[go: up one dir, main page]

WO2018224584A1 - Two-layer fluorinated polymer fibre - Google Patents

Two-layer fluorinated polymer fibre Download PDF

Info

Publication number
WO2018224584A1
WO2018224584A1 PCT/EP2018/064986 EP2018064986W WO2018224584A1 WO 2018224584 A1 WO2018224584 A1 WO 2018224584A1 EP 2018064986 W EP2018064986 W EP 2018064986W WO 2018224584 A1 WO2018224584 A1 WO 2018224584A1
Authority
WO
WIPO (PCT)
Prior art keywords
ene
fiber
layer
dicarboxylic
functionalized
Prior art date
Application number
PCT/EP2018/064986
Other languages
French (fr)
Inventor
Simon JESTIN
Samuel Devisme
Stéphane Bizet
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1755181A external-priority patent/FR3067363B1/en
Application filed by Arkema France filed Critical Arkema France
Publication of WO2018224584A1 publication Critical patent/WO2018224584A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments

Definitions

  • the present invention relates to the field of composite piezoelectric fibers. More particularly, the invention relates to bi-component piezoelectric effect fibers consisting solely of polymeric materials. The invention also relates to the process for manufacturing these fibers, as well as their applications in various sectors of technical textiles, filtration, and electronics.
  • ferroelectric and ferroelectric relaxer materials that generate mechanical actuation induced by an external electric field have attracted a lot of attention and have been recognized for applications in various transducers, actuators and sensors.
  • ceramics are the most commonly used because of their good actuation properties and their very wide bandwidth. However, they have a fragility that prevents them from being applied to curved or complex surfaces.
  • VDF vinylidene fluoride
  • TrFE trifluoroethylene
  • Such fibers have been manufactured in the laboratory as a single-component or multi-component.
  • the article by B. Glauss et al. in Materials 2013, 6, 2642-61 discloses two-component hot-melt fibers consisting of a conductive polypropylene core (supplemented with multi-walled carbon nanotubes and sodium stearate), and a PVDF homopolymer sheath. .
  • These fibers have been characterized by various analytical methods (wide-angle X-ray diffraction, transmission electron microscopy, differential calorimetry, rheometry) but their mechanical and electrical properties have not been reported.
  • the invention relates to a piezoelectric polymer fiber consisting of two layers having the following structures:
  • a layer B consisting of at least one fluorinated polymer
  • a layer A consisting of at least one polyolefin which has a chemical affinity with said fluoropolymer.
  • the fluoropolymer is a functionalized fluoropolymer or a mixture of a fluoropolymer with a functionalized fluoropolymer
  • said layer A comprises a mixture of a polyolefin with a functionalized polyolefin carrying a function reactive with respect to the function carried by said functionalized fluoropolymer.
  • the layer A is charged with conductive particles such as carbon nanotubes, carbon blacks, graphene, graphite, carbon nanofibres, nanofilts or nanoparticles metallic (silver nanowires for example). This promotes the polarization and the piezoelectric behavior of the fiber.
  • the invention relates to a process for manufacturing the bi-component fiber described above by coextrusion of the polymers constituting the layers A and B in the molten state, followed by a drawing step.
  • the drawing step is carried out at a temperature between the glass transition temperature, Tg, and the melting temperature, Tf of the polymers constituting the layers A and B, that is to say say at a temperature between the highest Tg and the lowest Tf of the various constituents, which amounts to a range between 40 ° C and 130 ° C.
  • this stretching is between 80 and 120 ° C.
  • the invention also relates to a piezoelectric device manufactured from the bicomponent fiber described.
  • the invention also relates to textile materials which comprise the two-component fibers described.
  • the present invention makes it possible to overcome the disadvantages of the prior art.
  • the invention makes it possible to obtain entirely polymeric piezoelectric fibers having increased flexibility over ceramic-based fibers, enabling them to be used in "smart" materials, especially textile materials.
  • the fibers according to the invention have improved adhesion properties between the different layers, which guarantees their drawability. Indeed, such a fiber to obtain its mechanical characteristics must be stretched in the spinning process, without impact on the cohesion of its various constituents. In addition, especially for use in textile clothing, this fiber will be highly mechanically stressed and to maintain its integrity, strong adhesion in different layers is preferred.
  • the stretching of the fiber makes it possible to generate the beta crystalline phase necessary for the piezoelectric effect.
  • Another advantage of the fibers according to the invention lies in the fact that the stretching temperatures of the multicomponent fiber remain in conventional ranges of drawing temperatures, ie below the melting point of the component having the lowest melting point, typically below 150 ° C.
  • FIG. 1 represents a non-stretched two-component A / B fiber (the filament of Example 1), seen in cross-section with a scanning electron microscope.
  • Material A is a mixture of 70% by weight of HDPE high density polyethylene and 30% by weight of PE functionalized polyethylene.
  • Material B is a compound made of 80% by weight PVDF and 20% PVDF. % in weight.
  • Figure 2 shows the image of a fracture facies, obtained by scanning electron microscopy, of the two-component fiber of Example 1 strongly stretched (at the end of the stress-strain curve).
  • Figure 3 is a diagram showing the tensile test results corresponding to Comparative Examples 1 and 1. DESCRIPTION OF EMBODIMENTS
  • the invention relates to a piezoelectric polymer fiber consisting of two layers having the following structures: a layer B consisting of at least one fluorinated polymer,
  • a layer A consisting of at least one polyolefin which has a chemical affinity with said fluoropolymer.
  • the fluoropolymer is a functionalized fluoropolymer or a mixture of a fluoropolymer with a functionalized fluoropolymer
  • said layer A comprises a mixture of a polyolefin with a functionalized polyolefin carrying a function reactive with respect to the function carried by said functionalized fluoropolymer.
  • the polymers present in each of the layers A and B have crystallization temperatures Te respecting the condition: Te A ⁇ Te B in order to ensure the best possible cohesion within the two-component fiber.
  • This procedure makes it possible to avoid the phenomena of decohesion at the interfaces due to shrinkage on crystallization, and leads to the production of a denser and more tenacious fiber.
  • the measurement of the crystallization temperature is carried out by differential thermal analysis according to the ISO 11357-3 standard "Plastics - Differential Scanning Calorimetry (DSC) Part 3: Determination of Temeprature and Enthalpy of Melting and Crystallization" and a claim.
  • This particular structure guarantees a cohesive interface between the layer B and the layer A of the two-component fiber, and does not cause delamination during a mechanical stress.
  • the fluoropolymer of layer B is any polymer having in its chain at least one monomer chosen from compounds containing a vinyl group capable of opening to polymerize and which contains, directly attached to this vinyl group, at least one atom of fluorine, a fluoroalkyl group or a fluoroalkoxy group.
  • vinyl fluoride vinylidene fluoride
  • VDF vinylidene fluoride
  • VF3 trifluoroethylene
  • CTFE chlorotrifluoroethylene
  • TFE 1,2-difluoroethylene
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • the fluoropolymer may be a homopolymer or a copolymer, it may also include non-fluorinated monomers such as ethylene.
  • said fluoropolymer is a polyvinylidene polyfluoride (PVDF) homopolymer or a copolymer of VDF containing, by weight, at least 50% of VDF, more preferably at least 75% and better still at least 85%, with at least one comonomer selected from trifluoroethylene (TrFE), chlorotrifluoroethylene (CTFE), CFE or 1,1-chlorofluoroethylene, CDFE or 2-chloro-1,1, -trifluoroethylene, hexafluoropropene (HFP), Tetrafluoroethylene (TFE).
  • PVDF polyvinylidene polyfluoride
  • said fluoropolymer is a terpolymer such as P (VDF-TrFE-CFE) or P (VDF-TrFE-CTFE).
  • the layer B entering a tri-composite fiber according to the invention is a functionalized fluoropolymer or a mixture of a fluoropolymer described above with a functionalized fluoropolymer.
  • the functionalized fluoropolymer carries an implanted monomer grafted, as described in doucment EP 1484346.
  • the unsaturated grafted monomer is selected from unsaturated carboxylic acids and their derivatives.
  • unsaturated carboxylic acids are those having 2 to 20 carbon atoms such as acrylic, methacrylic, maleic, fumaric and itaconic acids.
  • the functional derivatives of these acids include, for example, anhydrides, ester derivatives, amide derivatives, imide derivatives and metal salts (such as alkali metal salts) of unsaturated carboxylic acids.
  • grafting monomers include, for example, maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic, 4-methylcyclohex-4-ene-1,2-dicarboxylic, bicyclo (2 , 2, 1) hept-5-ene-2,3-dicarboxylic acid, x-methylbicyclo (2,2,1-hept-5-ene-2,3-dicarboxylic acid), maleic, itaconic, citraconic, allylsuccinic, cyclohex anhydrides 4-ene-1,2-dicarboxylic, 4-methylenecyclohex-4-ene-1,2-dicarboxylic, bicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic acid, and x-methylbicyclo ( 2,2, l) hept-5-ene-2,2-dicarboxylic acid.
  • the polyolefin (PO) that can be used in the layer A of the fiber according to the invention is a polymer comprising, as monomer, an alpha-olefin, that is to say homopolymers of a fine particle or copolymers of at least an alpha-olefin and at least one other copolymerizable monomer, the alpha-olefin preferably having from 2 to 30 carbon atoms.
  • alpha-olefin By way of example of an alpha-olefin, mention may be made of ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3 1-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, 1-dococene, 1-tetracocene, 1-hexacocene, 1-octacocene , and 1-triacontene. These alpha-olefins may be used alone or as a mixture of two or more.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low polyethylene density
  • polyethylene obtained by metallocene catalysis
  • homopolymers and copolymers of propylene polyalphaoyl fines mainly amorphous or attactiques (APAO)
  • APAO polyalphaoyl fines mainly amorphous or attactiques
  • ethylene / alpha-olefin copolymers such as ethylene / propylene
  • EPR elastomers ethylene-propylene rubber
  • EPDM ethylene-propylene-diene
  • polyethylene blends with EPR or EPDM block copolymers styrene / ethylene-butene / styrene (SEBS), styrene / butadiene / styrene (SBS), styrene / isoprene / styrene (
  • the functionalized polyolefin may be a polymer of alpha olefins having reactive units (functionalities); such reactive units are acid, anhydride or epoxy functions.
  • reactive units are acid, anhydride or epoxy functions.
  • a functionalized polyolefin is, for example, a PE / EPR mixture, the weight ratio of which can vary widely, for example between 40/60 and 90/10, said mixture being co-grafted with an anhydride, in particular maleic anhydride, according to a grafting rate of, for example, 0.01 to 5% by weight.
  • the functionalized polyolefin may be chosen from the (co) polymers mentioned above, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is, for example, from 0.01 to 5% by weight.
  • the functionalized polyolefin may also be a copolymer or copolymer of at least the following units: (1) ethylene, (2) alkyl (meth) acrylate or saturated carboxylic acid vinyl ester and (3) anhydride such as maleic anhydride or (meth) acrylic acid or epoxy such as glycidyl (meth) acrylate.
  • anhydride such as maleic anhydride or (meth) acrylic acid or epoxy such as glycidyl (meth) acrylate.
  • the ethylene is preferably at least 60% by weight and the ter monomer (the function) represents, for example, from 0.1 to 10% by weight of the copolymer:
  • ethylene / vinyl acetate or (meth) acrylate / (meth) acrylic acid copolymers or examples of such polymers that may be mentioned are the ter polymers of ethylene, of alkyl acrylate and of maleic anhydride or glycidyl methacrylate such as the Lotader ® of the Applicant or polyolefms grafted with maleic anhydride such as Orevac ® of the Applicant and ter polymers of ethylene, alkyl acrylate and of (meth) acrylic acid, maleic anhydride or glycidyl methacrylate.
  • the layer A is charged with conductive particles such as carbon nanotubes, carbon blacks, graphene, graphite, carbon nanofibers, metal nanofilts or nanoparticles (silver nanofilts, for example) .
  • conductive particles such as carbon nanotubes, carbon blacks, graphene, graphite, carbon nanofibers, metal nanofilts or nanoparticles (silver nanofilts, for example) .
  • the polymers thus charged become electrical conductors and are able to act as electrodes.
  • the optimal charge ratio is thus between 2 and 30%> by weight relative to the weight of the layer A, according to the conductive charge considered to obtain sufficient electrical conductivity to the use of the polymer as an electrode.
  • the layers adhere to one another without a coextrusion binder.
  • the adhesion of the various polymers within a bi-component fiber is a determining criterion for obtaining the desired properties:
  • Another object of the invention is to provide a process for preparing the two-component fiber described above by coextrusion of the polymers constituting the layers A and B in the molten state, followed by a hot stretching step.
  • the method for manufacturing the tricomponent fiber comprises the following steps: providing the polymers that make up each of the layers A and B in the molten state. coextruding said polymers in the molten state in the form of filaments.
  • the temperatures of implementation of the polymers A and B must be as close as possible and define that of the bi-component die. In the case of a fiber consisting of PVDF and HDPE this die temperature is ideally between 210 ° C and 240 ° C. stretch the fiber thus extruded.
  • the melt stretch has no influence on the adhesion of the A and B layers and has little impact on the final beta phase level in the fluorinated phase.
  • the post-stretching step once the filament has cooled and solidified, which will give the wire its high mechanical properties as well as obtaining the PVDF in its majority beta form.
  • This post-stretching step is carried out in the solid state and preferably at a temperature between 80 and 120 ° C.
  • the stretching factor R designating the speed ratio between the stretching rollers is preferably between 3 and 6, this ratio leading to the mentioned mechanical and beta phase properties.
  • the production of a piezoelectric polymer fiber is preferably carried out when the electrodes are directly manufactured during the spinning step.
  • One simple way is to use multi-component spinning (or coextrusion) in which the piezo-active material (PVDF, VDF copolymers or terpolymers) is surrounded by electrically conductive polymers that act as electrodes.
  • the polymer material used is an electrostrictive and electroactive material, for example a polymer (P (VDF-TrFE-CFE) or P (VDF-TrFE-CTFE).
  • a polymer P (VDF-TrFE-CFE) or P (VDF-TrFE-CTFE).
  • the application of a field electrical connection across the material causes a reduction in its size in the direction of application of the field and its elongation in the direction perpendicular to the applied field.
  • a fiber according to the invention composed of such a polymer, and having a conductive core, constituting a first electrode, and an outer coating conductor constituting a second electrode can thus constitute an actuator.
  • the application of an electric field between these electrodes makes it possible to modify the mechanical characteristics of the fiber. If this fiber is integrated into a textile structure, the application of this electric field makes it possible to modify the mechanical characteristics of this textile structure.
  • Two-component fiber spinning makes it possible to obtain new properties by combining different materials within the same filament.
  • These bi-component fibers can find applications in various sectors of technical textiles, filtration, but also in electronics.
  • the invention also relates to a piezoelectric device manufactured from the bicomponent fiber described.
  • the invention also relates to textile materials which comprise bi-component fibers described.
  • High density polyethylene polyethylene characterized by a melt index of 23 g / 10 '(190 ° C. under 2.16 kg), a melting temperature of 128 ° C. and a crystallization temperature of 117 ° C. measured by thermal analysis.
  • Functionalized polyethylene (denoted by PEf): terpolymer of ethylene, of butyl acrylate and of glycidyl methacrylate, characterized by a melt index of 12 g / 10 '(190 ° C. under 2.16 kg), a melting temperature of 74 ° C and a crystallization temperature of 54 ° C.
  • Polyvinylidene fluoride (denoted PVDF): homopolymer of vinylidene fluoride characterized by a melt index of 33 g / 10 '(230 ° C. under 2.16 kg), a melting point of 172 ° C. and a crystallization temperature of 138 ° C measured by thermal analysis.
  • Functionalized vinylidene fluoride (denoted PVDFf): homopolymer of vinylidene fluoride grafted with 0.5% by weight of maleic anhydride characterized by a melt index of 16 g / 10 '(230 ° C. under 3.8 kg), a temperature of melting at 172 ° C and a crystallization temperature of 137 ° C measured by thermal analysis.
  • Carbon black (denoted CB):
  • NTC Nanotubes of carbon
  • Functionalized compounds are termed HDPE mixtures with functionalized HDPE or PVDF mixtures with functionalized PVDF.
  • Conductive compounds are the HDPE mixtures (functionalized or not) with the conductive fillers.
  • the functionalized compounds are made by molten route according to an extrusion process.
  • a bi-screw extruder is preferably used and allows the mixing of non-functional polymers with functionalised polymers at controlled rates.
  • the granules of each material are mixed in selected proportions in the solid state and then conveyed in the extrusion machine according to an increasing temperature profile whose values are generally between Tf + 20 and Tf + 70 ° C.
  • a rod is obtained and then granulated.
  • the first step of producing a conductive compound consists in the manufacture of a masterbatch concentrated in conductive fillers, a mixture also called master batch.
  • This masterbatch is produced by extrusion in a molten state using a high shear mixing tool such as a twin-screw co-extruder or shear profile extruder.
  • This step is essential to optimally disperse the conductive filler in the polymer.
  • a high level of filler is used in the masterbatch, typically between 15 and 50% by weight, and makes it possible to obtain a high viscosity that promotes shearing and therefore dispersion of the fillers.
  • the material is melt convected in the extrusion machine according to an increasing temperature profile whose values are generally between Tf + 20 and Tf + 70 ° C.
  • the conductive fillers are provided by a lateral doser to the molten material in a desired quantity.
  • a rod is obtained at the extruder outlet, cooled and granulated.
  • These masterbatch granules are diluted in the matrix considered by melt extrusion process, on a bi-screw type machine.
  • an increasing temperature profile is applied to the melt to allow optimum dilution of the masterbatch, whose values are between Tf + 20 and Tf + 70 ° C.
  • Example 1 Two-component A / B fiber
  • Material A is a mixture of 70% by weight of a high density polyethylene HDPE and 30% by weight of a functionalized polyethylene PEf.
  • Material B is a compound made of PVDF at 80% by weight and a PVDFf at 20% by weight.
  • These compounds A and B are melted and conveyed in two single-screw extruders, which optionally fill two booster pumps for setting the output rate.
  • the two compounds A and B are conveyed in a pipe and then injected into a two-component spin pack for bringing the compounds A and B respectively to the periphery (sheath ) and in the center (heart) of each extruded filament.
  • the spin pack is produced according to the knowledge of those skilled in the art to provide the two-component spinning core-bark geometry and can be constituted among other parts of an injection cone, flow distribution plates, filters, a support plate and a die.
  • this temperature T is preferably between 205 and 220 ° C and a two-component monofilament die is used.
  • the extrusion flow rates are chosen so as to obtain a volume ratio A / B of 30/70.
  • the extruded filament is cooled in ambient air, driven by an omega roller drawing bench to fix the diameter and the stretch in the molten state. This filament is then collected and wound without stretching in the additional solid state.
  • FIG. 1 illustrates the non-stretched bi-component fiber A / B of Example 1.
  • Adhesion between the A / B layers was evaluated by a two-component filament tensile test.
  • a universal test machine is used in traction test mode. It is equipped with a fixed crossbar and an instrumented moving beam, a force sensor and jaws and jaws suitable for filament testing.
  • a device allows the recording of the force measured by the sensor as a function of the displacement of the movable cross member.
  • the filaments are placed between the two jaws and the tensile test is carried out until the filaments are completely broken, using a test speed of 50 or 100% / min according to ISO 5079 or ISO 2062, according to that we test mono or multi-filaments.
  • FIG. 2 shows the fiber of example 1, stretched at 800%. It shows that the two materials remain adhered even after a large stretch, and break simultaneously.
  • the filament example 1 has a stress curve - smooth elongation and characteristic of a single-component filament.
  • the comparative Example 1 filament which does not consist of functionalized polymers, exhibits a different behavior. A significant drop in stress is observed as soon as the elastic regime changes to the plastic deformation regime. This drop is characteristic of a rupture of one of the two components, in this case that of the HDPE sheath. This sheath is loosened / delaminated progressively from the PVDF core of the filament as shown by the noisy behavior of the curve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)

Abstract

The invention concerns composite piezoelectric fibres. More particularly, the invention relates to two-component piezoelectric-effect fibres consisting solely of polymer materials. The invention also relates to the method for producing these fibres, as well as the applications thereof in various sectors of technical textiles, filtration, and in electronics.

Description

FIBRE BICOUCHE DE POLYMERES FLUORES  FIBER BILOUCHE OF FLUORINATED POLYMERS
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne le domaine des fibres piézoélectriques composites. Plus particulièrement, l'invention se rapporte à des fibres à effet piézo-électrique bi-composant constituées uniquement de matériaux polymères. L'invention a trait également au procédé de fabrication de ces fibres, ainsi qu'à leurs applications dans des secteurs variés du textile technique, de la fïltration, et dans l'électronique. The present invention relates to the field of composite piezoelectric fibers. More particularly, the invention relates to bi-component piezoelectric effect fibers consisting solely of polymeric materials. The invention also relates to the process for manufacturing these fibers, as well as their applications in various sectors of technical textiles, filtration, and electronics.
ARRIÈRE-PLAN TECHNIQUE TECHNICAL BACKGROUND
Les matériaux ferroélectriques et ferroélectriques relaxeurs qui génèrent un actionnement mécanique induit par un champ électrique externe ont attiré beaucoup d'attention et ont été reconnus pour des applications dans divers transducteurs, actionneurs et capteurs. The ferroelectric and ferroelectric relaxer materials that generate mechanical actuation induced by an external electric field have attracted a lot of attention and have been recognized for applications in various transducers, actuators and sensors.
Parmi les matériaux piézoélectriques, les céramiques sont les plus couramment utilisées du fait de leurs bonnes propriétés d' actionnement et de leur bande passante très large. Elles présentent cependant une fragilité qui empêche de les appliquer sur des surfaces courbes ou complexes. Among the piezoelectric materials, ceramics are the most commonly used because of their good actuation properties and their very wide bandwidth. However, they have a fragility that prevents them from being applied to curved or complex surfaces.
D'autres dispositifs électro-conducteurs utilisent des films polymères en sandwich entre deux électrodes. Parmi les polymères utilisables, les polymères fluorés à base notamment de fluorure de vinylidène (VDF) représentent une classe de composés ayant des propriétés remarquables pour un grand nombre d'applications. Le polyfluorure de vinylidène (PVDF) et les copolymères comprenant du VDF et du trifluoroéthylène (TrFE) sont particulièrement intéressants en raison de leurs propriétés piézoélectriques. Other electrically conductive devices use polymer films sandwiched between two electrodes. Among the polymers that can be used, fluorinated polymers based in particular on vinylidene fluoride (VDF) represent a class of compounds having remarkable properties for a large number of applications. Polyvinylidene fluoride (PVDF) and copolymers comprising VDF and trifluoroethylene (TrFE) are particularly interesting because of their piezoelectric properties.
Ces structures flexibles piézoélectriques sont uniquement disponibles commercialement sous forme de films. Certaines applications exigent cependant de disposer de fibres piézoélectriques polymères, qui peuvent être implantées directement au sein de certains matériaux, pour former des matériaux « intelligents » (« smart materials »). These flexible piezoelectric structures are only commercially available in the form of films. However, some applications require polymeric piezoelectric fibers, which can be implanted directly within certain materials, to form "smart" materials.
De telles fibres ont été fabriquées au laboratoire sous forme de mono-composant ou multi- composant. L'article de B. Glauss et al. dans Materials 2013, 6, 2642-61 décrit des fibres bi-composant obtenues par filage à chaud, consistant en un cœur en polypropylène conducteur (additionné de nanotubes de carbone multi-parois et de stéarate de sodium), et une gaine en PVDF homopolymère. Ces fibres ont été caractérisées par diverses méthodes analytiques (diffraction des rayons X à grand angle, microscopie électronique à transmission, calorimétrie différentielle, rhéométrie) mais leurs propriétés mécaniques et électriques n'ont pas été rapportées. Such fibers have been manufactured in the laboratory as a single-component or multi-component. The article by B. Glauss et al. in Materials 2013, 6, 2642-61 discloses two-component hot-melt fibers consisting of a conductive polypropylene core (supplemented with multi-walled carbon nanotubes and sodium stearate), and a PVDF homopolymer sheath. . These fibers have been characterized by various analytical methods (wide-angle X-ray diffraction, transmission electron microscopy, differential calorimetry, rheometry) but their mechanical and electrical properties have not been reported.
Les travaux de R. Martins et al. dans J. Text. Eng. 2014, 60(2), 27-34 concernent la fabrication de filaments bi-composant piézo-électriques de constitution similaire (une couche interne de polypropylène conductrice et une couche de PVDF homopolymère). Ces fibres ont été soumises à des essais en traction, qui montrent que les deux couches cassent séparément à des taux d'étirement de 30% (voir Fig. 10). Ceci témoigne d'une faible adhésion entre les couches. The work of R. Martins et al. in J. Text. Eng. 2014, 60 (2), 27-34 relate to the manufacture of two-component piezoelectric filaments of similar constitution (an inner layer of conductive polypropylene and a layer of PVDF homopolymer). These fibers were subjected to tensile tests, which show that the two layers break separately at stretching rates of 30% (see Fig. 10). This shows a weak adhesion between the layers.
Le même inconvénient est observé pour des fibres tri-composant décrites dans la publication de R. Martins et al. dans J. Appl. Polym. Sci. 2014, DOI : 10.1002/APP.40710. Ces fibres ont un cœur et une gaine en polypropylène conductrice, et une couche centrale en PVDF homopolymère. Les images de microscopie d'une section transversale de ces fibres montrent des interfaces décohésives entre les couches (voir Fig. 7). La figure 9 de ce document démontre également une adhésion interfaciale faible entre les couches de polyfluorure de vinylidène et de polypropylène. En effet, les courbes de traction révèlent la présence systématique d'une chute brutale de contrainte au cours de l'essai de traction avant la rupture complète de la fibre. Cette chute brutale de contrainte provient de la rupture de la couche externe de polypropylène et de la décohésion à l'interface polypropylène/polyfluorure de vinylidène. Cette décohésion interfaciale fait qu'après la rupture de la couche de polypropylène, celle-ci glisse sur la couche de polyflluorure de vinylidène pendant la traction, et que la contrainte est uniquement supportée par cette dernière. Un autre inconvénient concerne les conditions d'étirement de la fibre lors du procédé de filage. Dans ce même document, l'étirement a été réalisé à 210°C (voir table 1), ce qui se situe au-delà de la température de fusion du PVDF et du polypropylène. The same disadvantage is observed for tri-component fibers described in the publication by R. Martins et al. in J. Appl. Polym. Sci. 2014, DOI: 10.1002 / APP.40710. These fibers have a conductive polypropylene core and sheath, and a homopolymer PVDF core layer. The microscopic images of a cross-section of these fibers show decohesive interfaces between the layers (see Fig. 7). Figure 9 of this document also demonstrates poor interfacial adhesion between the polyvinylidene fluoride and polypropylene layers. Indeed, the tensile curves reveal the systematic presence of a sudden drop in stress during the tensile test before complete failure of the fiber. This sudden drop in stress results from the rupture of the polypropylene outer layer and the decohesion at the polypropylene / polyvinylidene fluoride interface. This interfacial decohesion makes that after the rupture of the polypropylene layer, it slides on the polyvinylidene fluoride layer during traction, and the stress is only supported by the latter. Another disadvantage relates to the conditions of stretching of the fiber during the spinning process. In this same document, the stretching was carried out at 210 ° C. (see Table 1), which is beyond the melting temperature of PVDF and polypropylene.
Il existe donc un besoin de mettre au point des fibres multi-composant qui présentent à la fois de bonnes propriétés mécaniques, notamment une adhésion accrue entre la couche de polymère électroactif et celle(s) de polymère(s) faisant office d'électrode(s), lui permettant de maintenir son intégrité lors des sollicitations mécaniques comme l'étirage, et simultanément des propriétés de matériaux relaxeurs avec des effets électrostrictifs importants. RESUME DE L'INVENTION There is therefore a need to develop multi-component fibers that have both good mechanical properties, including increased adhesion between the electroactive polymer layer and (s) polymer (s) as an electrode ( s), allowing it to maintain its integrity during mechanical stresses such as stretching, and simultaneously properties of relaxing materials with significant electrostrictive effects. SUMMARY OF THE INVENTION
Selon un premier aspect, l'invention concerne une fibre polymère piézoélectrique constituée de deux couches ayant les structures suivantes : According to a first aspect, the invention relates to a piezoelectric polymer fiber consisting of two layers having the following structures:
- une couche B constituée d'au moins un polymère fluoré, a layer B consisting of at least one fluorinated polymer,
en contact avec une couche A constituée d'au moins une polyoléfïne qui présente une affinité chimique avec ledit polymère fluoré.  in contact with a layer A consisting of at least one polyolefin which has a chemical affinity with said fluoropolymer.
De manière caractéristique pour la fibre bi-composant : Typically for the two-component fiber:
- le polymère fluoré est un polymère fluoré fonctionnalisé ou un mélange d'un polymère fluoré avec un polymère fluoré fonctionnalisé, et the fluoropolymer is a functionalized fluoropolymer or a mixture of a fluoropolymer with a functionalized fluoropolymer, and
- ladite couche A comprend un mélange d'une polyoléfïne avec une polyoléfïne fonctionnalisée porteuse d'une fonction réactive vis-à-vis de la fonction portée par ledit polymère fluoré fonctionnalisé. said layer A comprises a mixture of a polyolefin with a functionalized polyolefin carrying a function reactive with respect to the function carried by said functionalized fluoropolymer.
Selon un mode de réailisation, dans la fibre polymère selon l'invention, la couche A est chargée de particules conductrices telles que les nanotubes de carbone, les noirs de carbone, le graphène, le graphite, les nano fibres de carbone, nanofïls ou nanoparticules métalliques (nanofils d'argent par exemple). Ceci favorise la polarisation et le comportement piézo-électrique de la fibre. According to a mode of réailisation, in the polymer fiber according to the invention, the layer A is charged with conductive particles such as carbon nanotubes, carbon blacks, graphene, graphite, carbon nanofibres, nanofilts or nanoparticles metallic (silver nanowires for example). This promotes the polarization and the piezoelectric behavior of the fiber.
Selon un autre aspect, l'invention concerne un procédé de fabrication de la fibre bi-composant décrite plus haut par coextrusion des polymères constituant les couches A et B à l'état fondu, suivie d'une étape d'étirage. Selon un mode de réalisation, l'étape d'étirage s'effectue à une température située entre la température de transition vitreuse, Tg, et la température de fusion, Tf des polymères constituant les couches A et B, c'est-à-dire à une température comprise entre la Tg la plus haute et la Tf la plus basse des différents constituants, ce qui revient à une plage située entre entre 40°C et 130°C. According to another aspect, the invention relates to a process for manufacturing the bi-component fiber described above by coextrusion of the polymers constituting the layers A and B in the molten state, followed by a drawing step. According to one embodiment, the drawing step is carried out at a temperature between the glass transition temperature, Tg, and the melting temperature, Tf of the polymers constituting the layers A and B, that is to say say at a temperature between the highest Tg and the lowest Tf of the various constituents, which amounts to a range between 40 ° C and 130 ° C.
Plus particulièrement pour une couche B en PVDF, cet étirage se fait entre 80 et 120°C. More particularly for a PVDF layer B, this stretching is between 80 and 120 ° C.
L'invention a également pour objet un dispositif piézoélectrique fabriqué à partir de la fibre bicomposant décrite. The invention also relates to a piezoelectric device manufactured from the bicomponent fiber described.
L'invention vise également les matériaux textiles qui comprennent les fibres bi-composant décrites. La présente invention rend possible de surmonter les inconvénients de l'art antérieur. En particulier, l'invention permet d'obtenir des fibres piézoélectriques entièrement polymères, présentant une flexibilité accrue par rapport aux fibres à base de céramique, leur permettant une utilisation dans les matériaux « intelligents », notamment les matériaux textiles. De plus, les fibres selon l'invention ont des propriétés améliorées d'adhésion entre les différentes couches, ce qui garantit leur capacités d'étirage. En effet, une telle fibre pour obtenir ses caractéristiques mécaniques doit être étirée dans le procédé de filage, sans impact sur la cohésion de ses différents constituants. De plus, en particulier pour l'usage en textile habillement, cette fibre sera fortement sollicitée mécaniquement et pour maintenir son intégrité, une adhésion forte en les différentes couches est à privilégier. Enfin, dans le cas de l'utilisation de PVDF dans la couche B, l'étirage de la fibre permet de générer la phase cristalline béta nécessaire à l'effet piézoélectrique. The invention also relates to textile materials which comprise the two-component fibers described. The present invention makes it possible to overcome the disadvantages of the prior art. In particular, the invention makes it possible to obtain entirely polymeric piezoelectric fibers having increased flexibility over ceramic-based fibers, enabling them to be used in "smart" materials, especially textile materials. In addition, the fibers according to the invention have improved adhesion properties between the different layers, which guarantees their drawability. Indeed, such a fiber to obtain its mechanical characteristics must be stretched in the spinning process, without impact on the cohesion of its various constituents. In addition, especially for use in textile clothing, this fiber will be highly mechanically stressed and to maintain its integrity, strong adhesion in different layers is preferred. Finally, in the case of the use of PVDF in layer B, the stretching of the fiber makes it possible to generate the beta crystalline phase necessary for the piezoelectric effect.
Un autre avantage des fibres selon l'invention, présentant une bonne adhésion entre les couches de filaments, réside dans le fait que les températures d'étirage de la fibre multi composant restent dans des gammes classiques de températures d'étirage, à savoir en-dessous de la température de fusion du composant ayant le plus bas point de fusion, typiquement inférieure à 150°C. Another advantage of the fibers according to the invention, having a good adhesion between the layers of filaments, lies in the fact that the stretching temperatures of the multicomponent fiber remain in conventional ranges of drawing temperatures, ie below the melting point of the component having the lowest melting point, typically below 150 ° C.
BREVE DESCRIPTION DES FIGURES La Figure 1 représente une fibre bi-composant A/B (le filament de l'exemple 1) non-étirée, vue en section transversale au microscope électronique à balayage. Le matériau A est un mélange à 70% en poids d'un Polyéthylène haute densité PEHD et 30% en poids d'un Polyéthylène fonctionnalisé PEf Le matériau B est un compound fait de PVDF à 80% en poids et d'un PVDFf à 20% en poids. La Figure 2 représente l'image d'un faciès de rupture, obtenue par microscopie électronique à balayage, de la fibre bi-composant de l'exemple 1 fortement étirée (à la fin de la courbe contrainte allongement). BRIEF DESCRIPTION OF THE FIGURES FIG. 1 represents a non-stretched two-component A / B fiber (the filament of Example 1), seen in cross-section with a scanning electron microscope. Material A is a mixture of 70% by weight of HDPE high density polyethylene and 30% by weight of PE functionalized polyethylene. Material B is a compound made of 80% by weight PVDF and 20% PVDF. % in weight. Figure 2 shows the image of a fracture facies, obtained by scanning electron microscopy, of the two-component fiber of Example 1 strongly stretched (at the end of the stress-strain curve).
La Figure 3 est un diagramme représentant les résultats de tests de traction correspondant aux exemples 1 et 1 comparatif. DESCRIPTION DE MODES DE REALISATION Figure 3 is a diagram showing the tensile test results corresponding to Comparative Examples 1 and 1. DESCRIPTION OF EMBODIMENTS
L'invention sera maintenant décrite plus en détail sans limitation dans la description suivante. The invention will now be described in more detail without limitation in the following description.
Selon un premier aspect, l'invention concerne une fibre polymère piézoélectrique constituée de deux couches ayant les structures suivantes : - une couche B constituée d'au moins un polymère fluoré, According to a first aspect, the invention relates to a piezoelectric polymer fiber consisting of two layers having the following structures: a layer B consisting of at least one fluorinated polymer,
en contact avec une couche A constituée d'au moins une polyoléfïne qui présente une affinité chimique avec ledit polymère fluoré.  in contact with a layer A consisting of at least one polyolefin which has a chemical affinity with said fluoropolymer.
De manière caractéristique pour ladite fibre bi-composant : Typically for said two-component fiber:
- le polymère fluoré est un polymère fluoré fonctionnalisé ou un mélange d'un polymère fluoré avec un polymère fluoré fonctionnalisé, et the fluoropolymer is a functionalized fluoropolymer or a mixture of a fluoropolymer with a functionalized fluoropolymer, and
- ladite couche A comprend un mélange d'une polyoléfïne avec une polyoléfïne fonctionnalisée porteuse d'une fonction réactive vis-à-vis de la fonction portée par ledit polymère fluoré fonctionnalisé. said layer A comprises a mixture of a polyolefin with a functionalized polyolefin carrying a function reactive with respect to the function carried by said functionalized fluoropolymer.
Selon un mode de réalisation, les polymères présents dans chacune des couches A et B présentent des températures de cristallisation Te respectant la condition : Te A< Te B afin d'assurer la meilleure cohésion possible au sein de la fibre bi-composant. Cette procédure permet d'éviter les phénomènes de décohésion aux interfaces dus au retrait à la cristallisation, et conduit à l'obtention d'une fibre plus dense et plus tenace. La mesure de la température de cristallisation est réalisée par analyse thermique différentielle selon la norme ISO 11357-3 « Plastics - Differential Scanning Calorimetry (DSC) Part 3 : Détermination of temeprature and enthalpy of melting and crystallization » et une revendication. According to one embodiment, the polymers present in each of the layers A and B have crystallization temperatures Te respecting the condition: Te A <Te B in order to ensure the best possible cohesion within the two-component fiber. This procedure makes it possible to avoid the phenomena of decohesion at the interfaces due to shrinkage on crystallization, and leads to the production of a denser and more tenacious fiber. The measurement of the crystallization temperature is carried out by differential thermal analysis according to the ISO 11357-3 standard "Plastics - Differential Scanning Calorimetry (DSC) Part 3: Determination of Temeprature and Enthalpy of Melting and Crystallization" and a claim.
Cette structure particulière garantit une interface cohésive entre la couche B et la couche A de la fibre bi-composant, et n'entraîne pas de délamination lors d'une sollicitation mécanique. This particular structure guarantees a cohesive interface between the layer B and the layer A of the two-component fiber, and does not cause delamination during a mechanical stress.
Couche B B layer
Le polymère fluoré de la couche B est tout polymère ayant dans sa chaîne au moins un monomère choisi parmi les composés contenant un groupe vinyle capable de s'ouvrir pour se polymériser et qui contient, directement attaché à ce groupe vinyle, au moins un atome de fluor, un groupe fluoroalkyle ou un groupe fluoroalkoxy. A titre d'exemple de monomère on peut citer le fluorure de vinyle; le fluorure de vinylidène (VDF); le trifluoroethylene (VF3); le chlorotrifluoroethylene (CTFE); le 1 ,2-difluoroethylene; le tetrafluoroethylene (TFE); l'hexafluoropropylene (HFP); les perfluoro(alkyl vinyl) ethers tels que le perfluoro(methyl vinyl)ether (PMVE), le perfluoro(ethyl vinyl) ether (PEVE) et le perfluoro(propyl vinyl) ether (PPVE); le perfluoro( 1,3 -dioxole); le perfluoro(2,2-dimethyl- 1,3 -dioxole) (PDD); le produit de formule CF2=CFOCF2CF(CF3)OCF2CF2X dans laquelle X est S02F, C02H, CH20H, CH20CN ou CH20PO3H; le produit de formule CF2=CFOCF2CF2S02F; le produit de formule F(CF2)nCH20CF=CF2 dans laquelle n est 1, 2, 3, 4 or 5; le produit de formule R1CH20CF=CF2 dans laquelle RI est l'hydrogène ou F(CF2)z et z vaut 1 , 2, 3 ou 4; le produit de formule R30CF=CH2 dans laquelle R3 est F(CF2)z- et z est 1, 2, 3 or 4; le perfluorobutyl ethylene (PFBE); le3,3,3-trifluoropropene et le 2- trifluoromethyl-3 ,3 ,3 -trifluoro- 1 -propene. The fluoropolymer of layer B is any polymer having in its chain at least one monomer chosen from compounds containing a vinyl group capable of opening to polymerize and which contains, directly attached to this vinyl group, at least one atom of fluorine, a fluoroalkyl group or a fluoroalkoxy group. By way of example of monomer, mention may be made of vinyl fluoride; vinylidene fluoride (VDF); trifluoroethylene (VF3); chlorotrifluoroethylene (CTFE); 1,2-difluoroethylene; tetrafluoroethylene (TFE); hexafluoropropylene (HFP); perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE) and perfluoro (propyl vinyl) ether (PPVE); perfluoro (1,3-dioxole); perfluoro (2,2-dimethyl-1,3-dioxole) (PDD); the product of formula CF2 = CFOCF2CF (CF3) OCF2CF2X wherein X is SO2F, CO2H, CH20H, CH20CN or CH20PO3H; the product of formula CF2 = CFOCF2CF2S02F; the product of formula F (CF 2) nCH 2 OCOF = CF 2 wherein n is 1, 2, 3, 4 or 5; the product of formula R1CH20CF = CF2 wherein R1 is hydrogen or F (CF2) z and z is 1, 2, 3 or 4; the product of formula R30CF = CH2 wherein R3 is F (CF2) z- and z is 1, 2, 3 or 4; perfluorobutyl ethylene (PFBE); 3,3,3-trifluoropropene and 2-trifluoromethyl-3,3,3-trifluoro-1-propene.
Le polymère fluoré peut être un homopolymère ou un copolymère, il peut aussi comprendre des monomères non fluorés tels que l'éthylène. Selon un mode de réalisation, ledit polymère fluoré est un polyfluorure de vinylidène (PVDF) homopolymère ou un copolymère de VDF, contenant, en poids, au moins 50% de VDF, plus préférentiellement au moins 75% et mieux encore au moins 85%, avec au moins un comonomère choisi parmi le trifluoroéthylène (TrFE), le chlorotrifluoroéthylène (CTFE), le CFE ou 1,1-chlorofluoroéthylène, le CDFE ou 2-chloro- 1,1, -trifluoroéthylène, l'hexafluoropropène (HFP), le tétrafluoroéthylène (TFE). The fluoropolymer may be a homopolymer or a copolymer, it may also include non-fluorinated monomers such as ethylene. According to one embodiment, said fluoropolymer is a polyvinylidene polyfluoride (PVDF) homopolymer or a copolymer of VDF containing, by weight, at least 50% of VDF, more preferably at least 75% and better still at least 85%, with at least one comonomer selected from trifluoroethylene (TrFE), chlorotrifluoroethylene (CTFE), CFE or 1,1-chlorofluoroethylene, CDFE or 2-chloro-1,1, -trifluoroethylene, hexafluoropropene (HFP), Tetrafluoroethylene (TFE).
Selon un mode de réalisation, ledit polymère fluoré est un terpolymère tel que le P(VDF-TrFE- CFE) ou le P(VDF-TrFE-CTFE). According to one embodiment, said fluoropolymer is a terpolymer such as P (VDF-TrFE-CFE) or P (VDF-TrFE-CTFE).
Selon un mode de réalisation, la couche B entrant dans une fibre tri-composite selon l'invention est un polymère fluoré fonctionnalisé ou un mélange d'un polymère fluoré décrit plus haut avec un polymère fluoré fonctionnalisé. According to one embodiment, the layer B entering a tri-composite fiber according to the invention is a functionalized fluoropolymer or a mixture of a fluoropolymer described above with a functionalized fluoropolymer.
Selon un mode de réalisation, le polymère fluoré fonctionnalisé est porteur d'un monomère instauré greffé, comme décrit dans le doucment EP 1484346. Le monomère insaturé greffé est chois parmi les acides carboxyliques insaturés et leurs dérivés. According to one embodiment, the functionalized fluoropolymer carries an implanted monomer grafted, as described in doucment EP 1484346. The unsaturated grafted monomer is selected from unsaturated carboxylic acids and their derivatives.
Des exemples d'acides carboxyliques insaturés sont ceux ayant 2 à 20 atomes de carbone tels que les acides acrylique, méthacrylique, maléique, fumarique et itaconique. Les dérivés fonctionnels de ces acides comprennent par exemple les anhydrides, les dérivés esters, les dérivés amides, les dérivés imides et les sels métalliques (tels que les sels de métaux alcalins) des acides carboxyliques insaturés. On peut encore citer l'acide undécylènique. Examples of unsaturated carboxylic acids are those having 2 to 20 carbon atoms such as acrylic, methacrylic, maleic, fumaric and itaconic acids. The functional derivatives of these acids include, for example, anhydrides, ester derivatives, amide derivatives, imide derivatives and metal salts (such as alkali metal salts) of unsaturated carboxylic acids. We can also mention undecylenic acid.
Des acides dicarboxyliques insaturés ayant 4 à 10 atomes de carbone et leurs dérivés fonctionnels, particulièrement leurs anhydrides, sont des monomères de greffage particulièrement préférés. Unsaturated dicarboxylic acids having 4 to 10 carbon atoms and their functional derivatives, particularly their anhydrides, are particularly preferred grafting monomers.
Ces monomères de greffage comprennent par exemple les acides maléique, fumarique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-l,2-dicarboxylique, 4— méthyl- cyclohex-4-ène-l,2-dicarboxylique, bicyclo(2,2,l)hept-5-ène-2,3-dicarboxylique, x— méthylbicyclo(2,2,l-hept-5-ène-2,3-dicarboxylique, les anhydrides maléique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-l,2-dicarboxylique, 4— méthylènecyclohex-4- ène-l,2-dicarboxylique, bicyclo(2,2,l)hept-5-ène-2,3-dicarboxylique, et x— méthylbicyclo(2,2,l)hept-5-ène-2,2-dicarboxylique. These grafting monomers include, for example, maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic, 4-methylcyclohex-4-ene-1,2-dicarboxylic, bicyclo (2 , 2, 1) hept-5-ene-2,3-dicarboxylic acid, x-methylbicyclo (2,2,1-hept-5-ene-2,3-dicarboxylic acid), maleic, itaconic, citraconic, allylsuccinic, cyclohex anhydrides 4-ene-1,2-dicarboxylic, 4-methylenecyclohex-4-ene-1,2-dicarboxylic, bicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic acid, and x-methylbicyclo ( 2,2, l) hept-5-ene-2,2-dicarboxylic acid.
Couche A Layer A
La polyoléfïne (PO) utilisable dans la couche A de la fibre selon l'invention est un polymère comprenant comme monomère une alpha-oléfine, c'est-à-dire les homopolymères d'une o lé fine ou les copolymères d'au moins une alpha-oléfine et d'au moins un autre monomère copolymérisable, l'alpha-oléfîne ayant avantageusement de 2 à 30 atomes de carbone. The polyolefin (PO) that can be used in the layer A of the fiber according to the invention is a polymer comprising, as monomer, an alpha-olefin, that is to say homopolymers of a fine particle or copolymers of at least an alpha-olefin and at least one other copolymerizable monomer, the alpha-olefin preferably having from 2 to 30 carbon atoms.
A titre d'exemple d'alpha-oléfme, on peut citer l'éthylène, le propylène, 1 -butène, 1-pentène, 3-méthyl-l -butène, 1-hexène, 4-méthyl- 1-pentène, 3 -méthyl- 1-pentène, 1-octène, 1 -décène, 1- dodécène, 1-tétradécène, 1-hexadécène, 1-octadécène, 1-eicocène, 1-dococène, 1-tétracocène, 1-hexacocène, 1-octacocène, et 1-triacontène. Ces alpha-oléfmes peuvent être utilisées seules ou en mélange de deux ou plus de deux. By way of example of an alpha-olefin, mention may be made of ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3 1-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, 1-dococene, 1-tetracocene, 1-hexacocene, 1-octacocene , and 1-triacontene. These alpha-olefins may be used alone or as a mixture of two or more.
A titre d'exemples, on peut citer : les homopolymères et copolymères de l'éthylène, en particulier le polyéthylène basse densité (LDPE), le polyéthylène haute densité (HDPE), le polyéthylène linéaire basse densité (LLDPE), le polyéthylène très basse densité (VLDPE), le polyéthylène obtenu par catalyse métallocène, les homopolymères et copolymères du propylène, les polyalphao lé fines essentiellement amorphes ou attactiques (APAO), les copolymères éthylène/alpha-oléfïne tels qu'éthylène/propylène, les élastomères EPR (éthylène-propylène-rubber), et EPDM (éthylène- propylène-diène), et les mélanges de polyéthylène avec un EPR ou un EPDM, les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/ butadiène/styrène (SBS), styrène/isoprène/styrène (SIS), et styrène/éthylène-propylène/styrène (SEPS), les copolymères de l'éthylène avec au moins un produit choisi parmi les sels ou les esters d'acides carboxyliques insaturés tels que par exemple les (méth)acrylates d'alkyle, l'alkyle pouvant avoir jusqu'à 24 atomes de carbone, les esters vinyliques d'acides carboxyliques saturés tels que par exemple l'acétate ou le propionate de vinyle, et les diènes tels que par exemple le 1 ,4-hexadiène ou le polybutadiène. By way of examples, mention may be made of: homopolymers and copolymers of ethylene, in particular low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), very low polyethylene density (VLDPE), polyethylene obtained by metallocene catalysis, homopolymers and copolymers of propylene, polyalphaoyl fines mainly amorphous or attactiques (APAO), ethylene / alpha-olefin copolymers such as ethylene / propylene, EPR elastomers (ethylene-propylene rubber), and EPDM (ethylene-propylene-diene), and polyethylene blends with EPR or EPDM, block copolymers styrene / ethylene-butene / styrene (SEBS), styrene / butadiene / styrene (SBS), styrene / isoprene / styrene (SIS), and styrene / ethylene-propylene / styrene (SEPS), copolymers of ethylene with at least a product chosen from unsaturated carboxylic acid salts or esters such as, for example, alkyl (meth) acrylates, alkyl having up to 24 carbon atoms, vinyl esters of saturated carboxylic acids such as for example acetate or vinyl propionate, and dienes such as for example 1,4-hexadiene or polybutadiene.
La polyoléfïne fonctionnalisée peut être un polymère d'alpha oléfmes ayant des motifs réactifs (les fonctionnalités) ; de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d'exemple, on peut citer les polyoléfmes précédentes greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l'acide (méth)acrylique (celui-ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d'acides carboxyliques tels que l'anhydride maléique. Une polyoléfïne fonctionnalisée est par exemple un mélange PE/EPR, dont le ratio en poids peut varier dans de larges mesures, par exemple entre 40/60 et 90/10, ledit mélange étant co-greffé avec un anhydride, notamment anhydride maléique, selon un taux de greffage par exemple de 0,01 à 5% en poids. The functionalized polyolefin may be a polymer of alpha olefins having reactive units (functionalities); such reactive units are acid, anhydride or epoxy functions. By way of example, mention may be made of the preceding polyolefms grafted or copolymerized with unsaturated epoxides such as glycidyl (meth) acrylate, or with carboxylic acids or the corresponding salts or esters such as acid ( meth) acrylic (which can be totally or partially neutralized by metals such as Zn, etc.) or by anhydrides of carboxylic acids such as maleic anhydride. A functionalized polyolefin is, for example, a PE / EPR mixture, the weight ratio of which can vary widely, for example between 40/60 and 90/10, said mixture being co-grafted with an anhydride, in particular maleic anhydride, according to a grafting rate of, for example, 0.01 to 5% by weight.
La polyoléfïne fonctionnalisée peut être choisie parmi les (co)polymères cités plus haut, greffés avec anhydride maléique ou méthacrylate de glycidyle, dans lesquels le taux de greffage est par exemple de 0,01 à 5% en poids. The functionalized polyolefin may be chosen from the (co) polymers mentioned above, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is, for example, from 0.01 to 5% by weight.
La polyoléfïne fonctionnalisée peut aussi être un co- ou ter polymère d'au moins les motifs suivants : (1) éthylène, (2) (méth)acrylate d'alkyle ou ester vinylique d'acide carboxylique saturé et (3) anhydride tel que anhydride maléique ou acide (méth)acrylique ou époxy tel que (méth)acrylate de glycidyle. A titre d'exemple de polyoléfmes fonctionnalisées de ce dernier type, on peut citer les copolymères suivants, où l'éthylène représente de préférence au moins 60% en poids et où le ter monomère (la fonction) représente par exemple de 0,1 à 10% en poids du copolymère : The functionalized polyolefin may also be a copolymer or copolymer of at least the following units: (1) ethylene, (2) alkyl (meth) acrylate or saturated carboxylic acid vinyl ester and (3) anhydride such as maleic anhydride or (meth) acrylic acid or epoxy such as glycidyl (meth) acrylate. By way of example of functionalized polyolefms of the latter type, mention may be made of the following copolymers, in which the ethylene is preferably at least 60% by weight and the ter monomer (the function) represents, for example, from 0.1 to 10% by weight of the copolymer:
- les copolymères éthylène/(méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle; ethylene / alkyl (meth) acrylate / (meth) acrylic acid or maleic anhydride or glycidyl methacrylate copolymers;
- les copolymères éthylène/acétate de vinyle/anhydride maléique ou méthacrylate de glycidyle; ethylene / vinyl acetate / maleic anhydride or glycidyl methacrylate copolymers;
- les copolymères éthylène/acétate de vinyle ou (méth)acrylate d'alkyle / acide (méth)acrylique ou A titre d'exemples de tels polymères, on peut citer les ter polymères de l'éthylène, d'acrylate d'alkyle et d'anhydride maléique ou de méthacrylate de glycidyle comme les Lotader® de la Demanderesse ou des polyoléfmes greffées par de l'anhydride maléique comme les Orevac® de la Demanderesse ainsi que des ter polymères de l'éthylène, d'acrylate d'alkyle et d'acide (meth) acrylique, anhydride maléique ou méthacrylate de glycidyle. ethylene / vinyl acetate or (meth) acrylate / (meth) acrylic acid copolymers or examples of such polymers that may be mentioned are the ter polymers of ethylene, of alkyl acrylate and of maleic anhydride or glycidyl methacrylate such as the Lotader ® of the Applicant or polyolefms grafted with maleic anhydride such as Orevac ® of the Applicant and ter polymers of ethylene, alkyl acrylate and of (meth) acrylic acid, maleic anhydride or glycidyl methacrylate.
Selon un mode de réalisation, la couche A est chargée de particules conductrices telles que les nanotubes de carbone, les noirs de carbone, le graphène, le graphite, les nanofïbres de carbone, les nanofîls ou nanoparticules métalliques (nanofîls d'argent par exemple). Les polymères ainsi chargés deviennent des conducteurs électriques et sont aptes à jouer le rôle d'électrodes. Le taux de charges optimal est ainsi compris entre 2 et 30%> massique par rapport au poids de la couche A, selon la charge conductrice considérée pour obtenir une conductivité électrique suffisante à l'utilisation du polymère comme électrode. Les couches adhèrent les unes sur les autres sans liant de coextrusion. According to one embodiment, the layer A is charged with conductive particles such as carbon nanotubes, carbon blacks, graphene, graphite, carbon nanofibers, metal nanofilts or nanoparticles (silver nanofilts, for example) . The polymers thus charged become electrical conductors and are able to act as electrodes. The optimal charge ratio is thus between 2 and 30%> by weight relative to the weight of the layer A, according to the conductive charge considered to obtain sufficient electrical conductivity to the use of the polymer as an electrode. The layers adhere to one another without a coextrusion binder.
L'adhésion des différents polymères au sein d'une fibre bi-composant est un critère déterminant pour l'obtention des propriétés recherchées : The adhesion of the various polymers within a bi-component fiber is a determining criterion for obtaining the desired properties:
- possibilité d'étirement de la fibre bi-composant sans délaminage des couches et obtention du polymère fluoré sous phase beta majoritaire ; - tenue mécanique de la fibre après étirement en vue d'application textiles ; - possibility of stretching the bi-component fiber without delamination of the layers and obtaining the fluoropolymer under major beta phase; - mechanical strength of the fiber after stretching for textile application;
- interface cohésive entre les différents constituants de la fibre permet une polarisation du polymère fluoré en évitant les problèmes de claquage électrique sous haute tension à l'interface (présence d'air évitée) ; - Cohesive interface between the various constituents of the fiber allows polarization of the fluoropolymer avoiding the problems of electrical breakdown under high voltage at the interface (presence of air avoided);
- meilleure récupération des charges piézo-électriques générée par déformation du polymère fluoré piézo-électrique. Un autre objectif de l'invention est de fournir un procédé de préparation de la fibre bi- composant décrite plus haut par coextrusion des polymères constituant les couches A et B à l'état fondu, suivie d'une étape d'étirage à chaud. - Better recovery of piezoelectric charges generated by deformation of the piezoelectric fluoropolymer. Another object of the invention is to provide a process for preparing the two-component fiber described above by coextrusion of the polymers constituting the layers A and B in the molten state, followed by a hot stretching step.
Plus précisément, le procédé de fabrication de la fibre tricomposant comprend les étapes suivantes : fournir les polymères composant chacune des couches A et B à l'état fondu. coextruder lesdits polymères à l'état fondu sous forme de filaments. Les températures de mise en œuvre des polymères A et B doivent être les plus proches possible et définissent celle de la filière bi composant. Dans le cas d'une fibre constituée de PVDF et HDPE cette température de filière est idéalement comprise entre 210°C et 240 °C. étirer la fibre ainsi extrudée. L'étirement à l'état fondu n'a pas d'influence sur l'adhésion des couches A et B et n'a que peu d'impact sur le taux de phase beta final dans la phase fluorée. Conformément aux pratiques de l'homme du métier, c'est l'étape de post étirement, une fois le filament refroidi et solidifié, qui va conférer au fil ses prorpriétés mécaniques élevées ainsi que l'obtention du PVDF sous sa forme béta majoritaire. Cette étape de post étirement est effectuée à l'état solide et préférentiellement à une température comprise entre 80 et 120°C. Le facteur d'étirement R désignant le ratio de vitesse entre les rouleaux d'étirement est préférentiellement compris entre 3 et 6, ce ratio conduissant aux propriétés mécaniques et de phase béta mentionnées. - enrouler ensemble lesdits filaments extrudés pour former une fibre. More specifically, the method for manufacturing the tricomponent fiber comprises the following steps: providing the polymers that make up each of the layers A and B in the molten state. coextruding said polymers in the molten state in the form of filaments. The temperatures of implementation of the polymers A and B must be as close as possible and define that of the bi-component die. In the case of a fiber consisting of PVDF and HDPE this die temperature is ideally between 210 ° C and 240 ° C. stretch the fiber thus extruded. The melt stretch has no influence on the adhesion of the A and B layers and has little impact on the final beta phase level in the fluorinated phase. In accordance with the practices of the person skilled in the art, it is the post-stretching step, once the filament has cooled and solidified, which will give the wire its high mechanical properties as well as obtaining the PVDF in its majority beta form. This post-stretching step is carried out in the solid state and preferably at a temperature between 80 and 120 ° C. The stretching factor R designating the speed ratio between the stretching rollers is preferably between 3 and 6, this ratio leading to the mentioned mechanical and beta phase properties. - Winding together said extruded filaments to form a fiber.
La réalisation d'une fibre piézo-électrique polymère est préférentiellement réalisée lorsque les électrodes sont directement fabriquées pendant l'étape de filage. Une façon simple est d'utiliser le filage multi-composant, (ou coextrusion) dans laquelle le matériau piézo-actif (PVDF, copolymères ou terpolymères de VDF) est entouré de polymères conducteurs électriques qui jouent le rôle d'électrodes. The production of a piezoelectric polymer fiber is preferably carried out when the electrodes are directly manufactured during the spinning step. One simple way is to use multi-component spinning (or coextrusion) in which the piezo-active material (PVDF, VDF copolymers or terpolymers) is surrounded by electrically conductive polymers that act as electrodes.
II est également possible que le matériau polymère utilisé soit un matériau électrostrictif et électroactif, par exemple un polymère (P(VDF-TrFE-CFE) ou P(VDF-TrFE-CTFE). Dans ces matériaux, l'application d'un champ électrique aux bornes du matériau provoque une réduction de sa taille dans le sens d'application du champ ainsi que son allongement dans le sens perpendiculaire au champ appliqué. Une fibre selon l'invention composée d'un tel polymère, et ayant une âme conductrice, constituant une première électrode, et un revêtement extérieur conducteur constituant une seconde électrode peut ainsi constituer un actionneur. L'application d'un champ électrique entre ces électrodes permet de modifier les caractéristiques mécaniques de la fibre. Si cette fibre est intégrée dans une structure textile, l'application de ce champ électrique permet de modifier les caractéristiques mécaniques de cette structure textile. It is also possible that the polymer material used is an electrostrictive and electroactive material, for example a polymer (P (VDF-TrFE-CFE) or P (VDF-TrFE-CTFE). In these materials, the application of a field electrical connection across the material causes a reduction in its size in the direction of application of the field and its elongation in the direction perpendicular to the applied field.A fiber according to the invention composed of such a polymer, and having a conductive core, constituting a first electrode, and an outer coating conductor constituting a second electrode can thus constitute an actuator. The application of an electric field between these electrodes makes it possible to modify the mechanical characteristics of the fiber. If this fiber is integrated into a textile structure, the application of this electric field makes it possible to modify the mechanical characteristics of this textile structure.
Le filage de fibres bi-composant permet d'obtenir de nouvelles propriétés par la combinaison de différents matériaux au sein d'un même filament. Ces fibres bi-composant peuvent trouver des applications dans des secteurs variés du textile technique, de la filtration, mais également dans l'électronique. Two-component fiber spinning makes it possible to obtain new properties by combining different materials within the same filament. These bi-component fibers can find applications in various sectors of technical textiles, filtration, but also in electronics.
L'invention a également pour objet un dispositif piézoélectrique fabriqué à partir de la fibre bi- composant décrite. The invention also relates to a piezoelectric device manufactured from the bicomponent fiber described.
L'invention vise également les matériaux textiles qui comprennent des fibres bi-composant décrites. The invention also relates to textile materials which comprise bi-component fibers described.
EXEMPLES EXAMPLES
Les exemples suivants illustrent l'invention sans la limiter. Produits The following examples illustrate the invention without limiting it. products
Matériaux polymères de la couche A Polymeric materials of layer A
Polyéthylène haute densité (noté HDPE) : polyéthylène caractérisé par un indice de fluidité de 23 g/10' (190°C sous 2,16 kg), une température de fusion de 128°C et une température de cristallisation de 117°C mesurées par analyse thermique. High density polyethylene (denoted HDPE): polyethylene characterized by a melt index of 23 g / 10 '(190 ° C. under 2.16 kg), a melting temperature of 128 ° C. and a crystallization temperature of 117 ° C. measured by thermal analysis.
Polyéthylène fonctionnalisé (noté PEf) : terpolymère d'éthylène, d'acrylate de butyle et de méthacrylate de glycidyle caractérisé par un indice de fluidité de 12 g/10' (190°C sous 2,16kg), une température de fusion de 74°C et une température de cristallisation de 54°C.  Functionalized polyethylene (denoted by PEf): terpolymer of ethylene, of butyl acrylate and of glycidyl methacrylate, characterized by a melt index of 12 g / 10 '(190 ° C. under 2.16 kg), a melting temperature of 74 ° C and a crystallization temperature of 54 ° C.
Matériaux polymères de la couche B Polymeric materials of layer B
Polyfluorure de vinylidène (noté PVDF) : homopolymère de fluorure de vinylidène caractérisé par un indice de fluidité de 33 g/10' (230°C sous 2,16 kg), une température de fusion de 172°C et une température de cristallisation de 138°C mesurées par analyse thermique. Polyfluorure de vinylidène fonctionnalisé (noté PVDFf) : homopolymère de fluorure de vinylidène greffé avec 0.5% en poids d'anhydride maléique caractérisé par un indice de fluidité de 16 g/10' (230°C sous 3,8 kg), une température de fusion de 172°C et une température de cristallisation de 137°C mesurées par analyse thermique. Matériaux conducteurs Polyvinylidene fluoride (denoted PVDF): homopolymer of vinylidene fluoride characterized by a melt index of 33 g / 10 '(230 ° C. under 2.16 kg), a melting point of 172 ° C. and a crystallization temperature of 138 ° C measured by thermal analysis. Functionalized vinylidene fluoride (denoted PVDFf): homopolymer of vinylidene fluoride grafted with 0.5% by weight of maleic anhydride characterized by a melt index of 16 g / 10 '(230 ° C. under 3.8 kg), a temperature of melting at 172 ° C and a crystallization temperature of 137 ° C measured by thermal analysis. Conductive materials
Noir de carbone (noté CB) : Carbon black (denoted CB):
- Nanotubes de carbone (noté NTC).  - Nanotubes of carbon (noted NTC).
Préparation des compounds fonctionnalisés et conducteurs On appelle compounds fonctionnalisés les mélanges HDPE avec HDPE fonctionnalisé ou les mélanges PVDF avec PVDF fonctionnalisé. On appelle compounds conducteurs les mélanges HDPE (fonctionnalisés ou non) avec les charges conductrices. Preparation of functionalized and conductive compounds Functionalized compounds are termed HDPE mixtures with functionalized HDPE or PVDF mixtures with functionalized PVDF. Conductive compounds are the HDPE mixtures (functionalized or not) with the conductive fillers.
Les compounds fonctionnalisés sont réalisés par voie fondue selon un procédé d'extrusion. Pour cela une extrudeuse de type bi-vis est utilisée préférentiellement et permet le mélange de polymères non fonctionnels à des polymères fonctionnalisés en taux contrôlés. Les granulés de chaque matière sont mélangés en proportions choisies à l'état solide puis convoyés dans la machine d'extrusion selon un profil croissant de température dont les valeurs sont généralement comprises entre Tf+20 et Tf+70 °C. A l'issue de l'extrusion, un jonc est obtenu puis granulé. The functionalized compounds are made by molten route according to an extrusion process. For this purpose a bi-screw extruder is preferably used and allows the mixing of non-functional polymers with functionalised polymers at controlled rates. The granules of each material are mixed in selected proportions in the solid state and then conveyed in the extrusion machine according to an increasing temperature profile whose values are generally between Tf + 20 and Tf + 70 ° C. At the end of the extrusion, a rod is obtained and then granulated.
La première étape de réalisation d'un compound conducteur consiste en la fabrication d'un mélange-maître concentré en charges conductrices, mélange aussi appelé master-batch. Ce mélange-maître est réalisé par extrusion en voie fondue grâce à un outil mélange à fort taux de cisaillement tel qu'un comalaxeur ou une extrudeuse de type bi-vis à profil cisaillant. Cette étape est indispensable pour disperser de façon optimale la charge conductrice dans le polymère. De façon avantageuse, un fort taux de charges est utilisé dans le mélange-maître, typiquement compris entre 15 et 50 % en poids, et permet d'obtenir une forte viscosité favorisant le cisaillement et donc la dispersion des charges. La matière est convoyée en voie fondue dans la machine d'extrusion selon un profil de température croissant dont les valeurs sont généralement comprises entre Tf+20 et Tf+70 °C. Les charges conductrices sont apportées par un doseur latéral à la matière en fusion en quantité souhaitée. Un jonc est obtenu en sortie d'extrudeuse, refroidi puis granulé. Ces granulés de mélange-maître sont dilués dans la matrice considérée par procédé d'extrusion en voie fondue, sur une machine de type bi-vis. De la même façon, un profil croissant de température est appliqué à la matière en fusion pour permettre la dilution optimale du mélange- maître, dont les valeurs sont comprises entre Tf+20 et Tf+70 °C. The first step of producing a conductive compound consists in the manufacture of a masterbatch concentrated in conductive fillers, a mixture also called master batch. This masterbatch is produced by extrusion in a molten state using a high shear mixing tool such as a twin-screw co-extruder or shear profile extruder. This step is essential to optimally disperse the conductive filler in the polymer. Advantageously, a high level of filler is used in the masterbatch, typically between 15 and 50% by weight, and makes it possible to obtain a high viscosity that promotes shearing and therefore dispersion of the fillers. The material is melt convected in the extrusion machine according to an increasing temperature profile whose values are generally between Tf + 20 and Tf + 70 ° C. The conductive fillers are provided by a lateral doser to the molten material in a desired quantity. A rod is obtained at the extruder outlet, cooled and granulated. These masterbatch granules are diluted in the matrix considered by melt extrusion process, on a bi-screw type machine. In the same way, an increasing temperature profile is applied to the melt to allow optimum dilution of the masterbatch, whose values are between Tf + 20 and Tf + 70 ° C.
Filage des filaments bi-composants Two-component filament spinning
A partir des compounds fonctionnalisés et conducteurs, des structures bi-composants ont été réalisées dans les conditions suivantes. From the functionalized and conductive compounds, two-component structures were produced under the following conditions.
Exemple 1 : Fibre bi-composant A/B Le matériau A est un mélange à 70% en poids d'un Polyéthylène haute densité PEHD et 30% en poids d'un Polyéthylène fonctionnalisé PEf. Le matériau B est un compound fait de PVDF à 80% en poids et d'un PVDFf à 20% en poids. Example 1: Two-component A / B fiber Material A is a mixture of 70% by weight of a high density polyethylene HDPE and 30% by weight of a functionalized polyethylene PEf. Material B is a compound made of PVDF at 80% by weight and a PVDFf at 20% by weight.
Ces compounds A et B sont fondus et convoyés dans deux extrudeuses monovis, qui de façon optionnelle remplissent deux pompes de gavage servant à fixer le débit de sortie. A l'issue de l'étape d'extrusion ou de pompage, les deux compounds A et B sont acheminés dans une conduite puis injectés dans un pack de filage bi-composant permettant d'amener les compounds A et B respectivement en périphérie (gaine) et au centre (cœur) de chaque filament extrudé. Le pack de filage est réalisé selon les connaissances de l'homme du métier pour assurer le filage bi-composant de géométrie cœur-écorce et peut être constitué entre autres parties d'un cône d'injection, de plaques de répartition de flux, de filtres, d'une plaque de support ainsi que d'une filière. These compounds A and B are melted and conveyed in two single-screw extruders, which optionally fill two booster pumps for setting the output rate. At the end of the extrusion or pumping step, the two compounds A and B are conveyed in a pipe and then injected into a two-component spin pack for bringing the compounds A and B respectively to the periphery (sheath ) and in the center (heart) of each extruded filament. The spin pack is produced according to the knowledge of those skilled in the art to provide the two-component spinning core-bark geometry and can be constituted among other parts of an injection cone, flow distribution plates, filters, a support plate and a die.
Les éléments spécifiques à chaque compound : extrudeuse, pompe, conduite sont portés à des températures permettant la fusion dudit compound ΎΆ et TÎB, le pack de filage est quant à lui porté à une température T>TÎB. Cette température T ne doit pas conduire à la dégradation de l'un ou l'autre des compounds A ou B. The elements specific to each compound: extruder, pump, pipe are brought to temperatures permitting the melting of said compound ΎΆ and TIB, the spin pack is brought to a temperature T> TIB. This temperature T must not lead to the degradation of one or the other compounds A or B.
Pour les compounds A et B cités en exemple 1 , cette température T se situe préférentiellement entre 205 et 220°C et une filière mono filament bi-composant est utilisée. Les débits d'extrusion sont choisis de manière à obtenir un ratio volumique A / B de 30/70. Le filament extrudé est refroidi à l'air ambiant, entraîné par banc de tirage à rouleaux oméga permettant de fixer le diamètre et l'étirement à l'état fondu. Ce filament est ensuite collecté et bobiné sans étirement à l'état solide supplémentaire. For compounds A and B cited in Example 1, this temperature T is preferably between 205 and 220 ° C and a two-component monofilament die is used. The extrusion flow rates are chosen so as to obtain a volume ratio A / B of 30/70. The extruded filament is cooled in ambient air, driven by an omega roller drawing bench to fix the diameter and the stretch in the molten state. This filament is then collected and wound without stretching in the additional solid state.
La Figure 1 annexée illustre la fibre bi-composant A/B de l'exemple 1, non-étirée. The appended FIG. 1 illustrates the non-stretched bi-component fiber A / B of Example 1.
Caractérisation de l'adhésion par test de traction sur fibre Characterization of adhesion by tensile test on fiber
L'adhésion entre les couches A/B a été évaluée par un test de traction sur filament bi- composant. Pour ce faire, une machine d'essais universelle est utilisée en mode essai de traction. Elle est munie d'une traverse fixe et d'une traverse mobile instrumentée, d'un capteur de force et de mâchoires et mors adaptés aux essais sur filaments. Un dispositif permet l'enregistrement de la force mesurée par le capteur en fonction du déplacement de la traverse mobile. Les filaments sont placés entre les deux mâchoires et l'essai de traction est réalisé jusqu'à rupture totale des filaments, en utilisant une vitesse d'essai de 50 ou de 100%/min conformément à l'ISO 5079 ou ISO 2062, selon que l'on teste des mono ou multi- filaments. La Figure 2 annexée montre la fibre de l'exemple 1, étirée à 800%. Elle montre que les deux matériaux restent adhérés même après un étirement important, et rompent simultanément. Adhesion between the A / B layers was evaluated by a two-component filament tensile test. To do this, a universal test machine is used in traction test mode. It is equipped with a fixed crossbar and an instrumented moving beam, a force sensor and jaws and jaws suitable for filament testing. A device allows the recording of the force measured by the sensor as a function of the displacement of the movable cross member. The filaments are placed between the two jaws and the tensile test is carried out until the filaments are completely broken, using a test speed of 50 or 100% / min according to ISO 5079 or ISO 2062, according to that we test mono or multi-filaments. The appended FIG. 2 shows the fiber of example 1, stretched at 800%. It shows that the two materials remain adhered even after a large stretch, and break simultaneously.
Les structures réalisées sont montrées dans le Tableau I ci-dessous. The structures produced are shown in Table I below.
Les courbes correspondant aux tests de traction des exemples 1 et 1 comparatif sont représentées dans la figure 3. The curves corresponding to the tensile tests of Comparative Examples 1 and 1 are shown in FIG.
Figure imgf000015_0001
Figure imgf000015_0001
Tableau I Figure 3 : Le filament exemple 1 présente une courbe contrainte - allongement lisse et caractéristique d'un filament mono-composant. Le filament exemple 1 comparatif, qui n'est pas constitué de polymères fonctionnalisés, présente un comportement différent. Une chute importante de contrainte est observée dès le passage du régime élastique au régime de déformation plastique. Cette chute est caractéristique d'une rupture d'un des deux composants, dans ce cas celle de la gaine HDPE. Cette gaine est déchaussée/délaminée progressivement du cœur PVDF du filament comme le montre le comportement bruité de la courbe. Table I Figure 3: The filament example 1 has a stress curve - smooth elongation and characteristic of a single-component filament. The comparative Example 1 filament, which does not consist of functionalized polymers, exhibits a different behavior. A significant drop in stress is observed as soon as the elastic regime changes to the plastic deformation regime. This drop is characteristic of a rupture of one of the two components, in this case that of the HDPE sheath. This sheath is loosened / delaminated progressively from the PVDF core of the filament as shown by the noisy behavior of the curve.

Claims

REVENDICATIONS
1. Fibre polymère piézoélectrique constituée de deux couches : une couche B constituée d'au moins un polymère fluoré fonctionnalisé ou un mélange d'un polymère fluoré avec un polymère fluoré fonctionnalisé, et une couche A comprenant un mélange d'une polyoléfme avec une polyoléfme fonctionnalisée porteuse d'une fonction réactive vis- à-vis de la fonction portée par ledit polymère fluoré fonctionnalisé, ladite couche B étant en contact sur toute sa surface avec ladite couche A. 1. Piezoelectric polymer fiber consisting of two layers: a layer B consisting of at least one functionalized fluoropolymer or a mixture of a fluorinated polymer with a functionalized fluoropolymer, and a layer A comprising a mixture of a polyolefin with a polyolefin functionalised carrying a function reactive vis-à-vis the function carried by said functionalized fluoropolymer, said layer B being in contact over its entire surface with said layer A.
2. Fibre selon l'une des revendications précédentes dans laquelle la couche A est chargée de particules conductrices telles que les nanotubes de carbone, les noirs de carbone, le graphène, le graphite, les nanofïbres de carbone, nanofîls ou nanoparticules métalliques. 2. Fiber according to one of the preceding claims wherein the layer A is charged with conductive particles such as carbon nanotubes, carbon blacks, graphene, graphite, carbon nanofibers, nanofil or metal nanoparticles.
3. Fibre selon l'une des revendications 1 ou 2, dans laquelle ledit polymère fluoré fonctionnalisé est porteur d'un monomère instauré greffé choisi parmi les acides carboxyliques insaturés et leurs dérivés. 3. Fiber according to one of claims 1 or 2, wherein said functionalized fluoropolymer carries a grafted monomer selected from unsaturated carboxylic acids and their derivatives.
4. Fibre selon la revendication 3, dans laquelle ledit monomère de greffage est choisi parmi les acides maléique, fumarique, itaconique, citraconique, allylsuccinique, cyclohex-4- ène- 1 ,2-dicarboxylique, 4— méthyl-cyclohex-4-ène- 1 ,2-dicarboxylique, bicyclo(2,2,l)hept-5-ène-2,3-dicarboxylique, x— méthylbicyclo(2,2,l-hept-5-ène-2,3- dicarboxylique, les anhydrides maléique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène- 1 ,2-dicarboxylique, 4— méthylènecyclohex-4-ène- 1 ,2-dicarboxylique, bicyclo(2,2,l)hept-5-ène-2,3-dicarboxylique, et x— méthylbicyclo(2,2,l)hept-5-ène- 2,2-dicarboxylique. 4. Fiber according to claim 3, wherein said grafting monomer is selected from maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic, 4-methyl-cyclohex-4-ene acids. 1,2-dicarboxylic, bicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic acid, x-methylbicyclo [2,2,1-hept-5-ene-2,3-dicarboxylic acid, maleic, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic, 4-methylenecyclohex-4-ene-1,2-dicarboxylic, bicyclo (2,2,1) hept-5-ene-2 anhydrides , 3-dicarboxylic, and x-methylbicyclo (2,2,1) hept-5-ene-2,2-dicarboxylic acid.
5. Fibre selon l'une des revendications 1 à 4 dans laquelle ladite polyoléfme fonctionnalisée porte des groupements époxy. 5. Fiber according to one of claims 1 to 4 wherein said functionalized polyolefin carries epoxy groups.
6. Fibre selon l'une des revendications 1 à 5 dans laquelle les polymères présents dans chacune des couches A et B présentent des températures de cristallisation Te respectant la condition : Te A< Te B, les températures de cristallisation étant mesurées par analyse thermique différentielle. 6. Fiber according to one of claims 1 to 5 wherein the polymers present in each of layers A and B have crystallization temperatures Te respecting the condition: Te A <Te B, the crystallization temperatures being measured by differential thermal analysis .
7. Procédé de fabrication d'une fibre polymère piézoélectrique selon l'une des revendications 1 à 6 comprenant les étapes suivantes : 7. A method of manufacturing a piezoelectric polymer fiber according to one of claims 1 to 6 comprising the following steps:
fournir les polymères composant chacune des couches A et B à l'état fondu, coextruder lesdits polymères à l'état fondu sous forme de filaments,  supplying the polymers comprising each of the layers A and B in the molten state, coextruding said polymers in the molten state in the form of filaments,
enrouler ensemble lesdits filaments extrudés pour former une fibre,  winding said extruded filaments together to form a fiber,
étirer à chaud la fibre ainsi extrudée.  heat stretch the fiber thus extruded.
8. Dispositif piézoélectrique fabriqué à partir de fibres selon l'une des revendications 1 à 6. Piezoelectric device made from fibers according to one of claims 1 to 6.
9. Matériau textile comprenant des fibres selon l'une des revendications 1 à 6. 9. Textile material comprising fibers according to one of claims 1 to 6.
PCT/EP2018/064986 2017-06-09 2018-06-07 Two-layer fluorinated polymer fibre WO2018224584A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1755181 2017-06-09
FR1755181A FR3067363B1 (en) 2017-06-09 2017-06-09 MULTILAYER FIBER OF FLUORINATED POLYMERS
FR1757623A FR3067364B1 (en) 2017-06-09 2017-08-10 MULTILAYER FIBER OF FLUORINATED POLYMERS
FR1757623 2017-08-10

Publications (1)

Publication Number Publication Date
WO2018224584A1 true WO2018224584A1 (en) 2018-12-13

Family

ID=62455522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/064986 WO2018224584A1 (en) 2017-06-09 2018-06-07 Two-layer fluorinated polymer fibre

Country Status (2)

Country Link
FR (1) FR3067364B1 (en)
WO (1) WO2018224584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111713771A (en) * 2020-05-20 2020-09-29 国网吉林省电力有限公司电力科学研究院 anti-static protective clothing
CN114846634A (en) * 2019-12-23 2022-08-02 米其林集团总公司 Piezoelectric device with improved piezoelectric properties

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937793A2 (en) * 1998-02-24 1999-08-25 ARTEVA TECHNOLOGIES S.à.r.l. Bicomponent fiber
EP1484346A1 (en) 2003-06-06 2004-12-08 Atofina Process for the preparation or fluorinated graft copolymers and multilayer structures thereof
WO2005007716A1 (en) * 2003-07-11 2005-01-27 Dow Global Technologies Inc. Method for the manufacture of a functionalised polyolefin, functionalised polyolefin, bicomponent fiber, nonwoven and hygienic absorment product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747457B (en) * 2012-08-01 2014-06-11 波司登股份有限公司 Hydrophobic fire-resistant fiber and producing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937793A2 (en) * 1998-02-24 1999-08-25 ARTEVA TECHNOLOGIES S.à.r.l. Bicomponent fiber
EP1484346A1 (en) 2003-06-06 2004-12-08 Atofina Process for the preparation or fluorinated graft copolymers and multilayer structures thereof
WO2005007716A1 (en) * 2003-07-11 2005-01-27 Dow Global Technologies Inc. Method for the manufacture of a functionalised polyolefin, functionalised polyolefin, bicomponent fiber, nonwoven and hygienic absorment product

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANJA LUND ET AL: "Melt Spinning of b-Phase Poly(vinylidene fluoride) Yarns With and Without a Conductive Core", JOURNAL OF APPLIED POLYMER SCIENCE, WILEY, vol. 120, no. 2, 15 April 2011 (2011-04-15), pages 1080 - 1089, XP007916596, ISSN: 0021-8995, [retrieved on 20101108], DOI: 10.1002/APP.33239 *
B. GLAUSS ET AL., MATERIALS, vol. 6, 2013, pages 2642 - 61
BENJAMIN GLAUSS ET AL: "Production and functionalizing of biocomponent fibers based on PVDF", vol. 66, 11 September 2015 (2015-09-11), pages 70 - 72, XP001596199, Retrieved from the Internet <URL:www.chemical-fibers.com> *
BENJAMIN GLAUSS ET AL: "Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications", MATERIALS, vol. 6, no. 7, 3 July 2013 (2013-07-03), CH, pages 2642 - 2661, XP055495978, ISSN: 1996-1944, DOI: 10.3390/ma6072642 *
R. MARTINS ET AL., J. APPL. POLYM. SCI., 2014
R. MARTINS ET AL., J. TEXT. ENG., vol. 60, no. 2, 2014, pages 27 - 34

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114846634A (en) * 2019-12-23 2022-08-02 米其林集团总公司 Piezoelectric device with improved piezoelectric properties
CN111713771A (en) * 2020-05-20 2020-09-29 国网吉林省电力有限公司电力科学研究院 anti-static protective clothing
CN111713771B (en) * 2020-05-20 2023-12-29 国网吉林省电力有限公司电力科学研究院 Antistatic protective clothing

Also Published As

Publication number Publication date
FR3067364A1 (en) 2018-12-14
FR3067364B1 (en) 2019-06-28

Similar Documents

Publication Publication Date Title
FR3067363B1 (en) MULTILAYER FIBER OF FLUORINATED POLYMERS
EP2294253B1 (en) Method of manufacturing composite conducting fibres, fibres obtained by the method, and use of such fibres
CA2660341A1 (en) Vinylidene fluoride copolymer functionalized by radiation grafting of an unsaturated polar monomer
FR2978170A1 (en) CONDUCTIVE COMPOSITE FIBERS BASED ON GRAPHENE
WO2009007615A1 (en) Composite material including nanotubes dispersed in a fluorinated polymer matrix
EP2435608A1 (en) Multilayer conductive fiber and method for producing the same by coextrusion
EP1362870A1 (en) Layered structure with a binder based on a polyolefine grafted with an acrylate monomer
FR3067364B1 (en) MULTILAYER FIBER OF FLUORINATED POLYMERS
EP3041898A1 (en) Thermoplastic fluorinated polymer composition for off-shore pipes
WO2015031569A1 (en) Fluoropolymer blend
EP2013271B1 (en) Pvdf-based conductive composition
FR2935706A1 (en) Fluorinated polymer composition, used e.g. in pipe for conveying fluid pressure, comprises optionally plasticizer with fluoropolymer, shock modifying particles of core-shell type, and homopolymer or copolymer of vinylidene fluoride
EP3900065A1 (en) Polymer formulation for lining a metal core and method for producing a composite piezoelectric fibre
FR3079521A1 (en) POLYOLEFIN THERMOPLASTIC COMPOSITION FOR PRODUCING OBJECTS OF PERMANENT ANTISTATIC PROPERTIES.
JP2021501809A (en) High-strength polyvinylidene fluoride-based reinforcing compound
EP0769518B1 (en) Crosslinkable vinylidene fluoride polymer composition, process for its crosslinking and formed parts thereof
WO2021152268A1 (en) Electrode formulation for li-ion battery and solvent-free method for electrode manufacturing
JP2015166138A (en) Melt molding method of vinylidene fluoride resin, and melt-molded product
FR2958206A1 (en) MULTILAYER FLUORINATED FILMS
EP4277785A1 (en) Composite thermoplastic material for composite tubular structures
FR2585623A1 (en) MICROPOROUS CONSOLIDATED MATERIAL, PROCESS FOR OBTAINING SAME AND APPLICATIONS IN PARTICULAR TO THE PRODUCTION OF CATHODIC ELEMENTS
FR3040235A1 (en) REFLECTIVE PROTECTION SHEATH FOR CABLE
CA2435570C (en) Thermoplastic halogenated polymer compositions, method for preparing same and use thereof
WO2024228000A1 (en) Composition in powder form based on a fluorinated polymer or a hydrophilic polymer
EP1141115A1 (en) Material based on halogenated thermoplastic resin, comprising long fibres, methods for making same and uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18728182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18728182

Country of ref document: EP

Kind code of ref document: A1