[go: up one dir, main page]

WO2018228535A1 - 传输方法、网络设备和终端 - Google Patents

传输方法、网络设备和终端 Download PDF

Info

Publication number
WO2018228535A1
WO2018228535A1 PCT/CN2018/091508 CN2018091508W WO2018228535A1 WO 2018228535 A1 WO2018228535 A1 WO 2018228535A1 CN 2018091508 W CN2018091508 W CN 2018091508W WO 2018228535 A1 WO2018228535 A1 WO 2018228535A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal
resource
dci
information
Prior art date
Application number
PCT/CN2018/091508
Other languages
English (en)
French (fr)
Inventor
刘建琴
张荻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3047498A priority Critical patent/CA3047498C/en
Priority to JP2019540581A priority patent/JP6972142B2/ja
Priority to EP23199596.0A priority patent/EP4366215A3/en
Priority to CN201880039860.2A priority patent/CN110754108B/zh
Priority to BR112019012989A priority patent/BR112019012989A2/pt
Priority to ES18817412T priority patent/ES2910053T3/es
Priority to EP22160664.3A priority patent/EP4075683B1/en
Priority to EP18817412.2A priority patent/EP3562201B1/en
Publication of WO2018228535A1 publication Critical patent/WO2018228535A1/zh
Priority to US16/441,938 priority patent/US11184887B2/en
Priority to US17/520,416 priority patent/US11778633B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and more particularly to a transmission method, a network device, and a terminal.
  • the terminal uses the reference signal sent by the network device to perform channel estimation. After obtaining the status information of the downlink channel, the terminal feeds back channel state information (CSI) to the network device. For example, the terminal may feed back a precoding matrix index (PMI), a rank index (RI), and a channel quality index (CQI) to the network device, and the network device sends data according to the information.
  • CSI channel state information
  • the terminal may feed back a precoding matrix index (PMI), a rank index (RI), and a channel quality index (CQI) to the network device, and the network device sends data according to the information.
  • PMI precoding matrix index
  • RI rank index
  • CQI channel quality index
  • the network device can also perform beam management by using a reference signal, the network device repeatedly transmits the reference signal in different time units, and the terminal uses different receive beams to perform receive beam training in different time units. At this time, the terminal does not need to report its measurement result on the reference signal.
  • the reporting of aperiodic reference signal transmission and aperiodic measurement results has the feature of joint triggering, and the reporting mechanism of the joint trigger is assigned and reported at the same time as the measurement result is triggered.
  • the resources required to measure the results can result in wasted resources.
  • the present application provides a transmission method, a network device, and a terminal, which can save resources.
  • a transmission method includes: determining, by a network device, downlink control information (DCI), where the DCI includes a first request field, where the information in the first request field is used only for indicating The sending of the first reference signal on a resource, or the information in the first request field is used to jointly indicate the transmission of the first reference signal on the first resource and the terminal to the first reference signal on the first resource
  • DCI downlink control information
  • the measurement result is reported, the measurement result includes channel state information CSI and/or beam state information beam state information (BSI); the network device sends the DCI to the terminal.
  • CSI channel state information
  • BSI beam state information beam state information
  • the beam state information BSI may include information such as reference signal received power (PSRP), beam index or identity (ID).
  • PSRP reference signal received power
  • ID identity
  • the first reference signal may be a secondary synchronization signal (SSS), a primary synchronization signal (PSS), and a channel state information reference signal (CSI-).
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • CSI- channel state information reference signal
  • RS demodulation reference signal
  • DMRS demodulation reference signal
  • the PSS and/or the SSS may be sent in the form of an SS block, that is, the PSS, the SSS, and the physical broadcast channel (PBCH) are transmitted in time in one SS block, and the PSS and/or SSS may also be sent through the SS block. , that is, PSS and / or SSS can be sent separately.
  • SS block that is, the PSS, the SSS, and the physical broadcast channel (PBCH) are transmitted in time in one SS block, and the PSS and/or SSS may also be sent through the SS block.
  • PSS and / or SSS can be sent separately.
  • the first request field may be a value of CSI request filed in an existing DCI format.
  • the existing DCI format changes to the DCI format can be reduced, making it more compatible with existing technologies.
  • the network device instructs the terminal not to report the measurement result. Since the terminal does not need to report the measurement result, the network device does not allocate resources for the measurement result to the terminal, thereby saving resources.
  • the format of the DCI is the first format
  • the DCI that satisfies the first format is used for downlink data transmission
  • the information in the first request field is only used to indicate the transmission of the first reference signal.
  • the DCI format is the second format
  • the DCI that satisfies the second format is used for uplink data transmission
  • the information in the first request field jointly indicates the transmission of the first reference signal and the first reference signal of the terminal. The report of the measurement results.
  • the first format may also be a newly defined DCI format (for example, recorded as the third format).
  • the third format is different from the existing DCI format, and the DCI satisfying the third format may include only the first request field and the scheduling information field, or only the first request field.
  • the information in the scheduling information field is used to indicate downlink data scheduling information of the terminal. According to the information in the scheduling information field, the terminal can determine the occupied resources of the downlink data sent by the network device.
  • the CSI may be triggered by the first request field in the DCI, or the BSI may be triggered by the first request field in the DCI, or the CSI and the BSI may be triggered by the first request field in the DCI.
  • Which status information the terminal needs to report can be configured by higher layer signaling.
  • the network device can configure the status information reported by the terminal through the high-level signaling, and the terminal performs the measurement result according to the indication of the high-level signaling, if the measurement result needs to be reported according to the indication of the first request field in the DCI. Reported.
  • the high layer signaling involved in the present application may be radio resource control (RRC) signaling or media access control control element (MAC CE) signaling.
  • RRC radio resource control
  • MAC CE media access control control element
  • the network device may select different DCI triggering terminals to perform corresponding operations according to whether the terminal needs to report the measurement result, and only the DCI indication terminal related to the UL grant can be used in the prior art.
  • the program has increased the flexibility of DCI.
  • the first resource is one of the first reference signal resource sets in the S first reference signal resource sets;
  • the first resource is one or a group of first reference signal resources in the first reference signal resource set
  • the first reference signal resource set includes N sets of first reference signal resources, and the set of first reference signal resources includes at least one first reference signal resource, and both S and N are integers greater than or equal to 1.
  • the first request field is occupied.
  • the value of T is one of S, S+1, SN and SN+1, Indicates rounding up.
  • the S first reference signal resource set may be configured by the network device to the terminal by using at least one of high layer signaling, layer 2 signaling, and layer 1 signaling.
  • the layer here refers to the MAC layer, and the layer one is the physical layer.
  • the first resource triggered by the DC for example, the first reference signal resource in the first first reference signal resource set, or the first reference signal resource set may be the first reference signal.
  • the method may further include: the network device sending power information to the terminal, where the power information is used by the terminal to determine a transmit power of the first reference signal.
  • the network device may send the power information through a broadcast channel, or system information, or higher layer signaling.
  • the terminal can determine the transmit power of the first reference signal according to the power information, so that the uplink power control can be performed according to the transmit power of the first reference signal, thereby improving the accuracy of the channel measurement result.
  • the power information is used to indicate a power ratio of the first reference signal to the second reference signal.
  • the second reference signal may be an SSS.
  • the sending of the first reference signal and the reporting of the measurement result satisfy the following conditions:
  • X represents a delay between the triggering of the transmission of the first reference signal and the completion of the transmission of the first reference signal
  • Y represents a delay between the triggering of the report of the measurement result and the report of the measurement result
  • Z is For predefined values, X, Y, and Z are all greater than or equal to 0, and X is configurable. Alternatively, X may be a predefined value and Z is configurable.
  • the network device may determine whether the measurement report currently sent by the terminal is a measurement report for the first reference signal sent by the network device last time. In this way, the network device can use the latest measurement result to transmit data and improve transmission performance.
  • a second aspect provides a transmission method, including: receiving, by a terminal, a network device, a downlink control information DCI, where the DCI includes a first request field, where the information in the first request field is used only to indicate the first on the first resource.
  • the sending of the reference signal, or the information in the first request field is used to jointly indicate the sending of the first reference signal on the first resource and the reporting of the measurement result of the first reference signal on the first resource by the terminal,
  • the measurement result includes channel state information CSI and/or beam state information BSI; the terminal determines whether to perform reporting of the measurement result according to the DCI.
  • the first reference signal may be an SSS, a PSS, a CSI-RS, or a demodulation reference signal.
  • the PSS and/or the SSS may be sent in the form of an SS block, that is, the PSS, the SSS, and the physical broadcast channel PBCH are transmitted in time in one SS block, and the PSS and/or SSS may also be sent through the SS block, that is, the PSS may be separately transmitted. And / or SSS.
  • the first request field may be a value of CSI request filed in an existing DCI format.
  • the existing DCI format changes to the DCI format can be reduced, making it more compatible with existing technologies.
  • the network device instructs the terminal not to report the measurement result. Since the terminal does not need to report the measurement result, the network device does not allocate resources for the measurement result to the terminal, thereby saving resources.
  • the format of the DCI is a first format
  • the DCI that satisfies the first format is used for downlink data transmission
  • the information in the first request field is only used to indicate the sending of the first reference signal.
  • the DCI format is a second format
  • the DCI that meets the second format is used for uplink data transmission
  • the information in the first request field jointly indicates the sending of the first reference signal and the terminal pair. The reporting of the measurement result of the first reference signal.
  • the network device may select different DCI triggering terminals to perform corresponding operations according to whether the terminal needs to report channel quality information, and only the DCI indication terminal related to the UL grant may be used in the prior art.
  • the program has improved the flexibility of DCI.
  • the first resource is one of the first reference signal resource sets in the S first reference signal resource sets;
  • the first resource is one or a group of first reference signal resources in the first reference signal resource set
  • the first reference signal resource set includes N sets of first reference signal resources, and the set of first reference signal resources includes at least one first reference signal resource, and both S and N are integers greater than or equal to 1.
  • the first request field is occupied.
  • the value of T is one of S, S+1, SN and SN+1, Indicates rounding up.
  • the S first reference signal resource set may be configured by the network device to the terminal by using at least one of high layer signaling, layer 2 signaling, and layer 1 signaling.
  • the layer here refers to the MAC layer, and the layer one is the physical layer.
  • the first resource triggered by the DCI for example, the first first reference signal resource set, or the first first reference signal resource in the first reference signal resource set or the first group first
  • the reference signal resource may be information such as a time-frequency resource location of the first reference signal, a number of ports transmitting the first reference signal, and a port number for transmitting the first reference signal.
  • the method may further include: the terminal receiving power information sent by the network device; and determining, by the terminal, the transmit power of the first reference signal according to the power information.
  • the terminal may receive the power information sent by the network device by using a broadcast channel, or system information, or high layer signaling.
  • the terminal can determine the transmit power of the first reference signal according to the power information, so that the uplink power control can be performed according to the transmit power of the first reference signal, thereby improving the accuracy of the channel measurement result.
  • the power information is used to indicate a power ratio of the first reference signal to the second reference signal.
  • the second reference signal may be an SSS.
  • the sending of the first reference signal and the reporting of the measurement result satisfy the following conditions:
  • X represents a delay between the triggering of the transmission of the first reference signal and the completion of the transmission of the first reference signal
  • Y represents a delay between the triggering of the report of the measurement result and the report of the measurement result
  • Z is For predefined values, X, Y, and Z are all greater than or equal to 0, and X is configurable. Alternatively, X may be a predefined value and Z is configurable.
  • the network device may determine whether the measurement report currently sent by the terminal is a measurement report for the first reference signal sent by the network device last time. In this way, the network device can use the latest measurement result to transmit data and improve transmission performance.
  • a network device for performing the method of the first aspect or any possible implementation of the first aspect.
  • the network device comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a terminal for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • the terminal comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a network device comprising a transceiver, a memory, and a processor, the memory for storing a computer program, the processor for calling and running the computer program from the memory, such that the system performs the above The method of the first aspect and any possible implementation of the first aspect.
  • a terminal comprising a transceiver, a memory, and a processor, the memory for storing a computer program, the processor for calling and running the computer program from the memory, such that the system performs the second Aspects and methods in any of the possible implementations of the second aspect.
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the methods of the above aspects and any of the possible implementations of the above aspects.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods of the above aspects and any of the possible implementations of the various aspects described above.
  • FIG. 1 is a schematic diagram of a system architecture applied to the present application.
  • FIG. 2 is a schematic flow chart of a transmission method according to the present application.
  • FIG. 3 is a schematic block diagram of a network device in accordance with the present application.
  • FIG. 4 is a schematic block diagram of a terminal in accordance with the present application.
  • FIG. 5 is a schematic block diagram of another network device in accordance with the present application.
  • FIG. 6 is a schematic block diagram of another terminal in accordance with the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110, an access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the access network device 120 in a wireless manner, and the access network device 120 is connected to the core network device 110 by wireless or wired.
  • the core network device 110 and the access network device 120 may be independent physical devices, or may integrate the functions of the core network device 110 with the logical functions of the access network device on the same physical device, or may be a physical device.
  • the functions of part of the core network device 210 and the functions of the part of the access network device 120 are integrated on the device.
  • the terminal device can be fixed or mobile.
  • FIG. 1 is only a schematic diagram, and the communication system may further include other network devices, such as a wireless relay device and a wireless backhaul device (not shown in FIG. 1).
  • the embodiment of the present application does not limit the number of core network devices, access network devices, and terminal devices included in the mobile communication system.
  • the access network device 120 is an access device that the terminal device accesses to the mobile communication system by using a wireless device.
  • the access network device 120 may be a base station (node B, NB), an evolved base station (evolutional node B, eNB), A base station in a 5G mobile communication system, a base station in a new radio (NR) communication system, a base station in a future mobile communication system, or an access node in a WiFi system, etc.
  • embodiments of the present application are directed to a radio access network device.
  • the specific technology and specific equipment form adopted are not limited. Unless otherwise stated, the expressions of the 5G system and the NR system are interchangeable in this application.
  • the terminal device may also be called a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), or the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • Access network equipment and terminal equipment can be deployed on land, indoors or outdoors, hand-held or on-board; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons and satellites.
  • the application scenarios of the access network device and the terminal device are not limited in the embodiment of the present application.
  • the access network device and the terminal device and between the terminal device and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously pass the licensed spectrum and the license-free.
  • the spectrum communicates.
  • the access network device and the terminal device and the terminal device and the terminal device can communicate through a spectrum of 6 gigahertz (GHz) or less, or can communicate through a spectrum of 6 GHz or higher, and can also use a frequency below 6 GHz.
  • the spectrum communicates with the spectrum above 6 GHz.
  • the embodiment of the present application does not limit the spectrum resources used between the access network device and the terminal device.
  • the network device in the following may be the access network device described above, or may be another network device that communicates with the terminal through the wireless manner, which is not limited in this application.
  • the terminal uses the reference signal sent by the network device to perform channel estimation. After obtaining the status information of the downlink channel, the terminal feeds back the CSI to the network device. For example, the terminal can feed back the PMI, RI, and CQI to the network device, and the network device sends data according to the information.
  • the network device also uses the reference signal for beam management, the network device repeatedly transmits the reference signal in different time units, and the terminal uses different receiving beams for receiving beam training in different time units. At this time, the terminal does not need to report its measurement result on the reference signal.
  • the reporting of aperiodic reference signal transmission and aperiodic measurement results has the feature of joint triggering.
  • the joint triggering reporting mechanism allocates the resources required for reporting the measurement result while triggering the measurement result.
  • prior art methods can result in wasted resources.
  • the present application provides a transmission method.
  • the transmission method of the present application when the terminal does not need to report the measurement result (for example, the beam state information BSI) obtained by the measurement of the reference signal, the network device instructs the terminal not to report the measurement result. Since the terminal does not need to report the measurement result, the network device does not allocate resources for the measurement result to the terminal, thereby saving resources.
  • the measurement result for example, the beam state information BSI
  • the network device in FIG. 2 may be the radio access network device 120 in FIG. 1, and the terminal device in FIG. 2 may be the terminal device 130 or the terminal device 140 in FIG.
  • the network device determines downlink control information DCI.
  • the DCI includes a first request field, where the information in the first request field is used only to indicate the sending of the first reference signal on the first resource, or the information in the first request field may jointly indicate the first resource.
  • the network device determines whether to trigger the sending of the first reference signal, that is, whether to send the first reference signal to the terminal, and if it is determined to send the first reference signal to the terminal, determine the resource used to send the first reference signal (for example, It is recorded as the first resource), and it is determined whether the terminal needs to report the measurement result of the first reference signal corresponding to the first resource (hereinafter, simply referred to as the measurement result).
  • the network device determines the DCI according to the foregoing determination result, and indicates, by the information in the first request field in the DCI, the first resource and the operation that the terminal needs to perform, that is, the first request field indicates only the first resource.
  • the transmission of a reference signal i.e., case one
  • the first request field jointly indicates the transmission of the first reference signal and the transmission of the measurement result (i.e., case two).
  • the information in the first request field is only used to indicate the sending of the first reference signal on the first resource, and does not simultaneously instruct the terminal to perform the reporting of the measurement result of the first reference signal on the first resource. That is, the information in the first request field is used to indicate to the terminal that the network device sends the first reference signal on the first resource, and the terminal does not need to report the measurement result of the first reference signal on the first resource. In other words, the first request field jointly indicates that the first reference signal on the first resource is transmitted and the terminal does not need to report the measurement result.
  • the network device instructs the terminal not to report the measurement result. Since the terminal does not need to report the measurement result, the network device does not allocate resources for the measurement result to the terminal, thereby saving resources.
  • the format of the DCI may be the first format.
  • the DCI that satisfies the first format is used for downlink data transmission.
  • the network device when the network device performs beam management and the terminal performs the receive beam training, the network device only needs to trigger the aperiodic first reference signal, and the terminal does not need to report the measurement result.
  • the network device may use the DCI of the first format to indicate that the network device sends the first reference signal by using the information in the first request field in the DCI of the first format, without the terminal reporting the measurement result.
  • the first format may be DCI format 2.
  • the first format may also be a newly defined DCI format (for example, referred to as a third format).
  • the third format is different from the existing DCI format, and the DCI satisfying the third format may include only the first request field and the scheduling information field, or only the first request field.
  • the information in the scheduling information field is used to indicate downlink data scheduling information of the terminal. According to the information in the scheduling information field, the terminal can determine the occupied resources of the downlink data sent by the network device.
  • the first format is not limited to the DCI format enumerated above, and the first format may also be a 5G or a DCI format defined in a new system in the future.
  • the information in the first request field indicates to the terminal that the network device sends the first reference signal on the first resource, and indicates to the terminal that the terminal needs to report the measurement result of the first reference signal sent on the first resource.
  • the measurement result includes channel state information CSI and/or beam state information BSI. That is, the CSI may be triggered by the first request field in the DCI, or the BSI may be triggered by the first request field in the DCI, or the CSI and the BSI may be simultaneously reported by the first request field in the DCI.
  • Which status information the terminal needs to report can be configured by higher layer signaling. That is to say, the network device can configure the status information reported by the terminal through the high-level signaling, and the terminal reports the corresponding status information of the measurement in the case that the measurement result needs to be reported according to the indication of the first request field in the DCI.
  • the beam state information BSI may include information such as a reference signal received power PSRP, a beam index, or an ID.
  • the DCI format is the second format.
  • the DCI that satisfies the second format is used for uplink data transmission.
  • the network device when the network device performs beam management, and the terminal side needs to measure and report the measurement result, the network device can jointly trigger the transmission of the non-period first reference signal and report the measurement result through the DCI of the second format.
  • the terminal reports the measurement result according to the indication of the DCI and the high layer signaling.
  • the second format may be DCI format 0 or DCI format 4. Or any other DCI format, which is not specifically limited herein.
  • the second format is not limited to the DCI format enumerated above, and the first format may also be a 5G or a DCI format defined in a new system in the future.
  • the first request field may reuse a value of CSI request filed in an existing DCI format.
  • the existing DCI format changes to the DCI format can be reduced, making it more compatible with existing technologies.
  • the first request field may also be a newly defined request field, which is not limited herein.
  • the first reference signal may be a secondary synchronization signal (SSS), a primary synchronization signal (PSS), and a channel state information reference signal (CSI-).
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • CSI- channel state information reference signal
  • RS demodulation reference signal
  • DMRS demodulation reference signal
  • the PSS and/or the SSS may be sent in the form of an SS block, that is, the PSS, the SSS, and the physical broadcast channel PBCH are transmitted in time in one SS block, and the PSS and/or SSS may also be sent through the SS block, that is, the PSS may be separately transmitted. And / or SSS.
  • first reference signal may also be other reference signals that may appear in the future.
  • the network device instructs the terminal not to report the measurement result. Since the terminal does not need to report the measurement result, the network device does not allocate resources for the measurement result to the terminal, thereby saving resources.
  • the measurement result for example, BSI and/or CSI
  • the network device can select different DCI triggering terminals to perform corresponding operations, and the DCI is improved compared with the prior art that only the DC-indicating terminal related to the UL grant can be used. Flexibility.
  • the first resource may be one of the first reference signal resource sets in the S first reference signal resource sets.
  • the first reference signal resource set includes N sets of first reference signal resources or at least one first reference signal resource, where the first reference signal resource group includes at least one first reference signal resource, and both S and N are greater than or An integer equal to 1.
  • the S first reference signal resource sets may be configured by the network device to the terminal by using at least one of high layer signaling, layer 2 signaling, and layer 1 signaling, and may be triggered by DCI.
  • the first resource triggered by the DCI may be one of the first reference signal resource sets in the S first reference signal resource sets, that is, the first reference signal sent by the network device is the first reference signal resource set.
  • the resource triggered by the DCI may be, for example, information such as a time-frequency resource location of the first reference signal, a number of ports transmitting the first reference signal, and a port number of the first reference signal.
  • the terminal may perform measurement of the first reference signal according to the resource information.
  • bit occupied by the first request field may be The value of the T is one of S, S+1, SN or SN+1, Indicates rounding up.
  • the high layer signaling involved in this application may be RRC signaling, MAC CE, or the like.
  • Table 1 shows an example of Case 1, the information in the first request field shown in Table 1 indicating only the transmission of the first reference signal on the first reference signal resource set.
  • step S210 the value of "000" in the first request field of the DCI determined by the network device indicates that the transmission of the first reference signal is not triggered, and the value in the first request field of the DCI is "001". ” indicates that the network device will send the first reference signal on the first first reference signal resource set in the first reference signal resource set, and the terminal does not need to transmit the first reference signal on all resources included in the first reference signal resource. The measurement results are reported.
  • Table 2 shows an example of case 2, the information in the first request field shown in Table 2 is used to jointly indicate the transmission and measurement result of the first reference signal on the first reference signal resource in the first reference signal resource set. Reported.
  • the value in the first request field of the DCI determined by the network device is “000”, indicating that the network device does not trigger the sending of the first reference signal and the reporting of the measurement result; for example, A value in a request field is "001”, indicating that the network device will send the first reference signal on all resources included in the first reference signal resource set, and the terminal needs to send on all resources included in the first reference signal resource set.
  • the measurement result of the first reference signal is reported.
  • the first resource may be one or a group of first reference signal resources in one of the first reference signal resource sets in the S first reference signal resource sets.
  • the first reference signal resource set includes at least one first reference signal resource or N sets of first reference signal resources, and the set of first reference signal resources includes at least one first reference signal resource, and both S and N are greater than or An integer equal to 1.
  • the S first reference signal resource sets may be configured by the network device to the terminal by using at least one of high layer signaling, layer 2 signaling, and layer 1 signaling, and may be triggered by DCI.
  • the first resource triggered by the DCI may be a set of first reference signal resources or a first reference signal resource in one of the first reference signal resource sets in the S first reference signal resource sets, for example, the first a first set of first reference signal resources or a first first reference signal resource in the first reference signal resource set.
  • the resource triggered by the DCI may be, for example, information such as a time-frequency resource location of the first reference signal, a number of ports transmitting the first reference signal, and a port number of the first reference signal.
  • the terminal may perform measurement of the first reference signal according to the resource information.
  • the network device may indicate, by the high layer signaling, a first reference signal resource set in the S first reference signal resource sets triggered by the network device.
  • the network device may indicate, by using the high layer signaling, a first first reference signal resource set in the S first reference signal resource sets triggered by the network device.
  • the bit occupied by the first request field is The value of the T is one of S, S+1, SN or SN+1, Indicates rounding up.
  • Table 3 shows another example of Case 1, the information in the first request field shown in Table 3 indicating only the transmission of the first reference signal on the resources in the first reference signal resource set.
  • step S210 the value in the first request field of the DCI determined by the network device is “000”, indicating that the sending of the first reference signal is not triggered, and the value in the first request field is “001”. Representing that the network device will transmit the first reference signal on the first or first set of first reference signal resources in the first first reference signal resource set, and the terminal does not need to concentrate on the first first reference signal resource set The measurement result of the first reference signal transmitted on one or the first group of first reference signal resources is reported.
  • Table 4 shows another example of Case 2, the information in the first request field shown in Table 4 is used to jointly report the transmission of the first reference signal on the resource in the first reference signal resource set and the reporting of the measurement result.
  • the value in the first request field of the DCI determined by the network device is “000”, indicating that the sending of the first reference signal and the reporting of the measurement result are not triggered, in the first request field.
  • a value of "001" indicates that the network device will send the first reference signal on the first or first group of first reference signal resources in the first first reference signal resource set, and the terminal needs to access the first first reference signal.
  • the measurement result of the first reference signal transmitted on the first or first group of first reference signal resources in the resource set is reported.
  • the network device sends the DCI to the terminal.
  • the terminal receives the DCI, and may perform measurement of the first reference signal according to information in the first request field in the DCI, and determine whether the measurement result needs to be reported.
  • the method may further include:
  • the terminal sends a measurement report to the network device.
  • the terminal may send a measurement report to the devices in the network through a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the transmit power of the PUSCH may be determined according to a path loss of the terminal to the network device.
  • the path loss is equal to a difference between a transmit power of the first reference signal and a received power of the first reference signal.
  • the received power of the first reference signal is known to the terminal, so that the path loss can be determined simply by determining the transmit power of the first reference signal.
  • the terminal may determine the transmit power of the first reference signal by using power information sent by the network device. Thereby, the terminal can determine the path loss, and thus the transmit power of the PUSCH can be determined.
  • the power information may be notified to the terminal by the network device through a broadcast channel, or system information, or higher layer signaling.
  • the power information may indicate a power ratio of the first reference signal to the second reference signal.
  • the second reference signal can be an SSS.
  • the first reference signal may be a CSI-RS. That is to say, the terminal can determine the power ratio of the CSI-RS and the SSS through the power information, and thus can determine the transmit power of the CSI-RS.
  • the power of the SSS is that the network device notifies the terminal by using at least one of higher layer signaling, layer 2 signaling, and layer 1 signaling.
  • the high layer signaling herein may include any one of a broadcast channel or system information.
  • the power control of the physical uplink control channel (PUCCH), the sounding reference signal (SRS), and the physical random access channel (PRACH) is based on large-scale fading. Compensated. Therefore, the transmission power of, for example, PUCCH, PRACH, etc., can also be determined based on the path loss. For the method of determining the path loss, reference may be made to the method for determining the path loss of the PUSCH as described above.
  • the transmit power P PUSCH,c (i) of the PUSCH may be determined by:
  • P CMAX,c (i) is the total transmit power of the terminal on the primary serving cell carrier c;
  • M PUSCH,c (i) is the number of resource blocks for PUSCH scheduling, and the unit is a physical resource block (PRB);
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), P O_UE_PUSCH,c (j) is used to characterize the target received power of the terminal, and is semi-statically configured by higher layer RRC signaling.
  • P O_NOMINAL_PUSCH, c (j) is a cell-specific parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) is a path loss compensation factor, and cell-specific parameters are also semi-statically configured by higher layer RRC signaling;
  • Is a power adjustment value for different modulation and coding modes, and cell-specific parameters are semi-statically configured by higher layer RRC signaling;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantized by the receiving end according to the receiving/measuring error;
  • PL c is the path loss determined by the terminal.
  • the terminal may determine the transmit power of the first reference signal according to the power information, so that the uplink power control may be performed according to the transmit power of the first reference signal, thereby improving the accuracy of the channel measurement result.
  • the sending of the first reference signal and the reporting of the measurement result meet the following conditions:
  • X represents a delay between the triggering of the transmission of the first reference signal and the completion of the transmission of the first reference signal
  • Y represents a trigger between the report of the measurement result and the report of the measurement result.
  • Delay Z is a predefined value
  • X, Y and Z are all greater than or equal to 0, and X is configurable.
  • X may be a predefined value and Z is configurable.
  • the network device may determine whether the measurement report currently sent by the terminal is a measurement report for the first reference signal sent by the network device last time. In this way, the network device can use the latest measurement result to transmit data and improve transmission performance.
  • FIG. 3 is a schematic block diagram of a network device 300 in accordance with an embodiment of the present application.
  • the network device 300 includes a processing unit 310 and a transceiver unit 320.
  • the processing unit 310 is configured to determine downlink control information DCI, where the DCI includes a first request field, where the information in the first request field is used only to indicate the sending of the first reference signal on the first resource, or in the first request field.
  • the information is used to jointly report the transmission of the first reference signal on the first resource and the measurement of the measurement result of the first reference signal on the first resource by the terminal, and the measurement result includes channel state information CSI and/or beam state information BSI;
  • the transceiver unit 320 is configured to send the DCI to the terminal.
  • each unit in the network device 300 is used to perform each action or process performed by the network device in each method described above, and thus the beneficial effects in the foregoing method embodiments can also be achieved.
  • a detailed description thereof will be omitted.
  • FIG. 4 is a schematic block diagram of a terminal 400 in accordance with an embodiment of the present application. As shown in FIG. 4, the terminal 400 includes a transceiver unit 410 and a processing unit 420.
  • the transceiver unit 410 is configured to receive, by the network device, the downlink control information DCI, where the DCI includes a first request field, where the information in the first request field is used only to indicate the sending of the first reference signal on the first resource, or The information in the first request field is used to jointly indicate that the sending of the first reference signal on the first resource and the reporting of the measurement result of the first reference signal on the first resource by the terminal,
  • the measurement result includes channel state information CSI and/or beam state information BSI;
  • the processing unit 420 is configured to determine, according to the DCI, whether to perform reporting of the measurement result.
  • each unit in the terminal 400 is used to perform each action or process performed by the terminal in each method described above, and thus the beneficial effects in the foregoing method embodiments can also be achieved.
  • a detailed description thereof will be omitted.
  • FIG. 5 shows a schematic structural diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes a transceiver 510, a processor 520, and a memory 530.
  • the transceiver 510, the processor 520 and the memory 530 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the processor 520 is configured to determine downlink control information DCI, where the DCI includes a first request field, where the information in the first request field is used only to indicate the sending of the first reference signal on the first resource, or the The information in a request field is used to jointly indicate the sending of the first reference signal on the first resource and the reporting of the measurement result of the first reference signal on the first resource by the terminal, where the measurement result includes Channel state information CSI and/or beam state information BSI;
  • the transceiver 510 is configured to send the DCI to the terminal.
  • the processor 520 calls and runs the computer program from the memory, the processor 520 can be used to perform the data processing function of the network device in the foregoing method embodiment, and control the transceiver 510 to complete the information transmission and reception of the corresponding network device.
  • FIG. 6 shows a schematic structural diagram of a terminal 600 according to an embodiment of the present application.
  • the terminal 600 includes a transceiver 610, a processor 620, and a memory 630.
  • the transceiver 610, the processor 620, and the memory 630 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the transceiver 610 is configured to receive, by the network device, downlink control information DCI, where the DCI includes a first request field, where the information in the first request field is used only to indicate the sending of the first reference signal on the first resource, or The information in the first request field is used to jointly indicate that the sending of the first reference signal on the first resource and the reporting of the measurement result of the first reference signal on the first resource by the terminal,
  • the measurement result includes channel state information CSI and/or beam state information BSI;
  • the processor 620 is configured to determine, according to the DCI, whether to perform reporting of the measurement result.
  • the processor 620 can be configured to perform the data processing function of the terminal in the foregoing method embodiment, and control the transceiver 610 to complete the information transceiving function of the corresponding terminal.
  • the embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a central processing unit (CPU), the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software in the decoding processor.
  • the software can be located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the network device chip implements the functions of the processing unit 310 or the processor 520 described above.
  • the network device chip sends the DCI to other modules in the network device, such as a radio frequency module or an antenna.
  • the DCI is sent to the terminal via other modules of the network device.
  • the network device chip may further receive the foregoing measurement report from other modules in the network device, such as a radio frequency module or an antenna, where the measurement report is sent by the terminal to the network device.
  • the terminal chip implements the functions of the processing unit 420 or the processor 620 described above.
  • the terminal chip receives the DCI from other modules in the terminal, such as a radio frequency module or an antenna, and the DCI is sent by the network device to the terminal.
  • the terminal chip may further send the foregoing measurement report to other modules in the terminal, such as a radio frequency module or an antenna, and the measurement report is sent to the network device via other modules of the terminal.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous DRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DRRAM direct memory bus random access memory
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请提供了一种传输方法、网络设备和终端,能够节省资源。该方法包括:网络设备确定下行控制信息DCI,该DCI包括第一请求字段,该第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或该第一请求字段中的信息用于联合指示该第一资源上的第一参考信号的发送和终端对该第一资源上的第一参考信号的测量结果的上报,该测量结果包括信道状态信息CSI和/或波束状态信息BSI;网络设备向终端发送该DCI。

Description

传输方法、网络设备和终端
本申请要求于2017年6月16日提交中国专利局、申请号为201710459498.1、申请名称为“传输方法、网络设备和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输方法、网络设备和终端。
背景技术
在现有系统中,终端利用网络设备发送的参考信号进行信道估计,在得到下行信道的状态信息后,终端将信道状态信息(channel state information,CSI)反馈给网络设备。例如,终端可以将预编码矩阵索引(precoding matrix index,PMI)、秩索引(rank index,RI)和信道质量索引(channel quality index,CQI)反馈给网络设备,网络设备根据这些信息发送数据。
此外,网络设备还可以利用参考信号进行波束管理(beam management),网络设备在不同的时间单元重复发送参考信号,终端在不同的时间单元使用不同的接收波束(beam)进行接收波束训练。此时,终端不需要上报其对参考信号的测量结果。
在已有的长期演进(long term evolution,LTE)标准中,非周期参考信号发送和非周期测量结果的上报具有联合触发的特点,这种联合触发的上报机制在触发测量结果的同时会分配上报测量结果所需的资源。但是,对于不需要上报测量结果的场景,现有技术的方法会造成资源的浪费。
发明内容
本申请提供一种传输方法、网络设备和终端,能够节省资源。
第一方面,提供了一种传输方法,该方法包括:网络设备确定下行控制信息(downlink control information,DCI),该DCI包括第一请求字段,该第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或该第一请求字段中的信息用于联合指示该第一资源上的第一参考信号的发送和终端对该第一资源上的第一参考信号的测量结果的上报,该测量结果包括信道状态信息CSI和/或波束状态信息波束状态信息(beam state information,BSI);网络设备向终端发送该DCI。
这里,波束状态信息BSI可以包括参考信号接收功率(reference signal received power,PSRP)、波束索引或标识(identity,ID)等信息。
可选地,本申请中,第一参考信号可以是辅同步信号(secondary synchronization signal,SSS)、主同步信号(primary synchronization signal,PSS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)或解调参考信号(demodulation reference signal, DMRS)。
其中,PSS和/或SSS可以以SS block的形式发送,即PSS、SSS和物理广播信道(physical broadcast channel,PBCH)在一个SS block内时分发送,PSS和/或SSS也可以不通过SS block发送,即可以单独发送PSS和/或SSS。
可选地,本申请中,第一请求字段可以是现有DCI格式中的CSI请求字段(value of CSI request filed)。通过利用现有DCI格式,能够减小对DCI格式的更改,更好的兼容现有技术。
根据本申请的传输方法,在终端不需要对参考信号(例如,第一参考信号)的测量结果进行上报时,网络设备指示终端不进行测量结果的上报。由于终端不需要进行测量结果的上报,因此网络设备也就不会为终端分配用于测量结果上报的资源,从而能够节省资源。
在一种可能的实现方式中,DCI的格式为第一格式,满足第一格式的DCI用于下行数据传输,以及第一请求字段中的信息仅用于指示第一参考信号的发送。
在一种可能的实现方式中,DCI格式为第二格式,满足第二格式的DCI用于上行数据传输,以及第一请求字段中的信息联合指示第一参考信号的发送和终端第一参考信号的测量结果的上报。
在一种可能的实现方式中,第一格式也可以是新定义的一种DCI格式(例如,记作第三格式)。第三格式不同于现有的DCI格式,满足第三格式的DCI可以仅包括第一请求字段和调度信息字段,或仅包括第一请求字段。其中,该调度信息字段中的信息用于指示终端的下行数据调度信息。根据该调度信息字段中的信息,终端能够确定网络设备发送的下行数据的所占用的资源。
在该实施例中,可以通过DCI中的第一请求字段触发CSI的上报,也可以通过DCI中的第一请求字段触发BSI的上报,或者通过DCI中的第一请求字段触发CSI和BSI的同时上报。终端需要上报哪种状态信息,可以由高层信令配置。也就是说,网络设备可以通过高层信令配置终端上报何种状态信息,终端根据DCI中第一请求字段的指示,在确定需要上报测量结果的情况下,根据高层信令的指示进行测量结果的上报。
可选地,本申请所涉及的高层信令可以是无线资源控制(radio resource control,RRC)信令或媒体接入控制控制信令(media access control control element,MAC CE)信令
根据本申请实施例的传输方法,根据终端是否需要上报测量结果,网络设备可以选择不同的DCI触发终端进行相应地操作,相比于现有技术中只能采用与UL grant相关的DCI指示终端的方案,提高了DCI的灵活性。
在一种可能的实现方式中,第一资源为S个第一参考信号资源集中的其中一个第一参考信号资源集;或
第一资源为该第一参考信号资源集中的其中一个或一组第一参考信号资源;
其中,一个该第一参考信号资源集包括N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
在一种可能的实现方式中,该第一请求字段占用
Figure PCTCN2018091508-appb-000001
个比特位,该T的取值为S,S+1,SN和SN+1中的一个,
Figure PCTCN2018091508-appb-000002
表示向上取整。
可选地,所述S个第一参考信号资源集可以是网络设备通过高层信令,层二信令和层一信令中的至少一个配置给终端的。这里的层二指MAC层,层一为物理层。
可选地,本申请中,DC所触发的第一资源,例如第一个第一参考信号资源集中的第一个参考信号资源,或者,第一参考信号资源集,可以是第一参考信号的位置、发送第一参考信号的端口数、发送第一参考信号的端口号等信息。
在一种可能的实现方式中,该方法还可以包括:网络设备向终端发送功率信息,该功率信息用于终端确定第一参考信号的发射功率。
进一步地,网络设备可以通过广播信道,或系统信息,或高层信令发送该功率信息。
终端根据功率信息,可以确定第一参考信号的发射功率,从而可以根据第一参考信号的发射功率进行上行功率控制,提高信道测量结果的精确度。
在一种可能的实现方式中,该功率信息用于指示第一参考信号与第二参考信号的功率比。
可选地,第二参考信号可以是SSS。
在一种可能的实现方式中,该第一参考信号的发送与该测量结果的报告满足下述条件:
Y=X+Z,
其中,X表示该第一参考信号的发送的触发到该第一参考信号发送完成之间的时延,Y表示该测量结果的报告的触发到该测量结果的报告之间的时延,Z为预定义的值,X、Y和Z均大于或等于0,X是可配的。可选地,也可以为X为预定义的值,Z为可配的。
根据上述公式,网络设备可以确定终端当前发送的测量报告是否是针对网络设备上一次所发送的第一参考信号的测量报告。这样,网络设备可以利用最近一次的测量结果进行数据的发送,提高传输性能。
第二方面,提供了一种传输方法,包括:终端接收网络设备发送下行控制信息DCI,该DCI包括第一请求字段,该第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或该第一请求字段中的信息用于联合指示该第一资源上的第一参考信号的发送和该终端对该第一资源上的第一参考信号的测量结果的上报,该测量结果包括信道状态信息CSI和/或波束状态信息BSI;该终端根据该DCI确定是否进行该测量结果的上报。
可选地,本申请中,第一参考信号可以是SSS、PSS、CSI-RS或解调参考信号。
其中,PSS和/或SSS可以以SS block的形式发送,即PSS、SSS和物理广播信道PBCH在一个SS block内时分发送,PSS和/或SSS也可以不通过SS block发送,即可以单独发送PSS和/或SSS。
可选地,本申请中,第一请求字段可以是现有DCI格式中的CSI请求字段(value of CSI request filed)。通过利用现有DCI格式,能够减小对DCI格式的更改,更好的兼容现有技术。
根据本申请的传输方法,在终端不需要对参考信号(例如,第一参考信号)的测量结果进行上报时,网络设备指示终端不进行测量结果的上报。由于终端不需要进行测量结果的上报,因此网络设备也就不会为终端分配用于测量结果上报的资源,从而能够节省资源。
在一种可能实现方式中,DCI的格式为第一格式,满足该第一格式的DCI用于下行数据传输,以及该第一请求字段中的信息仅用于指示该第一参考信号的发送。
在一种可能实现方式中,DCI格式为第二格式,满足该第二格式的DCI用于上行数据传输,以及该第一请求字段中的信息联合指示该第一参考信号的发送和该终端对该第一参 考信号的测量结果的上报。
根据本申请实施例的传输方法,根据终端是否需要上报信道质量信息,网络设备可以选择不同的DCI触发终端进行相应地操作,相比于现有技术中只能采用与UL grant相关的DCI指示终端的方案,提高了DCI的灵活性。
在一种可能实现方式中,该第一资源为S个第一参考信号资源集中的其中一个第一参考信号资源集;或
该第一资源为该第一参考信号资源集中的其中一个或一组第一参考信号资源;
其中,一个该第一参考信号资源集包括N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
在一种可能实现方式中,该第一请求字段占用
Figure PCTCN2018091508-appb-000003
个比特位,该T的取值为S,S+1,SN和SN+1中的一个,
Figure PCTCN2018091508-appb-000004
表示向上取整。
可选地,所述S个第一参考信号资源集可以是网络设备通过高层信令,层二信令和层一信令中的至少一个配置给终端的。这里的层二指MAC层,层一为物理层。
可选地,本申请中,DCI所触发的第一资源,例如第一个第一参考信号资源集,或者,第一参考信号资源集中的第一个第一参考信号资源或第一组第一参考信号资源,可以是第一参考信号的时频资源位置、发送第一参考信号的端口数、发送第一参考信号的端口号等信息。
在一种可能实现方式中,该方法还可以包括:该终端接收该网络设备发送的功率信息;该终端根据该功率信息确定该第一参考信号的发射功率。
进一步地,终端可以通过广播信道,或系统信息,或高层信令接收网络设备发送的该功率信息。
终端根据功率信息,可以确定第一参考信号的发射功率,从而可以根据第一参考信号的发射功率进行上行功率控制,提高信道测量结果的精确度。
可选地,该功率信息用于指示该第一参考信号与第二参考信号的功率比。
可选地,第二参考信号可以是SSS。
在一种可能实现方式中,该第一参考信号的发送与该测量结果的报告满足下述条件:
Y=X+Z,
其中,X表示该第一参考信号的发送的触发到该第一参考信号发送完成之间的时延,Y表示该测量结果的报告的触发到该测量结果的报告之间的时延,Z为预定义的值,X、Y和Z均大于或等于0,X是可配的。可选地,也可以为X为预定义的值,Z为可配的。
根据上述公式,网络设备可以确定终端当前发送的测量报告是否是针对网络设备上一次所发送的第一参考信号的测量报告。这样,网络设备可以利用最近一次的测量结果进行数据的发送,提高传输性能。
第三方面,提供了一种网络设备,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种终端,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该终端包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种网络设备,该网络设备包括收发器、存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该系统执行上述第一方面及第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种终端,该终端包括收发器、存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该系统执行上述第二方面及第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面及上述各方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面及上述各方面的任意可能的实现方式中的方法。
附图说明
图1是应用于本申请的一个系统架构示意图。
图2是根据本申请的传输方法的示意性流程图。
图3是根据本申请的网络设备的示意性框图。
图4是根据本申请的终端的示意性框图。
图5是根据本申请的另一网络设备的示意性框图。
图6是根据本申请的另一终端的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与接入网设备120相连,接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与接入网设备120可以是独立的不同的物理设备,也可以是将核心网设备110的功能与接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备210的功能和部分的接入网设备120的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备(在图1中未画出)。本申请的实施例对该移动通信系统中包括的核心网设备、接入网设备和终端设备的数量不做限定。
接入网设备120是终端设备通过无线方式接入到该移动通信系统中的接入设备,接入网设备120可以是基站(node B,NB)、演进型基站(evolutional node B,eNB)、5G移动通信系统中的基站或新空口(new radio,NR)通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。如无特别说明,在本申请中,5G系统和NR系统的表述可以互换。
终端设备也可以称为终端(Terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、 平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对接入网设备和终端设备的应用场景不做限定。
接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对接入网设备和终端设备之间所使用的频谱资源不做限定。
应理解,下文中的网络设备可以是上文所描述的接入网络设备,也可以是其他与终端之间通过无线方式通信的网络设备,本申请对此不作限定。
在现有系统中,终端利用网络设备发送的参考信号进行信道估计,在得到下行信道的状态信息后,终端将CSI反馈给网络设备。例如,终端可以将PMI、RI和CQI反馈给网络设备,网络设备根据这些信息发送数据。
此外,网络设备还会利用参考信号进行波束管理,网络设备在不同的时间单元重复发送参考信号,终端在不同的时间单元使用不同的接收波束进行接收波束训练。此时,终端不需要上报其对参考信号的测量结果。
在LTE标准中,非周期参考信号发送和非周期测量结果的上报具有联合触发的特点,这种联合触发的上报机制在触发测量结果的同时会分配上报测量结果所需的资源。但是,对于不需要上报测量结果的场景,现有技术的方法会造成资源的浪费。
有鉴于此,本申请提供了一种传输方法。根据本申请的传输方法,在终端不需要对根据参考信号的测量得到的测量结果(例如,波束状态信息BSI)进行上报时,网络设备指示终端不进行测量结果的上报。由于终端不需要进行测量结果上报,因此网络设备也就不会为终端分配用于测量结果上报的资源,从而能够节省资源。
下面将结合附图详细说明本发明实施例。应理解,本申请实施例中的“第一”、“第二”等仅用于区分说明,而不应对本发明构成任何限定。例如,第一参考信号和第二参考信号仅是为了区分不同种类的参考信号。
图2从设备交互的角度示出了根据本发明实施例的传输方法的示意性流程图。图2中的网络设备可以是图1中的无线接入网设备120,图2中的终端设备可以是图1中的终端设备130或终端设备140。
S210,网络设备确定下行控制信息DCI。
其中,该DCI包括第一请求字段,第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或第一请求字段中的信息可以联合指示第一资源上的第一参考信号的发送和终端对第一资源上的第一参考信号的测量结果的上报。
具体来讲,网络设备确定是否触发第一参考信号的发送,即是否向终端发送第一参考信号,若确定向终端发送第一参考信号,则确定用于发送第一参考信号的资源(例如,记作第一资源),并且确定终端是否需要对与第一资源对应的第一参考信号的测量结果(以下,简称为测量结果)进行上报。网络设备根据上述确定结果确定DCI,通过DCI中的第一请求字段中的信息向终端指示该第一资源以及终端需要执行的操作,也就是说,第一请求字段仅指示第一资源上的第一参考信号的发送(即,情况一),或者第一请求字段联合指示第一参考信号的发送和测量结果的发送(即,情况二)。
以下,对上述两种情况进行详细说明。
情况一
具体而言,第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,而不同时指示终端进行对第一资源上的第一参考信号的测量结果的上报。也就是说,第一请求字段中的信息用于向终端指示网络设备在第一资源上发送第一参考信号,并且终端不需要对第一资源上的第一参考信号的测量结果进行上报。或者说,第一请求字段联合指示第一资源上的第一参考信号的发送和终端不需要对测量结果进行上报。
因此,根据本申请的传输方法,在终端不需要对参考信号(例如,第一参考信号)的测量结果进行上报时,网络设备指示终端不进行测量结果的上报。由于终端不需要进行测量结果的上报,因此网络设备也就不会为终端分配用于测量结果上报的资源,从而能够节省资源。
可选地,在该情况下,DCI的格式可以为第一格式。其中,满足第一格式的DCI用于下行数据传输。
比如,网络设备进行波束管理,终端进行接收波束训练时,网络设备只需要触发非周期的第一参考信号,而不需要终端进行测量结果的上报。此时,网络设备可以使用第一格式的DCI,通过第一格式的DCI中的第一请求字段中的信息指示该网络设备进行第一参考信号的发送,而不需要终端上报测量结果。
进一步地,第一格式可以为DCI format 2。
此外,第一格式也可以是新定义的一种DCI格式(例如,记作第三格式)。第三格式不同于现有的DCI格式,满足第三格式的DCI可以仅包括第一请求字段和调度信息字段,或仅包括第一请求字段。其中,该调度信息字段中的信息用于指示终端的下行数据调度信息。根据该调度信息字段中的信息,终端能够确定网络设备发送的下行数据的所占用的资源。
应理解,第一格式并不限于上述所列举的DCI格式,第一格式还可以是5G或未来新的系统中定义的DCI格式。
情况二
具体而言,第一请求字段中的信息既向终端指示网络设备在第一资源上发送第一参考信号,又向终端指示终端需要对第一资源上发送的第一参考信号进行测量结果的上报。其中测量结果包括信道状态信息CSI和/或波束状态信息BSI。也就是说,可以通过DCI中的第一请求字段触发CSI的上报,也可以通过DCI中的第一请求字段触发BSI的上报,或者通过DCI中的第一请求字段触发CSI和BSI的同时上报。终端需要上报哪种状态信息,可以由高层信令配置。也就是说,网络设备可以通过高层信令配置终端上报何种状态 信息,终端根据DCI中第一请求字段的指示,在确定需要上报测量结果的情况下,上报测量的相应状态信息。
这里,波束状态信息BSI可以包括参考信号接收功率PSRP、波束索引或ID等信息。
可选地,在该情况下,DCI格式为第二格式。其中,满足第二格式的DCI用于上行数据传输。
例如,网络设备进行波束管理,终端侧既要测量又要上报测量结果时,网络设备可以通过第二格式的DCI联合触发非周期的第一参考信号的发送和测量结果的上报。终端则根据DCI和高层信令的指示,对测量结果进行上报。
进一步地,第二格式可以为DCI format 0或DCI format 4。或任意其他的DCI格式,这里不做具体限定。
应理解,第二格式并不限于上述所列举的DCI格式,第一格式还可以是5G或未来新的系统中定义的DCI格式。
可选地,本申请中,第一请求字段可以重用现有DCI格式中的CSI请求字段(value of CSI request filed)。通过利用现有DCI格式,能够减小对DCI格式的更改,更好的兼容现有技术。此外,该第一请求字段也可以为新定义的一个请求字段,这里不做限定。
可选地,本申请中,第一参考信号可以是辅同步信号(secondary synchronization signal,SSS)、主同步信号(primary synchronization signal,PSS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)或解调参考信号(demodulation reference signal,DMRS)。
其中,PSS和/或SSS可以以SS block的形式发送,即PSS、SSS和物理广播信道PBCH在一个SS block内时分发送,PSS和/或SSS也可以不通过SS block发送,即可以单独发送PSS和/或SSS。
应理解,本申请并不对第一参考信号的种类作具体限定,第一参考信号还可以是未来可能出现的其他的参考信号。
根据本申请的传输方法,在终端不需要对根据参考信号的测量得到的测量结果(例如,BSI和/或CSI)进行上报时,网络设备指示终端不进行测量结果的上报。由于终端不需要进行测量结果上报,因此网络设备也就不会为终端分配用于测量结果上报的资源,从而能够节省资源。
另一方面,根据终端是否需要上报测量结果,网络设备可以选择不同的DCI触发终端进行相应地操作,相比于现有技术中只能采用与UL grant相关的DCI指示终端的方案,提高了DCI的灵活性。
可选地,本申请实施例中,第一资源可以为S个第一参考信号资源集中的其中一个第一参考信号资源集。其中,一个所述第一参考信号资源集包括N组第一参考信号资源或至少一个第一参考信号资源,第一参考信号资源组包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
具体地,举例来说,S个第一参考信号资源集可以是网络设备通过高层信令,层二信令和层一信令中的至少一个配置给终端的,并且可以通过DCI触发。本申请中,DCI所触发的第一资源可以是S个第一参考信号资源集中的其中一个第一参考信号资源集,即网络设备所发送的第一参考信号为与第一参考信号资源集所包括的所有第一参考信号资源对 应的第一参考信号。DCI所触发的资源例如可以是第一参考信号的时频资源位置、发送第一参考信号的端口数、发送第一参考信号的端口号等信息。终端可以根据上述资源信息,进行第一参考信号的测量。
进一步地,第一请求字段所占用的比特位可以是
Figure PCTCN2018091508-appb-000005
所述T的取值为S、S+1,SN或SN+1中的其中一个,
Figure PCTCN2018091508-appb-000006
表示向上取整。
可选地,本申请所涉及的高层信令可以是RRC信令、MAC CE等。
表1示出情况一的一个示例,表1所示的第一请求字段中的信息仅指示第一参考信号资源集上的第一参考信号的发送。
表1
Figure PCTCN2018091508-appb-000007
参见表1,例如,在S210步骤中,网络设备确定的DCI的第一请求字段中的值为“000”表示不触发第一参考信号的发送,DCI的第一请求字段中的值为“001”表示网络设备将在第一参考信号资源集中的第一个第一参考信号资源集上发送第一参考信号,并且终端不需要对第一参考信号资源包括的所有资源上发送的第一参考信号的测量结果进行上报。
表2示出了情况二的一个示例,表2所示的第一请求字段中的信息用于联合指示第一 参考信号资源集中的第一参考信号资源上的第一参考信号的发送和测量结果的上报。
表2
Figure PCTCN2018091508-appb-000008
参见表2,例如,在S210步骤中,网络设备确定的DCI的第一请求字段中的值为“000”,表示网络设备不触发第一参考信号的发送以及测量结果的上报;又如,第一请求字段中的值为“001”,表示网络设备将在第一参考信号资源集包括的所有资源上发送第一参考信号, 并且终端需要对第一参考信号资源集包括的所有资源上发送的第一参考信号的测量结果进行上报。
可选地,本申请实施例中,第一资源可以为S个第一参考信号资源集中的其中一个第一参考信号资源集中的一个或一组第一参考信号资源。其中,所述第一参考信号资源集包括至少一个第一参考信号资源或N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
具体地,举例来说,S个第一参考信号资源集可以是网络设备通过高层信令,层二信令和层一信令中的至少一个配置给终端的,并且可以通过DCI触发。本申请中,DCI所触发的第一资源可以是S个第一参考信号资源集中的其中一个第一参考信号资源集中的一组第一参考信号资源或一个第一参考信号资源,例如第一个第一参考信号资源集中的第一组第一参考信号资源或第一个第一参考信号资源。DCI所触发的资源例如可以是第一参考信号的时频资源位置、发送第一参考信号的端口数、发送第一参考信号的端口号等信息。终端可以根据该资源信息,进行第一参考信号的测量。
在该实施例中,可选地,网络设备可以通过高层信令指示网络设备所触发的S个第一参考信号资源集中的第一参考信号资源集。比如,网络设备可以通过高层信令指示网络设备触发的S个第一参考信号资源集中的第一个第一参考信号资源集。
进一步地,第一请求字段所占用的比特位为
Figure PCTCN2018091508-appb-000009
所述T的取值为S、S+1,SN或SN+1中的其中一个,
Figure PCTCN2018091508-appb-000010
表示向上取整。
表3示出了情况一的另一示例,表3所示的第一请求字段中的信息仅指示第一参考信号资源集中的资源上的第一参考信号的发送。
表3
Figure PCTCN2018091508-appb-000011
Figure PCTCN2018091508-appb-000012
参见表3,例如,在S210步骤中,网络设备确定的DCI的第一请求字段中的值为“000”,表示不触发第一参考信号的发送,第一请求字段中的值为“001”表示网络设备将在第一个第一参考信号资源集中的第一个或第一组第一参考信号资源上发送第一参考信号,并且终端不需要对第一个第一参考信号资源集中的第一个或第一组第一参考信号资源上发送的第一参考信号的测量结果进行上报。
表4示出情况二的另一示例,表4所示的第一请求字段中的信息用于联合指示第一参考信号资源集中的资源上的第一参考信号的发送和测量结果的上报。
表4
Figure PCTCN2018091508-appb-000013
Figure PCTCN2018091508-appb-000014
参见表4,例如,在S210步骤中,网络设备确定的DCI的第一请求字段中的值为“000”,表示不触发第一参考信号的发送以及测量结果的上报,第一请求字段中的值为“001”表示网络设备将在第一个第一参考信号资源集中的第一个或第一组第一参考信号资源上发送第一参考信号,并且终端需要对第一个第一参考信号资源集中的第一个或第一组第一参考信号资源上发送的第一参考信号的测量结果进行上报。
应理解,上述各表仅是示例性说明,本申请并不对第一请求字段所占用的比特位和第一请求字段中的值与第一参考信号的资源的对应关系做特殊限定。
S220,网络设备向终端发送所述DCI。
S230,终端接收DCI,并且可以根据DCI中的第一请求字段中的信息,进行第一参考信号的测量,并确定是否需要上报测量结果。
在确定需要上报测量结果的情况下,可选地,该方法还可以包括:
S240,终端向网络设备发送测量报告。
例如,终端可以通过上行共享信道(Physical Uplink Shared Channel,PUSCH)向网络里设备发送测量报告。
可选地,该PUSCH的发射功率可以根据终端到网络设备的路径损耗来确定。
其中,该路径损耗等于第一参考信号的发射功率与第一参考信号的接收功率的差值。第一参考信号的接收功率对于终端是已知的,所以,只需确定第一参考信号的发送功率,即可确定该路径损耗。
在一种可能的设计中,终端可以通过网络设备发送的功率信息确定第一参考信号的发射功率。从而,终端可以确定该路径损耗,进而可以确定PUSCH的发射功率。
可选地,该功率信息可以由网络设备通过广播信道,或系统信息,或高层信令通知给该终端。
进一步地,该功率信息可以指示第一参考信号与第二参考信号的功率比。
例如,第二参考信号可以是SSS。在此情况下,第一参考信号可以是CSI-RS。也就是说,终端可以通过功率信息确定CSI-RS与SSS的功率比,进而可以确定CSI-RS的发射功率。这里,SSS的功率是网络设备通过高层信令,层二信令和层一信令中的至少一个通知终端的。这里的高层信令可以包括广播信道或系统信息中的任意一个。
应理解,物理上行控制信道(Physical Uplink Control Channel,PUCCH),探测参考信号(Sounding Reference Signal,SRS)及物理随机接入信道(Physical Random Access Channel,PRACH)等的功率控制均是基于大尺度衰落补偿的。因此,例如PUCCH、PRACH 等的发射功率,也可以基于路径损耗确定。确定路径损耗的方法,可以参见前文所描述的确定PUSCH的路径损耗的方法。
在本申请中,可选地,PUSCH的发射功率P PUSCH,c(i)可以由下式确定:
Figure PCTCN2018091508-appb-000015
这里,P CMAX,c(i)为终端在主服务小区载波c上的总发射功率;
M PUSCH,c(i)为PUSCH调度资源块数目,单位为物理资源块(physical resource block,PRB);
P O_PUSCH,c(j)包括P O_NOMINAL_PUSCH,c(j)和P O_UE_PUSCH,c(j)两项,P O_UE_PUSCH,c(j)用来表征终端的目标接收功率,由高层RRC信令半静态配置,P O_NOMINAL_PUSCH,c(j)是小区特定的参数,由RRC信令半静态配置;
α c(j)是路损补偿因子,小区特定的参数,同样由高层RRC信令半静态配置;
Figure PCTCN2018091508-appb-000016
是对不同的调制编码方式的功率调整值,小区特定参数,由高层RRC信令半静态配置;
f c(i)是闭环功率调整量,是收端根据接收/测量误差量化出来的反馈值;
PL c为终端所确定的路径损耗。
应理解,上述公式仅是确定PUSCH的发射功率的一种可能的实现方式,本申请并不对PUSCH。
本申请实施例中,终端根据功率信息,可以确定第一参考信号的发射功率,从而可以根据第一参考信号的发射功率进行上行功率控制,提高信道测量结果的精确度。
可选地,作为本申请一个实施例,所述第一参考信号的发送与所述测量结果的报告满足下述条件:
Y=X+Z,
其中,X表示所述第一参考信号的发送的触发到所述第一参考信号的发送完成之间的时延,Y表示所述测量结果的报告的触发到所述测量结果的报告之间的时延,Z为预定义的值,X、Y和Z均大于或等于0,X是可配的。可选地,也可以为X为预定义的值,Z为可配的。
根据上述公式,网络设备可以确定终端当前发送的测量报告是否是针对网络设备上一次所发送的第一参考信号的测量报告。这样,网络设备可以利用最近一次的测量结果进行数据的发送,提高传输性能。
图3是根据本申请实施例的网络设备300的示意性框图。如图3所示,该网络设备300包括:处理单元310和收发单元320。
处理单元310,用于确定下行控制信息DCI,该DCI包括第一请求字段,第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或第一请求字段中的信息用于联合指示第一资源上的第一参考信号的发送和终端对第一资源上的第一参考信号的测量结果的上报,测量结果包括信道状态信息CSI和/或波束状态信息BSI;
收发单元320,用于向终端发送DCI。
应理解,网络设备300中各单元分别用于执行上述各方法中由网络设备执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其 详细说明。
图4是根据本申请实施例的终端400的示意性框图。如图4所示,该终端400包括:收发单元410和处理单元420。
收发单元410,用于接收网络设备发送下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态信息BSI;
处理单元420,用于根据所述DCI确定是否进行所述测量结果的上报。
应理解,终端400中各单元分别用于执行上述各方法中由终端执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
图5示出了根据本申请实施例的网络设备500的示意性结构图。如图5所示,该网络设备500包括:收发器510、处理器520和存储器530。其中,收发器510、处理器520和存储器530之间通过内部连接通路互相通信,传递控制和/或数据信号。
处理器520,用于确定下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态信息BSI;
收发器510,用于向所述终端发送所述DCI。
应理解,在该处理器520从存储器中调用并运行该计算机程序时,处理器520可用于执行上述方法实施例中网络设备的数据处理功能,并控制收发器510完成对应的网络设备的信息收发功能。
图6示出了根据本申请实施例的终端600的示意性结构图。如图6所示,该终端600包括:收发器610、处理器620和存储器630。其中,收发器610、处理器620和存储器630之间通过内部连接通路互相通信,传递控制和/或数据信号。
收发器610,用于接收网络设备发送下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态信息BSI;
处理器620,用于根据所述DCI确定是否进行所述测量结果的上报。
应理解,在该处理器620从存储器中调用并运行该计算机程序时,处理器620可用于执行上述方法实施例中终端的数据处理功能,并控制收发器610完成对应的终端的信息收发功能。
本申请实施例可以应用于处理器中,或者由处理器实现。处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理单元(central processing unit,CPU)、该处理器还可以是其他通用处理器、数字信号处理器 (digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,当本申请的实施例应用于网络设备芯片时,该网络设备芯片实现上述处理单元310或上述处理器520的功能。该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送上述DCI。该DCI经由网络设备的其它模块发送给终端。可选地,该网络设备芯片还可以从网络设备中的其它模块(如射频模块或天线)接收上述测量报告,该测量报告是终端发给网络设备的。
当本申请的实施例应用于终端芯片时,该终端芯片实现上述处理单元420或上述处理器620的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收上述DCI,该DCI是网络设备发送给终端的。可选地,该终端芯片还可以向终端中的其它模块(如射频模块或天线)发送上述测量报告,该测量报告经由终端的其它模块发送给网络设备。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种传输方法,其特征在于,包括:
    网络设备确定下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态信息BSI;
    所述网络设备向所述终端发送所述DCI。
  2. 如权利要求1所述的方法,其特征在于,所述DCI的格式为第一格式,满足所述第一格式的DCI用于下行数据传输,以及
    所述第一请求字段中的信息仅用于指示所述第一参考信号的发送。
  3. 如权利要求1或2所述的方法,其特征在于,所述DCI格式为第二格式,满足所述第二格式的DCI用于上行数据传输,以及
    所述第一请求字段中的信息联合指示所述第一参考信号的发送和所述终端对所述第一参考信号的测量结果的上报。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,
    所述第一资源为S个第一参考信号资源集中的其中一个第一参考信号资源集;或
    所述第一资源为所述第一参考信号资源集中的其中一个或一组第一参考信号资源;
    其中,所述第一参考信号资源集包括N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
  5. 如权利要求4所述的方法,其特征在于,所述第一请求字段占用
    Figure PCTCN2018091508-appb-100001
    个比特位,所述T的取值为S,S+1,SN和SN+1中的一个,
    Figure PCTCN2018091508-appb-100002
    表示向上取整。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送功率信息,所述功率信息用于所述终端确定所述第一参考信号的发射功率。
  7. 如权利要求6所述的方法,其特征在于,所述功率信息用于指示所述第一参考信号与第二参考信号的功率比。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述第一参考信号的发送与所述测量结果的报告满足下述条件:
    Y=X+Z,
    其中,X表示所述第一参考信号的发送的触发到所述第一参考信号的发送完成之间的时延,Y表示所述测量结果的报告的触发到所述测量结果的报告之间的时延,Z为预定义的值,X、Y和Z均大于或等于0。
  9. 一种传输方法,其特征在于,包括:
    终端接收网络设备发送下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态 信息BSI;
    所述终端根据所述DCI确定是否进行所述测量结果的上报。
  10. 如权利要求9所述的方法,其特征在于,所述DCI的格式为第一格式,满足所述第一格式的DCI用于下行数据传输,以及
    所述第一请求字段中的信息仅用于指示所述第一参考信号的发送。
  11. 如权利要求9或10所述的方法,其特征在于,所述DCI格式为第二格式,满足所述第二格式的DCI用于上行数据传输,以及
    所述第一请求字段中的信息联合指示所述第一参考信号的发送和所述终端对所述第一参考信号的测量结果的上报。
  12. 如权利要求9至11中任一项所述的方法,其特征在于,
    所述第一资源为S个第一参考信号资源集中的其中一个第一参考信号资源集;或
    所述第一资源为所述第一个第一参考信号资源集中的其中一个或一组第一参考信号资源;
    其中,所述第一参考信号资源集包括N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
  13. 如权利要求12所述的方法,其特征在于,所述第一请求字段占用
    Figure PCTCN2018091508-appb-100003
    个比特位,所述T的取值为S,S+1,SN和SN+1中的一个,
    Figure PCTCN2018091508-appb-100004
    表示向上取整。
  14. 如权利要求9至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述网络设备发送的功率信息;
    所述终端根据所述功率信息确定所述第一参考信号的发射功率。
  15. 如权利要求14所述的方法,其特征在于,所述功率信息用于指示所述第一参考信号与第二参考信号的功率比。
  16. 如权利要求9至15中任一项所述的方法,其特征在于,所述第一参考信号的发送与所述测量结果的报告满足下述条件:
    Y=X+Z,
    其中,X表示所述第一参考信号的发送的触发到所述第一参考信号的发送完成之间的时延,Y表示所述测量结果的报告的触发到所述测量结果的报告之间的时延,Z为预定义的值,X、Y和Z均大于或等于0。
  17. 一种网络设备,其特征在于,包括:
    处理单元,用于确定下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态信息BSI;
    收发单元,用于向所述终端发送所述DCI。
  18. 如权利要求17所述的网络设备,其特征在于,所述DCI的格式为第一格式,满足所述第一格式的DCI用于下行数据传输,以及
    所述第一请求字段中的信息仅用于指示所述第一参考信号的发送。
  19. 如权利要求17或18所述的网络设备,其特征在于,所述DCI格式为第二格式, 满足所述第二格式的DCI用于上行数据传输,以及
    所述第一请求字段中的信息联合指示所述第一参考信号的发送和所述终端对所述第一参考信号的测量结果的上报。
  20. 如权利要求17至19中任一项所述的网络设备,其特征在于,
    所述第一资源为S个第一参考信号资源集中的其中一个第一参考信号资源集,;或
    所述第一资源为所述第一参考信号资源集中的其中一个或一组第一参考信号资源;
    其中,所述第一参考信号资源集包括N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
  21. 如权利要求20所述的网络设备,其特征在于,所述第一请求字段占用
    Figure PCTCN2018091508-appb-100005
    个比特位,所述T的取值为S,S+1,SN和SN+1中的一个,
    Figure PCTCN2018091508-appb-100006
    表示向上取整。
  22. 如权利要求17至21中任一项所述的网络设备,其特征在于,所述收发单元还用于:
    向所述终端发送功率信息,所述功率信息用于所述终端确定所述第一参考信号的发射功率。
  23. 如权利要求22所述的网络设备,其特征在于,所述功率信息用于指示所述第一参考信号与第二参考信号的功率比。
  24. 一种终端,其特征在于,包括:
    收发单元,用于接收网络设备发送下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态信息BSI;
    处理单元,用于根据所述DCI确定是否进行所述测量结果的上报。
  25. 如权利要求24所述的终端,其特征在于,所述DCI的格式为第一格式,满足所述第一格式的DCI用于下行数据传输,以及
    所述第一请求字段中的信息仅用于指示所述第一参考信号的发送。
  26. 如权利要求24或25所述的终端,其特征在于,所述DCI格式为第二格式,满足所述第二格式的DCI用于上行数据传输,以及
    所述第一请求字段中的信息联合指示所述第一参考信号的发送和所述终端对所述第一参考信号的测量结果的上报。
  27. 如权利要求24至26中任一项所述的终端,其特征在于,
    所述第一资源为S个第一参考信号资源集中的其中一个第一参考信号资源集;或
    所述第一资源为所述第一个第一参考信号资源集中的其中一个或一组第一参考信号;
    其中,所述第一参考信号资源集包括N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
  28. 如权利要求27所述的终端,其特征在于,所述第一请求字段占用
    Figure PCTCN2018091508-appb-100007
    个比特位,所述T的取值为S,S+1,SN和SN+1中的一个,
    Figure PCTCN2018091508-appb-100008
    表示向上取整。
  29. 如权利要求24至28中任一项所述的终端,其特征在于,所述收发单元还用于,接收所述网络设备发送的功率信息;
    所述处理单元还用于,根据所述功率信息确定所述第一参考信号的发射功率。
  30. 如权利要求29所述的终端,其特征在于,所述功率信息用于指示所述第一参考信号与第二参考信号的功率比。
  31. 一种网络设备,其特征在于,包括:
    处理器,用于确定下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态信息BSI;
    收发器,用于向所述终端发送所述DCI。
  32. 如权利要求31所述的网络设备,其特征在于,所述DCI的格式为第一格式,满足所述第一格式的DCI用于下行数据传输,以及
    所述第一请求字段中的信息仅用于指示所述第一参考信号的发送。
  33. 如权利要求31或32所述的网络设备,其特征在于,所述DCI格式为第二格式,满足所述第二格式的DCI用于上行数据传输,以及
    所述第一请求字段中的信息联合指示所述第一参考信号的发送和所述终端对所述第一参考信号的测量结果的上报。
  34. 如权利要求31至33中任一项所述的网络设备,其特征在于,
    所述第一资源为S个第一参考信号资源集中的其中一个第一参考信号资源集,;或
    所述第一资源为所述第一参考信号资源集中的其中一个或一组第一参考信号资源;
    其中,所述第一参考信号资源集包括N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
  35. 如权利要求34所述的网络设备,其特征在于,所述第一请求字段占用
    Figure PCTCN2018091508-appb-100009
    个比特位,所述T的取值为S,S+1,SN和SN+1中的一个,
    Figure PCTCN2018091508-appb-100010
    表示向上取整。
  36. 如权利要求31至35中任一项所述的网络设备,其特征在于,所述收发器还用于:
    向所述终端发送功率信息,所述功率信息用于所述终端确定所述第一参考信号的发射功率。
  37. 如权利要求36所述的网络设备,其特征在于,所述功率信息用于指示所述第一参考信号与第二参考信号的功率比。
  38. 一种终端,其特征在于,包括:
    收发器,用于接收网络设备发送下行控制信息DCI,所述DCI包括第一请求字段,所述第一请求字段中的信息仅用于指示第一资源上的第一参考信号的发送,或所述第一请求字段中的信息用于联合指示所述第一资源上的第一参考信号的发送和所述终端对所述第一资源上的第一参考信号的测量结果的上报,所述测量结果包括信道状态信息CSI和/或波束状态信息BSI;
    处理器,用于根据所述DCI确定是否进行所述测量结果的上报。
  39. 如权利要求38所述的终端,其特征在于,所述DCI的格式为第一格式,满足所述第一格式的DCI用于下行数据传输,以及
    所述第一请求字段中的信息仅用于指示所述第一参考信号的发送。
  40. 如权利要求38或39所述的终端,其特征在于,所述DCI格式为第二格式,满足所述第二格式的DCI用于上行数据传输,以及
    所述第一请求字段中的信息联合指示所述第一参考信号的发送和所述终端对所述第一参考信号的测量结果的上报。
  41. 如权利要求38至40中任一项所述的终端,其特征在于,
    所述第一资源为S个第一参考信号资源集中的其中一个第一参考信号资源集;或
    所述第一资源为所述第一个第一参考信号资源集中的其中一个或一组第一参考信号;
    其中,所述第一参考信号资源集包括N组第一参考信号资源,一组第一参考信号资源包括至少一个第一参考信号资源,S和N均为大于或等于1的整数。
  42. 如权利要求41所述的终端,其特征在于,所述第一请求字段占用
    Figure PCTCN2018091508-appb-100011
    个比特位,所述T的取值为S,S+1,SN和SN+1中的一个,
    Figure PCTCN2018091508-appb-100012
    表示向上取整。
  43. 如权利要求38至42中任一项所述的终端,其特征在于,所述收发单元还用于,接收所述网络设备发送的功率信息;
    所述处理单元还用于,根据所述功率信息确定所述第一参考信号的发射功率。
  44. 如权利要求43所述的终端,其特征在于,所述功率信息用于指示所述第一参考信号与第二参考信号的功率比。
  45. 一种芯片系统,其特征在于,包括:
    处理器,用于从存储器调用并运行计算机程序,使得安装有所述芯片系统的设备执行如权利要求1至16中任一项所述的方法。
  46. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至16中任一项所述的方法。
  47. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至16中任一项所述的方法。
  48. 一种通信系统,其特征在于,包括:
    如权利要求17至23中任一项所述的网络设备以及如权利要求24至30中任一项所述的终端;或者
    如权利要求31至37中任一项所述的网络设备以及如权利要求38至44中任一项所述的终端。
PCT/CN2018/091508 2017-06-16 2018-06-15 传输方法、网络设备和终端 WO2018228535A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA3047498A CA3047498C (en) 2017-06-16 2018-06-15 Transmission method, network device, and terminal
JP2019540581A JP6972142B2 (ja) 2017-06-16 2018-06-15 送信方法、ネットワークデバイス、および端末
EP23199596.0A EP4366215A3 (en) 2017-06-16 2018-06-15 Transmission method, network device, and terminal
CN201880039860.2A CN110754108B (zh) 2017-06-16 2018-06-15 传输方法、网络设备和终端
BR112019012989A BR112019012989A2 (pt) 2017-06-16 2018-06-15 método de transmissão, aparelho, dispositivo de rede, dispositivo terminal, sistema de chip, mídia de armazenamento legível por computadore, produto de programa de computador, sistema de comunicações e aparelho de comunicações
ES18817412T ES2910053T3 (es) 2017-06-16 2018-06-15 Procedimiento de transmisión, dispositivo de red, y terminal
EP22160664.3A EP4075683B1 (en) 2017-06-16 2018-06-15 Transmission method
EP18817412.2A EP3562201B1 (en) 2017-06-16 2018-06-15 Transmission method, network device, and terminal
US16/441,938 US11184887B2 (en) 2017-06-16 2019-06-14 Transmission method, network device, and terminal
US17/520,416 US11778633B2 (en) 2017-06-16 2021-11-05 Transmission method, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459498.1 2017-06-16
CN201710459498.1A CN109151885B (zh) 2017-06-16 2017-06-16 传输方法、网络设备和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/441,938 Continuation US11184887B2 (en) 2017-06-16 2019-06-14 Transmission method, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2018228535A1 true WO2018228535A1 (zh) 2018-12-20

Family

ID=64659680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091508 WO2018228535A1 (zh) 2017-06-16 2018-06-15 传输方法、网络设备和终端

Country Status (8)

Country Link
US (2) US11184887B2 (zh)
EP (3) EP4075683B1 (zh)
JP (1) JP6972142B2 (zh)
CN (4) CN109905224B (zh)
BR (1) BR112019012989A2 (zh)
CA (1) CA3047498C (zh)
ES (1) ES2910053T3 (zh)
WO (1) WO2018228535A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442297B1 (en) * 2016-07-15 2022-09-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless-network-based communication method, terminal device, and network device
US11057091B2 (en) * 2018-02-16 2021-07-06 Qualcomm Incorporated Reference signals for tracking
CN114567928B (zh) 2019-02-15 2024-03-26 成都华为技术有限公司 用于定位终端设备的方法和装置
CN111586855B (zh) 2019-02-15 2024-02-09 华为技术有限公司 信号传输的方法与装置
EP3908035B1 (en) 2019-02-15 2023-06-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device, and network device
CN111934829B (zh) 2019-05-12 2024-04-12 华为技术有限公司 传输信号的方法、终端设备和网络设备
WO2020237424A1 (zh) * 2019-05-24 2020-12-03 北京小米移动软件有限公司 基于非授权频谱的通信方法、装置及存储介质
WO2021056566A1 (zh) 2019-09-29 2021-04-01 华为技术有限公司 发送角度测量结果的方法和装置
CN112788654B (zh) * 2019-11-08 2023-04-14 大唐移动通信设备有限公司 信息上报方法、终端及基站
CN117336828A (zh) * 2020-01-10 2024-01-02 华为技术有限公司 通信方法及装置
CN115066925B (zh) * 2020-04-01 2025-02-28 华为技术有限公司 终端定位方法及装置
CN113766645B (zh) * 2020-06-03 2024-11-19 华为技术有限公司 资源信息的传输方法及装置
CN114501546B (zh) * 2020-10-26 2024-11-26 大唐移动通信设备有限公司 一种定位测量方法和装置及设备
CN115442007A (zh) * 2021-06-04 2022-12-06 维沃移动通信有限公司 一种信号传输方法、装置、设备及系统
CN115884249A (zh) * 2021-09-29 2023-03-31 华为技术有限公司 一种通信方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220076A (zh) * 2012-01-21 2013-07-24 华为技术有限公司 通信方法、设备及系统
WO2017014572A1 (en) * 2015-07-21 2017-01-26 Samsung Electronics Co., Ltd. Method and apparatus for beam-level radio resource management and mobility in cellular network
CN106792786A (zh) * 2015-11-24 2017-05-31 中国移动通信集团公司 一种邻频测量方法、基站及终端

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2595333B1 (en) 2010-07-16 2018-11-28 LG Electronics Inc. Method for transmitting control information and apparatus for same
KR101486181B1 (ko) * 2011-01-07 2015-01-23 후지쯔 가부시끼가이샤 사운딩 레퍼런스 심벌을 전송하는 방법, 기지국, 및 사용자 기기
WO2013047130A1 (ja) * 2011-09-30 2013-04-04 シャープ株式会社 端末、通信システム、基地局および通信方法
JP6851709B2 (ja) * 2012-01-27 2021-03-31 サムスン エレクトロニクス カンパニー リミテッド 非周期的チャンネル状態情報に対する多重プロセスの報告
US9198071B2 (en) 2012-03-19 2015-11-24 Qualcomm Incorporated Channel state information reference signal configuring and reporting for a coordinated multi-point transmission scheme
JP2013236288A (ja) * 2012-05-10 2013-11-21 Sharp Corp 端末、通信方法および集積回路
US9178583B2 (en) * 2013-01-08 2015-11-03 Samsung Electronics Co., Ltd. Channel state information feedback design in advanced wireless communication systems
JP6161347B2 (ja) * 2013-03-19 2017-07-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN104244319A (zh) * 2013-06-20 2014-12-24 北京三星通信技术研究有限公司 测量并上报csi的方法及设备
WO2015005462A1 (ja) * 2013-07-12 2015-01-15 シャープ株式会社 端末装置、方法および集積回路
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
US10004030B2 (en) 2014-01-31 2018-06-19 Futurewei Technologies, Inc. Device, network, and method for network adaptation and utilizing a downlink discovery reference signal
US9743392B2 (en) * 2015-01-30 2017-08-22 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation
CN106301692B (zh) * 2015-05-21 2019-12-10 电信科学技术研究院 一种信道状态信息获取方法及装置
CN111817839B (zh) * 2015-05-22 2022-11-08 富士通株式会社 参考信号的资源配置方法、装置以及通信系统
CN114024805B (zh) * 2015-07-20 2024-05-21 北京三星通信技术研究有限公司 一种多用户数据传输方法和设备
CN106375044A (zh) * 2015-07-23 2017-02-01 中兴通讯股份有限公司 非授权载波的信道状态信息测量反馈方法、基站、终端
JP2017050758A (ja) * 2015-09-03 2017-03-09 ソニー株式会社 端末装置及び無線通信装置
CN106559109A (zh) 2015-09-25 2017-04-05 中兴通讯股份有限公司 一种信道状态信息测量反馈方法和装置
JPWO2017086011A1 (ja) * 2015-11-17 2018-09-06 ソニー株式会社 端末装置、無線通信装置及び通信方法
JP2017184000A (ja) * 2016-03-30 2017-10-05 ソニー株式会社 通信装置、通信方法及びプログラム
US11171746B2 (en) * 2016-06-15 2021-11-09 Apple Inc. Channel state and beam related information reporting
US10505618B2 (en) * 2016-08-10 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement and management in wireless systems
WO2018128410A1 (ko) * 2017-01-06 2018-07-12 엘지전자 (주) 무선 통신 시스템에서의 참조 신호 수신 방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220076A (zh) * 2012-01-21 2013-07-24 华为技术有限公司 通信方法、设备及系统
WO2017014572A1 (en) * 2015-07-21 2017-01-26 Samsung Electronics Co., Ltd. Method and apparatus for beam-level radio resource management and mobility in cellular network
CN106792786A (zh) * 2015-11-24 2017-05-31 中国移动通信集团公司 一种邻频测量方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Independent and joint control of CSI-RS transmission and CSI reporting for NR MIMO", 3GPP TSG RAN WG1 MEETING #88, no. R1-1701681, 6 February 2017 (2017-02-06), XP051220556 *

Also Published As

Publication number Publication date
ES2910053T3 (es) 2022-05-11
JP2020507970A (ja) 2020-03-12
CA3047498A1 (en) 2018-12-20
US11778633B2 (en) 2023-10-03
EP4366215A2 (en) 2024-05-08
CN110446226A (zh) 2019-11-12
US20220061038A1 (en) 2022-02-24
US20190327719A1 (en) 2019-10-24
EP3562201B1 (en) 2022-03-09
CN109151885B (zh) 2023-11-10
CN109151885A (zh) 2019-01-04
EP3562201A4 (en) 2020-02-26
US11184887B2 (en) 2021-11-23
EP3562201A1 (en) 2019-10-30
CN110446226B (zh) 2021-03-23
CN110754108A (zh) 2020-02-04
CN109905224B (zh) 2020-06-26
EP4366215A3 (en) 2024-06-19
CN109905224A (zh) 2019-06-18
JP6972142B2 (ja) 2021-11-24
CN110754108B (zh) 2021-11-30
BR112019012989A2 (pt) 2019-12-03
CA3047498C (en) 2023-10-03
EP4075683A1 (en) 2022-10-19
EP4075683B1 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
WO2018228535A1 (zh) 传输方法、网络设备和终端
TWI692261B (zh) 資料傳輸方法、基地台和終端
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
US12114290B2 (en) Method and device for determining codebook subset, and user equipment
WO2020029942A1 (zh) 波束测量的方法和装置
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2018170691A1 (zh) 上行传输的方法、终端设备和网络设备
WO2019080132A1 (zh) 传输数据的方法、终端设备和网络设备
WO2019051717A1 (zh) 信号处理的方法和装置
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
WO2022206578A1 (zh) 发送信道状态信息报告的方法和装置
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2022067823A1 (zh) 一种上行功率控制方法及设备
WO2025066151A1 (zh) 信道状态信息的发送和接收方法、装置及存储介质
US11191081B2 (en) Method and apparatus for measurement and reporting for reference signal
WO2022253150A1 (zh) 数据传输方法及装置
WO2023060449A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023103829A1 (zh) 上行功率的指示方法、装置、设备以及存储介质
WO2025002278A1 (zh) 一种信道状态信息确定方法及装置
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
WO2023206302A1 (zh) 信号发送、信号接收装置以及方法
WO2024031547A1 (zh) 非周期参考信号的接收和发送方法以及装置
CN119729855A (zh) 参考信号的确定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3047498

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019012989

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019540581

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018817412

Country of ref document: EP

Effective date: 20190725

ENP Entry into the national phase

Ref document number: 112019012989

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190621

NENP Non-entry into the national phase

Ref country code: DE