WO2018229978A1 - Printed circuit board - Google Patents
Printed circuit board Download PDFInfo
- Publication number
- WO2018229978A1 WO2018229978A1 PCT/JP2017/022361 JP2017022361W WO2018229978A1 WO 2018229978 A1 WO2018229978 A1 WO 2018229978A1 JP 2017022361 W JP2017022361 W JP 2017022361W WO 2018229978 A1 WO2018229978 A1 WO 2018229978A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring line
- pattern layer
- conductor pattern
- wiring
- conductor
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 131
- 239000003990 capacitor Substances 0.000 claims description 19
- 230000004907 flux Effects 0.000 claims description 18
- 229910000859 α-Fe Inorganic materials 0.000 claims description 3
- 238000009413 insulation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 71
- 230000003071 parasitic effect Effects 0.000 description 33
- 230000008878 coupling Effects 0.000 description 18
- 238000010168 coupling process Methods 0.000 description 18
- 238000005859 coupling reaction Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 230000006698 induction Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
Definitions
- the present invention relates to a printed wiring board having a noise filter.
- Patent Document 1 Japanese Patent Laid-Open No. 2017-34115 discloses a printed wiring board having a wiring pattern that can suppress deterioration of noise removal performance caused by such parasitic inductance.
- the printed wiring board disclosed in Patent Document 1 has a structure in which an upper wiring layer and a lower wiring layer are laminated via an insulating layer.
- first and second wiring lines extending in parallel with each other and arranged to face each other are formed.
- One end of the first wiring line is electrically connected to the bypass capacitor, and the other end of the first wiring line is in series with one end of the second wiring line through the lower wiring layer. It is connected.
- These first and second wiring lines are arranged to face each other so as to form a mutual inductance by magnetic coupling.
- the negative inductance appearing equivalently corresponding to the mutual inductance cancels out the parasitic inductance of the bypass capacitor and the connection wiring, so that the deterioration of the noise removal performance of the bypass capacitor can be suppressed.
- Japanese Patent Laying-Open No. 2017-34115 (for example, FIGS. 2A and 2B and paragraphs 0020 to 0030)
- an object of the present invention is to provide a printed wiring board that can ensure high noise removal performance even in the presence of magnetic flux generated from mounted components and wiring on the printed wiring board.
- a printed wiring board includes a first conductor pattern layer, a second conductor pattern layer disposed away from the first conductor pattern layer in a thickness direction of the first conductor pattern layer, and the first conductor pattern layer.
- a printed wiring board having a laminated structure including an insulating layer interposed between one conductor pattern layer and the second conductor pattern layer, and is formed as a part of the first conductor pattern layer and electrically
- a main wiring having a connection end for connecting to the first wiring, and a first connection conductor that is electrically connected to the main wiring and extends in the thickness direction from the first conductor pattern layer to the second conductor pattern layer;
- a first wiring line formed as a part of the second conductor pattern layer and having one end electrically connected to the main wiring via the first connection conductor; and the other end of the first wiring line;
- the second conductor pad A second connection conductor extending in the thickness direction from the first layer to the first conductor pattern layer, and formed as another part of the first conductor pattern layer, and the second connection conductor via the
- a negative inductance can be formed by forming a magnetic coupling in the thickness direction between the first wiring line and the second wiring line. Since the magnetic coupling in the thickness direction is not easily affected by magnetic flux generated from a mounted component or other wiring on the printed wiring board, a negative inductance sufficient to cancel the parasitic inductance can be formed. Therefore, high noise removal performance can be obtained even in the presence of magnetic flux generated from the mounted components on the printed wiring board and other wiring.
- FIG. 1A to 1C are diagrams showing a schematic configuration of a printed wiring board according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic diagram illustrating a main part of a cross-sectional configuration of the printed wiring board according to the first embodiment.
- 3A is a diagram illustrating an example of a mutual induction circuit including a pair of parasitic inductors
- FIG. 3B is a diagram illustrating a T-type equivalent circuit corresponding to the mutual induction circuit of FIG. 3A.
- FIG. 3 is a diagram schematically showing a main part of an equivalent circuit of the printed wiring board according to the first embodiment. It is the schematic which shows the principal part of the cross-sectional structure of the printed wiring board which is Embodiment 2 of the modification of Embodiment 1.
- FIG. 3 is a schematic diagram illustrating a main part of a cross-sectional configuration of the printed wiring board according to the first embodiment.
- 3A is a diagram illustrating an example of a mutual induction circuit including
- FIG. 1A to 1C are diagrams showing a schematic configuration of a printed wiring board 1 according to Embodiment 1 of the present invention.
- FIG. 1A is a diagram schematically showing a cross-sectional structure of the printed wiring board 1 in the YZ plane (a plane parallel to both the Y axis and the Z axis).
- 1B and 1C are diagrams showing the planar configurations of the first conductor pattern layer PL1 and the second conductor pattern layer PL2 in the printed wiring board 1, respectively.
- 1B and 1C show the planar configurations of the first conductor pattern layer PL1 and the second conductor pattern layer PL2 when viewed from the Z-axis positive direction side.
- the printed wiring board 1 includes a first conductor pattern layer PL1 formed on both front surfaces in the thickness direction of the insulating layer IL0, and a second conductor pattern formed on the back surfaces of the both surfaces.
- the insulating layer IL0 only needs to be made of an electrically insulating material such as a nonconductive resin.
- the thickness of the insulating layer IL0 is not particularly limited as long as it is adjusted within a range of 0.05 mm to several mm, for example.
- the front surface of the printed wiring board 1 is a mounting surface on which circuit elements such as an LSI (Large Scale Integrated Circuit), an IC (Integrated Circuit), a power supply circuit element, and a capacitor element can be mounted.
- circuit elements such as an LSI (Large Scale Integrated Circuit), an IC (Integrated Circuit), a power supply circuit element, and a capacitor element can be mounted.
- a circuit element 11, a connector circuit 12, and a capacitive element 13 are provided on the first conductor pattern layer PL1.
- the connector circuit 12 is a circuit element that is electrically connected to the external power source 2 such as a DC-DC converter or an in-vehicle battery.
- the capacitive element 13 is mounted as a bypass capacitor for removing electromagnetic noise in a high frequency band.
- the first conductor pattern layer PL1 is electrically connected to the main wirings 20 and 22 that are electrically connected to the circuit element 11 and the connector circuit 12, respectively, and to the circuit element 11 and the connector circuit 12, respectively.
- the wiring pattern includes connection wirings 28 and 29 to be connected and connection wirings 23 and 24 to be electrically connected to both electrode terminals of the capacitive element 13.
- the wiring pattern of the first conductor pattern layer PL1 can be formed by patterning a conductive thin film such as a copper foil using a known selective etching technique.
- the second conductor pattern layer PL2 is disposed at a position away from the first conductor pattern layer PL1 in the thickness direction (Z-axis negative direction) of the multilayer structure.
- the second conductor pattern layer PL ⁇ b> 2 is a conductor composed of a connection wiring 21 formed in the wiring pattern region 30 and a ground conductor surface 31 formed in the entire region other than the wiring pattern region 30. Has a pattern.
- the ground conductor surface 31 is connected to the ground potential.
- the ground conductor surface 31 is formed in a region that is electrically insulated from the connection wiring 21 in the wiring pattern region 30.
- the conductor pattern of the second conductor pattern layer PL2 can be formed by patterning a conductive thin film such as a copper foil using a known selective etching technique.
- Via conductors Va, Vb, Vc, Vd, Ve are provided in the insulating layer IL0 interposed between the first conductor pattern layer PL1 and the second conductor pattern layer PL2.
- These via conductors Va to Ve are connection conductors extending in the thickness direction (Z-axis direction) from the first conductor pattern layer PL1 to the second conductor pattern layer PL2 inside the insulating layer IL0.
- the via conductors Va and Vb are connection conductors (first and second connection conductors) that conduct to the wiring pattern region 30 of the second conductor pattern layer PL2.
- the end portions of the other via conductors Vc, Vd, and Ve all function as ground lines that are electrically connected to the ground conductor surface 31.
- a step of filling the conductive paste instead of the step of filling the conductive paste, a step of forming a metal layer inside the interlayer connection hole by electroless plating may be employed.
- the main wiring 20 (hereinafter also referred to as “first main wiring 20”) of the first conductor pattern layer PL1 is electrically connected between the power supply terminal of the circuit element 11 and the via conductor Va.
- the power supply wiring pattern to be A connection end 20a forming one end of the first main wiring 20 is connected to the power supply terminal of the circuit element 11, and the other end 20b of the first main wiring 20 is connected to the via conductor Va.
- the ground terminal of the circuit element 11 is electrically connected to the ground conductor surface 31 of the second conductor pattern layer PL2 via the connection wiring 28 and the via conductor Vd.
- connection wiring 21 includes a wiring line 21i (hereinafter referred to as “first wiring line 21i”) extending from the via conductor Va in the negative Y-axis direction, and a via conductor from the left end portion of the first wiring line 21i.
- the wiring line 21j extends to Vb.
- the portion where the first wiring line 21i and the wiring line 21j intersect constitutes a bent portion that is bent at a right angle, but is not limited to the shape of the bent portion.
- the bent portion may have a smooth shape (for example, an arc shape or an elliptic arc shape) or a polygonal shape instead of a shape that bends at 90 °.
- the main wiring 22 (hereinafter also referred to as “second main wiring 22”) of the first conductor pattern layer PL1 is electrically connected to the plus terminal of the external power source 2 via the connector circuit 12. It is a power supply wiring pattern to be connected.
- a connection end 22b forming one end of the second main wiring 22 is connected to the connector circuit 12, and the other end 22a of the second main wiring 22 is connected to the via conductor Vb.
- the ground terminal of the connector circuit 12 is electrically connected to the negative terminal of the external power supply 2, and the connection wiring 29 connects the ground terminal to the via conductor Ve. Therefore, the ground terminal of the connector circuit 12 is electrically connected to the ground conductor surface 31 of the second conductor pattern layer PL2 via the connection wiring 29 and the via conductor Ve.
- the second main wiring 22 is connected to an inverted L-shaped bent wiring line 22d having one end connected to the via conductor Vb and the other end of the bent wiring line 22d.
- Linear wiring line 22i (hereinafter referred to as "second wiring line 22i").
- the second wiring line 22i is arranged at a position facing and close to the first wiring line 21i of the second conductor pattern layer PL2 in the thickness direction (Z-axis direction). For this reason, the first wiring line 21i and the second wiring line 22i are disposed so as to face each other (that is, between the first conductor pattern layer PL1 and the second conductor pattern layer PL2).
- the second wiring line 22i is connected in series with the first wiring line 21i on the back surface side via the bent wiring line 22d, the via conductor Vb, and the wiring line 21j. Therefore, the directions of the currents flowing in the first wiring line 21i and the second wiring line 22i are the same direction. Further, the direction of the magnetic flux generated due to the parasitic inductance of the first wiring line 21i and the second wiring line 22i is almost the same.
- the second wiring line 22i extends in the Y-axis direction, it extends along the extending direction of the first wiring line 21i.
- the extending direction of the second wiring line 22i is the same as the extending direction of the first wiring line 21i.
- the first wiring line 21i and the second wiring line 22i are arranged so as to form an equivalent negative inductance by being magnetically coupled in the thickness direction.
- the capacitive element 13 has a pair of electrode terminals.
- One electrode terminal of the capacitive element 13 is electrically connected to the via conductor Vb and the other end 22a of the second main wiring 22 via the connection wiring (lead-out wiring) 23, and the other electrode terminal of the capacitive element 13 is connected to the via conductor Vb. It is electrically connected to the via conductor Vc through the connection wiring (drawing wiring) 24.
- the via conductor Vc electrically connects the other electrode terminal of the capacitive element 13 to the ground conductor surface 31 of the second conductor pattern layer PL2.
- Such a capacitive element 13 functions as a bypass capacitor that releases (bypasses) high-frequency electromagnetic noise propagating through the first conductor pattern layer PL1 to the ground line.
- FIG. 2 is a schematic diagram showing a cross-section of the main part of the printed wiring board 1 according to the first embodiment.
- FIG. 2 shows a part of the cross section of the printed wiring board 1 taken along the line II-II in FIGS. 1B and 1C.
- the first wiring line 21 i and the second wiring line 22 i are disposed close to and opposed to each other in the thickness direction (Z-axis direction) between the layers.
- the first wiring line 21i and the second wiring line 22i have a constant wiring thickness ⁇ Z (for example, several tens of ⁇ m) and a constant wiring width ⁇ X (for example, several hundreds of ⁇ m).
- the first wiring line 21i and the second wiring line 22i are opposed to each other by the wiring width ⁇ X.
- the first wiring line 21i and the second wiring line 22i are magnetically coupled in the thickness direction to cause mutual induction. At this time, a magnetic flux is generated between the first wiring line 21i and the second wiring line 22i.
- the noise filter according to the present embodiment includes a first wiring line 21 i, a second wiring line 22 i, and a capacitive element 13.
- M 0 ( ⁇ 0 / (2 ⁇ )) ⁇ R ⁇ (ln (2R / d) ⁇ 1) (1)
- R is a common length (unit: m) of the two conductors
- d is an interval (unit: m) between the two conductors
- the approximate expression (1) is established when the length R is sufficiently larger than the interval d.
- the mutual inductance magnitude M between the first wiring line 21i and the second wiring line 22i can be designed using the above equation (1). At this time, it is possible to design the magnitude M of the mutual inductance in consideration of the parasitic inductance of the connection wirings (lead wirings) 23 and 24 used for mounting the capacitive element 13.
- the first wiring line 21i and the second wiring line 22i have a pair of parasitic inductors that are magnetically coupled to cause mutual induction.
- L1 is the self-inductance of the parasitic inductor of the first wiring line 21i
- L2 is the self-inductance of the parasitic inductor of the second wiring line 22i.
- FIG. 3A is a diagram schematically showing a mutual induction circuit including the parasitic inductor 41 of the first wiring line 21i and the parasitic inductor 42 of the second wiring line 22i.
- FIG. 3B is a diagram showing a T-type equivalent circuit corresponding to the mutual induction circuit of FIG. 3A.
- the mutual induction circuit of FIG. 3A includes three inductors 51, 52, and 53 each having three inductances L1 + M, L2 + M, and ⁇ M, as shown in FIG. 3B. It can be considered as an equivalent circuit. This type of equivalent circuit is called a T-type equivalent circuit.
- FIG. 4 is a diagram schematically showing a main part of an equivalent circuit of the printed wiring board 1 of the present embodiment.
- the equivalent circuit shown in FIG. 4 includes a circuit element 11, the above-described T-type equivalent circuit (FIG. 3B), a capacitive element 13, a parasitic inductor 54 having a wiring inductance L4, and a connector circuit 12.
- the equivalent inductance of the inductor 51 is L1 + M
- the equivalent inductance of the inductor 52 is L2 + M.
- the capacitive element 13 includes a capacitor component 13C having a capacitance C and a parasitic inductor component 13E having a residual inductance Lp that is an equivalent series inductance.
- the parasitic inductor 54 is mainly formed by the via conductor Vc that connects between the capacitive element 13 and the ground conductor surface 31.
- the display of other circuit elements of the printed wiring board 1 for example, the resistance component and the parasitic inductor component of the connection wiring 23 is omitted.
- an inductor 53 having a negative inductance ⁇ M appears equivalently as shown in FIG. That is, the inductor 53 having an equivalent negative inductance ⁇ M is connected to the series connection point Np between the inductors 51 and 52. At this time, an inductor 53 having a negative inductance ⁇ M, a capacitor component 13C, a parasitic inductor component 13E having a residual inductance Lp, and a parasitic inductor 54 having a wiring inductance L4 between the series connection point Np and the ground point. Are connected in series. If the negative inductance ⁇ M is designed to cancel the residual inductance Lp and the wiring inductance L4, the impedance of the bypass circuit can be equivalent to the impedance of only the capacitor component 13C.
- the bypass circuit according to the present embodiment includes the connection wiring 23, the capacitor element 13, the connection wiring 24, and the via conductor Vc.
- the wiring inductance L4 of the via conductor Vc can be approximately calculated based on the dimensions (for example, length and via diameter) and the material of the via conductor Vc.
- the residual inductance Lp can be calculated by measuring the characteristics of the capacitive element 13. Therefore, the impedance of the bypass circuit is reduced by designing the negative inductance ⁇ M so that the impedance cancels out with respect to the negative inductance ⁇ M, the wiring inductance L4 of the via conductor Vc, and the residual inductance Lp of the capacitive element 13.
- the first wiring line 21i and the second wiring line 22i are opposed to each other in the thickness direction (vertical direction) of the laminated structure and in the same direction. It is arranged to extend.
- the first wiring line 21i and the second wiring line 22i are connected in series via the wiring line 21j, the via conductor Vb, and the bent wiring line 22d. Accordingly, mutual induction can be caused by forming a magnetic coupling in the thickness direction (vertical direction) between the first wiring line 21i and the second wiring line 22i.
- the negative inductance ⁇ M that appears equivalently corresponding to the magnetic coupling can cancel the parasitic inductance (residual inductance Lp and wiring inductance L4) of the bypass circuit.
- the magnetic coupling in the thickness direction is not easily affected by magnetic flux generated from the mounted components (circuit element 11 and connector circuit 12) on the first conductor pattern layer PL1 and other wiring (for example, the first main wiring 20). Therefore, a negative inductance ⁇ M sufficient to cancel out parasitic inductances such as the residual inductance Lp and the wiring inductance L4 can be formed. Therefore, the printed wiring board 1 having high noise removal performance can be provided.
- the first wiring line and the second wiring line are formed in the same layer, and therefore, the magnetic field in the lateral direction perpendicular to the thickness direction. A bond is formed.
- the magnetic coupling in the lateral direction is susceptible to the magnetic flux generated by the mounting component and other wiring provided in the same layer, and thus forms a negative inductance sufficient to cancel the parasitic inductance. It can be difficult.
- the inductive coupling when inductive coupling occurs between the mounted component and the first and second wiring lines, or between the other wiring and the first and second wiring lines, the inductive coupling causes the first
- the lateral magnetic coupling between the first wiring line and the second wiring line is weakened, and a negative inductance sufficient for canceling the parasitic inductance may not be formed.
- the magnetic coupling in the thickness direction is formed between the layers, so that a negative inductance ⁇ M having a sufficient size for canceling the parasitic inductance can be formed. . Therefore, it is possible to suppress the performance deterioration of the bypass circuit due to the magnetic flux generated from the mounted components on the printed wiring board 1 and other wiring. Further, even if the dimension of the wiring pattern on the printed wiring board 1 (for example, the wiring length) is small, the magnetic coupling having the strength necessary for canceling the parasitic inductance can be ensured. It is possible to increase the possible area (area that the mounting component can occupy).
- FIG. 5 is a schematic view showing a cross-section of the main part of the printed wiring board according to the second embodiment of the present invention.
- the structure of the printed wiring board according to the present embodiment is the same as that of the first embodiment except that the magnetic body 60 shown in FIG. 5 is interposed between the first wiring line 21i and the second wiring line 22i.
- the structure of the printed wiring board 1 is the same.
- the magnetic body 60 can confine at least a part of the magnetic flux generated between the first wiring line 21i and the second wiring line 22i.
- the first wiring line 21i and the second wiring line 22i are arranged close to each other and opposed to each other in the thickness direction (Z-axis direction) between the layers.
- the first wiring line 21i and the second wiring line 22i are magnetically coupled in the thickness direction to cause mutual induction.
- a magnetic flux is generated between the first wiring line 21i and the second wiring line 22i.
- a magnetic path through which a magnetic flux passes is formed between the first wiring line 21i and the second wiring line 22i.
- the value of the coupling coefficient k between the parasitic inductors 41 and 42 of the first wiring line 21i and the second wiring line 22i is the maximum value “1”. Since the magnetic body 60 is arranged in the vicinity of the first wiring line 21i and the second wiring line 22i, the magnetic flux is concentrated inside the magnetic body 60, so that the amount of magnetic flux leaking to the external space of the printed wiring board. Can be reduced. As a result, the coupling coefficient k approaches the value “1”, and the magnitude M of the mutual inductance is increased by the above equation (2). Further, since ⁇ 0 in the above formula (1) is replaced with ⁇ 0 ⁇ ⁇ r ( ⁇ r : complex relative permeability of magnetic material), the magnitude M of mutual inductance is increased.
- the self-inductances L1 and L2 can be set to small values in accordance with the increase in the coupling coefficient k. Thereby, the line length (wiring length) of the first wiring line 21i and the second wiring line 22i can be shortened. Therefore, the dimensions of the first wiring line 21i and the second wiring line 22i necessary for obtaining the negative inductance ⁇ M can be reduced.
- Such a magnetic body 60 is preferably a ferrite magnetic body having a high magnetic permeability with respect to a high frequency signal of several MHz or more.
- the magnetic body 60 may be formed by embedding a resin composition in which soft magnetic metal powder is dispersed in the insulating layer IL0.
- the magnetic body 60 may be formed by laminating a plurality of ferrite plating films each having a thickness of about several ⁇ m inside the insulating layer IL0.
- the mountable area of the printed wiring board 1 (the area that can be occupied by the mounted components) can be further increased.
- the number of conductor pattern layers in the first and second embodiments is two, but is not limited to this.
- the laminated structure of the first and second embodiments may be appropriately changed so as to constitute a multilayer printed wiring board having three or more conductive pattern layers.
- a connector circuit 12 that is electrically connected to the external power supply 2 is provided.
- a power circuit element may be mounted as an internal power source. Even in this case, it is possible to suppress the propagation of high-frequency electromagnetic noise to the mounted power supply circuit element.
- circuit boards of various electronic devices can be preferably used.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Structure Of Printed Boards (AREA)
Abstract
This printed circuit board (1) has a layered structure containing a first conductor pattern layer (PL1), a second conductor pattern layer (PL2), and an insulation layer (IL0) included between the first conductor pattern layer (PL1) and the second conductor pattern layer (PL2). Formed as part of the second conductor pattern layer (PL2) is a first wiring line (21i), and formed as part of the first conductor pattern layer (PL1) is a second wiring line (22i). A capacitive element (13) is electrically connected to one end of the second wiring line (22i), and is connected to a ground electric potential. The second wiring line (22i) is connected in series with the first wiring line (21i) through a connection conductor (Vb) extending from the first conductor pattern layer (PL1) to the second conductor pattern layer (PL2), in the thickness direction. The second wiring line (22i) is disposed so as to oppose the first wiring line (21i) in the thickness direction, and extends along the extending direction of the first wiring line (22i).
Description
本発明は、ノイズフィルタを有するプリント配線板に関する。
The present invention relates to a printed wiring board having a noise filter.
プリント配線板には、LSI(Large Scale Integrated circuit)またはIC(Integrated Circuit)などの回路素子から漏洩する高周波帯域の電磁ノイズを除去するためのノイズフィルタが実装されている。この種のノイズフィルタとしては、当該電磁ノイズをグラウンド線に逃がすバイパスコンデンサが広く採用されている。しかしながら、ノイズフィルタのノイズ除去性能は、バイパスコンデンサの寄生インダクタンス、及びバイパスコンデンサの実装のために使用される接続配線の寄生インダクタンスにより劣化するという課題がある。特許文献1(特開2017-34115号公報)には、そのような寄生インダクタンスに起因するノイズ除去性能の劣化を抑制し得る配線パターンを有するプリント配線板が開示されている。
On the printed wiring board, a noise filter for removing high-frequency band electromagnetic noise leaking from circuit elements such as LSI (Large Scale Integrated Circuit) or IC (Integrated Circuit) is mounted. As this type of noise filter, a bypass capacitor that releases the electromagnetic noise to the ground line is widely used. However, there is a problem that the noise removal performance of the noise filter deteriorates due to the parasitic inductance of the bypass capacitor and the parasitic inductance of the connection wiring used for mounting the bypass capacitor. Patent Document 1 (Japanese Patent Laid-Open No. 2017-34115) discloses a printed wiring board having a wiring pattern that can suppress deterioration of noise removal performance caused by such parasitic inductance.
特許文献1に開示されているプリント配線板は、上部配線層と下部配線層とが絶縁層を介して積層された構造を有している。また、その上部配線層の一部として、互いに並行に延在しかつ対向配置された第1及び第2の配線ラインが形成されている。第1の配線ラインの一端部は、バイパスコンデンサと電気的に接続されており、第1の配線ラインの他端部は、下部配線層を介して、第2の配線ラインの一端部と直列に接続されている。これら第1及び第2の配線ラインは、磁気的結合により相互インダクタンスを形成するように対向配置されている。その相互インダクタンスに対応して等価的に現れる負のインダクタンスにより、バイパスコンデンサ及び接続配線の寄生インダクタンスが打ち消されるので、バイパスコンデンサのノイズ除去性能の劣化を抑制することができる。
The printed wiring board disclosed in Patent Document 1 has a structure in which an upper wiring layer and a lower wiring layer are laminated via an insulating layer. In addition, as a part of the upper wiring layer, first and second wiring lines extending in parallel with each other and arranged to face each other are formed. One end of the first wiring line is electrically connected to the bypass capacitor, and the other end of the first wiring line is in series with one end of the second wiring line through the lower wiring layer. It is connected. These first and second wiring lines are arranged to face each other so as to form a mutual inductance by magnetic coupling. The negative inductance appearing equivalently corresponding to the mutual inductance cancels out the parasitic inductance of the bypass capacitor and the connection wiring, so that the deterioration of the noise removal performance of the bypass capacitor can be suppressed.
しかしながら、特許文献1に記載の従来技術では、第1の配線ラインと第2の配線ラインとの間の磁気的結合が、プリント配線板上の実装部品または他の配線から生じる磁束の影響を受けることにより、上記した寄生インダクタンスを打ち消すために十分な負のインダクタンスを形成することが難しくなることがある。
However, in the prior art described in Patent Document 1, the magnetic coupling between the first wiring line and the second wiring line is affected by the magnetic flux generated from the mounting component or other wiring on the printed wiring board. As a result, it may be difficult to form a negative inductance sufficient to cancel the parasitic inductance.
上記に鑑みて本発明の目的は、プリント配線板上の実装部品及び配線から生じた磁束が存在する状況下でも、高いノイズ除去性能を確保することができるプリント配線板を提供することである。
In view of the above, an object of the present invention is to provide a printed wiring board that can ensure high noise removal performance even in the presence of magnetic flux generated from mounted components and wiring on the printed wiring board.
本発明の一態様によるプリント配線板は、第1導体パターン層と、前記第1導体パターン層から当該第1導体パターン層の厚み方向に離れて配置されている第2導体パターン層と、前記第1導体パターン層及び前記第2導体パターン層の間に介在する絶縁層とを含む積層構造を有するプリント配線板であって、前記第1導体パターン層の一部として形成され、回路素子と電気的に接続するための接続端部を有する主配線と、前記主配線と導通し、前記第1導体パターン層から前記第2導体パターン層まで前記厚み方向に延在する第1の接続導体と、前記第2導体パターン層の一部として形成され、前記第1の接続導体を介して前記主配線と導通する一端を有する第1の配線ラインと、前記第1の配線ラインの他端と導通し、前記第2導体パターン層から前記第1導体パターン層まで前記厚み方向に延在する第2の接続導体と、前記第1導体パターン層の他の一部として形成され、前記第2の接続導体を介して前記第1の配線ラインと直列に接続されている第2の配線ラインと、前記第2の配線ラインの一端と導通する電極端子を有し、かつグラウンド電位に接続された他の電極端子を有する容量素子とを備え、前記第2の配線ラインは、前記厚み方向において前記第1の配線ラインと対向配置され、かつ前記第1の配線ラインの延在方向に沿って延在することを特徴とする。
A printed wiring board according to an aspect of the present invention includes a first conductor pattern layer, a second conductor pattern layer disposed away from the first conductor pattern layer in a thickness direction of the first conductor pattern layer, and the first conductor pattern layer. A printed wiring board having a laminated structure including an insulating layer interposed between one conductor pattern layer and the second conductor pattern layer, and is formed as a part of the first conductor pattern layer and electrically A main wiring having a connection end for connecting to the first wiring, and a first connection conductor that is electrically connected to the main wiring and extends in the thickness direction from the first conductor pattern layer to the second conductor pattern layer; A first wiring line formed as a part of the second conductor pattern layer and having one end electrically connected to the main wiring via the first connection conductor; and the other end of the first wiring line; The second conductor pad A second connection conductor extending in the thickness direction from the first layer to the first conductor pattern layer, and formed as another part of the first conductor pattern layer, and the second connection conductor via the second connection conductor A capacitor having a second wiring line connected in series with the first wiring line, an electrode terminal electrically connected to one end of the second wiring line, and another electrode terminal connected to a ground potential And the second wiring line is disposed opposite to the first wiring line in the thickness direction and extends along the extending direction of the first wiring line. .
本発明の一態様によるプリント配線板によれば、第1の配線ラインと第2の配線ラインとの間に厚み方向の磁気的結合を形成することにより負のインダクタンスを形成することができる。その厚み方向の磁気的結合は、プリント配線板上の実装部品または他の配線から生じる磁束の影響を受け難いため、寄生インダクタンスを打ち消すために十分な負のインダクタンスを形成することができる。したがって、プリント配線板上の実装部品及び他の配線から生じた磁束が存在する状況下でも、高いノイズ除去性能を得ることができる。
According to the printed wiring board according to one aspect of the present invention, a negative inductance can be formed by forming a magnetic coupling in the thickness direction between the first wiring line and the second wiring line. Since the magnetic coupling in the thickness direction is not easily affected by magnetic flux generated from a mounted component or other wiring on the printed wiring board, a negative inductance sufficient to cancel the parasitic inductance can be formed. Therefore, high noise removal performance can be obtained even in the presence of magnetic flux generated from the mounted components on the printed wiring board and other wiring.
以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。なお、図面において同一符号を付された構成要素は、同一機能及び同一構成を有するものとする。また、図面に示されたX軸、Y軸及びZ軸は、互いに直交するものとする。
Hereinafter, various embodiments according to the present invention will be described in detail with reference to the drawings. In addition, the component which attached | subjected the same code | symbol in drawing shall have the same function and the same structure. Further, the X axis, the Y axis, and the Z axis shown in the drawings are orthogonal to each other.
実施の形態1.
図1A~図1Cは、本発明に係る実施の形態1であるプリント配線板1の概略構成を示す図である。図1Aは、プリント配線板1のY-Z平面(Y軸及びZ軸の双方に平行な平面)における断面構造を概略的に示す図である。図1B及び図1Cは、プリント配線板1における第1導体パターン層PL1及び第2導体パターン層PL2のそれぞれの平面構成を示す図である。図1B及び図1Cには、Z軸正方向側から視たときの第1導体パターン層PL1及び第2導体パターン層PL2の平面構成が示されている。 Embodiment 1 FIG.
1A to 1C are diagrams showing a schematic configuration of a printed wiring board 1 according to Embodiment 1 of the present invention. FIG. 1A is a diagram schematically showing a cross-sectional structure of the printed wiring board 1 in the YZ plane (a plane parallel to both the Y axis and the Z axis). 1B and 1C are diagrams showing the planar configurations of the first conductor pattern layer PL1 and the second conductor pattern layer PL2 in the printed wiring board 1, respectively. 1B and 1C show the planar configurations of the first conductor pattern layer PL1 and the second conductor pattern layer PL2 when viewed from the Z-axis positive direction side.
図1A~図1Cは、本発明に係る実施の形態1であるプリント配線板1の概略構成を示す図である。図1Aは、プリント配線板1のY-Z平面(Y軸及びZ軸の双方に平行な平面)における断面構造を概略的に示す図である。図1B及び図1Cは、プリント配線板1における第1導体パターン層PL1及び第2導体パターン層PL2のそれぞれの平面構成を示す図である。図1B及び図1Cには、Z軸正方向側から視たときの第1導体パターン層PL1及び第2導体パターン層PL2の平面構成が示されている。 Embodiment 1 FIG.
1A to 1C are diagrams showing a schematic configuration of a printed wiring board 1 according to Embodiment 1 of the present invention. FIG. 1A is a diagram schematically showing a cross-sectional structure of the printed wiring board 1 in the YZ plane (a plane parallel to both the Y axis and the Z axis). 1B and 1C are diagrams showing the planar configurations of the first conductor pattern layer PL1 and the second conductor pattern layer PL2 in the printed wiring board 1, respectively. 1B and 1C show the planar configurations of the first conductor pattern layer PL1 and the second conductor pattern layer PL2 when viewed from the Z-axis positive direction side.
図1Aに示されるように、プリント配線板1は、絶縁層IL0の厚み方向両面のおもて面に形成された第1導体パターン層PL1と、当該両面の裏面に形成された第2導体パターン層PL2と、これら第1導体パターン層PL1及び第2導体パターン層PL2の間に介在する絶縁層IL0とを含む積層構造を有する両面プリント配線板である。絶縁層IL0は、非導電性樹脂などの電気絶縁性材料で構成されていればよい。絶縁層IL0の厚みは、たとえば、0.05mm~数mmの範囲内に調整されていればよく、特に限定されるものではない。
As shown in FIG. 1A, the printed wiring board 1 includes a first conductor pattern layer PL1 formed on both front surfaces in the thickness direction of the insulating layer IL0, and a second conductor pattern formed on the back surfaces of the both surfaces. A double-sided printed wiring board having a laminated structure including a layer PL2 and an insulating layer IL0 interposed between the first conductor pattern layer PL1 and the second conductor pattern layer PL2. The insulating layer IL0 only needs to be made of an electrically insulating material such as a nonconductive resin. The thickness of the insulating layer IL0 is not particularly limited as long as it is adjusted within a range of 0.05 mm to several mm, for example.
プリント配線板1のおもて面は、LSI(Large Scale Integrated circuit)、IC(Integrated Circuit)、電源回路素子及び容量素子といった回路素子を実装することができる実装面である。本実施の形態では、図1A及び図1Bに示されるように、第1導体パターン層PL1上には、回路素子11、コネクタ回路12及び容量素子13が設けられている。コネクタ回路12は、DC-DCコンバータまたは車載用バッテリなどの外部電源2と電気的に接続される回路素子である。容量素子13は、高周波帯域の電磁ノイズを除去するためのバイパスコンデンサとして実装されている。
The front surface of the printed wiring board 1 is a mounting surface on which circuit elements such as an LSI (Large Scale Integrated Circuit), an IC (Integrated Circuit), a power supply circuit element, and a capacitor element can be mounted. In the present embodiment, as shown in FIGS. 1A and 1B, a circuit element 11, a connector circuit 12, and a capacitive element 13 are provided on the first conductor pattern layer PL1. The connector circuit 12 is a circuit element that is electrically connected to the external power source 2 such as a DC-DC converter or an in-vehicle battery. The capacitive element 13 is mounted as a bypass capacitor for removing electromagnetic noise in a high frequency band.
第1導体パターン層PL1は、図1Bに示されるように、回路素子11及びコネクタ回路12とそれぞれ電気的に接続される主配線20,22と、回路素子11及びコネクタ回路12とそれぞれ電気的に接続される接続配線28,29と、容量素子13の両電極端子と電気的に接続される接続配線23,24とからなる配線パターンを有している。第1導体パターン層PL1の配線パターンは、公知の選択エッチング技術を用いて銅箔などの導電性薄膜をパターニングすることで形成可能である。
As shown in FIG. 1B, the first conductor pattern layer PL1 is electrically connected to the main wirings 20 and 22 that are electrically connected to the circuit element 11 and the connector circuit 12, respectively, and to the circuit element 11 and the connector circuit 12, respectively. The wiring pattern includes connection wirings 28 and 29 to be connected and connection wirings 23 and 24 to be electrically connected to both electrode terminals of the capacitive element 13. The wiring pattern of the first conductor pattern layer PL1 can be formed by patterning a conductive thin film such as a copper foil using a known selective etching technique.
一方、第2導体パターン層PL2は、図1Aに示されるように、第1導体パターン層PL1から当該積層構造の厚み方向(Z軸負方向)に離れた位置に配置されている。図1Cに示されるように、第2導体パターン層PL2は、配線パターン領域30に形成された接続配線21と、当該配線パターン領域30以外の領域全体に形成されたグラウンド導体面31とからなる導体パターンを有している。グラウンド導体面31は、グラウンド電位に接続されている。また、グラウンド導体面31は、配線パターン領域30内の接続配線21とは電気的に絶縁された領域に形成されている。第2導体パターン層PL2の導体パターンは、公知の選択エッチング技術を用いて銅箔などの導電性薄膜をパターニングすることで形成可能である。
On the other hand, as shown in FIG. 1A, the second conductor pattern layer PL2 is disposed at a position away from the first conductor pattern layer PL1 in the thickness direction (Z-axis negative direction) of the multilayer structure. As shown in FIG. 1C, the second conductor pattern layer PL <b> 2 is a conductor composed of a connection wiring 21 formed in the wiring pattern region 30 and a ground conductor surface 31 formed in the entire region other than the wiring pattern region 30. Has a pattern. The ground conductor surface 31 is connected to the ground potential. The ground conductor surface 31 is formed in a region that is electrically insulated from the connection wiring 21 in the wiring pattern region 30. The conductor pattern of the second conductor pattern layer PL2 can be formed by patterning a conductive thin film such as a copper foil using a known selective etching technique.
第1導体パターン層PL1及び第2導体パターン層PL2の間に介在する絶縁層IL0には、ビア導体Va,Vb,Vc,Vd,Veが設けられている。これらビア導体Va~Veは、絶縁層IL0の内部を、第1導体パターン層PL1から第2導体パターン層PL2まで厚み方向(Z軸方向)に延在する接続導体である。これらビア導体Va~Veのうちビア導体Va,Vbは、第2導体パターン層PL2の配線パターン領域30に導通する接続導体(第1及び第2の接続導体)である。他のビア導体Vc,Vd,Veの端部は、いずれもグラウンド導体面31と導通するグラウンド線として機能する。このようなビア導体Va~Veの形成工程としては、たとえば、電気絶縁性基板を貫通する層間接続孔(ビア)を形成する工程と、これら層間接続孔の内部にそれぞれ導電性ペーストを充填する工程とが挙げられる。ここで、導電性ペーストを充填する工程に代えて、無電解めっきにより当該層間接続孔の内部にそれぞれ金属層を形成する工程が採用されてもよい。
Via conductors Va, Vb, Vc, Vd, Ve are provided in the insulating layer IL0 interposed between the first conductor pattern layer PL1 and the second conductor pattern layer PL2. These via conductors Va to Ve are connection conductors extending in the thickness direction (Z-axis direction) from the first conductor pattern layer PL1 to the second conductor pattern layer PL2 inside the insulating layer IL0. Among these via conductors Va to Ve, the via conductors Va and Vb are connection conductors (first and second connection conductors) that conduct to the wiring pattern region 30 of the second conductor pattern layer PL2. The end portions of the other via conductors Vc, Vd, and Ve all function as ground lines that are electrically connected to the ground conductor surface 31. As the process of forming such via conductors Va to Ve, for example, a process of forming interlayer connection holes (vias) penetrating the electrically insulating substrate, and a process of filling each of the interlayer connection holes with a conductive paste, respectively. And so on. Here, instead of the step of filling the conductive paste, a step of forming a metal layer inside the interlayer connection hole by electroless plating may be employed.
図1Bを参照すると、第1導体パターン層PL1の主配線20(以下「第1の主配線20」とも呼ぶ。)は、回路素子11の電源端子とビア導体Vaとの間を電気的に接続する電源配線パターンである。第1の主配線20の一端をなす接続端部20aが回路素子11の電源端子と接続され、第1の主配線20の他端部20bがビア導体Vaと接続されている。また、回路素子11の接地端子は、接続配線28及びビア導体Vdを介して、第2導体パターン層PL2のグラウンド導体面31と導通している。
Referring to FIG. 1B, the main wiring 20 (hereinafter also referred to as “first main wiring 20”) of the first conductor pattern layer PL1 is electrically connected between the power supply terminal of the circuit element 11 and the via conductor Va. The power supply wiring pattern to be A connection end 20a forming one end of the first main wiring 20 is connected to the power supply terminal of the circuit element 11, and the other end 20b of the first main wiring 20 is connected to the via conductor Va. The ground terminal of the circuit element 11 is electrically connected to the ground conductor surface 31 of the second conductor pattern layer PL2 via the connection wiring 28 and the via conductor Vd.
図1Cを参照すると、第2導体パターン層PL2の配線パターン領域30においては、接続配線21の一端部21aがビア導体Vaと導通し、接続配線21の他端部21bがビア導体Vbと導通している。接続配線21は、ビア導体VaからY軸負方向に延在する配線ライン21i(以下「第1の配線ライン21i」と呼ぶ。)と、この第1の配線ライン21iの左側端部からビア導体Vbまで延在する配線ライン21jとで構成されている。
Referring to FIG. 1C, in the wiring pattern region 30 of the second conductor pattern layer PL2, one end 21a of the connection wiring 21 is electrically connected to the via conductor Va, and the other end 21b of the connection wiring 21 is electrically connected to the via conductor Vb. ing. The connection wiring 21 includes a wiring line 21i (hereinafter referred to as “first wiring line 21i”) extending from the via conductor Va in the negative Y-axis direction, and a via conductor from the left end portion of the first wiring line 21i. The wiring line 21j extends to Vb.
ここで、第1の配線ライン21iと配線ライン21jとが交差する部分は、直角で折れ曲がる屈曲部を構成しているが、その屈曲部の形状に限定されるものではない。不要な放射ノイズを抑制するためには、当該屈曲部は、90°で屈曲する形状を有する代わりに、滑らかな形状(たとえば、円弧形状または楕円弧形状)または多角形状を有していてもよい。
Here, the portion where the first wiring line 21i and the wiring line 21j intersect constitutes a bent portion that is bent at a right angle, but is not limited to the shape of the bent portion. In order to suppress unnecessary radiation noise, the bent portion may have a smooth shape (for example, an arc shape or an elliptic arc shape) or a polygonal shape instead of a shape that bends at 90 °.
一方、図1Bを参照すると、第1導体パターン層PL1の主配線22(以下「第2の主配線22」とも呼ぶ。)は、コネクタ回路12を介して外部電源2のプラス端子と電気的に接続される電源配線パターンである。この第2の主配線22の一端をなす接続端部22bがコネクタ回路12と接続され、第2の主配線22の他端部22aがビア導体Vbと接続されている。コネクタ回路12の接地端子は、外部電源2のマイナス端子と電気的に接続されており、接続配線29は、その接地端子をビア導体Veに接続する。よって、コネクタ回路12の接地端子は、接続配線29及びビア導体Veを介して、第2導体パターン層PL2のグラウンド導体面31と導通している。
On the other hand, referring to FIG. 1B, the main wiring 22 (hereinafter also referred to as “second main wiring 22”) of the first conductor pattern layer PL1 is electrically connected to the plus terminal of the external power source 2 via the connector circuit 12. It is a power supply wiring pattern to be connected. A connection end 22b forming one end of the second main wiring 22 is connected to the connector circuit 12, and the other end 22a of the second main wiring 22 is connected to the via conductor Vb. The ground terminal of the connector circuit 12 is electrically connected to the negative terminal of the external power supply 2, and the connection wiring 29 connects the ground terminal to the via conductor Ve. Therefore, the ground terminal of the connector circuit 12 is electrically connected to the ground conductor surface 31 of the second conductor pattern layer PL2 via the connection wiring 29 and the via conductor Ve.
また、第2の主配線22は、図1Bに示されるように、一端がビア導体Vbに接続された逆L字形状の屈曲配線ライン22dと、この屈曲配線ライン22dの他端に接続された直線形状の配線ライン22i(以下「第2の配線ライン22i」と呼ぶ。)とを含む。第2の配線ライン22iは、厚み方向(Z軸方向)において、第2導体パターン層PL2の第1の配線ライン21iと対向しかつ近接する位置に配置されている。このため、第1の配線ライン21i及び第2の配線ライン22iは、層間で(すなわち第1導体パターン層PL1と第2導体パターン層PL2との間で)対向するように配置される。
Further, as shown in FIG. 1B, the second main wiring 22 is connected to an inverted L-shaped bent wiring line 22d having one end connected to the via conductor Vb and the other end of the bent wiring line 22d. Linear wiring line 22i (hereinafter referred to as "second wiring line 22i"). The second wiring line 22i is arranged at a position facing and close to the first wiring line 21i of the second conductor pattern layer PL2 in the thickness direction (Z-axis direction). For this reason, the first wiring line 21i and the second wiring line 22i are disposed so as to face each other (that is, between the first conductor pattern layer PL1 and the second conductor pattern layer PL2).
また、第2の配線ライン22iは、屈曲配線ライン22d、ビア導体Vb及び配線ライン21jを介して、裏面側の第1の配線ライン21iと直列に接続されている。それ故、第1の配線ライン21i及び第2の配線ライン22iにそれぞれ流れる電流の方向は同一方向となる。また、これら第1の配線ライン21i及び第2の配線ライン22iの寄生インダクタンスに起因して発生する磁束の方向もほぼ同一方向となる。
Further, the second wiring line 22i is connected in series with the first wiring line 21i on the back surface side via the bent wiring line 22d, the via conductor Vb, and the wiring line 21j. Therefore, the directions of the currents flowing in the first wiring line 21i and the second wiring line 22i are the same direction. Further, the direction of the magnetic flux generated due to the parasitic inductance of the first wiring line 21i and the second wiring line 22i is almost the same.
更に、第2の配線ライン22iは、Y軸方向に延在しているので、第1の配線ライン21iの延在方向に沿って延在する。言い換えれば、第2の配線ライン22iの延在方向は、第1の配線ライン21iの延在方向と同じである。後述するように、このような第1の配線ライン21iと第2の配線ライン22iとは、厚み方向に磁気的に結合することにより等価的な負のインダクタンスを形成するように配置されている。
Furthermore, since the second wiring line 22i extends in the Y-axis direction, it extends along the extending direction of the first wiring line 21i. In other words, the extending direction of the second wiring line 22i is the same as the extending direction of the first wiring line 21i. As described later, the first wiring line 21i and the second wiring line 22i are arranged so as to form an equivalent negative inductance by being magnetically coupled in the thickness direction.
更に、容量素子13は一対の電極端子を有している。容量素子13の一方の電極端子が、接続配線(引き出し配線)23を介してビア導体Vb及び第2の主配線22の他端部22aと導通しており、容量素子13の他方の電極端子が接続配線(引き出し配線)24を介してビア導体Vcと導通している。ビア導体Vcは、容量素子13の当該他方の電極端子を第2導体パターン層PL2のグラウンド導体面31と電気的に接続する。このような容量素子13は、第1導体パターン層PL1を伝播する高周波電磁ノイズをグラウンド線に逃がす(バイパスさせる)バイパスコンデンサとして機能する。
Furthermore, the capacitive element 13 has a pair of electrode terminals. One electrode terminal of the capacitive element 13 is electrically connected to the via conductor Vb and the other end 22a of the second main wiring 22 via the connection wiring (lead-out wiring) 23, and the other electrode terminal of the capacitive element 13 is connected to the via conductor Vb. It is electrically connected to the via conductor Vc through the connection wiring (drawing wiring) 24. The via conductor Vc electrically connects the other electrode terminal of the capacitive element 13 to the ground conductor surface 31 of the second conductor pattern layer PL2. Such a capacitive element 13 functions as a bypass capacitor that releases (bypasses) high-frequency electromagnetic noise propagating through the first conductor pattern layer PL1 to the ground line.
図2は、実施の形態1であるプリント配線板1の要部断面を示す概略図である。図2には、図1B及び図1CのII-II線におけるプリント配線板1の断面の一部が示されている。図2に示されるように、第1の配線ライン21iと第2の配線ライン22iとは、層間で厚み方向(Z軸方向)に互いに近接しかつ対向して配置されている。第1の配線ライン21i及び第2の配線ライン22iは、一定の配線厚ΔZ(たとえば、数十μm)と一定の配線幅ΔX(たとえば、数百μm)とを有している。よって、第1の配線ライン21i及び第2の配線ライン22iは、配線幅ΔXの分だけ互いに対向している。プリント配線板1の使用時には、第1の配線ライン21iと第2の配線ライン22iとが厚み方向に磁気的に結合して相互誘導を生起させる。このとき、第1の配線ライン21iと第2の配線ライン22iとの間に磁束が発生する。
FIG. 2 is a schematic diagram showing a cross-section of the main part of the printed wiring board 1 according to the first embodiment. FIG. 2 shows a part of the cross section of the printed wiring board 1 taken along the line II-II in FIGS. 1B and 1C. As shown in FIG. 2, the first wiring line 21 i and the second wiring line 22 i are disposed close to and opposed to each other in the thickness direction (Z-axis direction) between the layers. The first wiring line 21i and the second wiring line 22i have a constant wiring thickness ΔZ (for example, several tens of μm) and a constant wiring width ΔX (for example, several hundreds of μm). Therefore, the first wiring line 21i and the second wiring line 22i are opposed to each other by the wiring width ΔX. When the printed wiring board 1 is used, the first wiring line 21i and the second wiring line 22i are magnetically coupled in the thickness direction to cause mutual induction. At this time, a magnetic flux is generated between the first wiring line 21i and the second wiring line 22i.
本実施の形態のノイズフィルタは、第1の配線ライン21i、第2の配線ライン22i及び容量素子13を含んで構成される。第1の配線ライン21i及び第2の配線ライン22iは、近似的に、互いに平行な2本の導線であるとみなすことができる。互いに平行な2本の導線間の相互インダクタンスの大きさM0(単位:H=Wb/A)は、近似的には次式(1)で与えられることが知られている。
M0=(μ0/(2π))×R×(ln(2R/d)-1) (1) The noise filter according to the present embodiment includes afirst wiring line 21 i, a second wiring line 22 i, and a capacitive element 13. The first wiring line 21i and the second wiring line 22i can be regarded as two conductive wires that are approximately parallel to each other. It is known that the magnitude M 0 (unit: H = Wb / A) of mutual inductance between two parallel wires is approximately given by the following equation (1).
M 0 = (μ 0 / (2π)) × R × (ln (2R / d) −1) (1)
M0=(μ0/(2π))×R×(ln(2R/d)-1) (1) The noise filter according to the present embodiment includes a
M 0 = (μ 0 / (2π)) × R × (ln (2R / d) −1) (1)
ここで、Rは、当該2本の導線の共通の長さ(単位:m)、dは、当該2本の導線の間隔(単位:m)、μ0は、真空の透磁率(=4π×10-7H/m)、ln(x)は、ネイピアの定数e(=約2.718281828)を底とするxの自然対数である。近似式(1)は、長さRが間隔dよりも十分に大きいときに成立する。
Here, R is a common length (unit: m) of the two conductors, d is an interval (unit: m) between the two conductors, and μ 0 is a vacuum permeability (= 4π × 10 −7 H / m), ln (x) is the natural logarithm of x with a Napier constant e (= approximately 2.718281828) as the base. The approximate expression (1) is established when the length R is sufficiently larger than the interval d.
上式(1)を用いて、第1の配線ライン21i及び第2の配線ライン22iの間の相互インダクタンスの大きさMを設計することができる。このとき、容量素子13の実装に使用される接続配線(引き出し配線)23,24の寄生インダクタンスをも考慮して相互インダクタンスの大きさMを設計することが可能である。
The mutual inductance magnitude M between the first wiring line 21i and the second wiring line 22i can be designed using the above equation (1). At this time, it is possible to design the magnitude M of the mutual inductance in consideration of the parasitic inductance of the connection wirings (lead wirings) 23 and 24 used for mounting the capacitive element 13.
第1の配線ライン21i及び第2の配線ライン22iは、磁気的に結合して相互誘導を起こす一対の寄生インダクタを有する。第1の配線ライン21i及び第2の配線ライン22iの間の相互インダクタンスの大きさMは、結合係数kを用いて次式(2)で表現することができる。
M=k×(L1×L2)1/2 (2) Thefirst wiring line 21i and the second wiring line 22i have a pair of parasitic inductors that are magnetically coupled to cause mutual induction. The mutual inductance magnitude M between the first wiring line 21i and the second wiring line 22i can be expressed by the following equation (2) using the coupling coefficient k.
M = k × (L1 × L2) 1/2 (2)
M=k×(L1×L2)1/2 (2) The
M = k × (L1 × L2) 1/2 (2)
ここで、L1は、第1の配線ライン21iの寄生インダクタの自己インダクタンス、L2は、第2の配線ライン22iの寄生インダクタの自己インダクタンスである。
Here, L1 is the self-inductance of the parasitic inductor of the first wiring line 21i, and L2 is the self-inductance of the parasitic inductor of the second wiring line 22i.
図3Aは、第1の配線ライン21iの寄生インダクタ41と第2の配線ライン22iの寄生インダクタ42とを含む相互誘導回路を模式的に示す図である。図3Bは、図3Aの相互誘導回路に対応するT型等価回路を示す図である。
FIG. 3A is a diagram schematically showing a mutual induction circuit including the parasitic inductor 41 of the first wiring line 21i and the parasitic inductor 42 of the second wiring line 22i. FIG. 3B is a diagram showing a T-type equivalent circuit corresponding to the mutual induction circuit of FIG. 3A.
図3Aに示されるように、節点a1,a2からそれぞれ電流i1,i2が寄生インダクタ41,42に流れ込むとき、寄生インダクタ41,42間に相互インダクタンス-Mが形成される。節点b1,b2が共通電位を有するとすれば、図3Aの相互誘導回路は、図3Bに示されるように3つのインダクタンスL1+M,L2+M,-Mをそれぞれ有する3個のインダクタ51,52,53からなる等価回路と考えることができる。この種の等価回路は、T型等価回路と呼ばれている。
As shown in FIG. 3A, when the currents i 1 and i 2 flow into the parasitic inductors 41 and 42 from the nodes a1 and a2, respectively, a mutual inductance −M is formed between the parasitic inductors 41 and 42. If the nodes b1 and b2 have a common potential, the mutual induction circuit of FIG. 3A includes three inductors 51, 52, and 53 each having three inductances L1 + M, L2 + M, and −M, as shown in FIG. 3B. It can be considered as an equivalent circuit. This type of equivalent circuit is called a T-type equivalent circuit.
図4は、本実施の形態のプリント配線板1の等価回路の主要部を概略的に示す図である。図4に示される等価回路は、回路素子11と、上記したT型等価回路(図3B)と、容量素子13と、配線インダクタンスL4を有する寄生インダクタ54と、コネクタ回路12とを備えている。インダクタ51の等価インダクタンスはL1+Mであり、インダクタ52の等価インダクタンスはL2+Mである。また、容量素子13は、容量Cを有するコンデンサ成分13Cと、等価直列インダクタンス(equivalent series inductance)である残留インダクタンスLpを有する寄生インダクタ成分13Eとを備えている。ここで、寄生インダクタ54は、主に、容量素子13とグラウンド導体面31との間を接続するビア導体Vcによって形成される。なお、図4では、説明の便宜上、プリント配線板1の他の回路要素(たとえば、接続配線23の抵抗成分及び寄生インダクタ成分)の表示は省略されている。
FIG. 4 is a diagram schematically showing a main part of an equivalent circuit of the printed wiring board 1 of the present embodiment. The equivalent circuit shown in FIG. 4 includes a circuit element 11, the above-described T-type equivalent circuit (FIG. 3B), a capacitive element 13, a parasitic inductor 54 having a wiring inductance L4, and a connector circuit 12. The equivalent inductance of the inductor 51 is L1 + M, and the equivalent inductance of the inductor 52 is L2 + M. The capacitive element 13 includes a capacitor component 13C having a capacitance C and a parasitic inductor component 13E having a residual inductance Lp that is an equivalent series inductance. Here, the parasitic inductor 54 is mainly formed by the via conductor Vc that connects between the capacitive element 13 and the ground conductor surface 31. In FIG. 4, for convenience of explanation, the display of other circuit elements of the printed wiring board 1 (for example, the resistance component and the parasitic inductor component of the connection wiring 23) is omitted.
第1の配線ライン21i及び第2の配線ライン22iが磁気的に結合すると、図4に示されるように、負のインダクタンス-Mを有するインダクタ53が等価的に現れる。すなわち、インダクタ51,52間の直列接続点Npに、等価的な負のインダクタンス-Mを有するインダクタ53が接続される。このとき、直列接続点Npとグラウンド点との間に、負のインダクタンス-Mを有するインダクタ53と、コンデンサ成分13Cと、残留インダクタンスLpを有する寄生インダクタ成分13Eと、配線インダクタンスL4を有する寄生インダクタ54とが直列に接続されたバイパス回路が形成される。負のインダクタンス-Mが残留インダクタンスLp及び配線インダクタンスL4を打ち消すように設計されれば、バイパス回路のインピーダンスをコンデンサ成分13Cのみのインピーダンスと等価なものとすることができる。
When the first wiring line 21i and the second wiring line 22i are magnetically coupled, an inductor 53 having a negative inductance −M appears equivalently as shown in FIG. That is, the inductor 53 having an equivalent negative inductance −M is connected to the series connection point Np between the inductors 51 and 52. At this time, an inductor 53 having a negative inductance −M, a capacitor component 13C, a parasitic inductor component 13E having a residual inductance Lp, and a parasitic inductor 54 having a wiring inductance L4 between the series connection point Np and the ground point. Are connected in series. If the negative inductance −M is designed to cancel the residual inductance Lp and the wiring inductance L4, the impedance of the bypass circuit can be equivalent to the impedance of only the capacitor component 13C.
本実施の形態のバイパス回路は、接続配線23、容量素子13、接続配線24及びビア導体Vcによって構成される。ここで、ビア導体Vcの配線インダクタンスL4については、ビア導体Vcの寸法(たとえば、長さ及びビア径)及び材質に基づいて配線インダクタンスL4を近似的に算出することができる。また、容量素子13の特性を測定することで、残留インダクタンスLpを算出することが可能である。したがって、負のインダクタンス-Mと、ビア導体Vcの配線インダクタンスL4と、容量素子13の残留インダクタンスLpとについてインピーダンスが打ち消し合うように、負のインダクタンス-Mを設計することにより、バイパス回路のインピーダンスをコンデンサ成分13Cのみのインピーダンスと等価なものとすることができる。これにより、バイパス回路におけるバイパス経路に実質的にインダクタンス成分が含まれない。したがって、第1導体パターン層PL1を伝播する電磁ノイズの周波数が高くても、バイパス性能(ノイズ除去性能)の劣化を抑制することができる。
The bypass circuit according to the present embodiment includes the connection wiring 23, the capacitor element 13, the connection wiring 24, and the via conductor Vc. Here, for the wiring inductance L4 of the via conductor Vc, the wiring inductance L4 can be approximately calculated based on the dimensions (for example, length and via diameter) and the material of the via conductor Vc. Further, the residual inductance Lp can be calculated by measuring the characteristics of the capacitive element 13. Therefore, the impedance of the bypass circuit is reduced by designing the negative inductance −M so that the impedance cancels out with respect to the negative inductance −M, the wiring inductance L4 of the via conductor Vc, and the residual inductance Lp of the capacitive element 13. It can be equivalent to the impedance of only the capacitor component 13C. Thereby, an inductance component is substantially not included in the bypass path in the bypass circuit. Therefore, even if the frequency of the electromagnetic noise propagating through the first conductor pattern layer PL1 is high, deterioration of the bypass performance (noise removal performance) can be suppressed.
以上に説明したように実施の形態1のプリント配線板1では、第1の配線ライン21iと第2の配線ライン22iとは、積層構造の厚み方向(縦方向)において互いに対向しかつ同一方向に延在するように配置されている。また、第1の配線ライン21iと第2の配線ライン22iとは、配線ライン21j、ビア導体Vb及び屈曲配線ライン22dを介して直列に接続されている。よって、これら第1の配線ライン21i及び第2の配線ライン22iの間に厚み方向(縦方向)の磁気的結合を形成して相互誘導を生起させることができる。このとき、その磁気的結合に対応して等価的に現れる負のインダクタンス-Mが、バイパス回路の寄生インダクタンス(残留インダクタンスLp及び配線インダクタンスL4)を打ち消すことができる。その厚み方向の磁気的結合は、第1導体パターン層PL1上の実装部品(回路素子11及びコネクタ回路12)及び他の配線(たとえば、第1の主配線20)から生じる磁束の影響を受け難いため、残留インダクタンスLp及び配線インダクタンスL4などの寄生インダクタンスを打ち消すために十分な負のインダクタンス-Mを形成することができる。したがって、高いノイズ除去性能を有するプリント配線板1を提供することができる。
As described above, in the printed wiring board 1 of the first embodiment, the first wiring line 21i and the second wiring line 22i are opposed to each other in the thickness direction (vertical direction) of the laminated structure and in the same direction. It is arranged to extend. The first wiring line 21i and the second wiring line 22i are connected in series via the wiring line 21j, the via conductor Vb, and the bent wiring line 22d. Accordingly, mutual induction can be caused by forming a magnetic coupling in the thickness direction (vertical direction) between the first wiring line 21i and the second wiring line 22i. At this time, the negative inductance −M that appears equivalently corresponding to the magnetic coupling can cancel the parasitic inductance (residual inductance Lp and wiring inductance L4) of the bypass circuit. The magnetic coupling in the thickness direction is not easily affected by magnetic flux generated from the mounted components (circuit element 11 and connector circuit 12) on the first conductor pattern layer PL1 and other wiring (for example, the first main wiring 20). Therefore, a negative inductance −M sufficient to cancel out parasitic inductances such as the residual inductance Lp and the wiring inductance L4 can be formed. Therefore, the printed wiring board 1 having high noise removal performance can be provided.
ここで、上記した特許文献1に開示されている従来技術では、第1の配線ライン及び第2の配線ラインは同一層に形成されているため、厚み方向に対して垂直な横方向の磁気的結合が形成される。しかしながら、その横方向の磁気的結合は、当該同一層に設けられている実装部品及び他の配線から生じる磁束の影響を受けやすいことから、寄生インダクタンスを打ち消すために十分な負のインダクタンスを形成することが難しい場合がある。たとえば、当該実装部品と第1及び第2の配線ラインとの間、あるいは当該他の配線と第1及び第2の配線ラインとの間に誘導性結合が生じると、この誘導性結合により、第1の配線ライン及び第2の配線ラインの間の横方向の磁気的結合が弱くなり、寄生インダクタンスの打ち消しのために十分な負のインダクタンスが形成されないことがある。
Here, in the conventional technique disclosed in Patent Document 1 described above, the first wiring line and the second wiring line are formed in the same layer, and therefore, the magnetic field in the lateral direction perpendicular to the thickness direction. A bond is formed. However, the magnetic coupling in the lateral direction is susceptible to the magnetic flux generated by the mounting component and other wiring provided in the same layer, and thus forms a negative inductance sufficient to cancel the parasitic inductance. It can be difficult. For example, when inductive coupling occurs between the mounted component and the first and second wiring lines, or between the other wiring and the first and second wiring lines, the inductive coupling causes the first The lateral magnetic coupling between the first wiring line and the second wiring line is weakened, and a negative inductance sufficient for canceling the parasitic inductance may not be formed.
これに対し、本実施の形態では、層間に厚み方向(縦方向)の磁気的結合が形成されるため、寄生インダクタンスを打ち消すための十分な大きさの負のインダクタンス-Mを形成することができる。よって、プリント配線板1上の実装部品及び他の配線から生じた磁束によるバイパス回路の性能劣化を抑制することが可能である。また、プリント配線板1上の配線パターンの寸法(たとえば、配線長)が小さくても、寄生インダクタンスの打ち消しに必要な強さの磁気的結合を確保することができることから、プリント配線板1の実装可能面積(実装部品の占有可能な面積)を大きくすることが可能となる。
On the other hand, in the present embodiment, the magnetic coupling in the thickness direction (longitudinal direction) is formed between the layers, so that a negative inductance −M having a sufficient size for canceling the parasitic inductance can be formed. . Therefore, it is possible to suppress the performance deterioration of the bypass circuit due to the magnetic flux generated from the mounted components on the printed wiring board 1 and other wiring. Further, even if the dimension of the wiring pattern on the printed wiring board 1 (for example, the wiring length) is small, the magnetic coupling having the strength necessary for canceling the parasitic inductance can be ensured. It is possible to increase the possible area (area that the mounting component can occupy).
実施の形態2.
次に、本発明に係る実施の形態2について説明する。図5は、本発明に係る実施の形態2であるプリント配線板の要部断面を示す概略図である。本実施の形態のプリント配線板の構造は、図5に示される磁性体60が第1の配線ライン21iと第2の配線ライン22iとの間に介在する点を除いて、上記実施の形態1のプリント配線板1の構造と同じである。磁性体60は、第1の配線ライン21i及び第2の配線ライン22iの間で発生する磁束の少なくとも一部を閉じ込めることができる。Embodiment 2. FIG.
Next, a second embodiment according to the present invention will be described. FIG. 5 is a schematic view showing a cross-section of the main part of the printed wiring board according to the second embodiment of the present invention. The structure of the printed wiring board according to the present embodiment is the same as that of the first embodiment except that themagnetic body 60 shown in FIG. 5 is interposed between the first wiring line 21i and the second wiring line 22i. The structure of the printed wiring board 1 is the same. The magnetic body 60 can confine at least a part of the magnetic flux generated between the first wiring line 21i and the second wiring line 22i.
次に、本発明に係る実施の形態2について説明する。図5は、本発明に係る実施の形態2であるプリント配線板の要部断面を示す概略図である。本実施の形態のプリント配線板の構造は、図5に示される磁性体60が第1の配線ライン21iと第2の配線ライン22iとの間に介在する点を除いて、上記実施の形態1のプリント配線板1の構造と同じである。磁性体60は、第1の配線ライン21i及び第2の配線ライン22iの間で発生する磁束の少なくとも一部を閉じ込めることができる。
Next, a second embodiment according to the present invention will be described. FIG. 5 is a schematic view showing a cross-section of the main part of the printed wiring board according to the second embodiment of the present invention. The structure of the printed wiring board according to the present embodiment is the same as that of the first embodiment except that the
図5に示されるように、第1の配線ライン21iと第2の配線ライン22iとは、層間で厚み方向(Z軸方向)に互いに近接しかつ対向して配置されている。プリント配線板の使用時には、第1の配線ライン21iと第2の配線ライン22iとが厚み方向に磁気的に結合して相互誘導を生起させる。このとき、第1の配線ライン21iと第2の配線ライン22iとの間に磁束が発生する。磁性体60の内部には、第1の配線ライン21i及び第2の配線ライン22iの間で磁束が通過する磁路が形成される。第1の配線ライン21i及び第2の配線ライン22iのうちの一方の配線ラインから発生する磁束の全てが、空気中に漏れ出ずにその他方の配線ラインに鎖交する状態のときに、第1の配線ライン21i及び第2の配線ライン22iの寄生インダクタ41,42間の結合係数kの値は、最高値「1」となる。第1の配線ライン21i及び第2の配線ライン22iの近傍に磁性体60が配置されることにより、磁束は磁性体60の内部に集中するので、プリント配線板の外部空間に漏れ出る磁束の量を減らすことができる。その結果、結合係数kが「1」の値に近づき、上式(2)により相互インダクタンスの大きさMが高くなる。また、上式(1)のμ0がμ0×μr(μr:磁性体の複素比透磁率)に置き換えられるので、相互インダクタンスの大きさMが高くなる。
As shown in FIG. 5, the first wiring line 21i and the second wiring line 22i are arranged close to each other and opposed to each other in the thickness direction (Z-axis direction) between the layers. When the printed wiring board is used, the first wiring line 21i and the second wiring line 22i are magnetically coupled in the thickness direction to cause mutual induction. At this time, a magnetic flux is generated between the first wiring line 21i and the second wiring line 22i. Inside the magnetic body 60, a magnetic path through which a magnetic flux passes is formed between the first wiring line 21i and the second wiring line 22i. When all of the magnetic flux generated from one of the first wiring line 21i and the second wiring line 22i is linked to the other wiring line without leaking into the air, The value of the coupling coefficient k between the parasitic inductors 41 and 42 of the first wiring line 21i and the second wiring line 22i is the maximum value “1”. Since the magnetic body 60 is arranged in the vicinity of the first wiring line 21i and the second wiring line 22i, the magnetic flux is concentrated inside the magnetic body 60, so that the amount of magnetic flux leaking to the external space of the printed wiring board. Can be reduced. As a result, the coupling coefficient k approaches the value “1”, and the magnitude M of the mutual inductance is increased by the above equation (2). Further, since μ 0 in the above formula (1) is replaced with μ 0 × μ r (μ r : complex relative permeability of magnetic material), the magnitude M of mutual inductance is increased.
よって、結合係数kが高くなる分に応じて、自己インダクタンスL1,L2を小さい値に設定することができる。これにより、第1の配線ライン21i及び第2の配線ライン22iのライン長(配線長)を短くすることが可能となる。したがって、上記負のインダクタンス-Mを得るために必要な第1の配線ライン21i及び第2の配線ライン22iの寸法を小さくすることができる。
Therefore, the self-inductances L1 and L2 can be set to small values in accordance with the increase in the coupling coefficient k. Thereby, the line length (wiring length) of the first wiring line 21i and the second wiring line 22i can be shortened. Therefore, the dimensions of the first wiring line 21i and the second wiring line 22i necessary for obtaining the negative inductance −M can be reduced.
このような磁性体60としては、数MHz以上の高周波信号に対して高い透磁率を有するフェライト磁性体が好ましい。たとえば、軟磁性金属粉末が分散された樹脂組成物を絶縁層IL0の内部に埋設することで磁性体60が形成されればよい。あるいは、各々の厚みが数μm程度の複数のフェライトめっき膜を絶縁層IL0の内部で積層することで磁性体60が形成されてもよい。
Such a magnetic body 60 is preferably a ferrite magnetic body having a high magnetic permeability with respect to a high frequency signal of several MHz or more. For example, the magnetic body 60 may be formed by embedding a resin composition in which soft magnetic metal powder is dispersed in the insulating layer IL0. Alternatively, the magnetic body 60 may be formed by laminating a plurality of ferrite plating films each having a thickness of about several μm inside the insulating layer IL0.
以上に説明したように実施の形態2のプリント配線板では、第1の配線ライン21iと第2の配線ライン22iとの間に磁性体60が介在するので、第1の配線ライン21iと第2の配線ライン22iとの間の磁束密度が高くなる。よって、第1の配線ライン21iと第2の配線ライン22iとの間の磁気的結合を強くすることができることから、プリント配線板1上の配線パターンの寸法(たとえば、配線長)が小さくても、寄生インダクタンスを打ち消すための十分な大きさの負のインダクタンス-Mを形成することができる。したがって、上記実施の形態1と比べると、プリント配線板1の実装可能面積(実装部品の占有可能な面積)を更に大きくすることが可能となる。
As described above, in the printed wiring board according to the second embodiment, since the magnetic body 60 is interposed between the first wiring line 21i and the second wiring line 22i, the first wiring line 21i and the second wiring line 21i are connected to each other. The magnetic flux density with the wiring line 22i increases. Therefore, since the magnetic coupling between the first wiring line 21i and the second wiring line 22i can be strengthened, even if the dimension of the wiring pattern on the printed wiring board 1 (for example, the wiring length) is small. Therefore, it is possible to form a negative inductance −M that is sufficiently large to cancel the parasitic inductance. Therefore, as compared with the first embodiment, the mountable area of the printed wiring board 1 (the area that can be occupied by the mounted components) can be further increased.
以上、図面を参照して本発明に係る種々の実施の形態について述べたが、これら実施の形態は本発明の例示であり、これら実施の形態以外の様々な形態を採用することもできる。たとえば、上記した実施の形態1,2の導体パターン層の層数は2層であるが、これに限定されるものではない。3層以上の導体パターン層を有する多層プリント配線板を構成するように実施の形態1,2の積層構造が適宜変更されてもよい。
Although various embodiments according to the present invention have been described above with reference to the drawings, these embodiments are examples of the present invention, and various forms other than these embodiments can be adopted. For example, the number of conductor pattern layers in the first and second embodiments is two, but is not limited to this. The laminated structure of the first and second embodiments may be appropriately changed so as to constitute a multilayer printed wiring board having three or more conductive pattern layers.
また、実施の形態1,2では、外部電源2と電気的に接続されるコネクタ回路12が設けられている。このコネクタ回路12に代えて、電源回路素子が内部電源として実装されてもよい。この場合でも、実装された電源回路素子への高周波電磁ノイズの伝播を抑制することが可能である。
In the first and second embodiments, a connector circuit 12 that is electrically connected to the external power supply 2 is provided. Instead of the connector circuit 12, a power circuit element may be mounted as an internal power source. Even in this case, it is possible to suppress the propagation of high-frequency electromagnetic noise to the mounted power supply circuit element.
本発明の範囲内において、上記実施の形態1,2の構成要素の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。
Within the scope of the present invention, it is possible to freely combine the components of the first and second embodiments, to modify any component in each embodiment, or to omit any component in each embodiment. .
本発明に係るプリント配線板は、当該プリント配線板上の実装部品及び配線から生じた磁束が存在する状況下でも、高周波電磁ノイズを効果的に除去することができるので、各種電子機器の回路基板として好適に使用可能である。
Since the printed wiring board according to the present invention can effectively remove high-frequency electromagnetic noise even in the presence of magnetic flux generated from the mounted components and wiring on the printed wiring board, circuit boards of various electronic devices Can be preferably used.
PL1 第1導体パターン層、PL2 第2導体パターン層、IL0 絶縁層、Va~Ve ビア導体、1 プリント配線板、2 外部電源、11 回路素子、12 コネクタ回路、13 容量素子(バイパスコンデンサ)、13C コンデンサ成分、13E 寄生インダクタ成分、20,22 主配線(第1及び第2の主配線)、21 接続配線、21i 配線ライン(第1の配線ライン)、21j 配線ライン、22i 配線ライン(第2の配線ライン)、22d 屈曲配線ライン、23,24,28,29 接続配線、30 配線パターン領域、31 グラウンド導体面、41,42 寄生インダクタ、51~53 インダクタ、54 寄生インダクタ、60 磁性体。
PL1 1st conductor pattern layer, PL2 2nd conductor pattern layer, IL0 insulating layer, Va to Ve via conductor, 1 printed wiring board, 2 external power supply, 11 circuit element, 12 connector circuit, 13 capacitor element (bypass capacitor), 13C Capacitor component, 13E parasitic inductor component, 20, 22 main wiring (first and second main wiring), 21 connection wiring, 21i wiring line (first wiring line), 21j wiring line, 22i wiring line (second Wiring line), 22d bent wiring line, 23, 24, 28, 29 connection wiring, 30 wiring pattern area, 31 ground conductor surface, 41, 42 parasitic inductor, 51-53 inductor, 54 parasitic inductor, 60 magnetic substance.
Claims (5)
- 第1導体パターン層と、前記第1導体パターン層から当該第1導体パターン層の厚み方向に離れて配置されている第2導体パターン層と、前記第1導体パターン層及び前記第2導体パターン層の間に介在する絶縁層とを含む積層構造を有するプリント配線板であって、
前記第1導体パターン層の一部として形成され、回路素子と電気的に接続するための接続端部を有する主配線と、
前記主配線と導通し、前記第1導体パターン層から前記第2導体パターン層まで前記厚み方向に延在する第1の接続導体と、
前記第2導体パターン層の一部として形成され、前記第1の接続導体を介して前記主配線と導通する一端を有する第1の配線ラインと、
前記第1の配線ラインの他端と導通し、前記第2導体パターン層から前記第1導体パターン層まで前記厚み方向に延在する第2の接続導体と、
前記第1導体パターン層の他の一部として形成され、前記第2の接続導体を介して前記第1の配線ラインと直列に接続されている第2の配線ラインと、
前記第2の配線ラインの一端と導通する電極端子を有し、かつグラウンド電位に接続された他の電極端子を有する容量素子と
を備え、
前記第2の配線ラインは、前記厚み方向において前記第1の配線ラインと対向配置され、かつ前記第1の配線ラインの延在方向に沿って延在することを特徴とするプリント配線板。 A first conductor pattern layer; a second conductor pattern layer disposed away from the first conductor pattern layer in a thickness direction of the first conductor pattern layer; the first conductor pattern layer and the second conductor pattern layer; A printed wiring board having a laminated structure including an insulating layer interposed therebetween,
A main wiring formed as a part of the first conductor pattern layer and having a connection end for electrical connection with a circuit element;
A first connection conductor that is electrically connected to the main wiring and extends in the thickness direction from the first conductor pattern layer to the second conductor pattern layer;
A first wiring line formed as part of the second conductor pattern layer and having one end electrically connected to the main wiring through the first connection conductor;
A second connection conductor that is electrically connected to the other end of the first wiring line and extends in the thickness direction from the second conductor pattern layer to the first conductor pattern layer;
A second wiring line formed as another part of the first conductor pattern layer and connected in series with the first wiring line via the second connection conductor;
A capacitor element having an electrode terminal electrically connected to one end of the second wiring line and having another electrode terminal connected to a ground potential;
The printed wiring board, wherein the second wiring line is disposed to face the first wiring line in the thickness direction and extends along an extending direction of the first wiring line. - 請求項1記載のプリント配線板であって、前記第1の配線ライン及び前記第2の配線ラインは、磁気的に結合することにより等価的な負のインダクタンスを形成するように配置されていることを特徴とするプリント配線板。 2. The printed wiring board according to claim 1, wherein the first wiring line and the second wiring line are arranged so as to form an equivalent negative inductance by being magnetically coupled. Printed wiring board characterized by
- 請求項1記載のプリント配線板であって、
前記第2導体パターン層の他の一部として、前記第1の配線ラインとは電気的に絶縁された領域に形成されているグラウンド導体面と、
前記第1導体パターン層から前記第2導体パターン層まで前記厚み方向に延在して前記容量素子の当該他の電極端子と前記グラウンド導体面との間を導通させる第3の接続導体と
を更に備えることを特徴とするプリント配線板。 The printed wiring board according to claim 1,
As another part of the second conductor pattern layer, a ground conductor surface formed in a region electrically insulated from the first wiring line;
A third connection conductor extending in the thickness direction from the first conductor pattern layer to the second conductor pattern layer and conducting between the other electrode terminal of the capacitive element and the ground conductor surface; A printed wiring board comprising: - 請求項1記載のプリント配線板であって、前記第1の配線ラインと前記第2の配線ラインとの間に介在し、前記第1の配線ラインと第2の配線ラインとの間で発生する磁束の少なくとも一部を閉じ込める磁性体を更に備えることを特徴とするプリント配線板。 2. The printed wiring board according to claim 1, wherein the printed wiring board is interposed between the first wiring line and the second wiring line, and is generated between the first wiring line and the second wiring line. A printed wiring board, further comprising a magnetic body that confines at least part of the magnetic flux.
- 請求項4記載のプリント配線板であって、前記磁性体は、フェライト磁性体であることを特徴とするプリント配線板。 5. The printed wiring board according to claim 4, wherein the magnetic body is a ferrite magnetic body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/022361 WO2018229978A1 (en) | 2017-06-16 | 2017-06-16 | Printed circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/022361 WO2018229978A1 (en) | 2017-06-16 | 2017-06-16 | Printed circuit board |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018229978A1 true WO2018229978A1 (en) | 2018-12-20 |
Family
ID=64660597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022361 WO2018229978A1 (en) | 2017-06-16 | 2017-06-16 | Printed circuit board |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018229978A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6725090B1 (en) * | 2019-10-25 | 2020-07-15 | 三菱電機株式会社 | Optical semiconductor device |
WO2020235092A1 (en) * | 2019-05-23 | 2020-11-26 | 三菱電機株式会社 | Filter circuit |
US20230047936A1 (en) * | 2020-06-10 | 2023-02-16 | Mitsubishi Electric Corporation | Filter circuit |
CN116325390A (en) * | 2020-10-20 | 2023-06-23 | 三菱电机株式会社 | Optical semiconductor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007060892A (en) * | 2005-07-25 | 2007-03-08 | Tdk Corp | Surge absorption circuit |
JP2013077663A (en) * | 2011-09-30 | 2013-04-25 | Murata Mfg Co Ltd | Circuit module |
JP2016031965A (en) * | 2014-07-28 | 2016-03-07 | 三菱電機株式会社 | Printed circuit board |
JP2017034115A (en) * | 2015-08-03 | 2017-02-09 | 三菱電機株式会社 | Printed circuit board |
JP2017034501A (en) * | 2015-08-03 | 2017-02-09 | 三菱電機株式会社 | Printed circuit board |
-
2017
- 2017-06-16 WO PCT/JP2017/022361 patent/WO2018229978A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007060892A (en) * | 2005-07-25 | 2007-03-08 | Tdk Corp | Surge absorption circuit |
JP2013077663A (en) * | 2011-09-30 | 2013-04-25 | Murata Mfg Co Ltd | Circuit module |
JP2016031965A (en) * | 2014-07-28 | 2016-03-07 | 三菱電機株式会社 | Printed circuit board |
JP2017034115A (en) * | 2015-08-03 | 2017-02-09 | 三菱電機株式会社 | Printed circuit board |
JP2017034501A (en) * | 2015-08-03 | 2017-02-09 | 三菱電機株式会社 | Printed circuit board |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020235092A1 (en) * | 2019-05-23 | 2020-11-26 | 三菱電機株式会社 | Filter circuit |
JP6725090B1 (en) * | 2019-10-25 | 2020-07-15 | 三菱電機株式会社 | Optical semiconductor device |
WO2021079510A1 (en) * | 2019-10-25 | 2021-04-29 | 三菱電機株式会社 | Optical semiconductor device |
CN114556724A (en) * | 2019-10-25 | 2022-05-27 | 三菱电机株式会社 | Optical semiconductor device |
CN114556724B (en) * | 2019-10-25 | 2024-04-02 | 三菱电机株式会社 | Optical semiconductor device |
US12230938B2 (en) | 2019-10-25 | 2025-02-18 | Mitsubishi Electric Corporation | Optical semiconductor device |
US20230047936A1 (en) * | 2020-06-10 | 2023-02-16 | Mitsubishi Electric Corporation | Filter circuit |
CN116325390A (en) * | 2020-10-20 | 2023-06-23 | 三菱电机株式会社 | Optical semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10784039B2 (en) | Inductor component and inductor-component incorporating substrate | |
TWI558291B (en) | Multilayer circuit board and semiconductor device | |
JP2016031965A (en) | Printed circuit board | |
JP6472344B2 (en) | Noise filter and printed circuit board | |
JP2002335107A (en) | Transmission line type component | |
US20180310408A1 (en) | Printed wiring board and switching regulator | |
JP6028297B2 (en) | Transmission line structure, multilayer wiring board, semiconductor device, and semiconductor system | |
JP2016006816A (en) | Transformer and multilayer substrate | |
WO2018229978A1 (en) | Printed circuit board | |
JP6504960B2 (en) | Printed board | |
JP2013105756A (en) | Electronic component to be incorporated into wiring substrate and part built-in type substrate | |
JP5994942B2 (en) | Flexible inductor mounting structure and electronic device | |
JP6425632B2 (en) | Printed board | |
JP2012069815A (en) | Printed circuit board | |
JP5178351B2 (en) | Electronic component mounting structure | |
JP3116782B2 (en) | Circuit board with inductive cancellation capacitor | |
WO2021251354A1 (en) | Filter circuit | |
JP6520685B2 (en) | Noise filter | |
JP4910335B2 (en) | Printed wiring board and semiconductor integrated circuit device | |
WO2020235092A1 (en) | Filter circuit | |
JP2015026747A (en) | Resin multilayer substrate | |
US11889616B2 (en) | Circuit board | |
JP6012539B2 (en) | Noise filter | |
JP2012238724A (en) | Printed wiring board | |
CN113345700A (en) | Coil component and circuit board provided with same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17913974 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17913974 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |