[go: up one dir, main page]

WO2018230856A1 - 예상경로 기반 이동경로 결정방법 및 이를 위한 이동 its 스테이션 - Google Patents

예상경로 기반 이동경로 결정방법 및 이를 위한 이동 its 스테이션 Download PDF

Info

Publication number
WO2018230856A1
WO2018230856A1 PCT/KR2018/006005 KR2018006005W WO2018230856A1 WO 2018230856 A1 WO2018230856 A1 WO 2018230856A1 KR 2018006005 W KR2018006005 W KR 2018006005W WO 2018230856 A1 WO2018230856 A1 WO 2018230856A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
information
mobile
estimated
station
Prior art date
Application number
PCT/KR2018/006005
Other languages
English (en)
French (fr)
Inventor
김소영
푸니탄자비에르
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/097,912 priority Critical patent/US20210270615A1/en
Publication of WO2018230856A1 publication Critical patent/WO2018230856A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096811Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard

Definitions

  • This document relates to the operation of a mobile intelligent transport system (ITS) station, and more particularly, to a method for determining a mobile route based on an expected route and a configuration of a mobile ITS station for the same.
  • ITS mobile intelligent transport system
  • the vehicle traditionally functions as a user's means of transportation, but for the convenience of the user, the vehicle is provided with various sensors, electronic devices, and the like, to provide driving convenience for the user.
  • ADAS Advanced Driver Assistance System
  • autonomous vehicles Autonomous Vehicle
  • V2X vehicle-to-everything
  • V2X is a technology that includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), etc. and is being developed through the standardization process in IEEE and 3GPP as follows.
  • IEEE developed WAVE (Wireless Access for the Vehicular Environment) in 2010, which is technical standard for physical layer and MAC layer for vehicle communication in the form of IEEE 802.11p, and security and network management in the form of IEEE 1609. It is a concept including describing the back.
  • DSRC Dedicated Short-Range Communication
  • ITS Intelligent Transport System
  • ETSI developed ITS-G5 based on this technology, and ITS-G5 is a higher layer technology for inter-vehicle communication, and the lower layer uses existing IEEE 802.11p technology as it is.
  • NR New RAT
  • the moving path of the vehicle is determined by the in-vehicle navigation system, and recently, the moving path may be determined by avoiding a congested path by reflecting real-time traffic information.
  • the vehicle is more efficiently considering the expected movement route of each V2X vehicle.
  • This paper proposes a method of determining the path of movement.
  • Embodiments of the present invention to improve the existing V2X technology to propose a method for efficiently determining the movement path of the vehicle, a transmission method and structure of the message for this, and to propose an ITS station configuration for supporting it.
  • ITS mobile intelligent transport system
  • the first message may be generated based on information obtained from a navigation service of the mobile ITS station.
  • the first message may include an identifier corresponding to each expected location information, a data valid time, a message generation time, and probability information that will pass through each expected location.
  • Each of the estimated position information and a set of probability information to pass through each estimated position may be included in the first message only if the value of the probability information is equal to or greater than a predetermined reference value.
  • the second message may include congestion degree information for each estimated location generated in consideration of estimated location information received from a plurality of stations including the mobile ITS station.
  • the first message may include arrival time information corresponding to each of the one or more estimated location information, and the second message may be generated by considering the respective estimated location information and corresponding arrival time information. It may include traffic information.
  • the first message may additionally include a current location information and kinematic information corresponding to the current location, and may be transmitted through a Cooperative Awareness Message (CAM).
  • CAM Cooperative Awareness Message
  • the second message may include LDM (Local Traffic Information) including estimated traffic information generated in consideration of at least one of the estimated location information and the kinematic prediction value at the estimated location in addition to the current location information and the kinematic information corresponding to the current location. Dynamic Map) can be received.
  • LDM Local Traffic Information
  • Dynamic Map Dynamic Map
  • the mobile ITS station may periodically transmit the first message, and when the first prediction movement path is changed to the second prediction movement path according to the transmission of the first message and the reception of the second message in the first period.
  • the first message transmitted in the second period may include information generated in consideration of the second prediction path.
  • the mobile ITS station When the mobile ITS station transmits an emergency signal at a time point corresponding to a period for transmitting the first message, the mobile ITS station may give a high priority to the emergency signal transmission and transmit the emergency signal.
  • a mobile intelligent transport system (ITS) station that determines a movement path based on estimated location information, one or more estimated location information and the estimated location information in consideration of a first predicted movement path of the ITS station
  • a transceiver for transmitting a first message including at least one of kinematic predictions at an expected location and receiving, through a second message, estimated traffic information generated in consideration of the first message;
  • a processor configured to generate the first message and provide the first message to the transceiver, and to receive and process the second message from the transceiver, wherein the processor moves the first prediction based on the estimated traffic information of the second message.
  • a mobile ITS station is proposed that is configured to determine whether to change the path to a second predicted travel path.
  • the mobile ITS station may further include a navigation system for providing a navigation service, and the processor may generate the first message based on information obtained from the navigation system.
  • the processor may include an application for performing predicted location-based movement path determination in an application layer; A message management function block for managing the first message; And a function block for managing the second message.
  • the message management function block for managing the first message may include a cooperative awareness message (CAM) management function block, and the function block for managing the second message may include a local dynamic map (LDM) management function block.
  • CAM cooperative awareness message
  • LDM local dynamic map
  • the method for assisting the determination of the movement path of the mobile ITS station (a) one or more estimated position information generated in consideration of the predicted movement path of each of the one or more mobile ITS stations ) Receiving a first message including at least one of kinematic predictions at the at least one expected location, and sending the estimated traffic information generated in consideration of the first message to the at least one mobile ITS station;
  • the present invention proposes a method for determining a moving path, including transmitting through a packet.
  • the apparatus for assisting the determination of the movement path of the mobile ITS station (a) one or more estimated position information generated in consideration of the predicted movement path of each of the one or more mobile ITS stations and ( b) a transceiver for receiving a first message comprising one or more of kinematic predictions at said one or more expected locations; And a processor configured to generate a second message including expected traffic information generated in consideration of the first message received by the transceiver, and to transmit the second message to the transceiver, wherein the transceiver transmits the second message to the one or more mobile devices.
  • a mobile route determination assistance device for transmitting to an ITS station is proposed.
  • the moving path of the vehicle is determined more efficiently in consideration of the expected moving path of each V2X vehicle. Congestion can be reduced.
  • FIG. 1 is a view showing the external structure of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a protocol stack of a mobile ITS station according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a message service operation according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of transmitting a Pre-CAM through a WSM according to an embodiment of the present invention.
  • 5 and 6 are diagrams for explaining a process at the pre-CAM sender side and a process at the receiver side according to an embodiment of the present invention.
  • FIG. 7 is a diagram for describing a process of changing a movement path using Pre-CAM according to one embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the priority of pre-CAM transmission according to an embodiment of the present invention.
  • 9 to 11 are diagrams for explaining examples of applying and operating the embodiments of the present invention.
  • the term 'mobile ITS station' used in the following description may be a smart vehicle itself that supports inter-vehicle communication as described above, a separate station possessed by a user who rides the vehicle, an on-board unit (OBU) Or UE (User Equipment).
  • OBU on-board unit
  • UE User Equipment
  • for convenience of understanding for example, it will be described based on DSRC based on the V2X technology, which is exemplary, and the information proposed in the present invention may be applied to 3GPP-based V2X or eV2X in the same manner.
  • FIG. 1 is a view showing the external structure of a vehicle according to an embodiment of the present invention.
  • the vehicle includes a controller area network bus (CAN-BUS) 101, a telematics control unit (TCU) 102, an autonomous vehicle imaging and scanning unit 104, a V2X communication unit 105, and the like. can do.
  • the CAN-BUS 101 serves as an internal communication bridge between the electronic control units inside the vehicle, and the TSU 102 may connect the CAN-BUS 101 to an external system.
  • the autonomous vehicle imaging and scanning unit 104 can process information around the vehicle using LIDAR, radar, ultrasonic sensor or external camera, and the V2X communication unit 105 communicates in the above-described DSRC / 3GPP-based V2X scheme. Can be performed.
  • the processor of the mobile ITS station may be a processor of a station carried separately by the vehicle occupant, or may be a TCU 102 or a CPU (not shown) in the above-described configuration.
  • the transceiver of the mobile ITS station may be a transceiver of a station separately carried by the vehicle occupant, or may be the V2X communication unit 105 in the above-described configuration.
  • the smart vehicle illustrated in FIG. 1 may more efficiently provide a user to the user through a timer pressure sensor 107, an external data storage unit 105, a third party monitoring unit 106, and the like. It is an enemy.
  • the mobile ITS station instead than simply determining the vehicle's movement route based on the current traffic information according to the development of the V2X technology, it is more efficient in consideration of the expected movement route of each V2X vehicle.
  • This paper proposes a method of determining the movement route.
  • the mobile ITS station considers its first predicted movement path, and includes (a) one or more estimated position information and (b) kinematic predicted value at the one or more estimated positions. Transmitting a first message including at least one of the following, receiving the estimated traffic information generated in consideration of the first message through a second message, and predicting the first based on the estimated traffic information of the second message. It is proposed to determine whether to change the moving path to the second predicted moving path.
  • the first message may be transmitted in the form of a Cooperative Awareness Message (CAM).
  • CAM Cooperative Awareness Message
  • the first message will be referred to as 'pre-CAM' as a CAM based on prediction information in addition to the existing CAM.
  • This pre-CAM may be transmitted through the existing CAM / BSM, which will be described in more detail below.
  • the second message may be received in the form of a local dynamic map (LDM), and in addition to the current location information and the kinematic information corresponding to the current location, at least one of the predicted location information and the kinematic prediction value at the expected location.
  • LDM local dynamic map
  • FIG. 2 is a diagram illustrating a protocol stack of a mobile ITS station according to an embodiment of the present invention.
  • the protocol stack for V2X support in LTE-A / NR is under discussion, and accordingly, the protocol stack of FIG. 2 exemplarily shows an additional configuration for supporting the present invention based on the protocol stack of ITS-G5. Drawing.
  • the present invention can be applied to a protocol stack to be defined later based on LTE / NR in the same principle.
  • the Position and Time Management (POTI) function may provide location data (latitude, longitude and altitude) and time information necessary for the vehicle to generate a message and operate the application 250.
  • the internal clock of the vehicle can be synchronized with a GPS that provides Global Management Time (GMT), which provides the same time information to all ITS stations.
  • GTT Global Management Time
  • the accuracy of the GPS can be determined as accurately as possible from information on CAN-BUS based on changes in the direction and speed of the vehicle and information using the "path history" received via the CAM.
  • Such data may be continuously used by the application of LDM 220.
  • the location of the vehicle may be delivered according to a given frequency (eg every 15 seconds) if the "ITSS-R emulation" application subscribes to the LDM MGNT function.
  • VDP Vehicle Data Provisioning
  • CAN-BUS Vehicle Data Provisioning
  • DENM decentralized environmental notification message
  • LDM 220 may locate an object that moves dynamically while the vehicle is in motion and store it locally in a database.
  • Each object vehicle, traffic light, ITSS-R, POI, etc.
  • various dynamic data elements eg, vehicle location, speed and direction
  • an ITS station with an LDM may itself be part of the LDM.
  • LDM management entities can allow applications and other CPU functional entities to connect to the CPU to store or use data elements in performing actions such as comparing the vehicle's route, taking into account road hazards. have. LDM contains only 'local' dynamic objects. Therefore, it is necessary to define regional areas for the regulation of such regions, and for this purpose, the LDM management entity can manage whether the data is related to the defined geographic area.
  • the CAM / DENM basic service entity 240 for the LDM 220 as described above proposes to additionally provide a Pre-CAM basic service according to an embodiment of the present invention. That is, in addition to the existing current vehicle location / path information-based CAM / DENM, the pre-CAM service 240 based on the prediction path information is provided, and the pre-CAM has one or more estimated location information and the estimated location as described above. It may include one or more of kinematic predictions in.
  • the LDM generated based on the Pre-CAM may be defined as the Pre-LDM 260 separately from the existing LDM 220.
  • the pre-LDM 260 may include predicted traffic information generated in consideration of at least one of predicted location information and kinematic prediction at the predicted location.
  • this Pre-LDM 260 is configured separately from the existing LDM 220.
  • the application 250 for the Pre-CAM-based operation as described above may be added at the application level.
  • the mobile ITS station can be both the sender / receiver of the pre-CAM, and the RSE (Road Side Entity) is basically the receiver of the pre-CAM, but in some cases moves to the RSE close to the point in question. It may be a sender delivering a pre-CAM received from an ITS station. In addition, when operating based on 3GPP, eNB or gNB may receive / deliver / response pre-CAM from UE (Mobile ITS Station) without separate RSE.
  • UE Mobile ITS Station
  • the message based on the expected path has been described as a pre-CAM, for example, but may have a form of a pre-BSM (Basic Safety Message) in some cases.
  • FIG. 3 is a diagram illustrating a message service operation according to an embodiment of the present invention.
  • Pre-CAM / Pre-BSM may be generated based on information obtained from a navigation service of a mobile ITS station.
  • location information may be obtained from a navigation service of a mobile ITS station
  • kinematic information may be obtained from a network service and a CAN service.
  • the Pre-CAM / Pre-BSM locator 310 and the Pre-CAM / Pre-BSM kinematic estimator 320 may be configured separately.
  • Pre-CAM / Pre-BSM may be generated and transmitted through the Pre-CAM / Pre-BSM message service entity 330 based on the expected location and the kinematic information generated from such entities.
  • Pre-CAM may be a concept including Pre-BSM.
  • FIG. 4 is a diagram illustrating an example of transmitting a Pre-CAM through a WSM according to an embodiment of the present invention.
  • WSM Wi-Fi Short Message
  • PSSCH Physical Sidelink Shared Channel
  • the container configuring the message set 410 may include a general container 420 and a pre-CAM container 430.
  • the message structure that may be included in the Pre-CAM container 430 may be as follows.
  • the PreRangeList data frame consists of a list of PreRange entities.
  • PreCAMContainer :: SEQUENCE ⁇ preLocation DF_PreRangeList ⁇
  • the Pre-CAM may include an identifier (id) corresponding to each estimated position information, a data valid time (DataEfficientTime), a message generation time (msgGenerationTime), and probability information (LikelihoodValue) that will pass through each estimated position.
  • the identifier id corresponding to the expected position information is preferably designated as a unique value for each PR (Pre Range).
  • the probability information (LikelihoodValue) shows an example of displaying a probability of passing through each expected position through a numerical value of 1 to 15, but it is not necessarily limited thereto, and may be expressed as a general probability.
  • each predicted position information and a set of probability information may be included in the pre-CAM only when the value of the probability information is equal to or greater than a predetermined reference. For example, if the probability of passing a specific point is 50% or more, the estimated position and the sliding information to pass through it may be included.
  • only one predicted path may be defined as the currently determined predicted path, and may include only information on predicted location points to pass in the predicted path.
  • a message set 410 including such a Pre-CAM container 430 may be included in the WSM data field 440 generated by the WSMP layer, which message may then be LLC layer, MAC layer. And wirelessly via the PHY layer.
  • 5 and 6 are diagrams for explaining a process at the pre-CAM sender side and a process at the receiver side according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a processor on the side of a sender of a Pre-CAM, for example, a mobile ITS station.
  • the mobile ITS station may start the navigation and CAN service (S510), thereby determining whether location selection and kinematic estimation are possible based on the expected path as described above with reference to FIG. 3 (S520).
  • the pre-CAM may be configured based on this.
  • the Pre-CAM may be configured to include only information on an advantage of having a probability of 50% or more passing through a specific expected point.
  • the Pre-CAM may be configured to include only information on a route point according to the most preferred predicted route.
  • the mobile ITS station may broadcast the pre-CAM configured as described above to a plurality of receivers (S540). That is, in addition to transmitting to the nearest RSE, the pre-CAM configured as described above can be transmitted to a plurality of receivers in the coverage.
  • the Pre-LDM may be received from the receiving side (eg, RSE, eNB / gNB) within a predetermined time (S550).
  • the configuration of the Pre-LDM may vary, but may have the following form.
  • PreLDMContainer SEQUENCE ⁇ dataEfficientTime DTime, msgGenerationTime DTime, preLDM DF_PreLDM-Typical LDM format
  • TSIContainer SEQUENCE ⁇ dataEfficientTime DTime, msgGenerationTime DTime, averageSpeed DE_Speed, Density INTEGER (1..15)
  • the Pre-LDM may include data effective time (dataEfficientTime) and message generation time (msgGenerationTime) information as shown in Table 2, and may further include real-time traffic information (TSI) of Table 3 as preLDM information. .
  • dataEfficientTime data effective time
  • miGenerationTime message generation time
  • TTI real-time traffic information
  • the TSI of Table 3 may include congestion information (Density) for each estimated location generated in consideration of the estimated location information received from the plurality of stations.
  • Density congestion information
  • the data valid time, message generation time, average speed information, and the like may be included.
  • the above-described TSI may be referred to as pre-TSI in order to distinguish it from information indicating average speed and congestion degree of a specific point using only current traffic conditions.
  • Such TSI or pre-TSI may be included in the pre-LDM or received separately.
  • the mobile ITS station which has received such information may determine whether to change the estimated movement path initially determined in consideration of this information (S560).
  • the receiving side of the pre-CAM may be an RSE, and may be an eNB / gNB in 3GPP based communication.
  • the pre-CAM receiving side may first determine whether the pre-CAM is received (S610). When the pre-CAM is received, the received pre-CAM may be checked and a predetermined number of pre-CAM information may be grouped (S620). The grouping may be performed in consideration of the estimated arrival time for each vehicle at a specific point (for example, an intersection) based on the information included in the Pre-CAM. Based on the grouped information, the receiving side of the pre-CAM may configure the pre-LDM (including the pre-TSI) and transmit it to the mobile ITS station or to the RSE adjacent to the mobile ITS station.
  • pre-LDM including the pre-TSI
  • FIG. 7 is a diagram for describing a process of changing a movement path using Pre-CAM according to one embodiment of the present invention.
  • a specific vehicle transmits a pre-CAM according to an initial first predicted movement path and receives a pre-LDM accordingly, but changes the movement path to a second predicted movement path based on the pre-LDM. It may be desirable to inform other vehicles by reflecting this.
  • the mobile ITS station periodically transmits a pre-CAM, and if the expected movement path is changed, it is proposed to solve the above-mentioned problem by reflecting it to the next transmitted pre-CAM. .
  • the mobile ITS station S710 that has transmitted 1 st pre-CAM according to the first expected movement path may receive 1 st Pre-LDM correspondingly (S720).
  • 1 st Pre-LDM correspondingly
  • Ten thousand and one can move ITS station to send a case of changing a first expected travel path to the second expected travel path on the basis thereof in the 2 nd pre-CAM that is transmitted in the next cycle contains the information about it (S730).
  • 2 nd pre-CAM will still be the first message based on the estimated movement path, as the case may be transmitted is omitted.
  • FIG. 8 is a diagram for explaining the priority of pre-CAM transmission according to an embodiment of the present invention.
  • the mobile ITS station may transmit safety related information as well as data for the user's convenience. As such, safety-related information has high reliability and is often sensitive to delay.
  • an embodiment of the present invention proposes a method of operating the priority of the above-described pre-CAM transmission at a lower priority than the transmission of information related to stability (for example, an emergency message).
  • Judgment on whether to transfer the 2 nd pre-CAM at the same time at the time may be determined in consideration of the transmit power limits, limit of the resource area of the mobile station ITS.
  • 9 to 11 are diagrams for explaining examples of applying and operating the embodiments of the present invention.
  • FIG. 9 and FIG. 10 illustrate an example of operating based on DSRC
  • FIG. 11 illustrates an example of operating based on 3GPP LTE-A or NR.
  • 9 illustrates a case in which a pre-LDM is generated by a road side unit (RSU)
  • FIG. 10 illustrates a case in which an entity managing a plurality of RSUs generates a pre-LDM.
  • RSU road side unit
  • vehicle A may first transmit information about three intersections indicated by arrows in FIGS. 9 and 10 to pre-CAM based on its expected movement path.
  • PR1 represents a range including three intersections
  • PR 2 to 6 also represent a concept including intersections within a predetermined range.
  • vehicle B and vehicle C may also transmit the pre-CAM to the corresponding RSU in consideration of their respective positions and expected routes.
  • FIG. 9 illustrates a case where each RSU (RSU 1, RSU 2, RSU 3) configures pre-LDM based on the received pre-CAM.
  • FIG. 10 illustrates an example in which a traffic manager managing RSUs 1 to 3 configures pre-LDMs for five PRs.
  • each vehicle may determine whether to maintain / change its own route.
  • FIG. 11 illustrates a case of using a 3GPP LTE-A based interface unlike in FIGS. 9 and 10. However, the same may be applied to the case of using the NR based interface.
  • the interface between a user equipment (UE) and an E-UTRAN through an eNB / gNB is defined as a Uu interface, and the link from the UE to the E-UTRAN is uplink, and the link from the E-UTRAM to the UE is downlinked. It is prescribed by link.
  • a link between UEs is defined as a PC5 interface as shown in FIG. 11, and is defined as Sidelink in a lower layer.
  • an eNB / gNB of an E-UTRAN may operate as an RSU or a specific UE may operate as an RSU in some cases.
  • the vehicle A, the vehicle B, and the vehicle C may transmit the pre-CAM to the E-UTRAN through the Uu interface. May transmit to another UE. As described above, this may be determined differently depending on whether the operation of the RSU is an E-UTRAN or another UE.
  • the mobile ITS station of a vehicle located within the coverage of the E-UTRAN is determined to be an in-coverage UE, and the pre-CAM is transmitted to the E-UTRAN, and the mobile ITS station of the vehicle located outside the coverage of the E-UTRAN is out-of. It may be determined as a coverage UE and transmit the pre-CAM to another UE (eg, a sync reference UE).
  • the E-UTRAN / UE receiving the pre-CAM may configure the pre-LDM by grouping one or more received pre-CAM information.
  • the grouping method may differ depending on whether the receiver of the Pre-CAM is an E-UTRAN or another UE.
  • the E-UTRAN / UE configuring the pre-LDM may transmit the downlink / sidelink to the mobile ITS station of each vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

이동 ITS (Intelligent Transport System) 스테이션의 이동 경로 결정 방법 및 이를 위한 장치를 제안한다. 이동 ITS 스테이션은 자신의 제 1 예측 이동 경로를 고려하여, (a) 하나 이상의 예상위치 정보 및 (b) 상기 하나 이상의 예상 위치에서의 키네매틱(kinematic) 예측치, 중 하나 이상을 포함하는 제 1 메시지를 전송하고, 상기 제 1 메시지를 고려하여 생성된 예상교통정보를 제 2 메시지를 통해 수신하며, 상기 제 2 메시지의 예상교통정보에 기반하여 상기 제 1 예측 이동 경로를 제 2 예측 이동 경로로 변경할 것인지를 판단하는 것을 제안한다.

Description

예상경로 기반 이동경로 결정방법 및 이를 위한 이동 ITS 스테이션
본 문서는 이동 ITS (Intelligent Transport System) 스테이션의 동작에 대한 것으로서, 보다 상세하게는 이동 ITS 스테이션이 예상경로 기반으로 이동경로를 결정하는 방법 및 이를 위한 이동 ITS 스테이션의 구성에 대한 것이다.
차량은 전통적으로 사용자의 이동 수단으로 기능하지만, 사용자의 편의를 위해 각종 센서와 전자 장치 등을 구비하여 사용자의 운전 편의를 제공하고 있다. 특히 사용자의 운전 편의를 위한 운전자 보조 시스템(ADAS: Advanced Driver Assistance System) 및 더 나아가 자율주행차량(Autonomous Vehicle)에 대한 개발이 활발하게 이루어 지고 있다.
상술한 ADAS 및 자율주행차량에 대한 기술은 초기 센싱 기반 기술에서부터 시작되어, 더 나아가 V2X (Vehicle-to-Everything) 통신 기반으로 그 서비스 범위를 넓혀 나아가고 있다.
V2X는 V2V(Vehicle-to-Vehicle), V2I(Vehicle-to-Infrastructure), V2P(Vehicle-to-Pedestrian) 등을 포함하는 기술로서 IEEE 및 3GPP에서 아래와 같이 표준화 과정을 통해 발전되고 있다.
먼저, IEEE에서는 2010년 WAVE (Wireless Access for the Vehicular Environment)를 개발하였으며, 이는 IEEE 802.11p의 형태로 차량통신을 위한 물리계층과 MAC계층에 대한 기술 규정과, IEEE 1609의 형태로 보안, 네트워크 관리 등을 기술하는 것을 포함하는 개념이다. 한편, 이러한 기술에 기반하여 최근 DSRC (Dedicated Short-Range Communication) 기술은 도로 안전과 관련된 ITS (Intelligent Transport System)에 대한 어플리케이션 기술이다. 최근 ETSI는 이러한 기술에 기반하여 ITS-G5를 개발하였으며, ITS-G5는 차량간통신을 위한 상위계층 기술로 하위계층은 기존 IEEE 802.11p 기술을 그대로 이용하고 있다.
한편, 차량 통신을 위해 3GPP에서는 기 규정된 Sidelink에 대한 기술을 확장하여, LTE Release 14에서는 V2X를 위한 모드로서 모드 3/4를 규정하였다. 아울러, 5세대 통신인 NR (New RAT)에서는 eV2X라는 이름으로 차량간 통신을 위한 기술에 대해 연구하고 있다.
차량의 이동경로는 차량 내 네비게이션 시스템에 의해 결정되고 있으며, 최근에는 실시간 교통정보를 반영하여 혼잡한 경로를 회피하여 이동경로를 결정할 수 있다.
다만, 본 발명의 일 측면에서는 상술한 바와 같은 V2X 기술의 발달에 따라 단순히 현재의 교통정보에 기반하여 차량의 이동경로를 결정하는 것이 아니라, 각 V2X 차량의 예상이동경로를 고려하여 보다 효율적으로 차량의 이동경로를 결정하는 방식을 제안하고자 한다. 이를 위한 본 발명의 실시예들에서는 기존 V2X 기술을 개선하여 효율적으로 차량의 이동경로를 결정하는 방법, 이를 위한 메시지의 전송 방식 및 구조, 그리고 이를 지원하기 위한 ITS 스테이션 구성에 대해 제안하고자 한다.
본 발명의 과제는 상술한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에서는 이동 ITS (Intelligent Transport System) 스테이션의 이동 경로 결정 방법에 있어서, 상기 이동 ITS 스테이션의 제 1 예측 이동 경로를 고려하여, (a) 하나 이상의 예상위치 정보 및 (b) 상기 하나 이상의 예상 위치에서의 키네매틱(kinematic) 예측치, 중 하나 이상을 포함하는 제 1 메시지를 전송하고, 상기 제 1 메시지를 고려하여 생성된 예상교통정보를 제 2 메시지를 통해 수신하고, 상기 제 2 메시지의 예상교통정보에 기반하여 상기 제 1 예측 이동 경로를 제 2 예측 이동 경로로 변경할 것인지를 판단하는 것을 포함하는, 이동 경로 결정 방법을 제안한다.
상기 제 1 메시지는 상기 이동 ITS 스테이션의 네비게이션 서비스로부터 획득된 정보에 기반하여 생성될 수 있다.
상기 제 1 메시지는, 각각의 예상위치 정보에 대응하는 식별자, 데이터 유효 시간, 메시지 생성 시간 및 상기 각각의 예상위치를 경유하게 될 확률 정보를 포함할 수 있다.
상기 각각의 예상위치 정보와 상기 각각의 예상위치를 경유하게될 확률 정보의 세트는 상기 확률 정보의 값이 소정 기준 이상인 세트에 한하여 상기 제 1 메시지에 포함될 수 있다.
상기 제 2 메시지는, 상기 이동 ITS 스테이션을 포함하는 복수의 스테이션으로부터 수신한 예상위치 정보를 고려하여 생성된 각 예상위치별 혼잡도 정보를 포함할 수 있다.
상기 제 1 메시지는 상기 하나 이상의 예상위치 정보 각각에 대응하는 도착예정시간 정보를 포함할 수 있으며, 상기 제 2 메시지는 상기 각각의 예상위치 정보 및 이에 대응하는 도착예정시간 정보를 고려하여 생성된 예상교통정보를 포함할 수 있다.
상기 제 1 메시지는 현재 위치 정모 및 상기 현재 위치에 대응하는 키네매틱 정보를 추가적으로 포함하여, CAM (Cooperative Awareness Message)을 통해 전송될 수 있다.
상기 제 2 메시지는 현재 위치 정보 및 상기 현재 위치에 대응하는 키네매틱 정보에 추가적으로 상기 예상위치 정보 및 상기 예상 위치에서의 키네매틱 예측치 중 하나 이상을 고려하여 생성되는 예상교통정보를 포함하는 LDM (Local Dynamic Map) 형태로 수신될 수 있다.
상기 이동 ITS 스테이션은 상기 제 1 메시지를 주기적으로 전송할 수 있으며, 제 1 주기에서 상기 제 1 메시지 전송 및 상기 제 2 메시지 수신에 따라 상기 제 1 예측 이동 경로를 상기 제 2 예측 이동 경로로 변경한 경우, 제 2 주기에서 전송되는 상기 제 1 메시지는 상기 제 2 예측 경로를 고려하여 생성된 정보를 포함할 수 있다.
상기 제 1 메시지를 전송하는 주기에 해당하는 시점에 상기 이동 ITS 스테이션이 긴급 신호를 전송하는 경우, 상기 긴급 신호 전송에 높은 우선순위를 부여하여 전송할 수 있다.
한편, 본 발명의 다른 일 측면에서는 예상위치 정보에 기반하여 이동경로를 결정하는 이동 ITS (Intelligent Transport System) 스테이션에 있어서, 상기 ITS 스테이션의 제 1 예측 이동 경로를 고려하여 하나 이상의 예상위치 정보 및 상기 예상 위치에서의 키네매틱(kinematic) 예측치 중 하나 이상을 포함하는 제 1 메시지를 전송하고, 상기 제 1 메시지를 고려하여 생성된 예상교통정보를 제 2 메시지를 통해 수신하는 송수신기; 및 상기 제 1 메시지를 생성하여 상기 송수신기에 제공하며, 상기 제 2 메시지를 상기 송수신기로부터 수신하여 처리하는 프로세서를 포함하되, 상기 프로세서는 상기 제 2 메시지의 예상교통정보에 기반하여 상기 제 1 예측 이동 경로를 제 2 예측 이동 경로로 변경할 것인지를 판단하도록 구성되는, 이동 ITS 스테이션을 제안한다.
상기 이동 ITS 스테이션은 네비게이션 서비스를 제공하는 네비게이션 시스템을 추가적으로 포함할 수 있으며, 상기 프로세서는 상기 네비게이션 시스템으로부터 획득된 정보에 기반하여 상기 제 1 메시지를 생성할 수 있다.
상기 프로세서는, 어플리케이션 계층(application layer)에서 예상위치 기반 이동경로 결정을 수행하기 위한 어플리케이션; 상기 제 1 메시지 관리를 위한 메시지 관리 기능 블록; 및 상기 제 2 메시지 관리를 위한 기능 블록을 포함할 수 있다.
상기 제 1 메시지 관리를 위한 메시지 관리 기능 블록은 CAM (Cooperative Awareness Message) 관리 기능 블록을 포함할 수 있으며, 상기 제 2 메시지 관리를 위한 기능 블록은 LDM (Local Dynamic Map) 관리 기능 블록을 포함할 수 있다.
한편, 본 발명의 또 다른 일 측면에서는 이동 ITS 스테이션의 이동 경로 결정을 보조하는 방법에 있어서, 하나 이상의 이동 ITS 스테이션 각각의 예측 이동 경로를 고려하여 생성된 (a) 하나 이상의 예상위치 정보 및 (b) 상기 하나 이상의 예상 위치에서의 키네매틱(kinematic) 예측치 중 하나 이상을 포함하는 제 1 메시지를 수신하고, 상기 제 1 메시지를 고려하여 생성된 예상교통정보를 상기 하나 이상의 이동 ITS 스테이션에 제 2 메시지를 통해 전송하는 것을 포함하는, 이동 경로 결정 보조 방법을 제안한다.
마지막으로, 본 발명의 또 다른 일 측면에서는 이동 ITS 스테이션의 이동 경로 결정을 보조하는 장치에 있어서, 하나 이상의 이동 ITS 스테이션 각각의 예측 이동 경로를 고려하여 생성된 (a) 하나 이상의 예상위치 정보 및 (b) 상기 하나 이상의 예상 위치에서의 키네매틱(kinematic) 예측치 중 하나 이상을 포함하는 제 1 메시지를 수신하는 송수신기; 및 상기 송수신기에 의해 수신된 상기 제 1 메시지를 고려하여 생성된 예상교통정보를 포함하는 제 2 메시지를 생성하여 상기 송수신기에 전달하는 프로세서를 포함하되, 상기 송수신기는 상기 제 2 메시지를 상기 하나 이상의 이동 ITS 스테이션에 전송하는, 이동 경로 결정 보조 장치를 제안한다.
상술한 바와 같은 본 발명의 실시예들에 따르면 현재의 교통정보에 기반하여 차량의 이동경로를 결정하는 것이 아니라, 각 V2X 차량의 예상이동경로를 고려하여 보다 효율적으로 차량의 이동경로를 결정하여 교통혼잡도를 감소시킬 수 있다.
또한, 기존 V2X 통신 방식에 최소한의 영향을 주면서 예상경로 기반 서비스를 제공하도록 함으로써, 기술 활용도를 높일 수 있다.
본 발명의 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 차량의 외부 구조를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 이동 ITS 스테이션의 프로토콜 스택을 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 메시지 서비스 동작을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따라 Pre-CAM을 WSM을 통해 전송하는 예를 도시한 도면이다.
도 5 및 도 6은 본 발명의 일 실시예에 따라 Pre-CAM 송신자 측면에서의 프로세스와 수신자 측면에서의 프로세스를 설명하기 위한 도면이다.
도 7은 본 발명의 일 실시예에 따라 Pre-CAM을 활용하여 이동경로를 변경하는 경우의 처리를 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따라 pre-CAM 전송의 우선순위를 설명하기 위한 도면이다.
도 9 내지 도 11은 본 발명의 실시예들을 적용하여 운용하는 예들을 설명하기 위한 도면이다.
이하, 본 발명에 따른 바람직한 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시예들을 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 알 것이다.
이하의 설명에서 사용되는 '이동 ITS 스테이션'라는 용어는 상술한 바와 같은 차량간 통신을 지원하는 스마트 차량 그 자체일 수도, 차량에 승차한 사용자가 소지한 별도의 스테이션, OBU (On-Board Unit), 또는 UE (User Equipment)일 수도 있다. 또한, 이하의 설명에서 이해의 편의를 위해 V2X 기술 중 DSRC 기반으로 예를 들어 설명하더라도 이는 예시적인 것이며, 본 발명에서 제안하는 내용은 3GPP 기반의 V2X 또는 eV2X에도 동일한 방식으로 적용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 차량의 외부 구조를 도시한 도면이다.
본 발명의 일 실시예에 따른 차량은 CAN-BUS (Controller Area Network BUS; 101), TCU (Telematics Control Unit; 102), 자율차량 이미징 및 스케닝 유닛 (104), V2X 통신 유닛 (105) 등을 포함할 수 있다. CAN-BUS(101)는 차량 내부 전자제어유닛들 사이의 내부 통신 브릿지 역할을 수행하며, TSU(102)는 CAN-BUS(101)를 외부 시스템과 연결할 수 있다. 자율차량 이미징 및 스케닝 유닛 (104)은 LIDAR, 레이더, 초음파 센서 또는 외부 카메라를 이용하여 차량 주위의 정보를 처리할 수 있으며, V2X 통신 유닛 (105)는 상술한 DSRC/3GPP 기반의 V2X 방식으로 통신을 수행할 수 있다.
이하의 설명에서 이동 ITS 스테이션의 프로세서는 차량 탑승자가 별도로 휴대한 스테이션의 프로세서일 수도, 상술한 구성에서 TCU (102) 또는 CPU(미도시)일 수 있다. 또한, 이하의 설명에서 이동 ITS 스테이션의 송수신기는 차량 탑승자가 별도로 휴대한 스테이션의 송수신기일 수도, 상술한 구성에서 V2X 통신 유닛(105)일 수도 있다.
한편, 도 1에 예시된 스마트 차량은 타이머 압력 센서(107), 외부 데이터 저장부(105), 제3자 모니터링부(106) 등을 통해 더 효율적으로 사용자에게 편의를 제공할 수 있으나, 이는 예시적인 것이다.
상술한 바와 같이, 본 발명의 일 측면에서는 V2X 기술의 발달에 따라 단순히 현재의 교통정보에 기반하여 차량의 이동경로를 결정하는 것이 아니라, 각 V2X 차량의 예상이동경로를 고려하여 보다 효율적으로 차량의 이동경로를 결정하는 방식을 제안하고자 한다. 이를 위해 본 발명의 일 실시예에 따른 이동 ITS 스테이션은 자신의 제 1 예측 이동 경로를 고려하여, (a) 하나 이상의 예상위치 정보 및 (b) 상기 하나 이상의 예상 위치에서의 키네매틱(kinematic) 예측치, 중 하나 이상을 포함하는 제 1 메시지를 전송하고, 상기 제 1 메시지를 고려하여 생성된 예상교통정보를 제 2 메시지를 통해 수신하고, 상기 제 2 메시지의 예상교통정보에 기반하여 상기 제 1 예측 이동 경로를 제 2 예측 이동 경로로 변경할 것인지를 판단하는 것을 제안한다.
여기서, 제 1 메시지는 CAM (Cooperative Awareness Message) 형태로 전송될 수 있으며, 이하에서 기존 CAM과 구분하여 예측정보에 기반한 CAM으로서 'pre-CAM'이라 지칭하기로 한다. 이러한 pre-CAM은 기존 CAM/BSM을 통해 전송될 수 있으며, 이하에서 더 구체적으로 설명한다.
한편, 제 2 메시지는 LDM (Local Dynamic Map) 형태로 수신될 수 있으며, 현재 위치 정보 및 상기 현재 위치에 대응하는 키네매틱 정보에 추가적으로 예상위치 정보 및 상기 예상 위치에서의 키네매틱 예측치 중 하나 이상을 고려하여 생성되는 예상교통정보를 포함하는 점에서 'pre-LDM'이라 지칭하기로 한다.
이와 같이 pre-CAM 기반으로 생성되는 pre-LDM 기반으로 교통혼잡을 방지하기 위한 이동경로 결정 메커니즘을 구현하기 위해 다음과 같은 실시예들을 제안한다.
도 2는 본 발명의 일 실시예에 따른 이동 ITS 스테이션의 프로토콜 스택을 도시한 도면이다.
현재 LTE-A/NR에서의 V2X 지원을 위한 프로토콜 스텍은 논의 중에 있으며, 이에 따라 도 2의 프로토콜 스텍은 ITS-G5의 프로토콜 스텍을 기반으로 본 발명을 지원하기 위한 추가 구성을 예시적으로 도시한 도면이다. 다만, 이하의 설명을 통해 동일한 원리에서 LTE/NR 기반으로 추후 규정될 프로토콜 스텍에 본 발명의 적용될 수 있음은 당업자에게 자명할 것이다.
도 2의 실시예에서 POTI (Position and Time Management; 210) 기능은 차량이 메시지를 생성하고 어플리케이션(250)을 동작시키기 위해 필요한 위치 데이터(위도, 경도 및 고도)와 시간 정보를 제공할 수 있다. 이를 위해 차량의 내부 클럭(clock)은 모든 ITS 스테이션들에게 동일한 시간 정보를 제공하는 GMT(Global Management Time)를 제공하는 GPS와 동기화될 수 있다. GPS의 정확도는 차량의 방향 및 속도의 변화에 기반한 CAN-BUS의 정보, CAM을 통해 수신된 "경로 이력"을 활용한 정보 등을 통해 가능한 정확하게 결정될 수 있다.
이러한 데이터는 LDM (220)의 어플리케이션에 의해 지속적으로 이용될 수 있다. 특히, 차량의 위치는 "ITSS-R 에뮬레이션" 어플리케이션이 LDM MGNT 기능을 구독한 경우, 주어진 빈도수(예를 들어, 매 15초)에 따라 전달될 수 있다.
VDP (Vehicle Data Provisioning; 230) 엔터티는 차량의 전자적 성능에 기반하여 CAN-BUS로부터 고정된 주기(예를 들어, 매 50 msec)로 차량 데이터 제공을 수행할 수 있으며, 이러한 데이터는 LDM에 저장되어 이를 필요로 하는 기능 엔터티들 (메시지 어플리케이션 및 관리 기능 엔터티)에 공유될 수 있다. 만일, CAN-BUS로의 접속이 가능하지 않은 경우, 차량은 CAM을 전송하지 않고, 트리거링 및 중지가 수동으로 결정되거나 지역 제어자에 의해 결정되는 DENM (Decentralized Environmental Notification Message)를 전송할 수 있다.
LDM (220)은 차량이 운행되는 동안 동적으로 이동하는 오브젝트를 위치화시킬 수 있으며, 이를 국지적으로 데이터베이스에 저장할 수 있다. 각각의 오브젝트들 (차량, 신호등, ITSS-R, POI 등)은 어플리케이션 및 다른 시스템 기능 엔터티에 유용한 다양한 동적 데이터 요소(예를 들어, 차량의 위치, 속도 및 방향)와 연관될 수 있다. 또한, LDM을 가진 ITS 스테이션은 그 자체로 LDM의 일부일 수 있다.
LDM 관리 엔터티는 어플리케이션들과 다른 CPU 기능 엔터티들이, 도로의 위험 등을 고려한 차량의 경로 비교 등의 동작을 수행함에 있어 데이터 요소들을 저장할 것인지 여부, 사용할 것인지 여부 등을 위해 CPU에 접속할 수 있도록 할 수 있다. LDM은 '지역적인' 동적 오브젝트만을 포함한다. 따라서, 이러한 지역에 대한 규정을 위해 지역적인 영역을 규정할 필요가 있으며, 이를 위해 LDM 관리 엔터티는 규정된 지리적 영역과 관련된 데이터인지를 관리할 수 있다.
한편, 상술한 바와 같은 LDM (220)을 위한 CAM/DENM 기본 서비스 엔터티(240)는 본 발명의 일 실시예에 따라 Pre-CAM 기본 서비스를 추가적으로 제공하는 것을 제안한다. 즉, 기존의 현재 차량 위치/경로 정보 기반의 CAM/DENM에 추가적으로 예측 경로 정보에 기반한 Pre-CAM 서비스(240)를 제공하며, Pre-CAM은 상술한 바와 같이 하나 이상의 예상위치 정보 및 이러한 예상 위치에서의 키네매틱 예측치 중 하나 이상을 포함할 수 있다.
또한, 이러한 Pre-CAM에 기반하여 생성되는 LDM은 기존 LDM(220)과 별도로 Pre-LDM (260)으로 규정될 수도 있다. 이러한 pre-LDM (260)은 예상위치 정보 및 상기 예상 위치에서의 키네매틱 예측치 중 하나 이상을 고려하여 생성되는 예상교통정보를 포함할 수 있다. 도 2의 예에서는 이러한 Pre-LDM (260)이 기존 LDM(220)과 별도로 구성되는 경우를 도시하고 있으나, 이는 예시적인 것이며, 기존 LDM (220)이 Pre-LDM(260)으로서 추가되는 정보를 포함하는 형태로도 구성될 수 있다.
아울러 어플리케이션 레벨에서도 상술한 바와 같은 Pre-CAM 기반 동작을 위한 어플리케이션(250)이 추가될 수 있다.
이러한 방식에서 이동 ITS 스테이션은 pre-CAM의 송신자/수신자 모두가 될 수 있으며, RSE (Road Side Entity)는 기본적으로 pre-CAM의 수신자임을 가정하나, 경우에 따라서는 문제되는 지점에 가까운 RSE에게 이동 ITS 스테이션으로부터 수신한 pre-CAM을 전달하는 송신자일 수 있다. 아울러, 3GPP 기반으로 동작하는 경우 별도의 RSE 없이 eNB 또는 gNB가 UE(이동 ITS 스테이션)로부터의 pre-CAM을 수신하고/전달하고/응답할 수도 있다.
한편, 상술한 설명에서 예상경로에 기반한 메시지를 pre-CAM으로 예를 들어 설명하였으나, 경우에 따라 pre-BSM (Basic Safety Message)의 형태를 가질 수도 있다.
도 3은 본 발명의 일 실시예에 따른 메시지 서비스 동작을 설명하기 위한 도면이다.
도 3에 도시된 바와 같이 Pre-CAM/Pre-BSM은 이동 ITS 스테이션의 네비게이션 서비스로부터 획득된 정보에 기반하여 생성될 수 있다. 구체적으로 위치 정보는 이동 ITS 스테이션의 네비게이션 서비스로부터 획득될 수 있으며, 키네메틱 정보는 네티게이션 서비스 및 CAN 서비스로부터 획득될 수 있다.
도 3에 도시된 바와 같이 Pre-CAM/Pre-BSM 위치 결정자(310) 및 Pre-CAM/Pre-BSM 키네메틱 추정자(320)가 별도로 구성될 수 있다. 이와 같은 엔터티들로부터 생성된 예상위치 및 키네메틱 정보에 기반하여 Pre-CAM/Pre-BSM 메시지 서비스 엔터티(330)를 통해 Pre-CAM/Pre-BSM이 생성되어 전송될 수 있다.
위와 같은 Pre-CAM/Pre-BSM에 대한 언급에 있어서, 이를 '제 1 메시지'로 통칭하거나, 설명의 편의를 위해 'Pre-CAM'으로 통칭하여 설명하기로 한다. 다만, 이하에서 Pre-CAM은 Pre-BSM을 포함하는 개념일 수 있다.
도 4는 본 발명의 일 실시예에 따라 Pre-CAM을 WSM을 통해 전송하는 예를 도시한 도면이다.
WSM (WAVE Short Message)는 상술한 WAVE 기술에서 사용되는 단문 메시지이다. 다만, 상술한 Pre-CAM은 WAVE 방식뿐만 아니라 3GPP 기반 PSSCH (Physical Sidelink Shared Channel) 등을 통해 전송될 수 있을 것이다.
도 4의 예에서 메시지 세트(410)를 구성하는 컨테이너는 일반 컨테이너(420)와 Pre-CAM 컨테이너(430)를 포함할 수 있다. 이러한 Pre-CAM 컨테이너(430)에 포함될 수 있는 메시지 구조는 다음과 같을 수 있다.
PreRange ::= SEQUENCE { id PreRangeReferenceID, -- globally unique value for the PR dataEfficientTime DTime, msgGenerationTime DTime, likelihoodValue INTEGER (1..15) 쪋 }PreRangeList ::= SEQUENCE (SIZE(1..32)) OF PreRange Use: The PreRangeList data frame consists of a list of PreRange entities.PreCAMContainer ::= SEQUENCE { preLocation DF_PreRangeList}
즉, Pre-CAM은 각각의 예상위치 정보에 대응하는 식별자(id), 데이터 유효 시간(DataEfficientTime), 메시지 생성 시간(msgGenerationTime) 및 상기 각각의 예상위치를 경유하게 될 확률 정보(LikelihoodValue)를 포함할 수 있다. 여기서, 예상위치 정보에 대응하는 식별자(id)는 각 PR(Pre Range)에 대해 고유한 값으로 지정되는 것이 바람직하다. 그리고, 표 1에서 확률 정보(LikelihoodValue)는 각각의 예상위치를 경유하게 될 확률을 1부터 15까지의 수치를 통해 나타내는 예를 나타내었으나, 이에 한정될 필요는 없으며, 일반적인 확률로 표시될 수도 있다.
또한, 각각의 예상위치 정보와 각각의 예상위치를 경유하게될 확률 정보의 세트는 상기 확률 정보의 값이 소정 기준 이상인 세트에 한하여 Pre-CAM에 포함되도록 하는 것이 바람직할 수 있다. 예를 들어, 특정 지점을 통과할 확률이 50% 이상인 경우에 한하여 해당 예상위치와 이를 경유할 활융정보를 포함하게 할 수 있다. 또 다른 예로서, 현재 결정된 예상경로로서 하나의 예상경로만을 정하고, 이 예상경로에서 통과할 예상위치 지점들에 대한 정보만을 포함하도록 할 수도 있다.
다시 도 4를 참조하면, 이와 같은 Pre-CAM 컨테이너(430)를 포함하는 메시지 세트(410)는 WSMP 계층에서 생성하는 WSM 데이터 필드(440)에 포함될 수 있으며, 이러한 메시지는 이후 LLC 계층, MAC 계층 및 PHY 계층을 통해 무선으로 전송될 수 있다.
도 5 및 도 6은 본 발명의 일 실시예에 따라 Pre-CAM 송신자 측면에서의 프로세스와 수신자 측면에서의 프로세스를 설명하기 위한 도면이다.
먼저 도 5는 Pre-CAM의 송신자, 예를 들어 이동 ITS 스테이션측면에서의 프로세서를 도시한 도면이다.
먼저 이동 ITS 스테이션은 네비게이션 및 CAN 서비스를 시작하여(S510), 이를 통해 도 3과 관련하여 상술한 바와 같이 예상경로에 기반한 위치 선택 및 키네메틱 추정이 가능한지를 판단할 수 있다(S520). 도 3에서 상술한 바와 같이 위치/키네미틱 정보를 획득하는 경우(S530), 이에 기반하여 Pre-CAM을 구성할 수 있다. 이때 본 발명의 일 실시예에서는 특정 예상 지점을 경유할 확률이 50% 이상인 이점에 대한 정보만을 포함하여 Pre-CAM을 구성할 수 있다. 또 다른 실시예에서는 가장 선호하는 예상경로에 따라 경유하는 지점에 대한 정보만을 포함하여 Pre-CAM을 구성할 수 있다.
이동 ITS 스테이션은 이와 같이 구성된 pre-CAM을 복수의 수신측에 방송할 수 있다(S540). 즉, 가장 인접한 RSE에 전송하는 것뿐만 아니라 커버리지 내 복수의 수신측에 상술한 바와 같이 구성된 Pre-CAM을 전송할 수 있다.
이와 같이 Pre-CAM을 전송한 후 소정 시간 내에 수신측(예를 들어, RSE, eNB/gNB)로부터 Pre-LDM을 수신할 수 있다 (S550). Pre-LDM의 구성은 다양할 수 있으나, 다음과 같은 형태를 가질 수 있다.
PreLDMContainer ::= SEQUENCE { dataEfficientTime DTime, msgGenerationTime DTime, preLDM DF_PreLDM -- Typical LDM format
TSIContainer ::= SEQUENCE { dataEfficientTime DTime, msgGenerationTime DTime, averageSpeed DE_Speed, Density INTEGER (1..15)
즉, Pre-LDM은 표 2에 나타낸 바와 같이 데이터 유효시간(dataEfficientTime), 메시지생성시간(msgGenerationTime) 정보를 포함할 수 있으며, 추가적으로 preLDM 정보로서 표 3의 실시간교통정보(TSI)를 포함할 수 있다.
표 3의 TSI는 복수의 스테이션으로부터 수신한 예상위치 정보를 고려하여 생성된 각 예상위치별 혼잡도 정보(Density)를 포함할 수 있다. 또한, 표 3에 나타낸 TSI와 같이 데이터유효시간, 메시지 생성시간, 평균속도 정보 등을 포함할 수도 있다.
상술한 TSI는 기존에 현재 교통상태만을 이용하여 특정 지점의 평균속도 및 혼잡도를 나타내는 정보와 구분하기 위해 pre-TSI로 지칭될 수도 있다. 이와 같은 TSI 또는 pre-TSI는 pre-LDM에 포함되어, 또는 별도로 수신될 수 있다.
이와 같은 정보를 수신한 이동 ITS 스테이션은 이러한 정보를 고려하여 초기에 결정한 예상이동경로를 변경할 것인지 여부를 결정할 수 있다(S560).
한편, pre-CAM의 수신측에서의 동작은 도 6에 도시된 바와 같다. 먼저, pre-CAM의 수신측은 RSE일 수 있으며, 3GPP 기반 통신에서는 eNB/gNB일 수도 있다. 이러한 pre-CAM 수신측에서는 먼저 Pre-CAM 수신 여부를 판단할 수 있다(S610). Pre-CAM이 수신된 경우, 수신된 pre-CAM을 확인하고, 소정 개수의 pre-CAM 정보를 그룹핑할 수 있다(S620). 여기서 그룹핑은 Pre-CAM에 포함된 정보에 기반하여 특정 지점(예를 들어, 교차로)에서의 각 차량별 예상도착 시간을 고려하여 수행할 수 있다. 이와 같이 그룹핑된 정보에 기반하여 pre-CAM의 수신측은 (pre-TSI를 포함한) pre-LDM을 구성하고, 이를 이동 ITS 스테이션으로, 또는 이동 ITS 스테이션에 인접한 RSE에 전송할 수 있다.
도 7은 본 발명의 일 실시예에 따라 Pre-CAM을 활용하여 이동경로를 변경하는 경우의 처리를 설명하기 위한 도면이다.
예를 들어, 특정 차량이 최초 제 1 예측 이동 경로에 따라 pre-CAM을 전송하고, 이에 따라 pre-LDM을 수신하였으나, 이러한 pre-LDM을 기반으로 이동 경로를 제 2 예측 이동 경로로 변경한 경우, 이를 반영하여 다른 차량에 알려주는 것이 바람직할 수도 있다.
본 발명의 일 실시에에서는 이를 위해 이동 ITS 스테이션이 pre-CAM을 주기적으로 전송하고, 만일 예상 이동 경로가 변경된 경우 이를 다음번 전송되는 pre-CAM에 반영하여 전송함으로써 상술한 문제를 해결하는 것을 제안한다.
구체적으로, 도 7에 도시된 바와 같이 제 1 예상 이동 경로에 따른 1st pre-CAM을 전송한 이동 ITS 스테이션(S710)은 이에 대응하여 1st Pre-LDM을 수신할 수 있다(S720). 만일 이동 ITS 스테이션이 이에 기반하여 제 1 예상 이동 경로를 제 2 예상 이동 경로로 변경한 경우 다음 주기에 전송되는 2nd pre-CAM에 이에 대한 정보를 포함하여 전송할 수 있다(S730). 한편, 이동 ITS 스테이션이 2번째 주기에도 예상 이동 경로를 변경하지 않은 경우, 2nd pre-CAM은 여전히 제 1 예상 이동 경로에 기반한 메시지일 수 있으며, 경우에 따라서는 전송이 생략될 수도 있다.
도 8은 본 발명의 일 실시예에 따라 pre-CAM 전송의 우선순위를 설명하기 위한 도면이다.
이동 ITS 스테이션은 사용자의 편의를 위한 데이터뿐만 아니라 안전과 관련한 정보를 전송할 수 있다. 이와 같이 안전화 관련된 정보는 높은 신뢰도를 가지고, 지연에 매우 민감한 정보인 경우가 대부분이다.
이에 따라 본 발명의 일 실시예에서는 상술한 pre-CAM 전송의 우선순위를 안정과 관련된 정보(예를 들어, 긴급상황 메시지)의 전송보다 낮은 우선순위를 두고 운용하는 방안을 제안한다.
구체적으로, 도 8에 도시된 예에서 1st pre-CAM의 전송(S710) 및 이에 대응하여 1st pre-LDM의 수신(S720)은 상술한 바와 동일하다. 다만, 소정 주기(T)에 기반하여 2nd pre-CAM을 전송하는 시점에 차량에 긴급상황이 발생하는 경우(S810), 2nd pre-CAM을 전송하는 대신, 이러한 긴급상황과 관련된 메시지를 전송하는 것을 제안한다(S820).
해당 시점에 2nd pre-CAM을 동시에 전송할 수 있을지에 대한 판단은 이동 ITS 스테이션의 전송 전력 제한, 자원 영역의 제한 등을 고려하여 판단될 수 있다.
도 9 내지 도 11은 본 발명의 실시예들을 적용하여 운용하는 예들을 설명하기 위한 도면이다.
구체적으로 도 9 및 도 10은 DSRC 기반으로 동작하는 예를, 도 11은 3GPP LTE-A 또는 NR 기반으로 동작하는 예를 설명하기 위한 도면이다. 또한, 도 9는 pre-LDM을 RSU (Road Side Unit)이 각각 생성하는 경우를, 그리고 도 10은 복수의 RSU를 관장하는 엔터티가 pre-LDM을 생성하는 경우를 도시한 도면이다.
도 9 및 도 10의 예에서 먼저 차량 A는 자신의 예상이동경로에 기반하여 도 9 및 도 10에 화살표로 표기된 3개 교차로에 대한 정보를 pre-CAM으로 전송할 수 있다. 도 9 및 도 10에서 PR1은 이와 같이 3개 교차로를 포함하는 범위를 나타내며, PR 2 내지 6 역시 소정 범위 내의 교차로들을 포함하는 개념을 나타낸다.
동일한 방식으로 차량 B 및 차량 C 역시 각각의 위치 및 예상경로를 고려하여 pre-CAM을 대응되는 RSU에 전송할 수 있다.
한편, 도 9의 경우 각각의 RSU (RSU 1, RSU 2, RSU 3)이 수신된 pre-CAM에 기반하여 pre-LDM을 구성하는 경우를 도시하고 있다. 이와 달리, 도 10의 경우 RSU 1 내지 3을 관장하는 교통 관리자가 5개의 PR에 대한 pre-LDM을 구성하는 예를 도시하고 있다.
이와 같이 생성된 pre-LDM에 기반하여 각 차량은 자신의 이동경로를 유지/변경할지를 결정할 수 있다.
한편, 도 11은 도 9 및 도 10과 달리 3GPP LTE-A 기반의 인터페이스를 이용하는 경우를 도시하고 있다. 다만, NR 기반 인터페이스를 이용하는 경우에도 동일한 방식으로 적용될 수 있다.
3GPP 기반 셀룰러 시스템에서 UE (User Equipment)와 eNB/gNB을 통한 E-UTRAN 사이의 인터페이스는 Uu 인터페이스로 규정되며, UE로부터 E-UTRAN으로의 링크를 상향링크, E-UTRAM으로부터 UE로의 링크를 하향링크로 규정하고 있다. 또한, UE 사이의 링크는 도 11에 도시된 바와 같이 PC5 인터페이스로 규정되며, 하위계층에서 Sidelink로 규정되고 있다.
도 11에 도시된 바와 같이 경우에 따라 E-UTRAN의 eNB/gNB가 RSU로 동작할 수도, 특정 UE가 RSU로 동작할 수도 있다.
본 발명의 일 실시예에서 차량 A, 차량 B, 차량 C가 각각 자신의 예상이동경로 정보에 기반하여 pre-CAM을 생성한 경우, 이를 Uu 인터페이스를 통해 E-UTRAN에게 전송할 수도, PC5 인터페이스를 통해 다른 UE에게 전송할 수도 있다. 이는 상술한 바와 같이 RSU로 동작하는 것이 E-UTRAN인지, 다른 UE인지에 따라 달리 결정될 수 있다. 경우에 따라 E-UTRAN의 커버리지 내에 위치한 차량의 이동 ITS 스테이션은 In-Coverage UE로 판단되어 pre-CAM을 E-UTRAN에 전송하고, E-UTRAN의 커버리지 밖에 위치한 차량의 이동 ITS 스테이션은 Out-of-Coverage UE로 판단되어 pre-CAM을 다른 UE (예를 들어, sync reference UE)로 전송할 수도 있다.
상술한 바와 같이 pre-CAM을 수신한 E-UTRAN/UE는 수신된 하나 이상의 pre-CAM 정보를 그룹핑하여 pre-LDM을 구성할 수 있다. Pre-CAM의 수신자가 E-UTRAN인지 다른 UE인지에 따라 그룹핑 방식이 다를 수 있다. 이와 같이 pre-LDM을 구성한 E-UTRAN/UE는 이를 하향링크/Sidelink로 각 차량의 이동 ITS 스테이션에 전송할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 이상에서는 본 명세서의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 명세서의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 명세서의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
그리고 당해 명세서에서는 물건 발명과 방법 발명이 모두 설명되고 있으며, 필요에 따라 양 발명의 설명은 보충적으로 적용될 수 있다.
상술된 바와 같이 본 발명의 실시예들은 IEEE/3GPP 기반의 V2X가 활용되는 시스템을 예를 들어 설명하였으나, 동일한 원리가 적용되는 V2X 응용 시스템에 다양하게 활용될 수 있다.

Claims (16)

  1. 이동 ITS (Intelligent Transport System) 스테이션의 이동 경로 결정 방법에 있어서,
    상기 이동 ITS 스테이션의 제 1 예측 이동 경로를 고려하여, (a) 하나 이상의 예상위치 정보 및 (b) 상기 하나 이상의 예상 위치에서의 키네매틱(kinematic) 예측치, 중 하나 이상을 포함하는 제 1 메시지를 전송하고,
    상기 제 1 메시지를 고려하여 생성된 예상교통정보를 제 2 메시지를 통해 수신하고,
    상기 제 2 메시지의 예상교통정보에 기반하여 상기 제 1 예측 이동 경로를 제 2 예측 이동 경로로 변경할 것인지를 판단하는 것을 포함하는, 이동 경로 결정 방법.
  2. 제 1 항에 있어서,
    상기 제 1 메시지는 상기 이동 ITS 스테이션의 네비게이션 서비스로부터 획득된 정보에 기반하여 생성되는, 이동 경로 결정 방법.
  3. 제 1 항에 있어서,
    상기 제 1 메시지는, 각각의 예상위치 정보에 대응하는 식별자, 데이터 유효 시간, 메시지 생성 시간 및 상기 각각의 예상위치를 경유하게 될 확률 정보를 포함하는, 이동 경로 결정 방법.
  4. 제 3 항에 있어서,
    상기 각각의 예상위치 정보와 상기 각각의 예상위치를 경유하게될 확률 정보의 세트는 상기 확률 정보의 값이 소정 기준 이상인 세트에 한하여 상기 제 1 메시지에 포함되는, 이동 경로 결정 방법.
  5. 제 1 항에 있어서,
    상기 제 2 메시지는, 상기 이동 ITS 스테이션을 포함하는 복수의 스테이션으로부터 수신한 예상위치 정보를 고려하여 생성된 각 예상위치별 혼잡도 정보를 포함하는, 이동 경로 결정 방법.
  6. 제 1 항에 있어서,
    상기 제 1 메시지는 상기 하나 이상의 예상위치 정보 각각에 대응하는 도착예정시간 정보를 포함하며,
    상기 제 2 메시지는 상기 각각의 예상위치 정보 및 이에 대응하는 도착예정시간 정보를 고려하여 생성된 예상교통정보를 포함하는, 이동 경로 결정 방법.
  7. 제 1 항에 있어서,
    상기 제 1 메시지는 현재 위치 정모 및 상기 현재 위치에 대응하는 키네매틱 정보를 추가적으로 포함하여, CAM (Cooperative Awareness Message)을 통해 전송되는, 이동 경로 결정 방법.
  8. 제 1 항에 있어서,
    상기 제 2 메시지는 현재 위치 정보 및 상기 현재 위치에 대응하는 키네매틱 정보에 추가적으로 상기 예상위치 정보 및 상기 예상 위치에서의 키네매틱 예측치 중 하나 이상을 고려하여 생성되는 예상교통정보를 포함하는 LDM (Local Dynamic Map) 형태로 수신되는, 이동 경로 결정 방법.
  9. 제 1 항에 있어서,
    상기 이동 ITS 스테이션은 상기 제 1 메시지를 주기적으로 전송하며,
    제 1 주기에서 상기 제 1 메시지 전송 및 상기 제 2 메시지 수신에 따라 상기 제 1 예측 이동 경로를 상기 제 2 예측 이동 경로로 변경한 경우, 제 2 주기에서 전송되는 상기 제 1 메시지는 상기 제 2 예측 경로를 고려하여 생성된 정보를 포함하는, 이동 경로 결정 방법.
  10. 제 9 항에 있어서,
    상기 제 1 메시지를 전송하는 주기에 해당하는 시점에 상기 이동 ITS 스테이션이 긴급 신호를 전송하는 경우, 상기 긴급 신호 전송에 높은 우선순위를 부여하여 전송하는, 이동 경로 결정 방법.
  11. 예상위치 정보에 기반하여 이동경로를 결정하는 이동 ITS (Intelligent Transport System) 스테이션에 있어서,
    상기 ITS 스테이션의 제 1 예측 이동 경로를 고려하여 하나 이상의 예상위치 정보 및 상기 예상 위치에서의 키네매틱(kinematic) 예측치 중 하나 이상을 포함하는 제 1 메시지를 전송하고, 상기 제 1 메시지를 고려하여 생성된 예상교통정보를 제 2 메시지를 통해 수신하는 송수신기; 및
    상기 제 1 메시지를 생성하여 상기 송수신기에 제공하며, 상기 제 2 메시지를 상기 송수신기로부터 수신하여 처리하는 프로세서를 포함하되,
    상기 프로세서는 상기 제 2 메시지의 예상교통정보에 기반하여 상기 제 1 예측 이동 경로를 제 2 예측 이동 경로로 변경할 것인지를 판단하도록 구성되는, 이동 ITS 스테이션.
  12. 제 11 항에 있어서,
    상기 이동 ITS 스테이션은 네비게이션 서비스를 제공하는 네비게이션 시스템을 추가적으로 포함하며,
    상기 프로세서는 상기 네비게이션 시스템으로부터 획득된 정보에 기반하여 상기 제 1 메시지를 생성하는, 이동 ITS 스테이션.
  13. 제 11 항에 있어서,
    상기 프로세서는,
    어플리케이션 계층(application layer)에서 예상위치 기반 이동경로 결정을 수행하기 위한 어플리케이션;
    상기 제 1 메시지 관리를 위한 메시지 관리 기능 블록; 및
    상기 제 2 메시지 관리를 위한 기능 블록을 포함하는, 이동 ITS 스테이션.
  14. 제 13 항에 있어서,
    상기 제 1 메시지 관리를 위한 메시지 관리 기능 블록은 CAM (Cooperative Awareness Message) 관리 기능 블록을 포함하며,
    상기 제 2 메시지 관리를 위한 기능 블록은 LDM (Local Dynamic Map) 관리 기능 블록을 포함하는, 이동 ITS 스테이션.
  15. 이동 ITS 스테이션의 이동 경로 결정을 보조하는 방법에 있어서,
    하나 이상의 이동 ITS 스테이션 각각의 예측 이동 경로를 고려하여 생성된 (a) 하나 이상의 예상위치 정보 및 (b) 상기 하나 이상의 예상 위치에서의 키네매틱(kinematic) 예측치 중 하나 이상을 포함하는 제 1 메시지를 수신하고,
    상기 제 1 메시지를 고려하여 생성된 예상교통정보를 상기 하나 이상의 이동 ITS 스테이션에 제 2 메시지를 통해 전송하는 것을 포함하는, 이동 경로 결정 보조 방법.
  16. 이동 ITS 스테이션의 이동 경로 결정을 보조하는 장치에 있어서,
    하나 이상의 이동 ITS 스테이션 각각의 예측 이동 경로를 고려하여 생성된 (a) 하나 이상의 예상위치 정보 및 (b) 상기 하나 이상의 예상 위치에서의 키네매틱(kinematic) 예측치 중 하나 이상을 포함하는 제 1 메시지를 수신하는 송수신기; 및
    상기 송수신기에 의해 수신된 상기 제 1 메시지를 고려하여 생성된 예상교통정보를 포함하는 제 2 메시지를 생성하여 상기 송수신기에 전달하는 프로세서를 포함하되,
    상기 송수신기는 상기 제 2 메시지를 상기 하나 이상의 이동 ITS 스테이션에 전송하는, 이동 경로 결정 보조 장치.
PCT/KR2018/006005 2017-06-11 2018-05-28 예상경로 기반 이동경로 결정방법 및 이를 위한 이동 its 스테이션 WO2018230856A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/097,912 US20210270615A1 (en) 2017-06-11 2018-05-28 Method of determining moving path based on predictive path and mobile its station therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762517982P 2017-06-11 2017-06-11
US62/517,982 2017-06-11

Publications (1)

Publication Number Publication Date
WO2018230856A1 true WO2018230856A1 (ko) 2018-12-20

Family

ID=64660593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006005 WO2018230856A1 (ko) 2017-06-11 2018-05-28 예상경로 기반 이동경로 결정방법 및 이를 위한 이동 its 스테이션

Country Status (2)

Country Link
US (1) US20210270615A1 (ko)
WO (1) WO2018230856A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4462401A1 (en) * 2023-05-09 2024-11-13 Canon Kabushiki Kaisha Method, device, and computer program for announcing road usage in an intelligent transport system
GB2629794A (en) * 2023-05-09 2024-11-13 Canon Kk Method, device, and computer program for annoncing road using in an intelligent transport system
CN119028139B (zh) * 2024-10-29 2025-01-07 广州市声讯电子科技股份有限公司 一种交通控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241519A (ja) * 2004-02-27 2005-09-08 Xanavi Informatics Corp 交通情報予測装置
US20070213922A1 (en) * 2006-03-10 2007-09-13 Van Buer Darrel J Traffic notification system for reporting traffic anomalies based on historical probe vehicle data
JP2008020414A (ja) * 2006-07-14 2008-01-31 Aisin Aw Co Ltd 経路探索方法及びナビゲーション装置
US20100256836A1 (en) * 2009-04-06 2010-10-07 Gm Global Technology Operations, Inc. Autonomous vehicle management
KR20170050362A (ko) * 2015-10-30 2017-05-11 엘지전자 주식회사 차량운전 보조장치, 이를 포함하는 차량, 및 차량안전 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202776B2 (en) * 1997-10-22 2007-04-10 Intelligent Technologies International, Inc. Method and system for detecting objects external to a vehicle
US6246693B1 (en) * 1998-12-30 2001-06-12 Virginia Tech Intellectual Properties, Inc. One-way packet communication channel with retransmissions
US9377313B2 (en) * 2009-06-16 2016-06-28 Tomtom North America Inc. Methods and systems for creating digital street network database
EP3200428B1 (de) * 2016-01-26 2020-03-25 dSPACE digital signal processing and control engineering GmbH Computerimplementiertes verfahren zur implementierung einer v2x-anwendung
JP6291680B2 (ja) * 2016-04-26 2018-03-14 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241519A (ja) * 2004-02-27 2005-09-08 Xanavi Informatics Corp 交通情報予測装置
US20070213922A1 (en) * 2006-03-10 2007-09-13 Van Buer Darrel J Traffic notification system for reporting traffic anomalies based on historical probe vehicle data
JP2008020414A (ja) * 2006-07-14 2008-01-31 Aisin Aw Co Ltd 経路探索方法及びナビゲーション装置
US20100256836A1 (en) * 2009-04-06 2010-10-07 Gm Global Technology Operations, Inc. Autonomous vehicle management
KR20170050362A (ko) * 2015-10-30 2017-05-11 엘지전자 주식회사 차량운전 보조장치, 이를 포함하는 차량, 및 차량안전 시스템

Also Published As

Publication number Publication date
US20210270615A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US11683754B2 (en) Method and device for sidelink communication based on parameters
US10728723B2 (en) User terminal, RSU, method and program
US11215993B2 (en) Method and device for data sharing using MEC server in autonomous driving system
US10492087B2 (en) Wireless communication system, base station device, move control node, and method of wireless communication
JP6564142B2 (ja) 通信装置及びv2x通信の方法
US11743694B2 (en) Vehicle to everything object exchange system
US20180255525A1 (en) Communication device and communication method
US9723451B2 (en) Providing location information of a terminal in a communication network
US20190349952A1 (en) Terminal apparatus, base station, method, and recording medium
EP3475723B1 (en) Rss-based parking detection system and method thereof
WO2012057440A1 (en) Communication method of base station and target terminal
WO2018230856A1 (ko) 예상경로 기반 이동경로 결정방법 및 이를 위한 이동 its 스테이션
JP2012054799A (ja) 通信装置
KR101975759B1 (ko) 차량 간 통신 방법 및 이러한 방법을 수행하는 장치
US20230410655A1 (en) Method and apparatus for transmitting and receiving wireless signal in wireless communication system
WO2024177194A1 (ko) 서버와 rsu 장치가 v2x 서비스 관련 정보 항목을 공유하여 전달하는 동작 방법 및 장치
Wu et al. Design and implementation of distributed broadcast algorithm based on vehicle density for vanet safety-related messages
IT202100017540A1 (it) Sistema di sicurezza delle utenze stradali basato su informazioni in tempo reale
WO2020085550A1 (ko) V2x 통신 장치 및 그의 공유 채널 접근 방법
JP5787718B2 (ja) 情報配信システム、サーバ装置、移動体および情報配信方法
Prathombutr et al. A Study of Data Dissemination on Vehicular Ad Hoc Networks using IEEE802. 11p Communication System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818881

Country of ref document: EP

Kind code of ref document: A1