WO2019017144A1 - Compressor - Google Patents
Compressor Download PDFInfo
- Publication number
- WO2019017144A1 WO2019017144A1 PCT/JP2018/023644 JP2018023644W WO2019017144A1 WO 2019017144 A1 WO2019017144 A1 WO 2019017144A1 JP 2018023644 W JP2018023644 W JP 2018023644W WO 2019017144 A1 WO2019017144 A1 WO 2019017144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- space
- oil
- refrigerant gas
- separation
- diameter portion
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/16—Filtration; Moisture separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/026—Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/14—Lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/30—Casings or housings
Definitions
- the present invention relates to a compressor.
- Patent Document 1 discloses that the refrigerant guided to the separation chamber 11 is swirled in a cylindrical space in which the separation pipe 12a is disposed to separate the lubricating oil and discharge the separated lubricating oil to the oil storage chamber 15 ing.
- the oil separation chamber 20 and the oil reservoir 25 are formed as one space, and the refrigerant gas in which the oil is separated from the small holes 32 formed in the small diameter portion 29 of the oil separation cylinder 26 is an internal space 33. It is disclosed to lead to.
- the mechanism disclosed in Patent Document 1 is a mechanism provided with an oil storage chamber 15 for storing the lubricating oil separated separately from the separation chamber 11 for separating the lubricating oil from the refrigerant. Therefore, a sufficient space for providing two spaces is required, and the enlargement of the compressor can not be suppressed. Moreover, since it is the complicated shape which provided two space, a manufacturing cost will increase.
- the present invention has been made in view of such circumstances, and provides a compressor capable of reliably performing oil separation from refrigerant gas while suppressing increase in size of the device and increase in manufacturing cost.
- the purpose is to
- a compressor of the present invention adopts the following means.
- a compressor according to one aspect of the present invention includes: a housing forming a suction space for a refrigerant gas therein; a compression mechanism disposed in the housing; and compressing the refrigerant gas flowing into the suction space; And an oil separation space for separating oil from the refrigerant gas compressed by the compression mechanism and guiding the oil to a discharge pipe, and the oil separation space above the oil separation space in the gravity direction.
- the refrigerant gas compressed by the compression mechanism flows into the first space portion, and the space between the outer peripheral surface of the cylindrical member and the inner peripheral surface of the first space portion is about the axis.
- the oil contained in the refrigerant gas is separated from the refrigerant gas by centrifugal force during swirling, adheres to the inner peripheral surface of the first space, and is transmitted along the inner peripheral surface and is disposed in the second space located below in the direction of gravity. It is led to the circumference.
- the oil guided to the inner circumferential surface of the second space moves downward by gravity to form an oil sump below the second space.
- the refrigerant gas from which the oil is separated in the first space portion is led from the inlet formed in the small diameter portion of the cylindrical member to the internal space of the cylindrical member and further led to the discharge piping.
- a large diameter portion having an outer diameter larger than that of the small diameter portion is formed below the small diameter portion of the cylindrical member. Therefore, when the refrigerant gas swirling in the first space portion reaches the lower end of the small diameter portion, the distance between the inner peripheral surface of the first space portion and the outer peripheral surface of the large diameter portion is small. A large amount of introduction to the lower second space is suppressed. Therefore, it is suppressed that a large amount of refrigerant gas rolls up the oil accumulation below the 2nd space part.
- the oil is separated from the refrigerant gas in the first space above the oil separation space, and an oil reservoir is formed in the second space below the first space.
- oil can be reliably separated from the refrigerant gas.
- the large diameter portion is formed in a tapered shape in which the outer diameter gradually increases from the first outer diameter to the second outer diameter from the upper side to the lower side in the gravity direction. It may be In this way, it is possible to appropriately prevent the refrigerant gas from being guided to the second space while circulating the swirling flow of the refrigerant gas led to the large diameter portion without disturbance.
- the refrigerant gas compressed by the compression mechanism flows in from above the small diameter portion, and the inlet is formed at the lower end of the small diameter portion in the gravity direction. It is also good. In this manner, the swirling flow of the refrigerant gas can be formed in a wide range from the upper side to the lower side of the first space portion, and the oil can be appropriately separated from the refrigerant gas.
- the compression mechanism arranges the pair of fixed scrolls and the orbiting scroll to face each other, and rotationally drives the orbiting scroll with respect to the stationary scroll to rotate the refrigerant gas It may be a mechanism for compressing the In this way, in the scroll compressor, the oil can be reliably separated from the refrigerant gas while suppressing the increase in size of the device and the increase in manufacturing cost.
- the present invention it is possible to provide a compressor capable of reliably performing oil separation from a refrigerant gas while suppressing an increase in size of the device and an increase in manufacturing cost.
- FIG. 1 It is a longitudinal section of a scroll compressor concerning one embodiment of the present invention. It is AA arrow sectional drawing of a scroll compressor shown in FIG. It is the elements on larger scale of the oil separation space part of the rear housing shown in FIG. It is the elements on larger scale which show the modification of the oil separation space part of the rear housing shown in FIG. It is the side view which looked at the rear housing shown in FIG. 1 from the compression mechanism side.
- FIG. 1 shows a longitudinal sectional view of a scroll compressor according to an embodiment of the present invention
- FIG. 2 shows a sectional view taken along the line AA of FIG.
- the scroll compressor 1 includes a cylindrical housing 2 forming an outer shell, a compression mechanism 13 housed inside the housing 2, and oil formed in the housing 2.
- a separation space So and a separation cylinder (cylindrical member) 30 disposed above the oil separation space So are provided.
- the housing 2 has a front housing 3 and a rear housing 4. The front housing 3 and the rear housing 4 are fastened by fastening bolts (not shown) so as to form a suction space Ss of the refrigerant gas inside.
- crankshaft 5 On the front housing 3 side inside the housing 2, a crankshaft 5 is rotatably supported around an axis X1 via a main bearing 6 and a sub bearing (not shown). One end side (left side in FIG. 1) of the crankshaft 5 penetrates the front housing 3 and protrudes to the left side of FIG. 1, and the electromagnetic clutch 7 and the pulley 8 are provided at the protruding portion. Power is input to the pulley 8 from a drive source such as an engine via a drive belt (not shown). A mechanical seal or lip seal is provided between the main bearing 6 and the sub-bearing to seal between the inside of the housing 2 and the atmosphere.
- crank pin 9 On the other end side (right side in FIG. 1) of the crankshaft 5, a crank pin 9 whose center axis is offset by a predetermined dimension with respect to the axis X1 is integrally provided.
- the crank pin 9 is connected to an orbiting scroll 15 described later via a drive bush 10 and a drive bearing 11.
- the orbiting scroll 15 pivots around the axis X1 by transmitting the driving force with which the crankshaft 5 rotates around the axis X1 via the crank pin 9.
- the drive bush 10 is integrally formed with a balance weight 12 for removing an unbalanced load generated when the orbiting scroll 15 pivots about the axis X1.
- the balance weight 12 pivots about the axis X1 together with the orbiting scroll 15.
- a driven crank mechanism (not shown) is provided between the drive bush 10 and the crankpin 9 to make the turning radius of the turning scroll 15 variable.
- a compression mechanism 13 constituted by a pair of fixed scroll 14 and orbiting scroll 15 is incorporated.
- the compression mechanism 13 is a mechanism that compresses the refrigerant gas flowing into the suction space Ss and discharges the compressed refrigerant gas to the discharge space Sd.
- the fixed scroll 14 is composed of an end plate 14A and a spiral wrap 14B erected from the end plate 14A.
- the orbiting scroll 15 is composed of an end plate 15A and a spiral wrap 15B erected from the end plate 15A.
- the fixed scroll 14 and the orbiting scroll 15 are provided with step portions 14C, 15C and 14D, 15D at predetermined positions along the spiral direction of the tooth crests and tooth bottoms of the spiral wraps 14B, 15B as shown in FIG. It is supposed to be configured.
- the tooth tip surface on the outer peripheral side in the direction of the pivot axis is high and the tooth tip surface on the inner peripheral side is low on the tooth tip side with the step portions 14C, 15C and 14D, 15D as boundaries.
- the tooth base on the outer peripheral side in the direction of the pivot axis is low, and the tooth base on the inner peripheral side is high.
- the wrap height on the outer peripheral side is higher than the wrap height on the inner peripheral side.
- the fixed scroll 14 and the orbiting scroll 15 are disposed in such a manner that the central axes of the fixed scroll 14 and the orbiting scroll 15 are displaced by the distance of the orbiting radius of the orbiting scroll 15 and the spiral wraps 14B and 15B face each other.
- the fixed scroll 14 and the orbiting scroll 15 mesh the spiral wraps 14B and 15B by shifting the phase of the spiral wraps 14B and 15B 180 degrees so that a slight clearance (tens of tens) is obtained between the tip and bottom surfaces of the spiral wraps 14B and 15B. To several hundred microns).
- a pair of suction volumes (compression chambers) 16 formed by the end plates 14A, 15A and the spiral wraps 14B, 15B between the fixed scroll 14 and the orbiting scroll 15 is 180 degrees with respect to the central axis. It is formed by phase difference.
- the height of the spiral wraps 14B and 15B is higher than the height on the inner peripheral side on the outer peripheral side, and the refrigerant gas is compressed in both the circumferential direction and height direction of the spiral wraps 14B and 15B.
- the compression mechanism 13 is capable of three-dimensional compression. Although the compression mechanism 13 is provided with the step portions 14C, 15C and 14D, 15D, it may be a compression mechanism having no step portion.
- the fixed scroll 14 is fixed to the inner surface of the rear housing 4 via a fastening bolt (not shown).
- a crank pin 9 provided on one end side of the crankshaft 5 is connected via a drive bush 10 and a drive bearing 11 to a bearing boss provided on the back of the end plate 15A.
- the orbiting scroll 15 has a back surface of the end plate 15A supported by the thrust bearing surface 3A of the front housing 3 via a rotation preventing mechanism (not shown) provided between the thrust bearing surface 3A and the back surface of the end plate 15A. The rotation is driven to revolve around the fixed scroll 14 while rotation is prevented.
- a discharge port 17 for discharging the refrigerant gas compressed by the compression mechanism 13 is formed at a central portion of the end plate 14 ⁇ / b> A.
- a discharge reed valve 19 is installed at the discharge port 17 via a retainer 18.
- a seal member (not shown) is disposed between the rear surface on the outer peripheral side of the end plate 14A of the fixed scroll 14 and the inner surface of the rear housing 4. Between the rear surface of the end plate 14A and the inner surface of the rear housing 4, a discharge space Sd divided from the suction space Ss of the housing 2 is formed. The high temperature / high pressure refrigerant gas compressed by the compression mechanism 13 is discharged to the discharge space Sd via the discharge port 17.
- the suction space Ss in the housing 2 communicates with the suction port 20 provided in the upper portion of the front housing 3.
- the low temperature low pressure refrigerant gas is supplied to the suction port 20 from the refrigeration cycle side.
- the low-temperature low-pressure refrigerant gas supplied to the suction space Ss is drawn into two suction volumes (compression chambers) 16 formed with a phase difference of 180 degrees with the fixed scroll 14 by the turning drive of the turning scroll 15. It is compressed.
- the low temperature refrigerant gas sucked into the suction space Ss from the suction port 20 is sucked into the suction volume (compression chamber) 16 on the side near the suction port 20 as shown by the arrow a. Be done.
- the low temperature refrigerant gas sucked from the suction port 20 into the suction space Ss is sucked into the suction volume (compression chamber) 16 on the side far from the suction port 20 as shown by the arrow b.
- the refrigerant gas sucked into the suction volume 16 is compressed and led from the discharge port 17 to the discharge space Sd.
- FIG. 1 is a partially enlarged view of the oil separation space So of the rear housing 4 shown in FIG.
- FIG. 4 is a side view of the rear housing 4 shown in FIG. 1 as viewed from the compression mechanism 13 side.
- an oil separation space So is formed in the rear housing 4 to separate oil from the refrigerant gas compressed by the compression mechanism 13 and guide the oil to the discharge pipe 40.
- the oil separation space So is a space having a circular cross-sectional view in the horizontal direction, and is formed along an axis X2 extending in the vertical direction.
- the diameter of the cross section in the horizontal direction of the oil separation space So is a constant first inner diameter Di1 at any position in the vertical direction. Therefore, the oil separation space So can be formed by a relatively simple operation of forming a hole of a predetermined first inner diameter Di1 along the axis X2 after the rear housing 4 is manufactured by casting.
- a separation cylinder 30 is disposed along an axis X2 extending in the vertical direction.
- the separation cylinder 30 is a cylindrical member formed so as to have a circular outer diameter and an inner diameter in a horizontal cross section.
- the separation cylinder 30 has a small diameter portion 31 having a first outer diameter Do1, and a large diameter formed below the small diameter portion 31 and having a second outer diameter Do2 larger than the first outer diameter Do1. It has a portion 32, an inlet 33 formed in the small diameter portion 31 for guiding the refrigerant gas to the internal space Si of the separation cylinder 30, and a flange 34 for sealing the opening at the upper end of the oil separation space So.
- the large diameter portion 32 is formed in a tapered shape in which the outer diameter gradually increases from the first outer diameter Do1 to the second outer diameter Do2 from the upper side to the lower side in the vertical direction.
- the inlets 33 are formed at a plurality of locations around the axis X2 (for example, 2 locations spaced 180 degrees around the axis X2, or 4 locations spaced 90 degrees around the axis X2) .
- the flange portion 34 is formed with a recess 34 a into which the tip portion 40 a of the discharge pipe 40 for transporting the refrigerant gas guided from the internal space Si of the separation cylinder 30 is inserted.
- a through hole 34 b is formed in the flange portion 34, and a through hole 41 is formed in the discharge pipe 40.
- a fastening hole 21 is formed in the rear housing 4. The discharge piping 40 and the flange portion 34 of the separation cylinder 30 are fixed to the rear housing 4 by fastening fastening bolts (not shown) inserted into the through holes 34 b and the through holes 41 to the fastening holes 21.
- the front end portion 40a of the discharge pipe 40 is not directly inserted into the oil separation space So, but is formed in the flange portion 34 of the separation cylinder 30 inserted into the oil separation space So. Are inserted into the recess 34a. Therefore, for example, the inner diameter of the oil separation space So can be increased without changing the shape of the distal end portion 40 a of the discharge pipe 40.
- the inner diameter of the oil separation space So is set to a second inner diameter Di2 larger than the first inner diameter Di1 shown in FIG. 3 without changing the shape of the tip portion 40a of the discharge piping 40. be able to.
- the shape of the flange portion 34A and the recess 34Aa of the separation cylinder 30A is set according to the second inner diameter Di2 of the oil separation space So, without changing the shape of the tip portion 40a of the discharge piping 40.
- the inner diameter of the oil separation space So is increased.
- the oil separation space So includes a separation portion (first space portion) So1 in which the small diameter portion 31 and the large diameter portion 32 are disposed, and oil storage disposed below the separation portion So1 in the vertical direction. And a part (second space part) So2. As shown in FIG. 3, the first inner diameter Di1 of the separation portion So1 is larger than the second outer diameter Do2 of the large diameter portion 32.
- the oil contained in the refrigerant gas is separated from the refrigerant gas by the centrifugal force when the refrigerant gas turns into the swirling flow Fs and swirls the separation part So1.
- the oil separated from the refrigerant gas adheres to the inner peripheral surface of the separation portion So1, and is guided along the inner peripheral surface to the inner peripheral surface of the lower oil storage portion So2.
- the oil guided to the inner circumferential surface of the oil storage portion So2 moves downward by gravity, and forms an oil reservoir Os below the oil storage portion So2.
- the position at which the inlet 22 for flowing the refrigerant gas from the discharge space Sd into the oil separation space So is located is closer to the inner circumferential surface of the oil separation space So than the axis X2. There is. This is in order to form a swirling flow Fs in which the refrigerant gas flowing into the oil separation space So swirls around the axis X2.
- a swirling flow Fs in which the refrigerant gas swirls around the axis X2 is obtained.
- the values of the first inner diameter Di1 and the second outer diameter Do2 described above are desirably determined so that the value of Do2 / Di1 is 0.8 or more and 0.9 or less.
- the value of Do2 / Di1 is 0.8 or more, the gap between the outer peripheral surface of the large diameter portion 32 and the inner peripheral surface of the separation portion So1 is narrowed, and the refrigerant gas is separated from the separation portion So1 to the oil storage portion So2. A large amount of swirling flow can be suppressed.
- a gap between the outer peripheral surface of the large diameter portion 32 and the inner peripheral surface of the separation portion So1 is secured at least a certain amount. It is possible to promote the inflow of oil separated from the refrigerant gas.
- the refrigerant gas compressed by the compression mechanism 13 flows into the separation portion So1, and the space between the outer peripheral surface of the separation cylinder 30 and the inner peripheral surface of the separation portion So1 is It turns around an axis X2 along the vertical direction.
- the oil contained in the refrigerant gas is separated from the refrigerant gas by centrifugal force during swirling, adheres to the inner peripheral surface of the separation portion So1, and is guided along the inner peripheral surface to the inner peripheral surface of the lower oil storage portion So2.
- the oil guided to the inner circumferential surface of the oil storage portion So2 moves downward by gravity, and forms an oil reservoir Os below the oil storage portion So2.
- the refrigerant gas from which the oil is separated in the separation part So1 is introduced from the inlet 33 formed in the small diameter part 31 of the separation cylinder 30 to the internal space Si of the separation cylinder 30, and is further introduced to the discharge piping 40.
- a large diameter portion 32 having an outer diameter larger than that of the small diameter portion 31 is formed below the small diameter portion 31 of the separation cylinder 30, and the distance between the inner peripheral surface of the separation portion So1 and the outer peripheral surface of the large diameter portion 32 is small. It is suppressed that it is led to the lower oil storage part So2. Therefore, it is suppressed from rolling up oil accumulation Os below the oil storage part So2.
- the oil is separated from the refrigerant gas in the separation part So1 above the oil separation space So, and the oil reservoir Os is formed in the oil storage part So2 below the separation part So1.
- the oil reservoir Os is formed in the oil storage part So2 below the separation part So1.
- the large diameter portion 32 is formed in a tapered shape in which the outer diameter gradually increases from the first outer diameter Do1 to the second outer diameter Do2 from the upper side to the lower side in the vertical direction. There is. By doing this, it is possible to appropriately prevent the refrigerant gas from being guided to the oil storage portion So2 while circulating the swirling flow of the refrigerant gas led to the large diameter portion 32 without disturbing it.
- the shape of the large diameter portion 32 does not have to be a tapered shape, and may be formed, for example, in a cylindrical shape having a constant second outer diameter Do2 along the vertical direction.
- the refrigerant gas compressed by the compression mechanism 13 flows in from above the small diameter portion 31, and the inlet 33 is formed at the lower end of the small diameter portion 31 in the vertical direction.
- the swirling flow Fs of the refrigerant gas can be formed in a wide range from the upper side to the lower side of the separation portion So1, and oil can be appropriately separated from the refrigerant gas.
- a scroll compression mechanism is used as the compression mechanism 13, but another compression mechanism may be used.
- the axis X2 extends in the vertical direction, and the oil separation space So and the separation cylinder 30 are disposed along the axis X2, but other modes may be employed.
- the axis X2 may be an axis extending in a direction inclined by a predetermined angle (for example, an angle of 13 ° or more) from the horizontal direction.
- the separation cylinder 30 is disposed along the axis X2 above the direction of gravity of the oil separation space So. Further, the large diameter portion 32 of the separation cylinder 30 is formed below the small diameter portion 31 in the gravity direction.
- the oil contained in the refrigerant gas forms an oil reservoir Os below the oil storage portion So2 as long as it extends in a direction inclined from the horizontal direction. That is, the oil contained in the refrigerant gas is separated from the refrigerant gas by the centrifugal force during swirling, adheres to the inner peripheral surface of the separation portion So1, and is transmitted to the inner peripheral surface of the lower oil storage portion So2 along the inner peripheral surface. He moves below the oil reservoir So2 by gravity.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
Abstract
Provided is a compressor which enables reliable separation of oil from a refrigerant gas while suppressing increases in the size of equipment and manufacturing costs. This compressor (1) is provided with: a housing (2); a compression mechanism (13) which compresses a refrigerant gas flowing into an intake space (Ss); an oil separation space (So) which separates oil from the refrigerant gas compressed by the compression mechanism (13) and guides the oil to a discharge pipe (40); and a separation cylinder (30) which is disposed along an axial line (X2) of the oil separation space (So) over the oil separation space (So) in the gravitational direction. The separation cylinder (30) has a small-diameter section, and a large-diameter section formed under the small-diameter section in the gravitational direction; the oil separation space (So) has a separation section in which the small-diameter section and the large-diameter section are disposed, and which has a first inner diameter larger than a second outer diameter of the large-diameter section, and an oil storage section disposed under the separation section; and the refrigerant gas compressed by the compression mechanism (13) flows into the separation section.
Description
本発明は、圧縮機に関するものである。
The present invention relates to a compressor.
従来、車両用空気調和機等が備える圧縮機において、冷媒に含まれる潤滑油を圧縮機以外に吐出しないようにするために、油分離機構を設けることが知られている(例えば、特許文献1,2参照。)。
特許文献1には、分離室11へ導かれた冷媒を分離管12aが配置される円筒空間内で旋回させて潤滑油を分離し、分離した潤滑油を貯油室15へ排出することが開示されている。
特許文献2には、オイル分離室20とオイル溜まり25とを1つの空間として形成し、オイル分離筒26の小径部29に形成された小孔32からオイルが分離された冷媒ガスを内部空間33へ導くことが開示されている。 Conventionally, in a compressor provided in a vehicle air conditioner or the like, it is known to provide an oil separation mechanism so as not to discharge lubricating oil contained in a refrigerant to other than the compressor (for example, Patent Document 1) , 2)).
Patent Document 1 discloses that the refrigerant guided to the separation chamber 11 is swirled in a cylindrical space in which the separation pipe 12a is disposed to separate the lubricating oil and discharge the separated lubricating oil to the oil storage chamber 15 ing.
InPatent Document 2, the oil separation chamber 20 and the oil reservoir 25 are formed as one space, and the refrigerant gas in which the oil is separated from the small holes 32 formed in the small diameter portion 29 of the oil separation cylinder 26 is an internal space 33. It is disclosed to lead to.
特許文献1には、分離室11へ導かれた冷媒を分離管12aが配置される円筒空間内で旋回させて潤滑油を分離し、分離した潤滑油を貯油室15へ排出することが開示されている。
特許文献2には、オイル分離室20とオイル溜まり25とを1つの空間として形成し、オイル分離筒26の小径部29に形成された小孔32からオイルが分離された冷媒ガスを内部空間33へ導くことが開示されている。 Conventionally, in a compressor provided in a vehicle air conditioner or the like, it is known to provide an oil separation mechanism so as not to discharge lubricating oil contained in a refrigerant to other than the compressor (for example, Patent Document 1) , 2)).
In
しかしながら、特許文献1に開示される機構は、冷媒から潤滑油を分離する分離室11とは別に分離した潤滑油を貯める貯油室15を設けた機構である。そのため、2つの空間を設けるための十分なスペースが必要であり、圧縮機の大型化を抑制することができない。また、2つの空間を設けた複雑な形状であるため、製造コストが増大してしまう。
However, the mechanism disclosed in Patent Document 1 is a mechanism provided with an oil storage chamber 15 for storing the lubricating oil separated separately from the separation chamber 11 for separating the lubricating oil from the refrigerant. Therefore, a sufficient space for providing two spaces is required, and the enlargement of the compressor can not be suppressed. Moreover, since it is the complicated shape which provided two space, a manufacturing cost will increase.
一方、特許文献2に開示される機構は、オイル分離室20とオイル溜まり25とが1つの空間として形成されているため、圧縮機の小型化を実現することができる。しかしながら、特許文献1に開示される機構は、オイル分離筒26の下方のオイル溜まり25側に小径部29が形成されており、その小径部29に冷媒を内部空間33へ導く小孔32が形成されている。そのため、オイル分離筒26の下方のオイル溜まり25から冷媒ガスの旋回流によりオイルが巻き上げられ、オイルが小孔32から内部空間33へ巻き込まれ、冷媒ガスからの油の分離が不十分となってしまう可能性がある。
On the other hand, in the mechanism disclosed in Patent Document 2, since the oil separation chamber 20 and the oil reservoir 25 are formed as one space, downsizing of the compressor can be realized. However, in the mechanism disclosed in Patent Document 1, the small diameter portion 29 is formed on the side of the oil reservoir 25 below the oil separation cylinder 26, and the small holes 32 for guiding the refrigerant to the internal space 33 are formed in the small diameter portion 29. It is done. Therefore, the oil is wound up from the oil reservoir 25 below the oil separation cylinder 26 by the swirling flow of the refrigerant gas, and the oil is taken into the internal space 33 from the small holes 32 and the oil is not sufficiently separated from the refrigerant gas. There is a possibility of
本発明は、このような事情に鑑みてなされたものであって、装置の大型化および製造コストの増大を抑制しつつ、冷媒ガスからの油の分離を確実に行うことができる圧縮機を提供することを目的とする。
The present invention has been made in view of such circumstances, and provides a compressor capable of reliably performing oil separation from refrigerant gas while suppressing increase in size of the device and increase in manufacturing cost. The purpose is to
上記課題を解決するために、本発明の圧縮機は以下の手段を採用する。
本発明の一態様にかかる圧縮機は、内部に冷媒ガスの吸入空間を形成するハウジングと、前記ハウジング内に配置され、前記吸入空間に流入する前記冷媒ガスを圧縮する圧縮機構と、前記ハウジング内に重力方向に延びるように形成され、前記圧縮機構により圧縮された前記冷媒ガスから油を分離して吐出配管へ導く油分離空間と、前記油分離空間の前記重力方向の上方に前記油分離空間の軸線に沿って配置される円筒状部材と、を備え、前記円筒状部材が、第1外径を有する小径部と、前記小径部の前記重力方向の下方に形成され、前記第1外径よりも大きい第2外径を有する大径部と、前記小径部の下端から前記円筒状部材の内部空間へ前記冷媒ガスを導く導入口と、を有し、前記油分離空間が、前記小径部および前記大径部が配置され、前記第2外径よりも大きい第1内径を有する第1空間部と、前記第1空間部の前記重力方向の下方に配置される第2空間部と、を有し、前記圧縮機構により圧縮された前記冷媒ガスが前記第1空間部へ流入する。 In order to solve the above-mentioned subject, a compressor of the present invention adopts the following means.
A compressor according to one aspect of the present invention includes: a housing forming a suction space for a refrigerant gas therein; a compression mechanism disposed in the housing; and compressing the refrigerant gas flowing into the suction space; And an oil separation space for separating oil from the refrigerant gas compressed by the compression mechanism and guiding the oil to a discharge pipe, and the oil separation space above the oil separation space in the gravity direction. A cylindrical member disposed along an axis of the cylindrical member, the cylindrical member being formed at a small diameter portion having a first outer diameter, and below the gravity direction of the small diameter portion, the first outer diameter A large diameter portion having a second outer diameter larger than the first small diameter portion; and an introduction port for guiding the refrigerant gas from the lower end of the small diameter portion to the internal space of the cylindrical member; And the large diameter portion A first space portion having a first inner diameter larger than the second outer diameter, and a second space portion disposed below the first space portion in the direction of gravity, and compressed by the compression mechanism The refrigerant gas flows into the first space portion.
本発明の一態様にかかる圧縮機は、内部に冷媒ガスの吸入空間を形成するハウジングと、前記ハウジング内に配置され、前記吸入空間に流入する前記冷媒ガスを圧縮する圧縮機構と、前記ハウジング内に重力方向に延びるように形成され、前記圧縮機構により圧縮された前記冷媒ガスから油を分離して吐出配管へ導く油分離空間と、前記油分離空間の前記重力方向の上方に前記油分離空間の軸線に沿って配置される円筒状部材と、を備え、前記円筒状部材が、第1外径を有する小径部と、前記小径部の前記重力方向の下方に形成され、前記第1外径よりも大きい第2外径を有する大径部と、前記小径部の下端から前記円筒状部材の内部空間へ前記冷媒ガスを導く導入口と、を有し、前記油分離空間が、前記小径部および前記大径部が配置され、前記第2外径よりも大きい第1内径を有する第1空間部と、前記第1空間部の前記重力方向の下方に配置される第2空間部と、を有し、前記圧縮機構により圧縮された前記冷媒ガスが前記第1空間部へ流入する。 In order to solve the above-mentioned subject, a compressor of the present invention adopts the following means.
A compressor according to one aspect of the present invention includes: a housing forming a suction space for a refrigerant gas therein; a compression mechanism disposed in the housing; and compressing the refrigerant gas flowing into the suction space; And an oil separation space for separating oil from the refrigerant gas compressed by the compression mechanism and guiding the oil to a discharge pipe, and the oil separation space above the oil separation space in the gravity direction. A cylindrical member disposed along an axis of the cylindrical member, the cylindrical member being formed at a small diameter portion having a first outer diameter, and below the gravity direction of the small diameter portion, the first outer diameter A large diameter portion having a second outer diameter larger than the first small diameter portion; and an introduction port for guiding the refrigerant gas from the lower end of the small diameter portion to the internal space of the cylindrical member; And the large diameter portion A first space portion having a first inner diameter larger than the second outer diameter, and a second space portion disposed below the first space portion in the direction of gravity, and compressed by the compression mechanism The refrigerant gas flows into the first space portion.
本態様の圧縮機によれば、圧縮機構により圧縮された冷媒ガスは、第1空間部へ流入し、円筒状部材の外周面と第1空間部の内周面との間の空間を軸線回りに旋回する。冷媒ガスに含まれる油は、旋回中の遠心力によって冷媒ガスから分離して第1空間の内周面に付着し、内周面を伝わって重力方向の下方に配置される第2空間の内周面に導かれる。第2空間の内周面に導かれた油は重力によって下方へ移動し、第2空間の下方に油溜まりを形成する。
第1空間部で油が分離された冷媒ガスは、円筒状部材の小径部に形成された導入口から円筒状部材の内部空間に導かれ、さらに吐出配管へ導かれる。円筒状部材の小径部の下方には小径部よりも外径の大きい大径部が形成されている。そのため、第1空間部で旋回する冷媒ガスが小径部の下端に到達した場合、第1空間部の内周面と大径部の外周面との間隔が小さいため、冷媒ガスが大径部の下方の第2空間へ多量に導かれることが抑制される。よって、多量の冷媒ガスが第2空間部の下方の油溜まりを巻き上げることが抑制される。 According to the compressor of this aspect, the refrigerant gas compressed by the compression mechanism flows into the first space portion, and the space between the outer peripheral surface of the cylindrical member and the inner peripheral surface of the first space portion is about the axis. To turn. The oil contained in the refrigerant gas is separated from the refrigerant gas by centrifugal force during swirling, adheres to the inner peripheral surface of the first space, and is transmitted along the inner peripheral surface and is disposed in the second space located below in the direction of gravity. It is led to the circumference. The oil guided to the inner circumferential surface of the second space moves downward by gravity to form an oil sump below the second space.
The refrigerant gas from which the oil is separated in the first space portion is led from the inlet formed in the small diameter portion of the cylindrical member to the internal space of the cylindrical member and further led to the discharge piping. Below the small diameter portion of the cylindrical member, a large diameter portion having an outer diameter larger than that of the small diameter portion is formed. Therefore, when the refrigerant gas swirling in the first space portion reaches the lower end of the small diameter portion, the distance between the inner peripheral surface of the first space portion and the outer peripheral surface of the large diameter portion is small. A large amount of introduction to the lower second space is suppressed. Therefore, it is suppressed that a large amount of refrigerant gas rolls up the oil accumulation below the 2nd space part.
第1空間部で油が分離された冷媒ガスは、円筒状部材の小径部に形成された導入口から円筒状部材の内部空間に導かれ、さらに吐出配管へ導かれる。円筒状部材の小径部の下方には小径部よりも外径の大きい大径部が形成されている。そのため、第1空間部で旋回する冷媒ガスが小径部の下端に到達した場合、第1空間部の内周面と大径部の外周面との間隔が小さいため、冷媒ガスが大径部の下方の第2空間へ多量に導かれることが抑制される。よって、多量の冷媒ガスが第2空間部の下方の油溜まりを巻き上げることが抑制される。 According to the compressor of this aspect, the refrigerant gas compressed by the compression mechanism flows into the first space portion, and the space between the outer peripheral surface of the cylindrical member and the inner peripheral surface of the first space portion is about the axis. To turn. The oil contained in the refrigerant gas is separated from the refrigerant gas by centrifugal force during swirling, adheres to the inner peripheral surface of the first space, and is transmitted along the inner peripheral surface and is disposed in the second space located below in the direction of gravity. It is led to the circumference. The oil guided to the inner circumferential surface of the second space moves downward by gravity to form an oil sump below the second space.
The refrigerant gas from which the oil is separated in the first space portion is led from the inlet formed in the small diameter portion of the cylindrical member to the internal space of the cylindrical member and further led to the discharge piping. Below the small diameter portion of the cylindrical member, a large diameter portion having an outer diameter larger than that of the small diameter portion is formed. Therefore, when the refrigerant gas swirling in the first space portion reaches the lower end of the small diameter portion, the distance between the inner peripheral surface of the first space portion and the outer peripheral surface of the large diameter portion is small. A large amount of introduction to the lower second space is suppressed. Therefore, it is suppressed that a large amount of refrigerant gas rolls up the oil accumulation below the 2nd space part.
このように、本態様の圧縮機によれば、油分離空間の上方の第1空間部で冷媒ガスから油を分離し、第1空間部の下方の第2空間部に油溜まりを形成することができる。油分離のための空間と油溜まりのための空間を別途に設ける必要がないため、装置の大型化および製造コストの増大を抑制することができる。
また、第1空間部から第2空間部へ冷媒ガスの旋回流が多量に導かれて油溜まりを巻き上げることが抑制されるため、冷媒ガスからの油の分離を確実に行うことができる。 Thus, according to the compressor of the aspect, the oil is separated from the refrigerant gas in the first space above the oil separation space, and an oil reservoir is formed in the second space below the first space. Can. Since it is not necessary to separately provide a space for oil separation and a space for oil accumulation, it is possible to suppress an increase in size of the device and an increase in manufacturing cost.
In addition, since a large amount of the swirling flow of the refrigerant gas is guided from the first space portion to the second space portion to prevent the oil reservoir from being wound up, oil can be reliably separated from the refrigerant gas.
また、第1空間部から第2空間部へ冷媒ガスの旋回流が多量に導かれて油溜まりを巻き上げることが抑制されるため、冷媒ガスからの油の分離を確実に行うことができる。 Thus, according to the compressor of the aspect, the oil is separated from the refrigerant gas in the first space above the oil separation space, and an oil reservoir is formed in the second space below the first space. Can. Since it is not necessary to separately provide a space for oil separation and a space for oil accumulation, it is possible to suppress an increase in size of the device and an increase in manufacturing cost.
In addition, since a large amount of the swirling flow of the refrigerant gas is guided from the first space portion to the second space portion to prevent the oil reservoir from being wound up, oil can be reliably separated from the refrigerant gas.
本発明の一態様にかかる圧縮機においては、前記大径部が、重力方向の上方から下方に向けて前記第1外径から前記第2外径まで外径が漸次拡大するテーパ形状に形成されていてもよい。
このようにすることで、大径部へ導かれた冷媒ガスの旋回流を乱すことなく流通させつつ、冷媒ガスが第2空間部へ導かれることを適切に防止することができる。 In the compressor according to one aspect of the present invention, the large diameter portion is formed in a tapered shape in which the outer diameter gradually increases from the first outer diameter to the second outer diameter from the upper side to the lower side in the gravity direction. It may be
In this way, it is possible to appropriately prevent the refrigerant gas from being guided to the second space while circulating the swirling flow of the refrigerant gas led to the large diameter portion without disturbance.
このようにすることで、大径部へ導かれた冷媒ガスの旋回流を乱すことなく流通させつつ、冷媒ガスが第2空間部へ導かれることを適切に防止することができる。 In the compressor according to one aspect of the present invention, the large diameter portion is formed in a tapered shape in which the outer diameter gradually increases from the first outer diameter to the second outer diameter from the upper side to the lower side in the gravity direction. It may be
In this way, it is possible to appropriately prevent the refrigerant gas from being guided to the second space while circulating the swirling flow of the refrigerant gas led to the large diameter portion without disturbance.
本発明の一態様にかかる圧縮機においては、前記圧縮機構により圧縮された前記冷媒ガスが前記小径部の上方から流入し、前記導入口が、前記小径部の重力方向の下端に形成されていてもよい。
このようにすることで、第1空間部の上方から下方に至るまでの広範な範囲において冷媒ガスの旋回流を形成し、冷媒ガスから油を適切に分離することができる。 In the compressor according to one aspect of the present invention, the refrigerant gas compressed by the compression mechanism flows in from above the small diameter portion, and the inlet is formed at the lower end of the small diameter portion in the gravity direction. It is also good.
In this manner, the swirling flow of the refrigerant gas can be formed in a wide range from the upper side to the lower side of the first space portion, and the oil can be appropriately separated from the refrigerant gas.
このようにすることで、第1空間部の上方から下方に至るまでの広範な範囲において冷媒ガスの旋回流を形成し、冷媒ガスから油を適切に分離することができる。 In the compressor according to one aspect of the present invention, the refrigerant gas compressed by the compression mechanism flows in from above the small diameter portion, and the inlet is formed at the lower end of the small diameter portion in the gravity direction. It is also good.
In this manner, the swirling flow of the refrigerant gas can be formed in a wide range from the upper side to the lower side of the first space portion, and the oil can be appropriately separated from the refrigerant gas.
本発明の一態様にかかる圧縮機においては、前記圧縮機構が、一対の固定スクロールおよび旋回スクロールを対向させて配置し、前記旋回スクロールを前記固定スクロールに対して公転旋回駆動することにより前記冷媒ガスを圧縮する機構であってもよい。
このようにすることで、スクロール圧縮機において、装置の大型化および製造コストの増大を抑制しつつ、冷媒ガスからの油の分離を確実に行うことができる。 In the compressor according to one aspect of the present invention, the compression mechanism arranges the pair of fixed scrolls and the orbiting scroll to face each other, and rotationally drives the orbiting scroll with respect to the stationary scroll to rotate the refrigerant gas It may be a mechanism for compressing the
In this way, in the scroll compressor, the oil can be reliably separated from the refrigerant gas while suppressing the increase in size of the device and the increase in manufacturing cost.
このようにすることで、スクロール圧縮機において、装置の大型化および製造コストの増大を抑制しつつ、冷媒ガスからの油の分離を確実に行うことができる。 In the compressor according to one aspect of the present invention, the compression mechanism arranges the pair of fixed scrolls and the orbiting scroll to face each other, and rotationally drives the orbiting scroll with respect to the stationary scroll to rotate the refrigerant gas It may be a mechanism for compressing the
In this way, in the scroll compressor, the oil can be reliably separated from the refrigerant gas while suppressing the increase in size of the device and the increase in manufacturing cost.
本発明によれば、装置の大型化および製造コストの増大を抑制しつつ、冷媒ガスからの油の分離を確実に行うことができる圧縮機を提供することができる。
According to the present invention, it is possible to provide a compressor capable of reliably performing oil separation from a refrigerant gas while suppressing an increase in size of the device and an increase in manufacturing cost.
以下に、本発明に係る圧縮機の一実施形態について、図面を参照して説明する。
図1には、本発明の一実施形態にかかるスクロール圧縮機の縦断面図が示され、図2には、そのA-A矢視断面図が示されている。 Hereinafter, an embodiment of a compressor according to the present invention will be described with reference to the drawings.
FIG. 1 shows a longitudinal sectional view of a scroll compressor according to an embodiment of the present invention, and FIG. 2 shows a sectional view taken along the line AA of FIG.
図1には、本発明の一実施形態にかかるスクロール圧縮機の縦断面図が示され、図2には、そのA-A矢視断面図が示されている。 Hereinafter, an embodiment of a compressor according to the present invention will be described with reference to the drawings.
FIG. 1 shows a longitudinal sectional view of a scroll compressor according to an embodiment of the present invention, and FIG. 2 shows a sectional view taken along the line AA of FIG.
図1に示すように、本実施形態のスクロール圧縮機1は、外殻を構成する円筒状のハウジング2と、ハウジング2の内部に収容される圧縮機構13と、ハウジング2内に形成される油分離空間Soと、油分離空間Soの上方に配置される分離筒(円筒状部材)30を備える。
ハウジング2は、フロントハウジング3とリアハウジング4とを有する。フロントハウジング3とリアハウジング4とは、内部に冷媒ガスの吸入空間Ssを形成するように締結ボルト(図示略)によって締結されている。 As shown in FIG. 1, thescroll compressor 1 according to the present embodiment includes a cylindrical housing 2 forming an outer shell, a compression mechanism 13 housed inside the housing 2, and oil formed in the housing 2. A separation space So and a separation cylinder (cylindrical member) 30 disposed above the oil separation space So are provided.
Thehousing 2 has a front housing 3 and a rear housing 4. The front housing 3 and the rear housing 4 are fastened by fastening bolts (not shown) so as to form a suction space Ss of the refrigerant gas inside.
ハウジング2は、フロントハウジング3とリアハウジング4とを有する。フロントハウジング3とリアハウジング4とは、内部に冷媒ガスの吸入空間Ssを形成するように締結ボルト(図示略)によって締結されている。 As shown in FIG. 1, the
The
ハウジング2の内部のフロントハウジング3側には、クランク軸5がメイン軸受6およびサブ軸受(図示略)を介して軸線X1回りに回転自在に支持されている。クランク軸5の一端側(図1において左側)は、フロントハウジング3を貫通して図1の左側に突出しており、その突出部位には、電磁クラッチ7およびプーリ8が設けられている。プーリ8には、エンジン等の駆動源から駆動ベルト(図示略)を介して動力が入力される。メイン軸受6とサブ軸受との間には、メカニカルシールまたはリップシールが設置され、ハウジング2内と大気間がシールされている。
On the front housing 3 side inside the housing 2, a crankshaft 5 is rotatably supported around an axis X1 via a main bearing 6 and a sub bearing (not shown). One end side (left side in FIG. 1) of the crankshaft 5 penetrates the front housing 3 and protrudes to the left side of FIG. 1, and the electromagnetic clutch 7 and the pulley 8 are provided at the protruding portion. Power is input to the pulley 8 from a drive source such as an engine via a drive belt (not shown). A mechanical seal or lip seal is provided between the main bearing 6 and the sub-bearing to seal between the inside of the housing 2 and the atmosphere.
クランク軸5の他端側(図1において右側)には、軸線X1に対して所定寸法だけ中心軸が偏心したクランクピン9が一体に設けられている。このクランクピン9は、ドライブブッシュ10およびドライブ軸受11を介して後述する旋回スクロール15に連結されている。旋回スクロール15は、クランク軸5が軸線X1回りに回転する駆動力がクランクピン9を介して伝達されることにより、軸線X1回りに旋回する。
On the other end side (right side in FIG. 1) of the crankshaft 5, a crank pin 9 whose center axis is offset by a predetermined dimension with respect to the axis X1 is integrally provided. The crank pin 9 is connected to an orbiting scroll 15 described later via a drive bush 10 and a drive bearing 11. The orbiting scroll 15 pivots around the axis X1 by transmitting the driving force with which the crankshaft 5 rotates around the axis X1 via the crank pin 9.
ドライブブッシュ10には、旋回スクロール15が軸線X1回りに旋回することにより発生するアンバランス荷重を除去するためのバランスウェイト12が一体に形成されている。バランスウェイト12は、旋回スクロール15と共に軸線X1回りに旋回する。ドライブブッシュ10とクランクピン9との間には、旋回スクロール15の旋回半径を可変とする従動クランク機構(図示略)が設けられている。
The drive bush 10 is integrally formed with a balance weight 12 for removing an unbalanced load generated when the orbiting scroll 15 pivots about the axis X1. The balance weight 12 pivots about the axis X1 together with the orbiting scroll 15. A driven crank mechanism (not shown) is provided between the drive bush 10 and the crankpin 9 to make the turning radius of the turning scroll 15 variable.
ハウジング2の内部には、一対の固定スクロール14および旋回スクロール15によって構成される圧縮機構13が組み込まれている。圧縮機構13は、吸入空間Ssに流入する冷媒ガスを圧縮し、圧縮した冷媒ガスを吐出空間Sdへ吐出する機構である。固定スクロール14は、端板14Aと端板14Aから立設された渦巻き状ラップ14Bとから構成されている。旋回スクロール15は、端板15Aと端板15Aから立設された渦巻き状ラップ15Bとから構成されている。
Inside the housing 2, a compression mechanism 13 constituted by a pair of fixed scroll 14 and orbiting scroll 15 is incorporated. The compression mechanism 13 is a mechanism that compresses the refrigerant gas flowing into the suction space Ss and discharges the compressed refrigerant gas to the discharge space Sd. The fixed scroll 14 is composed of an end plate 14A and a spiral wrap 14B erected from the end plate 14A. The orbiting scroll 15 is composed of an end plate 15A and a spiral wrap 15B erected from the end plate 15A.
固定スクロール14および旋回スクロール15は、図2に示すように、渦巻き状ラップ14B,15Bの歯先面および歯底面の渦巻き方向に沿う所定位置に、段部14C,15Cおよび14D,15Dを備えた構成とされている。段部14C,15Cおよび14D,15Dを境に、歯先面側では、旋回軸線方向の外周側の歯先面が高く、内周側の歯先面が低くなっている。また、歯底面側では、旋回軸線方向の外周側の歯底面が低く、内周側の歯底面が高くなっている。これによって、渦巻き状ラップ14B,15Bは、外周側におけるラップ高さが内周側のラップ高さよりも高くなっている。
The fixed scroll 14 and the orbiting scroll 15 are provided with step portions 14C, 15C and 14D, 15D at predetermined positions along the spiral direction of the tooth crests and tooth bottoms of the spiral wraps 14B, 15B as shown in FIG. It is supposed to be configured. The tooth tip surface on the outer peripheral side in the direction of the pivot axis is high and the tooth tip surface on the inner peripheral side is low on the tooth tip side with the step portions 14C, 15C and 14D, 15D as boundaries. Further, on the tooth base side, the tooth base on the outer peripheral side in the direction of the pivot axis is low, and the tooth base on the inner peripheral side is high. Thus, in the spiral wraps 14B and 15B, the wrap height on the outer peripheral side is higher than the wrap height on the inner peripheral side.
固定スクロール14および旋回スクロール15は、互いの中心軸を旋回スクロール15の旋回半径の距離ずらし、渦巻き状ラップ14B,15B同士を対向させた状態で配置される。また、固定スクロール14および旋回スクロール15は、渦巻き状ラップ14B,15Bの位相を180度ずらして噛み合せし、渦巻き状ラップ14B,15Bの歯先面と歯底面間に常温で僅かなクリアランス(数十~数百ミクロン)を有するように組み付けられている。これによって、固定スクロール14と旋回スクロール15との間に、端板14A,15Aと渦巻き状ラップ14B,15Bとにより形成される一対の吸入容積(圧縮室)16が中心軸に対して180度の位相差で形成されるようになっている。
The fixed scroll 14 and the orbiting scroll 15 are disposed in such a manner that the central axes of the fixed scroll 14 and the orbiting scroll 15 are displaced by the distance of the orbiting radius of the orbiting scroll 15 and the spiral wraps 14B and 15B face each other. The fixed scroll 14 and the orbiting scroll 15 mesh the spiral wraps 14B and 15B by shifting the phase of the spiral wraps 14B and 15B 180 degrees so that a slight clearance (tens of tens) is obtained between the tip and bottom surfaces of the spiral wraps 14B and 15B. To several hundred microns). As a result, a pair of suction volumes (compression chambers) 16 formed by the end plates 14A, 15A and the spiral wraps 14B, 15B between the fixed scroll 14 and the orbiting scroll 15 is 180 degrees with respect to the central axis. It is formed by phase difference.
吸入容積16は、渦巻き状ラップ14B,15Bの高さが外周側において内周側の高さよりも高くされており、渦巻き状ラップ14B,15Bの周方向および高さ方向の双方で冷媒ガスを圧縮する三次元圧縮が可能な圧縮機構13を構成するものである。なお、圧縮機構13は、段部14C,15Cおよび14D,15Dを備えたものとしたが、段部を有しない圧縮機構であってもよい。
In the suction volume 16, the height of the spiral wraps 14B and 15B is higher than the height on the inner peripheral side on the outer peripheral side, and the refrigerant gas is compressed in both the circumferential direction and height direction of the spiral wraps 14B and 15B. The compression mechanism 13 is capable of three-dimensional compression. Although the compression mechanism 13 is provided with the step portions 14C, 15C and 14D, 15D, it may be a compression mechanism having no step portion.
固定スクロール14は、リアハウジング4の内面に締結ボルト(図示略)を介して固定されている。旋回スクロール15は、端板15Aの背面に設けられている軸受ボス部に対して、クランク軸5の一端側に設けられているクランクピン9がドライブブッシュ10およびドライブ軸受11を介して連結されている。また、旋回スクロール15は、フロントハウジング3のスラスト軸受面3Aに端板15Aの背面が支持され、スラスト軸受面3Aと端板15Aの背面との間に設けられる自転阻止機構(図示略)を介して、自転が阻止されながら固定スクロール14の周りに公転旋回駆動される。
The fixed scroll 14 is fixed to the inner surface of the rear housing 4 via a fastening bolt (not shown). In the orbiting scroll 15, a crank pin 9 provided on one end side of the crankshaft 5 is connected via a drive bush 10 and a drive bearing 11 to a bearing boss provided on the back of the end plate 15A. There is. Further, the orbiting scroll 15 has a back surface of the end plate 15A supported by the thrust bearing surface 3A of the front housing 3 via a rotation preventing mechanism (not shown) provided between the thrust bearing surface 3A and the back surface of the end plate 15A. The rotation is driven to revolve around the fixed scroll 14 while rotation is prevented.
固定スクロール14には、端板14Aの中央部位に、圧縮機構13により圧縮された冷媒ガスを吐出する吐出口17が形成されている。吐出口17には、リテーナ18を介して吐出リード弁19が設置されている。また、固定スクロール14の端板14Aの外周側の背面とリアハウジング4の内面との間にシール部材(図示略)が配置されている。端板14Aの背面とリアハウジング4の内面との間には、ハウジング2の吸入空間Ssから区画された吐出空間Sdが形成されている。吐出空間Sdには、吐出口17を介して圧縮機構13により圧縮された高温高圧の冷媒ガスが吐出される。
In the fixed scroll 14, a discharge port 17 for discharging the refrigerant gas compressed by the compression mechanism 13 is formed at a central portion of the end plate 14 </ b> A. A discharge reed valve 19 is installed at the discharge port 17 via a retainer 18. Further, a seal member (not shown) is disposed between the rear surface on the outer peripheral side of the end plate 14A of the fixed scroll 14 and the inner surface of the rear housing 4. Between the rear surface of the end plate 14A and the inner surface of the rear housing 4, a discharge space Sd divided from the suction space Ss of the housing 2 is formed. The high temperature / high pressure refrigerant gas compressed by the compression mechanism 13 is discharged to the discharge space Sd via the discharge port 17.
ハウジング2内の吸入空間Ssは、フロントハウジング3の上方部に設けられている吸入ポート20と連通している。吸入ポート20には、冷凍サイクル側から低温低圧の冷媒ガスが供給される。吸入空間Ssに供給された低温低圧の冷媒ガスは、旋回スクロール15の旋回駆動によって固定スクロール14との間に180度の位相差で形成される2つの吸入容積(圧縮室)16に吸入され、圧縮される。
The suction space Ss in the housing 2 communicates with the suction port 20 provided in the upper portion of the front housing 3. The low temperature low pressure refrigerant gas is supplied to the suction port 20 from the refrigeration cycle side. The low-temperature low-pressure refrigerant gas supplied to the suction space Ss is drawn into two suction volumes (compression chambers) 16 formed with a phase difference of 180 degrees with the fixed scroll 14 by the turning drive of the turning scroll 15. It is compressed.
図1および図2に示すように、吸入ポート20から吸入空間Ssに吸込まれた低温の冷媒ガスは、吸入ポート20に近い側の吸入容積(圧縮室)16に矢印aで示されるように吸入される。一方、吸入ポート20から吸入空間Ssに吸込まれた低温の冷媒ガスは、吸入ポート20から遠い側の吸入容積(圧縮室)16に矢印bで示されるように吸入される。吸入容積16に吸入された冷媒ガスは、圧縮されて吐出口17から吐出空間Sdへ導かれる。
As shown in FIGS. 1 and 2, the low temperature refrigerant gas sucked into the suction space Ss from the suction port 20 is sucked into the suction volume (compression chamber) 16 on the side near the suction port 20 as shown by the arrow a. Be done. On the other hand, the low temperature refrigerant gas sucked from the suction port 20 into the suction space Ss is sucked into the suction volume (compression chamber) 16 on the side far from the suction port 20 as shown by the arrow b. The refrigerant gas sucked into the suction volume 16 is compressed and led from the discharge port 17 to the discharge space Sd.
次に、圧縮機構13により圧縮されて吐出空間Sdへ導かれた冷媒ガスから油を分離し、油が分離された冷媒ガスを吐出配管40へ導く機構について説明する。この機構は、吐出空間Sdから油分離空間Soへ流入する冷媒ガスを分離筒30によって油分離空間Soの内部で分離する機構である。
以下、図1,図3,図4を参照して説明する。図3は、図1に示すリアハウジング4の油分離空間So部分の部分拡大図である。図4は、図1に示すリアハウジング4を圧縮機構13側からみた側面図である。 Next, a mechanism for separating oil from the refrigerant gas compressed by thecompression mechanism 13 and guided to the discharge space Sd and guiding the refrigerant gas from which the oil is separated to the discharge pipe 40 will be described. This mechanism is a mechanism for separating the refrigerant gas flowing from the discharge space Sd into the oil separation space So in the oil separation space So by the separation cylinder 30.
Hereinafter, description will be made with reference to FIG. 1, FIG. 3, and FIG. FIG. 3 is a partially enlarged view of the oil separation space So of therear housing 4 shown in FIG. FIG. 4 is a side view of the rear housing 4 shown in FIG. 1 as viewed from the compression mechanism 13 side.
以下、図1,図3,図4を参照して説明する。図3は、図1に示すリアハウジング4の油分離空間So部分の部分拡大図である。図4は、図1に示すリアハウジング4を圧縮機構13側からみた側面図である。 Next, a mechanism for separating oil from the refrigerant gas compressed by the
Hereinafter, description will be made with reference to FIG. 1, FIG. 3, and FIG. FIG. 3 is a partially enlarged view of the oil separation space So of the
図1に示すように、リアハウジング4内には、圧縮機構13により圧縮された冷媒ガスから油を分離して吐出配管40へ導く油分離空間Soが形成されている。油分離空間Soは、水平方向の断面視が円形の空間であり、鉛直方向に延びる軸線X2に沿って形成されている。図3の部分拡大図に示すように、油分離空間Soの水平方向の断面の直径は鉛直方向のいずれの位置においても一定の第1内径Di1である。したがって、油分離空間Soは、リアハウジング4を鋳造により製造した後に、軸線X2に沿って一定の第1内径Di1の穴を穿孔するという比較的簡易な作業により形成することができる。
As shown in FIG. 1, an oil separation space So is formed in the rear housing 4 to separate oil from the refrigerant gas compressed by the compression mechanism 13 and guide the oil to the discharge pipe 40. The oil separation space So is a space having a circular cross-sectional view in the horizontal direction, and is formed along an axis X2 extending in the vertical direction. As shown in the partial enlarged view of FIG. 3, the diameter of the cross section in the horizontal direction of the oil separation space So is a constant first inner diameter Di1 at any position in the vertical direction. Therefore, the oil separation space So can be formed by a relatively simple operation of forming a hole of a predetermined first inner diameter Di1 along the axis X2 after the rear housing 4 is manufactured by casting.
図1および図3に示すように、油分離空間Soには、鉛直方向に延びる軸線X2に沿って分離筒30が配置されている。分離筒30は、水平方向の断面における外径および内径が円形となるように形成される円筒状部材である。
図3に示すように、分離筒30は、第1外径Do1を有する小径部31と、小径部31の下方に形成されて第1外径Do1よりも大きい第2外径Do2を有する大径部32と、小径部31に形成されて分離筒30の内部空間Siへ冷媒ガスを導く導入口33と、油分離空間Soの上端の開口部を封止するフランジ部34と、を有する。 As shown in FIGS. 1 and 3, in the oil separation space So, aseparation cylinder 30 is disposed along an axis X2 extending in the vertical direction. The separation cylinder 30 is a cylindrical member formed so as to have a circular outer diameter and an inner diameter in a horizontal cross section.
As shown in FIG. 3, theseparation cylinder 30 has a small diameter portion 31 having a first outer diameter Do1, and a large diameter formed below the small diameter portion 31 and having a second outer diameter Do2 larger than the first outer diameter Do1. It has a portion 32, an inlet 33 formed in the small diameter portion 31 for guiding the refrigerant gas to the internal space Si of the separation cylinder 30, and a flange 34 for sealing the opening at the upper end of the oil separation space So.
図3に示すように、分離筒30は、第1外径Do1を有する小径部31と、小径部31の下方に形成されて第1外径Do1よりも大きい第2外径Do2を有する大径部32と、小径部31に形成されて分離筒30の内部空間Siへ冷媒ガスを導く導入口33と、油分離空間Soの上端の開口部を封止するフランジ部34と、を有する。 As shown in FIGS. 1 and 3, in the oil separation space So, a
As shown in FIG. 3, the
図3に示すように、大径部32は、鉛直方向の上方から下方に向けて第1外径Do1から第2外径Do2まで外径が漸次拡大するテーパ形状に形成されている。また、導入口33は、軸線X2回りの複数箇所(例えば、軸線X2回りに180度の間隔を空けた2箇所、あるいは軸線X2回りに90度の間隔を空けた4箇所)に形成されている。
As shown in FIG. 3, the large diameter portion 32 is formed in a tapered shape in which the outer diameter gradually increases from the first outer diameter Do1 to the second outer diameter Do2 from the upper side to the lower side in the vertical direction. Further, the inlets 33 are formed at a plurality of locations around the axis X2 (for example, 2 locations spaced 180 degrees around the axis X2, or 4 locations spaced 90 degrees around the axis X2) .
図3に示すように、フランジ部34には、分離筒30の内部空間Siから導かれる冷媒ガスを搬送する吐出配管40の先端部40aが挿入される凹所34aが形成されている。図1に示すように、フランジ部34には貫通穴34bが形成され、吐出配管40には貫通穴41が形成されている。また、リアハウジング4には、締結穴21が形成されている。吐出配管40および分離筒30のフランジ部34は、貫通穴34bおよび貫通穴41に挿入した締結ボルト(図示略)を締結穴21に締結することにより、リアハウジング4に固定される。
As shown in FIG. 3, the flange portion 34 is formed with a recess 34 a into which the tip portion 40 a of the discharge pipe 40 for transporting the refrigerant gas guided from the internal space Si of the separation cylinder 30 is inserted. As shown in FIG. 1, a through hole 34 b is formed in the flange portion 34, and a through hole 41 is formed in the discharge pipe 40. In addition, a fastening hole 21 is formed in the rear housing 4. The discharge piping 40 and the flange portion 34 of the separation cylinder 30 are fixed to the rear housing 4 by fastening fastening bolts (not shown) inserted into the through holes 34 b and the through holes 41 to the fastening holes 21.
なお、本実施形態のスクロール圧縮機1は、吐出配管40の先端部40aを油分離空間Soに直接挿入するのではなく、油分離空間Soに挿入された分離筒30のフランジ部34に形成される凹所34aに挿入している。そのため、例えば、吐出配管40の先端部40aの形状を変えずに、油分離空間Soの内径を大きくすることができる。
In the scroll compressor 1 according to the present embodiment, the front end portion 40a of the discharge pipe 40 is not directly inserted into the oil separation space So, but is formed in the flange portion 34 of the separation cylinder 30 inserted into the oil separation space So. Are inserted into the recess 34a. Therefore, for example, the inner diameter of the oil separation space So can be increased without changing the shape of the distal end portion 40 a of the discharge pipe 40.
例えば、図4の変形例に示すように、吐出配管40の先端部40aの形状を変えずに、油分離空間Soの内径を図3に示す第1内径Di1よりも大きい第2内径Di2とすることができる。油分離空間Soの内径を大きくすることにより、後述する冷媒ガスの旋回流Fsを形成する際に油を分離する遠心力を大きくし、油の分離性能を向上させることができる。
図4においては、油分離空間Soの第2内径Di2に合わせて分離筒30Aのフランジ部34Aと凹所34Aaの形状を設定することにより、吐出配管40の先端部40aの形状を変えずに、油分離空間Soの内径を大きくしている。 For example, as shown in the modification of FIG. 4, the inner diameter of the oil separation space So is set to a second inner diameter Di2 larger than the first inner diameter Di1 shown in FIG. 3 without changing the shape of thetip portion 40a of the discharge piping 40. be able to. By increasing the inner diameter of the oil separation space So, it is possible to increase the centrifugal force for separating the oil when forming the swirling flow Fs of the refrigerant gas described later, and to improve the oil separation performance.
In FIG. 4, the shape of theflange portion 34A and the recess 34Aa of the separation cylinder 30A is set according to the second inner diameter Di2 of the oil separation space So, without changing the shape of the tip portion 40a of the discharge piping 40. The inner diameter of the oil separation space So is increased.
図4においては、油分離空間Soの第2内径Di2に合わせて分離筒30Aのフランジ部34Aと凹所34Aaの形状を設定することにより、吐出配管40の先端部40aの形状を変えずに、油分離空間Soの内径を大きくしている。 For example, as shown in the modification of FIG. 4, the inner diameter of the oil separation space So is set to a second inner diameter Di2 larger than the first inner diameter Di1 shown in FIG. 3 without changing the shape of the
In FIG. 4, the shape of the
図3に示すように、油分離空間Soは、小径部31および大径部32が配置される分離部(第1空間部)So1と、分離部So1よりも鉛直方向の下方に配置される貯油部(第2空間部)So2と、を有する。図3に示すように、分離部So1の第1内径Di1は、大径部32の第2外径Do2よりも大きい。
As shown in FIG. 3, the oil separation space So includes a separation portion (first space portion) So1 in which the small diameter portion 31 and the large diameter portion 32 are disposed, and oil storage disposed below the separation portion So1 in the vertical direction. And a part (second space part) So2. As shown in FIG. 3, the first inner diameter Di1 of the separation portion So1 is larger than the second outer diameter Do2 of the large diameter portion 32.
ここで、分離筒30が配置された油分離空間Soにおいて冷媒ガスから油を分離する仕組みについて説明する。
圧縮機構13により圧縮されて吐出空間Sdへ導かれた冷媒ガスは、2つの流入口22から油分離空間Soの分離部So1の上方へ流入する。分離部So1には分離筒30の小径部31が配置されているため、分離部So1は軸線X2に沿って延びる円筒状の空間となっている。そのため、流入口22から分離部So1へ流入する冷媒ガスは、旋回流Fsを形成し、軸線X2回りを旋回しながら小径部31の下端に形成された導入口33へ導かれる。 Here, a mechanism for separating the oil from the refrigerant gas in the oil separation space So in which theseparation cylinder 30 is disposed will be described.
The refrigerant gas compressed by thecompression mechanism 13 and guided to the discharge space Sd flows from the two inlets 22 to the upper side of the separation part So1 of the oil separation space So. Since the small diameter portion 31 of the separation cylinder 30 is disposed in the separation portion So1, the separation portion So1 is a cylindrical space extending along the axis X2. Therefore, the refrigerant gas flowing into the separation part So1 from the inflow port 22 forms a swirling flow Fs, and is guided to the introduction port 33 formed at the lower end of the small diameter portion 31 while swirling around the axis X2.
圧縮機構13により圧縮されて吐出空間Sdへ導かれた冷媒ガスは、2つの流入口22から油分離空間Soの分離部So1の上方へ流入する。分離部So1には分離筒30の小径部31が配置されているため、分離部So1は軸線X2に沿って延びる円筒状の空間となっている。そのため、流入口22から分離部So1へ流入する冷媒ガスは、旋回流Fsを形成し、軸線X2回りを旋回しながら小径部31の下端に形成された導入口33へ導かれる。 Here, a mechanism for separating the oil from the refrigerant gas in the oil separation space So in which the
The refrigerant gas compressed by the
冷媒ガスに含まれる油は、冷媒ガスが旋回流Fsとなって分離部So1を旋回する際の遠心力により冷媒ガスから分離される。冷媒ガスから分離された油は、分離部So1の内周面に付着し、内周面を伝わって下方の貯油部So2の内周面に導かれる。貯油部So2の内周面に導かれた油は重力によって下方へ移動し、貯油部So2の下方に油溜まりOsを形成する。
The oil contained in the refrigerant gas is separated from the refrigerant gas by the centrifugal force when the refrigerant gas turns into the swirling flow Fs and swirls the separation part So1. The oil separated from the refrigerant gas adheres to the inner peripheral surface of the separation portion So1, and is guided along the inner peripheral surface to the inner peripheral surface of the lower oil storage portion So2. The oil guided to the inner circumferential surface of the oil storage portion So2 moves downward by gravity, and forms an oil reservoir Os below the oil storage portion So2.
図5に示すように、吐出空間Sdから油分離空間Soに冷媒ガスを流入させる流入口22が配置される位置は、軸線X2よりも油分離空間Soの内周面に近接した位置となっている。これは、油分離空間Soに流入した冷媒ガスが軸線X2回りに旋回する旋回流Fsを形成するようにするためである。冷媒ガスを油分離空間Soの内周面に沿って流入させることにより冷媒ガスが軸線X2回りに旋回する旋回流Fsとなる。
As shown in FIG. 5, the position at which the inlet 22 for flowing the refrigerant gas from the discharge space Sd into the oil separation space So is located is closer to the inner circumferential surface of the oil separation space So than the axis X2. There is. This is in order to form a swirling flow Fs in which the refrigerant gas flowing into the oil separation space So swirls around the axis X2. By causing the refrigerant gas to flow along the inner peripheral surface of the oil separation space So, a swirling flow Fs in which the refrigerant gas swirls around the axis X2 is obtained.
なお、前述した第1内径Di1と第2外径Do2の値は、Do2/Di1の値が0.8以上かつ0.9以下となるように定めるのが望ましい。Do2/Di1の値を0.8以上とすることにより、大径部32の外周面と分離部So1の内周面との間の隙間を狭くし、分離部So1から貯油部So2へ冷媒ガスの旋回流が多量に流入することを抑制することができる。また、Do2/Di1の値を0.9以下とすることにより、大径部32の外周面と分離部So1の内周面との間の隙間を一定以上確保し、分離部So1から貯油部So2へ冷媒ガスから分離された油が流入することを促進することができる。
The values of the first inner diameter Di1 and the second outer diameter Do2 described above are desirably determined so that the value of Do2 / Di1 is 0.8 or more and 0.9 or less. By setting the value of Do2 / Di1 to 0.8 or more, the gap between the outer peripheral surface of the large diameter portion 32 and the inner peripheral surface of the separation portion So1 is narrowed, and the refrigerant gas is separated from the separation portion So1 to the oil storage portion So2. A large amount of swirling flow can be suppressed. In addition, by setting the value of Do2 / Di1 to 0.9 or less, a gap between the outer peripheral surface of the large diameter portion 32 and the inner peripheral surface of the separation portion So1 is secured at least a certain amount. It is possible to promote the inflow of oil separated from the refrigerant gas.
以上説明した本実施形態のスクロール圧縮機1が奏する作用および効果について説明する。
本実施形態のスクロール圧縮機1によれば、圧縮機構13により圧縮された冷媒ガスは、分離部So1へ流入し、分離筒30の外周面と分離部So1の内周面との間の空間を鉛直方向に沿った軸線X2回りに旋回する。冷媒ガスに含まれる油は、旋回中の遠心力によって冷媒ガスから分離して分離部So1の内周面に付着し、内周面を伝わって下方の貯油部So2の内周面に導かれる。貯油部So2の内周面に導かれた油は重力によって下方へ移動し、貯油部So2の下方に油溜まりOsを形成する。 The operation and effects of thescroll compressor 1 of the present embodiment described above will be described.
According to thescroll compressor 1 of the present embodiment, the refrigerant gas compressed by the compression mechanism 13 flows into the separation portion So1, and the space between the outer peripheral surface of the separation cylinder 30 and the inner peripheral surface of the separation portion So1 is It turns around an axis X2 along the vertical direction. The oil contained in the refrigerant gas is separated from the refrigerant gas by centrifugal force during swirling, adheres to the inner peripheral surface of the separation portion So1, and is guided along the inner peripheral surface to the inner peripheral surface of the lower oil storage portion So2. The oil guided to the inner circumferential surface of the oil storage portion So2 moves downward by gravity, and forms an oil reservoir Os below the oil storage portion So2.
本実施形態のスクロール圧縮機1によれば、圧縮機構13により圧縮された冷媒ガスは、分離部So1へ流入し、分離筒30の外周面と分離部So1の内周面との間の空間を鉛直方向に沿った軸線X2回りに旋回する。冷媒ガスに含まれる油は、旋回中の遠心力によって冷媒ガスから分離して分離部So1の内周面に付着し、内周面を伝わって下方の貯油部So2の内周面に導かれる。貯油部So2の内周面に導かれた油は重力によって下方へ移動し、貯油部So2の下方に油溜まりOsを形成する。 The operation and effects of the
According to the
分離部So1で油が分離された冷媒ガスは、分離筒30の小径部31に形成された導入口33から分離筒30の内部空間Siに導かれ、さらに吐出配管40へ導かれる。分離筒30の小径部31の下方には小径部31よりも外径の大きい大径部32が形成されている。そのため、分離部So1で旋回する冷媒ガスが小径部31の下端に到達した場合、分離部So1の内周面と大径部32の外周面との間隔が小さいため、冷媒ガスが大径部32の下方の貯油部So2へ導かれることが抑制される。よって、貯油部So2の下方の油溜まりOsを巻き上げることが抑制される。
The refrigerant gas from which the oil is separated in the separation part So1 is introduced from the inlet 33 formed in the small diameter part 31 of the separation cylinder 30 to the internal space Si of the separation cylinder 30, and is further introduced to the discharge piping 40. Below the small diameter portion 31 of the separation cylinder 30, a large diameter portion 32 having an outer diameter larger than that of the small diameter portion 31 is formed. Therefore, when the refrigerant gas swirling in the separation portion So1 reaches the lower end of the small diameter portion 31, the distance between the inner peripheral surface of the separation portion So1 and the outer peripheral surface of the large diameter portion 32 is small. It is suppressed that it is led to the lower oil storage part So2. Therefore, it is suppressed from rolling up oil accumulation Os below the oil storage part So2.
このように、本実施形態のスクロール圧縮機1によれば、油分離空間Soの上方の分離部So1で冷媒ガスから油を分離し、分離部So1の下方の貯油部So2に油溜まりOsを形成することができる。油分離のための空間と油溜まりのための空間を別途に設ける必要がないため、装置の大型化および製造コストの増大を抑制することができる。
また、分離部So1から貯油部So2へ冷媒ガスの旋回流Fsが多量に導かれて油溜まりを巻き上げることが抑制されるため、冷媒ガスからの油の分離を確実に行うことができる。 Thus, according to thescroll compressor 1 of the present embodiment, the oil is separated from the refrigerant gas in the separation part So1 above the oil separation space So, and the oil reservoir Os is formed in the oil storage part So2 below the separation part So1. can do. Since it is not necessary to separately provide a space for oil separation and a space for oil accumulation, it is possible to suppress an increase in size of the device and an increase in manufacturing cost.
In addition, since a large amount of the swirling flow Fs of the refrigerant gas is introduced from the separation unit So1 to the oil storage unit So2 to prevent the oil reservoir from being wound up, oil can be reliably separated from the refrigerant gas.
また、分離部So1から貯油部So2へ冷媒ガスの旋回流Fsが多量に導かれて油溜まりを巻き上げることが抑制されるため、冷媒ガスからの油の分離を確実に行うことができる。 Thus, according to the
In addition, since a large amount of the swirling flow Fs of the refrigerant gas is introduced from the separation unit So1 to the oil storage unit So2 to prevent the oil reservoir from being wound up, oil can be reliably separated from the refrigerant gas.
本実施形態のスクロール圧縮機1においては、大径部32が、鉛直方向の上方から下方に向けて第1外径Do1から第2外径Do2まで外径が漸次拡大するテーパ形状に形成されている。
このようにすることで、大径部32へ導かれた冷媒ガスの旋回流を乱すことなく流通させつつ、冷媒ガスが貯油部So2へ導かれることを適切に防止することができる。
なお、大径部32の形状は、テーパ形状でなくてもよく、例えば、鉛直方向に沿って一定の第2外径Do2を有する筒状に形成されていてもよい。 In thescroll compressor 1 of the present embodiment, the large diameter portion 32 is formed in a tapered shape in which the outer diameter gradually increases from the first outer diameter Do1 to the second outer diameter Do2 from the upper side to the lower side in the vertical direction. There is.
By doing this, it is possible to appropriately prevent the refrigerant gas from being guided to the oil storage portion So2 while circulating the swirling flow of the refrigerant gas led to thelarge diameter portion 32 without disturbing it.
The shape of thelarge diameter portion 32 does not have to be a tapered shape, and may be formed, for example, in a cylindrical shape having a constant second outer diameter Do2 along the vertical direction.
このようにすることで、大径部32へ導かれた冷媒ガスの旋回流を乱すことなく流通させつつ、冷媒ガスが貯油部So2へ導かれることを適切に防止することができる。
なお、大径部32の形状は、テーパ形状でなくてもよく、例えば、鉛直方向に沿って一定の第2外径Do2を有する筒状に形成されていてもよい。 In the
By doing this, it is possible to appropriately prevent the refrigerant gas from being guided to the oil storage portion So2 while circulating the swirling flow of the refrigerant gas led to the
The shape of the
本実施形態のスクロール圧縮機1においては、圧縮機構13により圧縮された冷媒ガスが小径部31の上方から流入し、導入口33が、小径部31の鉛直方向の下端に形成されている。
このようにすることで、分離部So1の上方から下方に至るまでの広範な範囲において冷媒ガスの旋回流Fsを形成し、冷媒ガスから油を適切に分離することができる。 In thescroll compressor 1 of the present embodiment, the refrigerant gas compressed by the compression mechanism 13 flows in from above the small diameter portion 31, and the inlet 33 is formed at the lower end of the small diameter portion 31 in the vertical direction.
In this manner, the swirling flow Fs of the refrigerant gas can be formed in a wide range from the upper side to the lower side of the separation portion So1, and oil can be appropriately separated from the refrigerant gas.
このようにすることで、分離部So1の上方から下方に至るまでの広範な範囲において冷媒ガスの旋回流Fsを形成し、冷媒ガスから油を適切に分離することができる。 In the
In this manner, the swirling flow Fs of the refrigerant gas can be formed in a wide range from the upper side to the lower side of the separation portion So1, and oil can be appropriately separated from the refrigerant gas.
本実施形態においては、圧縮機構13としてスクロール圧縮機構を用いるものとしたが、他の圧縮機構を用いるものであってもよい。
In the present embodiment, a scroll compression mechanism is used as the compression mechanism 13, but another compression mechanism may be used.
本実施形態においては、軸線X2が鉛直方向に延びるものであり、油分離空間Soと分離筒30が軸線X2に沿って配置されるものとしたが、他の態様であってもよい。
例えば、軸線X2が水平方向から所定角度(例えば、13°以上の角度)だけ傾斜した方向に延びる軸線であってもよい。この場合、分離筒30は、油分離空間Soの重力方向の上方に軸線X2に沿って配置される。また、分離筒30の大径部32は小径部31の重力方向の下方に形成される。軸線X2が鉛直方向に延びるものでなくても、水平方向から傾斜した方向に延びるものであれば、冷媒ガスに含まれる油は貯油部So2の下方に油溜まりOsを形成する。すなわち、冷媒ガスに含まれる油は、旋回中の遠心力によって冷媒ガスから分離して分離部So1の内周面に付着し、内周面を伝わって下方の貯油部So2の内周面に導かれ、重力によって貯油部So2の下方に移動する。 In the present embodiment, the axis X2 extends in the vertical direction, and the oil separation space So and theseparation cylinder 30 are disposed along the axis X2, but other modes may be employed.
For example, the axis X2 may be an axis extending in a direction inclined by a predetermined angle (for example, an angle of 13 ° or more) from the horizontal direction. In this case, theseparation cylinder 30 is disposed along the axis X2 above the direction of gravity of the oil separation space So. Further, the large diameter portion 32 of the separation cylinder 30 is formed below the small diameter portion 31 in the gravity direction. Even if the axis X2 does not extend in the vertical direction, the oil contained in the refrigerant gas forms an oil reservoir Os below the oil storage portion So2 as long as it extends in a direction inclined from the horizontal direction. That is, the oil contained in the refrigerant gas is separated from the refrigerant gas by the centrifugal force during swirling, adheres to the inner peripheral surface of the separation portion So1, and is transmitted to the inner peripheral surface of the lower oil storage portion So2 along the inner peripheral surface. He moves below the oil reservoir So2 by gravity.
例えば、軸線X2が水平方向から所定角度(例えば、13°以上の角度)だけ傾斜した方向に延びる軸線であってもよい。この場合、分離筒30は、油分離空間Soの重力方向の上方に軸線X2に沿って配置される。また、分離筒30の大径部32は小径部31の重力方向の下方に形成される。軸線X2が鉛直方向に延びるものでなくても、水平方向から傾斜した方向に延びるものであれば、冷媒ガスに含まれる油は貯油部So2の下方に油溜まりOsを形成する。すなわち、冷媒ガスに含まれる油は、旋回中の遠心力によって冷媒ガスから分離して分離部So1の内周面に付着し、内周面を伝わって下方の貯油部So2の内周面に導かれ、重力によって貯油部So2の下方に移動する。 In the present embodiment, the axis X2 extends in the vertical direction, and the oil separation space So and the
For example, the axis X2 may be an axis extending in a direction inclined by a predetermined angle (for example, an angle of 13 ° or more) from the horizontal direction. In this case, the
1 スクロール圧縮機
2 ハウジング
3 フロントハウジング
4 リアハウジング
5 クランク軸
6 メイン軸受
7 電磁クラッチ
8 プーリ
9 クランクピン
10 ドライブブッシュ
11 ドライブ軸受
12 バランスウェイト
13 圧縮機構
14 固定スクロール
15 旋回スクロール
16 吸入容積
17 吐出口
18 リテーナ
19 吐出リード弁
20 吸入ポート
21 締結穴
22 流入口
30 分離筒(円筒状部材)
31 小径部
32 大径部
33 導入口
34 フランジ部
40 吐出配管
Di1 第1内径
Do1 第1外径
Do2 第2外径
Os 油溜まり
Sd 吐出空間
Si 内部空間
So 油分離空間
So1 分離部(第1空間部)
So2 貯油部(第2空間部)
Ss 吸入空間
X1,X2 軸線 DESCRIPTION OFSYMBOLS 1 scroll compressor 2 housing 3 front housing 4 rear housing 5 crankshaft 6 main bearing 7 electromagnetic clutch 8 pulley 9 crank pin 10 drive bush 11 drive bearing 12 balance weight 13 compression mechanism 14 fixed scroll 15 orbiting scroll 16 suction volume 17 discharge port 18 Retainer 19 Discharge reed valve 20 Suction port 21 Fastening hole 22 Inlet 30 Separate cylinder (cylindrical member)
31small diameter portion 32 large diameter portion 33 inlet 34 flange portion 40 discharge piping Di1 first inner diameter Do1 first outer diameter Do2 second outer diameter Os oil reservoir Sd discharge space Si internal space So oil separation space So1 separation portion (first space Department)
So2 oil reservoir (2nd space)
Ss Inhalation space X1, X2 axis
2 ハウジング
3 フロントハウジング
4 リアハウジング
5 クランク軸
6 メイン軸受
7 電磁クラッチ
8 プーリ
9 クランクピン
10 ドライブブッシュ
11 ドライブ軸受
12 バランスウェイト
13 圧縮機構
14 固定スクロール
15 旋回スクロール
16 吸入容積
17 吐出口
18 リテーナ
19 吐出リード弁
20 吸入ポート
21 締結穴
22 流入口
30 分離筒(円筒状部材)
31 小径部
32 大径部
33 導入口
34 フランジ部
40 吐出配管
Di1 第1内径
Do1 第1外径
Do2 第2外径
Os 油溜まり
Sd 吐出空間
Si 内部空間
So 油分離空間
So1 分離部(第1空間部)
So2 貯油部(第2空間部)
Ss 吸入空間
X1,X2 軸線 DESCRIPTION OF
31
So2 oil reservoir (2nd space)
Ss Inhalation space X1, X2 axis
Claims (4)
- 内部に冷媒ガスの吸入空間を形成するハウジングと、
前記ハウジング内に配置され、前記吸入空間に流入する前記冷媒ガスを圧縮する圧縮機構と、
前記ハウジング内に重力方向に延びるように形成され、前記圧縮機構により圧縮された前記冷媒ガスから油を分離して吐出配管へ導く油分離空間と、
前記油分離空間の前記重力方向の上方に前記油分離空間の軸線に沿って配置される円筒状部材と、を備え、
前記円筒状部材が、
第1外径を有する小径部と、
前記小径部の前記重力方向の下方に形成され、前記第1外径よりも大きい第2外径を有する大径部と、
前記小径部に形成され、前記円筒状部材の内部空間へ前記冷媒ガスを導く導入口と、を有し、
前記油分離空間が、
前記小径部および前記大径部が配置され、前記第2外径よりも大きい第1内径を有する第1空間部と、
前記第1空間部の前記重力方向の下方に配置される第2空間部と、を有し、
前記圧縮機構により圧縮された前記冷媒ガスが前記第1空間部へ流入する圧縮機。 A housing that forms a suction space for the refrigerant gas inside;
A compression mechanism disposed in the housing for compressing the refrigerant gas flowing into the suction space;
An oil separation space formed in the housing so as to extend in the direction of gravity and separating oil from the refrigerant gas compressed by the compression mechanism and guiding the oil to a discharge pipe;
And a cylindrical member disposed along the axis of the oil separation space above the oil separation space in the direction of gravity.
The cylindrical member is
A small diameter portion having a first outer diameter,
A large diameter portion formed below the small diameter portion in the direction of gravity and having a second outer diameter larger than the first outer diameter;
And an inlet formed in the small diameter portion for guiding the refrigerant gas to the internal space of the cylindrical member,
The oil separation space is
A first space portion disposed with the small diameter portion and the large diameter portion and having a first inner diameter larger than the second outer diameter;
And a second space disposed below the first space in the direction of gravity,
The compressor in which the refrigerant gas compressed by the compression mechanism flows into the first space portion. - 前記大径部が、前記重力方向の上方から下方に向けて前記第1外径から前記第2外径まで外径が漸次拡大するテーパ形状に形成されている請求項1に記載の圧縮機。 2. The compressor according to claim 1, wherein the large diameter portion is formed in a tapered shape in which the outer diameter gradually increases from the first outer diameter to the second outer diameter from the upper side to the lower side in the gravity direction.
- 前記圧縮機構により圧縮された前記冷媒ガスが前記小径部の上方から流入し、
前記導入口が、前記小径部の前記重力方向の下端に形成されている請求項1または請求項2に記載の圧縮機。 The refrigerant gas compressed by the compression mechanism flows in from above the small diameter portion,
The compressor according to claim 1, wherein the introduction port is formed at a lower end of the small diameter portion in the gravity direction. - 前記圧縮機構が、一対の固定スクロールおよび旋回スクロールを対向させて配置し、前記旋回スクロールを前記固定スクロールに対して公転旋回駆動することにより前記冷媒ガスを圧縮する機構である請求項1から請求項3のいずれか一項に記載の圧縮機。 The compression mechanism is a mechanism in which a pair of fixed scrolls and orbiting scrolls are disposed to face each other, and the refrigerant gas is compressed by driving the orbiting scrolls to revolve with respect to the stationary scrolls. The compressor as described in any one of 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/608,123 US20210102538A1 (en) | 2017-07-20 | 2018-06-21 | Compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-140881 | 2017-07-20 | ||
JP2017140881A JP6953213B2 (en) | 2017-07-20 | 2017-07-20 | Compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019017144A1 true WO2019017144A1 (en) | 2019-01-24 |
Family
ID=65016647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/023644 WO2019017144A1 (en) | 2017-07-20 | 2018-06-21 | Compressor |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210102538A1 (en) |
JP (1) | JP6953213B2 (en) |
WO (1) | WO2019017144A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014020306A (en) * | 2012-07-19 | 2014-02-03 | Toyota Industries Corp | Compressor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5819437Y2 (en) * | 1973-12-10 | 1983-04-21 | トヨオキコウギヨウ カブシキガイシヤ | Air filter |
JP2565477Y2 (en) * | 1991-12-24 | 1998-03-18 | 三輪精機株式会社 | Mist collection device for compressed air for vehicles |
JP4058139B2 (en) * | 1997-09-16 | 2008-03-05 | 株式会社豊田自動織機 | Compressor |
JP3721933B2 (en) * | 2000-04-17 | 2005-11-30 | 株式会社デンソー | Compressor |
DE102006038726B4 (en) * | 2006-08-11 | 2011-06-09 | Visteon Global Technologies Inc., Van Buren | Refrigerant compressor for air conditioning and method for oil separation and pressure pulsation damping this |
JP5157274B2 (en) * | 2006-09-07 | 2013-03-06 | 株式会社デンソー | Compressor |
JP2017172895A (en) * | 2016-03-24 | 2017-09-28 | サンデン・オートモーティブコンポーネント株式会社 | Oil separator |
-
2017
- 2017-07-20 JP JP2017140881A patent/JP6953213B2/en active Active
-
2018
- 2018-06-21 US US16/608,123 patent/US20210102538A1/en not_active Abandoned
- 2018-06-21 WO PCT/JP2018/023644 patent/WO2019017144A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014020306A (en) * | 2012-07-19 | 2014-02-03 | Toyota Industries Corp | Compressor |
Also Published As
Publication number | Publication date |
---|---|
JP6953213B2 (en) | 2021-10-27 |
JP2019019790A (en) | 2019-02-07 |
US20210102538A1 (en) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7934914B2 (en) | Scroll machine having counterweights with changeable cavity | |
US8747088B2 (en) | Open drive scroll compressor with lubrication system | |
US9377022B2 (en) | Radially compliant scroll compressor | |
US20160108917A1 (en) | Scroll compressor | |
EP2653650A2 (en) | Scroll type compressor | |
US8945265B2 (en) | Compressor | |
JP6664879B2 (en) | Open type compressor | |
US8118563B2 (en) | Tandem compressor system and method | |
US10539139B2 (en) | Compressor | |
JP2006132487A (en) | Compressor | |
JP4149947B2 (en) | Compressor | |
WO2019017144A1 (en) | Compressor | |
EP2960513B1 (en) | Hermetic compressor | |
JP2005344537A (en) | Scroll compressor | |
EP3315781B1 (en) | Open type compressor | |
AU2012203079B2 (en) | Counterweights for balancing rotary machines | |
WO2023132305A1 (en) | Compressor | |
JP4638313B2 (en) | Hermetic rotary compressor | |
WO2018030065A1 (en) | Scroll-type fluid machine | |
JP4928769B2 (en) | Compressor | |
JP2021046811A (en) | Horizontal scroll compressor | |
KR20190000176A (en) | Compressor having spiral oil groove structure | |
JP2007182775A (en) | Scroll type fluid machine | |
JP2018025150A (en) | Scroll Type Fluid Machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18834792 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18834792 Country of ref document: EP Kind code of ref document: A1 |