WO2019019359A1 - 双向电流自适应功率放大器偏置电路 - Google Patents
双向电流自适应功率放大器偏置电路 Download PDFInfo
- Publication number
- WO2019019359A1 WO2019019359A1 PCT/CN2017/104249 CN2017104249W WO2019019359A1 WO 2019019359 A1 WO2019019359 A1 WO 2019019359A1 CN 2017104249 W CN2017104249 W CN 2017104249W WO 2019019359 A1 WO2019019359 A1 WO 2019019359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- power amplifier
- resistor
- adaptive power
- bias circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/34—Negative-feedback-circuit arrangements with or without positive feedback
Definitions
- the present invention relates to the field of bias circuits, and in particular to a bidirectional current adaptive power amplifier bias circuit.
- a bidirectional current adaptive power amplifier bias circuit which solves the problem that the conventional bias circuit cannot be applied to the reverse reverse current of the high power amplifier gate under the premise of maintaining voltage stability.
- a bidirectional current adaptive power amplifier bias circuit includes: an operational amplifier, a forward regulation circuit, a flip adjustment circuit, and a feedback circuit;
- An output end of the operational amplifier is respectively connected to a first input end of the forward adjustment circuit, a first input end of the inversion adjustment circuit, an end of the feedback circuit, an output end of the forward adjustment circuit, and a An output end of the flip adjustment circuit is connected to an output end of the bidirectional current adaptive power amplifier bias circuit, and the other end of the feedback circuit is connected to an inverting input terminal of the operational amplifier, and the second input of the forward adjustment circuit
- the second input end of the inversion adjustment circuit is connected to the ground;
- the inverting input end of the operational amplifier is an electrical signal input end of the bidirectional current adaptive power amplifier bias circuit;
- the forward regulation circuit When the current of the bidirectional current adaptive power amplifier bias circuit is not flipped, The forward regulation circuit is turned on, at this time, the negative power source connected by the forward regulation circuit absorbs the current, and the voltage of the output terminal of the bias circuit of the bidirectional current adaptive power amplifier is maintained stable through the feedback circuit;
- the flip adjustment circuit When the current of the bidirectional current adaptive power amplifier bias circuit is reversed, the flip adjustment circuit is turned on, at which time the current is discharged by the ground connected by the flip adjustment circuit, and the two-way current is passed through the feedback loop to make the two-way The output voltage of the current adaptive power amplifier bias circuit remains stable.
- the bidirectional current adaptive power amplifier bias circuit is provided with a forward adjustment circuit and a flip adjustment circuit, when the output current of the bidirectional current adaptive power amplifier bias circuit is not deflected, the forward circuit is turned on, and the bias circuit is When the voltage at the output rises or falls, the current is absorbed by the connected negative power supply and passes through the negative feedback loop, so that the output voltage of the bidirectional current adaptive power amplifier bias circuit remains stable; when the bidirectional current adaptive power amplifier is biased The current at the output of the circuit is deflected, and the flip-regulation circuit is turned on. When the voltage at the output of the bias circuit rises or falls, the current is connected to the ground connected by the flip-regulation circuit, and the negative feedback loop is used to make the bidirectional current.
- the output voltage of the adaptive power amplifier bias circuit remains stable.
- the voltage of the output terminal of the bias circuit is maintained stable; connecting the output end of the bidirectional current adaptive power amplifier bias circuit to the gate of the high power amplifier can realize the condition that the gate voltage of the high power amplifier is stable. Suitable for problems with reverse current reversal.
- FIG. 1 is a schematic structural diagram of a bidirectional current adaptive power amplifier bias circuit in an embodiment
- FIG. 2 is a schematic structural diagram of a bidirectional current adaptive power amplifier bias circuit in another embodiment.
- the bidirectional current adaptive power amplifier bias circuit includes an operational amplifier, a forward regulation circuit, a flip adjustment circuit, and a feedback circuit.
- An output end of the operational amplifier is respectively connected to a first input end of the forward adjustment circuit, a first input end of the inversion adjustment circuit, an end of the feedback circuit, an output end of the forward adjustment circuit, and a
- the output of the flip regulation circuit is connected to the output terminal 2 of the bidirectional current adaptive power amplifier bias circuit, and the other end of the feedback circuit is connected to the inverting input terminal of the operational amplifier, and the second of the forward regulation circuit
- the input terminal is connected to the negative power supply, and the second input end of the flip adjustment circuit is connected to the ground end;
- the inverting input end of the operational amplifier is the electrical signal input end 1 of the bidirectional current adaptive power amplifier bias circuit.
- the output terminal 2 of the bidirectional current adaptive power amplifier bias circuit When the electrical signal input terminal 1 of the bidirectional current adaptive power amplifier bias circuit has a voltage input, the output terminal 2 of the bidirectional current adaptive power amplifier bias circuit outputs a negative voltage due to the external high power amplifier output power or ambient temperature change. The voltage and current of the output terminal 2 may change.
- the process of realizing the voltage stabilization of the output terminal of the bidirectional current adaptive power amplifier bias circuit may specifically be: when the bidirectional current adaptive power amplifier bias circuit current When the inversion does not occur, the forward adjustment circuit is turned on, at which time the negative power supply connected by the forward regulation circuit sinks current, and passes through the feedback circuit to make the output of the bidirectional current adaptive power amplifier bias circuit The voltage is maintained stable; when the current of the bidirectional current adaptive power amplifier bias circuit is reversed, the flip adjustment circuit is turned on, and at this time, the current is discharged through the ground connected by the flip adjustment circuit, and passes through the feedback loop. Outputting the bidirectional current adaptive power amplifier bias circuit Pressure remained stable.
- the bidirectional current adaptive power amplifier bias circuit of the embodiment provides a forward adjustment circuit and a flip adjustment circuit.
- the forward regulation circuit is turned on.
- the negative power supply connected through the forward regulation circuit absorbs the current, and the voltage at the output of the bidirectional current adaptive power amplifier bias circuit is maintained through the negative feedback loop;
- the current of the current adaptive power amplifier bias circuit is deflected at the output end, and the flip adjustment circuit is turned on.
- the ground current is discharged through the flip adjustment circuit, and the negative feedback is passed.
- the loop maintains the output voltage of the bidirectional current adaptive power amplifier bias circuit stable.
- the voltage of the output terminal of the bias circuit is maintained stable; connecting the output end of the bidirectional current adaptive power amplifier bias circuit to the gate of the high power amplifier can realize the condition that the gate voltage of the high power amplifier is stable. Suitable for problems with reverse current reversal.
- the forward regulation circuit when the current at the output terminal 2 is not deflected, the forward regulation circuit is turned on. At this time, when the voltage of the output terminal 2 rises, the voltage of the input terminal 1 of the operational amplifier rises, and the output terminal of the operational amplifier. The voltage drop causes the voltage drop of the forward regulation circuit to become smaller, causing the voltage at the output terminal 2 to decrease. Similarly, when the voltage at the output terminal 2 decreases, the voltage at the input terminal 1 of the operational amplifier decreases, and the voltage at the output terminal of the operational amplifier rises, causing the voltage drop of the forward regulation circuit to increase, thereby causing the voltage at the output terminal 2 to rise. High to achieve voltage stability.
- the flip adjustment circuit When the output current is deflected, the flip adjustment circuit is turned on. At this time, when the voltage of the output terminal 2 rises, the voltage of the input terminal 1 of the operational amplifier rises, and the voltage of the output terminal of the operational amplifier decreases, resulting in the flip adjustment circuit. The voltage drop becomes large, causing the voltage at the output terminal 2 to decrease. Similarly, when the voltage at the output terminal 2 decreases, the voltage at the input terminal 1 of the operational amplifier decreases, and the voltage at the output terminal of the operational amplifier rises, causing the voltage drop of the flip-regulation circuit to decrease, thereby causing the voltage at the output terminal 2 to rise.
- the operational amplifier is a dual power operational amplifier, and the power supply positive terminal of the dual power operational amplifier is connected.
- the positive power supply, the negative power supply terminal of the dual power operational amplifier is connected to the negative power supply.
- the operation of the operational amplifier needs to be powered by the DC power supply.
- the operational amplifier with dual power supply is selected, and the negative power supply can be used as the absorption of the current of the output terminal 2, further simplifying the circuit, and optimizing the bias circuit of the bidirectional current adaptive power amplifier.
- the number of power supplies used is a single power operational amplifier, and the power supply positive terminal of the dual power operational amplifier is connected.
- the positive power supply, the negative power supply terminal of the dual power operational amplifier is connected to the negative power supply.
- the operation of the operational amplifier needs to be powered by the DC power supply.
- the operational amplifier with dual power supply is selected, and the negative power supply can be used as the absorption of the current of the output terminal 2, further simplifying the circuit, and optimizing the bias circuit of the bidirectional current adaptive power amplifier.
- the other end of the first resistor R1 is connected to the inverting input terminal of the operational amplifier through the first resistor R1.
- the non-inverting input of the operational amplifier is also connected to the second resistor R2, and the other end of the second resistor R2 is grounded.
- the non-inverting input of the operational amplifier is a reference end of the inverting input terminal, and a fixed reference voltage can also be connected, which is specifically designed according to the requirements of the circuit.
- the resistance value of the first resistor R1 is equal to the resistance value of the second resistor R2, and the resistance matching at the input end is achieved.
- the forward regulation circuit includes a third resistor R3, a fourth resistor R4, and a field effect a transistor Q1, wherein one end of the third resistor R3 is a first input end of the forward regulation circuit, and the other end of the third resistor R3 is connected to a gate of the first field effect transistor Q1.
- the source of the first field effect transistor Q1 is the output terminal of the forward regulation circuit, the drain of the first field effect transistor Q1 is connected to one end of the fourth resistor R4, and the other end of the fourth resistor R4 is The second input of the forward regulation circuit.
- the forward adjustment circuit of the embodiment is suitable for the first field effect transistor Q1 to be turned on under the condition that the current of the bidirectional current adaptive power amplifier bias circuit output is not deflected, and the bidirectional current adaptive power amplifier bias circuit The current at the output flows into the negative supply -VCC through the fourth resistor R4.
- the voltage of the output terminal of the bidirectional current adaptive power amplifier bias circuit rises, the voltage of the input terminal 1 of the operational amplifier rises, and the voltage of the output terminal of the operational amplifier decreases, thereby changing the conduction degree of the first field effect transistor Q1.
- the voltage drop of the large, fourth resistor R4 is increased, so that the output voltage of the bidirectional current adaptive power amplifier bias circuit is lowered; based on the same principle, when the output voltage of the bidirectional current adaptive power amplifier bias circuit is lowered, The voltage drop across the fourth resistor R4 is reduced, causing the output voltage of the bidirectional current adaptive power amplifier bias circuit to rise. Through the above feedback, the output voltage of the bidirectional current adaptive power amplifier bias circuit is finally stabilized.
- the purpose of setting the third resistor R3 is to protect the gate of the first field effect transistor Q1 to achieve current limiting.
- the flip adjustment circuit includes a fifth resistor R5, a sixth resistor R6, and a second field effect transistor, wherein one end of the fifth resistor R5 is a first input end of the flip adjustment circuit, The other end of the fifth resistor R5 is connected to the gate of the second field effect transistor Q2, the source of the second field effect transistor Q2 is extremely inverted, and the drain of the second field effect transistor Q2 is connected.
- One end of the sixth resistor R6, and the other end of the sixth resistor R6 is a second input end of the inversion adjusting circuit.
- the inversion adjustment circuit of the embodiment is adapted to be turned on by the second field effect transistor Q2 under the condition that the current is deflected at the output end of the bidirectional current adaptive power amplifier bias circuit, and the output end of the bidirectional current adaptive power amplifier bias circuit The current flows into the ground through the sixth resistor R6.
- the voltage at the output of the bidirectional current adaptive power amplifier bias circuit rises, the voltage at the input terminal 1 of the operational amplifier rises, and the voltage at the output terminal of the operational amplifier decreases.
- the conduction degree of the second field effect transistor Q2 becomes larger, and the voltage drop of the sixth resistor R6 rises, so that the bidirectional current adaptive power amplifier bias circuit The output voltage is reduced; based on the same principle, when the output voltage of the bidirectional current adaptive power amplifier bias circuit is lowered, the voltage drop of the sixth resistor R6 is lowered, so that the output of the bidirectional current adaptive power amplifier bias circuit The voltage rises. Through the above feedback, the output voltage of the bidirectional current adaptive power amplifier bias circuit is finally stabilized.
- the purpose of setting the fifth resistor R5 is to protect the gate of the second field effect transistor Q2 to achieve a current limiting function.
- the first field effect transistor uses a PMOSFET field effect transistor
- the second field effect transistor uses an NMOSFET field effect transistor.
- first field effect transistor Q1 and the second field effect transistor Q2 may also adopt other field effect transistors, and the first field effect transistor Q1 and the first field effect transistor may be selected according to the design of the bidirectional current adaptive power amplifier bias circuit. Two field effect transistor Q2.
- the feedback circuit includes a seventh resistor R7, and both ends of the seventh resistor R7 are both ends of the feedback circuit.
- the feedback resistor of the feedback circuit is selected.
- a resistor having no corresponding specification is available on the market, and multiple resistors are used in series and parallel connection.
- the way to make its equivalent resistance is the calculated resistance.
- a filtering module is further disposed, the positive power source is further connected to one end of the first capacitor, and the other end of the first capacitor is grounded.
- the negative supply is also coupled to the first end of the second capacitor, and the second end of the second capacitor is coupled to ground.
- the first capacitor C1 and the second capacitor C2 of the present embodiment function to filter the positive power supply +VCC and the negative power supply -VCC, thereby making the voltage outputted from the output terminal of the bidirectional current adaptive power amplifier bias circuit more stable.
- the working principle of the bidirectional current adaptive power amplifier bias circuit in FIG. 2 is described below, as shown in FIG. 2 , wherein the first resistor R1 and the second resistor R2 have the same resistance, and the third resistor R3
- the resistance of the fifth resistor R5 is the same
- the resistance of the fourth resistor R4 and the sixth resistor R6 are the same
- the output terminal 2 of the bidirectional current adaptive power amplifier bias circuit is connected to the gate of a high power amplifier.
- the gate voltage of the high power amplifier changes, that is, the voltage of the output terminal 2 changes.
- the PMOSFET conduction degree changes accordingly.
- the voltage drop of the fourth resistor R4 changes, so that the voltage at the output terminal 2 is maintained stable.
- the second FET Q2 When the gate current of the high power amplifier is reversed, the second FET Q2 is turned on at this time. If the temperature of the high power amplifier changes or other reasons, the gate voltage of the high power amplifier changes, that is, the voltage of the output terminal 2 The change, at this time, the degree of conduction of the NMOSFET changes, and the voltage drop of the sixth resistor R6 changes, so that the voltage of the output terminal 2 is maintained stable.
- the bidirectional current adaptive power amplifier bias circuit reacts accordingly, so that the output terminal voltage returns to the original size, and the bidirectional current adaptive power amplifier bias circuit When the output current is turned over, it can still work stably.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
一种双向电流自适应功率放大器偏置电路,包括:运算放大器、正向调节电路、翻转调节电路以及反馈电路,当双向电流自适应功率放大器偏置电路的电流未发生翻转时,正向调节电路导通,此时通过正向调节电路连接的负电源吸收电流,并经过反馈电路,使所述双向电流自适应功率放大器偏置电路的输出端(2)电压维持稳定;当双向电流自适应功率放大器偏置电路的电流发生翻转时,翻转调节电路导通,此时通过翻转调节电路连接的地端释放电流,并经过反馈电路,使所述双向电流自适应功率放大器偏置电路的输出端(2)电压维持稳定。可在高功率放大管的栅极电流发生翻转的情况下维持电压的稳定,适用于高功率放大管栅极电流翻转的问题。
Description
本发明涉及偏置电路技术领域,特别是涉及一种双向电流自适应功率放大器偏置电路。
随着无线通信技术的迅速发展,放大器的使用变得非常普及,近年来,更是朝着高功率的方向发展。在实际运用中,随着高功率放大器的输入、输出功率的提高以及环境温度的变化,放大器的栅极电压、栅极电流存在波动,偶尔甚至还出现电流反向翻转的现象,这种情况,往往导致高功率放大器的损坏。然而,传统的偏置电路已经无法适用于高功率放大器栅极在维持电压稳定的前提下电流反向翻转的特性。
发明内容
基于此,提供一种双向电流自适应功率放大器偏置电路,解决传统的偏置电路无法适用于高功率放大器栅极在维持电压稳定的前提下电流反向翻转的问题。
一种双向电流自适应功率放大器偏置电路,包括:运算放大器、正向调节电路、翻转调节电路以及反馈电路;
所述运算放大器的输出端分别连接所述正向调节电路的第一输入端、所述翻转调节电路的第一输入端;所述反馈电路的一端、所述正向调节电路的输出端、所述翻转调节电路的输出端均连接所述双向电流自适应功率放大器偏置电路的输出端,所述反馈电路的另一端连接运算放大器的反相输入端,所述正向调节电路的第二输入端连接负电源,所述翻转调节电路的第二输入端连接接地;所述运算放大器的反相输入端为所述双向电流自适应功率放大器偏置电路的电信号输入端;
当所述双向电流自适应功率放大器偏置电路的电流未发生翻转时,所述
正向调节电路导通,此时通过正向调节电路连接的负电源吸收电流,并经过所述反馈电路,使所述双向电流自适应功率放大器偏置电路的输出端电压维持稳定;
当所述双向电流自适应功率放大器偏置电路的电流发生翻转时,所述翻转调节电路导通,此时通过翻转调节电路连接的地端释放电流,并经过所述反馈回路,使所述双向电流自适应功率放大器偏置电路的输出端电压维持稳定。
上述双向电流自适应功率放大器偏置电路,通过设置正向调节电路和翻转调节电路,当双向电流自适应功率放大器偏置电路的输出端电流未发生偏转,正向电路导通,在偏置电路输出端的电压升高或降低时,此时通过连接的负电源吸收电流,并经过负反馈回路,使双向电流自适应功率放大器偏置电路的输出端电压维持稳定;当双向电流自适应功率放大器偏置电路的输出端电流发生偏转,翻转调节电路导通,在偏置电路输出端的电压升高或降低时,此时通过翻转调节电路连接的地端释放电流,并经过负反馈回路,使双向电流自适应功率放大器偏置电路的输出端电压维持稳定。通过上述技术方案,使偏置电路输出端电压维持稳定;将所述双向电流自适应功率放大器偏置电路的输出端连接高功率放大器栅极,可实现在高功率放大器栅极电压稳定的前提下适用于电流反向翻转的问题。
图1为一实施例中双向电流自适应功率放大器偏置电路的示意性结构图;
图2为另一实施例中双向电流自适应功率放大器偏置电路的示意性结构图。
为更进一步阐述本发明所采取的技术手段及取得的效果,下面结合附图及较佳实施例,对本发明实施例的技术方案,进行清楚和完整的描述。
图1为一实施例中双向电流自适应功率放大器偏置电路的示意性结构图,
如图1所示,所述双向电流自适应功率放大器偏置电路包括:运算放大器、正向调节电路、翻转调节电路以及反馈电路。
所述运算放大器的输出端分别连接所述正向调节电路的第一输入端、所述翻转调节电路的第一输入端;所述反馈电路的一端、所述正向调节电路的输出端、所述翻转调节电路的输出端均连接所述双向电流自适应功率放大器偏置电路的输出端2,所述反馈电路的另一端连接运算放大器的反相输入端,所述正向调节电路的第二输入端连接负电源,所述翻转调节电路的第二输入端连接地端;所述运算放大器的反相输入端为所述双向电流自适应功率放大器偏置电路的电信号输入端1。
当双向电流自适应功率放大器偏置电路的电信号输入端1有电压输入时,双向电流自适应功率放大器偏置电路的输出端2输出一个负电压,由于外接高功率放大器输出功率或者环境温度变化,输出端2的电压和电流可能发生变化,通过上述连接,实现双向电流自适应功率放大器偏置电路输出端电压稳定的过程具体可以是:当所述双向电流自适应功率放大器偏置电路的电流未发生翻转时,所述正向调节电路导通,此时通过正向调节电路连接的负电源吸收电流,并经过所述反馈电路,使所述双向电流自适应功率放大器偏置电路的输出端电压维持稳定;当所述双向电流自适应功率放大器偏置电路的电流发生翻转时,所述翻转调节电路导通,此时通过翻转调节电路连接的地端释放电流,并经过所述反馈回路,使所述双向电流自适应功率放大器偏置电路的输出端电压维持稳定。
本实施例的双向电流自适应功率放大器偏置电路通过设置正向调节电路和翻转调节电路,当双向电流自适应功率放大器偏置电路的输出端电流未发生偏转,正向调节电路导通,在偏置电路输出端的电压升高或降低时,此时通过正向调节电路连接的负电源吸收电流,经过负反馈回路,使双向电流自适应功率放大器偏置电路的输出端电压维持稳定;当双向电流自适应功率放大器偏置电路的输出端电流发生偏转,翻转调节电路导通,在偏置电路输出端的电压升高或降低时,此时通过翻转调节电路连接的地端释放电流,经过负反馈回路,使双向电流自适应功率放大器偏置电路的输出端电压维持稳定。
通过上述技术方案,使偏置电路输出端电压维持稳定;将所述双向电流自适应功率放大器偏置电路的输出端连接高功率放大器栅极,可实现在高功率放大器栅极电压稳定的前提下适用于电流反向翻转的问题。
具体的,在输出端2的电流未发生偏转时,正向调节电路导通,此时,当输出端2的电压升高时,运算放大器的输入端1的电压升高,运算放大器的输出端电压降低,导致正向调节电路的压降变小,使输出端2的电压降低。同理,当输出端2的电压降低时,运算放大器的输入端1的电压降低,运算放大器的输出端电压升高,导致正向调节电路的压降增大,从而使输出端2的电压升高,从而实现电压稳定。
在输出端电流发生偏转时,翻转调节电路导通,此时,当输出端2的电压升高时,运算放大器的输入端1的电压升高,运算放大器的输出端电压降低,导致翻转调节电路的压降变大,使输出端2的电压降低。同理,当输出端2的电压降低时,运算放大器的输入端1的电压降低,运算放大器的输出端电压升高,导致翻转调节电路的压降降低,从而使输出端2的电压升高。
图2为另一实施例中双向电流自适应功率放大器偏置电路的示意性结构图,如图2所示,所述运算放大器为双电源运算放大器,所述双电源运算放大器的供电正端连接所述正电源,所述双电源运算放大器的供电负端连接所述负电源。运算放大器工作需由直流电源供电,本实施例选用双电源供电的运算放大器,其供电负电源正好可以作为输出端2电流的吸收,进一步使电路简化,优化了双向电流自适应功率放大器偏置电路的电源使用个数。
在一实施例中,在电信号输入双向电流自适应功率放大器偏置电路前,还要通过第一电阻R1,第一电阻R1的另一端连接运算放大器的反向输入端。优选的,运算放大器的同相输入端也连接第二电阻R2,第二电阻R2的另一端接地。可选的,运算放大器的同相输入端为反向输入端的参考端,也可以接入一固定参考电压,具体根据电路的需求而设计。
优选的,第一电阻R1的电阻值与第二电阻R2的电阻值相等,实现输入端的阻值匹配。
在一实施例中,正向调节电路包括第三电阻R3、第四电阻R4以及场效
应晶体管Q1,其中,所述第三电阻R3的一端为所述正向调节电路的第一输入端,所述第三电阻R3的另一端连接所述第一场效应晶体管Q1的栅极,所述第一场效应晶体管Q1的源极为所述正向调节电路的输出端,所述第一场效应晶体管Q1的漏极连接第四电阻R4的一端,所述第四电阻R4的另一端为所述正向调节电路的第二输入端。
本实施例的正向调节电路,适用于在双向电流自适应功率放大器偏置电路输出端电流未发生偏转的条件下,第一场效应晶体管Q1导通,双向电流自适应功率放大器偏置电路的输出端的电流通过第四电阻R4流入负电源-VCC。当双向电流自适应功率放大器偏置电路的输出端电压升高时,运算放大器的输入端1的电压升高,运算放大器的输出端电压降低,从而使第一场效应管Q1的导通程度变大,第四电阻R4的压降升高,使双向电流自适应功率放大器偏置电路的输出端电压降低;基于相同的原理,当双向电流自适应功率放大器偏置电路的输出端电压降低时,第四电阻R4的压降降低,使双向电流自适应功率放大器偏置电路的输出端电压升高。通过上述的反馈,使双向电流自适应功率放大器偏置电路的输出端电压最终维持稳定。而设置第三电阻R3的目的是为了保护第一场效应晶体管Q1的栅极,实现限流的作用。
在一实施例中,翻转调节电路包括第五电阻R5、第六电阻R6以及第二场效应晶体管,其中,所述第五电阻R5的一端为所述翻转调节电路的第一输入端,所述第五电阻R5的另一端连接所述第二场效应晶体管Q2的栅极,所述第二场效应晶体管Q2的源极为翻转调节电路的输出端,所述第二场效应晶体管Q2的漏极连接第六电阻R6的一端,所述第六电阻R6的另一端为所述翻转调节电路的第二输入端。
本实施例的翻转调节电路,适用于在双向电流自适应功率放大器偏置电路输出端电流发生偏转的条件下,第二场效应晶体管Q2导通,双向电流自适应功率放大器偏置电路的输出端的电流通过第六电阻R6流入地端,当双向电流自适应功率放大器偏置电路的输出端电压升高时,运算放大器的输入端1的电压升高,运算放大器的输出端电压降低,从而使第二场效应管Q2的导通程度变大,第六电阻R6的压降升高,使双向电流自适应功率放大器偏置电路
的输出端电压降低;基于相同的原理,当双向电流自适应功率放大器偏置电路的输出端电压降低时,第六电阻R6的压降降低,使双向电流自适应功率放大器偏置电路的输出端电压升高。通过上述的反馈,使双向电流自适应功率放大器偏置电路的输出端电压最终维持稳定。而设置第五电阻R5的目的是为了保护第二场效应晶体管Q2的栅极,实现限流的作用。
优选的,第一场效应管采用PMOSFET场效应管,第二场效应管采用NMOSFET场效应管。
值得说明的是,第一场效应晶体管Q1和第二场效应晶体管Q2也可以采用其他场效应晶体管,具体可根据双向电流自适应功率放大器偏置电路的设计,选取第一场效应晶体管Q1和第二场效应晶体管Q2。
在一实施例中,反馈电路包括第七电阻R7,第七电阻R7的两端即为反馈电路的两端。
可选的,根据双向电流自适应功率放大器偏置电路的具体设计,选择反馈电路的反馈电阻,例如,根据计算值,市面上没有相应规格的电阻可供选用,则采用多个电阻通过串并联的方式,使其等效电阻为计算的阻值。
在一实施例中,还设置了滤波模块,所述正电源还连接第一电容的一端,所述第一电容的另一端接地。所述负电源还连接所述第二电容器的第一端,所述第二电容器的第二端接地。
本实施例的第一电容器C1和第二电容器C2起到对正电源+VCC和负电源-VCC滤波的作用,从而使双向电流自适应功率放大器偏置电路的输出端输出的电压更加稳定。
以下结合图2中一个具体的双向电流自适应功率放大器偏置电路对其工作原理进行说明,如图2所示,其中,第一电阻R1与第二电阻R2的阻值相同,第三电阻R3与第五电阻R5的阻值相同,第四电阻R4与第六电阻R6的阻值相同,将双向电流自适应功率放大器偏置电路的输出端2连接一高功率放大器的栅极。当双向电流自适应功率放大器偏置电路的输入端1有电压Vg_in输入时,输出端2有电压Vg输出,电压Vg与电压Vg_in的关系可以表示为
同时,高功率放大器开始工作,若此时高功率放大器的温度变化或其他原因,导致高功率放大器的栅极电压变化,即输出端2的电压变化,此时PMOSFET导通程度随之改变,通过第四电阻R4的压降变化,从而使输出端2的电压维持稳定。
当高功率放大器的栅极电流发生翻转时,此时第二场效应管Q2导通,若高功率放大器的温度变化或其他原因,导致高功率放大器的栅极电压变化,即输出端2的电压变化,此时NMOSFET导通程度随之改变,通过第六电阻R6压降的变化,从而使输出端2的电压维持稳定。
综上所述,在输出端2的电压发生变化时,双向电流自适应功率放大器偏置电路做出相应的反应,使得输出端电压恢复原来的大小,并在双向电流自适应功率放大器偏置电路的输出端电流发生翻转时,依然能够稳定工作。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种双向电流自适应功率放大器偏置电路,其特征在于,包括:运算放大器、正向调节电路、翻转调节电路以及反馈电路;所述运算放大器的输出端分别连接所述正向调节电路的第一输入端、所述翻转调节电路的第一输入端;所述反馈电路的一端、所述正向调节电路的输出端、所述翻转调节电路的输出端均连接所述双向电流自适应功率放大器偏置电路的输出端,所述反馈电路的另一端连接运算放大器的反相输入端,所述正向调节电路的第二输入端连接负电源,所述翻转调节电路的第二输入端连接地端;所述运算放大器的反相输入端为所述双向电流自适应功率放大器偏置电路的电压信号输入端;当所述双向电流自适应功率放大器偏置电路的电流未发生翻转时,所述正向调节电路导通,此时通过正向调节电路连接的负电源吸收电流,并经过所述反馈电路,使所述双向电流自适应功率放大器偏置电路的输出端电压维持稳定;当所述双向电流自适应功率放大器偏置电路的电流发生翻转时,所述翻转调节电路导通,此时通过翻转调节电路连接的地端释放电流,并经过所述反馈电路,使所述双向电流自适应功率放大器偏置电路的输出端电压维持稳定。
- 根据权利要求1所述的双向电流自适应功率放大器偏置电路,其特征在于,所述运算放大器为双电源运算放大器,所述双电源运算放大器的供电正端连接所述正电源,所述双电源运算放大器的供电负端连接所述负电源。
- 根据权利要求1所述的双向电流自适应功率放大器偏置电路,其特征在于,还包括:第一电阻和第二电阻;所述运算放大器的反向输入端通过所述第一电阻连接所述电信号输入端;所述运算放大器的同向输入端通过所述第二电阻接地。
- 根据权利要求1所述的双向电流自适应功率放大器偏置电路,其特征在于,所述正向调节电路包括第三电阻、第四电阻以及第一场效应晶体管;所述第三电阻的一端为所述正向调节电路的第一输入端,所述第三电阻 的另一端连接所述第一场效应晶体管的栅极,所述第一场效应晶体管的源极为所述正向调节电路的输出端,所述第一场效应晶体管的漏极连接第四电阻的一端,所述第四电阻的另一端为所述正向调节电路的第二输入端。
- 根据权利要求1所述的双向电流自适应功率放大器偏置电路,其特征在于,所述翻转调节电路包括第五电阻、第六电阻以及第二场效应晶体管;所述第五电阻的一端为所述翻转调节电路的第一输入端,所述第五电阻的另一端连接所述第二场效应晶体管的栅极,所述第二场效应晶体管的源极为翻转调节电路的输出端,所述第二场效应晶体管的漏极连接第六电阻的一端,所述第六电阻的另一端为所述翻转调节电路的第二输入端。
- 根据权利要求1所述的双向电流自适应功率放大器偏置电路,其特征在于,所述反馈电路包括第七电阻;所述第七电阻的两端为所述反馈电路的两端。
- 根据权利要求4所述的双向电流自适应功率放大器偏置电路,其特征在于,所述第一场效应晶体管为PMOSFET。
- 根据权利要求5所述的双向电流自适应功率放大器偏置电路,其特征在于,所述第二场效应晶体管为NMOSFET。
- 根据权利要求2所述的姿势偏置电路,其特征在于,所述正电源还连接第一电容的一端,所述第一电容的另一端接地。
- 根据权利要求1-9任一项所述的双向电流自适应功率放大器偏置电路,其特征在于,所述负电源还连接所述第二电容器的第一端,所述第二电容器的第二端接地。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720922849.3 | 2017-07-27 | ||
CN201720922849.3U CN207283503U (zh) | 2017-07-27 | 2017-07-27 | 双向电流自适应功率放大器偏置电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019019359A1 true WO2019019359A1 (zh) | 2019-01-31 |
Family
ID=61986413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/104249 WO2019019359A1 (zh) | 2017-07-27 | 2017-09-29 | 双向电流自适应功率放大器偏置电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN207283503U (zh) |
WO (1) | WO2019019359A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110118887A (zh) * | 2018-02-06 | 2019-08-13 | 株式会社东芝 | 电流检测电路 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1318899A (zh) * | 2000-03-29 | 2001-10-24 | 密克罗奇普技术公司 | 运算放大器的倒相保护 |
US20040004507A1 (en) * | 2002-06-25 | 2004-01-08 | Matsushita Electric Industrial Co., Ltd. | Offset control circuit |
CN1918784A (zh) * | 2004-02-17 | 2007-02-21 | 艾利森电话股份有限公司 | 动态偏置放大器 |
CN101387894A (zh) * | 2008-10-07 | 2009-03-18 | 深圳市矽普特科技有限公司 | 一种偏置电流产生电路及运算放大器 |
CN204836095U (zh) * | 2015-07-22 | 2015-12-02 | 成都瑞联电气股份有限公司 | 一种可以输出正负电压的运放扩流电路 |
-
2017
- 2017-07-27 CN CN201720922849.3U patent/CN207283503U/zh active Active
- 2017-09-29 WO PCT/CN2017/104249 patent/WO2019019359A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1318899A (zh) * | 2000-03-29 | 2001-10-24 | 密克罗奇普技术公司 | 运算放大器的倒相保护 |
US20040004507A1 (en) * | 2002-06-25 | 2004-01-08 | Matsushita Electric Industrial Co., Ltd. | Offset control circuit |
CN1918784A (zh) * | 2004-02-17 | 2007-02-21 | 艾利森电话股份有限公司 | 动态偏置放大器 |
CN101387894A (zh) * | 2008-10-07 | 2009-03-18 | 深圳市矽普特科技有限公司 | 一种偏置电流产生电路及运算放大器 |
CN204836095U (zh) * | 2015-07-22 | 2015-12-02 | 成都瑞联电气股份有限公司 | 一种可以输出正负电压的运放扩流电路 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110118887A (zh) * | 2018-02-06 | 2019-08-13 | 株式会社东芝 | 电流检测电路 |
CN110118887B (zh) * | 2018-02-06 | 2021-10-01 | 株式会社东芝 | 电流检测电路 |
Also Published As
Publication number | Publication date |
---|---|
CN207283503U (zh) | 2018-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI685732B (zh) | 電壓調節器裝置 | |
CN105700601B (zh) | 一种ldo线性稳压器 | |
CN103309384B (zh) | 具可调适米勒补偿的电压调节器 | |
CN109388173B (zh) | 电流补偿电路 | |
CN106575865A (zh) | 电压调节器的短路保护 | |
JP2008276477A (ja) | ボルテージレギュレータ | |
TWI657328B (zh) | 低壓降穩壓器及電源輸出裝置 | |
US7852154B2 (en) | High precision follower device with zero power, zero noise slew enhancement circuit | |
CN105786075A (zh) | 一种提高带隙基准电源抑制比的预稳压电路 | |
CN107370461A (zh) | 一种应用于跨阻放大器的补偿结构 | |
CN109546975B (zh) | 运算跨导放大器 | |
CN206627849U (zh) | 动态密勒补偿的cmos低压差线性稳压器及电子设备 | |
CN105720929B (zh) | 一种带隙自偏置的宽高频低噪声放大器 | |
WO2019019359A1 (zh) | 双向电流自适应功率放大器偏置电路 | |
WO2010111857A1 (zh) | 亚阈值集成电路中抗工艺涨落的方法和体电位调制电路 | |
TWI535196B (zh) | 放大器及其操作方法 | |
US20100026376A1 (en) | Bias circuit for a mos device | |
CN106249795A (zh) | 一种浮动输出的ldo电路 | |
CN106505953A (zh) | 运算放大器电路 | |
CN106168826A (zh) | 一种应用于无线充电控制芯片的可调带隙基准电压电路 | |
US7795954B2 (en) | Device for providing substantially constant current in response to varying voltage | |
CN210666510U (zh) | 一种缓冲近地电压的cmos缓冲器 | |
US10771016B2 (en) | Amplifier circuit with overshoot suppression | |
CN110389614A (zh) | 高效低压差稳压器 | |
US20140253087A1 (en) | Fixed voltage generating circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17919450 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17919450 Country of ref document: EP Kind code of ref document: A1 |