他网元发送的安全密钥。
本发明实施例中,第一网元可首先获取第一中间密钥,其中,第一中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层AS和非接入层NAS密钥,例如,第一中间密钥为新的Kamf;然后,第一网元确定安全保护算法,包括具体的安全算法以及安全算法的标识,标识可以用来指示具体的保护算法。然后第一网元基于所述安全保护算法和所述第一中间密钥推衍出安全密钥,所述安全保护算法可包括NAS层机密性算法标识和NAS层完整性算法标识、AS层机密性算法标识和AS层完整性算法标识。
所述安全密钥包括第一密钥,第二密钥和第三密钥;所述第一密钥为用户设备与所述目标接入网设备之间进行安全保护的中间密钥,例如密钥KgNB;所述第二密钥为NAS信令加密性保护密钥,例如密钥Knasenc;所述第三密钥为NAS信令完整性保护密钥,例如Knasint。
具体的,第一网元可基于第一参数推衍出所述第一密钥,其中,所述第一参数包括所述第一中间密钥、目标小区标识、频点、NAS计数值、NAS连接标识、计数值Nonce或Counter或随机码或序列码中的一项或多项;基于第二参数推衍出所述第二密钥,其中,所述第二参数包括所述第一中间密钥、NAS机密性算法标识、计数值Nonce或Counter或随机码或序列码中的一项或多项;基于第三参数推衍出所述第三密钥,其中,所述第三参数包括所述第一中间密钥、NAS完整性算法标识、计数值Nonce或Counter或随机码或序列码中的一项或多项;第一网元可以保存所述第二密钥、第三密钥,并在后续的步骤中,将第一密钥发送给接入网设备。
其中,第一网元获取第一中间密钥的方式可以是多种多样的:
具体实施例中,第一网元获取第二网元基于第二中间密钥、网络参数推衍出的所述第一中间密钥;其中,第二中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层和非接入层密钥,例如,第二中间密钥为原先已存在于第二网元的密钥Kamf,该密钥Kamf在通过认证时由第二网元所获取。
具体实施例中,第一网元接收第二网元发送的第二中间密钥;所述第一网元基于所述第二中间密钥、网络参数推衍出的所述第一中间密钥。
具体实施例中,在所述用户设备从所述源接入网设备切换到所述目标接入网设备、并且所述用户设备重新通过双向认证后,所述第一网元获得锚密钥Kseaf;所述第一网元基于所述锚密钥、网络参数推衍出的所述第一中间密钥。
其中,网络参数可包括目标侧标识、切片标识、网络接入标识符NAI、网络切片选择辅助信息NSSAI、AMF区域标识、AMF设置标识、AMF全局唯一指示符GUAMI、AMF指针pointer、AMF集合标识、计数值Nonce或Counter或随机码或序列码中的一项或多项。
在本发明具体实施例中,第一网元还可以获取第二网元发送的下一跳密钥第一NH、下一跳密钥关联计数第一NCC;所述第一网元基于{第一NH,第一NCC}对得到{第二NH,第二NCC}对。后续步骤中第一网元可向目标接入网设备发送{第二NH,第二NCC}对,以及第二密钥、第三密钥,目标接入网设备基于{第二NH,第二NCC}对生成第一密钥。
4、第一网元向目标接入网设备发送安全密钥,所发送的安全密钥包括第一密钥。
5、第一网元通过第二网元、接入网设备向用户设备发送安全上下文,以便于用户设备可基于安全上下文生成安全密钥,其中,用户设备所接收到的安全上下文只需包括网络侧生成安全密钥相关的各个密钥时用户设备侧没有的参数,比如随机数RAND、计数值Nonce或者Counter、时间戳、相关的安全保护算法标识等。
6、用户设备基于安全上下文生成安全密钥。具体实施例中,用户设备可基于安全上下文、网络参数、预存在本地的中间密钥等生成安全密钥,这里的安全密钥包括AS密钥和NAS密钥。
7、用户设备与目标接入网设备完成后续的切换进程,最终,用户设备的通信连接从当前的源RAN切换到目标RAN。
需要说明的是,本发明实施例以及后文描述的实施例中,源侧和目标侧之间、源侧和UE侧之间、目标侧与UE侧之间传递的与安全相关的消息(例如安全上下文、中间密钥、密钥请求、密钥响应等等)可能是通过以独立的消息形式进行传递,也可能携带于其他消 息(例如与切换相关的请求、响应等等)中进行传递,本发明在这里不做限定。
参见图5,本发明实施例提供了又一种安全实现方法,在该方法的应用场景中,UE在与网络认证后,UE侧与网络侧(例如SEAF)可配置有锚密钥Kseaf。当UE需要从当前连接的源RAN切换到目标RAN时,可通过以下方法实现网络安全,该方法包括但不限于以下步骤:
1、源RAN触发通信切换。
本发明实施例中当UE跨AMF切换时,即从源AMF切换至目标AMF时,其源AMF下连接管理的源RAN也需要切换至目标RAN。源RAN可触发该通信切换,切换的原因可以是多种多样的,例如,源RAN与目标RAN没有Xn接口连接,当UE从源RAN的通信小区向目标RAN的通信小区移动时,需要将当前通信连接从源RAN切换至目标RAN;又比如,在当前网络拥塞导致通信资源不足,当前连接的源RAN需要将UE的通信连接请求切换至网络状况较好的目标RAN,等等。
2、源RAN向源AMF发送切换请求。
源RAN发送切换请求(Handover Required)的消息到源AMF,通知源AMF有用户要进行切换,所述切换请求携带UE的标识。其中,AMF指定用来转发数据(消息)的承载。
3、源AMF向目标AMF发送路径切换请求。
为了实现通信切换,源AMF选择一个目标AMF,并向该目标AMF发送路径切换请求(Forward Relocation Request),所述路径切换请求中可以包含源侧的安全上下文。
4、目标AMF向目标RAN发送切换请求。
目标AMF向目标RAN发送切换请求(Handover Request)的消息,用以请求目标RAN建立无线网络资源,在目标RAN创建UE的上下文。在PDU会话(PDU session)激活后,目标AMF还可为PDU会话分配了上行通信隧道的标识符和IP地址,并目标RAN发送PDU会话。
5、目标RAN向目标AMF返回切换请求的确认消息。
目标RAN向目标AMF发送切换请求的确认消息,该确认消息中包括已经被目标RAN接受的PDU会话。目标RAN会分配下行通信隧道的标识符和PDU会话的IP地址,并向目标AMF发送PDU会话。
6、目标AMF向SEAF发送密钥请求。
在本发明实施例中,SEAF作为安全认证和密钥配置的节点,AMF和SEAF可以分离部署,也可以集合部署在一起。在AMF和SEAF分离部署时,SEAF的数量可能是一个,也可能是多个,也就是说,在跨AMF切换时,源AMF与目标AMF可连接同一个SEAF,也可能源AMF与目标AMF分别连接不同的SEAF(源AMF连接源SEAF,目标AMF连接目标SEAF),此时跨AMF将伴随着跨SEAF切换;在AMF和SEAF集合部署时,AMF和SEAF可以在物理位置上部署在一起,但仍然是两个功能不同的逻辑实体,则跨AMF的情况下,也将伴随着跨SEAF切换。
本发明实施例中,为了保障跨AMF切换后的网络通信安全,目标AMF向SEAF发送密钥请求,以便于获得用于生成安全密钥的中间密钥。
需要说明的是,步骤6与步骤4、5之间并没有必然的先后顺序,也就是说,具体实现中,步骤6也可以放在步骤3之后,还可以放在步骤4之后,本发明在这里不做限定。
还需要说明的是,本发明实施例并不限定密钥请求为单独的信令消息,在可能的实施方式中,步骤6中的密钥请求可以承载于目标AMF和SEAF之间的其他交互消息中。
7、SEAF基于Kseaf和网络参数生成Kamf。
其中,密钥Kseaf为锚密钥(anchor key),所述锚密钥为认证后生成的密钥,属于服务网络中的上层密钥,锚密钥可用于推衍服务网络的下层密钥。
需要说明的是,在本发明实施例中,在UE与网络进行身份验证过后,SEAF就具有密钥Kseaf。该Kseaf可能是固定存储于SEAF中,也可能临时存储于SEAF中,在Kseaf生成网络中的下层密钥后就被删除。在后一种情况中,当SEAF收到目标AMF的密钥请求时,SEAF可向AUSF发送请求,AUSF基于该请求生成Kseaf,并将该Kseaf发送给SEAF。
SEAF基于Kseaf和网络参数生成新的中间密钥Kamf(第一中间密钥),Kamf可用于推衍下层的接入层AS和非接入层NAS密钥。
其中,所述网络参数为网络侧的相关参数,该网络参数例如可以是目标侧标识、切片标识、网络接入标识符NAI、网络切片选择辅助信息NSSAI、AMF区域标识、AMF全局唯一指示符GUAMI、AMF指针pointer、AMF集合标识、AMF设置标识、计数值Nonce或Counter或随机码或序列码中的一项或多项,具体实现中,网络参数还会包括其他参数。下面简单说明上述网络参数。
目标侧标识:可以为目标侧服务网络标识、目标侧具体小区ID、目标侧基站ID等可以唯一标识目标侧信息的标识。
切片标识:用来唯一性地标识网络切片的ID。
网络接入标识符(Network Access Identifier,NAI):NAI通常用于唯一标识移动节点。
网络切片选择辅助信息(network slice selection assistant information,NSSAI):NSSAI可包括切片各种标识、切片相关实体的标识。终端可通过提供NSSAI来选择和组建网络切片相关的实例,一条网络切片选择辅助信息可对应一个网络切片。
AMF区域标识(AMF Region ID):用来区分AMF在哪个区域的标识。
AMF设置标识(AMF Set ID):在一个AMF区域内唯一标识一个AMF集的标识。
AMF指针(AMF Pointer):AMF指针为唯一标识在一个AMF集下的AMF的标识。
AMF全局唯一指示符GUAMI:GUAMI可以用来最终指示某个AMF,具体可为:<GUAMI>=<MCC><MNC><AMF区域标识><AMF设置标识><AMF指针>,其中,MCC表示移动国家码(Mobile Country Code),MNC表示移动网络码(Mobile Network Code)。
其他参数(Other parameters):本发明实施例中,其他的网络参数还可以为时间戳、注册类型(registration type)、AMF ID、SEAF ID、NAS计数(NAS Count)或安全算法标识、安全算法类型名称、序列号SQN、AK,还可以这些参数或者前述某个关键参数的长度,等等,后文在描述生成相关密钥时所采用的“其他参数”均可以参考这里的描述,后文将不再赘述。
举例来说,在具体实施例中,SEAF基于Kseaf和网络参数推衍出中间密钥Kamf:
Kamf=KDF(Kseaf,目标侧ID,切片ID,NAI,NSSAI,AMF区域标识,GUAMI,AMF指针,AMF设置标识,计数值Nonce或Counter或者随机码Random或者序列码Sequencenumber,其他参数),其中,KDF为密钥推衍函数。
8、SEAF向目标AMF发送Kamf,相应的,目标AMF获得所述Kamf。
9、目标AMF基于Kamf生成安全密钥。
其中,所述安全密钥用于在将UE从所述源RAN切换到目标RAN后,对所述UE与所述目标RAN之间的通信进行保护。由于协议栈可以分为接入层(Access Stratum,AS)和非接入层(Non-Access Stratum,NAS)。所以,这里所生成的安全密钥需要包括AS层密钥和NAS层密钥。
在具体的实施例中,目标AMF收到中间密钥Kamf后,可以根据预设的规则确定密钥保护算法,例如,目标AMF中预设有算法优先级列表,算法优先级列表中具有多种算法ID,该目标AMF查找算法优先级列表,并根据算法优先级列表选择新的NAS算法,获得NAS机密性算法ID和NAS完整性算法ID。目标AMF也可能会选择新的AS算法,获得AS机密性算法ID和AS完整性算法ID。
对于AS层密钥,目标AMF首先生成中间密钥KgNB,所述KgNB为在目标RAN侧使用的中间密钥,KgNB用于在目标RAN侧生成AS层相关的密钥(如Krrcenc、Krrcint、Kupenc、Kupint等),后续步骤中需要将KgNB发送至目标接入网设备。
本发明实施例中,目标AMF基于Kamf和第一参数推衍出KgNB,具体为:
KgNB=KDF(Kamf,目标小区标识,频点,NAS计数值,NAS连接标识,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,其他参数)。
其中,NAS计数值(NAS Count)为NAS传输NAS消息的计数值或NAS数据包的计数值,具体可以为上行NAS计数值或者下行NAS计数值。频点(EARFCN-DL)表示网络的下行通信频率。目标小区标识(Target physical cell id)用于唯一标识目标小区。
对于NAS层密钥,目标AMF需要生成Knasenc和Knasint,其中,这里的Knasenc为网络侧的NAS信令加密保护密钥,这里的Knasint为网络侧的NAS信令完整性保护密钥。目标AMF保存NAS层密钥,还可能根据需要向其他核心网设备发送NAS层密钥。
本发明实施例中,目标AMF基于Kamf、重新确定的密钥保护算法和第二参数推衍出Knasenc,具体为:
Knasenc=KDF(Kamf,NAS机密性算法ID,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,其他参数)。
本发明实施例中,目标AMF基于Kamf、重新确定的密钥保护算法和第三参数推衍出Knasint,具体为:
Knasint=KDF(Kamf,NAS完整性算法ID,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,其他参数)。
10、目标AMF向目标RAN发送安全密钥、安全上下文。相应的,目标RAN获得安全密钥、安全上下文。其中,这里的安全密钥包括KgNB。
具体实施例中,目标AMF也会将所选择的NAS算法(也可能包括AS算法)通知给目标RAN,以便于目标RAN确定安全保护算法。
在可能的实施例中,目标AMF还可能会向目标RAN发送安全上下文。所述安全上下文包含与网络安全相关的信息。具体的,所述安全上下文包括:密钥的生存周期、密钥的索引、UE的安全能力、完整性算法、完整性算法标识、加密算法、加密算法标识、与计算密钥相关的计数值等,此外,也可能包括具体密钥。其中,所述UE安全能力可以为UE支持的加密和完整性算法列表,UE所要求的密钥长度、密钥生存期等。
目标RAN获得安全密钥后,基于安全保护算法、中间密钥KgNB继续推衍出AS层的具体密钥,包括密钥Krrcenc、密钥Krrcint、密钥Kupenc、密钥Kupint等,其中,密钥Krrcenc为空口无线接入侧控制面信令加密密钥;密钥Krrcint为空口无线接入侧信令完整性保护密钥;密钥Kupenc为空口无线接入侧用户面加密保护密钥;密钥Kupint为空口无线接入侧用户面完整性保护密钥。
需要说明的是,如果前述步骤6放在步骤3之后,那么,在可能的实施例中,步骤10中的安全密钥、安全上下文还可以放在步骤4中切换请求的消息中去具体实现。
11、目标RAN向目标AMF发送响应,以通知目标AMF成功获得安全密钥。
12、目标AMF向源AMF发送路径切换响应、安全上下文。
具体的,为了响应步骤3中的路径切换请求,目标AMF向源AMF发送路径切换请求的确认消息,其中,所述路径切换请求的确认消息可以携带安全上下文。
13、源AMF向源RAN发送切换要求、安全上下文。
具体的,为了响应步骤2中的切换请求,源AMF向源RAN发送切换要求(HO Command),以向源RAN通知切换准备完成,其中,所述切换请求中可以携带安全上下文。
14、源RAN向UE发送切换要求、安全上下文。
具体的,源RAN向UE发送切换要求,向UE通知切换准备完成,促发UE完成后续的切换操作。其中,所述切换请求中可以携带安全上下文。
15、UE基于Kseaf、安全上下文生成安全密钥。
需要说明的是,UE侧所接收到的安全上下文,只需包括网络侧生成各个密钥时UE侧没有的参数,比如随机数,时间戳,安全保护算法标识等,UE可能在之前步骤中都已具备其他的用于生成密钥的参数。
由于UE原先在与网络认证后,就已经配置Kseaf,此外,UE还预先共享了网络侧的网络参数,所以,对UE来说,UE同样可基于Kseaf、网络参数、安全上下文生成新的NAS层密钥和AS层密钥。例如,UE可先基于Kseaf生成Kamf,再基于Kamf、网络参数、安全上下文生成AS层密钥(如Krrcenc、Krrcint、Kupenc、Kupint等)和NAS层密钥(如Knasenc、Knasint等),具体过程类似参考步骤7、步骤9、步骤10中的相关描述,这里不再赘述。
16、UE和目标RAN完成后续的切换进程。
UE和目标RAN还会继续完成后续的切换进程,例如,UE跟目标小区成功同步后,发送切换确认消息给目标RAN。目标RAN发送切换通知给目标AMF,通知目标AMF该UE已经位于目标小区。目标AMF发送切换路径重换完成消息给源AMF。源AMF再回复一个响应给目标AMF。源AMF发送UE上下文释放的消息通知源RAN释放与UE相关的资源。源RAN返回释放确认消息给源AMF,等等。最终,UE的通信连接从源RAN切换到目标RAN。
需要说明的是,在本发明实施例中,通信系统在进行AMF切换时,不同的AMF对应的 SMF可能不同,所以在上述过程中也可能发生SMF切换。在这种情况下,也需要考虑PDU会话的安全保护。
在具体实现中,在步骤7中SEAF生成Kamf时,在目标侧需要考虑PDU会话密钥的更新。则在SEAF生成Kamf时,即为SEAF向AUSF发送指示信息,触发AUSF生成新的PDU会话密钥。具体的,AUSF预先保存有密钥Left K,那么,AUSF可基于Left K、以及源AMF所发送过来的UE的相关信息及会话信息(比如会话ID、切片信息等等),生成新的PDU会话密钥Ksmf,具体为:
Ksmf=KDF(Left K,NAI,NSSAI,切片ID,AMF相关参数,SMF相关参数,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,其他参数)。
然后,AUSF将Ksmf发送至SEAF或目标AMF,SEAF或目标AMF将Ksmf转发至目标SMF和UE,目标SMF/UE使用Ksmf更新PDU会话密钥。
可以看出,实施本发明实施例,在跨AMF切换的实施过程中,通信系统可相应生成安全密钥,使用安全网元SEAF/AMF等来实现目标侧安全上下文和安全密钥的获取和传递。对于网络而言,由于目标侧的安全密钥由目标侧的网元(如SEAF/目标AMF)生成,目标RAN不能获得源RAN使用的安全密钥,无法破解源RAN与UE之间的通信信息,实现了网络通信的后向安全;源RAN不能获得目标RAN使用的安全密钥,不能破解目标RAN与UE之间的通信信息,实现了网络通信的前向安全。
参见图6,本发明实施例提供了又一种安全实现方法,在该方法的应用场景中,UE在与网络认证后,UE侧与网络侧(例如源AMF/源SEAF)可配置有第一Kamf。当UE需要从当前连接的源RAN切换到目标RAN时,可通过以下方法实现网络安全,该方法包括但不限于以下步骤:
1、源RAN触发通信切换,可参考图5步骤1的描述。
2、源RAN向源AMF/源SEAF发送切换请求。
在本发明实施例中,SEAF作为安全认证和密钥配置的节点,源AMF和源SEAF可以分离部署,也可以集合部署在一起。在源AMF和源SEAF分离部署时,源AMF连接源SEAF,此时跨AMF将伴随着跨SEAF切换;在源AMF和源SEAF集合部署时,源AMF和源SEAF可以在物理位置上部署在一起,但仍然是两个功能不同的逻辑实体,则跨AMF的情况下,也将伴随着跨SEAF切换。
3、源AMF/源SEAF基于第一Kamf推衍出第二Kamf。
在源AMF/SEAF收到来自于源RAN发送的切换请求后,源SEAF/AMF基于预先存储的第一中间密钥Kamf(简称第一Kamf)、网络参数生成第二中间密钥Kamf(简称第二Kamf)。该网络参数例如可以是目标侧标识、切片标识、网络接入标识符NAI、网络切片选择辅助信息NSSAI、AMF区域标识、AMF全局唯一指示符GUAMI、AMF指针、AMF集合标识、Nonce计数值或随机码或序列码中的一项或多项,具体实现中,网络参数还会包括其他参数。
具体实施例中,源SEAF/AMF基于预先存储的第一Kamf、网络参数推衍出第二Kamf,具体为:
第二Kamf=KDF(第一Kamf,目标侧ID,切片ID,NAI,NSSAI,AMF区域标识,GUAMI,AMF 指针,AMF设置标识,计数值Nonce或Counter或者随机码Random或者序列码Sequencenumber,其他参数)。
需要说明的是,在源AMF和源SEAF分离的情况下,源AMF/源SEAF基于第一Kamf推衍出第二Kamf,可能包含以下情况:
情况一:源AMF基于预设的第一Kamf推衍出第二Kamf;
情况二:源SEAF基于预设的第一Kamf推衍出第二Kamf,并将第二Kamf发送给源AMF。
4、源AMF/源SEAF向目标AMF/目标SEAF发送路径切换请求、第二Kamf。
在本发明实施例中,目标AMF和目标SEAF可以分离部署,也可以集合部署在一起。在目标AMF和目标SEAF分离部署时,目标AMF连接目标SEAF,此时跨AMF将伴随着跨SEAF切换;在目标AMF和目标SEAF集合部署时,目标AMF和目标SEAF可以在物理位置上部署在一起,但仍然是两个功能不同的逻辑实体,则跨AMF的情况下,也将伴随着跨SEAF切换。
在一具体实施例中,源AMF/源SEAF向目标AMF/目标SEAF发送路径切换请求,所述路径切换请求中携带有该第二Kamf。
在另一具体实施例中,源AMF/源SEAF分别向目标AMF/目标SEAF发送路径切换请求和第二Kamf。
5、目标AMF/目标SEAF向目标RAN发送切换请求。
6、目标RAN向目标AMF/目标SEAF反馈切换请求的确认消息。
7、目标AMF/目标SEAF基于第二Kamf生成安全密钥。
其中,所述安全密钥用于在将UE从所述源RAN切换到目标RAN后,对所述UE与所述目标RAN之间的通信进行保护。这里所生成的安全密钥包括AS层密钥和NAS层密钥。
本发明实施例中,目标AMF/目标SEAF收到中间密钥Kamf后,可以根据预设的规则确定NAS机密性算法ID和NAS完整性算法ID,目标AMF/目标SEAF基于第一Kamf和第一参数推衍出KgNB,基于第一Kamf、密钥保护算法和第二参数推衍出Knasenc,基于第一Kamf、密钥保护算法和第三参数推衍出Knasint,目标AMF/目标SEAF可保存所述Knasenc和Knasint。具体操作可类似参考图5实施例步骤9,这里不再赘述。
需要说明的是,步骤7与步骤5、6之间并没有必然的先后顺序,也就是说,具体实现中,步骤6也可以放在步骤4之后,还可以放在步骤5之后,本发明在这里不做限定。
还需要说明的是,在目标AMF和目标SEAF分离的情况下,目标AMF/目标SEAF第二Kamf生成安全密钥,可能包含以下情况:
情况一:目标AMF基于预设的第二Kamf推衍出安全密钥;
情况二:目标SEAF基于预设的第二Kamf推衍出安全密钥,并将安全密钥发送给目标AMF。
8、目标AMF/目标SEAF向目标RAN发送安全密钥、安全上下文。其中,所发送的安全密钥包括KgNB。具体操作可类似参考图5实施例步骤10,这里不再赘述。
9、目标RAN向目标AMF/目标SEAF反馈响应,以通知目标AMF/目标SEAF成功获得安全密钥。
10、目标AMF/目标SEAF向源AMF/源SEAF反馈路径切换响应、安全上下文。
具体的,为了响应步骤4中的路径切换请求,目标AMF向源AMF发送路径切换请求的 确认消息,其中,所述路径切换请求的确认消息可以携带安全上下文。
11、源AMF/源SEAF向源RAN反馈切换要求、安全上下文。具体的,为了响应步骤2中的切换请求,源AMF向源RAN发送切换要求(HO Command),以向源RAN通知切换准备完成,其中,所述切换请求中可以携带安全上下文。
12、源RAN向UE发送切换要求、安全上下文。
具体的,源RAN向UE发送切换要求,向UE通知切换准备完成,促发UE完成后续的切换操作。其中,所述切换请求中可以携带安全上下文。
13、UE基于第一Kamf、安全上下文生成安全密钥。
需要说明的是,UE侧所接收到的安全上下文,只需包括网络侧生成各个密钥时UE侧没有的参数,比如随机数,时间戳等,安全保护算法标识等,UE可能在之前步骤中都已具备其他的用于生成密钥的参数。
由于UE原先在与网络认证后,就已经配置第一Kamf,此外,UE还预先共享了网络侧的网络参数,所以,可以理解的,对UE来说,UE同样可基于第一Kamf、网络参数、安全上下文生成新的NAS层密钥和AS层密钥。UE和目标RAN完成后续的切换进程。
需要说明的是,对于上述图6实施例,在一种可能的实施方式中,可以取消步骤3,而在步骤4中,源AMF/源SEAF将第一Kamf发送给到目标AMF/目标SEAF,在步骤4之后,目标AMF/目标SEAF基于第一Kamf生成第二Kamf。
还需要说明的是,在本发明实施例中,通信系统在进行AMF切换时,不同的AMF对应的SMF可能不同,所以在上述过程中也可能发生SMF切换。在这种情况下,也需要考虑PDU会话的安全保护。在具体实现中,在步骤7中目标AMF/目标SEAF基于第二Kamf生成安全密钥时,在目标侧需要考虑PDU会话密钥的更新。例如目标AMF/目标SEAF向AUSF发送指示信息,触发AUSF生成新的PDU会话密钥。具体的,AUSF预先保存有密钥Left K,那么,AUSF可基于Left K、以及源AMF/源SEAF所发送过来的UE的相关信息及会话信息(比如会话ID、切片信息等等),生成新的PDU会话密钥Ksmf。
可以看出,实施本发明实施例,在跨AMF切换的实施过程中,通信系统可相应生成安全密钥,使用安全网元SEAF/AMF等来实现目标侧安全上下文和安全密钥的获取和传递。由于下层的密钥推衍来自于源AMF/源SEAF的第一中间密钥Kamf的推衍,源AMF/源SEAF侧生成并传递目标侧安全上下文,对于网络而言,目标RAN无法破解源RAN与UE之间的通信信息,实现了网络通信的后向安全。
参见图7,本发明实施例提供了又一种安全实现方法,当UE需要从当前连接的源RAN切换到目标RAN时,可通过以下方法实现网络安全,该方法包括但不限于以下步骤:
1、源RAN触发通信切换。
2、源RAN向源AMF/源SEAF发送切换请求。
3、源AMF/源SEAF向目标AMF/目标SEAF发送路径切换请求。
4、目标AMF/目标SEAF向目标RAN发送切换请求。
5、目标RAN向目标AMF/目标SEAF反馈切换请求的确认消息。
6、目标AMF/目标SEAF确定本地安全策略。
其中,所述安全策略可预设于本地缓存中,也可以存储于其他安全网元中(例如PCF、UDM、AUSF等),所述安全策略指示确定该UE切换到目标RAN是否需要重新认证,目标AMF/目标SEAF从本地缓存中查询该安全策略,或者从其他安全网元中查询该安全策略。
举例来说,该安全策略可依据下列实施条件确定:源AMF/源SEAF侧的密钥已经到期或者不再安全,或者,需要重新获取UE的安全能力而不是通过源AMF/源SEAF侧传递的安全上下文。那么,在当前状况符合该安全策略所指示的实施条件时,目标AMF/目标SEAF确定本地安全策略指示了该UE切换到目标RAN需要重新认证,故目标AMF/目标SEAF将继续执行后续步骤。
7、目标AMF/目标SEAF向源AMF/源SEAF反馈路径切换响应,所述路径切换响应不携带安全上下文。
8、源AMF/源SEAF向源RAN反馈切换要求,所述切换要求不携带安全上下文。
9、源RAN向UE发送切换要求,所述切换要求不携带安全上下文。
10、UE和目标RAN完成后续的切换进程。
11、UE与AUSF或UDM进行双向认证。
在UE的通信连接从源RAN切换到目标RAN后,UE与认证网元进行双向认证,以验证UE身份合法性,认证网元可能是AUSF,也可能是UDM。在通过该双向认证后,UE侧和目标AMF/目标SEAF侧都获得了新的锚密钥Kseaf。
12、目标AMF/目标SEAF基于新的Kseaf生成安全密钥。
可以理解的,目标AMF/目标SEAF基于新的Kseaf、预先共享的网络参数、安全上下文生成安全密钥(用于生成AS层密钥的KgNB和NAS层密钥),并保存该NAS层密钥。详细过程可参考图5实施例步骤7、步骤9、步骤10中的相关描述,这里不再赘述。
需要说明的是,这里的安全上下文可以是基于从源AMF/源SEAF侧传递过来的安全上下文并结合目标AMF/目标SEAF侧自身的安全上下文取交集的结果,比如最终得到安全上下文包括:加密性算法ID和完整性算法ID、用户设备的安全能力,等等。
13、目标AMF/目标SEAF向目标RAN发送安全密钥,其中,所发送的安全密钥包括KgNB。
14、UE基于新的Kseaf生成安全密钥,本步骤和步骤12、步骤13并无必然先后顺序。
可以理解的,UE也可基于新的Kseaf、预先共享的网络参数、安全上下文生成安全密钥,详细过程可参考图5实施例步骤7、步骤9、步骤10中的相关描述,这里不再赘述。
需要说明的是,图7实施例中没有详细描述的步骤,均可以类似参考图5和图6实施例的相关描述。
还需要说明的是,在本发明实施例中,通信系统在进行AMF切换时,不同的AMF对应的SMF可能不同,所以在上述过程中也可能发生SMF切换。在这种情况下,也需要考虑PDU会话的安全保护。具体的,在通过步骤11所描述的双向认证后,AUSF同样获得新的密钥Left K,AUSF可生成新的PDU会话密钥Ksmf并发送给SMF,这里不再赘述。
目标侧重新认证获取新的保护密钥,满足前后向安全。不需要源侧传递密钥,或者基于已有密钥生成。
可以看出,实施本发明实施例,在跨AMF切换结束后,通信系统可在重新的双向认证之后获得新的保护密钥,不需要源网络侧传递中间密钥,也不需要基于原有的密钥生成中 间密钥。对于网络而言,目标RAN不能获得源RAN使用的安全密钥,无法破解源RAN与UE之间的通信信息,实现了网络通信的后向安全;源RAN不能获得目标RAN使用的安全密钥,不能破解目标RAN与UE之间的通信信息,实现了网络通信的前向安全。
参见图8,本发明实施例提供了又一种安全实现方法,在该方法的应用场景中,UE在与网络认证后,UE侧与源AMF/源SEAF可配置有第一密钥Kamf,源RAN侧配置有第一KgNB。当UE需要从当前连接的源RAN切换到目标RAN时,可通过以下方法实现网络安全,该方法包括但不限于以下步骤:
1、源RAN触发通信切换。
2、源RAN向源AMF/源SEAF发送切换请求。
3、源AMF/源SEAF基于第一Kamf推衍出第二Kamf,详细推衍过程可参考图6实施例步骤3的描述。
4、源AMF/源SEAF向目标AMF/目标SEAF发送路径切换请求、第二Kamf、第一NH、第一NCC。
在本发明实施例中,密钥KeNB和NH参数、NCC参数相关联,其中,NH表示下一跳密钥(Next hop),NCC表示下一跳密钥关联计数(Next Chain Counter)。KeNB和NH都可以从其他中间密钥(例如Kasme)推衍而来。初始建立过程中,KeNB直接从Kasme推衍产生,NCC值为0。后续KeNB需要更新时,可以依据{NH,NCC}对进行更新。
在一具体实施例中,源AMF/源SEAF确定{第一NH,第一NCC}对,分别将{第一NH,第一NCC,第二Kamf}、路径切换请求发送给目标AMF/目标SEAF。
另一具体实施例中,源AMF/源SEAF确定{第一NH,第一NCC}对,并将{第一NH,第一NCC}对、第二Kamf通过路径切换请求发送给目标AMF/目标SEAF。
5、目标AMF/目标SEAF基于第二Kamf、第一NH、第一NCC生成第一安全密钥。
具体实现中,目标AMF/目标SEAF保存收到的{第一NH,第一NCC}对,并基于{第一NH,第一NCC}对和第二Kamf推衍出{第二NH,第二NCC}对,具体推衍过程如下:
第二NH=KDF(第二Kamf,第一NH);
第二NCC=第一NCC+1;
另外,目标AMF/目标SEAF还将基于第二Kamf、重新确定的密钥保护算法和第二参数推衍出Knasenc,具体为:
Knasenc=KDF(第二Kamf,NAS机密性算法ID,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,其他参数)。
目标AMF/目标SEAF还将Kamf、密钥保护算法和第三参数推衍出Knasint,具体为:
Knasint=KDF(第二Kamf,NAS完整性算法ID,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,其他参数)。
可以理解的,所述第一安全密钥包括上述{第二NH,第二NCC}对、密钥Knasenc、密钥Knasint。后续目标AMF/目标SEAF保存密钥Knasenc、密钥Knasint,将{第二NH,第二NCC}对发送至接入网。
6、目标AMF/目标SEAF向目标RAN发送切换请求、第一安全密钥中的{第二NH,第二 NCC}对,相应的,目标RAN获得并保存{第二NH,第二NCC}对。
7、目标RAN向目标AMF/目标SEAF发送切换请求的确认消息,通知目标AMF/目标SEAF以成功获得该第一安全密钥中的{第二NH,第二NCC}对。
8、目标RAN基于第一安全密钥生成第二安全密钥。
具体实现中,目标RAN基于{第二NH,第二NCC}对、以及目标RAN的物理标识等参数生成第二KgNB,具体为:
第二KgNB=KDF(第二NH,物理标识,其他参数)。
可以理解的,目标RAN得到第二KgNB后,可基于安全保护算法、第二KgNB继续推衍出密钥Krrcenc、密钥Krrcint、密钥Kupenc、密钥Kupint等AS层的具体密钥。
9、目标AMF/目标SEAF向源AMF/源SEAF反馈路径切换响应、安全上下文。
10、源AMF/源SEAF向源RAN反馈切换要求、安全上下文。
11、源RAN向UE反馈切换要求、安全上下文。
12、UE基于第一Kamf和安全上下文生成安全密钥。
需要说明的是,UE侧所接收到的安全上下文,只需包括网络侧生成各个密钥时UE侧没有的参数,比如随机数,时间戳等,安全保护算法标识,{第一NH,第一NCC},等等,UE可能在之前步骤中都已具备其他的用于生成密钥的参数。
可以理解的,由于UE原先在与网络认证后,就已经配置第一Kamf,UE还预先共享了网络侧的网络参数,所以UE可以基于第一Kamf、网络参数、安全上下文生成NAS层密钥。另外,UE还可以基于{第一NH,第一NCC}、第一Kamf得到{第二NH,第二NCC},并基于{第二NH,第二NCC}、以及目标RAN的物理标识等参数生成第二KgNB,再基于第二KgNB推衍出具体的AS层密钥。
13、UE和目标RAN完成后续的切换进程。
可以看出,实施本发明实施例,在跨AMF切换的实施过程中,目标侧(目标RAN、目标AMF/目标SEAF等)基于源侧(源RAN、源AMF/源SEAF等)的密钥KgNB、Kamf生成目标侧的安全密钥,对于网络而言,目标RAN不能获得源RAN使用的安全密钥,无法破解源RAN与UE之间的通信信息,实现了网络通信的后向安全。
需要说明的是,在本发明上述一些实施例中,通信系统在进行AMF切换时,不同的AMF对应的SMF可能不同,所以在上述过程中也可能发生SMF切换。在这种情况下,也需要考虑PDU会话的安全保护。
进行AMF切换的流程中,在目标侧需要考虑PDU会话密钥的更新。在具体实现中,目标AMF/目标SEAF向AUSF发送指示信息,触发AUSF生成新的PDU会话密钥。具体的,AUSF预先保存有密钥Left K,那么,AUSF可基于Left K、以及目标AMF/目标SEAF所发送过来的UE的相关信息及会话信息(比如会话ID、切片信息等等),生成新的PDU会话密钥Ksmf,具体为:
Ksmf=KDF(Left K,NAI,NSSAI,切片ID,AMF相关参数,SMF相关参数,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,其他参数)。
然后,AUSF将Ksmf发送至SEAF或目标AMF,SEAF或目标AMF将Ksmf转发至目标SMF 和UE,目标SMF/UE使用Ksmf更新PDU会话密钥。
在本发明实施例提供的安全实现方法不仅可以应用于同一个通信系统中跨RAN/跨AMF切换的场景,还可以应用于不同的通信系统中跨基站(eNB和gNB)/跨接入管理网元(MME和AMF)的场景,参见图9,本发明实施例提供了又一种安全实现方法,该方法可应用于不同通信系统的切换过程中,例如,UE原先在第一通信系统中建立通信连接,后来UE基于用户需求或者当前网络状况,需要将通信连接切换到第二通信系统(比如手机从LTE通信系统切换到5G通信系统)。在一种可能的实施方式中,第一通信系统(LTE通信系统)包括:处于接入网的eNB、处于核心网的MME、HSS等,第二通信系统(5G通信系统)包括:处于接入网的gNB,处于核心网的目标AMF/目标SEAF、AUSF等,当UE需要从当前连接的eNB切换到gNB时,可通过以下方法实现网络安全,该方法包括但不限于以下步骤:
1、eNB触发通信切换。
具体的,eNB可基于UE的需求、UE的移动、当前网络状况等因素触发通信切换。
2、eNB向MME发送切换请求。
eNB发送切换请求(Handover Required)的消息到MME,通知MME有用户要进行切换,所述切换请求携带UE的标识。
3、MME向目标AMF/目标SEAF发送路径切换请求、原系统安全上下文、中间密钥Kasme。
其中,所述原系统安全上下文即为第一通信系统的安全上下文,第一通信系统的安全上下文例如包括:第一通信系统中与安全相关的密钥的生存周期、密钥的索引、UE的安全能力、完整性算法、完整性算法标识、加密算法、加密算法标识、与计算密钥相关的计数值等,也可能包括具体密钥。其中,UE安全能力可以为UE支持的加密和完整性算法列表,UE所要求的密钥长度、密钥生存期等。
其中,中间密钥Kasme为第一通信系统中认证后生成的上层的密钥,用于推衍下层的接入层和非接入层的密钥。
在一具体实施例中,在MME到目标侧AMF/SEAF的路径切换请求中携带有第一通信系统的安全上下文,中间密钥Kasme。
在又一具体实施例中,MME将路径切换请求、第一通信系统的安全上下文和中间密钥Kasme分别发送至目标AMF/SEAF。
4、目标AMF/目标SEAF基于Kasme得到Kamf。
具体实施例中,AMF/SEAF中间密钥Kasme、网络参数推衍出Kamf,例如:
Kamf=KDF(Kasme,目标侧ID,切片ID,NAI,NSSAI,AMF区域标识,GUAMI,AMF指针,AMF设置标识,计数值Nonce或Counter或者随机码Random或者序列码Sequencenumber,其他参数)。
此外,具体实现中,AMF/SEAF还可以使用Kasme、第一通信系统的安全上下文(例如利用UE的安全能力)、网络参数等推衍出该Kamf。
5、目标AMF/目标SEAF基于Kamf生成安全密钥。
在具体的实施例中,目标AMF/目标SEAF可以根据预设的规则确定第二通信系统的密 钥保护算法,例如,目标AMF/目标SEAF中预设有5G的算法优先级列表,算法优先级列表中具有多种算法ID,该目标AMF查找该算法优先级列表,并根据算法优先级列表选择5G的NAS算法,获得NAS机密性算法ID和NAS完整性算法ID。
可以理解的,目标AMF/目标SEAF可基于Kamf推衍出AS层密钥和NAS层的相关密钥:如KgNB,Knasenc,Knasint等,目标AMF/目标SEAF保存所述Knasenc,Knasint。详细过程可参考图5步骤9的描述,这里不再赘述。
6、目标AMF/目标SEAF向gNB发送切换请求、安全密钥,这里所发送的安全密钥包括KgNB。相应的,gNB获取KgNB。
具体实施例中,目标AMF/目标SEAF向gNB发送切换请求,该切换请求中携带密钥KgNB。
需要说明的是,如果在前述步骤4和步骤5中生成密钥的过程中使用了计数值Nonce或Counter,则该切换请求还会携带该计数值Nonce或Counter,以便于UE侧能够正确的生成密钥。
在本发明实施例中,当第二通信系统支持用户面完整性保护时,gNB需要判断是否需要生成和启用用户面完保密钥,具体的,gNB可以根据预存的策略进行判断,或者,gNB还可以与SMF或AMF等网元进行协商从而进行判断,或者,gNB可以根据第二通信系统的安全上下文来进行判断,该安全上下文包括完整性是否开启的指示信息。当判断支持用户面保护时,gNB基于KgNB继续生成后续的密钥Krrcenc、密钥Krrcint、密钥Kupenc、密钥Kupint等AS层密钥。
7、gNB向目标AMF/目标SEAF发送切换请求的确认消息。
8、目标AMF/目标SEAF向MME发送路径切换请求、安全上下文。
如果在前述生成密钥的过程中使用了计数值Nonce或Counter,则安全上下文包括计数值Nonce或Counter。
9、MME向eNB发送切换要求、安全上下文。
10、eNB向UE发送切换要求、安全上下文。
11、UE生成安全密钥。
需要说明的是,UE侧所接收到的安全上下文,只需包括网络侧生成各个密钥时UE侧没有的参数,比如随机数(计数值Nonce或Counter),时间戳等,5G相关的安全保护算法标识等,UE可能在之前步骤中都已具备其他的用于生成密钥的参数。
由于UE可以从第一通信系统获得Kasme,所以,对UE来说,UE同样可基于Kasme、网络参数、安全上下文等生成新的NAS层密钥和AS层密钥。例如,UE可先基于Kasme生成Kamf,再基于Kamf、网络参数、安全上下文生成AS层密钥(如Krrcenc、Krrcint、Kupenc、Kupint等)和NAS层密钥(如Knasenc、Knasint等),这里不再赘述。
12、UE与gNB完成后续的切换进程,最终,UE的通信连接从eNB切换到gNB。
需要说明的是,对于上述图9实施例,在可能的实施方式中,可以不在步骤3中传递Kasme,并取消步骤4,那么,在步骤5之前,AUSF会根据目标侧的CK/IK和MME传递过来的原系统安全上下文生成目标侧新的Kseaf,并发送至目标AMF/目标SEAF,目标AMF/目标SEAF再根据新的Kseaf、第一通信系统(如5G)安全保护算法生成后续的Kamf等密钥。
还需要说明的是,在可能的实施方式中,可以不在步骤3中传递Kasme,并取消步骤4, 那么,在步骤5之前,HSS基于自身的CK/IK和NONCE等参数计算密钥Klte,并将Klte传递给AUSF,AUSF再基于Klte生成Kseaf和Left K,具体的,Kseaf=KDF(Klte,服务网络名称标识,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,其他参数。AUSF发送Kseaf至目标AMF/目标SEAF,目标AMF/目标SEAF再根据Kseaf、第一通信系统(如5G)安全保护算法生成后续的Kamf等密钥。
可以看出,实施本发明实施例,在跨通信系统切换的实施过程中,目标侧的通信系统可利用源侧的通信系统的中间密钥和安全上下文相应生成安全密钥,从而对切换后的通信系统中的通信进行安全保护。对于网络而言,目标侧的通信系统不能获得源侧的通信系统使用的安全密钥,无法破解源侧的通信系统与UE之间的通信信息,实现了网络通信的后向安全。
参见图10,本发明实施例提供了又一种安全实现方法,该方法可应用于不同通信系统的切换过程中,例如,UE原先在第二通信系统中建立通信连接,后来UE基于用户需求或者当前网络状况,需要将通信连接切换到第一通信系统(比如手机从5G通信系统切换到LTE通信系统)。在一种可能的实施方式中,第一通信系统(LTE通信系统)包括:处于接入网的eNB、处于核心网的MME、HSS等,第二通信系统(5G通信系统)包括:处于接入网的gNB,处于核心网的目标AMF/目标SEAF、AUSF等,当UE需要从当前连接的gNB切换到eNB时,可通过以下方法实现网络安全,该方法包括但不限于以下步骤:
1、gNB触发通信切换。
具体的,eNB可基于UE的需求、UE的移动、当前网络状况等因素触发通信切换。
2、gNB向源AMF/源SEAF发送切换请求,通知向源AMF/源SEAF有用户要进行切换。
3、源AMF/源SEAF向MME发送路径切换请求、原系统的安全上下文;MME向HSS发送切换请求、源系统的安全上下文。
其中,所述原系统安全上下文即为第二通信系统的安全上下文,第二通信系统的安全上下文例如包括:第二通信系统中与安全相关的密钥的生存周期、密钥的索引、UE的安全能力、完整性算法、完整性算法标识、加密算法、加密算法标识、与计算密钥相关的计数值等,也可能包括具体密钥、完整性是否开启的指示信息等。
具体实施例中,源AMF/源SEAF向MME发送的路径切换请求中携带所述安全上下文。
4、HSS向MME反馈路径切换请求响应;MME向源AMF/源SEAF反馈路径切换请求响应。
5、AUSF向HSS发送CK、IK。
本发明具体实施例中,为了满足切换后的LTE系统的安全需求,AUSF可用于生成HSS所需的完整性密钥(Integrity Key,IK)和加密性密钥CK(Cipher Key,CK),并将所述CK、IK发送至HSS。
6、HSS向AUSF发送响应,以通知AUSF成功收到CK、IK。
7、HSS基于CK、IK生成Kasme。
具体实施例中,HSS基于所获取的CK、IK进一步推衍出适合第一通信系统的中间密钥Kasme,具体可以为:
Kasme=KDF(CK,IK,服务网络名称标识,序列号SQN,其他参数。
8、HSS向MME发送生成Kasme,相应的,MME获取该Kasme。
9、MME基于Kasme和安全上下文生成安全密钥。
具体实施例中,MME可基于Kasme、UE的安全能力,网络侧的安全能力等参数生成安全密钥(包括密钥KeNB和NAS密钥),MME可保存所述NAS密钥。其中,UE安全能力例如可以为UE支持的加密和完整性算法列表、UE所要求的密钥长度、密钥生存期等;网络侧安全能力例如可以为网络侧的网络设备中预配置的网络支持的加密和完整性算法列表,运营商支持的加密和完整性算法优先级列表,网络设备/运营商支持的密钥长度、密钥生存期等。
在具体实现中,该密钥KeNB的生成过程可能为:
KeNB=KDF(新的NAS计数值,NAS计数值的长度,算法标识,其他参数)。
10、MME向eNB发送S1路径切换请求、安全密钥,所发送的安全密钥包括KeNB。
其中,其中S1接口是eNB和MME之间的接口。具体实施例中,MME通过S1接口向eNB发送路径切换请求,该路径切换请求可携带KeNB;另一具体实施例中,MME通过S1接口分别向eNB发送路径切换请求和KeNB。
11、eNB向MME反馈S1路径响应,通知MME成功收到消息。
12、eNB不计算用户面完整性密钥。
在本发明实施例中,当第一通信系统(LTE)不支持用户面完整性保护时,eNB判断不需要生成和启用用户面完保密钥。这种情况下,如果所接收到的安全密钥里面包括用户面完整性保护密钥,则eNB将不启用该密钥;另外,在eNB基于所接收到的密钥KeNB生成AS密钥过程中,不再生成AS的用户面完整性保护密钥。
13、源AMF/源SEAF向gNB反馈切换要求、安全上下文。
14、gNB向UE发送切换要求、安全上下文。
15、UE生成安全密钥。
需要说明的是,UE侧所接收到的安全上下文,只需包括网络侧生成各个密钥时UE侧没有的参数,比如随机数(计数值Nonce或Counter),时间戳等,LTE相关的安全保护算法标识等,UE可能在之前步骤中都已具备其他的用于生成密钥的参数。UE可基于预设的Kamf推衍出Kasme,进而基于Kasme、网络参数,安全上下文等得到相应的AS层密钥和NAS层密钥。
16、UE与eNB完成后续的切换进程,最终,UE的通信连接从gNB切换到eNB。
需要说明的是,对于上述图10实施例,在可能的实施方式中,还可以取消步骤5和步骤6,而在步骤7中,HSS可根据预存的CK/IK、以及所接收的原系统(第二系统)安全上下文生成中间密钥Kasme,在步骤9中,MME可基于Kasme、第一系统(如5G)安全保护算法生成KeNB和NAS密钥。
还需要说明的是,在又一种可能的实施方式中,AMF可发送Kamf给MME,MME基于Kamf经过推衍得到Kasme,方式可能有:
第一次推衍:Kasme=KDF(Kamf,目标侧ID,服务网络名称标识,计数值Nonce或Counter或者随机码Random或者序列码Sequence number,NAS COUNT);
第二次Kasme=KDF(Kamf,第一次推衍的Kasme,其他参数)。
可以看出,实施本发明实施例,在跨通信系统切换的实施过程中,目标侧的通信系统可利用源侧的通信系统的中间密钥和安全上下文相应生成安全密钥,从而对切换后的通信系统中的通信进行安全保护。对于网络而言,目标侧的通信系统不能获得源侧的通信系统使用的安全密钥,无法破解源侧的通信系统与UE之间的通信信息,实现了网络通信的后向安全。
参见图11,基于同一发明构思,本发明实施例提供了一种5G网络结合WLAN网络而成的通信系统中切换通信的应用场景。其中,该5G网络包括接入网和核心网,接入网包括RAN设备331、RAN设备332,核心网包括核心网设备组341,接入网设备分别通过N2接口与核心网设备连接。WLAN网络包括无线节点321、无线节点322,以及与无线节点(无线节点也可以视为接入网的一部分)建立通信连接的用户设备,其中无线节点可分别与RAN设备331和RAN设备332通过Xw接口连接。用户设备与无线节点之间通过WLAN技术进行上行通信或下行通信。
在一具体的通信场景中,用户设备与无线节点321通信连接,如果用户设备从311处移动至312处,那么,用户设备可能就需要将通信连接从无线节点321切换至无线节点322,在完成切换进程后,用户设备与无线节点322通信连接,进而才能继续进行通信,在这一过程中,上述通信切换过程可能会伴随着RAN设备的通信切换。
在这种场景中,同样可应用本发明实施例提供的安全实现方法对切换后的通信进行安全保护。具体可以包括以下步骤:
1、RAN设备332接收将用户设备从无线节点321切换到无线节点322的通信的请求;
本发明实施例中,无线节点例如可以是WLAN端点(WLAN Termination)、无线接入点AP、无线路由等等。RAN设备例如可以gNB等基站设备。
2、RAN设备332获得主密钥;
具体实施例中,RAN设备332可通过以下方式获得主密钥:
核心网设备组341生成中间密钥KgNB,并将KgNB发送至RAN设备332。
RAN设备332基于KgNB生成主密钥,例如,当无线节点为WLAN端点(WLAN Termination)。
RAN设备332g基于KgNB和WLAN端点计数值(WT Counter)推衍出主密钥S-Kwt,具体为:S-Kwt=KDF(KgNB,WT Counter,其他参数)。
3、RAN设备332通过Xw接口向无线节点322发送主密钥,所述S-Kwt该WLAN的空口保护密钥,无线节点322基于主密钥S-Kwt和IEEE 802.11规范生成最终的安全密钥,所述安全密钥用于,在将用户设备从无线节点321切换到无线节点322后,对所述用户设备与无线节点322之间的通信进行保护。
4、RAN设备332会通过与UE之间的空口消息如RRC信令消息将WLAN端点计数值(WTCounter)发送给用户设备,使得用户设备也能计算出对应的S-Kwt,继而基于S-Kwt和IEEE规范生成安全密钥。
上文详细阐述了本发明实施例的方法,为了便于更好地实施本发明实施例的上述方案,下面提供了本发明实施例的相关装置。
参见图12,本发明实施例提供了一种装置1200,该装置1200包括处理器1201、存储器1202和发射器1203以及接收器1204,所述处理器1201、存储器1202和发射器1203以及接收器1204相连接(如通过总线相互连接)。
存储器1202包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ReadOnly Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM),该存储器1202用于存储相关指令及数据。
发射器1203用于发射数据,接收器1204用于接收数据。
处理器1201可以是一个或多个中央处理器1201(Central Processing Unit,CPU),在处理器1201是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该处理器1201用于读取所述存储器1202中存储的程序代码,以实现图3实施例中的所述认证网元的功能。
当装置1200为第一网元时,存储器1202中存储的程序代码具体用于实现图4实施例中的所述第一网元的功能。具体描述如下:
所述接收器1204用于接收将用户设备从源接入网设备切换到目标接入网设备的通信的请求;
所述处理器1201用于获得安全密钥;所述安全密钥用于,在将所述用户设备从所述源接入网设备切换到所述目标接入网设备后,对所述用户设备与所述目标网络之间的通信进行保护,所述目标网络包括所述目标接入网设备和目标核心网设备,所述目标核心网设备包括所述第一网元;
所述发射器1203用于向所述目标接入网设备发送所述安全密钥。
具体的实施例中,所述处理器1201用于获得安全密钥,包括:
所述处理器1201用于获取第一中间密钥;所述第一中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层AS和非接入层NAS密钥;
所述处理器1201用于确定安全保护算法,基于所述安全保护算法和所述第一中间密钥推衍出所述安全密钥。
具体的实施例中,所述处理器1201用于获取第一中间密钥,包括:
所述处理器1201用于通过所述接收器1204获取安全锚点SEAF基于锚密钥、网络参数推衍出的所述第一中间密钥。
具体的实施例中,所述处理器1201用于获取第一中间密钥,包括:
所述处理器1201用于通过所述接收器1204获取第二网元基于第二中间密钥、网络参数推衍出的所述第一中间密钥;其中,第二中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层和非接入层密钥。
具体的实施例中,所述处理器1201用于获取第一中间密钥,包括:
所述处理器1201用于通过所述接收器1204接收第二网元发送的第二中间密钥;
所述处理器1201用于基于所述第二中间密钥、网络参数推衍出的所述第一中间密钥;其中,第二中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层和非接入层密钥。
具体的实施例中,所述处理器1201用于获取第一中间密钥,包括:
在所述用户设备从所述源接入网设备切换到所述目标接入网设备、并且所述用户设备重新通过双向认证后,所述处理器1201获得锚密钥;
所述处理器1201用于基于所述锚密钥、网络参数推衍出的所述第一中间密钥。
具体的实施例中,所述接收器1204还用于接收第二网元发送的下一跳密钥第一NH、下一跳密钥关联计数第一NCC;所述处理器1201还用于基于所述第一NH和第一NCC得到第二NH和第二NCC;所述发射器1203还用于向所述目标接入网设备发送所述第二NH和所述第二NCC。
具体的实施例中,所述安全密钥包括第一密钥,第二密钥和第三密钥;所述第一密钥为用户设备与所述目标接入网设备之间进行安全保护的中间密钥;所述第二密钥为NAS信令加密性保护密钥;所述第三密钥为NAS信令完整性保护密钥;
所述处理器1201用于确定安全保护算法,基于所述安全保护算法和所述第一中间密钥推衍出所述安全密钥,包括:
所述安全保护算法包括NAS机密性算法标识和NAS完整性算法标识。
所述处理器1201用于基于第一参数推衍出所述第一密钥;其中,所述第一参数包括所述第一中间密钥、目标小区标识、频点、NAS计数值、NAS连接标识、计数值或随机码或序列码中的一项或多项;
所述处理器1201用于基于第二参数推衍出所述第二密钥;其中,所述第二参数包括所述第一中间密钥、所述NAS机密性算法标识、计数值或随机码或序列码中的一项或多项;
所述处理器1201用于基于第三参数推衍出所述第三密钥;其中,所述第三参数包括所述第一中间密钥、所述NAS完整性算法标识、计数值或随机码或序列码中的一项或多项;
所述发射器1203用于向所述目标接入网设备发送所述安全密钥,包括:
所述发射器1203用于向所述目标接入网设备发送所述第一密钥。
具体的实施例中,所述源接入网设备为第一通信系统的接入网设备;所述目标接入网设备为第二通信系统的接入网设备;所述第一网元为所述第二通信系统的网元;所述请求包括所述第一通信系统的安全上下文、第三中间密钥;所述第三中间密钥为在所述第一通信系统中认证后生成的上层的密钥,用于推衍下层的接入层和非接入层的密钥;
所述处理器1201用于获取第一中间密钥,包括:
所述处理器1201用于基于所述第一通信系统的安全上下文、所述第二通信系统的安全上下文以及所述第三中间密钥推衍出的所述第一中间密钥。
具体的实施例中,所述第一网元包括目标接入和移动管理网元AMF,所述第二网元包括源AMF,所述目标AMF连接所述目标接入网设备,所述源AMF连接所述源接入网设备;或者,所述第一网元包括目标安全锚点SEAF,所述第二网元包括源安全锚点SEAF,所述目标SEAF连接所述目标接入网设备,所述源SEAF连接所述源接入网设备。
具体的实施例中,所述网络参数包括目标侧标识、切片标识、网络接入标识符NAI、网络切片选择辅助信息NSSAI、AMF区域标识、AMF设置标识、AMF全局唯一指示符GUAMI、AMF指针pointer、AMF集合标识、计数值或随机码或序列码中的一项或多项。
具体的实施例中,所述第一网元包括第一通信系统的移动性管理实体网元MME;所述 目标接入网设备为所述第一通信系统的接入网设备;所述源接入网设备为第二通信系统的接入网设备;
所述MME的接收器1204用于接收将用户设备从所述源接入网设备切换到所述目标接入网设备的通信的请求;所述请求包括所述第二通信系统的安全上下文;
所述MME的处理器1201用于获得安全密钥;
所述MME的发射器1203用于向所述目标接入网设备发送所述安全密钥。
具体的实施例中,所述MME的处理器1201用于通过所述MME的接收器1204接收所述第一通信系统的归属签约用户服务器HSS基于第一加密密钥、第一完整性保护密钥、服务网络名称标识、序列号SQN推衍出的第三中间密钥;所述第三中间密钥为在所述第一通信系统中认证后生成的上层的密钥,用于推衍下层的接入层和非接入层的密钥;
所述MME的处理器1201用于基于所述第二通信系统的安全上下文、所述第三中间密钥推衍出所述安全密钥。
具体的实施例中,所述MME的处理器1201用于获得安全密钥,包括:
所述MME的处理器1201用于通过所述MME的接收器1204接收所述第二通信系统的AMF发送的第一中间密钥;所述第一中间密钥为所述第二通信系统中认证后生成的上层的密钥,用于推衍下层的接入层AS和非接入层NAS密钥;
所述MME的处理器1201用于基于所述第一中间密钥推衍出所述第三中间密钥;
所述MME的处理器1201用于基于所述第二通信系统的安全上下文、所述第三中间密钥推衍出所述安全密钥。
需要说明的是,当装置1200为第一网元时,处理器1201执行的步骤以及处理器1201涉及的其他技术特征还可以参照图5-图10所示的方法实施例的相应描述,这里不再赘述。
当装置1200为目标接入网设备时,存储器1202中存储的程序代码具体用于实现图11实施例中的所述RAN设备332的功能。具体描述如下:
所述接收器1204用于接收将用户设备从源无线节点切换到目标无线节点的通信的请求;
所述接收器1204还用于接收核心网设备发送的第一密钥(例如KeNB或KgNB);所述第一密钥为用户设备与所述目标接入网设备之间进行安全保护的中间密钥;
所述处理器1201用于基于所述中间密钥生成第二密钥(主密钥);所述第二密钥为用户设备与所述目标无线节点之间进行安全保护的中间密钥;
所述发射器1203用于向目标无线节点发送所述第二密钥,以便于所述目标无线节点基于所述第二密钥生成安全密钥;所述安全密钥用于,在将所述用户设备从源无线节点切换到目标无线节点后,对所述用户设备与所述目标无线节点之间的通信进行保护。
需要说明的是,当装置1200为第一网元时,处理器1201执行的步骤以及处理器1201涉及的其他技术特征还可以参照图11所示的方法实施例的相应描述,这里不再赘述。
参见图13,基于同一发明构思,本发明实施例提供了又一种装置1300,装置1300为第一网元,具体包括:接收模块1301,密钥处理模块1302,发送模块1303,描述如下:
接收模块1301用于接收将用户设备从源接入网设备切换到目标接入网设备的通信的请求;
密钥处理模块1302用于获得安全密钥;所述安全密钥用于,在将所述用户设备从所述源接入网设备切换到所述目标接入网设备后,对所述用户设备与所述目标网络之间的通信进行保护,所述目标网络包括所述目标接入网设备和目标核心网设备,所述目标核心网设备包括所述第一网元;
发送模块1303用于向所述目标接入网设备发送所述安全密钥。
具体实施例中,密钥处理模块1302获取第一中间密钥;所述第一中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层AS和非接入层NAS密钥;
密钥处理模块1302确定安全保护算法,基于所述安全保护算法和所述第一中间密钥推衍出所述安全密钥。
具体实施例中,所述第一网元获取第一中间密钥,包括:
密钥处理模块1302通过接收模块1301获取安全锚点SEAF基于锚密钥、网络参数推衍出的所述第一中间密钥。
具体实施例中,密钥处理模块1302获取第一中间密钥,包括:
密钥处理模块1302通过接收模块1301获取第二网元基于第二中间密钥、网络参数推衍出的所述第一中间密钥;其中,第二中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层和非接入层密钥。
具体实施例中,密钥处理模块1302获取第一中间密钥,包括:
接收模块1301接收第二网元发送的第二中间密钥;
密钥处理模块1302基于所述第二中间密钥、网络参数推衍出的所述第一中间密钥;其中,第二中间密钥为认证后生成的上层的密钥,用于推衍下层的接入层和非接入层密钥。
具体实施例中,密钥处理模块1302获取第一中间密钥,包括:
在所述用户设备从所述源接入网设备切换到所述目标接入网设备、并且所述用户设备重新通过双向认证后,密钥处理模块1302获得锚密钥;
密钥处理模块1302基于所述锚密钥、网络参数推衍出的所述第一中间密钥。
具体实施例中,密钥处理模块1302通过接收模块1301还获取第二网元发送的下一跳密钥第一NH、下一跳密钥关联计数第一NCC;
密钥处理模块1302基于所述第一NH和第一NCC得到第二NH和第二NCC;
发送模块1303向所述目标接入网设备发送所述第二NH和所述第二NCC。
具体实施例中,所述安全密钥包括第一密钥,第二密钥和第三密钥;所述第一密钥为用户设备与所述目标接入网设备之间进行安全保护的中间密钥;所述第二密钥为NAS信令加密性保护密钥;所述第三密钥为NAS信令完整性保护密钥;
密钥处理模块1302确定安全保护算法,基于所述安全保护算法和所述第一中间密钥推衍出所述安全密钥,包括:
所述安全保护算法包括NAS机密性算法标识和NAS完整性算法标识
密钥处理模块1302基于第一参数推衍出所述第一密钥;其中,所述第一参数包括所述第一中间密钥、目标小区标识、频点、NAS计数值、NAS连接标识、计数值或随机码或序列 码中的一项或多项;
密钥处理模块1302基于第二参数推衍出所述第二密钥;其中,所述第二参数包括所述第一中间密钥、所述NAS机密性算法标识、计数值或随机码或序列码中的一项或多项;
密钥处理模块1302基于第三参数推衍出所述第三密钥;其中,所述第三参数包括所述第一中间密钥、所述NAS完整性算法标识、计数值或随机码或序列码中的一项或多项;
发送模块1303向所述目标接入网设备发送所述安全密钥,包括:
所述发送向所述目标接入网设备发送所述第一密钥。
具体实施例中,所述源接入网设备为第一通信系统的接入网设备;所述目标接入网设备为第二通信系统的接入网设备;所述第一网元为所述第二通信系统的网元;所述请求包括所述第一通信系统的安全上下文、第三中间密钥;所述第三中间密钥为在所述第一通信系统中认证后生成的上层的密钥,用于推衍下层的接入层和非接入层的密钥;
密钥处理模块1302获取第一中间密钥,包括:
密钥处理模块1302基于所述第一通信系统的安全上下文、所述第二通信系统的安全上下文以及所述第三中间密钥推衍出的所述第一中间密钥。
具体实施例中,所述第一网元包括目标接入和移动管理网元AMF,所述第二网元包括源AMF,所述目标AMF连接所述目标接入网设备,所述源AMF连接所述源接入网设备;或者,所述第一网元包括目标安全锚点SEAF,所述第二网元包括源安全锚点SEAF,所述目标SEAF连接所述目标接入网设备,所述源SEAF连接所述源接入网设备。
具体实施例中,所述网络参数包括目标侧标识、切片标识、网络接入标识符NAI、网络切片选择辅助信息NSSAI、AMF区域标识、AMF设置标识、AMF全局唯一指示符GUAMI、AMF指针pointer、AMF集合标识、计数值或随机码或序列码中的一项或多项。
具体实施例中,所述第一网元包括第一通信系统的移动性管理实体网元MME;所述目标接入网设备为所述第一通信系统的接入网设备;所述源接入网设备为第二通信系统的接入网设备;
密钥处理模块1302通过接收模块1301接收将用户设备从所述源接入网设备切换到所述目标接入网设备的通信的请求;所述请求包括所述第二通信系统的安全上下文;
密钥处理模块1302获得安全密钥;所述安全密钥用于,在将所述用户设备从所述源接入网设备切换到所述目标接入网设备后,对所述用户设备与所述目标网络之间的通信进行保护;
发送模块1303向所述目标接入网设备发送所述安全密钥。
具体实施例中,所述MME获得安全密钥,包括:
密钥处理模块1302通过接收模块1301获取所述第一通信系统的归属签约用户服务器HSS基于第一加密密钥、第一完整性保护密钥、服务网络名称标识、序列号SQN推衍出的第三中间密钥;所述第三中间密钥为在所述第一通信系统中认证后生成的上层的密钥,用于推衍下层的接入层和非接入层的密钥;
密钥处理模块1302基于所述第二通信系统的安全上下文、所述第三中间密钥推衍出所述安全密钥。
具体实施例中,密钥处理模块1302获取安全密钥,包括:密钥处理模块1302通过接 收模块1301获取所述第二通信系统的AMF发送的第一中间密钥;所述第一中间密钥为所述第二通信系统中认证后生成的上层的密钥,用于推衍下层的接入层AS和非接入层NAS密钥;
密钥处理模块1302基于所述第一中间密钥推衍出所述第三中间密钥;
密钥处理模块1302基于所述第二通信系统的安全上下文、所述第三中间密钥推衍出所述安全密钥。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者任意组合来实现。当使用软件实现时,可以全部或者部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或其他可编程装置。所述计算机指令可存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网络站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、微波等)方式向另一个网络站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质,也可以是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带等)、光介质(例如DVD等)、或者半导体介质(例如固态硬盘)等等。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。

Claims (16)

  1. 一种安全实现方法,其特征在于,所述方法包括:
    第五代通信系统中的接入与管理网元AMF接收第四代通信系统中的移动性管理实体网元MME发送的路径切换请求,所述路径切换请求中包括中间密钥Kasme;
    所述AMF基于网络参数和所述Kasme获得第五代通信通信系统中的密钥Kamf;
    所述AMF基于所述Kamf生成安全密钥。
  2. 根据权利要求1所述的方法,其特征在于,所述网络参数包括下行非接入层消息对应的计数值;
    所述AMF基于网络参数和所述Kasme获得第五代通信通信系统中的密钥Kamf,包括:
    所述AMF基于所述下行非接入层消息对应的计数值和所述Kasme获得第五代通信通信系统中的密钥Kamf。
  3. 根据权利要求1或2所述的方法,其特征在于,所述AMF基于所述Kamf生成安全密钥,包括:
    所述AMF基于所述Kamf生成基站密钥KgNB。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述AMF向基站gNB发送第一切换请求,所述切换请求中包括所述KgNB;以使得所述gNB基于所述KgNB生成接入层密钥。
  5. 一种安全实现方法,其特征在于,所述方法包括:
    当接收到接收第四代通信系统中的基站发送的切换请求时,用户设备UE根据中间密钥Kasme以及网络参数获得第五代通信系统中的密钥Kamf;
    所述UE根据所述Kamf生成安全密钥。
  6. 根据权利要求5所述的方法,其特征在于,所述网络参数包括下行非接入层消息对应的计数值。
  7. 根据权利要求5或6所述的方法,其特征在于,所述UE根据所述Kamf生成安全密钥之后,所述方法还包括:
    所述UE与所述第五代通信系统中的基站进行交互以完成所述UE从所述第四代通信系统的基站到所述第五代通信系统基站的切换。
  8. 根据权利要求5所述的方法,其特征在于,所述切换请求中包括安全上下文;
    所述UE根据所述Kamf生成安全密钥,包括:
    所述UE根据网络参数、接收到的所述安全上下文以及所述Kamf生成接入层密钥和非接入层密钥。
  9. 一种装置,其特征在于,所述装置包括处理器、存储器、发射器以及接收器;所述存储器中存储有程序代码,当所述程序代码被运行时,所述处理器和接收器执行以下操作:
    所述接收器,用于第四代通信系统中的移动性管理实体网元MME发送的路径切换请求,所述路径切换请求中包括中间密钥Kasme;
    所述处理器,用于所述AMF基于网络参数和所述Kasme获得第五代通信通信系统中的密钥Kamf;以及基于所述Kamf生成安全密钥。
  10. 根据权利要求9所述的装置,其特征在于,所述网络参数包括下行非接入层消息对应的计数值。
  11. 根据权利要求9或10所述的装置,其特征在于,所述基于所述Kamf生成安全密钥,包括:
    基于所述Kamf生成基站密钥KgNB。
  12. 根据权利要求9所述的装置,其特征在于,所述装置还包括发射器;
    所述发射器,用于向基站gNB发送第一切换请求,所述切换请求中包括所述KgNB;以使得所述gNB基于所述KgNB生成接入层密钥。
  13. 一种用户设备,其特征在于,所述用户设备包括处理器、存储器、发射器以及接收器;所述存储器中存储有程序代码,当所述程序代码被运行时,所述处理器执行以下操作:
    当接收到接收第四代通信系统中的基站发送的切换请求时,根据中间密钥Kasme以及网络参数获得第五代通信系统中的密钥Kamf;以及
    根据所述Kamf生成安全密钥。
  14. 根据权利要求13所述的用户设备,其特征在于,所述网络参数包括下行非接入层消息对应的计数值。
  15. 根据权利要求13或14所述的用户设备,其特征在于,所述处理器还用于执行以下操作:
    所述第五代通信系统中的基站进行交互以完成所述UE从所述第四代通信系统的基站到所述第五代通信系统基站的切换。
  16. 根据权利要求13所述的用户设备,其特征在于,所述切换请求中包括安全上下文;
    所述根据所述Kamf生成安全密钥,包括:
    根据网络参数、接收到的所述安全上下文以及所述Kamf生成接入层密钥和非接入层密钥。
PCT/CN2018/084702 2017-07-28 2018-04-26 安全实现方法、相关装置以及系统 WO2019019736A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP21161248.6A EP3917187A1 (en) 2017-07-28 2018-04-26 Security implementation method and related apparatus
KR1020207005062A KR102264718B1 (ko) 2017-07-28 2018-04-26 보안 구현 방법, 및 관련된 장치 및 시스템
BR112020001289-0A BR112020001289B1 (pt) 2017-07-28 2018-04-26 Método de implementação de segurança, aparelho relacionado e sistema
JP2020504242A JP7100115B2 (ja) 2017-07-28 2018-04-26 セキュリティ実現方法、関連する装置及びシステム
CN201880048692.3A CN110945892B (zh) 2017-07-28 2018-04-26 安全实现方法、相关装置以及系统
EP18838161.0A EP3576446B1 (en) 2017-07-28 2018-04-26 Key derivation method
US16/409,207 US10728757B2 (en) 2017-07-28 2019-05-10 Security implementation method, related apparatus, and system
US16/720,673 US11228905B2 (en) 2017-07-28 2019-12-19 Security implementation method, related apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710633559.1A CN109309920B (zh) 2017-07-28 2017-07-28 安全实现方法、相关装置以及系统
CN201710633559.1 2017-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/409,207 Continuation US10728757B2 (en) 2017-07-28 2019-05-10 Security implementation method, related apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019019736A1 true WO2019019736A1 (zh) 2019-01-31

Family

ID=64481334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084702 WO2019019736A1 (zh) 2017-07-28 2018-04-26 安全实现方法、相关装置以及系统

Country Status (7)

Country Link
US (2) US10728757B2 (zh)
EP (2) EP3576446B1 (zh)
JP (1) JP7100115B2 (zh)
KR (1) KR102264718B1 (zh)
CN (6) CN108966220B (zh)
BR (1) BR112020001289B1 (zh)
WO (1) WO2019019736A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167211A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Network node, ue and method for handling handover with parameter for deriving security context

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071021B2 (en) * 2017-07-28 2021-07-20 Qualcomm Incorporated Security key derivation for handover
WO2019066692A1 (en) * 2017-09-26 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) MANAGING SECURITY CONTEXTS AND PROVIDING KEY DERIVATION DURING INTERCELLULAR TRANSFER IN A WIRELESS COMMUNICATION SYSTEM
WO2019065897A1 (ja) * 2017-09-27 2019-04-04 日本電気株式会社 通信端末、コアネットワーク装置、コアネットワークノード、ネットワークノード及び鍵導出方法
WO2019140633A1 (zh) * 2018-01-19 2019-07-25 Oppo广东移动通信有限公司 指示用户设备获取密钥的方法、用户设备及网络设备
CN112219415B (zh) * 2018-04-05 2024-07-19 诺基亚技术有限公司 在第一网络中使用用于第二旧网络的订户标识模块的用户认证
CN110351722B (zh) * 2018-04-08 2024-04-16 华为技术有限公司 一种信息发送方法、密钥生成方法以及装置
WO2020092560A1 (en) * 2018-11-02 2020-05-07 Intel Corporation Mobility management in information centric networking
CN112789896B (zh) * 2019-01-07 2022-06-14 华为技术有限公司 切换传输路径的方法及装置
CN111465012B (zh) * 2019-01-21 2021-12-10 华为技术有限公司 通信方法和相关产品
CN111641947B (zh) * 2019-03-01 2021-12-03 华为技术有限公司 密钥配置的方法、装置和终端
CN111770492B (zh) * 2019-03-30 2022-07-12 华为技术有限公司 通信方法和通信设备
CN115038081B (zh) 2019-03-30 2023-04-28 华为技术有限公司 通信方法和通信设备
CN111865872B (zh) * 2019-04-26 2021-08-27 大唐移动通信设备有限公司 一种网络切片内终端安全策略实现方法及设备
CN114727290A (zh) 2019-04-28 2022-07-08 华为技术有限公司 通信方法及其装置
CN111866867B (zh) 2019-04-28 2022-01-14 华为技术有限公司 信息获取方法及装置
CN111866967B (zh) * 2019-04-29 2024-09-17 华为技术有限公司 切换的处理方法和装置
CN111866874B (zh) * 2019-04-29 2022-05-10 华为技术有限公司 一种注册方法及装置
CN112423272A (zh) * 2019-08-05 2021-02-26 华为技术有限公司 数据传输的方法和装置
EP4024930A4 (en) * 2019-09-16 2022-10-19 Huawei Technologies Co., Ltd. SECURITY PROTECTION METHOD AND DEVICE FOR AIR INTERFACE INFORMATION
US11696128B2 (en) 2019-10-09 2023-07-04 Cisco Technology, Inc. Reducing authentication steps during Wi-Fi and 5G handover
US11197176B2 (en) * 2019-11-06 2021-12-07 Oracle International Corporation Methods, systems, and computer readable media for providing for policy-based access and mobility management function (AMF) selection using network slice selection assistance information (NSSAI) availability information
US11405931B2 (en) 2019-12-12 2022-08-02 Oracle International Corporation Methods, systems, and computer readable media for providing for network slice management using feedback mechanism
US10750366B1 (en) * 2019-12-19 2020-08-18 Cisco Technology, Inc. Efficient authentication and secure communications in private communication systems having non-3GPP and 3GPP access
WO2021093160A1 (en) * 2020-01-15 2021-05-20 Zte Corporation Secure handling of registration in wireless communications
CN113766498B (zh) * 2020-06-01 2023-03-21 中国电信股份有限公司 密钥分发方法、装置、计算机可读存储介质及基站
CN112838925B (zh) * 2020-06-03 2023-04-18 中兴通讯股份有限公司 数据传输方法、装置和系统、电子设备、存储介质
CN112788594B (zh) * 2020-06-03 2023-06-27 中兴通讯股份有限公司 数据传输方法、装置和系统、电子设备、存储介质
CN114079920B (zh) * 2020-08-11 2023-01-20 大唐移动通信设备有限公司 接入网安全处理方法、设备、装置及存储介质
CN114845344A (zh) 2021-02-01 2022-08-02 华为云计算技术有限公司 一种多接入边缘计算网络、流量处理方法及相关设备
US11716283B2 (en) 2021-03-05 2023-08-01 Oracle International Corporation Methods, systems, and computer readable media for selecting a software defined wide area network (SD-WAN) link using network slice information
GB2609621B (en) 2021-08-05 2023-09-27 Olive Innovations Ltd Communication security module and method of secure communication
CN114286339B (zh) * 2021-12-21 2024-11-12 中国电信股份有限公司 安全策略的确定方法及系统
CN114205881B (zh) * 2021-12-31 2024-02-09 中国信息通信研究院 一种基站间切换方法和设备
KR102593167B1 (ko) * 2022-01-19 2023-10-24 순천향대학교 산학협력단 통신 네트워크 시스템의 동작방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379490A (zh) * 2012-04-12 2013-10-30 华为技术有限公司 用户设备的认证方法、装置及系统
CN103781069A (zh) * 2012-10-19 2014-05-07 华为技术有限公司 一种双向认证的方法、设备及系统
WO2016166529A1 (en) * 2015-04-13 2016-10-20 Vodafone Ip Licensing Limited Security improvements in a cellular network

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2454204A (en) * 2007-10-31 2009-05-06 Nec Corp Core network selecting security algorithms for use between a base station and a user device
US8179860B2 (en) * 2008-02-15 2012-05-15 Alcatel Lucent Systems and method for performing handovers, or key management while performing handovers in a wireless communication system
CN101257723A (zh) * 2008-04-08 2008-09-03 中兴通讯股份有限公司 密钥生成方法、装置及系统
US20110096660A1 (en) * 2008-06-24 2011-04-28 Panasonic Corporation Handover processing method, and mobile terminal used in the method
EP2273820A1 (en) * 2009-06-30 2011-01-12 Panasonic Corporation Inter-VPLMN handover via a handover proxy node
JP5164939B2 (ja) * 2009-07-04 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
WO2011038352A1 (en) * 2009-09-26 2011-03-31 Cisco Technology, Inc. Providing offloads in a communication network
KR101718164B1 (ko) * 2009-12-17 2017-03-20 엘지전자 주식회사 인증 절차를 고려한 핸드오버 수행 방법 및 장치
CN101742498A (zh) * 2009-12-18 2010-06-16 中兴通讯股份有限公司 空口密钥的管理方法和系统
US20110231654A1 (en) * 2010-03-16 2011-09-22 Gurudas Somadder Method, system and apparatus providing secure infrastructure
CN101835152A (zh) * 2010-04-16 2010-09-15 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统
CN102244862A (zh) * 2010-05-10 2011-11-16 北京三星通信技术研究有限公司 一种获取安全密钥的方法
US9215220B2 (en) * 2010-06-21 2015-12-15 Nokia Solutions And Networks Oy Remote verification of attributes in a communication network
CN102340772B (zh) 2010-07-15 2014-04-16 华为技术有限公司 切换过程中的安全处理方法、装置和系统
CN102378168B (zh) * 2010-08-17 2016-02-10 中兴通讯股份有限公司 多系统核心网通知密钥的方法和多系统网络
CN101931953B (zh) * 2010-09-20 2015-09-16 中兴通讯股份有限公司 生成与设备绑定的安全密钥的方法及系统
KR20130079564A (ko) * 2010-09-28 2013-07-10 리서치 인 모션 리미티드 Ue가 주택/기업 네트워크 커버리지 밖으로 이동할 때 로컬 gw와의 연결을 해제시키는 방법 및 장치
KR101709352B1 (ko) * 2010-12-30 2017-02-22 에릭슨 엘지 주식회사 핸드오버 성능 향상을 위한 무선자원 할당 장치 및 그를 위한 기지국장치
CN102625300B (zh) * 2011-01-28 2015-07-08 华为技术有限公司 密钥生成方法和设备
US8990554B2 (en) * 2011-06-30 2015-03-24 Verizon Patent And Licensing Inc. Network optimization for secure connection establishment or secure messaging
CN102958052B (zh) * 2011-08-29 2017-07-14 华为技术有限公司 一种数据安全传输方法及相关设备
BR112014007959A2 (pt) * 2011-10-03 2017-06-13 Intel Corp mecanismos para comunicação de dispositivo para dispositivo
JP6135878B2 (ja) * 2012-05-04 2017-05-31 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. ネットワークスイッチング中におけるセキュリティ処理方法およびシステム
US9204299B2 (en) * 2012-05-11 2015-12-01 Blackberry Limited Extended service set transitions in wireless networks
CN103428787B (zh) * 2012-05-17 2016-02-10 大唐移动通信设备有限公司 一种基站切换方法及装置
US20150304913A1 (en) * 2012-07-17 2015-10-22 Nokia Technologies Oy System and method for proactive u-plane handovers
US8934632B2 (en) * 2012-09-18 2015-01-13 Futurewei Technologies, Inc. System and method for device-to-device (D2D) assisted dynamic traffic control for cellular networks
US20160277445A1 (en) * 2013-01-30 2016-09-22 Telefonaktiebolaget L M Ericsson (Publ) Security Activation for Dual Connectivity
CN104160777B (zh) * 2013-03-13 2018-01-23 华为技术有限公司 数据的传输方法、装置和系统
EP2854450A1 (en) 2013-09-27 2015-04-01 Alcatel Lucent Reducing signaling load to the corenetwork caused by frequent cell changes of an user equipment among small cells
US9342699B2 (en) * 2013-11-06 2016-05-17 Blackberry Limited Method and apparatus for controlling access to encrypted data
CN107277807B (zh) 2013-12-27 2020-10-09 华为技术有限公司 一种安全密钥上下文分发方法,移动管理实体及基站
CN104980980A (zh) * 2014-04-10 2015-10-14 电信科学技术研究院 一种建立连接的方法、系统和设备
CN104010305B (zh) * 2014-05-09 2016-10-12 中国人民解放军信息工程大学 基于物理层密钥的终端和接入网的双向认证增强方法
GB2527518A (en) * 2014-06-23 2015-12-30 Nec Corp Communication system
US9918225B2 (en) 2014-11-03 2018-03-13 Qualcomm Incorporated Apparatuses and methods for wireless communication
WO2016106740A1 (zh) 2014-12-31 2016-07-07 华为技术有限公司 无线通信方法、装置和系统
CN104661217A (zh) * 2015-02-09 2015-05-27 哈尔滨工业大学深圳研究生院 基于td-lte网络的鉴权和密钥衍生方法及系统
WO2016134536A1 (zh) * 2015-02-28 2016-09-01 华为技术有限公司 密钥生成方法、设备及系统
KR101961301B1 (ko) 2015-06-05 2019-03-25 콘비다 와이어리스, 엘엘씨 통합된 스몰 셀 및 wi-fi 네트워크를 위한 통합 인증
CN106658492A (zh) * 2015-07-23 2017-05-10 中兴通讯股份有限公司 密钥更新方法及装置
US9883385B2 (en) * 2015-09-15 2018-01-30 Qualcomm Incorporated Apparatus and method for mobility procedure involving mobility management entity relocation
WO2017078657A1 (en) * 2015-11-03 2017-05-11 Intel IP Corporation Apparatus, system and method of cellular-assisted establishing of a secured wlan connection between a ue and a wlan ap
CN106714152B (zh) * 2015-11-13 2021-04-09 华为技术有限公司 密钥分发和接收方法、第一密钥管理中心和第一网元
US10368238B2 (en) * 2015-12-01 2019-07-30 Htc Corporation Device and method of handling data transmission/reception for dual connectivity
WO2017104858A1 (ko) * 2015-12-14 2017-06-22 엘지전자(주) 무선 통신 시스템에서 대체 기지국과 네트워크 엔터티 간 s1 연결을 수행하기 위한 방법 및 이를 지원하는 장치
CN105515769A (zh) * 2016-01-12 2016-04-20 汉柏科技有限公司 一种用于网络设备的动态密码生成方法及装置
KR102656957B1 (ko) * 2016-12-16 2024-04-16 삼성전자 주식회사 무선통신 시스템에서 고속 이동을 위한 측정 방법 및 장치
US10299173B2 (en) * 2017-01-05 2019-05-21 Htc Corporation Device and method of handling a PDN connection in LTE to NR/5G inter-system mobility
CN108282836B (zh) * 2017-01-06 2020-10-30 展讯通信(上海)有限公司 辅基站切换方法、装置及基站
AU2018212610B2 (en) * 2017-01-30 2021-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Security context handling in 5g during idle mode
JP6725764B2 (ja) * 2017-01-30 2020-07-22 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線リソース制御接続の再確立
KR102280004B1 (ko) * 2017-04-20 2021-07-22 주식회사 케이티 단말 기반 핸드오버 수행 방법 및 그 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379490A (zh) * 2012-04-12 2013-10-30 华为技术有限公司 用户设备的认证方法、装置及系统
CN103781069A (zh) * 2012-10-19 2014-05-07 华为技术有限公司 一种双向认证的方法、设备及系统
WO2016166529A1 (en) * 2015-04-13 2016-10-20 Vodafone Ip Licensing Limited Security improvements in a cellular network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576446A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167211A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Network node, ue and method for handling handover with parameter for deriving security context

Also Published As

Publication number Publication date
BR112020001289B1 (pt) 2021-08-03
KR20200030592A (ko) 2020-03-20
CN109462847A (zh) 2019-03-12
CN110945892B (zh) 2021-11-30
US20190274038A1 (en) 2019-09-05
CN110945892A (zh) 2020-03-31
CN109309920A (zh) 2019-02-05
CN109511113A (zh) 2019-03-22
KR102264718B1 (ko) 2021-06-11
CN109511113B (zh) 2020-04-14
CN109309920B (zh) 2021-09-21
CN108966220A (zh) 2018-12-07
EP3576446A4 (en) 2020-01-08
EP3576446B1 (en) 2021-03-31
CN109462847B (zh) 2019-08-02
EP3917187A1 (en) 2021-12-01
JP7100115B2 (ja) 2022-07-12
CN108966220B (zh) 2019-07-23
EP3576446A1 (en) 2019-12-04
US11228905B2 (en) 2022-01-18
JP2020528249A (ja) 2020-09-17
US20200128403A1 (en) 2020-04-23
CN109005540B (zh) 2019-07-23
BR112020001289A2 (pt) 2020-07-28
US10728757B2 (en) 2020-07-28
CN109005540A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN108966220B (zh) 一种密钥推演的方法及网络设备
CN109417709B (zh) 用于在移动无线网络系统中认证接入的方法和系统
US10911948B2 (en) Method and system for performing network access authentication based on non-3GPP network, and related device
US10798082B2 (en) Network authentication triggering method and related device
US20170359719A1 (en) Key generation method, device, and system
JP2019527504A (ja) 異種ネットワークのための統一認証
JP2018523950A (ja) 直接通信キーの確立のための方法および装置
US20160262019A1 (en) Security method and system for supporting discovery and communication between proximity based service terminals in mobile communication system environment
WO2013181847A1 (zh) 一种无线局域网接入鉴权方法、设备及系统
WO2020056433A2 (en) SECURE COMMUNICATION OF RADIO RESOURCE CONTROL (RRC) REQUEST OVER SIGNAL RADIO BEARER ZERO (SRBo)
KR20230172603A (ko) 온 디맨드 네트워크에서의 프로비저닝, 인증, 인가, 그리고 사용자 장비(ue) 키 생성 및 분배를 위한 방법 및 장치
WO2020151677A1 (zh) 通信方法和相关产品
CN111615837B (zh) 数据传输方法、相关设备以及系统
US12156028B2 (en) Wireless network switching method and device
CN117812574A (zh) 通信方法和通信装置
WO2025026232A1 (zh) 会话建立方法及相关装置
WO2023185960A1 (zh) 通信方法及装置
CN118827014A (zh) 密码算法处理方法、装置、通信设备及可读存储介质
WO2014169568A1 (zh) 安全上下文处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018838161

Country of ref document: EP

Effective date: 20190828

ENP Entry into the national phase

Ref document number: 2020504242

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001289

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207005062

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020001289

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200121